Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Memory merging support.
   4 *
   5 * This code enables dynamic sharing of identical pages found in different
   6 * memory areas, even if they are not shared by fork()
   7 *
   8 * Copyright (C) 2008-2009 Red Hat, Inc.
   9 * Authors:
  10 *	Izik Eidus
  11 *	Andrea Arcangeli
  12 *	Chris Wright
  13 *	Hugh Dickins
  14 */
  15
  16#include <linux/errno.h>
  17#include <linux/mm.h>
 
  18#include <linux/fs.h>
  19#include <linux/mman.h>
  20#include <linux/sched.h>
  21#include <linux/sched/mm.h>
  22#include <linux/sched/coredump.h>
  23#include <linux/rwsem.h>
  24#include <linux/pagemap.h>
  25#include <linux/rmap.h>
  26#include <linux/spinlock.h>
  27#include <linux/xxhash.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/wait.h>
  31#include <linux/slab.h>
  32#include <linux/rbtree.h>
  33#include <linux/memory.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/swap.h>
  36#include <linux/ksm.h>
  37#include <linux/hashtable.h>
  38#include <linux/freezer.h>
  39#include <linux/oom.h>
  40#include <linux/numa.h>
 
  41
  42#include <asm/tlbflush.h>
  43#include "internal.h"
 
 
 
 
  44
  45#ifdef CONFIG_NUMA
  46#define NUMA(x)		(x)
  47#define DO_NUMA(x)	do { (x); } while (0)
  48#else
  49#define NUMA(x)		(0)
  50#define DO_NUMA(x)	do { } while (0)
  51#endif
  52
 
 
  53/**
  54 * DOC: Overview
  55 *
  56 * A few notes about the KSM scanning process,
  57 * to make it easier to understand the data structures below:
  58 *
  59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  60 * contents into a data structure that holds pointers to the pages' locations.
  61 *
  62 * Since the contents of the pages may change at any moment, KSM cannot just
  63 * insert the pages into a normal sorted tree and expect it to find anything.
  64 * Therefore KSM uses two data structures - the stable and the unstable tree.
  65 *
  66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  67 * by their contents.  Because each such page is write-protected, searching on
  68 * this tree is fully assured to be working (except when pages are unmapped),
  69 * and therefore this tree is called the stable tree.
  70 *
  71 * The stable tree node includes information required for reverse
  72 * mapping from a KSM page to virtual addresses that map this page.
  73 *
  74 * In order to avoid large latencies of the rmap walks on KSM pages,
  75 * KSM maintains two types of nodes in the stable tree:
  76 *
  77 * * the regular nodes that keep the reverse mapping structures in a
  78 *   linked list
  79 * * the "chains" that link nodes ("dups") that represent the same
  80 *   write protected memory content, but each "dup" corresponds to a
  81 *   different KSM page copy of that content
  82 *
  83 * Internally, the regular nodes, "dups" and "chains" are represented
  84 * using the same :c:type:`struct stable_node` structure.
  85 *
  86 * In addition to the stable tree, KSM uses a second data structure called the
  87 * unstable tree: this tree holds pointers to pages which have been found to
  88 * be "unchanged for a period of time".  The unstable tree sorts these pages
  89 * by their contents, but since they are not write-protected, KSM cannot rely
  90 * upon the unstable tree to work correctly - the unstable tree is liable to
  91 * be corrupted as its contents are modified, and so it is called unstable.
  92 *
  93 * KSM solves this problem by several techniques:
  94 *
  95 * 1) The unstable tree is flushed every time KSM completes scanning all
  96 *    memory areas, and then the tree is rebuilt again from the beginning.
  97 * 2) KSM will only insert into the unstable tree, pages whose hash value
  98 *    has not changed since the previous scan of all memory areas.
  99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 100 *    colors of the nodes and not on their contents, assuring that even when
 101 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 102 *    remains the same (also, searching and inserting nodes in an rbtree uses
 103 *    the same algorithm, so we have no overhead when we flush and rebuild).
 104 * 4) KSM never flushes the stable tree, which means that even if it were to
 105 *    take 10 attempts to find a page in the unstable tree, once it is found,
 106 *    it is secured in the stable tree.  (When we scan a new page, we first
 107 *    compare it against the stable tree, and then against the unstable tree.)
 108 *
 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 110 * stable trees and multiple unstable trees: one of each for each NUMA node.
 111 */
 112
 113/**
 114 * struct mm_slot - ksm information per mm that is being scanned
 115 * @link: link to the mm_slots hash list
 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 118 * @mm: the mm that this information is valid for
 119 */
 120struct mm_slot {
 121	struct hlist_node link;
 122	struct list_head mm_list;
 123	struct rmap_item *rmap_list;
 124	struct mm_struct *mm;
 125};
 126
 127/**
 128 * struct ksm_scan - cursor for scanning
 129 * @mm_slot: the current mm_slot we are scanning
 130 * @address: the next address inside that to be scanned
 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 132 * @seqnr: count of completed full scans (needed when removing unstable node)
 133 *
 134 * There is only the one ksm_scan instance of this cursor structure.
 135 */
 136struct ksm_scan {
 137	struct mm_slot *mm_slot;
 138	unsigned long address;
 139	struct rmap_item **rmap_list;
 140	unsigned long seqnr;
 141};
 142
 143/**
 144 * struct stable_node - node of the stable rbtree
 145 * @node: rb node of this ksm page in the stable tree
 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 148 * @list: linked into migrate_nodes, pending placement in the proper node tree
 149 * @hlist: hlist head of rmap_items using this ksm page
 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 151 * @chain_prune_time: time of the last full garbage collection
 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 154 */
 155struct stable_node {
 156	union {
 157		struct rb_node node;	/* when node of stable tree */
 158		struct {		/* when listed for migration */
 159			struct list_head *head;
 160			struct {
 161				struct hlist_node hlist_dup;
 162				struct list_head list;
 163			};
 164		};
 165	};
 166	struct hlist_head hlist;
 167	union {
 168		unsigned long kpfn;
 169		unsigned long chain_prune_time;
 170	};
 171	/*
 172	 * STABLE_NODE_CHAIN can be any negative number in
 173	 * rmap_hlist_len negative range, but better not -1 to be able
 174	 * to reliably detect underflows.
 175	 */
 176#define STABLE_NODE_CHAIN -1024
 177	int rmap_hlist_len;
 178#ifdef CONFIG_NUMA
 179	int nid;
 180#endif
 181};
 182
 183/**
 184 * struct rmap_item - reverse mapping item for virtual addresses
 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 188 * @mm: the memory structure this rmap_item is pointing into
 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 190 * @oldchecksum: previous checksum of the page at that virtual address
 191 * @node: rb node of this rmap_item in the unstable tree
 192 * @head: pointer to stable_node heading this list in the stable tree
 193 * @hlist: link into hlist of rmap_items hanging off that stable_node
 
 
 194 */
 195struct rmap_item {
 196	struct rmap_item *rmap_list;
 197	union {
 198		struct anon_vma *anon_vma;	/* when stable */
 199#ifdef CONFIG_NUMA
 200		int nid;		/* when node of unstable tree */
 201#endif
 202	};
 203	struct mm_struct *mm;
 204	unsigned long address;		/* + low bits used for flags below */
 205	unsigned int oldchecksum;	/* when unstable */
 
 
 206	union {
 207		struct rb_node node;	/* when node of unstable tree */
 208		struct {		/* when listed from stable tree */
 209			struct stable_node *head;
 210			struct hlist_node hlist;
 211		};
 212	};
 213};
 214
 215#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 216#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 217#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 218#define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
 219				/* to mask all the flags */
 220
 221/* The stable and unstable tree heads */
 222static struct rb_root one_stable_tree[1] = { RB_ROOT };
 223static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 224static struct rb_root *root_stable_tree = one_stable_tree;
 225static struct rb_root *root_unstable_tree = one_unstable_tree;
 226
 227/* Recently migrated nodes of stable tree, pending proper placement */
 228static LIST_HEAD(migrate_nodes);
 229#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 230
 231#define MM_SLOTS_HASH_BITS 10
 232static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 233
 234static struct mm_slot ksm_mm_head = {
 235	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 236};
 237static struct ksm_scan ksm_scan = {
 238	.mm_slot = &ksm_mm_head,
 239};
 240
 241static struct kmem_cache *rmap_item_cache;
 242static struct kmem_cache *stable_node_cache;
 243static struct kmem_cache *mm_slot_cache;
 244
 
 
 
 
 
 
 245/* The number of nodes in the stable tree */
 246static unsigned long ksm_pages_shared;
 247
 248/* The number of page slots additionally sharing those nodes */
 249static unsigned long ksm_pages_sharing;
 250
 251/* The number of nodes in the unstable tree */
 252static unsigned long ksm_pages_unshared;
 253
 254/* The number of rmap_items in use: to calculate pages_volatile */
 255static unsigned long ksm_rmap_items;
 256
 257/* The number of stable_node chains */
 258static unsigned long ksm_stable_node_chains;
 259
 260/* The number of stable_node dups linked to the stable_node chains */
 261static unsigned long ksm_stable_node_dups;
 262
 263/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 264static int ksm_stable_node_chains_prune_millisecs = 2000;
 265
 266/* Maximum number of page slots sharing a stable node */
 267static int ksm_max_page_sharing = 256;
 268
 269/* Number of pages ksmd should scan in one batch */
 270static unsigned int ksm_thread_pages_to_scan = 100;
 271
 272/* Milliseconds ksmd should sleep between batches */
 273static unsigned int ksm_thread_sleep_millisecs = 20;
 274
 275/* Checksum of an empty (zeroed) page */
 276static unsigned int zero_checksum __read_mostly;
 277
 278/* Whether to merge empty (zeroed) pages with actual zero pages */
 279static bool ksm_use_zero_pages __read_mostly;
 280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281#ifdef CONFIG_NUMA
 282/* Zeroed when merging across nodes is not allowed */
 283static unsigned int ksm_merge_across_nodes = 1;
 284static int ksm_nr_node_ids = 1;
 285#else
 286#define ksm_merge_across_nodes	1U
 287#define ksm_nr_node_ids		1
 288#endif
 289
 290#define KSM_RUN_STOP	0
 291#define KSM_RUN_MERGE	1
 292#define KSM_RUN_UNMERGE	2
 293#define KSM_RUN_OFFLINE	4
 294static unsigned long ksm_run = KSM_RUN_STOP;
 295static void wait_while_offlining(void);
 296
 297static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 298static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
 299static DEFINE_MUTEX(ksm_thread_mutex);
 300static DEFINE_SPINLOCK(ksm_mmlist_lock);
 301
 302#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 303		sizeof(struct __struct), __alignof__(struct __struct),\
 304		(__flags), NULL)
 305
 306static int __init ksm_slab_init(void)
 307{
 308	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 309	if (!rmap_item_cache)
 310		goto out;
 311
 312	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 313	if (!stable_node_cache)
 314		goto out_free1;
 315
 316	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 317	if (!mm_slot_cache)
 318		goto out_free2;
 319
 320	return 0;
 321
 322out_free2:
 323	kmem_cache_destroy(stable_node_cache);
 324out_free1:
 325	kmem_cache_destroy(rmap_item_cache);
 326out:
 327	return -ENOMEM;
 328}
 329
 330static void __init ksm_slab_free(void)
 331{
 332	kmem_cache_destroy(mm_slot_cache);
 333	kmem_cache_destroy(stable_node_cache);
 334	kmem_cache_destroy(rmap_item_cache);
 335	mm_slot_cache = NULL;
 336}
 337
 338static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 339{
 340	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 341}
 342
 343static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 344{
 345	return dup->head == STABLE_NODE_DUP_HEAD;
 346}
 347
 348static inline void stable_node_chain_add_dup(struct stable_node *dup,
 349					     struct stable_node *chain)
 350{
 351	VM_BUG_ON(is_stable_node_dup(dup));
 352	dup->head = STABLE_NODE_DUP_HEAD;
 353	VM_BUG_ON(!is_stable_node_chain(chain));
 354	hlist_add_head(&dup->hlist_dup, &chain->hlist);
 355	ksm_stable_node_dups++;
 356}
 357
 358static inline void __stable_node_dup_del(struct stable_node *dup)
 359{
 360	VM_BUG_ON(!is_stable_node_dup(dup));
 361	hlist_del(&dup->hlist_dup);
 362	ksm_stable_node_dups--;
 363}
 364
 365static inline void stable_node_dup_del(struct stable_node *dup)
 366{
 367	VM_BUG_ON(is_stable_node_chain(dup));
 368	if (is_stable_node_dup(dup))
 369		__stable_node_dup_del(dup);
 370	else
 371		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 372#ifdef CONFIG_DEBUG_VM
 373	dup->head = NULL;
 374#endif
 375}
 376
 377static inline struct rmap_item *alloc_rmap_item(void)
 378{
 379	struct rmap_item *rmap_item;
 380
 381	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 382						__GFP_NORETRY | __GFP_NOWARN);
 383	if (rmap_item)
 384		ksm_rmap_items++;
 385	return rmap_item;
 386}
 387
 388static inline void free_rmap_item(struct rmap_item *rmap_item)
 389{
 390	ksm_rmap_items--;
 
 391	rmap_item->mm = NULL;	/* debug safety */
 392	kmem_cache_free(rmap_item_cache, rmap_item);
 393}
 394
 395static inline struct stable_node *alloc_stable_node(void)
 396{
 397	/*
 398	 * The allocation can take too long with GFP_KERNEL when memory is under
 399	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 400	 * grants access to memory reserves, helping to avoid this problem.
 401	 */
 402	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 403}
 404
 405static inline void free_stable_node(struct stable_node *stable_node)
 406{
 407	VM_BUG_ON(stable_node->rmap_hlist_len &&
 408		  !is_stable_node_chain(stable_node));
 409	kmem_cache_free(stable_node_cache, stable_node);
 410}
 411
 412static inline struct mm_slot *alloc_mm_slot(void)
 413{
 414	if (!mm_slot_cache)	/* initialization failed */
 415		return NULL;
 416	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 417}
 418
 419static inline void free_mm_slot(struct mm_slot *mm_slot)
 420{
 421	kmem_cache_free(mm_slot_cache, mm_slot);
 422}
 423
 424static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 425{
 426	struct mm_slot *slot;
 427
 428	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 429		if (slot->mm == mm)
 430			return slot;
 431
 432	return NULL;
 433}
 434
 435static void insert_to_mm_slots_hash(struct mm_struct *mm,
 436				    struct mm_slot *mm_slot)
 437{
 438	mm_slot->mm = mm;
 439	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 440}
 441
 442/*
 443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 444 * page tables after it has passed through ksm_exit() - which, if necessary,
 445 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 446 * a special flag: they can just back out as soon as mm_users goes to zero.
 447 * ksm_test_exit() is used throughout to make this test for exit: in some
 448 * places for correctness, in some places just to avoid unnecessary work.
 449 */
 450static inline bool ksm_test_exit(struct mm_struct *mm)
 451{
 452	return atomic_read(&mm->mm_users) == 0;
 453}
 454
 455/*
 456 * We use break_ksm to break COW on a ksm page: it's a stripped down
 
 457 *
 458 *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 459 *		put_page(page);
 460 *
 461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 462 * in case the application has unmapped and remapped mm,addr meanwhile.
 463 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 465 *
 466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 467 * of the process that owns 'vma'.  We also do not want to enforce
 468 * protection keys here anyway.
 469 */
 470static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 471{
 472	struct page *page;
 473	vm_fault_t ret = 0;
 474
 
 
 
 475	do {
 
 
 
 
 476		cond_resched();
 477		page = follow_page(vma, addr,
 478				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 479		if (IS_ERR_OR_NULL(page))
 480			break;
 481		if (PageKsm(page))
 482			ret = handle_mm_fault(vma, addr,
 483					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 484		else
 485			ret = VM_FAULT_WRITE;
 486		put_page(page);
 487	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 488	/*
 489	 * We must loop because handle_mm_fault() may back out if there's
 490	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
 491	 *
 492	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 493	 * COW has been broken, even if the vma does not permit VM_WRITE;
 494	 * but note that a concurrent fault might break PageKsm for us.
 
 
 495	 *
 496	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 497	 * backing file, which also invalidates anonymous pages: that's
 498	 * okay, that truncation will have unmapped the PageKsm for us.
 499	 *
 500	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 501	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 502	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 503	 * to user; and ksmd, having no mm, would never be chosen for that.
 504	 *
 505	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 506	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 507	 * even ksmd can fail in this way - though it's usually breaking ksm
 508	 * just to undo a merge it made a moment before, so unlikely to oom.
 509	 *
 510	 * That's a pity: we might therefore have more kernel pages allocated
 511	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 512	 * will retry to break_cow on each pass, so should recover the page
 513	 * in due course.  The important thing is to not let VM_MERGEABLE
 514	 * be cleared while any such pages might remain in the area.
 515	 */
 516	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 517}
 518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 520		unsigned long addr)
 521{
 522	struct vm_area_struct *vma;
 523	if (ksm_test_exit(mm))
 524		return NULL;
 525	vma = find_vma(mm, addr);
 526	if (!vma || vma->vm_start > addr)
 527		return NULL;
 528	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 529		return NULL;
 530	return vma;
 531}
 532
 533static void break_cow(struct rmap_item *rmap_item)
 534{
 535	struct mm_struct *mm = rmap_item->mm;
 536	unsigned long addr = rmap_item->address;
 537	struct vm_area_struct *vma;
 538
 539	/*
 540	 * It is not an accident that whenever we want to break COW
 541	 * to undo, we also need to drop a reference to the anon_vma.
 542	 */
 543	put_anon_vma(rmap_item->anon_vma);
 544
 545	down_read(&mm->mmap_sem);
 546	vma = find_mergeable_vma(mm, addr);
 547	if (vma)
 548		break_ksm(vma, addr);
 549	up_read(&mm->mmap_sem);
 550}
 551
 552static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 553{
 554	struct mm_struct *mm = rmap_item->mm;
 555	unsigned long addr = rmap_item->address;
 556	struct vm_area_struct *vma;
 557	struct page *page;
 
 
 558
 559	down_read(&mm->mmap_sem);
 560	vma = find_mergeable_vma(mm, addr);
 561	if (!vma)
 562		goto out;
 563
 564	page = follow_page(vma, addr, FOLL_GET);
 565	if (IS_ERR_OR_NULL(page))
 566		goto out;
 567	if (PageAnon(page)) {
 
 
 
 
 
 
 
 568		flush_anon_page(vma, page, addr);
 569		flush_dcache_page(page);
 570	} else {
 571		put_page(page);
 572out:
 573		page = NULL;
 574	}
 575	up_read(&mm->mmap_sem);
 576	return page;
 577}
 578
 579/*
 580 * This helper is used for getting right index into array of tree roots.
 581 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 582 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 583 * every node has its own stable and unstable tree.
 584 */
 585static inline int get_kpfn_nid(unsigned long kpfn)
 586{
 587	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 588}
 589
 590static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 591						   struct rb_root *root)
 592{
 593	struct stable_node *chain = alloc_stable_node();
 594	VM_BUG_ON(is_stable_node_chain(dup));
 595	if (likely(chain)) {
 596		INIT_HLIST_HEAD(&chain->hlist);
 597		chain->chain_prune_time = jiffies;
 598		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 599#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 600		chain->nid = NUMA_NO_NODE; /* debug */
 601#endif
 602		ksm_stable_node_chains++;
 603
 604		/*
 605		 * Put the stable node chain in the first dimension of
 606		 * the stable tree and at the same time remove the old
 607		 * stable node.
 608		 */
 609		rb_replace_node(&dup->node, &chain->node, root);
 610
 611		/*
 612		 * Move the old stable node to the second dimension
 613		 * queued in the hlist_dup. The invariant is that all
 614		 * dup stable_nodes in the chain->hlist point to pages
 615		 * that are wrprotected and have the exact same
 616		 * content.
 617		 */
 618		stable_node_chain_add_dup(dup, chain);
 619	}
 620	return chain;
 621}
 622
 623static inline void free_stable_node_chain(struct stable_node *chain,
 624					  struct rb_root *root)
 625{
 626	rb_erase(&chain->node, root);
 627	free_stable_node(chain);
 628	ksm_stable_node_chains--;
 629}
 630
 631static void remove_node_from_stable_tree(struct stable_node *stable_node)
 632{
 633	struct rmap_item *rmap_item;
 634
 635	/* check it's not STABLE_NODE_CHAIN or negative */
 636	BUG_ON(stable_node->rmap_hlist_len < 0);
 637
 638	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 639		if (rmap_item->hlist.next)
 640			ksm_pages_sharing--;
 641		else
 
 642			ksm_pages_shared--;
 
 
 
 
 643		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 644		stable_node->rmap_hlist_len--;
 645		put_anon_vma(rmap_item->anon_vma);
 646		rmap_item->address &= PAGE_MASK;
 647		cond_resched();
 648	}
 649
 650	/*
 651	 * We need the second aligned pointer of the migrate_nodes
 652	 * list_head to stay clear from the rb_parent_color union
 653	 * (aligned and different than any node) and also different
 654	 * from &migrate_nodes. This will verify that future list.h changes
 655	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 656	 */
 657#if defined(GCC_VERSION) && GCC_VERSION >= 40903
 658	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 659	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 660#endif
 661
 
 662	if (stable_node->head == &migrate_nodes)
 663		list_del(&stable_node->list);
 664	else
 665		stable_node_dup_del(stable_node);
 666	free_stable_node(stable_node);
 667}
 668
 669enum get_ksm_page_flags {
 670	GET_KSM_PAGE_NOLOCK,
 671	GET_KSM_PAGE_LOCK,
 672	GET_KSM_PAGE_TRYLOCK
 673};
 674
 675/*
 676 * get_ksm_page: checks if the page indicated by the stable node
 677 * is still its ksm page, despite having held no reference to it.
 678 * In which case we can trust the content of the page, and it
 679 * returns the gotten page; but if the page has now been zapped,
 680 * remove the stale node from the stable tree and return NULL.
 681 * But beware, the stable node's page might be being migrated.
 682 *
 683 * You would expect the stable_node to hold a reference to the ksm page.
 684 * But if it increments the page's count, swapping out has to wait for
 685 * ksmd to come around again before it can free the page, which may take
 686 * seconds or even minutes: much too unresponsive.  So instead we use a
 687 * "keyhole reference": access to the ksm page from the stable node peeps
 688 * out through its keyhole to see if that page still holds the right key,
 689 * pointing back to this stable node.  This relies on freeing a PageAnon
 690 * page to reset its page->mapping to NULL, and relies on no other use of
 691 * a page to put something that might look like our key in page->mapping.
 692 * is on its way to being freed; but it is an anomaly to bear in mind.
 693 */
 694static struct page *get_ksm_page(struct stable_node *stable_node,
 695				 enum get_ksm_page_flags flags)
 696{
 697	struct page *page;
 698	void *expected_mapping;
 699	unsigned long kpfn;
 700
 701	expected_mapping = (void *)((unsigned long)stable_node |
 702					PAGE_MAPPING_KSM);
 703again:
 704	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 705	page = pfn_to_page(kpfn);
 706	if (READ_ONCE(page->mapping) != expected_mapping)
 707		goto stale;
 708
 709	/*
 710	 * We cannot do anything with the page while its refcount is 0.
 711	 * Usually 0 means free, or tail of a higher-order page: in which
 712	 * case this node is no longer referenced, and should be freed;
 713	 * however, it might mean that the page is under page_ref_freeze().
 714	 * The __remove_mapping() case is easy, again the node is now stale;
 715	 * the same is in reuse_ksm_page() case; but if page is swapcache
 716	 * in migrate_page_move_mapping(), it might still be our page,
 717	 * in which case it's essential to keep the node.
 718	 */
 719	while (!get_page_unless_zero(page)) {
 720		/*
 721		 * Another check for page->mapping != expected_mapping would
 722		 * work here too.  We have chosen the !PageSwapCache test to
 723		 * optimize the common case, when the page is or is about to
 724		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 725		 * in the ref_freeze section of __remove_mapping(); but Anon
 726		 * page->mapping reset to NULL later, in free_pages_prepare().
 
 727		 */
 728		if (!PageSwapCache(page))
 729			goto stale;
 730		cpu_relax();
 731	}
 732
 733	if (READ_ONCE(page->mapping) != expected_mapping) {
 734		put_page(page);
 735		goto stale;
 736	}
 737
 738	if (flags == GET_KSM_PAGE_TRYLOCK) {
 739		if (!trylock_page(page)) {
 740			put_page(page);
 741			return ERR_PTR(-EBUSY);
 742		}
 743	} else if (flags == GET_KSM_PAGE_LOCK)
 744		lock_page(page);
 745
 746	if (flags != GET_KSM_PAGE_NOLOCK) {
 747		if (READ_ONCE(page->mapping) != expected_mapping) {
 748			unlock_page(page);
 749			put_page(page);
 750			goto stale;
 751		}
 752	}
 753	return page;
 754
 755stale:
 756	/*
 757	 * We come here from above when page->mapping or !PageSwapCache
 758	 * suggests that the node is stale; but it might be under migration.
 759	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 760	 * before checking whether node->kpfn has been changed.
 761	 */
 762	smp_rmb();
 763	if (READ_ONCE(stable_node->kpfn) != kpfn)
 764		goto again;
 765	remove_node_from_stable_tree(stable_node);
 766	return NULL;
 767}
 768
 769/*
 770 * Removing rmap_item from stable or unstable tree.
 771 * This function will clean the information from the stable/unstable tree.
 772 */
 773static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 774{
 775	if (rmap_item->address & STABLE_FLAG) {
 776		struct stable_node *stable_node;
 777		struct page *page;
 778
 779		stable_node = rmap_item->head;
 780		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 781		if (!page)
 782			goto out;
 783
 784		hlist_del(&rmap_item->hlist);
 785		unlock_page(page);
 786		put_page(page);
 787
 788		if (!hlist_empty(&stable_node->hlist))
 789			ksm_pages_sharing--;
 790		else
 791			ksm_pages_shared--;
 
 
 
 792		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 793		stable_node->rmap_hlist_len--;
 794
 795		put_anon_vma(rmap_item->anon_vma);
 
 796		rmap_item->address &= PAGE_MASK;
 797
 798	} else if (rmap_item->address & UNSTABLE_FLAG) {
 799		unsigned char age;
 800		/*
 801		 * Usually ksmd can and must skip the rb_erase, because
 802		 * root_unstable_tree was already reset to RB_ROOT.
 803		 * But be careful when an mm is exiting: do the rb_erase
 804		 * if this rmap_item was inserted by this scan, rather
 805		 * than left over from before.
 806		 */
 807		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 808		BUG_ON(age > 1);
 809		if (!age)
 810			rb_erase(&rmap_item->node,
 811				 root_unstable_tree + NUMA(rmap_item->nid));
 812		ksm_pages_unshared--;
 813		rmap_item->address &= PAGE_MASK;
 814	}
 815out:
 816	cond_resched();		/* we're called from many long loops */
 817}
 818
 819static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 820				       struct rmap_item **rmap_list)
 821{
 822	while (*rmap_list) {
 823		struct rmap_item *rmap_item = *rmap_list;
 824		*rmap_list = rmap_item->rmap_list;
 825		remove_rmap_item_from_tree(rmap_item);
 826		free_rmap_item(rmap_item);
 827	}
 828}
 829
 830/*
 831 * Though it's very tempting to unmerge rmap_items from stable tree rather
 832 * than check every pte of a given vma, the locking doesn't quite work for
 833 * that - an rmap_item is assigned to the stable tree after inserting ksm
 834 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 835 * rmap_items from parent to child at fork time (so as not to waste time
 836 * if exit comes before the next scan reaches it).
 837 *
 838 * Similarly, although we'd like to remove rmap_items (so updating counts
 839 * and freeing memory) when unmerging an area, it's easier to leave that
 840 * to the next pass of ksmd - consider, for example, how ksmd might be
 841 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 842 */
 843static int unmerge_ksm_pages(struct vm_area_struct *vma,
 844			     unsigned long start, unsigned long end)
 845{
 846	unsigned long addr;
 847	int err = 0;
 848
 849	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 850		if (ksm_test_exit(vma->vm_mm))
 851			break;
 852		if (signal_pending(current))
 853			err = -ERESTARTSYS;
 854		else
 855			err = break_ksm(vma, addr);
 856	}
 857	return err;
 858}
 859
 860static inline struct stable_node *page_stable_node(struct page *page)
 
 861{
 862	return PageKsm(page) ? page_rmapping(page) : NULL;
 863}
 864
 865static inline void set_page_stable_node(struct page *page,
 866					struct stable_node *stable_node)
 867{
 868	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 
 
 
 
 
 
 
 869}
 870
 871#ifdef CONFIG_SYSFS
 872/*
 873 * Only called through the sysfs control interface:
 874 */
 875static int remove_stable_node(struct stable_node *stable_node)
 876{
 877	struct page *page;
 878	int err;
 879
 880	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 881	if (!page) {
 882		/*
 883		 * get_ksm_page did remove_node_from_stable_tree itself.
 884		 */
 885		return 0;
 886	}
 887
 888	/*
 889	 * Page could be still mapped if this races with __mmput() running in
 890	 * between ksm_exit() and exit_mmap(). Just refuse to let
 891	 * merge_across_nodes/max_page_sharing be switched.
 892	 */
 893	err = -EBUSY;
 894	if (!page_mapped(page)) {
 895		/*
 896		 * The stable node did not yet appear stale to get_ksm_page(),
 897		 * since that allows for an unmapped ksm page to be recognized
 898		 * right up until it is freed; but the node is safe to remove.
 899		 * This page might be in a pagevec waiting to be freed,
 900		 * or it might be PageSwapCache (perhaps under writeback),
 901		 * or it might have been removed from swapcache a moment ago.
 902		 */
 903		set_page_stable_node(page, NULL);
 904		remove_node_from_stable_tree(stable_node);
 905		err = 0;
 906	}
 907
 908	unlock_page(page);
 909	put_page(page);
 910	return err;
 911}
 912
 913static int remove_stable_node_chain(struct stable_node *stable_node,
 914				    struct rb_root *root)
 915{
 916	struct stable_node *dup;
 917	struct hlist_node *hlist_safe;
 918
 919	if (!is_stable_node_chain(stable_node)) {
 920		VM_BUG_ON(is_stable_node_dup(stable_node));
 921		if (remove_stable_node(stable_node))
 922			return true;
 923		else
 924			return false;
 925	}
 926
 927	hlist_for_each_entry_safe(dup, hlist_safe,
 928				  &stable_node->hlist, hlist_dup) {
 929		VM_BUG_ON(!is_stable_node_dup(dup));
 930		if (remove_stable_node(dup))
 931			return true;
 932	}
 933	BUG_ON(!hlist_empty(&stable_node->hlist));
 934	free_stable_node_chain(stable_node, root);
 935	return false;
 936}
 937
 938static int remove_all_stable_nodes(void)
 939{
 940	struct stable_node *stable_node, *next;
 941	int nid;
 942	int err = 0;
 943
 944	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 945		while (root_stable_tree[nid].rb_node) {
 946			stable_node = rb_entry(root_stable_tree[nid].rb_node,
 947						struct stable_node, node);
 948			if (remove_stable_node_chain(stable_node,
 949						     root_stable_tree + nid)) {
 950				err = -EBUSY;
 951				break;	/* proceed to next nid */
 952			}
 953			cond_resched();
 954		}
 955	}
 956	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 957		if (remove_stable_node(stable_node))
 958			err = -EBUSY;
 959		cond_resched();
 960	}
 961	return err;
 962}
 963
 964static int unmerge_and_remove_all_rmap_items(void)
 965{
 966	struct mm_slot *mm_slot;
 
 967	struct mm_struct *mm;
 968	struct vm_area_struct *vma;
 969	int err = 0;
 970
 971	spin_lock(&ksm_mmlist_lock);
 972	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 973						struct mm_slot, mm_list);
 
 974	spin_unlock(&ksm_mmlist_lock);
 975
 976	for (mm_slot = ksm_scan.mm_slot;
 977			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 978		mm = mm_slot->mm;
 979		down_read(&mm->mmap_sem);
 980		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 981			if (ksm_test_exit(mm))
 982				break;
 
 
 
 
 
 
 
 
 983			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 984				continue;
 985			err = unmerge_ksm_pages(vma,
 986						vma->vm_start, vma->vm_end);
 987			if (err)
 988				goto error;
 989		}
 990
 991		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 992		up_read(&mm->mmap_sem);
 
 993
 994		spin_lock(&ksm_mmlist_lock);
 995		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 996						struct mm_slot, mm_list);
 
 997		if (ksm_test_exit(mm)) {
 998			hash_del(&mm_slot->link);
 999			list_del(&mm_slot->mm_list);
1000			spin_unlock(&ksm_mmlist_lock);
1001
1002			free_mm_slot(mm_slot);
1003			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 
1004			mmdrop(mm);
1005		} else
1006			spin_unlock(&ksm_mmlist_lock);
1007	}
1008
1009	/* Clean up stable nodes, but don't worry if some are still busy */
1010	remove_all_stable_nodes();
1011	ksm_scan.seqnr = 0;
1012	return 0;
1013
1014error:
1015	up_read(&mm->mmap_sem);
1016	spin_lock(&ksm_mmlist_lock);
1017	ksm_scan.mm_slot = &ksm_mm_head;
1018	spin_unlock(&ksm_mmlist_lock);
1019	return err;
1020}
1021#endif /* CONFIG_SYSFS */
1022
1023static u32 calc_checksum(struct page *page)
1024{
1025	u32 checksum;
1026	void *addr = kmap_atomic(page);
1027	checksum = xxhash(addr, PAGE_SIZE, 0);
1028	kunmap_atomic(addr);
1029	return checksum;
1030}
1031
1032static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1033			      pte_t *orig_pte)
1034{
1035	struct mm_struct *mm = vma->vm_mm;
1036	struct page_vma_mapped_walk pvmw = {
1037		.page = page,
1038		.vma = vma,
1039	};
1040	int swapped;
1041	int err = -EFAULT;
1042	struct mmu_notifier_range range;
 
 
1043
1044	pvmw.address = page_address_in_vma(page, vma);
 
 
 
1045	if (pvmw.address == -EFAULT)
1046		goto out;
1047
1048	BUG_ON(PageTransCompound(page));
1049
1050	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1051				pvmw.address,
1052				pvmw.address + PAGE_SIZE);
1053	mmu_notifier_invalidate_range_start(&range);
1054
1055	if (!page_vma_mapped_walk(&pvmw))
1056		goto out_mn;
1057	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1058		goto out_unlock;
1059
1060	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1061	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1062						mm_tlb_flush_pending(mm)) {
1063		pte_t entry;
1064
1065		swapped = PageSwapCache(page);
1066		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1067		/*
1068		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1069		 * take any lock, therefore the check that we are going to make
1070		 * with the pagecount against the mapcount is racey and
1071		 * O_DIRECT can happen right after the check.
1072		 * So we clear the pte and flush the tlb before the check
1073		 * this assure us that no O_DIRECT can happen after the check
1074		 * or in the middle of the check.
1075		 *
1076		 * No need to notify as we are downgrading page table to read
1077		 * only not changing it to point to a new page.
1078		 *
1079		 * See Documentation/vm/mmu_notifier.rst
1080		 */
1081		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1082		/*
1083		 * Check that no O_DIRECT or similar I/O is in progress on the
1084		 * page
1085		 */
1086		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
 
 
 
 
 
 
 
1087			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1088			goto out_unlock;
1089		}
 
1090		if (pte_dirty(entry))
1091			set_page_dirty(page);
 
1092
1093		if (pte_protnone(entry))
1094			entry = pte_mkclean(pte_clear_savedwrite(entry));
1095		else
1096			entry = pte_mkclean(pte_wrprotect(entry));
1097		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1098	}
1099	*orig_pte = *pvmw.pte;
1100	err = 0;
1101
1102out_unlock:
1103	page_vma_mapped_walk_done(&pvmw);
1104out_mn:
1105	mmu_notifier_invalidate_range_end(&range);
1106out:
1107	return err;
1108}
1109
1110/**
1111 * replace_page - replace page in vma by new ksm page
1112 * @vma:      vma that holds the pte pointing to page
1113 * @page:     the page we are replacing by kpage
1114 * @kpage:    the ksm page we replace page by
1115 * @orig_pte: the original value of the pte
1116 *
1117 * Returns 0 on success, -EFAULT on failure.
1118 */
1119static int replace_page(struct vm_area_struct *vma, struct page *page,
1120			struct page *kpage, pte_t orig_pte)
1121{
 
1122	struct mm_struct *mm = vma->vm_mm;
 
1123	pmd_t *pmd;
 
1124	pte_t *ptep;
1125	pte_t newpte;
1126	spinlock_t *ptl;
1127	unsigned long addr;
1128	int err = -EFAULT;
1129	struct mmu_notifier_range range;
1130
1131	addr = page_address_in_vma(page, vma);
1132	if (addr == -EFAULT)
1133		goto out;
1134
1135	pmd = mm_find_pmd(mm, addr);
1136	if (!pmd)
1137		goto out;
 
 
 
 
 
 
 
 
1138
1139	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1140				addr + PAGE_SIZE);
1141	mmu_notifier_invalidate_range_start(&range);
1142
1143	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1144	if (!pte_same(*ptep, orig_pte)) {
 
 
1145		pte_unmap_unlock(ptep, ptl);
1146		goto out_mn;
1147	}
 
 
 
1148
1149	/*
1150	 * No need to check ksm_use_zero_pages here: we can only have a
1151	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1152	 */
1153	if (!is_zero_pfn(page_to_pfn(kpage))) {
1154		get_page(kpage);
1155		page_add_anon_rmap(kpage, vma, addr, false);
1156		newpte = mk_pte(kpage, vma->vm_page_prot);
1157	} else {
1158		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1159					       vma->vm_page_prot));
 
 
 
 
 
1160		/*
1161		 * We're replacing an anonymous page with a zero page, which is
1162		 * not anonymous. We need to do proper accounting otherwise we
1163		 * will get wrong values in /proc, and a BUG message in dmesg
1164		 * when tearing down the mm.
1165		 */
1166		dec_mm_counter(mm, MM_ANONPAGES);
1167	}
1168
1169	flush_cache_page(vma, addr, pte_pfn(*ptep));
1170	/*
1171	 * No need to notify as we are replacing a read only page with another
1172	 * read only page with the same content.
1173	 *
1174	 * See Documentation/vm/mmu_notifier.rst
1175	 */
1176	ptep_clear_flush(vma, addr, ptep);
1177	set_pte_at_notify(mm, addr, ptep, newpte);
1178
1179	page_remove_rmap(page, false);
1180	if (!page_mapped(page))
1181		try_to_free_swap(page);
1182	put_page(page);
1183
1184	pte_unmap_unlock(ptep, ptl);
1185	err = 0;
1186out_mn:
1187	mmu_notifier_invalidate_range_end(&range);
1188out:
1189	return err;
1190}
1191
1192/*
1193 * try_to_merge_one_page - take two pages and merge them into one
1194 * @vma: the vma that holds the pte pointing to page
1195 * @page: the PageAnon page that we want to replace with kpage
1196 * @kpage: the PageKsm page that we want to map instead of page,
1197 *         or NULL the first time when we want to use page as kpage.
1198 *
1199 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1200 */
1201static int try_to_merge_one_page(struct vm_area_struct *vma,
1202				 struct page *page, struct page *kpage)
1203{
 
1204	pte_t orig_pte = __pte(0);
1205	int err = -EFAULT;
1206
1207	if (page == kpage)			/* ksm page forked */
1208		return 0;
1209
1210	if (!PageAnon(page))
1211		goto out;
1212
1213	/*
1214	 * We need the page lock to read a stable PageSwapCache in
1215	 * write_protect_page().  We use trylock_page() instead of
1216	 * lock_page() because we don't want to wait here - we
1217	 * prefer to continue scanning and merging different pages,
1218	 * then come back to this page when it is unlocked.
1219	 */
1220	if (!trylock_page(page))
1221		goto out;
1222
1223	if (PageTransCompound(page)) {
1224		if (split_huge_page(page))
1225			goto out_unlock;
 
1226	}
1227
1228	/*
1229	 * If this anonymous page is mapped only here, its pte may need
1230	 * to be write-protected.  If it's mapped elsewhere, all of its
1231	 * ptes are necessarily already write-protected.  But in either
1232	 * case, we need to lock and check page_count is not raised.
1233	 */
1234	if (write_protect_page(vma, page, &orig_pte) == 0) {
1235		if (!kpage) {
1236			/*
1237			 * While we hold page lock, upgrade page from
1238			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1239			 * stable_tree_insert() will update stable_node.
1240			 */
1241			set_page_stable_node(page, NULL);
1242			mark_page_accessed(page);
1243			/*
1244			 * Page reclaim just frees a clean page with no dirty
1245			 * ptes: make sure that the ksm page would be swapped.
1246			 */
1247			if (!PageDirty(page))
1248				SetPageDirty(page);
1249			err = 0;
1250		} else if (pages_identical(page, kpage))
1251			err = replace_page(vma, page, kpage, orig_pte);
1252	}
1253
1254	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1255		munlock_vma_page(page);
1256		if (!PageMlocked(kpage)) {
1257			unlock_page(page);
1258			lock_page(kpage);
1259			mlock_vma_page(kpage);
1260			page = kpage;		/* for final unlock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261		}
 
1262	}
1263
1264out_unlock:
1265	unlock_page(page);
1266out:
1267	return err;
1268}
1269
1270/*
1271 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1272 * but no new kernel page is allocated: kpage must already be a ksm page.
1273 *
1274 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1275 */
1276static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1277				      struct page *page, struct page *kpage)
1278{
1279	struct mm_struct *mm = rmap_item->mm;
1280	struct vm_area_struct *vma;
1281	int err = -EFAULT;
1282
1283	down_read(&mm->mmap_sem);
1284	vma = find_mergeable_vma(mm, rmap_item->address);
1285	if (!vma)
1286		goto out;
1287
1288	err = try_to_merge_one_page(vma, page, kpage);
1289	if (err)
1290		goto out;
1291
1292	/* Unstable nid is in union with stable anon_vma: remove first */
1293	remove_rmap_item_from_tree(rmap_item);
1294
1295	/* Must get reference to anon_vma while still holding mmap_sem */
1296	rmap_item->anon_vma = vma->anon_vma;
1297	get_anon_vma(vma->anon_vma);
1298out:
1299	up_read(&mm->mmap_sem);
 
 
1300	return err;
1301}
1302
1303/*
1304 * try_to_merge_two_pages - take two identical pages and prepare them
1305 * to be merged into one page.
1306 *
1307 * This function returns the kpage if we successfully merged two identical
1308 * pages into one ksm page, NULL otherwise.
1309 *
1310 * Note that this function upgrades page to ksm page: if one of the pages
1311 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1312 */
1313static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1314					   struct page *page,
1315					   struct rmap_item *tree_rmap_item,
1316					   struct page *tree_page)
1317{
1318	int err;
1319
1320	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1321	if (!err) {
1322		err = try_to_merge_with_ksm_page(tree_rmap_item,
1323							tree_page, page);
1324		/*
1325		 * If that fails, we have a ksm page with only one pte
1326		 * pointing to it: so break it.
1327		 */
1328		if (err)
1329			break_cow(rmap_item);
1330	}
1331	return err ? NULL : page;
1332}
1333
1334static __always_inline
1335bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1336{
1337	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1338	/*
1339	 * Check that at least one mapping still exists, otherwise
1340	 * there's no much point to merge and share with this
1341	 * stable_node, as the underlying tree_page of the other
1342	 * sharer is going to be freed soon.
1343	 */
1344	return stable_node->rmap_hlist_len &&
1345		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1346}
1347
1348static __always_inline
1349bool is_page_sharing_candidate(struct stable_node *stable_node)
1350{
1351	return __is_page_sharing_candidate(stable_node, 0);
1352}
1353
1354static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1355				    struct stable_node **_stable_node,
1356				    struct rb_root *root,
1357				    bool prune_stale_stable_nodes)
1358{
1359	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1360	struct hlist_node *hlist_safe;
1361	struct page *_tree_page, *tree_page = NULL;
1362	int nr = 0;
1363	int found_rmap_hlist_len;
1364
1365	if (!prune_stale_stable_nodes ||
1366	    time_before(jiffies, stable_node->chain_prune_time +
1367			msecs_to_jiffies(
1368				ksm_stable_node_chains_prune_millisecs)))
1369		prune_stale_stable_nodes = false;
1370	else
1371		stable_node->chain_prune_time = jiffies;
1372
1373	hlist_for_each_entry_safe(dup, hlist_safe,
1374				  &stable_node->hlist, hlist_dup) {
1375		cond_resched();
1376		/*
1377		 * We must walk all stable_node_dup to prune the stale
1378		 * stable nodes during lookup.
1379		 *
1380		 * get_ksm_page can drop the nodes from the
1381		 * stable_node->hlist if they point to freed pages
1382		 * (that's why we do a _safe walk). The "dup"
1383		 * stable_node parameter itself will be freed from
1384		 * under us if it returns NULL.
1385		 */
1386		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1387		if (!_tree_page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388			continue;
1389		nr += 1;
1390		if (is_page_sharing_candidate(dup)) {
1391			if (!found ||
1392			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1393				if (found)
1394					put_page(tree_page);
1395				found = dup;
1396				found_rmap_hlist_len = found->rmap_hlist_len;
1397				tree_page = _tree_page;
1398
1399				/* skip put_page for found dup */
1400				if (!prune_stale_stable_nodes)
1401					break;
1402				continue;
1403			}
1404		}
1405		put_page(_tree_page);
1406	}
1407
1408	if (found) {
1409		/*
1410		 * nr is counting all dups in the chain only if
1411		 * prune_stale_stable_nodes is true, otherwise we may
1412		 * break the loop at nr == 1 even if there are
1413		 * multiple entries.
1414		 */
1415		if (prune_stale_stable_nodes && nr == 1) {
1416			/*
1417			 * If there's not just one entry it would
1418			 * corrupt memory, better BUG_ON. In KSM
1419			 * context with no lock held it's not even
1420			 * fatal.
1421			 */
1422			BUG_ON(stable_node->hlist.first->next);
1423
1424			/*
1425			 * There's just one entry and it is below the
1426			 * deduplication limit so drop the chain.
1427			 */
1428			rb_replace_node(&stable_node->node, &found->node,
1429					root);
1430			free_stable_node(stable_node);
1431			ksm_stable_node_chains--;
1432			ksm_stable_node_dups--;
1433			/*
1434			 * NOTE: the caller depends on the stable_node
1435			 * to be equal to stable_node_dup if the chain
1436			 * was collapsed.
1437			 */
1438			*_stable_node = found;
1439			/*
1440			 * Just for robustneess as stable_node is
1441			 * otherwise left as a stable pointer, the
1442			 * compiler shall optimize it away at build
1443			 * time.
1444			 */
1445			stable_node = NULL;
1446		} else if (stable_node->hlist.first != &found->hlist_dup &&
1447			   __is_page_sharing_candidate(found, 1)) {
1448			/*
1449			 * If the found stable_node dup can accept one
1450			 * more future merge (in addition to the one
1451			 * that is underway) and is not at the head of
1452			 * the chain, put it there so next search will
1453			 * be quicker in the !prune_stale_stable_nodes
1454			 * case.
1455			 *
1456			 * NOTE: it would be inaccurate to use nr > 1
1457			 * instead of checking the hlist.first pointer
1458			 * directly, because in the
1459			 * prune_stale_stable_nodes case "nr" isn't
1460			 * the position of the found dup in the chain,
1461			 * but the total number of dups in the chain.
1462			 */
1463			hlist_del(&found->hlist_dup);
1464			hlist_add_head(&found->hlist_dup,
1465				       &stable_node->hlist);
1466		}
 
 
 
1467	}
1468
1469	*_stable_node_dup = found;
1470	return tree_page;
1471}
1472
1473static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1474					       struct rb_root *root)
1475{
1476	if (!is_stable_node_chain(stable_node))
1477		return stable_node;
1478	if (hlist_empty(&stable_node->hlist)) {
1479		free_stable_node_chain(stable_node, root);
1480		return NULL;
1481	}
1482	return hlist_entry(stable_node->hlist.first,
1483			   typeof(*stable_node), hlist_dup);
1484}
1485
1486/*
1487 * Like for get_ksm_page, this function can free the *_stable_node and
1488 * *_stable_node_dup if the returned tree_page is NULL.
1489 *
1490 * It can also free and overwrite *_stable_node with the found
1491 * stable_node_dup if the chain is collapsed (in which case
1492 * *_stable_node will be equal to *_stable_node_dup like if the chain
1493 * never existed). It's up to the caller to verify tree_page is not
1494 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1495 *
1496 * *_stable_node_dup is really a second output parameter of this
1497 * function and will be overwritten in all cases, the caller doesn't
1498 * need to initialize it.
1499 */
1500static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1501					struct stable_node **_stable_node,
1502					struct rb_root *root,
1503					bool prune_stale_stable_nodes)
1504{
1505	struct stable_node *stable_node = *_stable_node;
 
1506	if (!is_stable_node_chain(stable_node)) {
1507		if (is_page_sharing_candidate(stable_node)) {
1508			*_stable_node_dup = stable_node;
1509			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1510		}
1511		/*
1512		 * _stable_node_dup set to NULL means the stable_node
1513		 * reached the ksm_max_page_sharing limit.
1514		 */
1515		*_stable_node_dup = NULL;
1516		return NULL;
1517	}
1518	return stable_node_dup(_stable_node_dup, _stable_node, root,
1519			       prune_stale_stable_nodes);
1520}
1521
1522static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1523						struct stable_node **s_n,
1524						struct rb_root *root)
1525{
1526	return __stable_node_chain(s_n_d, s_n, root, true);
1527}
1528
1529static __always_inline struct page *chain(struct stable_node **s_n_d,
1530					  struct stable_node *s_n,
1531					  struct rb_root *root)
1532{
1533	struct stable_node *old_stable_node = s_n;
1534	struct page *tree_page;
1535
1536	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1537	/* not pruning dups so s_n cannot have changed */
1538	VM_BUG_ON(s_n != old_stable_node);
1539	return tree_page;
1540}
1541
1542/*
1543 * stable_tree_search - search for page inside the stable tree
1544 *
1545 * This function checks if there is a page inside the stable tree
1546 * with identical content to the page that we are scanning right now.
1547 *
1548 * This function returns the stable tree node of identical content if found,
1549 * NULL otherwise.
1550 */
1551static struct page *stable_tree_search(struct page *page)
1552{
1553	int nid;
1554	struct rb_root *root;
1555	struct rb_node **new;
1556	struct rb_node *parent;
1557	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1558	struct stable_node *page_node;
 
1559
1560	page_node = page_stable_node(page);
 
1561	if (page_node && page_node->head != &migrate_nodes) {
1562		/* ksm page forked */
1563		get_page(page);
1564		return page;
1565	}
1566
1567	nid = get_kpfn_nid(page_to_pfn(page));
1568	root = root_stable_tree + nid;
1569again:
1570	new = &root->rb_node;
1571	parent = NULL;
1572
1573	while (*new) {
1574		struct page *tree_page;
1575		int ret;
1576
1577		cond_resched();
1578		stable_node = rb_entry(*new, struct stable_node, node);
1579		stable_node_any = NULL;
1580		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1581		/*
1582		 * NOTE: stable_node may have been freed by
1583		 * chain_prune() if the returned stable_node_dup is
1584		 * not NULL. stable_node_dup may have been inserted in
1585		 * the rbtree instead as a regular stable_node (in
1586		 * order to collapse the stable_node chain if a single
1587		 * stable_node dup was found in it). In such case the
1588		 * stable_node is overwritten by the calleee to point
1589		 * to the stable_node_dup that was collapsed in the
1590		 * stable rbtree and stable_node will be equal to
1591		 * stable_node_dup like if the chain never existed.
1592		 */
1593		if (!stable_node_dup) {
1594			/*
1595			 * Either all stable_node dups were full in
1596			 * this stable_node chain, or this chain was
1597			 * empty and should be rb_erased.
1598			 */
1599			stable_node_any = stable_node_dup_any(stable_node,
1600							      root);
1601			if (!stable_node_any) {
1602				/* rb_erase just run */
1603				goto again;
1604			}
1605			/*
1606			 * Take any of the stable_node dups page of
1607			 * this stable_node chain to let the tree walk
1608			 * continue. All KSM pages belonging to the
1609			 * stable_node dups in a stable_node chain
1610			 * have the same content and they're
1611			 * wrprotected at all times. Any will work
1612			 * fine to continue the walk.
1613			 */
1614			tree_page = get_ksm_page(stable_node_any,
1615						 GET_KSM_PAGE_NOLOCK);
1616		}
1617		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1618		if (!tree_page) {
1619			/*
1620			 * If we walked over a stale stable_node,
1621			 * get_ksm_page() will call rb_erase() and it
1622			 * may rebalance the tree from under us. So
1623			 * restart the search from scratch. Returning
1624			 * NULL would be safe too, but we'd generate
1625			 * false negative insertions just because some
1626			 * stable_node was stale.
1627			 */
1628			goto again;
1629		}
1630
1631		ret = memcmp_pages(page, tree_page);
1632		put_page(tree_page);
1633
1634		parent = *new;
1635		if (ret < 0)
1636			new = &parent->rb_left;
1637		else if (ret > 0)
1638			new = &parent->rb_right;
1639		else {
1640			if (page_node) {
1641				VM_BUG_ON(page_node->head != &migrate_nodes);
1642				/*
1643				 * Test if the migrated page should be merged
1644				 * into a stable node dup. If the mapcount is
1645				 * 1 we can migrate it with another KSM page
1646				 * without adding it to the chain.
 
 
 
1647				 */
1648				if (page_mapcount(page) > 1)
1649					goto chain_append;
1650			}
1651
1652			if (!stable_node_dup) {
1653				/*
1654				 * If the stable_node is a chain and
1655				 * we got a payload match in memcmp
1656				 * but we cannot merge the scanned
1657				 * page in any of the existing
1658				 * stable_node dups because they're
1659				 * all full, we need to wait the
1660				 * scanned page to find itself a match
1661				 * in the unstable tree to create a
1662				 * brand new KSM page to add later to
1663				 * the dups of this stable_node.
1664				 */
1665				return NULL;
1666			}
1667
1668			/*
1669			 * Lock and unlock the stable_node's page (which
1670			 * might already have been migrated) so that page
1671			 * migration is sure to notice its raised count.
1672			 * It would be more elegant to return stable_node
1673			 * than kpage, but that involves more changes.
1674			 */
1675			tree_page = get_ksm_page(stable_node_dup,
1676						 GET_KSM_PAGE_TRYLOCK);
1677
1678			if (PTR_ERR(tree_page) == -EBUSY)
1679				return ERR_PTR(-EBUSY);
1680
1681			if (unlikely(!tree_page))
1682				/*
1683				 * The tree may have been rebalanced,
1684				 * so re-evaluate parent and new.
1685				 */
1686				goto again;
1687			unlock_page(tree_page);
1688
1689			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1690			    NUMA(stable_node_dup->nid)) {
1691				put_page(tree_page);
1692				goto replace;
1693			}
1694			return tree_page;
1695		}
1696	}
1697
1698	if (!page_node)
1699		return NULL;
1700
1701	list_del(&page_node->list);
1702	DO_NUMA(page_node->nid = nid);
1703	rb_link_node(&page_node->node, parent, new);
1704	rb_insert_color(&page_node->node, root);
1705out:
1706	if (is_page_sharing_candidate(page_node)) {
1707		get_page(page);
1708		return page;
1709	} else
1710		return NULL;
1711
1712replace:
1713	/*
1714	 * If stable_node was a chain and chain_prune collapsed it,
1715	 * stable_node has been updated to be the new regular
1716	 * stable_node. A collapse of the chain is indistinguishable
1717	 * from the case there was no chain in the stable
1718	 * rbtree. Otherwise stable_node is the chain and
1719	 * stable_node_dup is the dup to replace.
1720	 */
1721	if (stable_node_dup == stable_node) {
1722		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1723		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1724		/* there is no chain */
1725		if (page_node) {
1726			VM_BUG_ON(page_node->head != &migrate_nodes);
1727			list_del(&page_node->list);
1728			DO_NUMA(page_node->nid = nid);
1729			rb_replace_node(&stable_node_dup->node,
1730					&page_node->node,
1731					root);
1732			if (is_page_sharing_candidate(page_node))
1733				get_page(page);
1734			else
1735				page = NULL;
1736		} else {
1737			rb_erase(&stable_node_dup->node, root);
1738			page = NULL;
1739		}
1740	} else {
1741		VM_BUG_ON(!is_stable_node_chain(stable_node));
1742		__stable_node_dup_del(stable_node_dup);
1743		if (page_node) {
1744			VM_BUG_ON(page_node->head != &migrate_nodes);
1745			list_del(&page_node->list);
1746			DO_NUMA(page_node->nid = nid);
1747			stable_node_chain_add_dup(page_node, stable_node);
1748			if (is_page_sharing_candidate(page_node))
1749				get_page(page);
1750			else
1751				page = NULL;
1752		} else {
1753			page = NULL;
1754		}
1755	}
1756	stable_node_dup->head = &migrate_nodes;
1757	list_add(&stable_node_dup->list, stable_node_dup->head);
1758	return page;
1759
1760chain_append:
1761	/* stable_node_dup could be null if it reached the limit */
1762	if (!stable_node_dup)
1763		stable_node_dup = stable_node_any;
1764	/*
1765	 * If stable_node was a chain and chain_prune collapsed it,
1766	 * stable_node has been updated to be the new regular
1767	 * stable_node. A collapse of the chain is indistinguishable
1768	 * from the case there was no chain in the stable
1769	 * rbtree. Otherwise stable_node is the chain and
1770	 * stable_node_dup is the dup to replace.
1771	 */
1772	if (stable_node_dup == stable_node) {
1773		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1774		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1775		/* chain is missing so create it */
1776		stable_node = alloc_stable_node_chain(stable_node_dup,
1777						      root);
1778		if (!stable_node)
1779			return NULL;
1780	}
1781	/*
1782	 * Add this stable_node dup that was
1783	 * migrated to the stable_node chain
1784	 * of the current nid for this page
1785	 * content.
1786	 */
1787	VM_BUG_ON(!is_stable_node_chain(stable_node));
1788	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1789	VM_BUG_ON(page_node->head != &migrate_nodes);
1790	list_del(&page_node->list);
1791	DO_NUMA(page_node->nid = nid);
1792	stable_node_chain_add_dup(page_node, stable_node);
1793	goto out;
1794}
1795
1796/*
1797 * stable_tree_insert - insert stable tree node pointing to new ksm page
1798 * into the stable tree.
1799 *
1800 * This function returns the stable tree node just allocated on success,
1801 * NULL otherwise.
1802 */
1803static struct stable_node *stable_tree_insert(struct page *kpage)
1804{
1805	int nid;
1806	unsigned long kpfn;
1807	struct rb_root *root;
1808	struct rb_node **new;
1809	struct rb_node *parent;
1810	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1811	bool need_chain = false;
1812
1813	kpfn = page_to_pfn(kpage);
1814	nid = get_kpfn_nid(kpfn);
1815	root = root_stable_tree + nid;
1816again:
1817	parent = NULL;
1818	new = &root->rb_node;
1819
1820	while (*new) {
1821		struct page *tree_page;
1822		int ret;
1823
1824		cond_resched();
1825		stable_node = rb_entry(*new, struct stable_node, node);
1826		stable_node_any = NULL;
1827		tree_page = chain(&stable_node_dup, stable_node, root);
1828		if (!stable_node_dup) {
1829			/*
1830			 * Either all stable_node dups were full in
1831			 * this stable_node chain, or this chain was
1832			 * empty and should be rb_erased.
1833			 */
1834			stable_node_any = stable_node_dup_any(stable_node,
1835							      root);
1836			if (!stable_node_any) {
1837				/* rb_erase just run */
1838				goto again;
1839			}
1840			/*
1841			 * Take any of the stable_node dups page of
1842			 * this stable_node chain to let the tree walk
1843			 * continue. All KSM pages belonging to the
1844			 * stable_node dups in a stable_node chain
1845			 * have the same content and they're
1846			 * wrprotected at all times. Any will work
1847			 * fine to continue the walk.
1848			 */
1849			tree_page = get_ksm_page(stable_node_any,
1850						 GET_KSM_PAGE_NOLOCK);
1851		}
1852		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1853		if (!tree_page) {
1854			/*
1855			 * If we walked over a stale stable_node,
1856			 * get_ksm_page() will call rb_erase() and it
1857			 * may rebalance the tree from under us. So
1858			 * restart the search from scratch. Returning
1859			 * NULL would be safe too, but we'd generate
1860			 * false negative insertions just because some
1861			 * stable_node was stale.
1862			 */
1863			goto again;
1864		}
1865
1866		ret = memcmp_pages(kpage, tree_page);
1867		put_page(tree_page);
1868
1869		parent = *new;
1870		if (ret < 0)
1871			new = &parent->rb_left;
1872		else if (ret > 0)
1873			new = &parent->rb_right;
1874		else {
1875			need_chain = true;
1876			break;
1877		}
1878	}
1879
1880	stable_node_dup = alloc_stable_node();
1881	if (!stable_node_dup)
1882		return NULL;
1883
1884	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1885	stable_node_dup->kpfn = kpfn;
1886	set_page_stable_node(kpage, stable_node_dup);
1887	stable_node_dup->rmap_hlist_len = 0;
1888	DO_NUMA(stable_node_dup->nid = nid);
1889	if (!need_chain) {
1890		rb_link_node(&stable_node_dup->node, parent, new);
1891		rb_insert_color(&stable_node_dup->node, root);
1892	} else {
1893		if (!is_stable_node_chain(stable_node)) {
1894			struct stable_node *orig = stable_node;
1895			/* chain is missing so create it */
1896			stable_node = alloc_stable_node_chain(orig, root);
1897			if (!stable_node) {
1898				free_stable_node(stable_node_dup);
1899				return NULL;
1900			}
1901		}
1902		stable_node_chain_add_dup(stable_node_dup, stable_node);
1903	}
1904
 
 
1905	return stable_node_dup;
1906}
1907
1908/*
1909 * unstable_tree_search_insert - search for identical page,
1910 * else insert rmap_item into the unstable tree.
1911 *
1912 * This function searches for a page in the unstable tree identical to the
1913 * page currently being scanned; and if no identical page is found in the
1914 * tree, we insert rmap_item as a new object into the unstable tree.
1915 *
1916 * This function returns pointer to rmap_item found to be identical
1917 * to the currently scanned page, NULL otherwise.
1918 *
1919 * This function does both searching and inserting, because they share
1920 * the same walking algorithm in an rbtree.
1921 */
1922static
1923struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1924					      struct page *page,
1925					      struct page **tree_pagep)
1926{
1927	struct rb_node **new;
1928	struct rb_root *root;
1929	struct rb_node *parent = NULL;
1930	int nid;
1931
1932	nid = get_kpfn_nid(page_to_pfn(page));
1933	root = root_unstable_tree + nid;
1934	new = &root->rb_node;
1935
1936	while (*new) {
1937		struct rmap_item *tree_rmap_item;
1938		struct page *tree_page;
1939		int ret;
1940
1941		cond_resched();
1942		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1943		tree_page = get_mergeable_page(tree_rmap_item);
1944		if (!tree_page)
1945			return NULL;
1946
1947		/*
1948		 * Don't substitute a ksm page for a forked page.
1949		 */
1950		if (page == tree_page) {
1951			put_page(tree_page);
1952			return NULL;
1953		}
1954
1955		ret = memcmp_pages(page, tree_page);
1956
1957		parent = *new;
1958		if (ret < 0) {
1959			put_page(tree_page);
1960			new = &parent->rb_left;
1961		} else if (ret > 0) {
1962			put_page(tree_page);
1963			new = &parent->rb_right;
1964		} else if (!ksm_merge_across_nodes &&
1965			   page_to_nid(tree_page) != nid) {
1966			/*
1967			 * If tree_page has been migrated to another NUMA node,
1968			 * it will be flushed out and put in the right unstable
1969			 * tree next time: only merge with it when across_nodes.
1970			 */
1971			put_page(tree_page);
1972			return NULL;
1973		} else {
1974			*tree_pagep = tree_page;
1975			return tree_rmap_item;
1976		}
1977	}
1978
1979	rmap_item->address |= UNSTABLE_FLAG;
1980	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1981	DO_NUMA(rmap_item->nid = nid);
1982	rb_link_node(&rmap_item->node, parent, new);
1983	rb_insert_color(&rmap_item->node, root);
1984
1985	ksm_pages_unshared++;
1986	return NULL;
1987}
1988
1989/*
1990 * stable_tree_append - add another rmap_item to the linked list of
1991 * rmap_items hanging off a given node of the stable tree, all sharing
1992 * the same ksm page.
1993 */
1994static void stable_tree_append(struct rmap_item *rmap_item,
1995			       struct stable_node *stable_node,
1996			       bool max_page_sharing_bypass)
1997{
1998	/*
1999	 * rmap won't find this mapping if we don't insert the
2000	 * rmap_item in the right stable_node
2001	 * duplicate. page_migration could break later if rmap breaks,
2002	 * so we can as well crash here. We really need to check for
2003	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2004	 * for other negative values as an undeflow if detected here
2005	 * for the first time (and not when decreasing rmap_hlist_len)
2006	 * would be sign of memory corruption in the stable_node.
2007	 */
2008	BUG_ON(stable_node->rmap_hlist_len < 0);
2009
2010	stable_node->rmap_hlist_len++;
2011	if (!max_page_sharing_bypass)
2012		/* possibly non fatal but unexpected overflow, only warn */
2013		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2014			     ksm_max_page_sharing);
2015
2016	rmap_item->head = stable_node;
2017	rmap_item->address |= STABLE_FLAG;
2018	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2019
2020	if (rmap_item->hlist.next)
2021		ksm_pages_sharing++;
2022	else
2023		ksm_pages_shared++;
 
 
2024}
2025
2026/*
2027 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2028 * if not, compare checksum to previous and if it's the same, see if page can
2029 * be inserted into the unstable tree, or merged with a page already there and
2030 * both transferred to the stable tree.
2031 *
2032 * @page: the page that we are searching identical page to.
2033 * @rmap_item: the reverse mapping into the virtual address of this page
2034 */
2035static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2036{
2037	struct mm_struct *mm = rmap_item->mm;
2038	struct rmap_item *tree_rmap_item;
2039	struct page *tree_page = NULL;
2040	struct stable_node *stable_node;
2041	struct page *kpage;
2042	unsigned int checksum;
2043	int err;
2044	bool max_page_sharing_bypass = false;
2045
2046	stable_node = page_stable_node(page);
2047	if (stable_node) {
2048		if (stable_node->head != &migrate_nodes &&
2049		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2050		    NUMA(stable_node->nid)) {
2051			stable_node_dup_del(stable_node);
2052			stable_node->head = &migrate_nodes;
2053			list_add(&stable_node->list, stable_node->head);
2054		}
2055		if (stable_node->head != &migrate_nodes &&
2056		    rmap_item->head == stable_node)
2057			return;
2058		/*
2059		 * If it's a KSM fork, allow it to go over the sharing limit
2060		 * without warnings.
2061		 */
2062		if (!is_page_sharing_candidate(stable_node))
2063			max_page_sharing_bypass = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064	}
2065
2066	/* We first start with searching the page inside the stable tree */
2067	kpage = stable_tree_search(page);
2068	if (kpage == page && rmap_item->head == stable_node) {
2069		put_page(kpage);
2070		return;
2071	}
2072
2073	remove_rmap_item_from_tree(rmap_item);
2074
2075	if (kpage) {
2076		if (PTR_ERR(kpage) == -EBUSY)
2077			return;
2078
2079		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2080		if (!err) {
2081			/*
2082			 * The page was successfully merged:
2083			 * add its rmap_item to the stable tree.
2084			 */
2085			lock_page(kpage);
2086			stable_tree_append(rmap_item, page_stable_node(kpage),
2087					   max_page_sharing_bypass);
2088			unlock_page(kpage);
2089		}
2090		put_page(kpage);
2091		return;
2092	}
2093
2094	/*
2095	 * If the hash value of the page has changed from the last time
2096	 * we calculated it, this page is changing frequently: therefore we
2097	 * don't want to insert it in the unstable tree, and we don't want
2098	 * to waste our time searching for something identical to it there.
2099	 */
2100	checksum = calc_checksum(page);
2101	if (rmap_item->oldchecksum != checksum) {
2102		rmap_item->oldchecksum = checksum;
2103		return;
2104	}
2105
2106	/*
2107	 * Same checksum as an empty page. We attempt to merge it with the
2108	 * appropriate zero page if the user enabled this via sysfs.
2109	 */
2110	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2111		struct vm_area_struct *vma;
2112
2113		down_read(&mm->mmap_sem);
2114		vma = find_mergeable_vma(mm, rmap_item->address);
2115		err = try_to_merge_one_page(vma, page,
2116					    ZERO_PAGE(rmap_item->address));
2117		up_read(&mm->mmap_sem);
2118		/*
2119		 * In case of failure, the page was not really empty, so we
2120		 * need to continue. Otherwise we're done.
2121		 */
2122		if (!err)
2123			return;
2124	}
2125	tree_rmap_item =
2126		unstable_tree_search_insert(rmap_item, page, &tree_page);
2127	if (tree_rmap_item) {
2128		bool split;
2129
2130		kpage = try_to_merge_two_pages(rmap_item, page,
2131						tree_rmap_item, tree_page);
2132		/*
2133		 * If both pages we tried to merge belong to the same compound
2134		 * page, then we actually ended up increasing the reference
2135		 * count of the same compound page twice, and split_huge_page
2136		 * failed.
2137		 * Here we set a flag if that happened, and we use it later to
2138		 * try split_huge_page again. Since we call put_page right
2139		 * afterwards, the reference count will be correct and
2140		 * split_huge_page should succeed.
2141		 */
2142		split = PageTransCompound(page)
2143			&& compound_head(page) == compound_head(tree_page);
2144		put_page(tree_page);
2145		if (kpage) {
2146			/*
2147			 * The pages were successfully merged: insert new
2148			 * node in the stable tree and add both rmap_items.
2149			 */
2150			lock_page(kpage);
2151			stable_node = stable_tree_insert(kpage);
2152			if (stable_node) {
2153				stable_tree_append(tree_rmap_item, stable_node,
2154						   false);
2155				stable_tree_append(rmap_item, stable_node,
2156						   false);
2157			}
2158			unlock_page(kpage);
2159
2160			/*
2161			 * If we fail to insert the page into the stable tree,
2162			 * we will have 2 virtual addresses that are pointing
2163			 * to a ksm page left outside the stable tree,
2164			 * in which case we need to break_cow on both.
2165			 */
2166			if (!stable_node) {
2167				break_cow(tree_rmap_item);
2168				break_cow(rmap_item);
2169			}
2170		} else if (split) {
2171			/*
2172			 * We are here if we tried to merge two pages and
2173			 * failed because they both belonged to the same
2174			 * compound page. We will split the page now, but no
2175			 * merging will take place.
2176			 * We do not want to add the cost of a full lock; if
2177			 * the page is locked, it is better to skip it and
2178			 * perhaps try again later.
2179			 */
2180			if (!trylock_page(page))
2181				return;
2182			split_huge_page(page);
2183			unlock_page(page);
2184		}
2185	}
2186}
2187
2188static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2189					    struct rmap_item **rmap_list,
2190					    unsigned long addr)
2191{
2192	struct rmap_item *rmap_item;
2193
2194	while (*rmap_list) {
2195		rmap_item = *rmap_list;
2196		if ((rmap_item->address & PAGE_MASK) == addr)
2197			return rmap_item;
2198		if (rmap_item->address > addr)
2199			break;
2200		*rmap_list = rmap_item->rmap_list;
2201		remove_rmap_item_from_tree(rmap_item);
2202		free_rmap_item(rmap_item);
2203	}
2204
2205	rmap_item = alloc_rmap_item();
2206	if (rmap_item) {
2207		/* It has already been zeroed */
2208		rmap_item->mm = mm_slot->mm;
 
2209		rmap_item->address = addr;
2210		rmap_item->rmap_list = *rmap_list;
2211		*rmap_list = rmap_item;
2212	}
2213	return rmap_item;
2214}
2215
2216static struct rmap_item *scan_get_next_rmap_item(struct page **page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2217{
2218	struct mm_struct *mm;
 
2219	struct mm_slot *slot;
2220	struct vm_area_struct *vma;
2221	struct rmap_item *rmap_item;
 
2222	int nid;
2223
2224	if (list_empty(&ksm_mm_head.mm_list))
2225		return NULL;
2226
2227	slot = ksm_scan.mm_slot;
2228	if (slot == &ksm_mm_head) {
 
 
 
2229		/*
2230		 * A number of pages can hang around indefinitely on per-cpu
2231		 * pagevecs, raised page count preventing write_protect_page
2232		 * from merging them.  Though it doesn't really matter much,
2233		 * it is puzzling to see some stuck in pages_volatile until
2234		 * other activity jostles them out, and they also prevented
2235		 * LTP's KSM test from succeeding deterministically; so drain
2236		 * them here (here rather than on entry to ksm_do_scan(),
2237		 * so we don't IPI too often when pages_to_scan is set low).
2238		 */
2239		lru_add_drain_all();
2240
2241		/*
2242		 * Whereas stale stable_nodes on the stable_tree itself
2243		 * get pruned in the regular course of stable_tree_search(),
2244		 * those moved out to the migrate_nodes list can accumulate:
2245		 * so prune them once before each full scan.
2246		 */
2247		if (!ksm_merge_across_nodes) {
2248			struct stable_node *stable_node, *next;
2249			struct page *page;
2250
2251			list_for_each_entry_safe(stable_node, next,
2252						 &migrate_nodes, list) {
2253				page = get_ksm_page(stable_node,
2254						    GET_KSM_PAGE_NOLOCK);
2255				if (page)
2256					put_page(page);
2257				cond_resched();
2258			}
2259		}
2260
2261		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2262			root_unstable_tree[nid] = RB_ROOT;
2263
2264		spin_lock(&ksm_mmlist_lock);
2265		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2266		ksm_scan.mm_slot = slot;
 
 
2267		spin_unlock(&ksm_mmlist_lock);
2268		/*
2269		 * Although we tested list_empty() above, a racing __ksm_exit
2270		 * of the last mm on the list may have removed it since then.
2271		 */
2272		if (slot == &ksm_mm_head)
2273			return NULL;
2274next_mm:
2275		ksm_scan.address = 0;
2276		ksm_scan.rmap_list = &slot->rmap_list;
2277	}
2278
 
2279	mm = slot->mm;
2280	down_read(&mm->mmap_sem);
 
 
2281	if (ksm_test_exit(mm))
2282		vma = NULL;
2283	else
2284		vma = find_vma(mm, ksm_scan.address);
2285
2286	for (; vma; vma = vma->vm_next) {
2287		if (!(vma->vm_flags & VM_MERGEABLE))
2288			continue;
2289		if (ksm_scan.address < vma->vm_start)
2290			ksm_scan.address = vma->vm_start;
2291		if (!vma->anon_vma)
2292			ksm_scan.address = vma->vm_end;
2293
2294		while (ksm_scan.address < vma->vm_end) {
 
 
 
 
2295			if (ksm_test_exit(mm))
2296				break;
2297			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2298			if (IS_ERR_OR_NULL(*page)) {
2299				ksm_scan.address += PAGE_SIZE;
2300				cond_resched();
2301				continue;
 
 
 
 
2302			}
2303			if (PageAnon(*page)) {
2304				flush_anon_page(vma, *page, ksm_scan.address);
2305				flush_dcache_page(*page);
2306				rmap_item = get_next_rmap_item(slot,
 
2307					ksm_scan.rmap_list, ksm_scan.address);
2308				if (rmap_item) {
2309					ksm_scan.rmap_list =
2310							&rmap_item->rmap_list;
 
 
 
 
 
 
2311					ksm_scan.address += PAGE_SIZE;
2312				} else
2313					put_page(*page);
2314				up_read(&mm->mmap_sem);
 
 
2315				return rmap_item;
2316			}
2317			put_page(*page);
2318			ksm_scan.address += PAGE_SIZE;
2319			cond_resched();
2320		}
2321	}
2322
2323	if (ksm_test_exit(mm)) {
 
2324		ksm_scan.address = 0;
2325		ksm_scan.rmap_list = &slot->rmap_list;
2326	}
2327	/*
2328	 * Nuke all the rmap_items that are above this current rmap:
2329	 * because there were no VM_MERGEABLE vmas with such addresses.
2330	 */
2331	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2332
2333	spin_lock(&ksm_mmlist_lock);
2334	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2335						struct mm_slot, mm_list);
 
2336	if (ksm_scan.address == 0) {
2337		/*
2338		 * We've completed a full scan of all vmas, holding mmap_sem
2339		 * throughout, and found no VM_MERGEABLE: so do the same as
2340		 * __ksm_exit does to remove this mm from all our lists now.
2341		 * This applies either when cleaning up after __ksm_exit
2342		 * (but beware: we can reach here even before __ksm_exit),
2343		 * or when all VM_MERGEABLE areas have been unmapped (and
2344		 * mmap_sem then protects against race with MADV_MERGEABLE).
2345		 */
2346		hash_del(&slot->link);
2347		list_del(&slot->mm_list);
2348		spin_unlock(&ksm_mmlist_lock);
2349
2350		free_mm_slot(slot);
2351		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2352		up_read(&mm->mmap_sem);
 
2353		mmdrop(mm);
2354	} else {
2355		up_read(&mm->mmap_sem);
2356		/*
2357		 * up_read(&mm->mmap_sem) first because after
2358		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2359		 * already have been freed under us by __ksm_exit()
2360		 * because the "mm_slot" is still hashed and
2361		 * ksm_scan.mm_slot doesn't point to it anymore.
2362		 */
2363		spin_unlock(&ksm_mmlist_lock);
2364	}
2365
2366	/* Repeat until we've completed scanning the whole list */
2367	slot = ksm_scan.mm_slot;
2368	if (slot != &ksm_mm_head)
2369		goto next_mm;
2370
 
 
 
2371	ksm_scan.seqnr++;
2372	return NULL;
2373}
2374
2375/**
2376 * ksm_do_scan  - the ksm scanner main worker function.
2377 * @scan_npages:  number of pages we want to scan before we return.
2378 */
2379static void ksm_do_scan(unsigned int scan_npages)
2380{
2381	struct rmap_item *rmap_item;
2382	struct page *uninitialized_var(page);
2383
2384	while (scan_npages-- && likely(!freezing(current))) {
2385		cond_resched();
2386		rmap_item = scan_get_next_rmap_item(&page);
2387		if (!rmap_item)
2388			return;
2389		cmp_and_merge_page(page, rmap_item);
2390		put_page(page);
 
2391	}
2392}
2393
2394static int ksmd_should_run(void)
2395{
2396	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2397}
2398
2399static int ksm_scan_thread(void *nothing)
2400{
2401	unsigned int sleep_ms;
2402
2403	set_freezable();
2404	set_user_nice(current, 5);
2405
2406	while (!kthread_should_stop()) {
2407		mutex_lock(&ksm_thread_mutex);
2408		wait_while_offlining();
2409		if (ksmd_should_run())
2410			ksm_do_scan(ksm_thread_pages_to_scan);
2411		mutex_unlock(&ksm_thread_mutex);
2412
2413		try_to_freeze();
2414
2415		if (ksmd_should_run()) {
2416			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2417			wait_event_interruptible_timeout(ksm_iter_wait,
2418				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2419				msecs_to_jiffies(sleep_ms));
2420		} else {
2421			wait_event_freezable(ksm_thread_wait,
2422				ksmd_should_run() || kthread_should_stop());
2423		}
2424	}
2425	return 0;
2426}
2427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2428int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2429		unsigned long end, int advice, unsigned long *vm_flags)
2430{
2431	struct mm_struct *mm = vma->vm_mm;
2432	int err;
2433
2434	switch (advice) {
2435	case MADV_MERGEABLE:
2436		/*
2437		 * Be somewhat over-protective for now!
2438		 */
2439		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2440				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2441				 VM_HUGETLB | VM_MIXEDMAP))
2442			return 0;		/* just ignore the advice */
2443
2444		if (vma_is_dax(vma))
2445			return 0;
2446
2447#ifdef VM_SAO
2448		if (*vm_flags & VM_SAO)
2449			return 0;
2450#endif
2451#ifdef VM_SPARC_ADI
2452		if (*vm_flags & VM_SPARC_ADI)
2453			return 0;
2454#endif
2455
2456		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2457			err = __ksm_enter(mm);
2458			if (err)
2459				return err;
2460		}
2461
2462		*vm_flags |= VM_MERGEABLE;
2463		break;
2464
2465	case MADV_UNMERGEABLE:
2466		if (!(*vm_flags & VM_MERGEABLE))
2467			return 0;		/* just ignore the advice */
2468
2469		if (vma->anon_vma) {
2470			err = unmerge_ksm_pages(vma, start, end);
2471			if (err)
2472				return err;
2473		}
2474
2475		*vm_flags &= ~VM_MERGEABLE;
2476		break;
2477	}
2478
2479	return 0;
2480}
 
2481
2482int __ksm_enter(struct mm_struct *mm)
2483{
2484	struct mm_slot *mm_slot;
 
2485	int needs_wakeup;
2486
2487	mm_slot = alloc_mm_slot();
2488	if (!mm_slot)
2489		return -ENOMEM;
2490
 
 
2491	/* Check ksm_run too?  Would need tighter locking */
2492	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2493
2494	spin_lock(&ksm_mmlist_lock);
2495	insert_to_mm_slots_hash(mm, mm_slot);
2496	/*
2497	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2498	 * insert just behind the scanning cursor, to let the area settle
2499	 * down a little; when fork is followed by immediate exec, we don't
2500	 * want ksmd to waste time setting up and tearing down an rmap_list.
2501	 *
2502	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2503	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2504	 * missed: then we might as well insert at the end of the list.
2505	 */
2506	if (ksm_run & KSM_RUN_UNMERGE)
2507		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2508	else
2509		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2510	spin_unlock(&ksm_mmlist_lock);
2511
2512	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2513	mmgrab(mm);
2514
2515	if (needs_wakeup)
2516		wake_up_interruptible(&ksm_thread_wait);
2517
 
2518	return 0;
2519}
2520
2521void __ksm_exit(struct mm_struct *mm)
2522{
2523	struct mm_slot *mm_slot;
 
2524	int easy_to_free = 0;
2525
2526	/*
2527	 * This process is exiting: if it's straightforward (as is the
2528	 * case when ksmd was never running), free mm_slot immediately.
2529	 * But if it's at the cursor or has rmap_items linked to it, use
2530	 * mmap_sem to synchronize with any break_cows before pagetables
2531	 * are freed, and leave the mm_slot on the list for ksmd to free.
2532	 * Beware: ksm may already have noticed it exiting and freed the slot.
2533	 */
2534
2535	spin_lock(&ksm_mmlist_lock);
2536	mm_slot = get_mm_slot(mm);
 
2537	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2538		if (!mm_slot->rmap_list) {
2539			hash_del(&mm_slot->link);
2540			list_del(&mm_slot->mm_list);
2541			easy_to_free = 1;
2542		} else {
2543			list_move(&mm_slot->mm_list,
2544				  &ksm_scan.mm_slot->mm_list);
2545		}
2546	}
2547	spin_unlock(&ksm_mmlist_lock);
2548
2549	if (easy_to_free) {
2550		free_mm_slot(mm_slot);
 
2551		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2552		mmdrop(mm);
2553	} else if (mm_slot) {
2554		down_write(&mm->mmap_sem);
2555		up_write(&mm->mmap_sem);
2556	}
 
 
2557}
2558
2559struct page *ksm_might_need_to_copy(struct page *page,
2560			struct vm_area_struct *vma, unsigned long address)
2561{
2562	struct anon_vma *anon_vma = page_anon_vma(page);
2563	struct page *new_page;
 
2564
2565	if (PageKsm(page)) {
2566		if (page_stable_node(page) &&
 
 
 
2567		    !(ksm_run & KSM_RUN_UNMERGE))
2568			return page;	/* no need to copy it */
2569	} else if (!anon_vma) {
2570		return page;		/* no need to copy it */
2571	} else if (anon_vma->root == vma->anon_vma->root &&
2572		 page->index == linear_page_index(vma, address)) {
2573		return page;		/* still no need to copy it */
2574	}
2575	if (!PageUptodate(page))
2576		return page;		/* let do_swap_page report the error */
2577
2578	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2579	if (new_page) {
2580		copy_user_highpage(new_page, page, address, vma);
2581
2582		SetPageDirty(new_page);
2583		__SetPageUptodate(new_page);
2584		__SetPageLocked(new_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
2585	}
2586
2587	return new_page;
2588}
2589
2590void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2591{
2592	struct stable_node *stable_node;
2593	struct rmap_item *rmap_item;
2594	int search_new_forks = 0;
2595
2596	VM_BUG_ON_PAGE(!PageKsm(page), page);
2597
2598	/*
2599	 * Rely on the page lock to protect against concurrent modifications
2600	 * to that page's node of the stable tree.
2601	 */
2602	VM_BUG_ON_PAGE(!PageLocked(page), page);
2603
2604	stable_node = page_stable_node(page);
2605	if (!stable_node)
2606		return;
2607again:
2608	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2609		struct anon_vma *anon_vma = rmap_item->anon_vma;
2610		struct anon_vma_chain *vmac;
2611		struct vm_area_struct *vma;
2612
2613		cond_resched();
2614		anon_vma_lock_read(anon_vma);
 
 
 
 
 
 
2615		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2616					       0, ULONG_MAX) {
2617			unsigned long addr;
2618
2619			cond_resched();
2620			vma = vmac->vma;
2621
2622			/* Ignore the stable/unstable/sqnr flags */
2623			addr = rmap_item->address & ~KSM_FLAG_MASK;
2624
2625			if (addr < vma->vm_start || addr >= vma->vm_end)
2626				continue;
2627			/*
2628			 * Initially we examine only the vma which covers this
2629			 * rmap_item; but later, if there is still work to do,
2630			 * we examine covering vmas in other mms: in case they
2631			 * were forked from the original since ksmd passed.
2632			 */
2633			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2634				continue;
2635
2636			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2637				continue;
2638
2639			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2640				anon_vma_unlock_read(anon_vma);
2641				return;
2642			}
2643			if (rwc->done && rwc->done(page)) {
2644				anon_vma_unlock_read(anon_vma);
2645				return;
2646			}
2647		}
2648		anon_vma_unlock_read(anon_vma);
2649	}
2650	if (!search_new_forks++)
2651		goto again;
2652}
2653
2654bool reuse_ksm_page(struct page *page,
2655		    struct vm_area_struct *vma,
2656		    unsigned long address)
 
 
 
2657{
2658#ifdef CONFIG_DEBUG_VM
2659	if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2660			WARN_ON(!page_mapped(page)) ||
2661			WARN_ON(!PageLocked(page))) {
2662		dump_page(page, "reuse_ksm_page");
2663		return false;
2664	}
2665#endif
2666
2667	if (PageSwapCache(page) || !page_stable_node(page))
2668		return false;
2669	/* Prohibit parallel get_ksm_page() */
2670	if (!page_ref_freeze(page, 1))
2671		return false;
2672
2673	page_move_anon_rmap(page, vma);
2674	page->index = linear_page_index(vma, address);
2675	page_ref_unfreeze(page, 1);
 
 
2676
2677	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2678}
 
 
2679#ifdef CONFIG_MIGRATION
2680void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2681{
2682	struct stable_node *stable_node;
2683
2684	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2685	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2686	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2687
2688	stable_node = page_stable_node(newpage);
2689	if (stable_node) {
2690		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2691		stable_node->kpfn = page_to_pfn(newpage);
2692		/*
2693		 * newpage->mapping was set in advance; now we need smp_wmb()
2694		 * to make sure that the new stable_node->kpfn is visible
2695		 * to get_ksm_page() before it can see that oldpage->mapping
2696		 * has gone stale (or that PageSwapCache has been cleared).
2697		 */
2698		smp_wmb();
2699		set_page_stable_node(oldpage, NULL);
2700	}
2701}
2702#endif /* CONFIG_MIGRATION */
2703
2704#ifdef CONFIG_MEMORY_HOTREMOVE
2705static void wait_while_offlining(void)
2706{
2707	while (ksm_run & KSM_RUN_OFFLINE) {
2708		mutex_unlock(&ksm_thread_mutex);
2709		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2710			    TASK_UNINTERRUPTIBLE);
2711		mutex_lock(&ksm_thread_mutex);
2712	}
2713}
2714
2715static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2716					 unsigned long start_pfn,
2717					 unsigned long end_pfn)
2718{
2719	if (stable_node->kpfn >= start_pfn &&
2720	    stable_node->kpfn < end_pfn) {
2721		/*
2722		 * Don't get_ksm_page, page has already gone:
2723		 * which is why we keep kpfn instead of page*
2724		 */
2725		remove_node_from_stable_tree(stable_node);
2726		return true;
2727	}
2728	return false;
2729}
2730
2731static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2732					   unsigned long start_pfn,
2733					   unsigned long end_pfn,
2734					   struct rb_root *root)
2735{
2736	struct stable_node *dup;
2737	struct hlist_node *hlist_safe;
2738
2739	if (!is_stable_node_chain(stable_node)) {
2740		VM_BUG_ON(is_stable_node_dup(stable_node));
2741		return stable_node_dup_remove_range(stable_node, start_pfn,
2742						    end_pfn);
2743	}
2744
2745	hlist_for_each_entry_safe(dup, hlist_safe,
2746				  &stable_node->hlist, hlist_dup) {
2747		VM_BUG_ON(!is_stable_node_dup(dup));
2748		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2749	}
2750	if (hlist_empty(&stable_node->hlist)) {
2751		free_stable_node_chain(stable_node, root);
2752		return true; /* notify caller that tree was rebalanced */
2753	} else
2754		return false;
2755}
2756
2757static void ksm_check_stable_tree(unsigned long start_pfn,
2758				  unsigned long end_pfn)
2759{
2760	struct stable_node *stable_node, *next;
2761	struct rb_node *node;
2762	int nid;
2763
2764	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2765		node = rb_first(root_stable_tree + nid);
2766		while (node) {
2767			stable_node = rb_entry(node, struct stable_node, node);
2768			if (stable_node_chain_remove_range(stable_node,
2769							   start_pfn, end_pfn,
2770							   root_stable_tree +
2771							   nid))
2772				node = rb_first(root_stable_tree + nid);
2773			else
2774				node = rb_next(node);
2775			cond_resched();
2776		}
2777	}
2778	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2779		if (stable_node->kpfn >= start_pfn &&
2780		    stable_node->kpfn < end_pfn)
2781			remove_node_from_stable_tree(stable_node);
2782		cond_resched();
2783	}
2784}
2785
2786static int ksm_memory_callback(struct notifier_block *self,
2787			       unsigned long action, void *arg)
2788{
2789	struct memory_notify *mn = arg;
2790
2791	switch (action) {
2792	case MEM_GOING_OFFLINE:
2793		/*
2794		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2795		 * and remove_all_stable_nodes() while memory is going offline:
2796		 * it is unsafe for them to touch the stable tree at this time.
2797		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2798		 * which do not need the ksm_thread_mutex are all safe.
2799		 */
2800		mutex_lock(&ksm_thread_mutex);
2801		ksm_run |= KSM_RUN_OFFLINE;
2802		mutex_unlock(&ksm_thread_mutex);
2803		break;
2804
2805	case MEM_OFFLINE:
2806		/*
2807		 * Most of the work is done by page migration; but there might
2808		 * be a few stable_nodes left over, still pointing to struct
2809		 * pages which have been offlined: prune those from the tree,
2810		 * otherwise get_ksm_page() might later try to access a
2811		 * non-existent struct page.
2812		 */
2813		ksm_check_stable_tree(mn->start_pfn,
2814				      mn->start_pfn + mn->nr_pages);
2815		/* fallthrough */
2816
2817	case MEM_CANCEL_OFFLINE:
2818		mutex_lock(&ksm_thread_mutex);
2819		ksm_run &= ~KSM_RUN_OFFLINE;
2820		mutex_unlock(&ksm_thread_mutex);
2821
2822		smp_mb();	/* wake_up_bit advises this */
2823		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2824		break;
2825	}
2826	return NOTIFY_OK;
2827}
2828#else
2829static void wait_while_offlining(void)
2830{
2831}
2832#endif /* CONFIG_MEMORY_HOTREMOVE */
2833
 
 
 
 
 
 
 
 
2834#ifdef CONFIG_SYSFS
2835/*
2836 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2837 */
2838
2839#define KSM_ATTR_RO(_name) \
2840	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2841#define KSM_ATTR(_name) \
2842	static struct kobj_attribute _name##_attr = \
2843		__ATTR(_name, 0644, _name##_show, _name##_store)
2844
2845static ssize_t sleep_millisecs_show(struct kobject *kobj,
2846				    struct kobj_attribute *attr, char *buf)
2847{
2848	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2849}
2850
2851static ssize_t sleep_millisecs_store(struct kobject *kobj,
2852				     struct kobj_attribute *attr,
2853				     const char *buf, size_t count)
2854{
2855	unsigned long msecs;
2856	int err;
2857
2858	err = kstrtoul(buf, 10, &msecs);
2859	if (err || msecs > UINT_MAX)
2860		return -EINVAL;
2861
2862	ksm_thread_sleep_millisecs = msecs;
2863	wake_up_interruptible(&ksm_iter_wait);
2864
2865	return count;
2866}
2867KSM_ATTR(sleep_millisecs);
2868
2869static ssize_t pages_to_scan_show(struct kobject *kobj,
2870				  struct kobj_attribute *attr, char *buf)
2871{
2872	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2873}
2874
2875static ssize_t pages_to_scan_store(struct kobject *kobj,
2876				   struct kobj_attribute *attr,
2877				   const char *buf, size_t count)
2878{
 
2879	int err;
2880	unsigned long nr_pages;
2881
2882	err = kstrtoul(buf, 10, &nr_pages);
2883	if (err || nr_pages > UINT_MAX)
 
 
 
2884		return -EINVAL;
2885
2886	ksm_thread_pages_to_scan = nr_pages;
2887
2888	return count;
2889}
2890KSM_ATTR(pages_to_scan);
2891
2892static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2893			char *buf)
2894{
2895	return sprintf(buf, "%lu\n", ksm_run);
2896}
2897
2898static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2899			 const char *buf, size_t count)
2900{
 
2901	int err;
2902	unsigned long flags;
2903
2904	err = kstrtoul(buf, 10, &flags);
2905	if (err || flags > UINT_MAX)
2906		return -EINVAL;
2907	if (flags > KSM_RUN_UNMERGE)
2908		return -EINVAL;
2909
2910	/*
2911	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2912	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2913	 * breaking COW to free the pages_shared (but leaves mm_slots
2914	 * on the list for when ksmd may be set running again).
2915	 */
2916
2917	mutex_lock(&ksm_thread_mutex);
2918	wait_while_offlining();
2919	if (ksm_run != flags) {
2920		ksm_run = flags;
2921		if (flags & KSM_RUN_UNMERGE) {
2922			set_current_oom_origin();
2923			err = unmerge_and_remove_all_rmap_items();
2924			clear_current_oom_origin();
2925			if (err) {
2926				ksm_run = KSM_RUN_STOP;
2927				count = err;
2928			}
2929		}
2930	}
2931	mutex_unlock(&ksm_thread_mutex);
2932
2933	if (flags & KSM_RUN_MERGE)
2934		wake_up_interruptible(&ksm_thread_wait);
2935
2936	return count;
2937}
2938KSM_ATTR(run);
2939
2940#ifdef CONFIG_NUMA
2941static ssize_t merge_across_nodes_show(struct kobject *kobj,
2942				struct kobj_attribute *attr, char *buf)
2943{
2944	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2945}
2946
2947static ssize_t merge_across_nodes_store(struct kobject *kobj,
2948				   struct kobj_attribute *attr,
2949				   const char *buf, size_t count)
2950{
2951	int err;
2952	unsigned long knob;
2953
2954	err = kstrtoul(buf, 10, &knob);
2955	if (err)
2956		return err;
2957	if (knob > 1)
2958		return -EINVAL;
2959
2960	mutex_lock(&ksm_thread_mutex);
2961	wait_while_offlining();
2962	if (ksm_merge_across_nodes != knob) {
2963		if (ksm_pages_shared || remove_all_stable_nodes())
2964			err = -EBUSY;
2965		else if (root_stable_tree == one_stable_tree) {
2966			struct rb_root *buf;
2967			/*
2968			 * This is the first time that we switch away from the
2969			 * default of merging across nodes: must now allocate
2970			 * a buffer to hold as many roots as may be needed.
2971			 * Allocate stable and unstable together:
2972			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2973			 */
2974			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2975				      GFP_KERNEL);
2976			/* Let us assume that RB_ROOT is NULL is zero */
2977			if (!buf)
2978				err = -ENOMEM;
2979			else {
2980				root_stable_tree = buf;
2981				root_unstable_tree = buf + nr_node_ids;
2982				/* Stable tree is empty but not the unstable */
2983				root_unstable_tree[0] = one_unstable_tree[0];
2984			}
2985		}
2986		if (!err) {
2987			ksm_merge_across_nodes = knob;
2988			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2989		}
2990	}
2991	mutex_unlock(&ksm_thread_mutex);
2992
2993	return err ? err : count;
2994}
2995KSM_ATTR(merge_across_nodes);
2996#endif
2997
2998static ssize_t use_zero_pages_show(struct kobject *kobj,
2999				struct kobj_attribute *attr, char *buf)
3000{
3001	return sprintf(buf, "%u\n", ksm_use_zero_pages);
3002}
3003static ssize_t use_zero_pages_store(struct kobject *kobj,
3004				   struct kobj_attribute *attr,
3005				   const char *buf, size_t count)
3006{
3007	int err;
3008	bool value;
3009
3010	err = kstrtobool(buf, &value);
3011	if (err)
3012		return -EINVAL;
3013
3014	ksm_use_zero_pages = value;
3015
3016	return count;
3017}
3018KSM_ATTR(use_zero_pages);
3019
3020static ssize_t max_page_sharing_show(struct kobject *kobj,
3021				     struct kobj_attribute *attr, char *buf)
3022{
3023	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3024}
3025
3026static ssize_t max_page_sharing_store(struct kobject *kobj,
3027				      struct kobj_attribute *attr,
3028				      const char *buf, size_t count)
3029{
3030	int err;
3031	int knob;
3032
3033	err = kstrtoint(buf, 10, &knob);
3034	if (err)
3035		return err;
3036	/*
3037	 * When a KSM page is created it is shared by 2 mappings. This
3038	 * being a signed comparison, it implicitly verifies it's not
3039	 * negative.
3040	 */
3041	if (knob < 2)
3042		return -EINVAL;
3043
3044	if (READ_ONCE(ksm_max_page_sharing) == knob)
3045		return count;
3046
3047	mutex_lock(&ksm_thread_mutex);
3048	wait_while_offlining();
3049	if (ksm_max_page_sharing != knob) {
3050		if (ksm_pages_shared || remove_all_stable_nodes())
3051			err = -EBUSY;
3052		else
3053			ksm_max_page_sharing = knob;
3054	}
3055	mutex_unlock(&ksm_thread_mutex);
3056
3057	return err ? err : count;
3058}
3059KSM_ATTR(max_page_sharing);
3060
 
 
 
 
 
 
 
3061static ssize_t pages_shared_show(struct kobject *kobj,
3062				 struct kobj_attribute *attr, char *buf)
3063{
3064	return sprintf(buf, "%lu\n", ksm_pages_shared);
3065}
3066KSM_ATTR_RO(pages_shared);
3067
3068static ssize_t pages_sharing_show(struct kobject *kobj,
3069				  struct kobj_attribute *attr, char *buf)
3070{
3071	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3072}
3073KSM_ATTR_RO(pages_sharing);
3074
3075static ssize_t pages_unshared_show(struct kobject *kobj,
3076				   struct kobj_attribute *attr, char *buf)
3077{
3078	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3079}
3080KSM_ATTR_RO(pages_unshared);
3081
3082static ssize_t pages_volatile_show(struct kobject *kobj,
3083				   struct kobj_attribute *attr, char *buf)
3084{
3085	long ksm_pages_volatile;
3086
3087	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3088				- ksm_pages_sharing - ksm_pages_unshared;
3089	/*
3090	 * It was not worth any locking to calculate that statistic,
3091	 * but it might therefore sometimes be negative: conceal that.
3092	 */
3093	if (ksm_pages_volatile < 0)
3094		ksm_pages_volatile = 0;
3095	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3096}
3097KSM_ATTR_RO(pages_volatile);
3098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3099static ssize_t stable_node_dups_show(struct kobject *kobj,
3100				     struct kobj_attribute *attr, char *buf)
3101{
3102	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3103}
3104KSM_ATTR_RO(stable_node_dups);
3105
3106static ssize_t stable_node_chains_show(struct kobject *kobj,
3107				       struct kobj_attribute *attr, char *buf)
3108{
3109	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3110}
3111KSM_ATTR_RO(stable_node_chains);
3112
3113static ssize_t
3114stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3115					struct kobj_attribute *attr,
3116					char *buf)
3117{
3118	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3119}
3120
3121static ssize_t
3122stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3123					 struct kobj_attribute *attr,
3124					 const char *buf, size_t count)
3125{
3126	unsigned long msecs;
3127	int err;
3128
3129	err = kstrtoul(buf, 10, &msecs);
3130	if (err || msecs > UINT_MAX)
3131		return -EINVAL;
3132
3133	ksm_stable_node_chains_prune_millisecs = msecs;
3134
3135	return count;
3136}
3137KSM_ATTR(stable_node_chains_prune_millisecs);
3138
3139static ssize_t full_scans_show(struct kobject *kobj,
3140			       struct kobj_attribute *attr, char *buf)
3141{
3142	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3143}
3144KSM_ATTR_RO(full_scans);
3145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146static struct attribute *ksm_attrs[] = {
3147	&sleep_millisecs_attr.attr,
3148	&pages_to_scan_attr.attr,
3149	&run_attr.attr,
 
3150	&pages_shared_attr.attr,
3151	&pages_sharing_attr.attr,
3152	&pages_unshared_attr.attr,
3153	&pages_volatile_attr.attr,
 
 
3154	&full_scans_attr.attr,
3155#ifdef CONFIG_NUMA
3156	&merge_across_nodes_attr.attr,
3157#endif
3158	&max_page_sharing_attr.attr,
3159	&stable_node_chains_attr.attr,
3160	&stable_node_dups_attr.attr,
3161	&stable_node_chains_prune_millisecs_attr.attr,
3162	&use_zero_pages_attr.attr,
 
 
 
 
 
 
 
3163	NULL,
3164};
3165
3166static const struct attribute_group ksm_attr_group = {
3167	.attrs = ksm_attrs,
3168	.name = "ksm",
3169};
3170#endif /* CONFIG_SYSFS */
3171
3172static int __init ksm_init(void)
3173{
3174	struct task_struct *ksm_thread;
3175	int err;
3176
3177	/* The correct value depends on page size and endianness */
3178	zero_checksum = calc_checksum(ZERO_PAGE(0));
3179	/* Default to false for backwards compatibility */
3180	ksm_use_zero_pages = false;
3181
3182	err = ksm_slab_init();
3183	if (err)
3184		goto out;
3185
3186	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3187	if (IS_ERR(ksm_thread)) {
3188		pr_err("ksm: creating kthread failed\n");
3189		err = PTR_ERR(ksm_thread);
3190		goto out_free;
3191	}
3192
3193#ifdef CONFIG_SYSFS
3194	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3195	if (err) {
3196		pr_err("ksm: register sysfs failed\n");
3197		kthread_stop(ksm_thread);
3198		goto out_free;
3199	}
3200#else
3201	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3202
3203#endif /* CONFIG_SYSFS */
3204
3205#ifdef CONFIG_MEMORY_HOTREMOVE
3206	/* There is no significance to this priority 100 */
3207	hotplug_memory_notifier(ksm_memory_callback, 100);
3208#endif
3209	return 0;
3210
3211out_free:
3212	ksm_slab_free();
3213out:
3214	return err;
3215}
3216subsys_initcall(ksm_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Memory merging support.
   4 *
   5 * This code enables dynamic sharing of identical pages found in different
   6 * memory areas, even if they are not shared by fork()
   7 *
   8 * Copyright (C) 2008-2009 Red Hat, Inc.
   9 * Authors:
  10 *	Izik Eidus
  11 *	Andrea Arcangeli
  12 *	Chris Wright
  13 *	Hugh Dickins
  14 */
  15
  16#include <linux/errno.h>
  17#include <linux/mm.h>
  18#include <linux/mm_inline.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/sched/mm.h>
  23#include <linux/sched/cputime.h>
  24#include <linux/rwsem.h>
  25#include <linux/pagemap.h>
  26#include <linux/rmap.h>
  27#include <linux/spinlock.h>
  28#include <linux/xxhash.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/wait.h>
  32#include <linux/slab.h>
  33#include <linux/rbtree.h>
  34#include <linux/memory.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/swap.h>
  37#include <linux/ksm.h>
  38#include <linux/hashtable.h>
  39#include <linux/freezer.h>
  40#include <linux/oom.h>
  41#include <linux/numa.h>
  42#include <linux/pagewalk.h>
  43
  44#include <asm/tlbflush.h>
  45#include "internal.h"
  46#include "mm_slot.h"
  47
  48#define CREATE_TRACE_POINTS
  49#include <trace/events/ksm.h>
  50
  51#ifdef CONFIG_NUMA
  52#define NUMA(x)		(x)
  53#define DO_NUMA(x)	do { (x); } while (0)
  54#else
  55#define NUMA(x)		(0)
  56#define DO_NUMA(x)	do { } while (0)
  57#endif
  58
  59typedef u8 rmap_age_t;
  60
  61/**
  62 * DOC: Overview
  63 *
  64 * A few notes about the KSM scanning process,
  65 * to make it easier to understand the data structures below:
  66 *
  67 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  68 * contents into a data structure that holds pointers to the pages' locations.
  69 *
  70 * Since the contents of the pages may change at any moment, KSM cannot just
  71 * insert the pages into a normal sorted tree and expect it to find anything.
  72 * Therefore KSM uses two data structures - the stable and the unstable tree.
  73 *
  74 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  75 * by their contents.  Because each such page is write-protected, searching on
  76 * this tree is fully assured to be working (except when pages are unmapped),
  77 * and therefore this tree is called the stable tree.
  78 *
  79 * The stable tree node includes information required for reverse
  80 * mapping from a KSM page to virtual addresses that map this page.
  81 *
  82 * In order to avoid large latencies of the rmap walks on KSM pages,
  83 * KSM maintains two types of nodes in the stable tree:
  84 *
  85 * * the regular nodes that keep the reverse mapping structures in a
  86 *   linked list
  87 * * the "chains" that link nodes ("dups") that represent the same
  88 *   write protected memory content, but each "dup" corresponds to a
  89 *   different KSM page copy of that content
  90 *
  91 * Internally, the regular nodes, "dups" and "chains" are represented
  92 * using the same struct ksm_stable_node structure.
  93 *
  94 * In addition to the stable tree, KSM uses a second data structure called the
  95 * unstable tree: this tree holds pointers to pages which have been found to
  96 * be "unchanged for a period of time".  The unstable tree sorts these pages
  97 * by their contents, but since they are not write-protected, KSM cannot rely
  98 * upon the unstable tree to work correctly - the unstable tree is liable to
  99 * be corrupted as its contents are modified, and so it is called unstable.
 100 *
 101 * KSM solves this problem by several techniques:
 102 *
 103 * 1) The unstable tree is flushed every time KSM completes scanning all
 104 *    memory areas, and then the tree is rebuilt again from the beginning.
 105 * 2) KSM will only insert into the unstable tree, pages whose hash value
 106 *    has not changed since the previous scan of all memory areas.
 107 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 108 *    colors of the nodes and not on their contents, assuring that even when
 109 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 110 *    remains the same (also, searching and inserting nodes in an rbtree uses
 111 *    the same algorithm, so we have no overhead when we flush and rebuild).
 112 * 4) KSM never flushes the stable tree, which means that even if it were to
 113 *    take 10 attempts to find a page in the unstable tree, once it is found,
 114 *    it is secured in the stable tree.  (When we scan a new page, we first
 115 *    compare it against the stable tree, and then against the unstable tree.)
 116 *
 117 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 118 * stable trees and multiple unstable trees: one of each for each NUMA node.
 119 */
 120
 121/**
 122 * struct ksm_mm_slot - ksm information per mm that is being scanned
 123 * @slot: hash lookup from mm to mm_slot
 
 124 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 
 125 */
 126struct ksm_mm_slot {
 127	struct mm_slot slot;
 128	struct ksm_rmap_item *rmap_list;
 
 
 129};
 130
 131/**
 132 * struct ksm_scan - cursor for scanning
 133 * @mm_slot: the current mm_slot we are scanning
 134 * @address: the next address inside that to be scanned
 135 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 136 * @seqnr: count of completed full scans (needed when removing unstable node)
 137 *
 138 * There is only the one ksm_scan instance of this cursor structure.
 139 */
 140struct ksm_scan {
 141	struct ksm_mm_slot *mm_slot;
 142	unsigned long address;
 143	struct ksm_rmap_item **rmap_list;
 144	unsigned long seqnr;
 145};
 146
 147/**
 148 * struct ksm_stable_node - node of the stable rbtree
 149 * @node: rb node of this ksm page in the stable tree
 150 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 151 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 152 * @list: linked into migrate_nodes, pending placement in the proper node tree
 153 * @hlist: hlist head of rmap_items using this ksm page
 154 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 155 * @chain_prune_time: time of the last full garbage collection
 156 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 157 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 158 */
 159struct ksm_stable_node {
 160	union {
 161		struct rb_node node;	/* when node of stable tree */
 162		struct {		/* when listed for migration */
 163			struct list_head *head;
 164			struct {
 165				struct hlist_node hlist_dup;
 166				struct list_head list;
 167			};
 168		};
 169	};
 170	struct hlist_head hlist;
 171	union {
 172		unsigned long kpfn;
 173		unsigned long chain_prune_time;
 174	};
 175	/*
 176	 * STABLE_NODE_CHAIN can be any negative number in
 177	 * rmap_hlist_len negative range, but better not -1 to be able
 178	 * to reliably detect underflows.
 179	 */
 180#define STABLE_NODE_CHAIN -1024
 181	int rmap_hlist_len;
 182#ifdef CONFIG_NUMA
 183	int nid;
 184#endif
 185};
 186
 187/**
 188 * struct ksm_rmap_item - reverse mapping item for virtual addresses
 189 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 190 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 191 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 192 * @mm: the memory structure this rmap_item is pointing into
 193 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 194 * @oldchecksum: previous checksum of the page at that virtual address
 195 * @node: rb node of this rmap_item in the unstable tree
 196 * @head: pointer to stable_node heading this list in the stable tree
 197 * @hlist: link into hlist of rmap_items hanging off that stable_node
 198 * @age: number of scan iterations since creation
 199 * @remaining_skips: how many scans to skip
 200 */
 201struct ksm_rmap_item {
 202	struct ksm_rmap_item *rmap_list;
 203	union {
 204		struct anon_vma *anon_vma;	/* when stable */
 205#ifdef CONFIG_NUMA
 206		int nid;		/* when node of unstable tree */
 207#endif
 208	};
 209	struct mm_struct *mm;
 210	unsigned long address;		/* + low bits used for flags below */
 211	unsigned int oldchecksum;	/* when unstable */
 212	rmap_age_t age;
 213	rmap_age_t remaining_skips;
 214	union {
 215		struct rb_node node;	/* when node of unstable tree */
 216		struct {		/* when listed from stable tree */
 217			struct ksm_stable_node *head;
 218			struct hlist_node hlist;
 219		};
 220	};
 221};
 222
 223#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
 224#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
 225#define STABLE_FLAG	0x200	/* is listed from the stable tree */
 
 
 226
 227/* The stable and unstable tree heads */
 228static struct rb_root one_stable_tree[1] = { RB_ROOT };
 229static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 230static struct rb_root *root_stable_tree = one_stable_tree;
 231static struct rb_root *root_unstable_tree = one_unstable_tree;
 232
 233/* Recently migrated nodes of stable tree, pending proper placement */
 234static LIST_HEAD(migrate_nodes);
 235#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 236
 237#define MM_SLOTS_HASH_BITS 10
 238static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 239
 240static struct ksm_mm_slot ksm_mm_head = {
 241	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
 242};
 243static struct ksm_scan ksm_scan = {
 244	.mm_slot = &ksm_mm_head,
 245};
 246
 247static struct kmem_cache *rmap_item_cache;
 248static struct kmem_cache *stable_node_cache;
 249static struct kmem_cache *mm_slot_cache;
 250
 251/* Default number of pages to scan per batch */
 252#define DEFAULT_PAGES_TO_SCAN 100
 253
 254/* The number of pages scanned */
 255static unsigned long ksm_pages_scanned;
 256
 257/* The number of nodes in the stable tree */
 258static unsigned long ksm_pages_shared;
 259
 260/* The number of page slots additionally sharing those nodes */
 261static unsigned long ksm_pages_sharing;
 262
 263/* The number of nodes in the unstable tree */
 264static unsigned long ksm_pages_unshared;
 265
 266/* The number of rmap_items in use: to calculate pages_volatile */
 267static unsigned long ksm_rmap_items;
 268
 269/* The number of stable_node chains */
 270static unsigned long ksm_stable_node_chains;
 271
 272/* The number of stable_node dups linked to the stable_node chains */
 273static unsigned long ksm_stable_node_dups;
 274
 275/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 276static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
 277
 278/* Maximum number of page slots sharing a stable node */
 279static int ksm_max_page_sharing = 256;
 280
 281/* Number of pages ksmd should scan in one batch */
 282static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
 283
 284/* Milliseconds ksmd should sleep between batches */
 285static unsigned int ksm_thread_sleep_millisecs = 20;
 286
 287/* Checksum of an empty (zeroed) page */
 288static unsigned int zero_checksum __read_mostly;
 289
 290/* Whether to merge empty (zeroed) pages with actual zero pages */
 291static bool ksm_use_zero_pages __read_mostly;
 292
 293/* Skip pages that couldn't be de-duplicated previously */
 294/* Default to true at least temporarily, for testing */
 295static bool ksm_smart_scan = true;
 296
 297/* The number of zero pages which is placed by KSM */
 298atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
 299
 300/* The number of pages that have been skipped due to "smart scanning" */
 301static unsigned long ksm_pages_skipped;
 302
 303/* Don't scan more than max pages per batch. */
 304static unsigned long ksm_advisor_max_pages_to_scan = 30000;
 305
 306/* Min CPU for scanning pages per scan */
 307#define KSM_ADVISOR_MIN_CPU 10
 308
 309/* Max CPU for scanning pages per scan */
 310static unsigned int ksm_advisor_max_cpu =  70;
 311
 312/* Target scan time in seconds to analyze all KSM candidate pages. */
 313static unsigned long ksm_advisor_target_scan_time = 200;
 314
 315/* Exponentially weighted moving average. */
 316#define EWMA_WEIGHT 30
 317
 318/**
 319 * struct advisor_ctx - metadata for KSM advisor
 320 * @start_scan: start time of the current scan
 321 * @scan_time: scan time of previous scan
 322 * @change: change in percent to pages_to_scan parameter
 323 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
 324 */
 325struct advisor_ctx {
 326	ktime_t start_scan;
 327	unsigned long scan_time;
 328	unsigned long change;
 329	unsigned long long cpu_time;
 330};
 331static struct advisor_ctx advisor_ctx;
 332
 333/* Define different advisor's */
 334enum ksm_advisor_type {
 335	KSM_ADVISOR_NONE,
 336	KSM_ADVISOR_SCAN_TIME,
 337};
 338static enum ksm_advisor_type ksm_advisor;
 339
 340#ifdef CONFIG_SYSFS
 341/*
 342 * Only called through the sysfs control interface:
 343 */
 344
 345/* At least scan this many pages per batch. */
 346static unsigned long ksm_advisor_min_pages_to_scan = 500;
 347
 348static void set_advisor_defaults(void)
 349{
 350	if (ksm_advisor == KSM_ADVISOR_NONE) {
 351		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
 352	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
 353		advisor_ctx = (const struct advisor_ctx){ 0 };
 354		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
 355	}
 356}
 357#endif /* CONFIG_SYSFS */
 358
 359static inline void advisor_start_scan(void)
 360{
 361	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
 362		advisor_ctx.start_scan = ktime_get();
 363}
 364
 365/*
 366 * Use previous scan time if available, otherwise use current scan time as an
 367 * approximation for the previous scan time.
 368 */
 369static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
 370					   unsigned long scan_time)
 371{
 372	return ctx->scan_time ? ctx->scan_time : scan_time;
 373}
 374
 375/* Calculate exponential weighted moving average */
 376static unsigned long ewma(unsigned long prev, unsigned long curr)
 377{
 378	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
 379}
 380
 381/*
 382 * The scan time advisor is based on the current scan rate and the target
 383 * scan rate.
 384 *
 385 *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
 386 *
 387 * To avoid perturbations it calculates a change factor of previous changes.
 388 * A new change factor is calculated for each iteration and it uses an
 389 * exponentially weighted moving average. The new pages_to_scan value is
 390 * multiplied with that change factor:
 391 *
 392 *      new_pages_to_scan *= change facor
 393 *
 394 * The new_pages_to_scan value is limited by the cpu min and max values. It
 395 * calculates the cpu percent for the last scan and calculates the new
 396 * estimated cpu percent cost for the next scan. That value is capped by the
 397 * cpu min and max setting.
 398 *
 399 * In addition the new pages_to_scan value is capped by the max and min
 400 * limits.
 401 */
 402static void scan_time_advisor(void)
 403{
 404	unsigned int cpu_percent;
 405	unsigned long cpu_time;
 406	unsigned long cpu_time_diff;
 407	unsigned long cpu_time_diff_ms;
 408	unsigned long pages;
 409	unsigned long per_page_cost;
 410	unsigned long factor;
 411	unsigned long change;
 412	unsigned long last_scan_time;
 413	unsigned long scan_time;
 414
 415	/* Convert scan time to seconds */
 416	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
 417			    MSEC_PER_SEC);
 418	scan_time = scan_time ? scan_time : 1;
 419
 420	/* Calculate CPU consumption of ksmd background thread */
 421	cpu_time = task_sched_runtime(current);
 422	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
 423	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
 424
 425	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
 426	cpu_percent = cpu_percent ? cpu_percent : 1;
 427	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
 428
 429	/* Calculate scan time as percentage of target scan time */
 430	factor = ksm_advisor_target_scan_time * 100 / scan_time;
 431	factor = factor ? factor : 1;
 432
 433	/*
 434	 * Calculate scan time as percentage of last scan time and use
 435	 * exponentially weighted average to smooth it
 436	 */
 437	change = scan_time * 100 / last_scan_time;
 438	change = change ? change : 1;
 439	change = ewma(advisor_ctx.change, change);
 440
 441	/* Calculate new scan rate based on target scan rate. */
 442	pages = ksm_thread_pages_to_scan * 100 / factor;
 443	/* Update pages_to_scan by weighted change percentage. */
 444	pages = pages * change / 100;
 445
 446	/* Cap new pages_to_scan value */
 447	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
 448	per_page_cost = per_page_cost ? per_page_cost : 1;
 449
 450	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
 451	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
 452	pages = min(pages, ksm_advisor_max_pages_to_scan);
 453
 454	/* Update advisor context */
 455	advisor_ctx.change = change;
 456	advisor_ctx.scan_time = scan_time;
 457	advisor_ctx.cpu_time = cpu_time;
 458
 459	ksm_thread_pages_to_scan = pages;
 460	trace_ksm_advisor(scan_time, pages, cpu_percent);
 461}
 462
 463static void advisor_stop_scan(void)
 464{
 465	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
 466		scan_time_advisor();
 467}
 468
 469#ifdef CONFIG_NUMA
 470/* Zeroed when merging across nodes is not allowed */
 471static unsigned int ksm_merge_across_nodes = 1;
 472static int ksm_nr_node_ids = 1;
 473#else
 474#define ksm_merge_across_nodes	1U
 475#define ksm_nr_node_ids		1
 476#endif
 477
 478#define KSM_RUN_STOP	0
 479#define KSM_RUN_MERGE	1
 480#define KSM_RUN_UNMERGE	2
 481#define KSM_RUN_OFFLINE	4
 482static unsigned long ksm_run = KSM_RUN_STOP;
 483static void wait_while_offlining(void);
 484
 485static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 486static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
 487static DEFINE_MUTEX(ksm_thread_mutex);
 488static DEFINE_SPINLOCK(ksm_mmlist_lock);
 489
 
 
 
 
 490static int __init ksm_slab_init(void)
 491{
 492	rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
 493	if (!rmap_item_cache)
 494		goto out;
 495
 496	stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
 497	if (!stable_node_cache)
 498		goto out_free1;
 499
 500	mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
 501	if (!mm_slot_cache)
 502		goto out_free2;
 503
 504	return 0;
 505
 506out_free2:
 507	kmem_cache_destroy(stable_node_cache);
 508out_free1:
 509	kmem_cache_destroy(rmap_item_cache);
 510out:
 511	return -ENOMEM;
 512}
 513
 514static void __init ksm_slab_free(void)
 515{
 516	kmem_cache_destroy(mm_slot_cache);
 517	kmem_cache_destroy(stable_node_cache);
 518	kmem_cache_destroy(rmap_item_cache);
 519	mm_slot_cache = NULL;
 520}
 521
 522static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
 523{
 524	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 525}
 526
 527static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
 528{
 529	return dup->head == STABLE_NODE_DUP_HEAD;
 530}
 531
 532static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
 533					     struct ksm_stable_node *chain)
 534{
 535	VM_BUG_ON(is_stable_node_dup(dup));
 536	dup->head = STABLE_NODE_DUP_HEAD;
 537	VM_BUG_ON(!is_stable_node_chain(chain));
 538	hlist_add_head(&dup->hlist_dup, &chain->hlist);
 539	ksm_stable_node_dups++;
 540}
 541
 542static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
 543{
 544	VM_BUG_ON(!is_stable_node_dup(dup));
 545	hlist_del(&dup->hlist_dup);
 546	ksm_stable_node_dups--;
 547}
 548
 549static inline void stable_node_dup_del(struct ksm_stable_node *dup)
 550{
 551	VM_BUG_ON(is_stable_node_chain(dup));
 552	if (is_stable_node_dup(dup))
 553		__stable_node_dup_del(dup);
 554	else
 555		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 556#ifdef CONFIG_DEBUG_VM
 557	dup->head = NULL;
 558#endif
 559}
 560
 561static inline struct ksm_rmap_item *alloc_rmap_item(void)
 562{
 563	struct ksm_rmap_item *rmap_item;
 564
 565	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 566						__GFP_NORETRY | __GFP_NOWARN);
 567	if (rmap_item)
 568		ksm_rmap_items++;
 569	return rmap_item;
 570}
 571
 572static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
 573{
 574	ksm_rmap_items--;
 575	rmap_item->mm->ksm_rmap_items--;
 576	rmap_item->mm = NULL;	/* debug safety */
 577	kmem_cache_free(rmap_item_cache, rmap_item);
 578}
 579
 580static inline struct ksm_stable_node *alloc_stable_node(void)
 581{
 582	/*
 583	 * The allocation can take too long with GFP_KERNEL when memory is under
 584	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 585	 * grants access to memory reserves, helping to avoid this problem.
 586	 */
 587	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 588}
 589
 590static inline void free_stable_node(struct ksm_stable_node *stable_node)
 591{
 592	VM_BUG_ON(stable_node->rmap_hlist_len &&
 593		  !is_stable_node_chain(stable_node));
 594	kmem_cache_free(stable_node_cache, stable_node);
 595}
 596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597/*
 598 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 599 * page tables after it has passed through ksm_exit() - which, if necessary,
 600 * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
 601 * a special flag: they can just back out as soon as mm_users goes to zero.
 602 * ksm_test_exit() is used throughout to make this test for exit: in some
 603 * places for correctness, in some places just to avoid unnecessary work.
 604 */
 605static inline bool ksm_test_exit(struct mm_struct *mm)
 606{
 607	return atomic_read(&mm->mm_users) == 0;
 608}
 609
 610/*
 611 * We use break_ksm to break COW on a ksm page by triggering unsharing,
 612 * such that the ksm page will get replaced by an exclusive anonymous page.
 613 *
 614 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
 
 
 
 615 * in case the application has unmapped and remapped mm,addr meanwhile.
 616 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 617 * mmap of /dev/mem, where we would not want to touch it.
 618 *
 619 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
 620 * of the process that owns 'vma'.  We also do not want to enforce
 621 * protection keys here anyway.
 622 */
 623static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
 624{
 
 625	vm_fault_t ret = 0;
 626
 627	if (lock_vma)
 628		vma_start_write(vma);
 629
 630	do {
 631		bool ksm_page = false;
 632		struct folio_walk fw;
 633		struct folio *folio;
 634
 635		cond_resched();
 636		folio = folio_walk_start(&fw, vma, addr,
 637					 FW_MIGRATION | FW_ZEROPAGE);
 638		if (folio) {
 639			/* Small folio implies FW_LEVEL_PTE. */
 640			if (!folio_test_large(folio) &&
 641			    (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
 642				ksm_page = true;
 643			folio_walk_end(&fw, vma);
 644		}
 645
 646		if (!ksm_page)
 647			return 0;
 648		ret = handle_mm_fault(vma, addr,
 649				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
 650				      NULL);
 651	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 652	/*
 653	 * We must loop until we no longer find a KSM page because
 654	 * handle_mm_fault() may back out if there's any difficulty e.g. if
 655	 * pte accessed bit gets updated concurrently.
 656	 *
 657	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 658	 * backing file, which also invalidates anonymous pages: that's
 659	 * okay, that truncation will have unmapped the KSM page for us.
 660	 *
 661	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 662	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 663	 * current task has TIF_MEMDIE set, and will be OOM killed on return
 664	 * to user; and ksmd, having no mm, would never be chosen for that.
 665	 *
 666	 * But if the mm is in a limited mem_cgroup, then the fault may fail
 667	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 668	 * even ksmd can fail in this way - though it's usually breaking ksm
 669	 * just to undo a merge it made a moment before, so unlikely to oom.
 670	 *
 671	 * That's a pity: we might therefore have more kernel pages allocated
 672	 * than we're counting as nodes in the stable tree; but ksm_do_scan
 673	 * will retry to break_cow on each pass, so should recover the page
 674	 * in due course.  The important thing is to not let VM_MERGEABLE
 675	 * be cleared while any such pages might remain in the area.
 676	 */
 677	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 678}
 679
 680static bool vma_ksm_compatible(struct vm_area_struct *vma)
 681{
 682	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
 683			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
 684			     VM_MIXEDMAP| VM_DROPPABLE))
 685		return false;		/* just ignore the advice */
 686
 687	if (vma_is_dax(vma))
 688		return false;
 689
 690#ifdef VM_SAO
 691	if (vma->vm_flags & VM_SAO)
 692		return false;
 693#endif
 694#ifdef VM_SPARC_ADI
 695	if (vma->vm_flags & VM_SPARC_ADI)
 696		return false;
 697#endif
 698
 699	return true;
 700}
 701
 702static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 703		unsigned long addr)
 704{
 705	struct vm_area_struct *vma;
 706	if (ksm_test_exit(mm))
 707		return NULL;
 708	vma = vma_lookup(mm, addr);
 709	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 
 
 710		return NULL;
 711	return vma;
 712}
 713
 714static void break_cow(struct ksm_rmap_item *rmap_item)
 715{
 716	struct mm_struct *mm = rmap_item->mm;
 717	unsigned long addr = rmap_item->address;
 718	struct vm_area_struct *vma;
 719
 720	/*
 721	 * It is not an accident that whenever we want to break COW
 722	 * to undo, we also need to drop a reference to the anon_vma.
 723	 */
 724	put_anon_vma(rmap_item->anon_vma);
 725
 726	mmap_read_lock(mm);
 727	vma = find_mergeable_vma(mm, addr);
 728	if (vma)
 729		break_ksm(vma, addr, false);
 730	mmap_read_unlock(mm);
 731}
 732
 733static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
 734{
 735	struct mm_struct *mm = rmap_item->mm;
 736	unsigned long addr = rmap_item->address;
 737	struct vm_area_struct *vma;
 738	struct page *page = NULL;
 739	struct folio_walk fw;
 740	struct folio *folio;
 741
 742	mmap_read_lock(mm);
 743	vma = find_mergeable_vma(mm, addr);
 744	if (!vma)
 745		goto out;
 746
 747	folio = folio_walk_start(&fw, vma, addr, 0);
 748	if (folio) {
 749		if (!folio_is_zone_device(folio) &&
 750		    folio_test_anon(folio)) {
 751			folio_get(folio);
 752			page = fw.page;
 753		}
 754		folio_walk_end(&fw, vma);
 755	}
 756out:
 757	if (page) {
 758		flush_anon_page(vma, page, addr);
 759		flush_dcache_page(page);
 
 
 
 
 760	}
 761	mmap_read_unlock(mm);
 762	return page;
 763}
 764
 765/*
 766 * This helper is used for getting right index into array of tree roots.
 767 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 768 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 769 * every node has its own stable and unstable tree.
 770 */
 771static inline int get_kpfn_nid(unsigned long kpfn)
 772{
 773	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 774}
 775
 776static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
 777						   struct rb_root *root)
 778{
 779	struct ksm_stable_node *chain = alloc_stable_node();
 780	VM_BUG_ON(is_stable_node_chain(dup));
 781	if (likely(chain)) {
 782		INIT_HLIST_HEAD(&chain->hlist);
 783		chain->chain_prune_time = jiffies;
 784		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 785#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 786		chain->nid = NUMA_NO_NODE; /* debug */
 787#endif
 788		ksm_stable_node_chains++;
 789
 790		/*
 791		 * Put the stable node chain in the first dimension of
 792		 * the stable tree and at the same time remove the old
 793		 * stable node.
 794		 */
 795		rb_replace_node(&dup->node, &chain->node, root);
 796
 797		/*
 798		 * Move the old stable node to the second dimension
 799		 * queued in the hlist_dup. The invariant is that all
 800		 * dup stable_nodes in the chain->hlist point to pages
 801		 * that are write protected and have the exact same
 802		 * content.
 803		 */
 804		stable_node_chain_add_dup(dup, chain);
 805	}
 806	return chain;
 807}
 808
 809static inline void free_stable_node_chain(struct ksm_stable_node *chain,
 810					  struct rb_root *root)
 811{
 812	rb_erase(&chain->node, root);
 813	free_stable_node(chain);
 814	ksm_stable_node_chains--;
 815}
 816
 817static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
 818{
 819	struct ksm_rmap_item *rmap_item;
 820
 821	/* check it's not STABLE_NODE_CHAIN or negative */
 822	BUG_ON(stable_node->rmap_hlist_len < 0);
 823
 824	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 825		if (rmap_item->hlist.next) {
 826			ksm_pages_sharing--;
 827			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
 828		} else {
 829			ksm_pages_shared--;
 830		}
 831
 832		rmap_item->mm->ksm_merging_pages--;
 833
 834		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 835		stable_node->rmap_hlist_len--;
 836		put_anon_vma(rmap_item->anon_vma);
 837		rmap_item->address &= PAGE_MASK;
 838		cond_resched();
 839	}
 840
 841	/*
 842	 * We need the second aligned pointer of the migrate_nodes
 843	 * list_head to stay clear from the rb_parent_color union
 844	 * (aligned and different than any node) and also different
 845	 * from &migrate_nodes. This will verify that future list.h changes
 846	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 847	 */
 
 848	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 849	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 
 850
 851	trace_ksm_remove_ksm_page(stable_node->kpfn);
 852	if (stable_node->head == &migrate_nodes)
 853		list_del(&stable_node->list);
 854	else
 855		stable_node_dup_del(stable_node);
 856	free_stable_node(stable_node);
 857}
 858
 859enum ksm_get_folio_flags {
 860	KSM_GET_FOLIO_NOLOCK,
 861	KSM_GET_FOLIO_LOCK,
 862	KSM_GET_FOLIO_TRYLOCK
 863};
 864
 865/*
 866 * ksm_get_folio: checks if the page indicated by the stable node
 867 * is still its ksm page, despite having held no reference to it.
 868 * In which case we can trust the content of the page, and it
 869 * returns the gotten page; but if the page has now been zapped,
 870 * remove the stale node from the stable tree and return NULL.
 871 * But beware, the stable node's page might be being migrated.
 872 *
 873 * You would expect the stable_node to hold a reference to the ksm page.
 874 * But if it increments the page's count, swapping out has to wait for
 875 * ksmd to come around again before it can free the page, which may take
 876 * seconds or even minutes: much too unresponsive.  So instead we use a
 877 * "keyhole reference": access to the ksm page from the stable node peeps
 878 * out through its keyhole to see if that page still holds the right key,
 879 * pointing back to this stable node.  This relies on freeing a PageAnon
 880 * page to reset its page->mapping to NULL, and relies on no other use of
 881 * a page to put something that might look like our key in page->mapping.
 882 * is on its way to being freed; but it is an anomaly to bear in mind.
 883 */
 884static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
 885				 enum ksm_get_folio_flags flags)
 886{
 887	struct folio *folio;
 888	void *expected_mapping;
 889	unsigned long kpfn;
 890
 891	expected_mapping = (void *)((unsigned long)stable_node |
 892					PAGE_MAPPING_KSM);
 893again:
 894	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 895	folio = pfn_folio(kpfn);
 896	if (READ_ONCE(folio->mapping) != expected_mapping)
 897		goto stale;
 898
 899	/*
 900	 * We cannot do anything with the page while its refcount is 0.
 901	 * Usually 0 means free, or tail of a higher-order page: in which
 902	 * case this node is no longer referenced, and should be freed;
 903	 * however, it might mean that the page is under page_ref_freeze().
 904	 * The __remove_mapping() case is easy, again the node is now stale;
 905	 * the same is in reuse_ksm_page() case; but if page is swapcache
 906	 * in folio_migrate_mapping(), it might still be our page,
 907	 * in which case it's essential to keep the node.
 908	 */
 909	while (!folio_try_get(folio)) {
 910		/*
 911		 * Another check for folio->mapping != expected_mapping
 912		 * would work here too.  We have chosen to test the
 913		 * swapcache flag to optimize the common case, when the
 914		 * folio is or is about to be freed: the swapcache flag
 915		 * is cleared (under spin_lock_irq) in the ref_freeze
 916		 * section of __remove_mapping(); but anon folio->mapping
 917		 * is reset to NULL later, in free_pages_prepare().
 918		 */
 919		if (!folio_test_swapcache(folio))
 920			goto stale;
 921		cpu_relax();
 922	}
 923
 924	if (READ_ONCE(folio->mapping) != expected_mapping) {
 925		folio_put(folio);
 926		goto stale;
 927	}
 928
 929	if (flags == KSM_GET_FOLIO_TRYLOCK) {
 930		if (!folio_trylock(folio)) {
 931			folio_put(folio);
 932			return ERR_PTR(-EBUSY);
 933		}
 934	} else if (flags == KSM_GET_FOLIO_LOCK)
 935		folio_lock(folio);
 936
 937	if (flags != KSM_GET_FOLIO_NOLOCK) {
 938		if (READ_ONCE(folio->mapping) != expected_mapping) {
 939			folio_unlock(folio);
 940			folio_put(folio);
 941			goto stale;
 942		}
 943	}
 944	return folio;
 945
 946stale:
 947	/*
 948	 * We come here from above when folio->mapping or the swapcache flag
 949	 * suggests that the node is stale; but it might be under migration.
 950	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
 951	 * before checking whether node->kpfn has been changed.
 952	 */
 953	smp_rmb();
 954	if (READ_ONCE(stable_node->kpfn) != kpfn)
 955		goto again;
 956	remove_node_from_stable_tree(stable_node);
 957	return NULL;
 958}
 959
 960/*
 961 * Removing rmap_item from stable or unstable tree.
 962 * This function will clean the information from the stable/unstable tree.
 963 */
 964static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
 965{
 966	if (rmap_item->address & STABLE_FLAG) {
 967		struct ksm_stable_node *stable_node;
 968		struct folio *folio;
 969
 970		stable_node = rmap_item->head;
 971		folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
 972		if (!folio)
 973			goto out;
 974
 975		hlist_del(&rmap_item->hlist);
 976		folio_unlock(folio);
 977		folio_put(folio);
 978
 979		if (!hlist_empty(&stable_node->hlist))
 980			ksm_pages_sharing--;
 981		else
 982			ksm_pages_shared--;
 983
 984		rmap_item->mm->ksm_merging_pages--;
 985
 986		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 987		stable_node->rmap_hlist_len--;
 988
 989		put_anon_vma(rmap_item->anon_vma);
 990		rmap_item->head = NULL;
 991		rmap_item->address &= PAGE_MASK;
 992
 993	} else if (rmap_item->address & UNSTABLE_FLAG) {
 994		unsigned char age;
 995		/*
 996		 * Usually ksmd can and must skip the rb_erase, because
 997		 * root_unstable_tree was already reset to RB_ROOT.
 998		 * But be careful when an mm is exiting: do the rb_erase
 999		 * if this rmap_item was inserted by this scan, rather
1000		 * than left over from before.
1001		 */
1002		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1003		BUG_ON(age > 1);
1004		if (!age)
1005			rb_erase(&rmap_item->node,
1006				 root_unstable_tree + NUMA(rmap_item->nid));
1007		ksm_pages_unshared--;
1008		rmap_item->address &= PAGE_MASK;
1009	}
1010out:
1011	cond_resched();		/* we're called from many long loops */
1012}
1013
1014static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
 
1015{
1016	while (*rmap_list) {
1017		struct ksm_rmap_item *rmap_item = *rmap_list;
1018		*rmap_list = rmap_item->rmap_list;
1019		remove_rmap_item_from_tree(rmap_item);
1020		free_rmap_item(rmap_item);
1021	}
1022}
1023
1024/*
1025 * Though it's very tempting to unmerge rmap_items from stable tree rather
1026 * than check every pte of a given vma, the locking doesn't quite work for
1027 * that - an rmap_item is assigned to the stable tree after inserting ksm
1028 * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1029 * rmap_items from parent to child at fork time (so as not to waste time
1030 * if exit comes before the next scan reaches it).
1031 *
1032 * Similarly, although we'd like to remove rmap_items (so updating counts
1033 * and freeing memory) when unmerging an area, it's easier to leave that
1034 * to the next pass of ksmd - consider, for example, how ksmd might be
1035 * in cmp_and_merge_page on one of the rmap_items we would be removing.
1036 */
1037static int unmerge_ksm_pages(struct vm_area_struct *vma,
1038			     unsigned long start, unsigned long end, bool lock_vma)
1039{
1040	unsigned long addr;
1041	int err = 0;
1042
1043	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1044		if (ksm_test_exit(vma->vm_mm))
1045			break;
1046		if (signal_pending(current))
1047			err = -ERESTARTSYS;
1048		else
1049			err = break_ksm(vma, addr, lock_vma);
1050	}
1051	return err;
1052}
1053
1054static inline
1055struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1056{
1057	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1058}
1059
1060static inline struct ksm_stable_node *page_stable_node(struct page *page)
 
1061{
1062	return folio_stable_node(page_folio(page));
1063}
1064
1065static inline void folio_set_stable_node(struct folio *folio,
1066					 struct ksm_stable_node *stable_node)
1067{
1068	VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1069	folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1070}
1071
1072#ifdef CONFIG_SYSFS
1073/*
1074 * Only called through the sysfs control interface:
1075 */
1076static int remove_stable_node(struct ksm_stable_node *stable_node)
1077{
1078	struct folio *folio;
1079	int err;
1080
1081	folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1082	if (!folio) {
1083		/*
1084		 * ksm_get_folio did remove_node_from_stable_tree itself.
1085		 */
1086		return 0;
1087	}
1088
1089	/*
1090	 * Page could be still mapped if this races with __mmput() running in
1091	 * between ksm_exit() and exit_mmap(). Just refuse to let
1092	 * merge_across_nodes/max_page_sharing be switched.
1093	 */
1094	err = -EBUSY;
1095	if (!folio_mapped(folio)) {
1096		/*
1097		 * The stable node did not yet appear stale to ksm_get_folio(),
1098		 * since that allows for an unmapped ksm folio to be recognized
1099		 * right up until it is freed; but the node is safe to remove.
1100		 * This folio might be in an LRU cache waiting to be freed,
1101		 * or it might be in the swapcache (perhaps under writeback),
1102		 * or it might have been removed from swapcache a moment ago.
1103		 */
1104		folio_set_stable_node(folio, NULL);
1105		remove_node_from_stable_tree(stable_node);
1106		err = 0;
1107	}
1108
1109	folio_unlock(folio);
1110	folio_put(folio);
1111	return err;
1112}
1113
1114static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1115				    struct rb_root *root)
1116{
1117	struct ksm_stable_node *dup;
1118	struct hlist_node *hlist_safe;
1119
1120	if (!is_stable_node_chain(stable_node)) {
1121		VM_BUG_ON(is_stable_node_dup(stable_node));
1122		if (remove_stable_node(stable_node))
1123			return true;
1124		else
1125			return false;
1126	}
1127
1128	hlist_for_each_entry_safe(dup, hlist_safe,
1129				  &stable_node->hlist, hlist_dup) {
1130		VM_BUG_ON(!is_stable_node_dup(dup));
1131		if (remove_stable_node(dup))
1132			return true;
1133	}
1134	BUG_ON(!hlist_empty(&stable_node->hlist));
1135	free_stable_node_chain(stable_node, root);
1136	return false;
1137}
1138
1139static int remove_all_stable_nodes(void)
1140{
1141	struct ksm_stable_node *stable_node, *next;
1142	int nid;
1143	int err = 0;
1144
1145	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1146		while (root_stable_tree[nid].rb_node) {
1147			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1148						struct ksm_stable_node, node);
1149			if (remove_stable_node_chain(stable_node,
1150						     root_stable_tree + nid)) {
1151				err = -EBUSY;
1152				break;	/* proceed to next nid */
1153			}
1154			cond_resched();
1155		}
1156	}
1157	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1158		if (remove_stable_node(stable_node))
1159			err = -EBUSY;
1160		cond_resched();
1161	}
1162	return err;
1163}
1164
1165static int unmerge_and_remove_all_rmap_items(void)
1166{
1167	struct ksm_mm_slot *mm_slot;
1168	struct mm_slot *slot;
1169	struct mm_struct *mm;
1170	struct vm_area_struct *vma;
1171	int err = 0;
1172
1173	spin_lock(&ksm_mmlist_lock);
1174	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1175			  struct mm_slot, mm_node);
1176	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1177	spin_unlock(&ksm_mmlist_lock);
1178
1179	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1180	     mm_slot = ksm_scan.mm_slot) {
1181		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1182
1183		mm = mm_slot->slot.mm;
1184		mmap_read_lock(mm);
1185
1186		/*
1187		 * Exit right away if mm is exiting to avoid lockdep issue in
1188		 * the maple tree
1189		 */
1190		if (ksm_test_exit(mm))
1191			goto mm_exiting;
1192
1193		for_each_vma(vmi, vma) {
1194			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1195				continue;
1196			err = unmerge_ksm_pages(vma,
1197						vma->vm_start, vma->vm_end, false);
1198			if (err)
1199				goto error;
1200		}
1201
1202mm_exiting:
1203		remove_trailing_rmap_items(&mm_slot->rmap_list);
1204		mmap_read_unlock(mm);
1205
1206		spin_lock(&ksm_mmlist_lock);
1207		slot = list_entry(mm_slot->slot.mm_node.next,
1208				  struct mm_slot, mm_node);
1209		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1210		if (ksm_test_exit(mm)) {
1211			hash_del(&mm_slot->slot.hash);
1212			list_del(&mm_slot->slot.mm_node);
1213			spin_unlock(&ksm_mmlist_lock);
1214
1215			mm_slot_free(mm_slot_cache, mm_slot);
1216			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1217			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1218			mmdrop(mm);
1219		} else
1220			spin_unlock(&ksm_mmlist_lock);
1221	}
1222
1223	/* Clean up stable nodes, but don't worry if some are still busy */
1224	remove_all_stable_nodes();
1225	ksm_scan.seqnr = 0;
1226	return 0;
1227
1228error:
1229	mmap_read_unlock(mm);
1230	spin_lock(&ksm_mmlist_lock);
1231	ksm_scan.mm_slot = &ksm_mm_head;
1232	spin_unlock(&ksm_mmlist_lock);
1233	return err;
1234}
1235#endif /* CONFIG_SYSFS */
1236
1237static u32 calc_checksum(struct page *page)
1238{
1239	u32 checksum;
1240	void *addr = kmap_local_page(page);
1241	checksum = xxhash(addr, PAGE_SIZE, 0);
1242	kunmap_local(addr);
1243	return checksum;
1244}
1245
1246static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1247			      pte_t *orig_pte)
1248{
1249	struct mm_struct *mm = vma->vm_mm;
1250	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
 
 
 
1251	int swapped;
1252	int err = -EFAULT;
1253	struct mmu_notifier_range range;
1254	bool anon_exclusive;
1255	pte_t entry;
1256
1257	if (WARN_ON_ONCE(folio_test_large(folio)))
1258		return err;
1259
1260	pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1261	if (pvmw.address == -EFAULT)
1262		goto out;
1263
1264	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
 
 
 
1265				pvmw.address + PAGE_SIZE);
1266	mmu_notifier_invalidate_range_start(&range);
1267
1268	if (!page_vma_mapped_walk(&pvmw))
1269		goto out_mn;
1270	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1271		goto out_unlock;
1272
1273	anon_exclusive = PageAnonExclusive(&folio->page);
1274	entry = ptep_get(pvmw.pte);
1275	if (pte_write(entry) || pte_dirty(entry) ||
1276	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1277		swapped = folio_test_swapcache(folio);
1278		flush_cache_page(vma, pvmw.address, folio_pfn(folio));
 
1279		/*
1280		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1281		 * take any lock, therefore the check that we are going to make
1282		 * with the pagecount against the mapcount is racy and
1283		 * O_DIRECT can happen right after the check.
1284		 * So we clear the pte and flush the tlb before the check
1285		 * this assure us that no O_DIRECT can happen after the check
1286		 * or in the middle of the check.
1287		 *
1288		 * No need to notify as we are downgrading page table to read
1289		 * only not changing it to point to a new page.
1290		 *
1291		 * See Documentation/mm/mmu_notifier.rst
1292		 */
1293		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1294		/*
1295		 * Check that no O_DIRECT or similar I/O is in progress on the
1296		 * page
1297		 */
1298		if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1299			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1300			goto out_unlock;
1301		}
1302
1303		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1304		if (anon_exclusive &&
1305		    folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1306			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1307			goto out_unlock;
1308		}
1309
1310		if (pte_dirty(entry))
1311			folio_mark_dirty(folio);
1312		entry = pte_mkclean(entry);
1313
1314		if (pte_write(entry))
1315			entry = pte_wrprotect(entry);
1316
1317		set_pte_at(mm, pvmw.address, pvmw.pte, entry);
 
1318	}
1319	*orig_pte = entry;
1320	err = 0;
1321
1322out_unlock:
1323	page_vma_mapped_walk_done(&pvmw);
1324out_mn:
1325	mmu_notifier_invalidate_range_end(&range);
1326out:
1327	return err;
1328}
1329
1330/**
1331 * replace_page - replace page in vma by new ksm page
1332 * @vma:      vma that holds the pte pointing to page
1333 * @page:     the page we are replacing by kpage
1334 * @kpage:    the ksm page we replace page by
1335 * @orig_pte: the original value of the pte
1336 *
1337 * Returns 0 on success, -EFAULT on failure.
1338 */
1339static int replace_page(struct vm_area_struct *vma, struct page *page,
1340			struct page *kpage, pte_t orig_pte)
1341{
1342	struct folio *kfolio = page_folio(kpage);
1343	struct mm_struct *mm = vma->vm_mm;
1344	struct folio *folio = page_folio(page);
1345	pmd_t *pmd;
1346	pmd_t pmde;
1347	pte_t *ptep;
1348	pte_t newpte;
1349	spinlock_t *ptl;
1350	unsigned long addr;
1351	int err = -EFAULT;
1352	struct mmu_notifier_range range;
1353
1354	addr = page_address_in_vma(folio, page, vma);
1355	if (addr == -EFAULT)
1356		goto out;
1357
1358	pmd = mm_find_pmd(mm, addr);
1359	if (!pmd)
1360		goto out;
1361	/*
1362	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1363	 * without holding anon_vma lock for write.  So when looking for a
1364	 * genuine pmde (in which to find pte), test present and !THP together.
1365	 */
1366	pmde = pmdp_get_lockless(pmd);
1367	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1368		goto out;
1369
1370	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1371				addr + PAGE_SIZE);
1372	mmu_notifier_invalidate_range_start(&range);
1373
1374	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1375	if (!ptep)
1376		goto out_mn;
1377	if (!pte_same(ptep_get(ptep), orig_pte)) {
1378		pte_unmap_unlock(ptep, ptl);
1379		goto out_mn;
1380	}
1381	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1382	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1383			kfolio);
1384
1385	/*
1386	 * No need to check ksm_use_zero_pages here: we can only have a
1387	 * zero_page here if ksm_use_zero_pages was enabled already.
1388	 */
1389	if (!is_zero_pfn(page_to_pfn(kpage))) {
1390		folio_get(kfolio);
1391		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1392		newpte = mk_pte(kpage, vma->vm_page_prot);
1393	} else {
1394		/*
1395		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1396		 * we can easily track all KSM-placed zero pages by checking if
1397		 * the dirty bit in zero page's PTE is set.
1398		 */
1399		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1400		ksm_map_zero_page(mm);
1401		/*
1402		 * We're replacing an anonymous page with a zero page, which is
1403		 * not anonymous. We need to do proper accounting otherwise we
1404		 * will get wrong values in /proc, and a BUG message in dmesg
1405		 * when tearing down the mm.
1406		 */
1407		dec_mm_counter(mm, MM_ANONPAGES);
1408	}
1409
1410	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1411	/*
1412	 * No need to notify as we are replacing a read only page with another
1413	 * read only page with the same content.
1414	 *
1415	 * See Documentation/mm/mmu_notifier.rst
1416	 */
1417	ptep_clear_flush(vma, addr, ptep);
1418	set_pte_at(mm, addr, ptep, newpte);
1419
1420	folio_remove_rmap_pte(folio, page, vma);
1421	if (!folio_mapped(folio))
1422		folio_free_swap(folio);
1423	folio_put(folio);
1424
1425	pte_unmap_unlock(ptep, ptl);
1426	err = 0;
1427out_mn:
1428	mmu_notifier_invalidate_range_end(&range);
1429out:
1430	return err;
1431}
1432
1433/*
1434 * try_to_merge_one_page - take two pages and merge them into one
1435 * @vma: the vma that holds the pte pointing to page
1436 * @page: the PageAnon page that we want to replace with kpage
1437 * @kpage: the KSM page that we want to map instead of page,
1438 *         or NULL the first time when we want to use page as kpage.
1439 *
1440 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1441 */
1442static int try_to_merge_one_page(struct vm_area_struct *vma,
1443				 struct page *page, struct page *kpage)
1444{
1445	struct folio *folio = page_folio(page);
1446	pte_t orig_pte = __pte(0);
1447	int err = -EFAULT;
1448
1449	if (page == kpage)			/* ksm page forked */
1450		return 0;
1451
1452	if (!folio_test_anon(folio))
1453		goto out;
1454
1455	/*
1456	 * We need the folio lock to read a stable swapcache flag in
1457	 * write_protect_page().  We trylock because we don't want to wait
1458	 * here - we prefer to continue scanning and merging different
1459	 * pages, then come back to this page when it is unlocked.
 
1460	 */
1461	if (!folio_trylock(folio))
1462		goto out;
1463
1464	if (folio_test_large(folio)) {
1465		if (split_huge_page(page))
1466			goto out_unlock;
1467		folio = page_folio(page);
1468	}
1469
1470	/*
1471	 * If this anonymous page is mapped only here, its pte may need
1472	 * to be write-protected.  If it's mapped elsewhere, all of its
1473	 * ptes are necessarily already write-protected.  But in either
1474	 * case, we need to lock and check page_count is not raised.
1475	 */
1476	if (write_protect_page(vma, folio, &orig_pte) == 0) {
1477		if (!kpage) {
1478			/*
1479			 * While we hold folio lock, upgrade folio from
1480			 * anon to a NULL stable_node with the KSM flag set:
1481			 * stable_tree_insert() will update stable_node.
1482			 */
1483			folio_set_stable_node(folio, NULL);
1484			folio_mark_accessed(folio);
1485			/*
1486			 * Page reclaim just frees a clean folio with no dirty
1487			 * ptes: make sure that the ksm page would be swapped.
1488			 */
1489			if (!folio_test_dirty(folio))
1490				folio_mark_dirty(folio);
1491			err = 0;
1492		} else if (pages_identical(page, kpage))
1493			err = replace_page(vma, page, kpage, orig_pte);
1494	}
1495
1496out_unlock:
1497	folio_unlock(folio);
1498out:
1499	return err;
1500}
1501
1502/*
1503 * This function returns 0 if the pages were merged or if they are
1504 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1505 */
1506static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1507				       struct page *page)
1508{
1509	struct mm_struct *mm = rmap_item->mm;
1510	int err = -EFAULT;
1511
1512	/*
1513	 * Same checksum as an empty page. We attempt to merge it with the
1514	 * appropriate zero page if the user enabled this via sysfs.
1515	 */
1516	if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1517		struct vm_area_struct *vma;
1518
1519		mmap_read_lock(mm);
1520		vma = find_mergeable_vma(mm, rmap_item->address);
1521		if (vma) {
1522			err = try_to_merge_one_page(vma, page,
1523					ZERO_PAGE(rmap_item->address));
1524			trace_ksm_merge_one_page(
1525				page_to_pfn(ZERO_PAGE(rmap_item->address)),
1526				rmap_item, mm, err);
1527		} else {
1528			/*
1529			 * If the vma is out of date, we do not need to
1530			 * continue.
1531			 */
1532			err = 0;
1533		}
1534		mmap_read_unlock(mm);
1535	}
1536
 
 
 
1537	return err;
1538}
1539
1540/*
1541 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1542 * but no new kernel page is allocated: kpage must already be a ksm page.
1543 *
1544 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1545 */
1546static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1547				      struct page *page, struct page *kpage)
1548{
1549	struct mm_struct *mm = rmap_item->mm;
1550	struct vm_area_struct *vma;
1551	int err = -EFAULT;
1552
1553	mmap_read_lock(mm);
1554	vma = find_mergeable_vma(mm, rmap_item->address);
1555	if (!vma)
1556		goto out;
1557
1558	err = try_to_merge_one_page(vma, page, kpage);
1559	if (err)
1560		goto out;
1561
1562	/* Unstable nid is in union with stable anon_vma: remove first */
1563	remove_rmap_item_from_tree(rmap_item);
1564
1565	/* Must get reference to anon_vma while still holding mmap_lock */
1566	rmap_item->anon_vma = vma->anon_vma;
1567	get_anon_vma(vma->anon_vma);
1568out:
1569	mmap_read_unlock(mm);
1570	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1571				rmap_item, mm, err);
1572	return err;
1573}
1574
1575/*
1576 * try_to_merge_two_pages - take two identical pages and prepare them
1577 * to be merged into one page.
1578 *
1579 * This function returns the kpage if we successfully merged two identical
1580 * pages into one ksm page, NULL otherwise.
1581 *
1582 * Note that this function upgrades page to ksm page: if one of the pages
1583 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1584 */
1585static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1586					   struct page *page,
1587					   struct ksm_rmap_item *tree_rmap_item,
1588					   struct page *tree_page)
1589{
1590	int err;
1591
1592	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1593	if (!err) {
1594		err = try_to_merge_with_ksm_page(tree_rmap_item,
1595							tree_page, page);
1596		/*
1597		 * If that fails, we have a ksm page with only one pte
1598		 * pointing to it: so break it.
1599		 */
1600		if (err)
1601			break_cow(rmap_item);
1602	}
1603	return err ? NULL : page_folio(page);
1604}
1605
1606static __always_inline
1607bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1608{
1609	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1610	/*
1611	 * Check that at least one mapping still exists, otherwise
1612	 * there's no much point to merge and share with this
1613	 * stable_node, as the underlying tree_page of the other
1614	 * sharer is going to be freed soon.
1615	 */
1616	return stable_node->rmap_hlist_len &&
1617		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1618}
1619
1620static __always_inline
1621bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1622{
1623	return __is_page_sharing_candidate(stable_node, 0);
1624}
1625
1626static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1627				     struct ksm_stable_node **_stable_node,
1628				     struct rb_root *root,
1629				     bool prune_stale_stable_nodes)
1630{
1631	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1632	struct hlist_node *hlist_safe;
1633	struct folio *folio, *tree_folio = NULL;
 
1634	int found_rmap_hlist_len;
1635
1636	if (!prune_stale_stable_nodes ||
1637	    time_before(jiffies, stable_node->chain_prune_time +
1638			msecs_to_jiffies(
1639				ksm_stable_node_chains_prune_millisecs)))
1640		prune_stale_stable_nodes = false;
1641	else
1642		stable_node->chain_prune_time = jiffies;
1643
1644	hlist_for_each_entry_safe(dup, hlist_safe,
1645				  &stable_node->hlist, hlist_dup) {
1646		cond_resched();
1647		/*
1648		 * We must walk all stable_node_dup to prune the stale
1649		 * stable nodes during lookup.
1650		 *
1651		 * ksm_get_folio can drop the nodes from the
1652		 * stable_node->hlist if they point to freed pages
1653		 * (that's why we do a _safe walk). The "dup"
1654		 * stable_node parameter itself will be freed from
1655		 * under us if it returns NULL.
1656		 */
1657		folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1658		if (!folio)
1659			continue;
1660		/* Pick the best candidate if possible. */
1661		if (!found || (is_page_sharing_candidate(dup) &&
1662		    (!is_page_sharing_candidate(found) ||
1663		     dup->rmap_hlist_len > found_rmap_hlist_len))) {
1664			if (found)
1665				folio_put(tree_folio);
1666			found = dup;
1667			found_rmap_hlist_len = found->rmap_hlist_len;
1668			tree_folio = folio;
1669			/* skip put_page for found candidate */
1670			if (!prune_stale_stable_nodes &&
1671			    is_page_sharing_candidate(found))
1672				break;
1673			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674		}
1675		folio_put(folio);
1676	}
1677
1678	if (found) {
1679		if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
 
 
 
 
 
 
1680			/*
1681			 * If there's not just one entry it would
1682			 * corrupt memory, better BUG_ON. In KSM
1683			 * context with no lock held it's not even
1684			 * fatal.
1685			 */
1686			BUG_ON(stable_node->hlist.first->next);
1687
1688			/*
1689			 * There's just one entry and it is below the
1690			 * deduplication limit so drop the chain.
1691			 */
1692			rb_replace_node(&stable_node->node, &found->node,
1693					root);
1694			free_stable_node(stable_node);
1695			ksm_stable_node_chains--;
1696			ksm_stable_node_dups--;
1697			/*
1698			 * NOTE: the caller depends on the stable_node
1699			 * to be equal to stable_node_dup if the chain
1700			 * was collapsed.
1701			 */
1702			*_stable_node = found;
1703			/*
1704			 * Just for robustness, as stable_node is
1705			 * otherwise left as a stable pointer, the
1706			 * compiler shall optimize it away at build
1707			 * time.
1708			 */
1709			stable_node = NULL;
1710		} else if (stable_node->hlist.first != &found->hlist_dup &&
1711			   __is_page_sharing_candidate(found, 1)) {
1712			/*
1713			 * If the found stable_node dup can accept one
1714			 * more future merge (in addition to the one
1715			 * that is underway) and is not at the head of
1716			 * the chain, put it there so next search will
1717			 * be quicker in the !prune_stale_stable_nodes
1718			 * case.
1719			 *
1720			 * NOTE: it would be inaccurate to use nr > 1
1721			 * instead of checking the hlist.first pointer
1722			 * directly, because in the
1723			 * prune_stale_stable_nodes case "nr" isn't
1724			 * the position of the found dup in the chain,
1725			 * but the total number of dups in the chain.
1726			 */
1727			hlist_del(&found->hlist_dup);
1728			hlist_add_head(&found->hlist_dup,
1729				       &stable_node->hlist);
1730		}
1731	} else {
1732		/* Its hlist must be empty if no one found. */
1733		free_stable_node_chain(stable_node, root);
1734	}
1735
1736	*_stable_node_dup = found;
1737	return tree_folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
1738}
1739
1740/*
1741 * Like for ksm_get_folio, this function can free the *_stable_node and
1742 * *_stable_node_dup if the returned tree_page is NULL.
1743 *
1744 * It can also free and overwrite *_stable_node with the found
1745 * stable_node_dup if the chain is collapsed (in which case
1746 * *_stable_node will be equal to *_stable_node_dup like if the chain
1747 * never existed). It's up to the caller to verify tree_page is not
1748 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1749 *
1750 * *_stable_node_dup is really a second output parameter of this
1751 * function and will be overwritten in all cases, the caller doesn't
1752 * need to initialize it.
1753 */
1754static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1755					 struct ksm_stable_node **_stable_node,
1756					 struct rb_root *root,
1757					 bool prune_stale_stable_nodes)
1758{
1759	struct ksm_stable_node *stable_node = *_stable_node;
1760
1761	if (!is_stable_node_chain(stable_node)) {
1762		*_stable_node_dup = stable_node;
1763		return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
 
 
 
 
 
 
 
 
1764	}
1765	return stable_node_dup(_stable_node_dup, _stable_node, root,
1766			       prune_stale_stable_nodes);
1767}
1768
1769static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1770						 struct ksm_stable_node **s_n,
1771						 struct rb_root *root)
1772{
1773	return __stable_node_chain(s_n_d, s_n, root, true);
1774}
1775
1776static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1777					   struct ksm_stable_node **s_n,
1778					   struct rb_root *root)
1779{
1780	return __stable_node_chain(s_n_d, s_n, root, false);
 
 
 
 
 
 
1781}
1782
1783/*
1784 * stable_tree_search - search for page inside the stable tree
1785 *
1786 * This function checks if there is a page inside the stable tree
1787 * with identical content to the page that we are scanning right now.
1788 *
1789 * This function returns the stable tree node of identical content if found,
1790 * -EBUSY if the stable node's page is being migrated, NULL otherwise.
1791 */
1792static struct folio *stable_tree_search(struct page *page)
1793{
1794	int nid;
1795	struct rb_root *root;
1796	struct rb_node **new;
1797	struct rb_node *parent;
1798	struct ksm_stable_node *stable_node, *stable_node_dup;
1799	struct ksm_stable_node *page_node;
1800	struct folio *folio;
1801
1802	folio = page_folio(page);
1803	page_node = folio_stable_node(folio);
1804	if (page_node && page_node->head != &migrate_nodes) {
1805		/* ksm page forked */
1806		folio_get(folio);
1807		return folio;
1808	}
1809
1810	nid = get_kpfn_nid(folio_pfn(folio));
1811	root = root_stable_tree + nid;
1812again:
1813	new = &root->rb_node;
1814	parent = NULL;
1815
1816	while (*new) {
1817		struct folio *tree_folio;
1818		int ret;
1819
1820		cond_resched();
1821		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1822		tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1823		if (!tree_folio) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824			/*
1825			 * If we walked over a stale stable_node,
1826			 * ksm_get_folio() will call rb_erase() and it
1827			 * may rebalance the tree from under us. So
1828			 * restart the search from scratch. Returning
1829			 * NULL would be safe too, but we'd generate
1830			 * false negative insertions just because some
1831			 * stable_node was stale.
1832			 */
1833			goto again;
1834		}
1835
1836		ret = memcmp_pages(page, &tree_folio->page);
1837		folio_put(tree_folio);
1838
1839		parent = *new;
1840		if (ret < 0)
1841			new = &parent->rb_left;
1842		else if (ret > 0)
1843			new = &parent->rb_right;
1844		else {
1845			if (page_node) {
1846				VM_BUG_ON(page_node->head != &migrate_nodes);
1847				/*
1848				 * If the mapcount of our migrated KSM folio is
1849				 * at most 1, we can merge it with another
1850				 * KSM folio where we know that we have space
1851				 * for one more mapping without exceeding the
1852				 * ksm_max_page_sharing limit: see
1853				 * chain_prune(). This way, we can avoid adding
1854				 * this stable node to the chain.
1855				 */
1856				if (folio_mapcount(folio) > 1)
1857					goto chain_append;
1858			}
1859
1860			if (!is_page_sharing_candidate(stable_node_dup)) {
1861				/*
1862				 * If the stable_node is a chain and
1863				 * we got a payload match in memcmp
1864				 * but we cannot merge the scanned
1865				 * page in any of the existing
1866				 * stable_node dups because they're
1867				 * all full, we need to wait the
1868				 * scanned page to find itself a match
1869				 * in the unstable tree to create a
1870				 * brand new KSM page to add later to
1871				 * the dups of this stable_node.
1872				 */
1873				return NULL;
1874			}
1875
1876			/*
1877			 * Lock and unlock the stable_node's page (which
1878			 * might already have been migrated) so that page
1879			 * migration is sure to notice its raised count.
1880			 * It would be more elegant to return stable_node
1881			 * than kpage, but that involves more changes.
1882			 */
1883			tree_folio = ksm_get_folio(stable_node_dup,
1884						   KSM_GET_FOLIO_TRYLOCK);
1885
1886			if (PTR_ERR(tree_folio) == -EBUSY)
1887				return ERR_PTR(-EBUSY);
1888
1889			if (unlikely(!tree_folio))
1890				/*
1891				 * The tree may have been rebalanced,
1892				 * so re-evaluate parent and new.
1893				 */
1894				goto again;
1895			folio_unlock(tree_folio);
1896
1897			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1898			    NUMA(stable_node_dup->nid)) {
1899				folio_put(tree_folio);
1900				goto replace;
1901			}
1902			return tree_folio;
1903		}
1904	}
1905
1906	if (!page_node)
1907		return NULL;
1908
1909	list_del(&page_node->list);
1910	DO_NUMA(page_node->nid = nid);
1911	rb_link_node(&page_node->node, parent, new);
1912	rb_insert_color(&page_node->node, root);
1913out:
1914	if (is_page_sharing_candidate(page_node)) {
1915		folio_get(folio);
1916		return folio;
1917	} else
1918		return NULL;
1919
1920replace:
1921	/*
1922	 * If stable_node was a chain and chain_prune collapsed it,
1923	 * stable_node has been updated to be the new regular
1924	 * stable_node. A collapse of the chain is indistinguishable
1925	 * from the case there was no chain in the stable
1926	 * rbtree. Otherwise stable_node is the chain and
1927	 * stable_node_dup is the dup to replace.
1928	 */
1929	if (stable_node_dup == stable_node) {
1930		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1931		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1932		/* there is no chain */
1933		if (page_node) {
1934			VM_BUG_ON(page_node->head != &migrate_nodes);
1935			list_del(&page_node->list);
1936			DO_NUMA(page_node->nid = nid);
1937			rb_replace_node(&stable_node_dup->node,
1938					&page_node->node,
1939					root);
1940			if (is_page_sharing_candidate(page_node))
1941				folio_get(folio);
1942			else
1943				folio = NULL;
1944		} else {
1945			rb_erase(&stable_node_dup->node, root);
1946			folio = NULL;
1947		}
1948	} else {
1949		VM_BUG_ON(!is_stable_node_chain(stable_node));
1950		__stable_node_dup_del(stable_node_dup);
1951		if (page_node) {
1952			VM_BUG_ON(page_node->head != &migrate_nodes);
1953			list_del(&page_node->list);
1954			DO_NUMA(page_node->nid = nid);
1955			stable_node_chain_add_dup(page_node, stable_node);
1956			if (is_page_sharing_candidate(page_node))
1957				folio_get(folio);
1958			else
1959				folio = NULL;
1960		} else {
1961			folio = NULL;
1962		}
1963	}
1964	stable_node_dup->head = &migrate_nodes;
1965	list_add(&stable_node_dup->list, stable_node_dup->head);
1966	return folio;
1967
1968chain_append:
 
 
 
1969	/*
1970	 * If stable_node was a chain and chain_prune collapsed it,
1971	 * stable_node has been updated to be the new regular
1972	 * stable_node. A collapse of the chain is indistinguishable
1973	 * from the case there was no chain in the stable
1974	 * rbtree. Otherwise stable_node is the chain and
1975	 * stable_node_dup is the dup to replace.
1976	 */
1977	if (stable_node_dup == stable_node) {
 
1978		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1979		/* chain is missing so create it */
1980		stable_node = alloc_stable_node_chain(stable_node_dup,
1981						      root);
1982		if (!stable_node)
1983			return NULL;
1984	}
1985	/*
1986	 * Add this stable_node dup that was
1987	 * migrated to the stable_node chain
1988	 * of the current nid for this page
1989	 * content.
1990	 */
 
1991	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1992	VM_BUG_ON(page_node->head != &migrate_nodes);
1993	list_del(&page_node->list);
1994	DO_NUMA(page_node->nid = nid);
1995	stable_node_chain_add_dup(page_node, stable_node);
1996	goto out;
1997}
1998
1999/*
2000 * stable_tree_insert - insert stable tree node pointing to new ksm page
2001 * into the stable tree.
2002 *
2003 * This function returns the stable tree node just allocated on success,
2004 * NULL otherwise.
2005 */
2006static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2007{
2008	int nid;
2009	unsigned long kpfn;
2010	struct rb_root *root;
2011	struct rb_node **new;
2012	struct rb_node *parent;
2013	struct ksm_stable_node *stable_node, *stable_node_dup;
2014	bool need_chain = false;
2015
2016	kpfn = folio_pfn(kfolio);
2017	nid = get_kpfn_nid(kpfn);
2018	root = root_stable_tree + nid;
2019again:
2020	parent = NULL;
2021	new = &root->rb_node;
2022
2023	while (*new) {
2024		struct folio *tree_folio;
2025		int ret;
2026
2027		cond_resched();
2028		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2029		tree_folio = chain(&stable_node_dup, &stable_node, root);
2030		if (!tree_folio) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2031			/*
2032			 * If we walked over a stale stable_node,
2033			 * ksm_get_folio() will call rb_erase() and it
2034			 * may rebalance the tree from under us. So
2035			 * restart the search from scratch. Returning
2036			 * NULL would be safe too, but we'd generate
2037			 * false negative insertions just because some
2038			 * stable_node was stale.
2039			 */
2040			goto again;
2041		}
2042
2043		ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2044		folio_put(tree_folio);
2045
2046		parent = *new;
2047		if (ret < 0)
2048			new = &parent->rb_left;
2049		else if (ret > 0)
2050			new = &parent->rb_right;
2051		else {
2052			need_chain = true;
2053			break;
2054		}
2055	}
2056
2057	stable_node_dup = alloc_stable_node();
2058	if (!stable_node_dup)
2059		return NULL;
2060
2061	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2062	stable_node_dup->kpfn = kpfn;
 
2063	stable_node_dup->rmap_hlist_len = 0;
2064	DO_NUMA(stable_node_dup->nid = nid);
2065	if (!need_chain) {
2066		rb_link_node(&stable_node_dup->node, parent, new);
2067		rb_insert_color(&stable_node_dup->node, root);
2068	} else {
2069		if (!is_stable_node_chain(stable_node)) {
2070			struct ksm_stable_node *orig = stable_node;
2071			/* chain is missing so create it */
2072			stable_node = alloc_stable_node_chain(orig, root);
2073			if (!stable_node) {
2074				free_stable_node(stable_node_dup);
2075				return NULL;
2076			}
2077		}
2078		stable_node_chain_add_dup(stable_node_dup, stable_node);
2079	}
2080
2081	folio_set_stable_node(kfolio, stable_node_dup);
2082
2083	return stable_node_dup;
2084}
2085
2086/*
2087 * unstable_tree_search_insert - search for identical page,
2088 * else insert rmap_item into the unstable tree.
2089 *
2090 * This function searches for a page in the unstable tree identical to the
2091 * page currently being scanned; and if no identical page is found in the
2092 * tree, we insert rmap_item as a new object into the unstable tree.
2093 *
2094 * This function returns pointer to rmap_item found to be identical
2095 * to the currently scanned page, NULL otherwise.
2096 *
2097 * This function does both searching and inserting, because they share
2098 * the same walking algorithm in an rbtree.
2099 */
2100static
2101struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2102					      struct page *page,
2103					      struct page **tree_pagep)
2104{
2105	struct rb_node **new;
2106	struct rb_root *root;
2107	struct rb_node *parent = NULL;
2108	int nid;
2109
2110	nid = get_kpfn_nid(page_to_pfn(page));
2111	root = root_unstable_tree + nid;
2112	new = &root->rb_node;
2113
2114	while (*new) {
2115		struct ksm_rmap_item *tree_rmap_item;
2116		struct page *tree_page;
2117		int ret;
2118
2119		cond_resched();
2120		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2121		tree_page = get_mergeable_page(tree_rmap_item);
2122		if (!tree_page)
2123			return NULL;
2124
2125		/*
2126		 * Don't substitute a ksm page for a forked page.
2127		 */
2128		if (page == tree_page) {
2129			put_page(tree_page);
2130			return NULL;
2131		}
2132
2133		ret = memcmp_pages(page, tree_page);
2134
2135		parent = *new;
2136		if (ret < 0) {
2137			put_page(tree_page);
2138			new = &parent->rb_left;
2139		} else if (ret > 0) {
2140			put_page(tree_page);
2141			new = &parent->rb_right;
2142		} else if (!ksm_merge_across_nodes &&
2143			   page_to_nid(tree_page) != nid) {
2144			/*
2145			 * If tree_page has been migrated to another NUMA node,
2146			 * it will be flushed out and put in the right unstable
2147			 * tree next time: only merge with it when across_nodes.
2148			 */
2149			put_page(tree_page);
2150			return NULL;
2151		} else {
2152			*tree_pagep = tree_page;
2153			return tree_rmap_item;
2154		}
2155	}
2156
2157	rmap_item->address |= UNSTABLE_FLAG;
2158	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2159	DO_NUMA(rmap_item->nid = nid);
2160	rb_link_node(&rmap_item->node, parent, new);
2161	rb_insert_color(&rmap_item->node, root);
2162
2163	ksm_pages_unshared++;
2164	return NULL;
2165}
2166
2167/*
2168 * stable_tree_append - add another rmap_item to the linked list of
2169 * rmap_items hanging off a given node of the stable tree, all sharing
2170 * the same ksm page.
2171 */
2172static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2173			       struct ksm_stable_node *stable_node,
2174			       bool max_page_sharing_bypass)
2175{
2176	/*
2177	 * rmap won't find this mapping if we don't insert the
2178	 * rmap_item in the right stable_node
2179	 * duplicate. page_migration could break later if rmap breaks,
2180	 * so we can as well crash here. We really need to check for
2181	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2182	 * for other negative values as an underflow if detected here
2183	 * for the first time (and not when decreasing rmap_hlist_len)
2184	 * would be sign of memory corruption in the stable_node.
2185	 */
2186	BUG_ON(stable_node->rmap_hlist_len < 0);
2187
2188	stable_node->rmap_hlist_len++;
2189	if (!max_page_sharing_bypass)
2190		/* possibly non fatal but unexpected overflow, only warn */
2191		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2192			     ksm_max_page_sharing);
2193
2194	rmap_item->head = stable_node;
2195	rmap_item->address |= STABLE_FLAG;
2196	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2197
2198	if (rmap_item->hlist.next)
2199		ksm_pages_sharing++;
2200	else
2201		ksm_pages_shared++;
2202
2203	rmap_item->mm->ksm_merging_pages++;
2204}
2205
2206/*
2207 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2208 * if not, compare checksum to previous and if it's the same, see if page can
2209 * be inserted into the unstable tree, or merged with a page already there and
2210 * both transferred to the stable tree.
2211 *
2212 * @page: the page that we are searching identical page to.
2213 * @rmap_item: the reverse mapping into the virtual address of this page
2214 */
2215static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2216{
2217	struct ksm_rmap_item *tree_rmap_item;
 
2218	struct page *tree_page = NULL;
2219	struct ksm_stable_node *stable_node;
2220	struct folio *kfolio;
2221	unsigned int checksum;
2222	int err;
2223	bool max_page_sharing_bypass = false;
2224
2225	stable_node = page_stable_node(page);
2226	if (stable_node) {
2227		if (stable_node->head != &migrate_nodes &&
2228		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2229		    NUMA(stable_node->nid)) {
2230			stable_node_dup_del(stable_node);
2231			stable_node->head = &migrate_nodes;
2232			list_add(&stable_node->list, stable_node->head);
2233		}
2234		if (stable_node->head != &migrate_nodes &&
2235		    rmap_item->head == stable_node)
2236			return;
2237		/*
2238		 * If it's a KSM fork, allow it to go over the sharing limit
2239		 * without warnings.
2240		 */
2241		if (!is_page_sharing_candidate(stable_node))
2242			max_page_sharing_bypass = true;
2243	} else {
2244		remove_rmap_item_from_tree(rmap_item);
2245
2246		/*
2247		 * If the hash value of the page has changed from the last time
2248		 * we calculated it, this page is changing frequently: therefore we
2249		 * don't want to insert it in the unstable tree, and we don't want
2250		 * to waste our time searching for something identical to it there.
2251		 */
2252		checksum = calc_checksum(page);
2253		if (rmap_item->oldchecksum != checksum) {
2254			rmap_item->oldchecksum = checksum;
2255			return;
2256		}
2257
2258		if (!try_to_merge_with_zero_page(rmap_item, page))
2259			return;
2260	}
2261
2262	/* Start by searching for the folio in the stable tree */
2263	kfolio = stable_tree_search(page);
2264	if (&kfolio->page == page && rmap_item->head == stable_node) {
2265		folio_put(kfolio);
2266		return;
2267	}
2268
2269	remove_rmap_item_from_tree(rmap_item);
2270
2271	if (kfolio) {
2272		if (kfolio == ERR_PTR(-EBUSY))
2273			return;
2274
2275		err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2276		if (!err) {
2277			/*
2278			 * The page was successfully merged:
2279			 * add its rmap_item to the stable tree.
2280			 */
2281			folio_lock(kfolio);
2282			stable_tree_append(rmap_item, folio_stable_node(kfolio),
2283					   max_page_sharing_bypass);
2284			folio_unlock(kfolio);
2285		}
2286		folio_put(kfolio);
2287		return;
2288	}
2289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2290	tree_rmap_item =
2291		unstable_tree_search_insert(rmap_item, page, &tree_page);
2292	if (tree_rmap_item) {
2293		bool split;
2294
2295		kfolio = try_to_merge_two_pages(rmap_item, page,
2296						tree_rmap_item, tree_page);
2297		/*
2298		 * If both pages we tried to merge belong to the same compound
2299		 * page, then we actually ended up increasing the reference
2300		 * count of the same compound page twice, and split_huge_page
2301		 * failed.
2302		 * Here we set a flag if that happened, and we use it later to
2303		 * try split_huge_page again. Since we call put_page right
2304		 * afterwards, the reference count will be correct and
2305		 * split_huge_page should succeed.
2306		 */
2307		split = PageTransCompound(page)
2308			&& compound_head(page) == compound_head(tree_page);
2309		put_page(tree_page);
2310		if (kfolio) {
2311			/*
2312			 * The pages were successfully merged: insert new
2313			 * node in the stable tree and add both rmap_items.
2314			 */
2315			folio_lock(kfolio);
2316			stable_node = stable_tree_insert(kfolio);
2317			if (stable_node) {
2318				stable_tree_append(tree_rmap_item, stable_node,
2319						   false);
2320				stable_tree_append(rmap_item, stable_node,
2321						   false);
2322			}
2323			folio_unlock(kfolio);
2324
2325			/*
2326			 * If we fail to insert the page into the stable tree,
2327			 * we will have 2 virtual addresses that are pointing
2328			 * to a ksm page left outside the stable tree,
2329			 * in which case we need to break_cow on both.
2330			 */
2331			if (!stable_node) {
2332				break_cow(tree_rmap_item);
2333				break_cow(rmap_item);
2334			}
2335		} else if (split) {
2336			/*
2337			 * We are here if we tried to merge two pages and
2338			 * failed because they both belonged to the same
2339			 * compound page. We will split the page now, but no
2340			 * merging will take place.
2341			 * We do not want to add the cost of a full lock; if
2342			 * the page is locked, it is better to skip it and
2343			 * perhaps try again later.
2344			 */
2345			if (!trylock_page(page))
2346				return;
2347			split_huge_page(page);
2348			unlock_page(page);
2349		}
2350	}
2351}
2352
2353static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2354					    struct ksm_rmap_item **rmap_list,
2355					    unsigned long addr)
2356{
2357	struct ksm_rmap_item *rmap_item;
2358
2359	while (*rmap_list) {
2360		rmap_item = *rmap_list;
2361		if ((rmap_item->address & PAGE_MASK) == addr)
2362			return rmap_item;
2363		if (rmap_item->address > addr)
2364			break;
2365		*rmap_list = rmap_item->rmap_list;
2366		remove_rmap_item_from_tree(rmap_item);
2367		free_rmap_item(rmap_item);
2368	}
2369
2370	rmap_item = alloc_rmap_item();
2371	if (rmap_item) {
2372		/* It has already been zeroed */
2373		rmap_item->mm = mm_slot->slot.mm;
2374		rmap_item->mm->ksm_rmap_items++;
2375		rmap_item->address = addr;
2376		rmap_item->rmap_list = *rmap_list;
2377		*rmap_list = rmap_item;
2378	}
2379	return rmap_item;
2380}
2381
2382/*
2383 * Calculate skip age for the ksm page age. The age determines how often
2384 * de-duplicating has already been tried unsuccessfully. If the age is
2385 * smaller, the scanning of this page is skipped for less scans.
2386 *
2387 * @age: rmap_item age of page
2388 */
2389static unsigned int skip_age(rmap_age_t age)
2390{
2391	if (age <= 3)
2392		return 1;
2393	if (age <= 5)
2394		return 2;
2395	if (age <= 8)
2396		return 4;
2397
2398	return 8;
2399}
2400
2401/*
2402 * Determines if a page should be skipped for the current scan.
2403 *
2404 * @folio: folio containing the page to check
2405 * @rmap_item: associated rmap_item of page
2406 */
2407static bool should_skip_rmap_item(struct folio *folio,
2408				  struct ksm_rmap_item *rmap_item)
2409{
2410	rmap_age_t age;
2411
2412	if (!ksm_smart_scan)
2413		return false;
2414
2415	/*
2416	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2417	 * will essentially ignore them, but we still have to process them
2418	 * properly.
2419	 */
2420	if (folio_test_ksm(folio))
2421		return false;
2422
2423	age = rmap_item->age;
2424	if (age != U8_MAX)
2425		rmap_item->age++;
2426
2427	/*
2428	 * Smaller ages are not skipped, they need to get a chance to go
2429	 * through the different phases of the KSM merging.
2430	 */
2431	if (age < 3)
2432		return false;
2433
2434	/*
2435	 * Are we still allowed to skip? If not, then don't skip it
2436	 * and determine how much more often we are allowed to skip next.
2437	 */
2438	if (!rmap_item->remaining_skips) {
2439		rmap_item->remaining_skips = skip_age(age);
2440		return false;
2441	}
2442
2443	/* Skip this page */
2444	ksm_pages_skipped++;
2445	rmap_item->remaining_skips--;
2446	remove_rmap_item_from_tree(rmap_item);
2447	return true;
2448}
2449
2450static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2451{
2452	struct mm_struct *mm;
2453	struct ksm_mm_slot *mm_slot;
2454	struct mm_slot *slot;
2455	struct vm_area_struct *vma;
2456	struct ksm_rmap_item *rmap_item;
2457	struct vma_iterator vmi;
2458	int nid;
2459
2460	if (list_empty(&ksm_mm_head.slot.mm_node))
2461		return NULL;
2462
2463	mm_slot = ksm_scan.mm_slot;
2464	if (mm_slot == &ksm_mm_head) {
2465		advisor_start_scan();
2466		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2467
2468		/*
2469		 * A number of pages can hang around indefinitely in per-cpu
2470		 * LRU cache, raised page count preventing write_protect_page
2471		 * from merging them.  Though it doesn't really matter much,
2472		 * it is puzzling to see some stuck in pages_volatile until
2473		 * other activity jostles them out, and they also prevented
2474		 * LTP's KSM test from succeeding deterministically; so drain
2475		 * them here (here rather than on entry to ksm_do_scan(),
2476		 * so we don't IPI too often when pages_to_scan is set low).
2477		 */
2478		lru_add_drain_all();
2479
2480		/*
2481		 * Whereas stale stable_nodes on the stable_tree itself
2482		 * get pruned in the regular course of stable_tree_search(),
2483		 * those moved out to the migrate_nodes list can accumulate:
2484		 * so prune them once before each full scan.
2485		 */
2486		if (!ksm_merge_across_nodes) {
2487			struct ksm_stable_node *stable_node, *next;
2488			struct folio *folio;
2489
2490			list_for_each_entry_safe(stable_node, next,
2491						 &migrate_nodes, list) {
2492				folio = ksm_get_folio(stable_node,
2493						      KSM_GET_FOLIO_NOLOCK);
2494				if (folio)
2495					folio_put(folio);
2496				cond_resched();
2497			}
2498		}
2499
2500		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2501			root_unstable_tree[nid] = RB_ROOT;
2502
2503		spin_lock(&ksm_mmlist_lock);
2504		slot = list_entry(mm_slot->slot.mm_node.next,
2505				  struct mm_slot, mm_node);
2506		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2507		ksm_scan.mm_slot = mm_slot;
2508		spin_unlock(&ksm_mmlist_lock);
2509		/*
2510		 * Although we tested list_empty() above, a racing __ksm_exit
2511		 * of the last mm on the list may have removed it since then.
2512		 */
2513		if (mm_slot == &ksm_mm_head)
2514			return NULL;
2515next_mm:
2516		ksm_scan.address = 0;
2517		ksm_scan.rmap_list = &mm_slot->rmap_list;
2518	}
2519
2520	slot = &mm_slot->slot;
2521	mm = slot->mm;
2522	vma_iter_init(&vmi, mm, ksm_scan.address);
2523
2524	mmap_read_lock(mm);
2525	if (ksm_test_exit(mm))
2526		goto no_vmas;
 
 
2527
2528	for_each_vma(vmi, vma) {
2529		if (!(vma->vm_flags & VM_MERGEABLE))
2530			continue;
2531		if (ksm_scan.address < vma->vm_start)
2532			ksm_scan.address = vma->vm_start;
2533		if (!vma->anon_vma)
2534			ksm_scan.address = vma->vm_end;
2535
2536		while (ksm_scan.address < vma->vm_end) {
2537			struct page *tmp_page = NULL;
2538			struct folio_walk fw;
2539			struct folio *folio;
2540
2541			if (ksm_test_exit(mm))
2542				break;
2543
2544			folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2545			if (folio) {
2546				if (!folio_is_zone_device(folio) &&
2547				     folio_test_anon(folio)) {
2548					folio_get(folio);
2549					tmp_page = fw.page;
2550				}
2551				folio_walk_end(&fw, vma);
2552			}
2553
2554			if (tmp_page) {
2555				flush_anon_page(vma, tmp_page, ksm_scan.address);
2556				flush_dcache_page(tmp_page);
2557				rmap_item = get_next_rmap_item(mm_slot,
2558					ksm_scan.rmap_list, ksm_scan.address);
2559				if (rmap_item) {
2560					ksm_scan.rmap_list =
2561							&rmap_item->rmap_list;
2562
2563					if (should_skip_rmap_item(folio, rmap_item)) {
2564						folio_put(folio);
2565						goto next_page;
2566					}
2567
2568					ksm_scan.address += PAGE_SIZE;
2569					*page = tmp_page;
2570				} else {
2571					folio_put(folio);
2572				}
2573				mmap_read_unlock(mm);
2574				return rmap_item;
2575			}
2576next_page:
2577			ksm_scan.address += PAGE_SIZE;
2578			cond_resched();
2579		}
2580	}
2581
2582	if (ksm_test_exit(mm)) {
2583no_vmas:
2584		ksm_scan.address = 0;
2585		ksm_scan.rmap_list = &mm_slot->rmap_list;
2586	}
2587	/*
2588	 * Nuke all the rmap_items that are above this current rmap:
2589	 * because there were no VM_MERGEABLE vmas with such addresses.
2590	 */
2591	remove_trailing_rmap_items(ksm_scan.rmap_list);
2592
2593	spin_lock(&ksm_mmlist_lock);
2594	slot = list_entry(mm_slot->slot.mm_node.next,
2595			  struct mm_slot, mm_node);
2596	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2597	if (ksm_scan.address == 0) {
2598		/*
2599		 * We've completed a full scan of all vmas, holding mmap_lock
2600		 * throughout, and found no VM_MERGEABLE: so do the same as
2601		 * __ksm_exit does to remove this mm from all our lists now.
2602		 * This applies either when cleaning up after __ksm_exit
2603		 * (but beware: we can reach here even before __ksm_exit),
2604		 * or when all VM_MERGEABLE areas have been unmapped (and
2605		 * mmap_lock then protects against race with MADV_MERGEABLE).
2606		 */
2607		hash_del(&mm_slot->slot.hash);
2608		list_del(&mm_slot->slot.mm_node);
2609		spin_unlock(&ksm_mmlist_lock);
2610
2611		mm_slot_free(mm_slot_cache, mm_slot);
2612		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2613		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2614		mmap_read_unlock(mm);
2615		mmdrop(mm);
2616	} else {
2617		mmap_read_unlock(mm);
2618		/*
2619		 * mmap_read_unlock(mm) first because after
2620		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2621		 * already have been freed under us by __ksm_exit()
2622		 * because the "mm_slot" is still hashed and
2623		 * ksm_scan.mm_slot doesn't point to it anymore.
2624		 */
2625		spin_unlock(&ksm_mmlist_lock);
2626	}
2627
2628	/* Repeat until we've completed scanning the whole list */
2629	mm_slot = ksm_scan.mm_slot;
2630	if (mm_slot != &ksm_mm_head)
2631		goto next_mm;
2632
2633	advisor_stop_scan();
2634
2635	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2636	ksm_scan.seqnr++;
2637	return NULL;
2638}
2639
2640/**
2641 * ksm_do_scan  - the ksm scanner main worker function.
2642 * @scan_npages:  number of pages we want to scan before we return.
2643 */
2644static void ksm_do_scan(unsigned int scan_npages)
2645{
2646	struct ksm_rmap_item *rmap_item;
2647	struct page *page;
2648
2649	while (scan_npages-- && likely(!freezing(current))) {
2650		cond_resched();
2651		rmap_item = scan_get_next_rmap_item(&page);
2652		if (!rmap_item)
2653			return;
2654		cmp_and_merge_page(page, rmap_item);
2655		put_page(page);
2656		ksm_pages_scanned++;
2657	}
2658}
2659
2660static int ksmd_should_run(void)
2661{
2662	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2663}
2664
2665static int ksm_scan_thread(void *nothing)
2666{
2667	unsigned int sleep_ms;
2668
2669	set_freezable();
2670	set_user_nice(current, 5);
2671
2672	while (!kthread_should_stop()) {
2673		mutex_lock(&ksm_thread_mutex);
2674		wait_while_offlining();
2675		if (ksmd_should_run())
2676			ksm_do_scan(ksm_thread_pages_to_scan);
2677		mutex_unlock(&ksm_thread_mutex);
2678
 
 
2679		if (ksmd_should_run()) {
2680			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2681			wait_event_freezable_timeout(ksm_iter_wait,
2682				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2683				msecs_to_jiffies(sleep_ms));
2684		} else {
2685			wait_event_freezable(ksm_thread_wait,
2686				ksmd_should_run() || kthread_should_stop());
2687		}
2688	}
2689	return 0;
2690}
2691
2692static void __ksm_add_vma(struct vm_area_struct *vma)
2693{
2694	unsigned long vm_flags = vma->vm_flags;
2695
2696	if (vm_flags & VM_MERGEABLE)
2697		return;
2698
2699	if (vma_ksm_compatible(vma))
2700		vm_flags_set(vma, VM_MERGEABLE);
2701}
2702
2703static int __ksm_del_vma(struct vm_area_struct *vma)
2704{
2705	int err;
2706
2707	if (!(vma->vm_flags & VM_MERGEABLE))
2708		return 0;
2709
2710	if (vma->anon_vma) {
2711		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2712		if (err)
2713			return err;
2714	}
2715
2716	vm_flags_clear(vma, VM_MERGEABLE);
2717	return 0;
2718}
2719/**
2720 * ksm_add_vma - Mark vma as mergeable if compatible
2721 *
2722 * @vma:  Pointer to vma
2723 */
2724void ksm_add_vma(struct vm_area_struct *vma)
2725{
2726	struct mm_struct *mm = vma->vm_mm;
2727
2728	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2729		__ksm_add_vma(vma);
2730}
2731
2732static void ksm_add_vmas(struct mm_struct *mm)
2733{
2734	struct vm_area_struct *vma;
2735
2736	VMA_ITERATOR(vmi, mm, 0);
2737	for_each_vma(vmi, vma)
2738		__ksm_add_vma(vma);
2739}
2740
2741static int ksm_del_vmas(struct mm_struct *mm)
2742{
2743	struct vm_area_struct *vma;
2744	int err;
2745
2746	VMA_ITERATOR(vmi, mm, 0);
2747	for_each_vma(vmi, vma) {
2748		err = __ksm_del_vma(vma);
2749		if (err)
2750			return err;
2751	}
2752	return 0;
2753}
2754
2755/**
2756 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2757 *                        compatible VMA's
2758 *
2759 * @mm:  Pointer to mm
2760 *
2761 * Returns 0 on success, otherwise error code
2762 */
2763int ksm_enable_merge_any(struct mm_struct *mm)
2764{
2765	int err;
2766
2767	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2768		return 0;
2769
2770	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2771		err = __ksm_enter(mm);
2772		if (err)
2773			return err;
2774	}
2775
2776	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2777	ksm_add_vmas(mm);
2778
2779	return 0;
2780}
2781
2782/**
2783 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2784 *			   previously enabled via ksm_enable_merge_any().
2785 *
2786 * Disabling merging implies unmerging any merged pages, like setting
2787 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2788 * merging on all compatible VMA's remains enabled.
2789 *
2790 * @mm: Pointer to mm
2791 *
2792 * Returns 0 on success, otherwise error code
2793 */
2794int ksm_disable_merge_any(struct mm_struct *mm)
2795{
2796	int err;
2797
2798	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2799		return 0;
2800
2801	err = ksm_del_vmas(mm);
2802	if (err) {
2803		ksm_add_vmas(mm);
2804		return err;
2805	}
2806
2807	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2808	return 0;
2809}
2810
2811int ksm_disable(struct mm_struct *mm)
2812{
2813	mmap_assert_write_locked(mm);
2814
2815	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2816		return 0;
2817	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2818		return ksm_disable_merge_any(mm);
2819	return ksm_del_vmas(mm);
2820}
2821
2822int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2823		unsigned long end, int advice, unsigned long *vm_flags)
2824{
2825	struct mm_struct *mm = vma->vm_mm;
2826	int err;
2827
2828	switch (advice) {
2829	case MADV_MERGEABLE:
2830		if (vma->vm_flags & VM_MERGEABLE)
 
 
 
 
 
 
 
 
 
 
 
 
2831			return 0;
2832		if (!vma_ksm_compatible(vma))
 
 
2833			return 0;
 
2834
2835		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2836			err = __ksm_enter(mm);
2837			if (err)
2838				return err;
2839		}
2840
2841		*vm_flags |= VM_MERGEABLE;
2842		break;
2843
2844	case MADV_UNMERGEABLE:
2845		if (!(*vm_flags & VM_MERGEABLE))
2846			return 0;		/* just ignore the advice */
2847
2848		if (vma->anon_vma) {
2849			err = unmerge_ksm_pages(vma, start, end, true);
2850			if (err)
2851				return err;
2852		}
2853
2854		*vm_flags &= ~VM_MERGEABLE;
2855		break;
2856	}
2857
2858	return 0;
2859}
2860EXPORT_SYMBOL_GPL(ksm_madvise);
2861
2862int __ksm_enter(struct mm_struct *mm)
2863{
2864	struct ksm_mm_slot *mm_slot;
2865	struct mm_slot *slot;
2866	int needs_wakeup;
2867
2868	mm_slot = mm_slot_alloc(mm_slot_cache);
2869	if (!mm_slot)
2870		return -ENOMEM;
2871
2872	slot = &mm_slot->slot;
2873
2874	/* Check ksm_run too?  Would need tighter locking */
2875	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2876
2877	spin_lock(&ksm_mmlist_lock);
2878	mm_slot_insert(mm_slots_hash, mm, slot);
2879	/*
2880	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2881	 * insert just behind the scanning cursor, to let the area settle
2882	 * down a little; when fork is followed by immediate exec, we don't
2883	 * want ksmd to waste time setting up and tearing down an rmap_list.
2884	 *
2885	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2886	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2887	 * missed: then we might as well insert at the end of the list.
2888	 */
2889	if (ksm_run & KSM_RUN_UNMERGE)
2890		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2891	else
2892		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2893	spin_unlock(&ksm_mmlist_lock);
2894
2895	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2896	mmgrab(mm);
2897
2898	if (needs_wakeup)
2899		wake_up_interruptible(&ksm_thread_wait);
2900
2901	trace_ksm_enter(mm);
2902	return 0;
2903}
2904
2905void __ksm_exit(struct mm_struct *mm)
2906{
2907	struct ksm_mm_slot *mm_slot;
2908	struct mm_slot *slot;
2909	int easy_to_free = 0;
2910
2911	/*
2912	 * This process is exiting: if it's straightforward (as is the
2913	 * case when ksmd was never running), free mm_slot immediately.
2914	 * But if it's at the cursor or has rmap_items linked to it, use
2915	 * mmap_lock to synchronize with any break_cows before pagetables
2916	 * are freed, and leave the mm_slot on the list for ksmd to free.
2917	 * Beware: ksm may already have noticed it exiting and freed the slot.
2918	 */
2919
2920	spin_lock(&ksm_mmlist_lock);
2921	slot = mm_slot_lookup(mm_slots_hash, mm);
2922	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2923	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2924		if (!mm_slot->rmap_list) {
2925			hash_del(&slot->hash);
2926			list_del(&slot->mm_node);
2927			easy_to_free = 1;
2928		} else {
2929			list_move(&slot->mm_node,
2930				  &ksm_scan.mm_slot->slot.mm_node);
2931		}
2932	}
2933	spin_unlock(&ksm_mmlist_lock);
2934
2935	if (easy_to_free) {
2936		mm_slot_free(mm_slot_cache, mm_slot);
2937		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2938		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2939		mmdrop(mm);
2940	} else if (mm_slot) {
2941		mmap_write_lock(mm);
2942		mmap_write_unlock(mm);
2943	}
2944
2945	trace_ksm_exit(mm);
2946}
2947
2948struct folio *ksm_might_need_to_copy(struct folio *folio,
2949			struct vm_area_struct *vma, unsigned long addr)
2950{
2951	struct page *page = folio_page(folio, 0);
2952	struct anon_vma *anon_vma = folio_anon_vma(folio);
2953	struct folio *new_folio;
2954
2955	if (folio_test_large(folio))
2956		return folio;
2957
2958	if (folio_test_ksm(folio)) {
2959		if (folio_stable_node(folio) &&
2960		    !(ksm_run & KSM_RUN_UNMERGE))
2961			return folio;	/* no need to copy it */
2962	} else if (!anon_vma) {
2963		return folio;		/* no need to copy it */
2964	} else if (folio->index == linear_page_index(vma, addr) &&
2965			anon_vma->root == vma->anon_vma->root) {
2966		return folio;		/* still no need to copy it */
2967	}
2968	if (PageHWPoison(page))
2969		return ERR_PTR(-EHWPOISON);
2970	if (!folio_test_uptodate(folio))
2971		return folio;		/* let do_swap_page report the error */
2972
2973	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
2974	if (new_folio &&
2975	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2976		folio_put(new_folio);
2977		new_folio = NULL;
2978	}
2979	if (new_folio) {
2980		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
2981								addr, vma)) {
2982			folio_put(new_folio);
2983			return ERR_PTR(-EHWPOISON);
2984		}
2985		folio_set_dirty(new_folio);
2986		__folio_mark_uptodate(new_folio);
2987		__folio_set_locked(new_folio);
2988#ifdef CONFIG_SWAP
2989		count_vm_event(KSM_SWPIN_COPY);
2990#endif
2991	}
2992
2993	return new_folio;
2994}
2995
2996void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2997{
2998	struct ksm_stable_node *stable_node;
2999	struct ksm_rmap_item *rmap_item;
3000	int search_new_forks = 0;
3001
3002	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3003
3004	/*
3005	 * Rely on the page lock to protect against concurrent modifications
3006	 * to that page's node of the stable tree.
3007	 */
3008	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3009
3010	stable_node = folio_stable_node(folio);
3011	if (!stable_node)
3012		return;
3013again:
3014	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3015		struct anon_vma *anon_vma = rmap_item->anon_vma;
3016		struct anon_vma_chain *vmac;
3017		struct vm_area_struct *vma;
3018
3019		cond_resched();
3020		if (!anon_vma_trylock_read(anon_vma)) {
3021			if (rwc->try_lock) {
3022				rwc->contended = true;
3023				return;
3024			}
3025			anon_vma_lock_read(anon_vma);
3026		}
3027		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3028					       0, ULONG_MAX) {
3029			unsigned long addr;
3030
3031			cond_resched();
3032			vma = vmac->vma;
3033
3034			/* Ignore the stable/unstable/sqnr flags */
3035			addr = rmap_item->address & PAGE_MASK;
3036
3037			if (addr < vma->vm_start || addr >= vma->vm_end)
3038				continue;
3039			/*
3040			 * Initially we examine only the vma which covers this
3041			 * rmap_item; but later, if there is still work to do,
3042			 * we examine covering vmas in other mms: in case they
3043			 * were forked from the original since ksmd passed.
3044			 */
3045			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3046				continue;
3047
3048			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3049				continue;
3050
3051			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3052				anon_vma_unlock_read(anon_vma);
3053				return;
3054			}
3055			if (rwc->done && rwc->done(folio)) {
3056				anon_vma_unlock_read(anon_vma);
3057				return;
3058			}
3059		}
3060		anon_vma_unlock_read(anon_vma);
3061	}
3062	if (!search_new_forks++)
3063		goto again;
3064}
3065
3066#ifdef CONFIG_MEMORY_FAILURE
3067/*
3068 * Collect processes when the error hit an ksm page.
3069 */
3070void collect_procs_ksm(const struct folio *folio, const struct page *page,
3071		struct list_head *to_kill, int force_early)
3072{
3073	struct ksm_stable_node *stable_node;
3074	struct ksm_rmap_item *rmap_item;
3075	struct vm_area_struct *vma;
3076	struct task_struct *tsk;
 
 
 
 
 
 
 
 
 
 
3077
3078	stable_node = folio_stable_node(folio);
3079	if (!stable_node)
3080		return;
3081	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3082		struct anon_vma *av = rmap_item->anon_vma;
3083
3084		anon_vma_lock_read(av);
3085		rcu_read_lock();
3086		for_each_process(tsk) {
3087			struct anon_vma_chain *vmac;
3088			unsigned long addr;
3089			struct task_struct *t =
3090				task_early_kill(tsk, force_early);
3091			if (!t)
3092				continue;
3093			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3094						       ULONG_MAX)
3095			{
3096				vma = vmac->vma;
3097				if (vma->vm_mm == t->mm) {
3098					addr = rmap_item->address & PAGE_MASK;
3099					add_to_kill_ksm(t, page, vma, to_kill,
3100							addr);
3101				}
3102			}
3103		}
3104		rcu_read_unlock();
3105		anon_vma_unlock_read(av);
3106	}
3107}
3108#endif
3109
3110#ifdef CONFIG_MIGRATION
3111void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3112{
3113	struct ksm_stable_node *stable_node;
3114
3115	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3116	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3117	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3118
3119	stable_node = folio_stable_node(folio);
3120	if (stable_node) {
3121		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3122		stable_node->kpfn = folio_pfn(newfolio);
3123		/*
3124		 * newfolio->mapping was set in advance; now we need smp_wmb()
3125		 * to make sure that the new stable_node->kpfn is visible
3126		 * to ksm_get_folio() before it can see that folio->mapping
3127		 * has gone stale (or that the swapcache flag has been cleared).
3128		 */
3129		smp_wmb();
3130		folio_set_stable_node(folio, NULL);
3131	}
3132}
3133#endif /* CONFIG_MIGRATION */
3134
3135#ifdef CONFIG_MEMORY_HOTREMOVE
3136static void wait_while_offlining(void)
3137{
3138	while (ksm_run & KSM_RUN_OFFLINE) {
3139		mutex_unlock(&ksm_thread_mutex);
3140		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3141			    TASK_UNINTERRUPTIBLE);
3142		mutex_lock(&ksm_thread_mutex);
3143	}
3144}
3145
3146static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3147					 unsigned long start_pfn,
3148					 unsigned long end_pfn)
3149{
3150	if (stable_node->kpfn >= start_pfn &&
3151	    stable_node->kpfn < end_pfn) {
3152		/*
3153		 * Don't ksm_get_folio, page has already gone:
3154		 * which is why we keep kpfn instead of page*
3155		 */
3156		remove_node_from_stable_tree(stable_node);
3157		return true;
3158	}
3159	return false;
3160}
3161
3162static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3163					   unsigned long start_pfn,
3164					   unsigned long end_pfn,
3165					   struct rb_root *root)
3166{
3167	struct ksm_stable_node *dup;
3168	struct hlist_node *hlist_safe;
3169
3170	if (!is_stable_node_chain(stable_node)) {
3171		VM_BUG_ON(is_stable_node_dup(stable_node));
3172		return stable_node_dup_remove_range(stable_node, start_pfn,
3173						    end_pfn);
3174	}
3175
3176	hlist_for_each_entry_safe(dup, hlist_safe,
3177				  &stable_node->hlist, hlist_dup) {
3178		VM_BUG_ON(!is_stable_node_dup(dup));
3179		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3180	}
3181	if (hlist_empty(&stable_node->hlist)) {
3182		free_stable_node_chain(stable_node, root);
3183		return true; /* notify caller that tree was rebalanced */
3184	} else
3185		return false;
3186}
3187
3188static void ksm_check_stable_tree(unsigned long start_pfn,
3189				  unsigned long end_pfn)
3190{
3191	struct ksm_stable_node *stable_node, *next;
3192	struct rb_node *node;
3193	int nid;
3194
3195	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3196		node = rb_first(root_stable_tree + nid);
3197		while (node) {
3198			stable_node = rb_entry(node, struct ksm_stable_node, node);
3199			if (stable_node_chain_remove_range(stable_node,
3200							   start_pfn, end_pfn,
3201							   root_stable_tree +
3202							   nid))
3203				node = rb_first(root_stable_tree + nid);
3204			else
3205				node = rb_next(node);
3206			cond_resched();
3207		}
3208	}
3209	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3210		if (stable_node->kpfn >= start_pfn &&
3211		    stable_node->kpfn < end_pfn)
3212			remove_node_from_stable_tree(stable_node);
3213		cond_resched();
3214	}
3215}
3216
3217static int ksm_memory_callback(struct notifier_block *self,
3218			       unsigned long action, void *arg)
3219{
3220	struct memory_notify *mn = arg;
3221
3222	switch (action) {
3223	case MEM_GOING_OFFLINE:
3224		/*
3225		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3226		 * and remove_all_stable_nodes() while memory is going offline:
3227		 * it is unsafe for them to touch the stable tree at this time.
3228		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3229		 * which do not need the ksm_thread_mutex are all safe.
3230		 */
3231		mutex_lock(&ksm_thread_mutex);
3232		ksm_run |= KSM_RUN_OFFLINE;
3233		mutex_unlock(&ksm_thread_mutex);
3234		break;
3235
3236	case MEM_OFFLINE:
3237		/*
3238		 * Most of the work is done by page migration; but there might
3239		 * be a few stable_nodes left over, still pointing to struct
3240		 * pages which have been offlined: prune those from the tree,
3241		 * otherwise ksm_get_folio() might later try to access a
3242		 * non-existent struct page.
3243		 */
3244		ksm_check_stable_tree(mn->start_pfn,
3245				      mn->start_pfn + mn->nr_pages);
3246		fallthrough;
 
3247	case MEM_CANCEL_OFFLINE:
3248		mutex_lock(&ksm_thread_mutex);
3249		ksm_run &= ~KSM_RUN_OFFLINE;
3250		mutex_unlock(&ksm_thread_mutex);
3251
3252		smp_mb();	/* wake_up_bit advises this */
3253		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3254		break;
3255	}
3256	return NOTIFY_OK;
3257}
3258#else
3259static void wait_while_offlining(void)
3260{
3261}
3262#endif /* CONFIG_MEMORY_HOTREMOVE */
3263
3264#ifdef CONFIG_PROC_FS
3265long ksm_process_profit(struct mm_struct *mm)
3266{
3267	return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3268		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3269}
3270#endif /* CONFIG_PROC_FS */
3271
3272#ifdef CONFIG_SYSFS
3273/*
3274 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3275 */
3276
3277#define KSM_ATTR_RO(_name) \
3278	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3279#define KSM_ATTR(_name) \
3280	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
 
3281
3282static ssize_t sleep_millisecs_show(struct kobject *kobj,
3283				    struct kobj_attribute *attr, char *buf)
3284{
3285	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3286}
3287
3288static ssize_t sleep_millisecs_store(struct kobject *kobj,
3289				     struct kobj_attribute *attr,
3290				     const char *buf, size_t count)
3291{
3292	unsigned int msecs;
3293	int err;
3294
3295	err = kstrtouint(buf, 10, &msecs);
3296	if (err)
3297		return -EINVAL;
3298
3299	ksm_thread_sleep_millisecs = msecs;
3300	wake_up_interruptible(&ksm_iter_wait);
3301
3302	return count;
3303}
3304KSM_ATTR(sleep_millisecs);
3305
3306static ssize_t pages_to_scan_show(struct kobject *kobj,
3307				  struct kobj_attribute *attr, char *buf)
3308{
3309	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3310}
3311
3312static ssize_t pages_to_scan_store(struct kobject *kobj,
3313				   struct kobj_attribute *attr,
3314				   const char *buf, size_t count)
3315{
3316	unsigned int nr_pages;
3317	int err;
 
3318
3319	if (ksm_advisor != KSM_ADVISOR_NONE)
3320		return -EINVAL;
3321
3322	err = kstrtouint(buf, 10, &nr_pages);
3323	if (err)
3324		return -EINVAL;
3325
3326	ksm_thread_pages_to_scan = nr_pages;
3327
3328	return count;
3329}
3330KSM_ATTR(pages_to_scan);
3331
3332static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3333			char *buf)
3334{
3335	return sysfs_emit(buf, "%lu\n", ksm_run);
3336}
3337
3338static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3339			 const char *buf, size_t count)
3340{
3341	unsigned int flags;
3342	int err;
 
3343
3344	err = kstrtouint(buf, 10, &flags);
3345	if (err)
3346		return -EINVAL;
3347	if (flags > KSM_RUN_UNMERGE)
3348		return -EINVAL;
3349
3350	/*
3351	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3352	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3353	 * breaking COW to free the pages_shared (but leaves mm_slots
3354	 * on the list for when ksmd may be set running again).
3355	 */
3356
3357	mutex_lock(&ksm_thread_mutex);
3358	wait_while_offlining();
3359	if (ksm_run != flags) {
3360		ksm_run = flags;
3361		if (flags & KSM_RUN_UNMERGE) {
3362			set_current_oom_origin();
3363			err = unmerge_and_remove_all_rmap_items();
3364			clear_current_oom_origin();
3365			if (err) {
3366				ksm_run = KSM_RUN_STOP;
3367				count = err;
3368			}
3369		}
3370	}
3371	mutex_unlock(&ksm_thread_mutex);
3372
3373	if (flags & KSM_RUN_MERGE)
3374		wake_up_interruptible(&ksm_thread_wait);
3375
3376	return count;
3377}
3378KSM_ATTR(run);
3379
3380#ifdef CONFIG_NUMA
3381static ssize_t merge_across_nodes_show(struct kobject *kobj,
3382				       struct kobj_attribute *attr, char *buf)
3383{
3384	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3385}
3386
3387static ssize_t merge_across_nodes_store(struct kobject *kobj,
3388				   struct kobj_attribute *attr,
3389				   const char *buf, size_t count)
3390{
3391	int err;
3392	unsigned long knob;
3393
3394	err = kstrtoul(buf, 10, &knob);
3395	if (err)
3396		return err;
3397	if (knob > 1)
3398		return -EINVAL;
3399
3400	mutex_lock(&ksm_thread_mutex);
3401	wait_while_offlining();
3402	if (ksm_merge_across_nodes != knob) {
3403		if (ksm_pages_shared || remove_all_stable_nodes())
3404			err = -EBUSY;
3405		else if (root_stable_tree == one_stable_tree) {
3406			struct rb_root *buf;
3407			/*
3408			 * This is the first time that we switch away from the
3409			 * default of merging across nodes: must now allocate
3410			 * a buffer to hold as many roots as may be needed.
3411			 * Allocate stable and unstable together:
3412			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3413			 */
3414			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3415				      GFP_KERNEL);
3416			/* Let us assume that RB_ROOT is NULL is zero */
3417			if (!buf)
3418				err = -ENOMEM;
3419			else {
3420				root_stable_tree = buf;
3421				root_unstable_tree = buf + nr_node_ids;
3422				/* Stable tree is empty but not the unstable */
3423				root_unstable_tree[0] = one_unstable_tree[0];
3424			}
3425		}
3426		if (!err) {
3427			ksm_merge_across_nodes = knob;
3428			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3429		}
3430	}
3431	mutex_unlock(&ksm_thread_mutex);
3432
3433	return err ? err : count;
3434}
3435KSM_ATTR(merge_across_nodes);
3436#endif
3437
3438static ssize_t use_zero_pages_show(struct kobject *kobj,
3439				   struct kobj_attribute *attr, char *buf)
3440{
3441	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3442}
3443static ssize_t use_zero_pages_store(struct kobject *kobj,
3444				   struct kobj_attribute *attr,
3445				   const char *buf, size_t count)
3446{
3447	int err;
3448	bool value;
3449
3450	err = kstrtobool(buf, &value);
3451	if (err)
3452		return -EINVAL;
3453
3454	ksm_use_zero_pages = value;
3455
3456	return count;
3457}
3458KSM_ATTR(use_zero_pages);
3459
3460static ssize_t max_page_sharing_show(struct kobject *kobj,
3461				     struct kobj_attribute *attr, char *buf)
3462{
3463	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3464}
3465
3466static ssize_t max_page_sharing_store(struct kobject *kobj,
3467				      struct kobj_attribute *attr,
3468				      const char *buf, size_t count)
3469{
3470	int err;
3471	int knob;
3472
3473	err = kstrtoint(buf, 10, &knob);
3474	if (err)
3475		return err;
3476	/*
3477	 * When a KSM page is created it is shared by 2 mappings. This
3478	 * being a signed comparison, it implicitly verifies it's not
3479	 * negative.
3480	 */
3481	if (knob < 2)
3482		return -EINVAL;
3483
3484	if (READ_ONCE(ksm_max_page_sharing) == knob)
3485		return count;
3486
3487	mutex_lock(&ksm_thread_mutex);
3488	wait_while_offlining();
3489	if (ksm_max_page_sharing != knob) {
3490		if (ksm_pages_shared || remove_all_stable_nodes())
3491			err = -EBUSY;
3492		else
3493			ksm_max_page_sharing = knob;
3494	}
3495	mutex_unlock(&ksm_thread_mutex);
3496
3497	return err ? err : count;
3498}
3499KSM_ATTR(max_page_sharing);
3500
3501static ssize_t pages_scanned_show(struct kobject *kobj,
3502				  struct kobj_attribute *attr, char *buf)
3503{
3504	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3505}
3506KSM_ATTR_RO(pages_scanned);
3507
3508static ssize_t pages_shared_show(struct kobject *kobj,
3509				 struct kobj_attribute *attr, char *buf)
3510{
3511	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3512}
3513KSM_ATTR_RO(pages_shared);
3514
3515static ssize_t pages_sharing_show(struct kobject *kobj,
3516				  struct kobj_attribute *attr, char *buf)
3517{
3518	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3519}
3520KSM_ATTR_RO(pages_sharing);
3521
3522static ssize_t pages_unshared_show(struct kobject *kobj,
3523				   struct kobj_attribute *attr, char *buf)
3524{
3525	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3526}
3527KSM_ATTR_RO(pages_unshared);
3528
3529static ssize_t pages_volatile_show(struct kobject *kobj,
3530				   struct kobj_attribute *attr, char *buf)
3531{
3532	long ksm_pages_volatile;
3533
3534	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3535				- ksm_pages_sharing - ksm_pages_unshared;
3536	/*
3537	 * It was not worth any locking to calculate that statistic,
3538	 * but it might therefore sometimes be negative: conceal that.
3539	 */
3540	if (ksm_pages_volatile < 0)
3541		ksm_pages_volatile = 0;
3542	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3543}
3544KSM_ATTR_RO(pages_volatile);
3545
3546static ssize_t pages_skipped_show(struct kobject *kobj,
3547				  struct kobj_attribute *attr, char *buf)
3548{
3549	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3550}
3551KSM_ATTR_RO(pages_skipped);
3552
3553static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3554				struct kobj_attribute *attr, char *buf)
3555{
3556	return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3557}
3558KSM_ATTR_RO(ksm_zero_pages);
3559
3560static ssize_t general_profit_show(struct kobject *kobj,
3561				   struct kobj_attribute *attr, char *buf)
3562{
3563	long general_profit;
3564
3565	general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3566				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3567
3568	return sysfs_emit(buf, "%ld\n", general_profit);
3569}
3570KSM_ATTR_RO(general_profit);
3571
3572static ssize_t stable_node_dups_show(struct kobject *kobj,
3573				     struct kobj_attribute *attr, char *buf)
3574{
3575	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3576}
3577KSM_ATTR_RO(stable_node_dups);
3578
3579static ssize_t stable_node_chains_show(struct kobject *kobj,
3580				       struct kobj_attribute *attr, char *buf)
3581{
3582	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3583}
3584KSM_ATTR_RO(stable_node_chains);
3585
3586static ssize_t
3587stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3588					struct kobj_attribute *attr,
3589					char *buf)
3590{
3591	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3592}
3593
3594static ssize_t
3595stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3596					 struct kobj_attribute *attr,
3597					 const char *buf, size_t count)
3598{
3599	unsigned int msecs;
3600	int err;
3601
3602	err = kstrtouint(buf, 10, &msecs);
3603	if (err)
3604		return -EINVAL;
3605
3606	ksm_stable_node_chains_prune_millisecs = msecs;
3607
3608	return count;
3609}
3610KSM_ATTR(stable_node_chains_prune_millisecs);
3611
3612static ssize_t full_scans_show(struct kobject *kobj,
3613			       struct kobj_attribute *attr, char *buf)
3614{
3615	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3616}
3617KSM_ATTR_RO(full_scans);
3618
3619static ssize_t smart_scan_show(struct kobject *kobj,
3620			       struct kobj_attribute *attr, char *buf)
3621{
3622	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3623}
3624
3625static ssize_t smart_scan_store(struct kobject *kobj,
3626				struct kobj_attribute *attr,
3627				const char *buf, size_t count)
3628{
3629	int err;
3630	bool value;
3631
3632	err = kstrtobool(buf, &value);
3633	if (err)
3634		return -EINVAL;
3635
3636	ksm_smart_scan = value;
3637	return count;
3638}
3639KSM_ATTR(smart_scan);
3640
3641static ssize_t advisor_mode_show(struct kobject *kobj,
3642				 struct kobj_attribute *attr, char *buf)
3643{
3644	const char *output;
3645
3646	if (ksm_advisor == KSM_ADVISOR_NONE)
3647		output = "[none] scan-time";
3648	else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3649		output = "none [scan-time]";
3650
3651	return sysfs_emit(buf, "%s\n", output);
3652}
3653
3654static ssize_t advisor_mode_store(struct kobject *kobj,
3655				  struct kobj_attribute *attr, const char *buf,
3656				  size_t count)
3657{
3658	enum ksm_advisor_type curr_advisor = ksm_advisor;
3659
3660	if (sysfs_streq("scan-time", buf))
3661		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3662	else if (sysfs_streq("none", buf))
3663		ksm_advisor = KSM_ADVISOR_NONE;
3664	else
3665		return -EINVAL;
3666
3667	/* Set advisor default values */
3668	if (curr_advisor != ksm_advisor)
3669		set_advisor_defaults();
3670
3671	return count;
3672}
3673KSM_ATTR(advisor_mode);
3674
3675static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3676				    struct kobj_attribute *attr, char *buf)
3677{
3678	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3679}
3680
3681static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3682				     struct kobj_attribute *attr,
3683				     const char *buf, size_t count)
3684{
3685	int err;
3686	unsigned long value;
3687
3688	err = kstrtoul(buf, 10, &value);
3689	if (err)
3690		return -EINVAL;
3691
3692	ksm_advisor_max_cpu = value;
3693	return count;
3694}
3695KSM_ATTR(advisor_max_cpu);
3696
3697static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3698					struct kobj_attribute *attr, char *buf)
3699{
3700	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3701}
3702
3703static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3704					struct kobj_attribute *attr,
3705					const char *buf, size_t count)
3706{
3707	int err;
3708	unsigned long value;
3709
3710	err = kstrtoul(buf, 10, &value);
3711	if (err)
3712		return -EINVAL;
3713
3714	ksm_advisor_min_pages_to_scan = value;
3715	return count;
3716}
3717KSM_ATTR(advisor_min_pages_to_scan);
3718
3719static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3720					struct kobj_attribute *attr, char *buf)
3721{
3722	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3723}
3724
3725static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3726					struct kobj_attribute *attr,
3727					const char *buf, size_t count)
3728{
3729	int err;
3730	unsigned long value;
3731
3732	err = kstrtoul(buf, 10, &value);
3733	if (err)
3734		return -EINVAL;
3735
3736	ksm_advisor_max_pages_to_scan = value;
3737	return count;
3738}
3739KSM_ATTR(advisor_max_pages_to_scan);
3740
3741static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3742					     struct kobj_attribute *attr, char *buf)
3743{
3744	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3745}
3746
3747static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3748					      struct kobj_attribute *attr,
3749					      const char *buf, size_t count)
3750{
3751	int err;
3752	unsigned long value;
3753
3754	err = kstrtoul(buf, 10, &value);
3755	if (err)
3756		return -EINVAL;
3757	if (value < 1)
3758		return -EINVAL;
3759
3760	ksm_advisor_target_scan_time = value;
3761	return count;
3762}
3763KSM_ATTR(advisor_target_scan_time);
3764
3765static struct attribute *ksm_attrs[] = {
3766	&sleep_millisecs_attr.attr,
3767	&pages_to_scan_attr.attr,
3768	&run_attr.attr,
3769	&pages_scanned_attr.attr,
3770	&pages_shared_attr.attr,
3771	&pages_sharing_attr.attr,
3772	&pages_unshared_attr.attr,
3773	&pages_volatile_attr.attr,
3774	&pages_skipped_attr.attr,
3775	&ksm_zero_pages_attr.attr,
3776	&full_scans_attr.attr,
3777#ifdef CONFIG_NUMA
3778	&merge_across_nodes_attr.attr,
3779#endif
3780	&max_page_sharing_attr.attr,
3781	&stable_node_chains_attr.attr,
3782	&stable_node_dups_attr.attr,
3783	&stable_node_chains_prune_millisecs_attr.attr,
3784	&use_zero_pages_attr.attr,
3785	&general_profit_attr.attr,
3786	&smart_scan_attr.attr,
3787	&advisor_mode_attr.attr,
3788	&advisor_max_cpu_attr.attr,
3789	&advisor_min_pages_to_scan_attr.attr,
3790	&advisor_max_pages_to_scan_attr.attr,
3791	&advisor_target_scan_time_attr.attr,
3792	NULL,
3793};
3794
3795static const struct attribute_group ksm_attr_group = {
3796	.attrs = ksm_attrs,
3797	.name = "ksm",
3798};
3799#endif /* CONFIG_SYSFS */
3800
3801static int __init ksm_init(void)
3802{
3803	struct task_struct *ksm_thread;
3804	int err;
3805
3806	/* The correct value depends on page size and endianness */
3807	zero_checksum = calc_checksum(ZERO_PAGE(0));
3808	/* Default to false for backwards compatibility */
3809	ksm_use_zero_pages = false;
3810
3811	err = ksm_slab_init();
3812	if (err)
3813		goto out;
3814
3815	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3816	if (IS_ERR(ksm_thread)) {
3817		pr_err("ksm: creating kthread failed\n");
3818		err = PTR_ERR(ksm_thread);
3819		goto out_free;
3820	}
3821
3822#ifdef CONFIG_SYSFS
3823	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3824	if (err) {
3825		pr_err("ksm: register sysfs failed\n");
3826		kthread_stop(ksm_thread);
3827		goto out_free;
3828	}
3829#else
3830	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3831
3832#endif /* CONFIG_SYSFS */
3833
3834#ifdef CONFIG_MEMORY_HOTREMOVE
3835	/* There is no significance to this priority 100 */
3836	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3837#endif
3838	return 0;
3839
3840out_free:
3841	ksm_slab_free();
3842out:
3843	return err;
3844}
3845subsys_initcall(ksm_init);