Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains core generic KASAN code.
  4 *
  5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  7 *
  8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
  9 *        Andrey Konovalov <andreyknvl@gmail.com>
 10 *
 11 * This program is free software; you can redistribute it and/or modify
 12 * it under the terms of the GNU General Public License version 2 as
 13 * published by the Free Software Foundation.
 14 *
 15 */
 16
 17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 18#define DISABLE_BRANCH_PROFILING
 19
 20#include <linux/export.h>
 21#include <linux/interrupt.h>
 22#include <linux/init.h>
 23#include <linux/kasan.h>
 24#include <linux/kernel.h>
 
 25#include <linux/kmemleak.h>
 26#include <linux/linkage.h>
 27#include <linux/memblock.h>
 28#include <linux/memory.h>
 29#include <linux/mm.h>
 30#include <linux/module.h>
 31#include <linux/printk.h>
 32#include <linux/sched.h>
 33#include <linux/sched/task_stack.h>
 34#include <linux/slab.h>
 
 
 35#include <linux/stacktrace.h>
 36#include <linux/string.h>
 37#include <linux/types.h>
 38#include <linux/vmalloc.h>
 39#include <linux/bug.h>
 40
 41#include "kasan.h"
 42#include "../slab.h"
 43
 44/*
 45 * All functions below always inlined so compiler could
 46 * perform better optimizations in each of __asan_loadX/__assn_storeX
 47 * depending on memory access size X.
 48 */
 49
 50static __always_inline bool memory_is_poisoned_1(unsigned long addr)
 51{
 52	s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
 53
 54	if (unlikely(shadow_value)) {
 55		s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
 56		return unlikely(last_accessible_byte >= shadow_value);
 57	}
 58
 59	return false;
 60}
 61
 62static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
 63						unsigned long size)
 64{
 65	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
 66
 67	/*
 68	 * Access crosses 8(shadow size)-byte boundary. Such access maps
 69	 * into 2 shadow bytes, so we need to check them both.
 70	 */
 71	if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
 72		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
 73
 74	return memory_is_poisoned_1(addr + size - 1);
 75}
 76
 77static __always_inline bool memory_is_poisoned_16(unsigned long addr)
 78{
 79	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
 80
 81	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
 82	if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
 83		return *shadow_addr || memory_is_poisoned_1(addr + 15);
 84
 85	return *shadow_addr;
 86}
 87
 88static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
 89					size_t size)
 90{
 91	while (size) {
 92		if (unlikely(*start))
 93			return (unsigned long)start;
 94		start++;
 95		size--;
 96	}
 97
 98	return 0;
 99}
100
101static __always_inline unsigned long memory_is_nonzero(const void *start,
102						const void *end)
103{
104	unsigned int words;
105	unsigned long ret;
106	unsigned int prefix = (unsigned long)start % 8;
107
108	if (end - start <= 16)
109		return bytes_is_nonzero(start, end - start);
110
111	if (prefix) {
112		prefix = 8 - prefix;
113		ret = bytes_is_nonzero(start, prefix);
114		if (unlikely(ret))
115			return ret;
116		start += prefix;
117	}
118
119	words = (end - start) / 8;
120	while (words) {
121		if (unlikely(*(u64 *)start))
122			return bytes_is_nonzero(start, 8);
123		start += 8;
124		words--;
125	}
126
127	return bytes_is_nonzero(start, (end - start) % 8);
128}
129
130static __always_inline bool memory_is_poisoned_n(unsigned long addr,
131						size_t size)
132{
133	unsigned long ret;
134
135	ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
136			kasan_mem_to_shadow((void *)addr + size - 1) + 1);
137
138	if (unlikely(ret)) {
139		unsigned long last_byte = addr + size - 1;
140		s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
 
141
142		if (unlikely(ret != (unsigned long)last_shadow ||
143			((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
144			return true;
145	}
146	return false;
147}
148
149static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
150{
151	if (__builtin_constant_p(size)) {
152		switch (size) {
153		case 1:
154			return memory_is_poisoned_1(addr);
155		case 2:
156		case 4:
157		case 8:
158			return memory_is_poisoned_2_4_8(addr, size);
159		case 16:
160			return memory_is_poisoned_16(addr);
161		default:
162			BUILD_BUG();
163		}
164	}
165
166	return memory_is_poisoned_n(addr, size);
167}
168
169static __always_inline bool check_memory_region_inline(unsigned long addr,
170						size_t size, bool write,
171						unsigned long ret_ip)
172{
 
 
 
173	if (unlikely(size == 0))
174		return true;
175
176	if (unlikely((void *)addr <
177		kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
178		kasan_report(addr, size, write, ret_ip);
179		return false;
180	}
181
182	if (likely(!memory_is_poisoned(addr, size)))
183		return true;
184
185	kasan_report(addr, size, write, ret_ip);
186	return false;
187}
188
189bool check_memory_region(unsigned long addr, size_t size, bool write,
190				unsigned long ret_ip)
191{
192	return check_memory_region_inline(addr, size, write, ret_ip);
 
 
 
 
 
 
 
 
 
 
 
 
193}
194
195void kasan_cache_shrink(struct kmem_cache *cache)
196{
197	quarantine_remove_cache(cache);
198}
199
200void kasan_cache_shutdown(struct kmem_cache *cache)
201{
202	if (!__kmem_cache_empty(cache))
203		quarantine_remove_cache(cache);
204}
205
206static void register_global(struct kasan_global *global)
207{
208	size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
209
210	kasan_unpoison_shadow(global->beg, global->size);
211
212	kasan_poison_shadow(global->beg + aligned_size,
213		global->size_with_redzone - aligned_size,
214		KASAN_GLOBAL_REDZONE);
215}
216
217void __asan_register_globals(struct kasan_global *globals, size_t size)
218{
219	int i;
 
220
221	for (i = 0; i < size; i++)
222		register_global(&globals[i]);
223}
224EXPORT_SYMBOL(__asan_register_globals);
225
226void __asan_unregister_globals(struct kasan_global *globals, size_t size)
227{
228}
229EXPORT_SYMBOL(__asan_unregister_globals);
230
231#define DEFINE_ASAN_LOAD_STORE(size)					\
232	void __asan_load##size(unsigned long addr)			\
233	{								\
234		check_memory_region_inline(addr, size, false, _RET_IP_);\
235	}								\
236	EXPORT_SYMBOL(__asan_load##size);				\
237	__alias(__asan_load##size)					\
238	void __asan_load##size##_noabort(unsigned long);		\
239	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
240	void __asan_store##size(unsigned long addr)			\
241	{								\
242		check_memory_region_inline(addr, size, true, _RET_IP_);	\
243	}								\
244	EXPORT_SYMBOL(__asan_store##size);				\
245	__alias(__asan_store##size)					\
246	void __asan_store##size##_noabort(unsigned long);		\
247	EXPORT_SYMBOL(__asan_store##size##_noabort)
248
249DEFINE_ASAN_LOAD_STORE(1);
250DEFINE_ASAN_LOAD_STORE(2);
251DEFINE_ASAN_LOAD_STORE(4);
252DEFINE_ASAN_LOAD_STORE(8);
253DEFINE_ASAN_LOAD_STORE(16);
254
255void __asan_loadN(unsigned long addr, size_t size)
256{
257	check_memory_region(addr, size, false, _RET_IP_);
258}
259EXPORT_SYMBOL(__asan_loadN);
260
261__alias(__asan_loadN)
262void __asan_loadN_noabort(unsigned long, size_t);
263EXPORT_SYMBOL(__asan_loadN_noabort);
264
265void __asan_storeN(unsigned long addr, size_t size)
266{
267	check_memory_region(addr, size, true, _RET_IP_);
268}
269EXPORT_SYMBOL(__asan_storeN);
270
271__alias(__asan_storeN)
272void __asan_storeN_noabort(unsigned long, size_t);
273EXPORT_SYMBOL(__asan_storeN_noabort);
274
275/* to shut up compiler complaints */
276void __asan_handle_no_return(void) {}
277EXPORT_SYMBOL(__asan_handle_no_return);
278
279/* Emitted by compiler to poison alloca()ed objects. */
280void __asan_alloca_poison(unsigned long addr, size_t size)
281{
282	size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
283	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
284			rounded_up_size;
285	size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE);
286
287	const void *left_redzone = (const void *)(addr -
288			KASAN_ALLOCA_REDZONE_SIZE);
289	const void *right_redzone = (const void *)(addr + rounded_up_size);
290
291	WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
292
293	kasan_unpoison_shadow((const void *)(addr + rounded_down_size),
294			      size - rounded_down_size);
295	kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
296			KASAN_ALLOCA_LEFT);
297	kasan_poison_shadow(right_redzone,
298			padding_size + KASAN_ALLOCA_REDZONE_SIZE,
299			KASAN_ALLOCA_RIGHT);
300}
301EXPORT_SYMBOL(__asan_alloca_poison);
302
303/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
304void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
305{
306	if (unlikely(!stack_top || stack_top > stack_bottom))
307		return;
308
309	kasan_unpoison_shadow(stack_top, stack_bottom - stack_top);
310}
311EXPORT_SYMBOL(__asan_allocas_unpoison);
312
313/* Emitted by the compiler to [un]poison local variables. */
314#define DEFINE_ASAN_SET_SHADOW(byte) \
315	void __asan_set_shadow_##byte(const void *addr, size_t size)	\
316	{								\
317		__memset((void *)addr, 0x##byte, size);			\
318	}								\
319	EXPORT_SYMBOL(__asan_set_shadow_##byte)
320
321DEFINE_ASAN_SET_SHADOW(00);
322DEFINE_ASAN_SET_SHADOW(f1);
323DEFINE_ASAN_SET_SHADOW(f2);
324DEFINE_ASAN_SET_SHADOW(f3);
325DEFINE_ASAN_SET_SHADOW(f5);
326DEFINE_ASAN_SET_SHADOW(f8);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file contains core generic KASAN code.
  4 *
  5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  7 *
  8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
  9 *        Andrey Konovalov <andreyknvl@gmail.com>
 
 
 
 
 
 10 */
 11
 
 
 
 12#include <linux/export.h>
 13#include <linux/interrupt.h>
 14#include <linux/init.h>
 15#include <linux/kasan.h>
 16#include <linux/kernel.h>
 17#include <linux/kfence.h>
 18#include <linux/kmemleak.h>
 19#include <linux/linkage.h>
 20#include <linux/memblock.h>
 21#include <linux/memory.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/printk.h>
 25#include <linux/sched.h>
 26#include <linux/sched/task_stack.h>
 27#include <linux/slab.h>
 28#include <linux/spinlock.h>
 29#include <linux/stackdepot.h>
 30#include <linux/stacktrace.h>
 31#include <linux/string.h>
 32#include <linux/types.h>
 33#include <linux/vmalloc.h>
 34#include <linux/bug.h>
 35
 36#include "kasan.h"
 37#include "../slab.h"
 38
 39/*
 40 * All functions below always inlined so compiler could
 41 * perform better optimizations in each of __asan_loadX/__assn_storeX
 42 * depending on memory access size X.
 43 */
 44
 45static __always_inline bool memory_is_poisoned_1(const void *addr)
 46{
 47	s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr);
 48
 49	if (unlikely(shadow_value)) {
 50		s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK;
 51		return unlikely(last_accessible_byte >= shadow_value);
 52	}
 53
 54	return false;
 55}
 56
 57static __always_inline bool memory_is_poisoned_2_4_8(const void *addr,
 58						unsigned long size)
 59{
 60	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr);
 61
 62	/*
 63	 * Access crosses 8(shadow size)-byte boundary. Such access maps
 64	 * into 2 shadow bytes, so we need to check them both.
 65	 */
 66	if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
 67		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
 68
 69	return memory_is_poisoned_1(addr + size - 1);
 70}
 71
 72static __always_inline bool memory_is_poisoned_16(const void *addr)
 73{
 74	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr);
 75
 76	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
 77	if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE)))
 78		return *shadow_addr || memory_is_poisoned_1(addr + 15);
 79
 80	return *shadow_addr;
 81}
 82
 83static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
 84					size_t size)
 85{
 86	while (size) {
 87		if (unlikely(*start))
 88			return (unsigned long)start;
 89		start++;
 90		size--;
 91	}
 92
 93	return 0;
 94}
 95
 96static __always_inline unsigned long memory_is_nonzero(const void *start,
 97						const void *end)
 98{
 99	unsigned int words;
100	unsigned long ret;
101	unsigned int prefix = (unsigned long)start % 8;
102
103	if (end - start <= 16)
104		return bytes_is_nonzero(start, end - start);
105
106	if (prefix) {
107		prefix = 8 - prefix;
108		ret = bytes_is_nonzero(start, prefix);
109		if (unlikely(ret))
110			return ret;
111		start += prefix;
112	}
113
114	words = (end - start) / 8;
115	while (words) {
116		if (unlikely(*(u64 *)start))
117			return bytes_is_nonzero(start, 8);
118		start += 8;
119		words--;
120	}
121
122	return bytes_is_nonzero(start, (end - start) % 8);
123}
124
125static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size)
 
126{
127	unsigned long ret;
128
129	ret = memory_is_nonzero(kasan_mem_to_shadow(addr),
130			kasan_mem_to_shadow(addr + size - 1) + 1);
131
132	if (unlikely(ret)) {
133		const void *last_byte = addr + size - 1;
134		s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte);
135		s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK;
136
137		if (unlikely(ret != (unsigned long)last_shadow ||
138			     last_accessible_byte >= *last_shadow))
139			return true;
140	}
141	return false;
142}
143
144static __always_inline bool memory_is_poisoned(const void *addr, size_t size)
145{
146	if (__builtin_constant_p(size)) {
147		switch (size) {
148		case 1:
149			return memory_is_poisoned_1(addr);
150		case 2:
151		case 4:
152		case 8:
153			return memory_is_poisoned_2_4_8(addr, size);
154		case 16:
155			return memory_is_poisoned_16(addr);
156		default:
157			BUILD_BUG();
158		}
159	}
160
161	return memory_is_poisoned_n(addr, size);
162}
163
164static __always_inline bool check_region_inline(const void *addr,
165						size_t size, bool write,
166						unsigned long ret_ip)
167{
168	if (!kasan_arch_is_ready())
169		return true;
170
171	if (unlikely(size == 0))
172		return true;
173
174	if (unlikely(addr + size < addr))
175		return !kasan_report(addr, size, write, ret_ip);
176
177	if (unlikely(!addr_has_metadata(addr)))
178		return !kasan_report(addr, size, write, ret_ip);
179
180	if (likely(!memory_is_poisoned(addr, size)))
181		return true;
182
183	return !kasan_report(addr, size, write, ret_ip);
 
184}
185
186bool kasan_check_range(const void *addr, size_t size, bool write,
187					unsigned long ret_ip)
188{
189	return check_region_inline(addr, size, write, ret_ip);
190}
191
192bool kasan_byte_accessible(const void *addr)
193{
194	s8 shadow_byte;
195
196	if (!kasan_arch_is_ready())
197		return true;
198
199	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
200
201	return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
202}
203
204void kasan_cache_shrink(struct kmem_cache *cache)
205{
206	kasan_quarantine_remove_cache(cache);
207}
208
209void kasan_cache_shutdown(struct kmem_cache *cache)
210{
211	if (!__kmem_cache_empty(cache))
212		kasan_quarantine_remove_cache(cache);
213}
214
215static void register_global(struct kasan_global *global)
216{
217	size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
218
219	kasan_unpoison(global->beg, global->size, false);
220
221	kasan_poison(global->beg + aligned_size,
222		     global->size_with_redzone - aligned_size,
223		     KASAN_GLOBAL_REDZONE, false);
224}
225
226void __asan_register_globals(void *ptr, ssize_t size)
227{
228	int i;
229	struct kasan_global *globals = ptr;
230
231	for (i = 0; i < size; i++)
232		register_global(&globals[i]);
233}
234EXPORT_SYMBOL(__asan_register_globals);
235
236void __asan_unregister_globals(void *ptr, ssize_t size)
237{
238}
239EXPORT_SYMBOL(__asan_unregister_globals);
240
241#define DEFINE_ASAN_LOAD_STORE(size)					\
242	void __asan_load##size(void *addr)				\
243	{								\
244		check_region_inline(addr, size, false, _RET_IP_);	\
245	}								\
246	EXPORT_SYMBOL(__asan_load##size);				\
247	__alias(__asan_load##size)					\
248	void __asan_load##size##_noabort(void *);			\
249	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
250	void __asan_store##size(void *addr)				\
251	{								\
252		check_region_inline(addr, size, true, _RET_IP_);	\
253	}								\
254	EXPORT_SYMBOL(__asan_store##size);				\
255	__alias(__asan_store##size)					\
256	void __asan_store##size##_noabort(void *);			\
257	EXPORT_SYMBOL(__asan_store##size##_noabort)
258
259DEFINE_ASAN_LOAD_STORE(1);
260DEFINE_ASAN_LOAD_STORE(2);
261DEFINE_ASAN_LOAD_STORE(4);
262DEFINE_ASAN_LOAD_STORE(8);
263DEFINE_ASAN_LOAD_STORE(16);
264
265void __asan_loadN(void *addr, ssize_t size)
266{
267	kasan_check_range(addr, size, false, _RET_IP_);
268}
269EXPORT_SYMBOL(__asan_loadN);
270
271__alias(__asan_loadN)
272void __asan_loadN_noabort(void *, ssize_t);
273EXPORT_SYMBOL(__asan_loadN_noabort);
274
275void __asan_storeN(void *addr, ssize_t size)
276{
277	kasan_check_range(addr, size, true, _RET_IP_);
278}
279EXPORT_SYMBOL(__asan_storeN);
280
281__alias(__asan_storeN)
282void __asan_storeN_noabort(void *, ssize_t);
283EXPORT_SYMBOL(__asan_storeN_noabort);
284
285/* to shut up compiler complaints */
286void __asan_handle_no_return(void) {}
287EXPORT_SYMBOL(__asan_handle_no_return);
288
289/* Emitted by compiler to poison alloca()ed objects. */
290void __asan_alloca_poison(void *addr, ssize_t size)
291{
292	size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
293	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
294			rounded_up_size;
295	size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
296
297	const void *left_redzone = (const void *)(addr -
298			KASAN_ALLOCA_REDZONE_SIZE);
299	const void *right_redzone = (const void *)(addr + rounded_up_size);
300
301	WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE));
302
303	kasan_unpoison((const void *)(addr + rounded_down_size),
304			size - rounded_down_size, false);
305	kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
306		     KASAN_ALLOCA_LEFT, false);
307	kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
308		     KASAN_ALLOCA_RIGHT, false);
 
309}
310EXPORT_SYMBOL(__asan_alloca_poison);
311
312/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
313void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom)
314{
315	if (unlikely(!stack_top || stack_top > (void *)stack_bottom))
316		return;
317
318	kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false);
319}
320EXPORT_SYMBOL(__asan_allocas_unpoison);
321
322/* Emitted by the compiler to [un]poison local variables. */
323#define DEFINE_ASAN_SET_SHADOW(byte) \
324	void __asan_set_shadow_##byte(const void *addr, ssize_t size)	\
325	{								\
326		__memset((void *)addr, 0x##byte, size);			\
327	}								\
328	EXPORT_SYMBOL(__asan_set_shadow_##byte)
329
330DEFINE_ASAN_SET_SHADOW(00);
331DEFINE_ASAN_SET_SHADOW(f1);
332DEFINE_ASAN_SET_SHADOW(f2);
333DEFINE_ASAN_SET_SHADOW(f3);
334DEFINE_ASAN_SET_SHADOW(f5);
335DEFINE_ASAN_SET_SHADOW(f8);
336
337/*
338 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
339 * For larger allocations larger redzones are used.
340 */
341static inline unsigned int optimal_redzone(unsigned int object_size)
342{
343	return
344		object_size <= 64        - 16   ? 16 :
345		object_size <= 128       - 32   ? 32 :
346		object_size <= 512       - 64   ? 64 :
347		object_size <= 4096      - 128  ? 128 :
348		object_size <= (1 << 14) - 256  ? 256 :
349		object_size <= (1 << 15) - 512  ? 512 :
350		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
351}
352
353void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
354			  slab_flags_t *flags)
355{
356	unsigned int ok_size;
357	unsigned int optimal_size;
358	unsigned int rem_free_meta_size;
359	unsigned int orig_alloc_meta_offset;
360
361	if (!kasan_requires_meta())
362		return;
363
364	/*
365	 * SLAB_KASAN is used to mark caches that are sanitized by KASAN and
366	 * that thus have per-object metadata. Currently, this flag is used in
367	 * slab_ksize() to account for per-object metadata when calculating the
368	 * size of the accessible memory within the object. Additionally, we use
369	 * SLAB_NO_MERGE to prevent merging of caches with per-object metadata.
370	 */
371	*flags |= SLAB_KASAN | SLAB_NO_MERGE;
372
373	ok_size = *size;
374
375	/* Add alloc meta into the redzone. */
376	cache->kasan_info.alloc_meta_offset = *size;
377	*size += sizeof(struct kasan_alloc_meta);
378
379	/* If alloc meta doesn't fit, don't add it. */
380	if (*size > KMALLOC_MAX_SIZE) {
381		cache->kasan_info.alloc_meta_offset = 0;
382		*size = ok_size;
383		/* Continue, since free meta might still fit. */
384	}
385
386	ok_size = *size;
387	orig_alloc_meta_offset = cache->kasan_info.alloc_meta_offset;
388
389	/*
390	 * Store free meta in the redzone when it's not possible to store
391	 * it in the object. This is the case when:
392	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
393	 *    be touched after it was freed, or
394	 * 2. Object has a constructor, which means it's expected to
395	 *    retain its content until the next allocation, or
396	 * 3. It is from a kmalloc cache which enables the debug option
397	 *    to store original size.
398	 */
399	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
400	     slub_debug_orig_size(cache)) {
401		cache->kasan_info.free_meta_offset = *size;
402		*size += sizeof(struct kasan_free_meta);
403		goto free_meta_added;
404	}
405
406	/*
407	 * Otherwise, if the object is large enough to contain free meta,
408	 * store it within the object.
409	 */
410	if (sizeof(struct kasan_free_meta) <= cache->object_size) {
411		/* cache->kasan_info.free_meta_offset = 0 is implied. */
412		goto free_meta_added;
413	}
414
415	/*
416	 * For smaller objects, store the beginning of free meta within the
417	 * object and the end in the redzone. And thus shift the location of
418	 * alloc meta to free up space for free meta.
419	 * This is only possible when slub_debug is disabled, as otherwise
420	 * the end of free meta will overlap with slub_debug metadata.
421	 */
422	if (!__slub_debug_enabled()) {
423		rem_free_meta_size = sizeof(struct kasan_free_meta) -
424							cache->object_size;
425		*size += rem_free_meta_size;
426		if (cache->kasan_info.alloc_meta_offset != 0)
427			cache->kasan_info.alloc_meta_offset += rem_free_meta_size;
428		goto free_meta_added;
429	}
430
431	/*
432	 * If the object is small and slub_debug is enabled, store free meta
433	 * in the redzone after alloc meta.
434	 */
435	cache->kasan_info.free_meta_offset = *size;
436	*size += sizeof(struct kasan_free_meta);
437
438free_meta_added:
439	/* If free meta doesn't fit, don't add it. */
440	if (*size > KMALLOC_MAX_SIZE) {
441		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
442		cache->kasan_info.alloc_meta_offset = orig_alloc_meta_offset;
443		*size = ok_size;
444	}
445
446	/* Calculate size with optimal redzone. */
447	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
448	/* Limit it with KMALLOC_MAX_SIZE. */
449	if (optimal_size > KMALLOC_MAX_SIZE)
450		optimal_size = KMALLOC_MAX_SIZE;
451	/* Use optimal size if the size with added metas is not large enough. */
452	if (*size < optimal_size)
453		*size = optimal_size;
454}
455
456struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
457					      const void *object)
458{
459	if (!cache->kasan_info.alloc_meta_offset)
460		return NULL;
461	return (void *)object + cache->kasan_info.alloc_meta_offset;
462}
463
464struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
465					    const void *object)
466{
467	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
468	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
469		return NULL;
470	return (void *)object + cache->kasan_info.free_meta_offset;
471}
472
473void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
474{
475	struct kasan_alloc_meta *alloc_meta;
476
477	alloc_meta = kasan_get_alloc_meta(cache, object);
478	if (alloc_meta) {
479		/* Zero out alloc meta to mark it as invalid. */
480		__memset(alloc_meta, 0, sizeof(*alloc_meta));
481	}
482
483	/*
484	 * Explicitly marking free meta as invalid is not required: the shadow
485	 * value for the first 8 bytes of a newly allocated object is not
486	 * KASAN_SLAB_FREE_META.
487	 */
488}
489
490static void release_alloc_meta(struct kasan_alloc_meta *meta)
491{
492	/* Zero out alloc meta to mark it as invalid. */
493	__memset(meta, 0, sizeof(*meta));
494}
495
496static void release_free_meta(const void *object, struct kasan_free_meta *meta)
497{
498	if (!kasan_arch_is_ready())
499		return;
500
501	/* Check if free meta is valid. */
502	if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_SLAB_FREE_META)
503		return;
504
505	/* Mark free meta as invalid. */
506	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE;
507}
508
509size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
510{
511	struct kasan_cache *info = &cache->kasan_info;
512
513	if (!kasan_requires_meta())
514		return 0;
515
516	if (in_object)
517		return (info->free_meta_offset ?
518			0 : sizeof(struct kasan_free_meta));
519	else
520		return (info->alloc_meta_offset ?
521			sizeof(struct kasan_alloc_meta) : 0) +
522			((info->free_meta_offset &&
523			info->free_meta_offset != KASAN_NO_FREE_META) ?
524			sizeof(struct kasan_free_meta) : 0);
525}
526
527static void __kasan_record_aux_stack(void *addr, depot_flags_t depot_flags)
528{
529	struct slab *slab = kasan_addr_to_slab(addr);
530	struct kmem_cache *cache;
531	struct kasan_alloc_meta *alloc_meta;
532	void *object;
533
534	if (is_kfence_address(addr) || !slab)
535		return;
536
537	cache = slab->slab_cache;
538	object = nearest_obj(cache, slab, addr);
539	alloc_meta = kasan_get_alloc_meta(cache, object);
540	if (!alloc_meta)
541		return;
542
543	alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
544	alloc_meta->aux_stack[0] = kasan_save_stack(0, depot_flags);
545}
546
547void kasan_record_aux_stack(void *addr)
548{
549	return __kasan_record_aux_stack(addr, STACK_DEPOT_FLAG_CAN_ALLOC);
550}
551
552void kasan_record_aux_stack_noalloc(void *addr)
553{
554	return __kasan_record_aux_stack(addr, 0);
555}
556
557void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
558{
559	struct kasan_alloc_meta *alloc_meta;
560
561	alloc_meta = kasan_get_alloc_meta(cache, object);
562	if (!alloc_meta)
563		return;
564
565	/* Invalidate previous stack traces (might exist for krealloc or mempool). */
566	release_alloc_meta(alloc_meta);
567
568	kasan_save_track(&alloc_meta->alloc_track, flags);
569}
570
571void kasan_save_free_info(struct kmem_cache *cache, void *object)
572{
573	struct kasan_free_meta *free_meta;
574
575	free_meta = kasan_get_free_meta(cache, object);
576	if (!free_meta)
577		return;
578
579	/* Invalidate previous stack trace (might exist for mempool). */
580	release_free_meta(object, free_meta);
581
582	kasan_save_track(&free_meta->free_track, 0);
583
584	/* Mark free meta as valid. */
585	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE_META;
586}