Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6#include <linux/timekeeper_internal.h>
7#include <linux/module.h>
8#include <linux/interrupt.h>
9#include <linux/percpu.h>
10#include <linux/init.h>
11#include <linux/mm.h>
12#include <linux/nmi.h>
13#include <linux/sched.h>
14#include <linux/sched/loadavg.h>
15#include <linux/sched/clock.h>
16#include <linux/syscore_ops.h>
17#include <linux/clocksource.h>
18#include <linux/jiffies.h>
19#include <linux/time.h>
20#include <linux/tick.h>
21#include <linux/stop_machine.h>
22#include <linux/pvclock_gtod.h>
23#include <linux/compiler.h>
24#include <linux/audit.h>
25
26#include "tick-internal.h"
27#include "ntp_internal.h"
28#include "timekeeping_internal.h"
29
30#define TK_CLEAR_NTP (1 << 0)
31#define TK_MIRROR (1 << 1)
32#define TK_CLOCK_WAS_SET (1 << 2)
33
34enum timekeeping_adv_mode {
35 /* Update timekeeper when a tick has passed */
36 TK_ADV_TICK,
37
38 /* Update timekeeper on a direct frequency change */
39 TK_ADV_FREQ
40};
41
42/*
43 * The most important data for readout fits into a single 64 byte
44 * cache line.
45 */
46static struct {
47 seqcount_t seq;
48 struct timekeeper timekeeper;
49} tk_core ____cacheline_aligned = {
50 .seq = SEQCNT_ZERO(tk_core.seq),
51};
52
53static DEFINE_RAW_SPINLOCK(timekeeper_lock);
54static struct timekeeper shadow_timekeeper;
55
56/**
57 * struct tk_fast - NMI safe timekeeper
58 * @seq: Sequence counter for protecting updates. The lowest bit
59 * is the index for the tk_read_base array
60 * @base: tk_read_base array. Access is indexed by the lowest bit of
61 * @seq.
62 *
63 * See @update_fast_timekeeper() below.
64 */
65struct tk_fast {
66 seqcount_t seq;
67 struct tk_read_base base[2];
68};
69
70/* Suspend-time cycles value for halted fast timekeeper. */
71static u64 cycles_at_suspend;
72
73static u64 dummy_clock_read(struct clocksource *cs)
74{
75 return cycles_at_suspend;
76}
77
78static struct clocksource dummy_clock = {
79 .read = dummy_clock_read,
80};
81
82static struct tk_fast tk_fast_mono ____cacheline_aligned = {
83 .base[0] = { .clock = &dummy_clock, },
84 .base[1] = { .clock = &dummy_clock, },
85};
86
87static struct tk_fast tk_fast_raw ____cacheline_aligned = {
88 .base[0] = { .clock = &dummy_clock, },
89 .base[1] = { .clock = &dummy_clock, },
90};
91
92/* flag for if timekeeping is suspended */
93int __read_mostly timekeeping_suspended;
94
95static inline void tk_normalize_xtime(struct timekeeper *tk)
96{
97 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
98 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
99 tk->xtime_sec++;
100 }
101 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
102 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
103 tk->raw_sec++;
104 }
105}
106
107static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
108{
109 struct timespec64 ts;
110
111 ts.tv_sec = tk->xtime_sec;
112 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
113 return ts;
114}
115
116static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
117{
118 tk->xtime_sec = ts->tv_sec;
119 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
120}
121
122static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
123{
124 tk->xtime_sec += ts->tv_sec;
125 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
126 tk_normalize_xtime(tk);
127}
128
129static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
130{
131 struct timespec64 tmp;
132
133 /*
134 * Verify consistency of: offset_real = -wall_to_monotonic
135 * before modifying anything
136 */
137 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
138 -tk->wall_to_monotonic.tv_nsec);
139 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
140 tk->wall_to_monotonic = wtm;
141 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
142 tk->offs_real = timespec64_to_ktime(tmp);
143 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
144}
145
146static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
147{
148 tk->offs_boot = ktime_add(tk->offs_boot, delta);
149 /*
150 * Timespec representation for VDSO update to avoid 64bit division
151 * on every update.
152 */
153 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
154}
155
156/*
157 * tk_clock_read - atomic clocksource read() helper
158 *
159 * This helper is necessary to use in the read paths because, while the
160 * seqlock ensures we don't return a bad value while structures are updated,
161 * it doesn't protect from potential crashes. There is the possibility that
162 * the tkr's clocksource may change between the read reference, and the
163 * clock reference passed to the read function. This can cause crashes if
164 * the wrong clocksource is passed to the wrong read function.
165 * This isn't necessary to use when holding the timekeeper_lock or doing
166 * a read of the fast-timekeeper tkrs (which is protected by its own locking
167 * and update logic).
168 */
169static inline u64 tk_clock_read(const struct tk_read_base *tkr)
170{
171 struct clocksource *clock = READ_ONCE(tkr->clock);
172
173 return clock->read(clock);
174}
175
176#ifdef CONFIG_DEBUG_TIMEKEEPING
177#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
178
179static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
180{
181
182 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
183 const char *name = tk->tkr_mono.clock->name;
184
185 if (offset > max_cycles) {
186 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
187 offset, name, max_cycles);
188 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
189 } else {
190 if (offset > (max_cycles >> 1)) {
191 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
192 offset, name, max_cycles >> 1);
193 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
194 }
195 }
196
197 if (tk->underflow_seen) {
198 if (jiffies - tk->last_warning > WARNING_FREQ) {
199 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
200 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
201 printk_deferred(" Your kernel is probably still fine.\n");
202 tk->last_warning = jiffies;
203 }
204 tk->underflow_seen = 0;
205 }
206
207 if (tk->overflow_seen) {
208 if (jiffies - tk->last_warning > WARNING_FREQ) {
209 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
210 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
211 printk_deferred(" Your kernel is probably still fine.\n");
212 tk->last_warning = jiffies;
213 }
214 tk->overflow_seen = 0;
215 }
216}
217
218static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
219{
220 struct timekeeper *tk = &tk_core.timekeeper;
221 u64 now, last, mask, max, delta;
222 unsigned int seq;
223
224 /*
225 * Since we're called holding a seqlock, the data may shift
226 * under us while we're doing the calculation. This can cause
227 * false positives, since we'd note a problem but throw the
228 * results away. So nest another seqlock here to atomically
229 * grab the points we are checking with.
230 */
231 do {
232 seq = read_seqcount_begin(&tk_core.seq);
233 now = tk_clock_read(tkr);
234 last = tkr->cycle_last;
235 mask = tkr->mask;
236 max = tkr->clock->max_cycles;
237 } while (read_seqcount_retry(&tk_core.seq, seq));
238
239 delta = clocksource_delta(now, last, mask);
240
241 /*
242 * Try to catch underflows by checking if we are seeing small
243 * mask-relative negative values.
244 */
245 if (unlikely((~delta & mask) < (mask >> 3))) {
246 tk->underflow_seen = 1;
247 delta = 0;
248 }
249
250 /* Cap delta value to the max_cycles values to avoid mult overflows */
251 if (unlikely(delta > max)) {
252 tk->overflow_seen = 1;
253 delta = tkr->clock->max_cycles;
254 }
255
256 return delta;
257}
258#else
259static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
260{
261}
262static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
263{
264 u64 cycle_now, delta;
265
266 /* read clocksource */
267 cycle_now = tk_clock_read(tkr);
268
269 /* calculate the delta since the last update_wall_time */
270 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
271
272 return delta;
273}
274#endif
275
276/**
277 * tk_setup_internals - Set up internals to use clocksource clock.
278 *
279 * @tk: The target timekeeper to setup.
280 * @clock: Pointer to clocksource.
281 *
282 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
283 * pair and interval request.
284 *
285 * Unless you're the timekeeping code, you should not be using this!
286 */
287static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
288{
289 u64 interval;
290 u64 tmp, ntpinterval;
291 struct clocksource *old_clock;
292
293 ++tk->cs_was_changed_seq;
294 old_clock = tk->tkr_mono.clock;
295 tk->tkr_mono.clock = clock;
296 tk->tkr_mono.mask = clock->mask;
297 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
298
299 tk->tkr_raw.clock = clock;
300 tk->tkr_raw.mask = clock->mask;
301 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
302
303 /* Do the ns -> cycle conversion first, using original mult */
304 tmp = NTP_INTERVAL_LENGTH;
305 tmp <<= clock->shift;
306 ntpinterval = tmp;
307 tmp += clock->mult/2;
308 do_div(tmp, clock->mult);
309 if (tmp == 0)
310 tmp = 1;
311
312 interval = (u64) tmp;
313 tk->cycle_interval = interval;
314
315 /* Go back from cycles -> shifted ns */
316 tk->xtime_interval = interval * clock->mult;
317 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
318 tk->raw_interval = interval * clock->mult;
319
320 /* if changing clocks, convert xtime_nsec shift units */
321 if (old_clock) {
322 int shift_change = clock->shift - old_clock->shift;
323 if (shift_change < 0) {
324 tk->tkr_mono.xtime_nsec >>= -shift_change;
325 tk->tkr_raw.xtime_nsec >>= -shift_change;
326 } else {
327 tk->tkr_mono.xtime_nsec <<= shift_change;
328 tk->tkr_raw.xtime_nsec <<= shift_change;
329 }
330 }
331
332 tk->tkr_mono.shift = clock->shift;
333 tk->tkr_raw.shift = clock->shift;
334
335 tk->ntp_error = 0;
336 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
337 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
338
339 /*
340 * The timekeeper keeps its own mult values for the currently
341 * active clocksource. These value will be adjusted via NTP
342 * to counteract clock drifting.
343 */
344 tk->tkr_mono.mult = clock->mult;
345 tk->tkr_raw.mult = clock->mult;
346 tk->ntp_err_mult = 0;
347 tk->skip_second_overflow = 0;
348}
349
350/* Timekeeper helper functions. */
351
352#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
353static u32 default_arch_gettimeoffset(void) { return 0; }
354u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
355#else
356static inline u32 arch_gettimeoffset(void) { return 0; }
357#endif
358
359static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
360{
361 u64 nsec;
362
363 nsec = delta * tkr->mult + tkr->xtime_nsec;
364 nsec >>= tkr->shift;
365
366 /* If arch requires, add in get_arch_timeoffset() */
367 return nsec + arch_gettimeoffset();
368}
369
370static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
371{
372 u64 delta;
373
374 delta = timekeeping_get_delta(tkr);
375 return timekeeping_delta_to_ns(tkr, delta);
376}
377
378static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
379{
380 u64 delta;
381
382 /* calculate the delta since the last update_wall_time */
383 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
384 return timekeeping_delta_to_ns(tkr, delta);
385}
386
387/**
388 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
389 * @tkr: Timekeeping readout base from which we take the update
390 *
391 * We want to use this from any context including NMI and tracing /
392 * instrumenting the timekeeping code itself.
393 *
394 * Employ the latch technique; see @raw_write_seqcount_latch.
395 *
396 * So if a NMI hits the update of base[0] then it will use base[1]
397 * which is still consistent. In the worst case this can result is a
398 * slightly wrong timestamp (a few nanoseconds). See
399 * @ktime_get_mono_fast_ns.
400 */
401static void update_fast_timekeeper(const struct tk_read_base *tkr,
402 struct tk_fast *tkf)
403{
404 struct tk_read_base *base = tkf->base;
405
406 /* Force readers off to base[1] */
407 raw_write_seqcount_latch(&tkf->seq);
408
409 /* Update base[0] */
410 memcpy(base, tkr, sizeof(*base));
411
412 /* Force readers back to base[0] */
413 raw_write_seqcount_latch(&tkf->seq);
414
415 /* Update base[1] */
416 memcpy(base + 1, base, sizeof(*base));
417}
418
419/**
420 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
421 *
422 * This timestamp is not guaranteed to be monotonic across an update.
423 * The timestamp is calculated by:
424 *
425 * now = base_mono + clock_delta * slope
426 *
427 * So if the update lowers the slope, readers who are forced to the
428 * not yet updated second array are still using the old steeper slope.
429 *
430 * tmono
431 * ^
432 * | o n
433 * | o n
434 * | u
435 * | o
436 * |o
437 * |12345678---> reader order
438 *
439 * o = old slope
440 * u = update
441 * n = new slope
442 *
443 * So reader 6 will observe time going backwards versus reader 5.
444 *
445 * While other CPUs are likely to be able observe that, the only way
446 * for a CPU local observation is when an NMI hits in the middle of
447 * the update. Timestamps taken from that NMI context might be ahead
448 * of the following timestamps. Callers need to be aware of that and
449 * deal with it.
450 */
451static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
452{
453 struct tk_read_base *tkr;
454 unsigned int seq;
455 u64 now;
456
457 do {
458 seq = raw_read_seqcount_latch(&tkf->seq);
459 tkr = tkf->base + (seq & 0x01);
460 now = ktime_to_ns(tkr->base);
461
462 now += timekeeping_delta_to_ns(tkr,
463 clocksource_delta(
464 tk_clock_read(tkr),
465 tkr->cycle_last,
466 tkr->mask));
467 } while (read_seqcount_retry(&tkf->seq, seq));
468
469 return now;
470}
471
472u64 ktime_get_mono_fast_ns(void)
473{
474 return __ktime_get_fast_ns(&tk_fast_mono);
475}
476EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
477
478u64 ktime_get_raw_fast_ns(void)
479{
480 return __ktime_get_fast_ns(&tk_fast_raw);
481}
482EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
483
484/**
485 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
486 *
487 * To keep it NMI safe since we're accessing from tracing, we're not using a
488 * separate timekeeper with updates to monotonic clock and boot offset
489 * protected with seqlocks. This has the following minor side effects:
490 *
491 * (1) Its possible that a timestamp be taken after the boot offset is updated
492 * but before the timekeeper is updated. If this happens, the new boot offset
493 * is added to the old timekeeping making the clock appear to update slightly
494 * earlier:
495 * CPU 0 CPU 1
496 * timekeeping_inject_sleeptime64()
497 * __timekeeping_inject_sleeptime(tk, delta);
498 * timestamp();
499 * timekeeping_update(tk, TK_CLEAR_NTP...);
500 *
501 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
502 * partially updated. Since the tk->offs_boot update is a rare event, this
503 * should be a rare occurrence which postprocessing should be able to handle.
504 */
505u64 notrace ktime_get_boot_fast_ns(void)
506{
507 struct timekeeper *tk = &tk_core.timekeeper;
508
509 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
510}
511EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
512
513
514/*
515 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
516 */
517static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
518{
519 struct tk_read_base *tkr;
520 unsigned int seq;
521 u64 now;
522
523 do {
524 seq = raw_read_seqcount_latch(&tkf->seq);
525 tkr = tkf->base + (seq & 0x01);
526 now = ktime_to_ns(tkr->base_real);
527
528 now += timekeeping_delta_to_ns(tkr,
529 clocksource_delta(
530 tk_clock_read(tkr),
531 tkr->cycle_last,
532 tkr->mask));
533 } while (read_seqcount_retry(&tkf->seq, seq));
534
535 return now;
536}
537
538/**
539 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
540 */
541u64 ktime_get_real_fast_ns(void)
542{
543 return __ktime_get_real_fast_ns(&tk_fast_mono);
544}
545EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
546
547/**
548 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
549 * @tk: Timekeeper to snapshot.
550 *
551 * It generally is unsafe to access the clocksource after timekeeping has been
552 * suspended, so take a snapshot of the readout base of @tk and use it as the
553 * fast timekeeper's readout base while suspended. It will return the same
554 * number of cycles every time until timekeeping is resumed at which time the
555 * proper readout base for the fast timekeeper will be restored automatically.
556 */
557static void halt_fast_timekeeper(const struct timekeeper *tk)
558{
559 static struct tk_read_base tkr_dummy;
560 const struct tk_read_base *tkr = &tk->tkr_mono;
561
562 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
563 cycles_at_suspend = tk_clock_read(tkr);
564 tkr_dummy.clock = &dummy_clock;
565 tkr_dummy.base_real = tkr->base + tk->offs_real;
566 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
567
568 tkr = &tk->tkr_raw;
569 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
570 tkr_dummy.clock = &dummy_clock;
571 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
572}
573
574static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
575
576static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
577{
578 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
579}
580
581/**
582 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
583 */
584int pvclock_gtod_register_notifier(struct notifier_block *nb)
585{
586 struct timekeeper *tk = &tk_core.timekeeper;
587 unsigned long flags;
588 int ret;
589
590 raw_spin_lock_irqsave(&timekeeper_lock, flags);
591 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
592 update_pvclock_gtod(tk, true);
593 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
594
595 return ret;
596}
597EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
598
599/**
600 * pvclock_gtod_unregister_notifier - unregister a pvclock
601 * timedata update listener
602 */
603int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
604{
605 unsigned long flags;
606 int ret;
607
608 raw_spin_lock_irqsave(&timekeeper_lock, flags);
609 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
610 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
611
612 return ret;
613}
614EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
615
616/*
617 * tk_update_leap_state - helper to update the next_leap_ktime
618 */
619static inline void tk_update_leap_state(struct timekeeper *tk)
620{
621 tk->next_leap_ktime = ntp_get_next_leap();
622 if (tk->next_leap_ktime != KTIME_MAX)
623 /* Convert to monotonic time */
624 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
625}
626
627/*
628 * Update the ktime_t based scalar nsec members of the timekeeper
629 */
630static inline void tk_update_ktime_data(struct timekeeper *tk)
631{
632 u64 seconds;
633 u32 nsec;
634
635 /*
636 * The xtime based monotonic readout is:
637 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
638 * The ktime based monotonic readout is:
639 * nsec = base_mono + now();
640 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
641 */
642 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
643 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
644 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
645
646 /*
647 * The sum of the nanoseconds portions of xtime and
648 * wall_to_monotonic can be greater/equal one second. Take
649 * this into account before updating tk->ktime_sec.
650 */
651 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
652 if (nsec >= NSEC_PER_SEC)
653 seconds++;
654 tk->ktime_sec = seconds;
655
656 /* Update the monotonic raw base */
657 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
658}
659
660/* must hold timekeeper_lock */
661static void timekeeping_update(struct timekeeper *tk, unsigned int action)
662{
663 if (action & TK_CLEAR_NTP) {
664 tk->ntp_error = 0;
665 ntp_clear();
666 }
667
668 tk_update_leap_state(tk);
669 tk_update_ktime_data(tk);
670
671 update_vsyscall(tk);
672 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
673
674 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
675 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
676 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
677
678 if (action & TK_CLOCK_WAS_SET)
679 tk->clock_was_set_seq++;
680 /*
681 * The mirroring of the data to the shadow-timekeeper needs
682 * to happen last here to ensure we don't over-write the
683 * timekeeper structure on the next update with stale data
684 */
685 if (action & TK_MIRROR)
686 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
687 sizeof(tk_core.timekeeper));
688}
689
690/**
691 * timekeeping_forward_now - update clock to the current time
692 *
693 * Forward the current clock to update its state since the last call to
694 * update_wall_time(). This is useful before significant clock changes,
695 * as it avoids having to deal with this time offset explicitly.
696 */
697static void timekeeping_forward_now(struct timekeeper *tk)
698{
699 u64 cycle_now, delta;
700
701 cycle_now = tk_clock_read(&tk->tkr_mono);
702 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
703 tk->tkr_mono.cycle_last = cycle_now;
704 tk->tkr_raw.cycle_last = cycle_now;
705
706 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
707
708 /* If arch requires, add in get_arch_timeoffset() */
709 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
710
711
712 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
713
714 /* If arch requires, add in get_arch_timeoffset() */
715 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
716
717 tk_normalize_xtime(tk);
718}
719
720/**
721 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
722 * @ts: pointer to the timespec to be set
723 *
724 * Returns the time of day in a timespec64 (WARN if suspended).
725 */
726void ktime_get_real_ts64(struct timespec64 *ts)
727{
728 struct timekeeper *tk = &tk_core.timekeeper;
729 unsigned int seq;
730 u64 nsecs;
731
732 WARN_ON(timekeeping_suspended);
733
734 do {
735 seq = read_seqcount_begin(&tk_core.seq);
736
737 ts->tv_sec = tk->xtime_sec;
738 nsecs = timekeeping_get_ns(&tk->tkr_mono);
739
740 } while (read_seqcount_retry(&tk_core.seq, seq));
741
742 ts->tv_nsec = 0;
743 timespec64_add_ns(ts, nsecs);
744}
745EXPORT_SYMBOL(ktime_get_real_ts64);
746
747ktime_t ktime_get(void)
748{
749 struct timekeeper *tk = &tk_core.timekeeper;
750 unsigned int seq;
751 ktime_t base;
752 u64 nsecs;
753
754 WARN_ON(timekeeping_suspended);
755
756 do {
757 seq = read_seqcount_begin(&tk_core.seq);
758 base = tk->tkr_mono.base;
759 nsecs = timekeeping_get_ns(&tk->tkr_mono);
760
761 } while (read_seqcount_retry(&tk_core.seq, seq));
762
763 return ktime_add_ns(base, nsecs);
764}
765EXPORT_SYMBOL_GPL(ktime_get);
766
767u32 ktime_get_resolution_ns(void)
768{
769 struct timekeeper *tk = &tk_core.timekeeper;
770 unsigned int seq;
771 u32 nsecs;
772
773 WARN_ON(timekeeping_suspended);
774
775 do {
776 seq = read_seqcount_begin(&tk_core.seq);
777 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
778 } while (read_seqcount_retry(&tk_core.seq, seq));
779
780 return nsecs;
781}
782EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
783
784static ktime_t *offsets[TK_OFFS_MAX] = {
785 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
786 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
787 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
788};
789
790ktime_t ktime_get_with_offset(enum tk_offsets offs)
791{
792 struct timekeeper *tk = &tk_core.timekeeper;
793 unsigned int seq;
794 ktime_t base, *offset = offsets[offs];
795 u64 nsecs;
796
797 WARN_ON(timekeeping_suspended);
798
799 do {
800 seq = read_seqcount_begin(&tk_core.seq);
801 base = ktime_add(tk->tkr_mono.base, *offset);
802 nsecs = timekeeping_get_ns(&tk->tkr_mono);
803
804 } while (read_seqcount_retry(&tk_core.seq, seq));
805
806 return ktime_add_ns(base, nsecs);
807
808}
809EXPORT_SYMBOL_GPL(ktime_get_with_offset);
810
811ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
812{
813 struct timekeeper *tk = &tk_core.timekeeper;
814 unsigned int seq;
815 ktime_t base, *offset = offsets[offs];
816 u64 nsecs;
817
818 WARN_ON(timekeeping_suspended);
819
820 do {
821 seq = read_seqcount_begin(&tk_core.seq);
822 base = ktime_add(tk->tkr_mono.base, *offset);
823 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
824
825 } while (read_seqcount_retry(&tk_core.seq, seq));
826
827 return ktime_add_ns(base, nsecs);
828}
829EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
830
831/**
832 * ktime_mono_to_any() - convert mononotic time to any other time
833 * @tmono: time to convert.
834 * @offs: which offset to use
835 */
836ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
837{
838 ktime_t *offset = offsets[offs];
839 unsigned int seq;
840 ktime_t tconv;
841
842 do {
843 seq = read_seqcount_begin(&tk_core.seq);
844 tconv = ktime_add(tmono, *offset);
845 } while (read_seqcount_retry(&tk_core.seq, seq));
846
847 return tconv;
848}
849EXPORT_SYMBOL_GPL(ktime_mono_to_any);
850
851/**
852 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
853 */
854ktime_t ktime_get_raw(void)
855{
856 struct timekeeper *tk = &tk_core.timekeeper;
857 unsigned int seq;
858 ktime_t base;
859 u64 nsecs;
860
861 do {
862 seq = read_seqcount_begin(&tk_core.seq);
863 base = tk->tkr_raw.base;
864 nsecs = timekeeping_get_ns(&tk->tkr_raw);
865
866 } while (read_seqcount_retry(&tk_core.seq, seq));
867
868 return ktime_add_ns(base, nsecs);
869}
870EXPORT_SYMBOL_GPL(ktime_get_raw);
871
872/**
873 * ktime_get_ts64 - get the monotonic clock in timespec64 format
874 * @ts: pointer to timespec variable
875 *
876 * The function calculates the monotonic clock from the realtime
877 * clock and the wall_to_monotonic offset and stores the result
878 * in normalized timespec64 format in the variable pointed to by @ts.
879 */
880void ktime_get_ts64(struct timespec64 *ts)
881{
882 struct timekeeper *tk = &tk_core.timekeeper;
883 struct timespec64 tomono;
884 unsigned int seq;
885 u64 nsec;
886
887 WARN_ON(timekeeping_suspended);
888
889 do {
890 seq = read_seqcount_begin(&tk_core.seq);
891 ts->tv_sec = tk->xtime_sec;
892 nsec = timekeeping_get_ns(&tk->tkr_mono);
893 tomono = tk->wall_to_monotonic;
894
895 } while (read_seqcount_retry(&tk_core.seq, seq));
896
897 ts->tv_sec += tomono.tv_sec;
898 ts->tv_nsec = 0;
899 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
900}
901EXPORT_SYMBOL_GPL(ktime_get_ts64);
902
903/**
904 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
905 *
906 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
907 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
908 * works on both 32 and 64 bit systems. On 32 bit systems the readout
909 * covers ~136 years of uptime which should be enough to prevent
910 * premature wrap arounds.
911 */
912time64_t ktime_get_seconds(void)
913{
914 struct timekeeper *tk = &tk_core.timekeeper;
915
916 WARN_ON(timekeeping_suspended);
917 return tk->ktime_sec;
918}
919EXPORT_SYMBOL_GPL(ktime_get_seconds);
920
921/**
922 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
923 *
924 * Returns the wall clock seconds since 1970. This replaces the
925 * get_seconds() interface which is not y2038 safe on 32bit systems.
926 *
927 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
928 * 32bit systems the access must be protected with the sequence
929 * counter to provide "atomic" access to the 64bit tk->xtime_sec
930 * value.
931 */
932time64_t ktime_get_real_seconds(void)
933{
934 struct timekeeper *tk = &tk_core.timekeeper;
935 time64_t seconds;
936 unsigned int seq;
937
938 if (IS_ENABLED(CONFIG_64BIT))
939 return tk->xtime_sec;
940
941 do {
942 seq = read_seqcount_begin(&tk_core.seq);
943 seconds = tk->xtime_sec;
944
945 } while (read_seqcount_retry(&tk_core.seq, seq));
946
947 return seconds;
948}
949EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
950
951/**
952 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
953 * but without the sequence counter protect. This internal function
954 * is called just when timekeeping lock is already held.
955 */
956time64_t __ktime_get_real_seconds(void)
957{
958 struct timekeeper *tk = &tk_core.timekeeper;
959
960 return tk->xtime_sec;
961}
962
963/**
964 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
965 * @systime_snapshot: pointer to struct receiving the system time snapshot
966 */
967void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
968{
969 struct timekeeper *tk = &tk_core.timekeeper;
970 unsigned int seq;
971 ktime_t base_raw;
972 ktime_t base_real;
973 u64 nsec_raw;
974 u64 nsec_real;
975 u64 now;
976
977 WARN_ON_ONCE(timekeeping_suspended);
978
979 do {
980 seq = read_seqcount_begin(&tk_core.seq);
981 now = tk_clock_read(&tk->tkr_mono);
982 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
983 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
984 base_real = ktime_add(tk->tkr_mono.base,
985 tk_core.timekeeper.offs_real);
986 base_raw = tk->tkr_raw.base;
987 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
988 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
989 } while (read_seqcount_retry(&tk_core.seq, seq));
990
991 systime_snapshot->cycles = now;
992 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
993 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
994}
995EXPORT_SYMBOL_GPL(ktime_get_snapshot);
996
997/* Scale base by mult/div checking for overflow */
998static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
999{
1000 u64 tmp, rem;
1001
1002 tmp = div64_u64_rem(*base, div, &rem);
1003
1004 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1005 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1006 return -EOVERFLOW;
1007 tmp *= mult;
1008 rem *= mult;
1009
1010 do_div(rem, div);
1011 *base = tmp + rem;
1012 return 0;
1013}
1014
1015/**
1016 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1017 * @history: Snapshot representing start of history
1018 * @partial_history_cycles: Cycle offset into history (fractional part)
1019 * @total_history_cycles: Total history length in cycles
1020 * @discontinuity: True indicates clock was set on history period
1021 * @ts: Cross timestamp that should be adjusted using
1022 * partial/total ratio
1023 *
1024 * Helper function used by get_device_system_crosststamp() to correct the
1025 * crosstimestamp corresponding to the start of the current interval to the
1026 * system counter value (timestamp point) provided by the driver. The
1027 * total_history_* quantities are the total history starting at the provided
1028 * reference point and ending at the start of the current interval. The cycle
1029 * count between the driver timestamp point and the start of the current
1030 * interval is partial_history_cycles.
1031 */
1032static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1033 u64 partial_history_cycles,
1034 u64 total_history_cycles,
1035 bool discontinuity,
1036 struct system_device_crosststamp *ts)
1037{
1038 struct timekeeper *tk = &tk_core.timekeeper;
1039 u64 corr_raw, corr_real;
1040 bool interp_forward;
1041 int ret;
1042
1043 if (total_history_cycles == 0 || partial_history_cycles == 0)
1044 return 0;
1045
1046 /* Interpolate shortest distance from beginning or end of history */
1047 interp_forward = partial_history_cycles > total_history_cycles / 2;
1048 partial_history_cycles = interp_forward ?
1049 total_history_cycles - partial_history_cycles :
1050 partial_history_cycles;
1051
1052 /*
1053 * Scale the monotonic raw time delta by:
1054 * partial_history_cycles / total_history_cycles
1055 */
1056 corr_raw = (u64)ktime_to_ns(
1057 ktime_sub(ts->sys_monoraw, history->raw));
1058 ret = scale64_check_overflow(partial_history_cycles,
1059 total_history_cycles, &corr_raw);
1060 if (ret)
1061 return ret;
1062
1063 /*
1064 * If there is a discontinuity in the history, scale monotonic raw
1065 * correction by:
1066 * mult(real)/mult(raw) yielding the realtime correction
1067 * Otherwise, calculate the realtime correction similar to monotonic
1068 * raw calculation
1069 */
1070 if (discontinuity) {
1071 corr_real = mul_u64_u32_div
1072 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1073 } else {
1074 corr_real = (u64)ktime_to_ns(
1075 ktime_sub(ts->sys_realtime, history->real));
1076 ret = scale64_check_overflow(partial_history_cycles,
1077 total_history_cycles, &corr_real);
1078 if (ret)
1079 return ret;
1080 }
1081
1082 /* Fixup monotonic raw and real time time values */
1083 if (interp_forward) {
1084 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1085 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1086 } else {
1087 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1088 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1089 }
1090
1091 return 0;
1092}
1093
1094/*
1095 * cycle_between - true if test occurs chronologically between before and after
1096 */
1097static bool cycle_between(u64 before, u64 test, u64 after)
1098{
1099 if (test > before && test < after)
1100 return true;
1101 if (test < before && before > after)
1102 return true;
1103 return false;
1104}
1105
1106/**
1107 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1108 * @get_time_fn: Callback to get simultaneous device time and
1109 * system counter from the device driver
1110 * @ctx: Context passed to get_time_fn()
1111 * @history_begin: Historical reference point used to interpolate system
1112 * time when counter provided by the driver is before the current interval
1113 * @xtstamp: Receives simultaneously captured system and device time
1114 *
1115 * Reads a timestamp from a device and correlates it to system time
1116 */
1117int get_device_system_crosststamp(int (*get_time_fn)
1118 (ktime_t *device_time,
1119 struct system_counterval_t *sys_counterval,
1120 void *ctx),
1121 void *ctx,
1122 struct system_time_snapshot *history_begin,
1123 struct system_device_crosststamp *xtstamp)
1124{
1125 struct system_counterval_t system_counterval;
1126 struct timekeeper *tk = &tk_core.timekeeper;
1127 u64 cycles, now, interval_start;
1128 unsigned int clock_was_set_seq = 0;
1129 ktime_t base_real, base_raw;
1130 u64 nsec_real, nsec_raw;
1131 u8 cs_was_changed_seq;
1132 unsigned int seq;
1133 bool do_interp;
1134 int ret;
1135
1136 do {
1137 seq = read_seqcount_begin(&tk_core.seq);
1138 /*
1139 * Try to synchronously capture device time and a system
1140 * counter value calling back into the device driver
1141 */
1142 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * Verify that the clocksource associated with the captured
1148 * system counter value is the same as the currently installed
1149 * timekeeper clocksource
1150 */
1151 if (tk->tkr_mono.clock != system_counterval.cs)
1152 return -ENODEV;
1153 cycles = system_counterval.cycles;
1154
1155 /*
1156 * Check whether the system counter value provided by the
1157 * device driver is on the current timekeeping interval.
1158 */
1159 now = tk_clock_read(&tk->tkr_mono);
1160 interval_start = tk->tkr_mono.cycle_last;
1161 if (!cycle_between(interval_start, cycles, now)) {
1162 clock_was_set_seq = tk->clock_was_set_seq;
1163 cs_was_changed_seq = tk->cs_was_changed_seq;
1164 cycles = interval_start;
1165 do_interp = true;
1166 } else {
1167 do_interp = false;
1168 }
1169
1170 base_real = ktime_add(tk->tkr_mono.base,
1171 tk_core.timekeeper.offs_real);
1172 base_raw = tk->tkr_raw.base;
1173
1174 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1175 system_counterval.cycles);
1176 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1177 system_counterval.cycles);
1178 } while (read_seqcount_retry(&tk_core.seq, seq));
1179
1180 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1181 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1182
1183 /*
1184 * Interpolate if necessary, adjusting back from the start of the
1185 * current interval
1186 */
1187 if (do_interp) {
1188 u64 partial_history_cycles, total_history_cycles;
1189 bool discontinuity;
1190
1191 /*
1192 * Check that the counter value occurs after the provided
1193 * history reference and that the history doesn't cross a
1194 * clocksource change
1195 */
1196 if (!history_begin ||
1197 !cycle_between(history_begin->cycles,
1198 system_counterval.cycles, cycles) ||
1199 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1200 return -EINVAL;
1201 partial_history_cycles = cycles - system_counterval.cycles;
1202 total_history_cycles = cycles - history_begin->cycles;
1203 discontinuity =
1204 history_begin->clock_was_set_seq != clock_was_set_seq;
1205
1206 ret = adjust_historical_crosststamp(history_begin,
1207 partial_history_cycles,
1208 total_history_cycles,
1209 discontinuity, xtstamp);
1210 if (ret)
1211 return ret;
1212 }
1213
1214 return 0;
1215}
1216EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1217
1218/**
1219 * do_settimeofday64 - Sets the time of day.
1220 * @ts: pointer to the timespec64 variable containing the new time
1221 *
1222 * Sets the time of day to the new time and update NTP and notify hrtimers
1223 */
1224int do_settimeofday64(const struct timespec64 *ts)
1225{
1226 struct timekeeper *tk = &tk_core.timekeeper;
1227 struct timespec64 ts_delta, xt;
1228 unsigned long flags;
1229 int ret = 0;
1230
1231 if (!timespec64_valid_settod(ts))
1232 return -EINVAL;
1233
1234 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1235 write_seqcount_begin(&tk_core.seq);
1236
1237 timekeeping_forward_now(tk);
1238
1239 xt = tk_xtime(tk);
1240 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1241 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1242
1243 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1244 ret = -EINVAL;
1245 goto out;
1246 }
1247
1248 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1249
1250 tk_set_xtime(tk, ts);
1251out:
1252 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1253
1254 write_seqcount_end(&tk_core.seq);
1255 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1256
1257 /* signal hrtimers about time change */
1258 clock_was_set();
1259
1260 if (!ret)
1261 audit_tk_injoffset(ts_delta);
1262
1263 return ret;
1264}
1265EXPORT_SYMBOL(do_settimeofday64);
1266
1267/**
1268 * timekeeping_inject_offset - Adds or subtracts from the current time.
1269 * @tv: pointer to the timespec variable containing the offset
1270 *
1271 * Adds or subtracts an offset value from the current time.
1272 */
1273static int timekeeping_inject_offset(const struct timespec64 *ts)
1274{
1275 struct timekeeper *tk = &tk_core.timekeeper;
1276 unsigned long flags;
1277 struct timespec64 tmp;
1278 int ret = 0;
1279
1280 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1281 return -EINVAL;
1282
1283 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1284 write_seqcount_begin(&tk_core.seq);
1285
1286 timekeeping_forward_now(tk);
1287
1288 /* Make sure the proposed value is valid */
1289 tmp = timespec64_add(tk_xtime(tk), *ts);
1290 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1291 !timespec64_valid_settod(&tmp)) {
1292 ret = -EINVAL;
1293 goto error;
1294 }
1295
1296 tk_xtime_add(tk, ts);
1297 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1298
1299error: /* even if we error out, we forwarded the time, so call update */
1300 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1301
1302 write_seqcount_end(&tk_core.seq);
1303 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1304
1305 /* signal hrtimers about time change */
1306 clock_was_set();
1307
1308 return ret;
1309}
1310
1311/*
1312 * Indicates if there is an offset between the system clock and the hardware
1313 * clock/persistent clock/rtc.
1314 */
1315int persistent_clock_is_local;
1316
1317/*
1318 * Adjust the time obtained from the CMOS to be UTC time instead of
1319 * local time.
1320 *
1321 * This is ugly, but preferable to the alternatives. Otherwise we
1322 * would either need to write a program to do it in /etc/rc (and risk
1323 * confusion if the program gets run more than once; it would also be
1324 * hard to make the program warp the clock precisely n hours) or
1325 * compile in the timezone information into the kernel. Bad, bad....
1326 *
1327 * - TYT, 1992-01-01
1328 *
1329 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1330 * as real UNIX machines always do it. This avoids all headaches about
1331 * daylight saving times and warping kernel clocks.
1332 */
1333void timekeeping_warp_clock(void)
1334{
1335 if (sys_tz.tz_minuteswest != 0) {
1336 struct timespec64 adjust;
1337
1338 persistent_clock_is_local = 1;
1339 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1340 adjust.tv_nsec = 0;
1341 timekeeping_inject_offset(&adjust);
1342 }
1343}
1344
1345/**
1346 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1347 *
1348 */
1349static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1350{
1351 tk->tai_offset = tai_offset;
1352 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1353}
1354
1355/**
1356 * change_clocksource - Swaps clocksources if a new one is available
1357 *
1358 * Accumulates current time interval and initializes new clocksource
1359 */
1360static int change_clocksource(void *data)
1361{
1362 struct timekeeper *tk = &tk_core.timekeeper;
1363 struct clocksource *new, *old;
1364 unsigned long flags;
1365
1366 new = (struct clocksource *) data;
1367
1368 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369 write_seqcount_begin(&tk_core.seq);
1370
1371 timekeeping_forward_now(tk);
1372 /*
1373 * If the cs is in module, get a module reference. Succeeds
1374 * for built-in code (owner == NULL) as well.
1375 */
1376 if (try_module_get(new->owner)) {
1377 if (!new->enable || new->enable(new) == 0) {
1378 old = tk->tkr_mono.clock;
1379 tk_setup_internals(tk, new);
1380 if (old->disable)
1381 old->disable(old);
1382 module_put(old->owner);
1383 } else {
1384 module_put(new->owner);
1385 }
1386 }
1387 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1388
1389 write_seqcount_end(&tk_core.seq);
1390 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1391
1392 return 0;
1393}
1394
1395/**
1396 * timekeeping_notify - Install a new clock source
1397 * @clock: pointer to the clock source
1398 *
1399 * This function is called from clocksource.c after a new, better clock
1400 * source has been registered. The caller holds the clocksource_mutex.
1401 */
1402int timekeeping_notify(struct clocksource *clock)
1403{
1404 struct timekeeper *tk = &tk_core.timekeeper;
1405
1406 if (tk->tkr_mono.clock == clock)
1407 return 0;
1408 stop_machine(change_clocksource, clock, NULL);
1409 tick_clock_notify();
1410 return tk->tkr_mono.clock == clock ? 0 : -1;
1411}
1412
1413/**
1414 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1415 * @ts: pointer to the timespec64 to be set
1416 *
1417 * Returns the raw monotonic time (completely un-modified by ntp)
1418 */
1419void ktime_get_raw_ts64(struct timespec64 *ts)
1420{
1421 struct timekeeper *tk = &tk_core.timekeeper;
1422 unsigned int seq;
1423 u64 nsecs;
1424
1425 do {
1426 seq = read_seqcount_begin(&tk_core.seq);
1427 ts->tv_sec = tk->raw_sec;
1428 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1429
1430 } while (read_seqcount_retry(&tk_core.seq, seq));
1431
1432 ts->tv_nsec = 0;
1433 timespec64_add_ns(ts, nsecs);
1434}
1435EXPORT_SYMBOL(ktime_get_raw_ts64);
1436
1437
1438/**
1439 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1440 */
1441int timekeeping_valid_for_hres(void)
1442{
1443 struct timekeeper *tk = &tk_core.timekeeper;
1444 unsigned int seq;
1445 int ret;
1446
1447 do {
1448 seq = read_seqcount_begin(&tk_core.seq);
1449
1450 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1451
1452 } while (read_seqcount_retry(&tk_core.seq, seq));
1453
1454 return ret;
1455}
1456
1457/**
1458 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1459 */
1460u64 timekeeping_max_deferment(void)
1461{
1462 struct timekeeper *tk = &tk_core.timekeeper;
1463 unsigned int seq;
1464 u64 ret;
1465
1466 do {
1467 seq = read_seqcount_begin(&tk_core.seq);
1468
1469 ret = tk->tkr_mono.clock->max_idle_ns;
1470
1471 } while (read_seqcount_retry(&tk_core.seq, seq));
1472
1473 return ret;
1474}
1475
1476/**
1477 * read_persistent_clock64 - Return time from the persistent clock.
1478 *
1479 * Weak dummy function for arches that do not yet support it.
1480 * Reads the time from the battery backed persistent clock.
1481 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1482 *
1483 * XXX - Do be sure to remove it once all arches implement it.
1484 */
1485void __weak read_persistent_clock64(struct timespec64 *ts)
1486{
1487 ts->tv_sec = 0;
1488 ts->tv_nsec = 0;
1489}
1490
1491/**
1492 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1493 * from the boot.
1494 *
1495 * Weak dummy function for arches that do not yet support it.
1496 * wall_time - current time as returned by persistent clock
1497 * boot_offset - offset that is defined as wall_time - boot_time
1498 * The default function calculates offset based on the current value of
1499 * local_clock(). This way architectures that support sched_clock() but don't
1500 * support dedicated boot time clock will provide the best estimate of the
1501 * boot time.
1502 */
1503void __weak __init
1504read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1505 struct timespec64 *boot_offset)
1506{
1507 read_persistent_clock64(wall_time);
1508 *boot_offset = ns_to_timespec64(local_clock());
1509}
1510
1511/*
1512 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1513 *
1514 * The flag starts of false and is only set when a suspend reaches
1515 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1516 * timekeeper clocksource is not stopping across suspend and has been
1517 * used to update sleep time. If the timekeeper clocksource has stopped
1518 * then the flag stays true and is used by the RTC resume code to decide
1519 * whether sleeptime must be injected and if so the flag gets false then.
1520 *
1521 * If a suspend fails before reaching timekeeping_resume() then the flag
1522 * stays false and prevents erroneous sleeptime injection.
1523 */
1524static bool suspend_timing_needed;
1525
1526/* Flag for if there is a persistent clock on this platform */
1527static bool persistent_clock_exists;
1528
1529/*
1530 * timekeeping_init - Initializes the clocksource and common timekeeping values
1531 */
1532void __init timekeeping_init(void)
1533{
1534 struct timespec64 wall_time, boot_offset, wall_to_mono;
1535 struct timekeeper *tk = &tk_core.timekeeper;
1536 struct clocksource *clock;
1537 unsigned long flags;
1538
1539 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1540 if (timespec64_valid_settod(&wall_time) &&
1541 timespec64_to_ns(&wall_time) > 0) {
1542 persistent_clock_exists = true;
1543 } else if (timespec64_to_ns(&wall_time) != 0) {
1544 pr_warn("Persistent clock returned invalid value");
1545 wall_time = (struct timespec64){0};
1546 }
1547
1548 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1549 boot_offset = (struct timespec64){0};
1550
1551 /*
1552 * We want set wall_to_mono, so the following is true:
1553 * wall time + wall_to_mono = boot time
1554 */
1555 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1556
1557 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1558 write_seqcount_begin(&tk_core.seq);
1559 ntp_init();
1560
1561 clock = clocksource_default_clock();
1562 if (clock->enable)
1563 clock->enable(clock);
1564 tk_setup_internals(tk, clock);
1565
1566 tk_set_xtime(tk, &wall_time);
1567 tk->raw_sec = 0;
1568
1569 tk_set_wall_to_mono(tk, wall_to_mono);
1570
1571 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1572
1573 write_seqcount_end(&tk_core.seq);
1574 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1575}
1576
1577/* time in seconds when suspend began for persistent clock */
1578static struct timespec64 timekeeping_suspend_time;
1579
1580/**
1581 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1582 * @delta: pointer to a timespec delta value
1583 *
1584 * Takes a timespec offset measuring a suspend interval and properly
1585 * adds the sleep offset to the timekeeping variables.
1586 */
1587static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1588 const struct timespec64 *delta)
1589{
1590 if (!timespec64_valid_strict(delta)) {
1591 printk_deferred(KERN_WARNING
1592 "__timekeeping_inject_sleeptime: Invalid "
1593 "sleep delta value!\n");
1594 return;
1595 }
1596 tk_xtime_add(tk, delta);
1597 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1598 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1599 tk_debug_account_sleep_time(delta);
1600}
1601
1602#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1603/**
1604 * We have three kinds of time sources to use for sleep time
1605 * injection, the preference order is:
1606 * 1) non-stop clocksource
1607 * 2) persistent clock (ie: RTC accessible when irqs are off)
1608 * 3) RTC
1609 *
1610 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1611 * If system has neither 1) nor 2), 3) will be used finally.
1612 *
1613 *
1614 * If timekeeping has injected sleeptime via either 1) or 2),
1615 * 3) becomes needless, so in this case we don't need to call
1616 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1617 * means.
1618 */
1619bool timekeeping_rtc_skipresume(void)
1620{
1621 return !suspend_timing_needed;
1622}
1623
1624/**
1625 * 1) can be determined whether to use or not only when doing
1626 * timekeeping_resume() which is invoked after rtc_suspend(),
1627 * so we can't skip rtc_suspend() surely if system has 1).
1628 *
1629 * But if system has 2), 2) will definitely be used, so in this
1630 * case we don't need to call rtc_suspend(), and this is what
1631 * timekeeping_rtc_skipsuspend() means.
1632 */
1633bool timekeeping_rtc_skipsuspend(void)
1634{
1635 return persistent_clock_exists;
1636}
1637
1638/**
1639 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1640 * @delta: pointer to a timespec64 delta value
1641 *
1642 * This hook is for architectures that cannot support read_persistent_clock64
1643 * because their RTC/persistent clock is only accessible when irqs are enabled.
1644 * and also don't have an effective nonstop clocksource.
1645 *
1646 * This function should only be called by rtc_resume(), and allows
1647 * a suspend offset to be injected into the timekeeping values.
1648 */
1649void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1650{
1651 struct timekeeper *tk = &tk_core.timekeeper;
1652 unsigned long flags;
1653
1654 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1655 write_seqcount_begin(&tk_core.seq);
1656
1657 suspend_timing_needed = false;
1658
1659 timekeeping_forward_now(tk);
1660
1661 __timekeeping_inject_sleeptime(tk, delta);
1662
1663 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1664
1665 write_seqcount_end(&tk_core.seq);
1666 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1667
1668 /* signal hrtimers about time change */
1669 clock_was_set();
1670}
1671#endif
1672
1673/**
1674 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1675 */
1676void timekeeping_resume(void)
1677{
1678 struct timekeeper *tk = &tk_core.timekeeper;
1679 struct clocksource *clock = tk->tkr_mono.clock;
1680 unsigned long flags;
1681 struct timespec64 ts_new, ts_delta;
1682 u64 cycle_now, nsec;
1683 bool inject_sleeptime = false;
1684
1685 read_persistent_clock64(&ts_new);
1686
1687 clockevents_resume();
1688 clocksource_resume();
1689
1690 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1691 write_seqcount_begin(&tk_core.seq);
1692
1693 /*
1694 * After system resumes, we need to calculate the suspended time and
1695 * compensate it for the OS time. There are 3 sources that could be
1696 * used: Nonstop clocksource during suspend, persistent clock and rtc
1697 * device.
1698 *
1699 * One specific platform may have 1 or 2 or all of them, and the
1700 * preference will be:
1701 * suspend-nonstop clocksource -> persistent clock -> rtc
1702 * The less preferred source will only be tried if there is no better
1703 * usable source. The rtc part is handled separately in rtc core code.
1704 */
1705 cycle_now = tk_clock_read(&tk->tkr_mono);
1706 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1707 if (nsec > 0) {
1708 ts_delta = ns_to_timespec64(nsec);
1709 inject_sleeptime = true;
1710 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1711 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1712 inject_sleeptime = true;
1713 }
1714
1715 if (inject_sleeptime) {
1716 suspend_timing_needed = false;
1717 __timekeeping_inject_sleeptime(tk, &ts_delta);
1718 }
1719
1720 /* Re-base the last cycle value */
1721 tk->tkr_mono.cycle_last = cycle_now;
1722 tk->tkr_raw.cycle_last = cycle_now;
1723
1724 tk->ntp_error = 0;
1725 timekeeping_suspended = 0;
1726 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1727 write_seqcount_end(&tk_core.seq);
1728 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1729
1730 touch_softlockup_watchdog();
1731
1732 tick_resume();
1733 hrtimers_resume();
1734}
1735
1736int timekeeping_suspend(void)
1737{
1738 struct timekeeper *tk = &tk_core.timekeeper;
1739 unsigned long flags;
1740 struct timespec64 delta, delta_delta;
1741 static struct timespec64 old_delta;
1742 struct clocksource *curr_clock;
1743 u64 cycle_now;
1744
1745 read_persistent_clock64(&timekeeping_suspend_time);
1746
1747 /*
1748 * On some systems the persistent_clock can not be detected at
1749 * timekeeping_init by its return value, so if we see a valid
1750 * value returned, update the persistent_clock_exists flag.
1751 */
1752 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1753 persistent_clock_exists = true;
1754
1755 suspend_timing_needed = true;
1756
1757 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1758 write_seqcount_begin(&tk_core.seq);
1759 timekeeping_forward_now(tk);
1760 timekeeping_suspended = 1;
1761
1762 /*
1763 * Since we've called forward_now, cycle_last stores the value
1764 * just read from the current clocksource. Save this to potentially
1765 * use in suspend timing.
1766 */
1767 curr_clock = tk->tkr_mono.clock;
1768 cycle_now = tk->tkr_mono.cycle_last;
1769 clocksource_start_suspend_timing(curr_clock, cycle_now);
1770
1771 if (persistent_clock_exists) {
1772 /*
1773 * To avoid drift caused by repeated suspend/resumes,
1774 * which each can add ~1 second drift error,
1775 * try to compensate so the difference in system time
1776 * and persistent_clock time stays close to constant.
1777 */
1778 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1779 delta_delta = timespec64_sub(delta, old_delta);
1780 if (abs(delta_delta.tv_sec) >= 2) {
1781 /*
1782 * if delta_delta is too large, assume time correction
1783 * has occurred and set old_delta to the current delta.
1784 */
1785 old_delta = delta;
1786 } else {
1787 /* Otherwise try to adjust old_system to compensate */
1788 timekeeping_suspend_time =
1789 timespec64_add(timekeeping_suspend_time, delta_delta);
1790 }
1791 }
1792
1793 timekeeping_update(tk, TK_MIRROR);
1794 halt_fast_timekeeper(tk);
1795 write_seqcount_end(&tk_core.seq);
1796 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1797
1798 tick_suspend();
1799 clocksource_suspend();
1800 clockevents_suspend();
1801
1802 return 0;
1803}
1804
1805/* sysfs resume/suspend bits for timekeeping */
1806static struct syscore_ops timekeeping_syscore_ops = {
1807 .resume = timekeeping_resume,
1808 .suspend = timekeeping_suspend,
1809};
1810
1811static int __init timekeeping_init_ops(void)
1812{
1813 register_syscore_ops(&timekeeping_syscore_ops);
1814 return 0;
1815}
1816device_initcall(timekeeping_init_ops);
1817
1818/*
1819 * Apply a multiplier adjustment to the timekeeper
1820 */
1821static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1822 s64 offset,
1823 s32 mult_adj)
1824{
1825 s64 interval = tk->cycle_interval;
1826
1827 if (mult_adj == 0) {
1828 return;
1829 } else if (mult_adj == -1) {
1830 interval = -interval;
1831 offset = -offset;
1832 } else if (mult_adj != 1) {
1833 interval *= mult_adj;
1834 offset *= mult_adj;
1835 }
1836
1837 /*
1838 * So the following can be confusing.
1839 *
1840 * To keep things simple, lets assume mult_adj == 1 for now.
1841 *
1842 * When mult_adj != 1, remember that the interval and offset values
1843 * have been appropriately scaled so the math is the same.
1844 *
1845 * The basic idea here is that we're increasing the multiplier
1846 * by one, this causes the xtime_interval to be incremented by
1847 * one cycle_interval. This is because:
1848 * xtime_interval = cycle_interval * mult
1849 * So if mult is being incremented by one:
1850 * xtime_interval = cycle_interval * (mult + 1)
1851 * Its the same as:
1852 * xtime_interval = (cycle_interval * mult) + cycle_interval
1853 * Which can be shortened to:
1854 * xtime_interval += cycle_interval
1855 *
1856 * So offset stores the non-accumulated cycles. Thus the current
1857 * time (in shifted nanoseconds) is:
1858 * now = (offset * adj) + xtime_nsec
1859 * Now, even though we're adjusting the clock frequency, we have
1860 * to keep time consistent. In other words, we can't jump back
1861 * in time, and we also want to avoid jumping forward in time.
1862 *
1863 * So given the same offset value, we need the time to be the same
1864 * both before and after the freq adjustment.
1865 * now = (offset * adj_1) + xtime_nsec_1
1866 * now = (offset * adj_2) + xtime_nsec_2
1867 * So:
1868 * (offset * adj_1) + xtime_nsec_1 =
1869 * (offset * adj_2) + xtime_nsec_2
1870 * And we know:
1871 * adj_2 = adj_1 + 1
1872 * So:
1873 * (offset * adj_1) + xtime_nsec_1 =
1874 * (offset * (adj_1+1)) + xtime_nsec_2
1875 * (offset * adj_1) + xtime_nsec_1 =
1876 * (offset * adj_1) + offset + xtime_nsec_2
1877 * Canceling the sides:
1878 * xtime_nsec_1 = offset + xtime_nsec_2
1879 * Which gives us:
1880 * xtime_nsec_2 = xtime_nsec_1 - offset
1881 * Which simplfies to:
1882 * xtime_nsec -= offset
1883 */
1884 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1885 /* NTP adjustment caused clocksource mult overflow */
1886 WARN_ON_ONCE(1);
1887 return;
1888 }
1889
1890 tk->tkr_mono.mult += mult_adj;
1891 tk->xtime_interval += interval;
1892 tk->tkr_mono.xtime_nsec -= offset;
1893}
1894
1895/*
1896 * Adjust the timekeeper's multiplier to the correct frequency
1897 * and also to reduce the accumulated error value.
1898 */
1899static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1900{
1901 u32 mult;
1902
1903 /*
1904 * Determine the multiplier from the current NTP tick length.
1905 * Avoid expensive division when the tick length doesn't change.
1906 */
1907 if (likely(tk->ntp_tick == ntp_tick_length())) {
1908 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1909 } else {
1910 tk->ntp_tick = ntp_tick_length();
1911 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1912 tk->xtime_remainder, tk->cycle_interval);
1913 }
1914
1915 /*
1916 * If the clock is behind the NTP time, increase the multiplier by 1
1917 * to catch up with it. If it's ahead and there was a remainder in the
1918 * tick division, the clock will slow down. Otherwise it will stay
1919 * ahead until the tick length changes to a non-divisible value.
1920 */
1921 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1922 mult += tk->ntp_err_mult;
1923
1924 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1925
1926 if (unlikely(tk->tkr_mono.clock->maxadj &&
1927 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1928 > tk->tkr_mono.clock->maxadj))) {
1929 printk_once(KERN_WARNING
1930 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1931 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1932 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1933 }
1934
1935 /*
1936 * It may be possible that when we entered this function, xtime_nsec
1937 * was very small. Further, if we're slightly speeding the clocksource
1938 * in the code above, its possible the required corrective factor to
1939 * xtime_nsec could cause it to underflow.
1940 *
1941 * Now, since we have already accumulated the second and the NTP
1942 * subsystem has been notified via second_overflow(), we need to skip
1943 * the next update.
1944 */
1945 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1946 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1947 tk->tkr_mono.shift;
1948 tk->xtime_sec--;
1949 tk->skip_second_overflow = 1;
1950 }
1951}
1952
1953/**
1954 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1955 *
1956 * Helper function that accumulates the nsecs greater than a second
1957 * from the xtime_nsec field to the xtime_secs field.
1958 * It also calls into the NTP code to handle leapsecond processing.
1959 *
1960 */
1961static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1962{
1963 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1964 unsigned int clock_set = 0;
1965
1966 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967 int leap;
1968
1969 tk->tkr_mono.xtime_nsec -= nsecps;
1970 tk->xtime_sec++;
1971
1972 /*
1973 * Skip NTP update if this second was accumulated before,
1974 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1975 */
1976 if (unlikely(tk->skip_second_overflow)) {
1977 tk->skip_second_overflow = 0;
1978 continue;
1979 }
1980
1981 /* Figure out if its a leap sec and apply if needed */
1982 leap = second_overflow(tk->xtime_sec);
1983 if (unlikely(leap)) {
1984 struct timespec64 ts;
1985
1986 tk->xtime_sec += leap;
1987
1988 ts.tv_sec = leap;
1989 ts.tv_nsec = 0;
1990 tk_set_wall_to_mono(tk,
1991 timespec64_sub(tk->wall_to_monotonic, ts));
1992
1993 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1994
1995 clock_set = TK_CLOCK_WAS_SET;
1996 }
1997 }
1998 return clock_set;
1999}
2000
2001/**
2002 * logarithmic_accumulation - shifted accumulation of cycles
2003 *
2004 * This functions accumulates a shifted interval of cycles into
2005 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2006 * loop.
2007 *
2008 * Returns the unconsumed cycles.
2009 */
2010static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2011 u32 shift, unsigned int *clock_set)
2012{
2013 u64 interval = tk->cycle_interval << shift;
2014 u64 snsec_per_sec;
2015
2016 /* If the offset is smaller than a shifted interval, do nothing */
2017 if (offset < interval)
2018 return offset;
2019
2020 /* Accumulate one shifted interval */
2021 offset -= interval;
2022 tk->tkr_mono.cycle_last += interval;
2023 tk->tkr_raw.cycle_last += interval;
2024
2025 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2026 *clock_set |= accumulate_nsecs_to_secs(tk);
2027
2028 /* Accumulate raw time */
2029 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2030 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2031 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2032 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2033 tk->raw_sec++;
2034 }
2035
2036 /* Accumulate error between NTP and clock interval */
2037 tk->ntp_error += tk->ntp_tick << shift;
2038 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2039 (tk->ntp_error_shift + shift);
2040
2041 return offset;
2042}
2043
2044/*
2045 * timekeeping_advance - Updates the timekeeper to the current time and
2046 * current NTP tick length
2047 */
2048static void timekeeping_advance(enum timekeeping_adv_mode mode)
2049{
2050 struct timekeeper *real_tk = &tk_core.timekeeper;
2051 struct timekeeper *tk = &shadow_timekeeper;
2052 u64 offset;
2053 int shift = 0, maxshift;
2054 unsigned int clock_set = 0;
2055 unsigned long flags;
2056
2057 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2058
2059 /* Make sure we're fully resumed: */
2060 if (unlikely(timekeeping_suspended))
2061 goto out;
2062
2063#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2064 offset = real_tk->cycle_interval;
2065
2066 if (mode != TK_ADV_TICK)
2067 goto out;
2068#else
2069 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2070 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2071
2072 /* Check if there's really nothing to do */
2073 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2074 goto out;
2075#endif
2076
2077 /* Do some additional sanity checking */
2078 timekeeping_check_update(tk, offset);
2079
2080 /*
2081 * With NO_HZ we may have to accumulate many cycle_intervals
2082 * (think "ticks") worth of time at once. To do this efficiently,
2083 * we calculate the largest doubling multiple of cycle_intervals
2084 * that is smaller than the offset. We then accumulate that
2085 * chunk in one go, and then try to consume the next smaller
2086 * doubled multiple.
2087 */
2088 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2089 shift = max(0, shift);
2090 /* Bound shift to one less than what overflows tick_length */
2091 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092 shift = min(shift, maxshift);
2093 while (offset >= tk->cycle_interval) {
2094 offset = logarithmic_accumulation(tk, offset, shift,
2095 &clock_set);
2096 if (offset < tk->cycle_interval<<shift)
2097 shift--;
2098 }
2099
2100 /* Adjust the multiplier to correct NTP error */
2101 timekeeping_adjust(tk, offset);
2102
2103 /*
2104 * Finally, make sure that after the rounding
2105 * xtime_nsec isn't larger than NSEC_PER_SEC
2106 */
2107 clock_set |= accumulate_nsecs_to_secs(tk);
2108
2109 write_seqcount_begin(&tk_core.seq);
2110 /*
2111 * Update the real timekeeper.
2112 *
2113 * We could avoid this memcpy by switching pointers, but that
2114 * requires changes to all other timekeeper usage sites as
2115 * well, i.e. move the timekeeper pointer getter into the
2116 * spinlocked/seqcount protected sections. And we trade this
2117 * memcpy under the tk_core.seq against one before we start
2118 * updating.
2119 */
2120 timekeeping_update(tk, clock_set);
2121 memcpy(real_tk, tk, sizeof(*tk));
2122 /* The memcpy must come last. Do not put anything here! */
2123 write_seqcount_end(&tk_core.seq);
2124out:
2125 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2126 if (clock_set)
2127 /* Have to call _delayed version, since in irq context*/
2128 clock_was_set_delayed();
2129}
2130
2131/**
2132 * update_wall_time - Uses the current clocksource to increment the wall time
2133 *
2134 */
2135void update_wall_time(void)
2136{
2137 timekeeping_advance(TK_ADV_TICK);
2138}
2139
2140/**
2141 * getboottime64 - Return the real time of system boot.
2142 * @ts: pointer to the timespec64 to be set
2143 *
2144 * Returns the wall-time of boot in a timespec64.
2145 *
2146 * This is based on the wall_to_monotonic offset and the total suspend
2147 * time. Calls to settimeofday will affect the value returned (which
2148 * basically means that however wrong your real time clock is at boot time,
2149 * you get the right time here).
2150 */
2151void getboottime64(struct timespec64 *ts)
2152{
2153 struct timekeeper *tk = &tk_core.timekeeper;
2154 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2155
2156 *ts = ktime_to_timespec64(t);
2157}
2158EXPORT_SYMBOL_GPL(getboottime64);
2159
2160void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2161{
2162 struct timekeeper *tk = &tk_core.timekeeper;
2163 unsigned int seq;
2164
2165 do {
2166 seq = read_seqcount_begin(&tk_core.seq);
2167
2168 *ts = tk_xtime(tk);
2169 } while (read_seqcount_retry(&tk_core.seq, seq));
2170}
2171EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2172
2173void ktime_get_coarse_ts64(struct timespec64 *ts)
2174{
2175 struct timekeeper *tk = &tk_core.timekeeper;
2176 struct timespec64 now, mono;
2177 unsigned int seq;
2178
2179 do {
2180 seq = read_seqcount_begin(&tk_core.seq);
2181
2182 now = tk_xtime(tk);
2183 mono = tk->wall_to_monotonic;
2184 } while (read_seqcount_retry(&tk_core.seq, seq));
2185
2186 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2187 now.tv_nsec + mono.tv_nsec);
2188}
2189EXPORT_SYMBOL(ktime_get_coarse_ts64);
2190
2191/*
2192 * Must hold jiffies_lock
2193 */
2194void do_timer(unsigned long ticks)
2195{
2196 jiffies_64 += ticks;
2197 calc_global_load(ticks);
2198}
2199
2200/**
2201 * ktime_get_update_offsets_now - hrtimer helper
2202 * @cwsseq: pointer to check and store the clock was set sequence number
2203 * @offs_real: pointer to storage for monotonic -> realtime offset
2204 * @offs_boot: pointer to storage for monotonic -> boottime offset
2205 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2206 *
2207 * Returns current monotonic time and updates the offsets if the
2208 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2209 * different.
2210 *
2211 * Called from hrtimer_interrupt() or retrigger_next_event()
2212 */
2213ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2214 ktime_t *offs_boot, ktime_t *offs_tai)
2215{
2216 struct timekeeper *tk = &tk_core.timekeeper;
2217 unsigned int seq;
2218 ktime_t base;
2219 u64 nsecs;
2220
2221 do {
2222 seq = read_seqcount_begin(&tk_core.seq);
2223
2224 base = tk->tkr_mono.base;
2225 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2226 base = ktime_add_ns(base, nsecs);
2227
2228 if (*cwsseq != tk->clock_was_set_seq) {
2229 *cwsseq = tk->clock_was_set_seq;
2230 *offs_real = tk->offs_real;
2231 *offs_boot = tk->offs_boot;
2232 *offs_tai = tk->offs_tai;
2233 }
2234
2235 /* Handle leapsecond insertion adjustments */
2236 if (unlikely(base >= tk->next_leap_ktime))
2237 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2238
2239 } while (read_seqcount_retry(&tk_core.seq, seq));
2240
2241 return base;
2242}
2243
2244/**
2245 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2246 */
2247static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2248{
2249 if (txc->modes & ADJ_ADJTIME) {
2250 /* singleshot must not be used with any other mode bits */
2251 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2252 return -EINVAL;
2253 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2254 !capable(CAP_SYS_TIME))
2255 return -EPERM;
2256 } else {
2257 /* In order to modify anything, you gotta be super-user! */
2258 if (txc->modes && !capable(CAP_SYS_TIME))
2259 return -EPERM;
2260 /*
2261 * if the quartz is off by more than 10% then
2262 * something is VERY wrong!
2263 */
2264 if (txc->modes & ADJ_TICK &&
2265 (txc->tick < 900000/USER_HZ ||
2266 txc->tick > 1100000/USER_HZ))
2267 return -EINVAL;
2268 }
2269
2270 if (txc->modes & ADJ_SETOFFSET) {
2271 /* In order to inject time, you gotta be super-user! */
2272 if (!capable(CAP_SYS_TIME))
2273 return -EPERM;
2274
2275 /*
2276 * Validate if a timespec/timeval used to inject a time
2277 * offset is valid. Offsets can be postive or negative, so
2278 * we don't check tv_sec. The value of the timeval/timespec
2279 * is the sum of its fields,but *NOTE*:
2280 * The field tv_usec/tv_nsec must always be non-negative and
2281 * we can't have more nanoseconds/microseconds than a second.
2282 */
2283 if (txc->time.tv_usec < 0)
2284 return -EINVAL;
2285
2286 if (txc->modes & ADJ_NANO) {
2287 if (txc->time.tv_usec >= NSEC_PER_SEC)
2288 return -EINVAL;
2289 } else {
2290 if (txc->time.tv_usec >= USEC_PER_SEC)
2291 return -EINVAL;
2292 }
2293 }
2294
2295 /*
2296 * Check for potential multiplication overflows that can
2297 * only happen on 64-bit systems:
2298 */
2299 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2300 if (LLONG_MIN / PPM_SCALE > txc->freq)
2301 return -EINVAL;
2302 if (LLONG_MAX / PPM_SCALE < txc->freq)
2303 return -EINVAL;
2304 }
2305
2306 return 0;
2307}
2308
2309
2310/**
2311 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2312 */
2313int do_adjtimex(struct __kernel_timex *txc)
2314{
2315 struct timekeeper *tk = &tk_core.timekeeper;
2316 struct audit_ntp_data ad;
2317 unsigned long flags;
2318 struct timespec64 ts;
2319 s32 orig_tai, tai;
2320 int ret;
2321
2322 /* Validate the data before disabling interrupts */
2323 ret = timekeeping_validate_timex(txc);
2324 if (ret)
2325 return ret;
2326
2327 if (txc->modes & ADJ_SETOFFSET) {
2328 struct timespec64 delta;
2329 delta.tv_sec = txc->time.tv_sec;
2330 delta.tv_nsec = txc->time.tv_usec;
2331 if (!(txc->modes & ADJ_NANO))
2332 delta.tv_nsec *= 1000;
2333 ret = timekeeping_inject_offset(&delta);
2334 if (ret)
2335 return ret;
2336
2337 audit_tk_injoffset(delta);
2338 }
2339
2340 audit_ntp_init(&ad);
2341
2342 ktime_get_real_ts64(&ts);
2343
2344 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2345 write_seqcount_begin(&tk_core.seq);
2346
2347 orig_tai = tai = tk->tai_offset;
2348 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2349
2350 if (tai != orig_tai) {
2351 __timekeeping_set_tai_offset(tk, tai);
2352 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2353 }
2354 tk_update_leap_state(tk);
2355
2356 write_seqcount_end(&tk_core.seq);
2357 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2358
2359 audit_ntp_log(&ad);
2360
2361 /* Update the multiplier immediately if frequency was set directly */
2362 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2363 timekeeping_advance(TK_ADV_FREQ);
2364
2365 if (tai != orig_tai)
2366 clock_was_set();
2367
2368 ntp_notify_cmos_timer();
2369
2370 return ret;
2371}
2372
2373#ifdef CONFIG_NTP_PPS
2374/**
2375 * hardpps() - Accessor function to NTP __hardpps function
2376 */
2377void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2378{
2379 unsigned long flags;
2380
2381 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2382 write_seqcount_begin(&tk_core.seq);
2383
2384 __hardpps(phase_ts, raw_ts);
2385
2386 write_seqcount_end(&tk_core.seq);
2387 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2388}
2389EXPORT_SYMBOL(hardpps);
2390#endif /* CONFIG_NTP_PPS */
2391
2392/**
2393 * xtime_update() - advances the timekeeping infrastructure
2394 * @ticks: number of ticks, that have elapsed since the last call.
2395 *
2396 * Must be called with interrupts disabled.
2397 */
2398void xtime_update(unsigned long ticks)
2399{
2400 write_seqlock(&jiffies_lock);
2401 do_timer(ticks);
2402 write_sequnlock(&jiffies_lock);
2403 update_wall_time();
2404}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6#include <linux/timekeeper_internal.h>
7#include <linux/module.h>
8#include <linux/interrupt.h>
9#include <linux/percpu.h>
10#include <linux/init.h>
11#include <linux/mm.h>
12#include <linux/nmi.h>
13#include <linux/sched.h>
14#include <linux/sched/loadavg.h>
15#include <linux/sched/clock.h>
16#include <linux/syscore_ops.h>
17#include <linux/clocksource.h>
18#include <linux/jiffies.h>
19#include <linux/time.h>
20#include <linux/timex.h>
21#include <linux/tick.h>
22#include <linux/stop_machine.h>
23#include <linux/pvclock_gtod.h>
24#include <linux/compiler.h>
25#include <linux/audit.h>
26#include <linux/random.h>
27
28#include "tick-internal.h"
29#include "ntp_internal.h"
30#include "timekeeping_internal.h"
31
32#define TK_CLEAR_NTP (1 << 0)
33#define TK_CLOCK_WAS_SET (1 << 1)
34
35#define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
36
37enum timekeeping_adv_mode {
38 /* Update timekeeper when a tick has passed */
39 TK_ADV_TICK,
40
41 /* Update timekeeper on a direct frequency change */
42 TK_ADV_FREQ
43};
44
45/*
46 * The most important data for readout fits into a single 64 byte
47 * cache line.
48 */
49struct tk_data {
50 seqcount_raw_spinlock_t seq;
51 struct timekeeper timekeeper;
52 struct timekeeper shadow_timekeeper;
53 raw_spinlock_t lock;
54} ____cacheline_aligned;
55
56static struct tk_data tk_core;
57
58/* flag for if timekeeping is suspended */
59int __read_mostly timekeeping_suspended;
60
61/**
62 * struct tk_fast - NMI safe timekeeper
63 * @seq: Sequence counter for protecting updates. The lowest bit
64 * is the index for the tk_read_base array
65 * @base: tk_read_base array. Access is indexed by the lowest bit of
66 * @seq.
67 *
68 * See @update_fast_timekeeper() below.
69 */
70struct tk_fast {
71 seqcount_latch_t seq;
72 struct tk_read_base base[2];
73};
74
75/* Suspend-time cycles value for halted fast timekeeper. */
76static u64 cycles_at_suspend;
77
78static u64 dummy_clock_read(struct clocksource *cs)
79{
80 if (timekeeping_suspended)
81 return cycles_at_suspend;
82 return local_clock();
83}
84
85static struct clocksource dummy_clock = {
86 .read = dummy_clock_read,
87};
88
89/*
90 * Boot time initialization which allows local_clock() to be utilized
91 * during early boot when clocksources are not available. local_clock()
92 * returns nanoseconds already so no conversion is required, hence mult=1
93 * and shift=0. When the first proper clocksource is installed then
94 * the fast time keepers are updated with the correct values.
95 */
96#define FAST_TK_INIT \
97 { \
98 .clock = &dummy_clock, \
99 .mask = CLOCKSOURCE_MASK(64), \
100 .mult = 1, \
101 .shift = 0, \
102 }
103
104static struct tk_fast tk_fast_mono ____cacheline_aligned = {
105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
106 .base[0] = FAST_TK_INIT,
107 .base[1] = FAST_TK_INIT,
108};
109
110static struct tk_fast tk_fast_raw ____cacheline_aligned = {
111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
112 .base[0] = FAST_TK_INIT,
113 .base[1] = FAST_TK_INIT,
114};
115
116unsigned long timekeeper_lock_irqsave(void)
117{
118 unsigned long flags;
119
120 raw_spin_lock_irqsave(&tk_core.lock, flags);
121 return flags;
122}
123
124void timekeeper_unlock_irqrestore(unsigned long flags)
125{
126 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
127}
128
129/*
130 * Multigrain timestamps require tracking the latest fine-grained timestamp
131 * that has been issued, and never returning a coarse-grained timestamp that is
132 * earlier than that value.
133 *
134 * mg_floor represents the latest fine-grained time that has been handed out as
135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
136 * converted to a realtime clock value on an as-needed basis.
137 *
138 * Maintaining mg_floor ensures the multigrain interfaces never issue a
139 * timestamp earlier than one that has been previously issued.
140 *
141 * The exception to this rule is when there is a backward realtime clock jump. If
142 * such an event occurs, a timestamp can appear to be earlier than a previous one.
143 */
144static __cacheline_aligned_in_smp atomic64_t mg_floor;
145
146static inline void tk_normalize_xtime(struct timekeeper *tk)
147{
148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
150 tk->xtime_sec++;
151 }
152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
154 tk->raw_sec++;
155 }
156}
157
158static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
159{
160 struct timespec64 ts;
161
162 ts.tv_sec = tk->xtime_sec;
163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
164 return ts;
165}
166
167static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
168{
169 tk->xtime_sec = ts->tv_sec;
170 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
171}
172
173static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
174{
175 tk->xtime_sec += ts->tv_sec;
176 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
177 tk_normalize_xtime(tk);
178}
179
180static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
181{
182 struct timespec64 tmp;
183
184 /*
185 * Verify consistency of: offset_real = -wall_to_monotonic
186 * before modifying anything
187 */
188 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
189 -tk->wall_to_monotonic.tv_nsec);
190 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
191 tk->wall_to_monotonic = wtm;
192 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
193 /* Paired with READ_ONCE() in ktime_mono_to_any() */
194 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
195 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
196}
197
198static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
199{
200 /* Paired with READ_ONCE() in ktime_mono_to_any() */
201 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
202 /*
203 * Timespec representation for VDSO update to avoid 64bit division
204 * on every update.
205 */
206 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
207}
208
209/*
210 * tk_clock_read - atomic clocksource read() helper
211 *
212 * This helper is necessary to use in the read paths because, while the
213 * seqcount ensures we don't return a bad value while structures are updated,
214 * it doesn't protect from potential crashes. There is the possibility that
215 * the tkr's clocksource may change between the read reference, and the
216 * clock reference passed to the read function. This can cause crashes if
217 * the wrong clocksource is passed to the wrong read function.
218 * This isn't necessary to use when holding the tk_core.lock or doing
219 * a read of the fast-timekeeper tkrs (which is protected by its own locking
220 * and update logic).
221 */
222static inline u64 tk_clock_read(const struct tk_read_base *tkr)
223{
224 struct clocksource *clock = READ_ONCE(tkr->clock);
225
226 return clock->read(clock);
227}
228
229/**
230 * tk_setup_internals - Set up internals to use clocksource clock.
231 *
232 * @tk: The target timekeeper to setup.
233 * @clock: Pointer to clocksource.
234 *
235 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
236 * pair and interval request.
237 *
238 * Unless you're the timekeeping code, you should not be using this!
239 */
240static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
241{
242 u64 interval;
243 u64 tmp, ntpinterval;
244 struct clocksource *old_clock;
245
246 ++tk->cs_was_changed_seq;
247 old_clock = tk->tkr_mono.clock;
248 tk->tkr_mono.clock = clock;
249 tk->tkr_mono.mask = clock->mask;
250 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
251
252 tk->tkr_raw.clock = clock;
253 tk->tkr_raw.mask = clock->mask;
254 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
255
256 /* Do the ns -> cycle conversion first, using original mult */
257 tmp = NTP_INTERVAL_LENGTH;
258 tmp <<= clock->shift;
259 ntpinterval = tmp;
260 tmp += clock->mult/2;
261 do_div(tmp, clock->mult);
262 if (tmp == 0)
263 tmp = 1;
264
265 interval = (u64) tmp;
266 tk->cycle_interval = interval;
267
268 /* Go back from cycles -> shifted ns */
269 tk->xtime_interval = interval * clock->mult;
270 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
271 tk->raw_interval = interval * clock->mult;
272
273 /* if changing clocks, convert xtime_nsec shift units */
274 if (old_clock) {
275 int shift_change = clock->shift - old_clock->shift;
276 if (shift_change < 0) {
277 tk->tkr_mono.xtime_nsec >>= -shift_change;
278 tk->tkr_raw.xtime_nsec >>= -shift_change;
279 } else {
280 tk->tkr_mono.xtime_nsec <<= shift_change;
281 tk->tkr_raw.xtime_nsec <<= shift_change;
282 }
283 }
284
285 tk->tkr_mono.shift = clock->shift;
286 tk->tkr_raw.shift = clock->shift;
287
288 tk->ntp_error = 0;
289 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
290 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
291
292 /*
293 * The timekeeper keeps its own mult values for the currently
294 * active clocksource. These value will be adjusted via NTP
295 * to counteract clock drifting.
296 */
297 tk->tkr_mono.mult = clock->mult;
298 tk->tkr_raw.mult = clock->mult;
299 tk->ntp_err_mult = 0;
300 tk->skip_second_overflow = 0;
301}
302
303/* Timekeeper helper functions. */
304static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
305{
306 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
307}
308
309static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
310{
311 /* Calculate the delta since the last update_wall_time() */
312 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
313
314 /*
315 * This detects both negative motion and the case where the delta
316 * overflows the multiplication with tkr->mult.
317 */
318 if (unlikely(delta > tkr->clock->max_cycles)) {
319 /*
320 * Handle clocksource inconsistency between CPUs to prevent
321 * time from going backwards by checking for the MSB of the
322 * mask being set in the delta.
323 */
324 if (delta & ~(mask >> 1))
325 return tkr->xtime_nsec >> tkr->shift;
326
327 return delta_to_ns_safe(tkr, delta);
328 }
329
330 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
331}
332
333static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
334{
335 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
336}
337
338/**
339 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
340 * @tkr: Timekeeping readout base from which we take the update
341 * @tkf: Pointer to NMI safe timekeeper
342 *
343 * We want to use this from any context including NMI and tracing /
344 * instrumenting the timekeeping code itself.
345 *
346 * Employ the latch technique; see @write_seqcount_latch.
347 *
348 * So if a NMI hits the update of base[0] then it will use base[1]
349 * which is still consistent. In the worst case this can result is a
350 * slightly wrong timestamp (a few nanoseconds). See
351 * @ktime_get_mono_fast_ns.
352 */
353static void update_fast_timekeeper(const struct tk_read_base *tkr,
354 struct tk_fast *tkf)
355{
356 struct tk_read_base *base = tkf->base;
357
358 /* Force readers off to base[1] */
359 write_seqcount_latch_begin(&tkf->seq);
360
361 /* Update base[0] */
362 memcpy(base, tkr, sizeof(*base));
363
364 /* Force readers back to base[0] */
365 write_seqcount_latch(&tkf->seq);
366
367 /* Update base[1] */
368 memcpy(base + 1, base, sizeof(*base));
369
370 write_seqcount_latch_end(&tkf->seq);
371}
372
373static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
374{
375 struct tk_read_base *tkr;
376 unsigned int seq;
377 u64 now;
378
379 do {
380 seq = read_seqcount_latch(&tkf->seq);
381 tkr = tkf->base + (seq & 0x01);
382 now = ktime_to_ns(tkr->base);
383 now += timekeeping_get_ns(tkr);
384 } while (read_seqcount_latch_retry(&tkf->seq, seq));
385
386 return now;
387}
388
389/**
390 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
391 *
392 * This timestamp is not guaranteed to be monotonic across an update.
393 * The timestamp is calculated by:
394 *
395 * now = base_mono + clock_delta * slope
396 *
397 * So if the update lowers the slope, readers who are forced to the
398 * not yet updated second array are still using the old steeper slope.
399 *
400 * tmono
401 * ^
402 * | o n
403 * | o n
404 * | u
405 * | o
406 * |o
407 * |12345678---> reader order
408 *
409 * o = old slope
410 * u = update
411 * n = new slope
412 *
413 * So reader 6 will observe time going backwards versus reader 5.
414 *
415 * While other CPUs are likely to be able to observe that, the only way
416 * for a CPU local observation is when an NMI hits in the middle of
417 * the update. Timestamps taken from that NMI context might be ahead
418 * of the following timestamps. Callers need to be aware of that and
419 * deal with it.
420 */
421u64 notrace ktime_get_mono_fast_ns(void)
422{
423 return __ktime_get_fast_ns(&tk_fast_mono);
424}
425EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
426
427/**
428 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
429 *
430 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
431 * conversion factor is not affected by NTP/PTP correction.
432 */
433u64 notrace ktime_get_raw_fast_ns(void)
434{
435 return __ktime_get_fast_ns(&tk_fast_raw);
436}
437EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
438
439/**
440 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
441 *
442 * To keep it NMI safe since we're accessing from tracing, we're not using a
443 * separate timekeeper with updates to monotonic clock and boot offset
444 * protected with seqcounts. This has the following minor side effects:
445 *
446 * (1) Its possible that a timestamp be taken after the boot offset is updated
447 * but before the timekeeper is updated. If this happens, the new boot offset
448 * is added to the old timekeeping making the clock appear to update slightly
449 * earlier:
450 * CPU 0 CPU 1
451 * timekeeping_inject_sleeptime64()
452 * __timekeeping_inject_sleeptime(tk, delta);
453 * timestamp();
454 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
455 *
456 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
457 * partially updated. Since the tk->offs_boot update is a rare event, this
458 * should be a rare occurrence which postprocessing should be able to handle.
459 *
460 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
461 * apply as well.
462 */
463u64 notrace ktime_get_boot_fast_ns(void)
464{
465 struct timekeeper *tk = &tk_core.timekeeper;
466
467 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
468}
469EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
470
471/**
472 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
473 *
474 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
475 * mono time and the TAI offset are not read atomically which may yield wrong
476 * readouts. However, an update of the TAI offset is an rare event e.g., caused
477 * by settime or adjtimex with an offset. The user of this function has to deal
478 * with the possibility of wrong timestamps in post processing.
479 */
480u64 notrace ktime_get_tai_fast_ns(void)
481{
482 struct timekeeper *tk = &tk_core.timekeeper;
483
484 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
485}
486EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
487
488static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
489{
490 struct tk_read_base *tkr;
491 u64 basem, baser, delta;
492 unsigned int seq;
493
494 do {
495 seq = raw_read_seqcount_latch(&tkf->seq);
496 tkr = tkf->base + (seq & 0x01);
497 basem = ktime_to_ns(tkr->base);
498 baser = ktime_to_ns(tkr->base_real);
499 delta = timekeeping_get_ns(tkr);
500 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
501
502 if (mono)
503 *mono = basem + delta;
504 return baser + delta;
505}
506
507/**
508 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
509 *
510 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
511 */
512u64 ktime_get_real_fast_ns(void)
513{
514 return __ktime_get_real_fast(&tk_fast_mono, NULL);
515}
516EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
517
518/**
519 * ktime_get_fast_timestamps: - NMI safe timestamps
520 * @snapshot: Pointer to timestamp storage
521 *
522 * Stores clock monotonic, boottime and realtime timestamps.
523 *
524 * Boot time is a racy access on 32bit systems if the sleep time injection
525 * happens late during resume and not in timekeeping_resume(). That could
526 * be avoided by expanding struct tk_read_base with boot offset for 32bit
527 * and adding more overhead to the update. As this is a hard to observe
528 * once per resume event which can be filtered with reasonable effort using
529 * the accurate mono/real timestamps, it's probably not worth the trouble.
530 *
531 * Aside of that it might be possible on 32 and 64 bit to observe the
532 * following when the sleep time injection happens late:
533 *
534 * CPU 0 CPU 1
535 * timekeeping_resume()
536 * ktime_get_fast_timestamps()
537 * mono, real = __ktime_get_real_fast()
538 * inject_sleep_time()
539 * update boot offset
540 * boot = mono + bootoffset;
541 *
542 * That means that boot time already has the sleep time adjustment, but
543 * real time does not. On the next readout both are in sync again.
544 *
545 * Preventing this for 64bit is not really feasible without destroying the
546 * careful cache layout of the timekeeper because the sequence count and
547 * struct tk_read_base would then need two cache lines instead of one.
548 *
549 * Access to the time keeper clock source is disabled across the innermost
550 * steps of suspend/resume. The accessors still work, but the timestamps
551 * are frozen until time keeping is resumed which happens very early.
552 *
553 * For regular suspend/resume there is no observable difference vs. sched
554 * clock, but it might affect some of the nasty low level debug printks.
555 *
556 * OTOH, access to sched clock is not guaranteed across suspend/resume on
557 * all systems either so it depends on the hardware in use.
558 *
559 * If that turns out to be a real problem then this could be mitigated by
560 * using sched clock in a similar way as during early boot. But it's not as
561 * trivial as on early boot because it needs some careful protection
562 * against the clock monotonic timestamp jumping backwards on resume.
563 */
564void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
565{
566 struct timekeeper *tk = &tk_core.timekeeper;
567
568 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
569 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
570}
571
572/**
573 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
574 * @tk: Timekeeper to snapshot.
575 *
576 * It generally is unsafe to access the clocksource after timekeeping has been
577 * suspended, so take a snapshot of the readout base of @tk and use it as the
578 * fast timekeeper's readout base while suspended. It will return the same
579 * number of cycles every time until timekeeping is resumed at which time the
580 * proper readout base for the fast timekeeper will be restored automatically.
581 */
582static void halt_fast_timekeeper(const struct timekeeper *tk)
583{
584 static struct tk_read_base tkr_dummy;
585 const struct tk_read_base *tkr = &tk->tkr_mono;
586
587 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
588 cycles_at_suspend = tk_clock_read(tkr);
589 tkr_dummy.clock = &dummy_clock;
590 tkr_dummy.base_real = tkr->base + tk->offs_real;
591 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
592
593 tkr = &tk->tkr_raw;
594 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
595 tkr_dummy.clock = &dummy_clock;
596 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
597}
598
599static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
600
601static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
602{
603 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
604}
605
606/**
607 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
608 * @nb: Pointer to the notifier block to register
609 */
610int pvclock_gtod_register_notifier(struct notifier_block *nb)
611{
612 struct timekeeper *tk = &tk_core.timekeeper;
613 int ret;
614
615 guard(raw_spinlock_irqsave)(&tk_core.lock);
616 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
617 update_pvclock_gtod(tk, true);
618
619 return ret;
620}
621EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
622
623/**
624 * pvclock_gtod_unregister_notifier - unregister a pvclock
625 * timedata update listener
626 * @nb: Pointer to the notifier block to unregister
627 */
628int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
629{
630 guard(raw_spinlock_irqsave)(&tk_core.lock);
631 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
632}
633EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
634
635/*
636 * tk_update_leap_state - helper to update the next_leap_ktime
637 */
638static inline void tk_update_leap_state(struct timekeeper *tk)
639{
640 tk->next_leap_ktime = ntp_get_next_leap();
641 if (tk->next_leap_ktime != KTIME_MAX)
642 /* Convert to monotonic time */
643 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
644}
645
646/*
647 * Leap state update for both shadow and the real timekeeper
648 * Separate to spare a full memcpy() of the timekeeper.
649 */
650static void tk_update_leap_state_all(struct tk_data *tkd)
651{
652 write_seqcount_begin(&tkd->seq);
653 tk_update_leap_state(&tkd->shadow_timekeeper);
654 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
655 write_seqcount_end(&tkd->seq);
656}
657
658/*
659 * Update the ktime_t based scalar nsec members of the timekeeper
660 */
661static inline void tk_update_ktime_data(struct timekeeper *tk)
662{
663 u64 seconds;
664 u32 nsec;
665
666 /*
667 * The xtime based monotonic readout is:
668 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
669 * The ktime based monotonic readout is:
670 * nsec = base_mono + now();
671 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
672 */
673 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
674 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
675 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
676
677 /*
678 * The sum of the nanoseconds portions of xtime and
679 * wall_to_monotonic can be greater/equal one second. Take
680 * this into account before updating tk->ktime_sec.
681 */
682 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
683 if (nsec >= NSEC_PER_SEC)
684 seconds++;
685 tk->ktime_sec = seconds;
686
687 /* Update the monotonic raw base */
688 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
689}
690
691/*
692 * Restore the shadow timekeeper from the real timekeeper.
693 */
694static void timekeeping_restore_shadow(struct tk_data *tkd)
695{
696 lockdep_assert_held(&tkd->lock);
697 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
698}
699
700static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
701{
702 struct timekeeper *tk = &tk_core.shadow_timekeeper;
703
704 lockdep_assert_held(&tkd->lock);
705
706 /*
707 * Block out readers before running the updates below because that
708 * updates VDSO and other time related infrastructure. Not blocking
709 * the readers might let a reader see time going backwards when
710 * reading from the VDSO after the VDSO update and then reading in
711 * the kernel from the timekeeper before that got updated.
712 */
713 write_seqcount_begin(&tkd->seq);
714
715 if (action & TK_CLEAR_NTP) {
716 tk->ntp_error = 0;
717 ntp_clear();
718 }
719
720 tk_update_leap_state(tk);
721 tk_update_ktime_data(tk);
722
723 update_vsyscall(tk);
724 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
725
726 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
727 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
728 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
729
730 if (action & TK_CLOCK_WAS_SET)
731 tk->clock_was_set_seq++;
732
733 /*
734 * Update the real timekeeper.
735 *
736 * We could avoid this memcpy() by switching pointers, but that has
737 * the downside that the reader side does not longer benefit from
738 * the cacheline optimized data layout of the timekeeper and requires
739 * another indirection.
740 */
741 memcpy(&tkd->timekeeper, tk, sizeof(*tk));
742 write_seqcount_end(&tkd->seq);
743}
744
745/**
746 * timekeeping_forward_now - update clock to the current time
747 * @tk: Pointer to the timekeeper to update
748 *
749 * Forward the current clock to update its state since the last call to
750 * update_wall_time(). This is useful before significant clock changes,
751 * as it avoids having to deal with this time offset explicitly.
752 */
753static void timekeeping_forward_now(struct timekeeper *tk)
754{
755 u64 cycle_now, delta;
756
757 cycle_now = tk_clock_read(&tk->tkr_mono);
758 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
759 tk->tkr_mono.clock->max_raw_delta);
760 tk->tkr_mono.cycle_last = cycle_now;
761 tk->tkr_raw.cycle_last = cycle_now;
762
763 while (delta > 0) {
764 u64 max = tk->tkr_mono.clock->max_cycles;
765 u64 incr = delta < max ? delta : max;
766
767 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
768 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
769 tk_normalize_xtime(tk);
770 delta -= incr;
771 }
772}
773
774/**
775 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
776 * @ts: pointer to the timespec to be set
777 *
778 * Returns the time of day in a timespec64 (WARN if suspended).
779 */
780void ktime_get_real_ts64(struct timespec64 *ts)
781{
782 struct timekeeper *tk = &tk_core.timekeeper;
783 unsigned int seq;
784 u64 nsecs;
785
786 WARN_ON(timekeeping_suspended);
787
788 do {
789 seq = read_seqcount_begin(&tk_core.seq);
790
791 ts->tv_sec = tk->xtime_sec;
792 nsecs = timekeeping_get_ns(&tk->tkr_mono);
793
794 } while (read_seqcount_retry(&tk_core.seq, seq));
795
796 ts->tv_nsec = 0;
797 timespec64_add_ns(ts, nsecs);
798}
799EXPORT_SYMBOL(ktime_get_real_ts64);
800
801ktime_t ktime_get(void)
802{
803 struct timekeeper *tk = &tk_core.timekeeper;
804 unsigned int seq;
805 ktime_t base;
806 u64 nsecs;
807
808 WARN_ON(timekeeping_suspended);
809
810 do {
811 seq = read_seqcount_begin(&tk_core.seq);
812 base = tk->tkr_mono.base;
813 nsecs = timekeeping_get_ns(&tk->tkr_mono);
814
815 } while (read_seqcount_retry(&tk_core.seq, seq));
816
817 return ktime_add_ns(base, nsecs);
818}
819EXPORT_SYMBOL_GPL(ktime_get);
820
821u32 ktime_get_resolution_ns(void)
822{
823 struct timekeeper *tk = &tk_core.timekeeper;
824 unsigned int seq;
825 u32 nsecs;
826
827 WARN_ON(timekeeping_suspended);
828
829 do {
830 seq = read_seqcount_begin(&tk_core.seq);
831 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
832 } while (read_seqcount_retry(&tk_core.seq, seq));
833
834 return nsecs;
835}
836EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
837
838static ktime_t *offsets[TK_OFFS_MAX] = {
839 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
840 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
841 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
842};
843
844ktime_t ktime_get_with_offset(enum tk_offsets offs)
845{
846 struct timekeeper *tk = &tk_core.timekeeper;
847 unsigned int seq;
848 ktime_t base, *offset = offsets[offs];
849 u64 nsecs;
850
851 WARN_ON(timekeeping_suspended);
852
853 do {
854 seq = read_seqcount_begin(&tk_core.seq);
855 base = ktime_add(tk->tkr_mono.base, *offset);
856 nsecs = timekeeping_get_ns(&tk->tkr_mono);
857
858 } while (read_seqcount_retry(&tk_core.seq, seq));
859
860 return ktime_add_ns(base, nsecs);
861
862}
863EXPORT_SYMBOL_GPL(ktime_get_with_offset);
864
865ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
866{
867 struct timekeeper *tk = &tk_core.timekeeper;
868 unsigned int seq;
869 ktime_t base, *offset = offsets[offs];
870 u64 nsecs;
871
872 WARN_ON(timekeeping_suspended);
873
874 do {
875 seq = read_seqcount_begin(&tk_core.seq);
876 base = ktime_add(tk->tkr_mono.base, *offset);
877 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
878
879 } while (read_seqcount_retry(&tk_core.seq, seq));
880
881 return ktime_add_ns(base, nsecs);
882}
883EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
884
885/**
886 * ktime_mono_to_any() - convert monotonic time to any other time
887 * @tmono: time to convert.
888 * @offs: which offset to use
889 */
890ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
891{
892 ktime_t *offset = offsets[offs];
893 unsigned int seq;
894 ktime_t tconv;
895
896 if (IS_ENABLED(CONFIG_64BIT)) {
897 /*
898 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
899 * tk_update_sleep_time().
900 */
901 return ktime_add(tmono, READ_ONCE(*offset));
902 }
903
904 do {
905 seq = read_seqcount_begin(&tk_core.seq);
906 tconv = ktime_add(tmono, *offset);
907 } while (read_seqcount_retry(&tk_core.seq, seq));
908
909 return tconv;
910}
911EXPORT_SYMBOL_GPL(ktime_mono_to_any);
912
913/**
914 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
915 */
916ktime_t ktime_get_raw(void)
917{
918 struct timekeeper *tk = &tk_core.timekeeper;
919 unsigned int seq;
920 ktime_t base;
921 u64 nsecs;
922
923 do {
924 seq = read_seqcount_begin(&tk_core.seq);
925 base = tk->tkr_raw.base;
926 nsecs = timekeeping_get_ns(&tk->tkr_raw);
927
928 } while (read_seqcount_retry(&tk_core.seq, seq));
929
930 return ktime_add_ns(base, nsecs);
931}
932EXPORT_SYMBOL_GPL(ktime_get_raw);
933
934/**
935 * ktime_get_ts64 - get the monotonic clock in timespec64 format
936 * @ts: pointer to timespec variable
937 *
938 * The function calculates the monotonic clock from the realtime
939 * clock and the wall_to_monotonic offset and stores the result
940 * in normalized timespec64 format in the variable pointed to by @ts.
941 */
942void ktime_get_ts64(struct timespec64 *ts)
943{
944 struct timekeeper *tk = &tk_core.timekeeper;
945 struct timespec64 tomono;
946 unsigned int seq;
947 u64 nsec;
948
949 WARN_ON(timekeeping_suspended);
950
951 do {
952 seq = read_seqcount_begin(&tk_core.seq);
953 ts->tv_sec = tk->xtime_sec;
954 nsec = timekeeping_get_ns(&tk->tkr_mono);
955 tomono = tk->wall_to_monotonic;
956
957 } while (read_seqcount_retry(&tk_core.seq, seq));
958
959 ts->tv_sec += tomono.tv_sec;
960 ts->tv_nsec = 0;
961 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
962}
963EXPORT_SYMBOL_GPL(ktime_get_ts64);
964
965/**
966 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
967 *
968 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
969 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
970 * works on both 32 and 64 bit systems. On 32 bit systems the readout
971 * covers ~136 years of uptime which should be enough to prevent
972 * premature wrap arounds.
973 */
974time64_t ktime_get_seconds(void)
975{
976 struct timekeeper *tk = &tk_core.timekeeper;
977
978 WARN_ON(timekeeping_suspended);
979 return tk->ktime_sec;
980}
981EXPORT_SYMBOL_GPL(ktime_get_seconds);
982
983/**
984 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
985 *
986 * Returns the wall clock seconds since 1970.
987 *
988 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
989 * 32bit systems the access must be protected with the sequence
990 * counter to provide "atomic" access to the 64bit tk->xtime_sec
991 * value.
992 */
993time64_t ktime_get_real_seconds(void)
994{
995 struct timekeeper *tk = &tk_core.timekeeper;
996 time64_t seconds;
997 unsigned int seq;
998
999 if (IS_ENABLED(CONFIG_64BIT))
1000 return tk->xtime_sec;
1001
1002 do {
1003 seq = read_seqcount_begin(&tk_core.seq);
1004 seconds = tk->xtime_sec;
1005
1006 } while (read_seqcount_retry(&tk_core.seq, seq));
1007
1008 return seconds;
1009}
1010EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1011
1012/**
1013 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1014 * but without the sequence counter protect. This internal function
1015 * is called just when timekeeping lock is already held.
1016 */
1017noinstr time64_t __ktime_get_real_seconds(void)
1018{
1019 struct timekeeper *tk = &tk_core.timekeeper;
1020
1021 return tk->xtime_sec;
1022}
1023
1024/**
1025 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1026 * @systime_snapshot: pointer to struct receiving the system time snapshot
1027 */
1028void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1029{
1030 struct timekeeper *tk = &tk_core.timekeeper;
1031 unsigned int seq;
1032 ktime_t base_raw;
1033 ktime_t base_real;
1034 ktime_t base_boot;
1035 u64 nsec_raw;
1036 u64 nsec_real;
1037 u64 now;
1038
1039 WARN_ON_ONCE(timekeeping_suspended);
1040
1041 do {
1042 seq = read_seqcount_begin(&tk_core.seq);
1043 now = tk_clock_read(&tk->tkr_mono);
1044 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1045 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1046 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1047 base_real = ktime_add(tk->tkr_mono.base,
1048 tk_core.timekeeper.offs_real);
1049 base_boot = ktime_add(tk->tkr_mono.base,
1050 tk_core.timekeeper.offs_boot);
1051 base_raw = tk->tkr_raw.base;
1052 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1053 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1054 } while (read_seqcount_retry(&tk_core.seq, seq));
1055
1056 systime_snapshot->cycles = now;
1057 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1058 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
1059 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1060}
1061EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1062
1063/* Scale base by mult/div checking for overflow */
1064static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1065{
1066 u64 tmp, rem;
1067
1068 tmp = div64_u64_rem(*base, div, &rem);
1069
1070 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1071 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1072 return -EOVERFLOW;
1073 tmp *= mult;
1074
1075 rem = div64_u64(rem * mult, div);
1076 *base = tmp + rem;
1077 return 0;
1078}
1079
1080/**
1081 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1082 * @history: Snapshot representing start of history
1083 * @partial_history_cycles: Cycle offset into history (fractional part)
1084 * @total_history_cycles: Total history length in cycles
1085 * @discontinuity: True indicates clock was set on history period
1086 * @ts: Cross timestamp that should be adjusted using
1087 * partial/total ratio
1088 *
1089 * Helper function used by get_device_system_crosststamp() to correct the
1090 * crosstimestamp corresponding to the start of the current interval to the
1091 * system counter value (timestamp point) provided by the driver. The
1092 * total_history_* quantities are the total history starting at the provided
1093 * reference point and ending at the start of the current interval. The cycle
1094 * count between the driver timestamp point and the start of the current
1095 * interval is partial_history_cycles.
1096 */
1097static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1098 u64 partial_history_cycles,
1099 u64 total_history_cycles,
1100 bool discontinuity,
1101 struct system_device_crosststamp *ts)
1102{
1103 struct timekeeper *tk = &tk_core.timekeeper;
1104 u64 corr_raw, corr_real;
1105 bool interp_forward;
1106 int ret;
1107
1108 if (total_history_cycles == 0 || partial_history_cycles == 0)
1109 return 0;
1110
1111 /* Interpolate shortest distance from beginning or end of history */
1112 interp_forward = partial_history_cycles > total_history_cycles / 2;
1113 partial_history_cycles = interp_forward ?
1114 total_history_cycles - partial_history_cycles :
1115 partial_history_cycles;
1116
1117 /*
1118 * Scale the monotonic raw time delta by:
1119 * partial_history_cycles / total_history_cycles
1120 */
1121 corr_raw = (u64)ktime_to_ns(
1122 ktime_sub(ts->sys_monoraw, history->raw));
1123 ret = scale64_check_overflow(partial_history_cycles,
1124 total_history_cycles, &corr_raw);
1125 if (ret)
1126 return ret;
1127
1128 /*
1129 * If there is a discontinuity in the history, scale monotonic raw
1130 * correction by:
1131 * mult(real)/mult(raw) yielding the realtime correction
1132 * Otherwise, calculate the realtime correction similar to monotonic
1133 * raw calculation
1134 */
1135 if (discontinuity) {
1136 corr_real = mul_u64_u32_div
1137 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1138 } else {
1139 corr_real = (u64)ktime_to_ns(
1140 ktime_sub(ts->sys_realtime, history->real));
1141 ret = scale64_check_overflow(partial_history_cycles,
1142 total_history_cycles, &corr_real);
1143 if (ret)
1144 return ret;
1145 }
1146
1147 /* Fixup monotonic raw and real time time values */
1148 if (interp_forward) {
1149 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1150 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1151 } else {
1152 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1153 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1154 }
1155
1156 return 0;
1157}
1158
1159/*
1160 * timestamp_in_interval - true if ts is chronologically in [start, end]
1161 *
1162 * True if ts occurs chronologically at or after start, and before or at end.
1163 */
1164static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1165{
1166 if (ts >= start && ts <= end)
1167 return true;
1168 if (start > end && (ts >= start || ts <= end))
1169 return true;
1170 return false;
1171}
1172
1173static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1174{
1175 u64 rem, res;
1176
1177 if (!numerator || !denominator)
1178 return false;
1179
1180 res = div64_u64_rem(*val, denominator, &rem) * numerator;
1181 *val = res + div_u64(rem * numerator, denominator);
1182 return true;
1183}
1184
1185static bool convert_base_to_cs(struct system_counterval_t *scv)
1186{
1187 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1188 struct clocksource_base *base;
1189 u32 num, den;
1190
1191 /* The timestamp was taken from the time keeper clock source */
1192 if (cs->id == scv->cs_id)
1193 return true;
1194
1195 /*
1196 * Check whether cs_id matches the base clock. Prevent the compiler from
1197 * re-evaluating @base as the clocksource might change concurrently.
1198 */
1199 base = READ_ONCE(cs->base);
1200 if (!base || base->id != scv->cs_id)
1201 return false;
1202
1203 num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1204 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1205
1206 if (!convert_clock(&scv->cycles, num, den))
1207 return false;
1208
1209 scv->cycles += base->offset;
1210 return true;
1211}
1212
1213static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1214{
1215 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1216 struct clocksource_base *base;
1217
1218 /*
1219 * Check whether base_id matches the base clock. Prevent the compiler from
1220 * re-evaluating @base as the clocksource might change concurrently.
1221 */
1222 base = READ_ONCE(cs->base);
1223 if (!base || base->id != base_id)
1224 return false;
1225
1226 *cycles -= base->offset;
1227 if (!convert_clock(cycles, base->denominator, base->numerator))
1228 return false;
1229 return true;
1230}
1231
1232static bool convert_ns_to_cs(u64 *delta)
1233{
1234 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1235
1236 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1237 return false;
1238
1239 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1240 return true;
1241}
1242
1243/**
1244 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1245 * @treal: CLOCK_REALTIME timestamp to convert
1246 * @base_id: base clocksource id
1247 * @cycles: pointer to store the converted base clock timestamp
1248 *
1249 * Converts a supplied, future realtime clock value to the corresponding base clock value.
1250 *
1251 * Return: true if the conversion is successful, false otherwise.
1252 */
1253bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1254{
1255 struct timekeeper *tk = &tk_core.timekeeper;
1256 unsigned int seq;
1257 u64 delta;
1258
1259 do {
1260 seq = read_seqcount_begin(&tk_core.seq);
1261 if ((u64)treal < tk->tkr_mono.base_real)
1262 return false;
1263 delta = (u64)treal - tk->tkr_mono.base_real;
1264 if (!convert_ns_to_cs(&delta))
1265 return false;
1266 *cycles = tk->tkr_mono.cycle_last + delta;
1267 if (!convert_cs_to_base(cycles, base_id))
1268 return false;
1269 } while (read_seqcount_retry(&tk_core.seq, seq));
1270
1271 return true;
1272}
1273EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1274
1275/**
1276 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1277 * @get_time_fn: Callback to get simultaneous device time and
1278 * system counter from the device driver
1279 * @ctx: Context passed to get_time_fn()
1280 * @history_begin: Historical reference point used to interpolate system
1281 * time when counter provided by the driver is before the current interval
1282 * @xtstamp: Receives simultaneously captured system and device time
1283 *
1284 * Reads a timestamp from a device and correlates it to system time
1285 */
1286int get_device_system_crosststamp(int (*get_time_fn)
1287 (ktime_t *device_time,
1288 struct system_counterval_t *sys_counterval,
1289 void *ctx),
1290 void *ctx,
1291 struct system_time_snapshot *history_begin,
1292 struct system_device_crosststamp *xtstamp)
1293{
1294 struct system_counterval_t system_counterval;
1295 struct timekeeper *tk = &tk_core.timekeeper;
1296 u64 cycles, now, interval_start;
1297 unsigned int clock_was_set_seq = 0;
1298 ktime_t base_real, base_raw;
1299 u64 nsec_real, nsec_raw;
1300 u8 cs_was_changed_seq;
1301 unsigned int seq;
1302 bool do_interp;
1303 int ret;
1304
1305 do {
1306 seq = read_seqcount_begin(&tk_core.seq);
1307 /*
1308 * Try to synchronously capture device time and a system
1309 * counter value calling back into the device driver
1310 */
1311 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1312 if (ret)
1313 return ret;
1314
1315 /*
1316 * Verify that the clocksource ID associated with the captured
1317 * system counter value is the same as for the currently
1318 * installed timekeeper clocksource
1319 */
1320 if (system_counterval.cs_id == CSID_GENERIC ||
1321 !convert_base_to_cs(&system_counterval))
1322 return -ENODEV;
1323 cycles = system_counterval.cycles;
1324
1325 /*
1326 * Check whether the system counter value provided by the
1327 * device driver is on the current timekeeping interval.
1328 */
1329 now = tk_clock_read(&tk->tkr_mono);
1330 interval_start = tk->tkr_mono.cycle_last;
1331 if (!timestamp_in_interval(interval_start, now, cycles)) {
1332 clock_was_set_seq = tk->clock_was_set_seq;
1333 cs_was_changed_seq = tk->cs_was_changed_seq;
1334 cycles = interval_start;
1335 do_interp = true;
1336 } else {
1337 do_interp = false;
1338 }
1339
1340 base_real = ktime_add(tk->tkr_mono.base,
1341 tk_core.timekeeper.offs_real);
1342 base_raw = tk->tkr_raw.base;
1343
1344 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1345 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1346 } while (read_seqcount_retry(&tk_core.seq, seq));
1347
1348 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1349 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1350
1351 /*
1352 * Interpolate if necessary, adjusting back from the start of the
1353 * current interval
1354 */
1355 if (do_interp) {
1356 u64 partial_history_cycles, total_history_cycles;
1357 bool discontinuity;
1358
1359 /*
1360 * Check that the counter value is not before the provided
1361 * history reference and that the history doesn't cross a
1362 * clocksource change
1363 */
1364 if (!history_begin ||
1365 !timestamp_in_interval(history_begin->cycles,
1366 cycles, system_counterval.cycles) ||
1367 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1368 return -EINVAL;
1369 partial_history_cycles = cycles - system_counterval.cycles;
1370 total_history_cycles = cycles - history_begin->cycles;
1371 discontinuity =
1372 history_begin->clock_was_set_seq != clock_was_set_seq;
1373
1374 ret = adjust_historical_crosststamp(history_begin,
1375 partial_history_cycles,
1376 total_history_cycles,
1377 discontinuity, xtstamp);
1378 if (ret)
1379 return ret;
1380 }
1381
1382 return 0;
1383}
1384EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1385
1386/**
1387 * timekeeping_clocksource_has_base - Check whether the current clocksource
1388 * is based on given a base clock
1389 * @id: base clocksource ID
1390 *
1391 * Note: The return value is a snapshot which can become invalid right
1392 * after the function returns.
1393 *
1394 * Return: true if the timekeeper clocksource has a base clock with @id,
1395 * false otherwise
1396 */
1397bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1398{
1399 /*
1400 * This is a snapshot, so no point in using the sequence
1401 * count. Just prevent the compiler from re-evaluating @base as the
1402 * clocksource might change concurrently.
1403 */
1404 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1405
1406 return base ? base->id == id : false;
1407}
1408EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1409
1410/**
1411 * do_settimeofday64 - Sets the time of day.
1412 * @ts: pointer to the timespec64 variable containing the new time
1413 *
1414 * Sets the time of day to the new time and update NTP and notify hrtimers
1415 */
1416int do_settimeofday64(const struct timespec64 *ts)
1417{
1418 struct timespec64 ts_delta, xt;
1419
1420 if (!timespec64_valid_settod(ts))
1421 return -EINVAL;
1422
1423 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1424 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1425
1426 timekeeping_forward_now(tks);
1427
1428 xt = tk_xtime(tks);
1429 ts_delta = timespec64_sub(*ts, xt);
1430
1431 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
1432 timekeeping_restore_shadow(&tk_core);
1433 return -EINVAL;
1434 }
1435
1436 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
1437 tk_set_xtime(tks, ts);
1438 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1439 }
1440
1441 /* Signal hrtimers about time change */
1442 clock_was_set(CLOCK_SET_WALL);
1443
1444 audit_tk_injoffset(ts_delta);
1445 add_device_randomness(ts, sizeof(*ts));
1446 return 0;
1447}
1448EXPORT_SYMBOL(do_settimeofday64);
1449
1450/**
1451 * timekeeping_inject_offset - Adds or subtracts from the current time.
1452 * @ts: Pointer to the timespec variable containing the offset
1453 *
1454 * Adds or subtracts an offset value from the current time.
1455 */
1456static int timekeeping_inject_offset(const struct timespec64 *ts)
1457{
1458 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1459 return -EINVAL;
1460
1461 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1462 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1463 struct timespec64 tmp;
1464
1465 timekeeping_forward_now(tks);
1466
1467 /* Make sure the proposed value is valid */
1468 tmp = timespec64_add(tk_xtime(tks), *ts);
1469 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
1470 !timespec64_valid_settod(&tmp)) {
1471 timekeeping_restore_shadow(&tk_core);
1472 return -EINVAL;
1473 }
1474
1475 tk_xtime_add(tks, ts);
1476 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
1477 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1478 }
1479
1480 /* Signal hrtimers about time change */
1481 clock_was_set(CLOCK_SET_WALL);
1482 return 0;
1483}
1484
1485/*
1486 * Indicates if there is an offset between the system clock and the hardware
1487 * clock/persistent clock/rtc.
1488 */
1489int persistent_clock_is_local;
1490
1491/*
1492 * Adjust the time obtained from the CMOS to be UTC time instead of
1493 * local time.
1494 *
1495 * This is ugly, but preferable to the alternatives. Otherwise we
1496 * would either need to write a program to do it in /etc/rc (and risk
1497 * confusion if the program gets run more than once; it would also be
1498 * hard to make the program warp the clock precisely n hours) or
1499 * compile in the timezone information into the kernel. Bad, bad....
1500 *
1501 * - TYT, 1992-01-01
1502 *
1503 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1504 * as real UNIX machines always do it. This avoids all headaches about
1505 * daylight saving times and warping kernel clocks.
1506 */
1507void timekeeping_warp_clock(void)
1508{
1509 if (sys_tz.tz_minuteswest != 0) {
1510 struct timespec64 adjust;
1511
1512 persistent_clock_is_local = 1;
1513 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1514 adjust.tv_nsec = 0;
1515 timekeeping_inject_offset(&adjust);
1516 }
1517}
1518
1519/*
1520 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1521 */
1522static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1523{
1524 tk->tai_offset = tai_offset;
1525 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1526}
1527
1528/*
1529 * change_clocksource - Swaps clocksources if a new one is available
1530 *
1531 * Accumulates current time interval and initializes new clocksource
1532 */
1533static int change_clocksource(void *data)
1534{
1535 struct clocksource *new = data, *old = NULL;
1536
1537 /*
1538 * If the clocksource is in a module, get a module reference.
1539 * Succeeds for built-in code (owner == NULL) as well. Abort if the
1540 * reference can't be acquired.
1541 */
1542 if (!try_module_get(new->owner))
1543 return 0;
1544
1545 /* Abort if the device can't be enabled */
1546 if (new->enable && new->enable(new) != 0) {
1547 module_put(new->owner);
1548 return 0;
1549 }
1550
1551 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1552 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1553
1554 timekeeping_forward_now(tks);
1555 old = tks->tkr_mono.clock;
1556 tk_setup_internals(tks, new);
1557 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1558 }
1559
1560 if (old) {
1561 if (old->disable)
1562 old->disable(old);
1563 module_put(old->owner);
1564 }
1565
1566 return 0;
1567}
1568
1569/**
1570 * timekeeping_notify - Install a new clock source
1571 * @clock: pointer to the clock source
1572 *
1573 * This function is called from clocksource.c after a new, better clock
1574 * source has been registered. The caller holds the clocksource_mutex.
1575 */
1576int timekeeping_notify(struct clocksource *clock)
1577{
1578 struct timekeeper *tk = &tk_core.timekeeper;
1579
1580 if (tk->tkr_mono.clock == clock)
1581 return 0;
1582 stop_machine(change_clocksource, clock, NULL);
1583 tick_clock_notify();
1584 return tk->tkr_mono.clock == clock ? 0 : -1;
1585}
1586
1587/**
1588 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1589 * @ts: pointer to the timespec64 to be set
1590 *
1591 * Returns the raw monotonic time (completely un-modified by ntp)
1592 */
1593void ktime_get_raw_ts64(struct timespec64 *ts)
1594{
1595 struct timekeeper *tk = &tk_core.timekeeper;
1596 unsigned int seq;
1597 u64 nsecs;
1598
1599 do {
1600 seq = read_seqcount_begin(&tk_core.seq);
1601 ts->tv_sec = tk->raw_sec;
1602 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1603
1604 } while (read_seqcount_retry(&tk_core.seq, seq));
1605
1606 ts->tv_nsec = 0;
1607 timespec64_add_ns(ts, nsecs);
1608}
1609EXPORT_SYMBOL(ktime_get_raw_ts64);
1610
1611
1612/**
1613 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1614 */
1615int timekeeping_valid_for_hres(void)
1616{
1617 struct timekeeper *tk = &tk_core.timekeeper;
1618 unsigned int seq;
1619 int ret;
1620
1621 do {
1622 seq = read_seqcount_begin(&tk_core.seq);
1623
1624 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1625
1626 } while (read_seqcount_retry(&tk_core.seq, seq));
1627
1628 return ret;
1629}
1630
1631/**
1632 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1633 */
1634u64 timekeeping_max_deferment(void)
1635{
1636 struct timekeeper *tk = &tk_core.timekeeper;
1637 unsigned int seq;
1638 u64 ret;
1639
1640 do {
1641 seq = read_seqcount_begin(&tk_core.seq);
1642
1643 ret = tk->tkr_mono.clock->max_idle_ns;
1644
1645 } while (read_seqcount_retry(&tk_core.seq, seq));
1646
1647 return ret;
1648}
1649
1650/**
1651 * read_persistent_clock64 - Return time from the persistent clock.
1652 * @ts: Pointer to the storage for the readout value
1653 *
1654 * Weak dummy function for arches that do not yet support it.
1655 * Reads the time from the battery backed persistent clock.
1656 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1657 *
1658 * XXX - Do be sure to remove it once all arches implement it.
1659 */
1660void __weak read_persistent_clock64(struct timespec64 *ts)
1661{
1662 ts->tv_sec = 0;
1663 ts->tv_nsec = 0;
1664}
1665
1666/**
1667 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1668 * from the boot.
1669 * @wall_time: current time as returned by persistent clock
1670 * @boot_offset: offset that is defined as wall_time - boot_time
1671 *
1672 * Weak dummy function for arches that do not yet support it.
1673 *
1674 * The default function calculates offset based on the current value of
1675 * local_clock(). This way architectures that support sched_clock() but don't
1676 * support dedicated boot time clock will provide the best estimate of the
1677 * boot time.
1678 */
1679void __weak __init
1680read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1681 struct timespec64 *boot_offset)
1682{
1683 read_persistent_clock64(wall_time);
1684 *boot_offset = ns_to_timespec64(local_clock());
1685}
1686
1687static __init void tkd_basic_setup(struct tk_data *tkd)
1688{
1689 raw_spin_lock_init(&tkd->lock);
1690 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
1691}
1692
1693/*
1694 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1695 *
1696 * The flag starts of false and is only set when a suspend reaches
1697 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1698 * timekeeper clocksource is not stopping across suspend and has been
1699 * used to update sleep time. If the timekeeper clocksource has stopped
1700 * then the flag stays true and is used by the RTC resume code to decide
1701 * whether sleeptime must be injected and if so the flag gets false then.
1702 *
1703 * If a suspend fails before reaching timekeeping_resume() then the flag
1704 * stays false and prevents erroneous sleeptime injection.
1705 */
1706static bool suspend_timing_needed;
1707
1708/* Flag for if there is a persistent clock on this platform */
1709static bool persistent_clock_exists;
1710
1711/*
1712 * timekeeping_init - Initializes the clocksource and common timekeeping values
1713 */
1714void __init timekeeping_init(void)
1715{
1716 struct timespec64 wall_time, boot_offset, wall_to_mono;
1717 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1718 struct clocksource *clock;
1719
1720 tkd_basic_setup(&tk_core);
1721
1722 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1723 if (timespec64_valid_settod(&wall_time) &&
1724 timespec64_to_ns(&wall_time) > 0) {
1725 persistent_clock_exists = true;
1726 } else if (timespec64_to_ns(&wall_time) != 0) {
1727 pr_warn("Persistent clock returned invalid value");
1728 wall_time = (struct timespec64){0};
1729 }
1730
1731 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1732 boot_offset = (struct timespec64){0};
1733
1734 /*
1735 * We want set wall_to_mono, so the following is true:
1736 * wall time + wall_to_mono = boot time
1737 */
1738 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1739
1740 guard(raw_spinlock_irqsave)(&tk_core.lock);
1741
1742 ntp_init();
1743
1744 clock = clocksource_default_clock();
1745 if (clock->enable)
1746 clock->enable(clock);
1747 tk_setup_internals(tks, clock);
1748
1749 tk_set_xtime(tks, &wall_time);
1750 tks->raw_sec = 0;
1751
1752 tk_set_wall_to_mono(tks, wall_to_mono);
1753
1754 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1755}
1756
1757/* time in seconds when suspend began for persistent clock */
1758static struct timespec64 timekeeping_suspend_time;
1759
1760/**
1761 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1762 * @tk: Pointer to the timekeeper to be updated
1763 * @delta: Pointer to the delta value in timespec64 format
1764 *
1765 * Takes a timespec offset measuring a suspend interval and properly
1766 * adds the sleep offset to the timekeeping variables.
1767 */
1768static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1769 const struct timespec64 *delta)
1770{
1771 if (!timespec64_valid_strict(delta)) {
1772 printk_deferred(KERN_WARNING
1773 "__timekeeping_inject_sleeptime: Invalid "
1774 "sleep delta value!\n");
1775 return;
1776 }
1777 tk_xtime_add(tk, delta);
1778 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1779 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1780 tk_debug_account_sleep_time(delta);
1781}
1782
1783#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1784/*
1785 * We have three kinds of time sources to use for sleep time
1786 * injection, the preference order is:
1787 * 1) non-stop clocksource
1788 * 2) persistent clock (ie: RTC accessible when irqs are off)
1789 * 3) RTC
1790 *
1791 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1792 * If system has neither 1) nor 2), 3) will be used finally.
1793 *
1794 *
1795 * If timekeeping has injected sleeptime via either 1) or 2),
1796 * 3) becomes needless, so in this case we don't need to call
1797 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1798 * means.
1799 */
1800bool timekeeping_rtc_skipresume(void)
1801{
1802 return !suspend_timing_needed;
1803}
1804
1805/*
1806 * 1) can be determined whether to use or not only when doing
1807 * timekeeping_resume() which is invoked after rtc_suspend(),
1808 * so we can't skip rtc_suspend() surely if system has 1).
1809 *
1810 * But if system has 2), 2) will definitely be used, so in this
1811 * case we don't need to call rtc_suspend(), and this is what
1812 * timekeeping_rtc_skipsuspend() means.
1813 */
1814bool timekeeping_rtc_skipsuspend(void)
1815{
1816 return persistent_clock_exists;
1817}
1818
1819/**
1820 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1821 * @delta: pointer to a timespec64 delta value
1822 *
1823 * This hook is for architectures that cannot support read_persistent_clock64
1824 * because their RTC/persistent clock is only accessible when irqs are enabled.
1825 * and also don't have an effective nonstop clocksource.
1826 *
1827 * This function should only be called by rtc_resume(), and allows
1828 * a suspend offset to be injected into the timekeeping values.
1829 */
1830void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1831{
1832 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
1833 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1834
1835 suspend_timing_needed = false;
1836 timekeeping_forward_now(tks);
1837 __timekeeping_inject_sleeptime(tks, delta);
1838 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1839 }
1840
1841 /* Signal hrtimers about time change */
1842 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1843}
1844#endif
1845
1846/**
1847 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1848 */
1849void timekeeping_resume(void)
1850{
1851 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1852 struct clocksource *clock = tks->tkr_mono.clock;
1853 struct timespec64 ts_new, ts_delta;
1854 bool inject_sleeptime = false;
1855 u64 cycle_now, nsec;
1856 unsigned long flags;
1857
1858 read_persistent_clock64(&ts_new);
1859
1860 clockevents_resume();
1861 clocksource_resume();
1862
1863 raw_spin_lock_irqsave(&tk_core.lock, flags);
1864
1865 /*
1866 * After system resumes, we need to calculate the suspended time and
1867 * compensate it for the OS time. There are 3 sources that could be
1868 * used: Nonstop clocksource during suspend, persistent clock and rtc
1869 * device.
1870 *
1871 * One specific platform may have 1 or 2 or all of them, and the
1872 * preference will be:
1873 * suspend-nonstop clocksource -> persistent clock -> rtc
1874 * The less preferred source will only be tried if there is no better
1875 * usable source. The rtc part is handled separately in rtc core code.
1876 */
1877 cycle_now = tk_clock_read(&tks->tkr_mono);
1878 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1879 if (nsec > 0) {
1880 ts_delta = ns_to_timespec64(nsec);
1881 inject_sleeptime = true;
1882 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1883 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1884 inject_sleeptime = true;
1885 }
1886
1887 if (inject_sleeptime) {
1888 suspend_timing_needed = false;
1889 __timekeeping_inject_sleeptime(tks, &ts_delta);
1890 }
1891
1892 /* Re-base the last cycle value */
1893 tks->tkr_mono.cycle_last = cycle_now;
1894 tks->tkr_raw.cycle_last = cycle_now;
1895
1896 tks->ntp_error = 0;
1897 timekeeping_suspended = 0;
1898 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1899 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1900
1901 touch_softlockup_watchdog();
1902
1903 /* Resume the clockevent device(s) and hrtimers */
1904 tick_resume();
1905 /* Notify timerfd as resume is equivalent to clock_was_set() */
1906 timerfd_resume();
1907}
1908
1909int timekeeping_suspend(void)
1910{
1911 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1912 struct timespec64 delta, delta_delta;
1913 static struct timespec64 old_delta;
1914 struct clocksource *curr_clock;
1915 unsigned long flags;
1916 u64 cycle_now;
1917
1918 read_persistent_clock64(&timekeeping_suspend_time);
1919
1920 /*
1921 * On some systems the persistent_clock can not be detected at
1922 * timekeeping_init by its return value, so if we see a valid
1923 * value returned, update the persistent_clock_exists flag.
1924 */
1925 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1926 persistent_clock_exists = true;
1927
1928 suspend_timing_needed = true;
1929
1930 raw_spin_lock_irqsave(&tk_core.lock, flags);
1931 timekeeping_forward_now(tks);
1932 timekeeping_suspended = 1;
1933
1934 /*
1935 * Since we've called forward_now, cycle_last stores the value
1936 * just read from the current clocksource. Save this to potentially
1937 * use in suspend timing.
1938 */
1939 curr_clock = tks->tkr_mono.clock;
1940 cycle_now = tks->tkr_mono.cycle_last;
1941 clocksource_start_suspend_timing(curr_clock, cycle_now);
1942
1943 if (persistent_clock_exists) {
1944 /*
1945 * To avoid drift caused by repeated suspend/resumes,
1946 * which each can add ~1 second drift error,
1947 * try to compensate so the difference in system time
1948 * and persistent_clock time stays close to constant.
1949 */
1950 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
1951 delta_delta = timespec64_sub(delta, old_delta);
1952 if (abs(delta_delta.tv_sec) >= 2) {
1953 /*
1954 * if delta_delta is too large, assume time correction
1955 * has occurred and set old_delta to the current delta.
1956 */
1957 old_delta = delta;
1958 } else {
1959 /* Otherwise try to adjust old_system to compensate */
1960 timekeeping_suspend_time =
1961 timespec64_add(timekeeping_suspend_time, delta_delta);
1962 }
1963 }
1964
1965 timekeeping_update_from_shadow(&tk_core, 0);
1966 halt_fast_timekeeper(tks);
1967 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1968
1969 tick_suspend();
1970 clocksource_suspend();
1971 clockevents_suspend();
1972
1973 return 0;
1974}
1975
1976/* sysfs resume/suspend bits for timekeeping */
1977static struct syscore_ops timekeeping_syscore_ops = {
1978 .resume = timekeeping_resume,
1979 .suspend = timekeeping_suspend,
1980};
1981
1982static int __init timekeeping_init_ops(void)
1983{
1984 register_syscore_ops(&timekeeping_syscore_ops);
1985 return 0;
1986}
1987device_initcall(timekeeping_init_ops);
1988
1989/*
1990 * Apply a multiplier adjustment to the timekeeper
1991 */
1992static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1993 s64 offset,
1994 s32 mult_adj)
1995{
1996 s64 interval = tk->cycle_interval;
1997
1998 if (mult_adj == 0) {
1999 return;
2000 } else if (mult_adj == -1) {
2001 interval = -interval;
2002 offset = -offset;
2003 } else if (mult_adj != 1) {
2004 interval *= mult_adj;
2005 offset *= mult_adj;
2006 }
2007
2008 /*
2009 * So the following can be confusing.
2010 *
2011 * To keep things simple, lets assume mult_adj == 1 for now.
2012 *
2013 * When mult_adj != 1, remember that the interval and offset values
2014 * have been appropriately scaled so the math is the same.
2015 *
2016 * The basic idea here is that we're increasing the multiplier
2017 * by one, this causes the xtime_interval to be incremented by
2018 * one cycle_interval. This is because:
2019 * xtime_interval = cycle_interval * mult
2020 * So if mult is being incremented by one:
2021 * xtime_interval = cycle_interval * (mult + 1)
2022 * Its the same as:
2023 * xtime_interval = (cycle_interval * mult) + cycle_interval
2024 * Which can be shortened to:
2025 * xtime_interval += cycle_interval
2026 *
2027 * So offset stores the non-accumulated cycles. Thus the current
2028 * time (in shifted nanoseconds) is:
2029 * now = (offset * adj) + xtime_nsec
2030 * Now, even though we're adjusting the clock frequency, we have
2031 * to keep time consistent. In other words, we can't jump back
2032 * in time, and we also want to avoid jumping forward in time.
2033 *
2034 * So given the same offset value, we need the time to be the same
2035 * both before and after the freq adjustment.
2036 * now = (offset * adj_1) + xtime_nsec_1
2037 * now = (offset * adj_2) + xtime_nsec_2
2038 * So:
2039 * (offset * adj_1) + xtime_nsec_1 =
2040 * (offset * adj_2) + xtime_nsec_2
2041 * And we know:
2042 * adj_2 = adj_1 + 1
2043 * So:
2044 * (offset * adj_1) + xtime_nsec_1 =
2045 * (offset * (adj_1+1)) + xtime_nsec_2
2046 * (offset * adj_1) + xtime_nsec_1 =
2047 * (offset * adj_1) + offset + xtime_nsec_2
2048 * Canceling the sides:
2049 * xtime_nsec_1 = offset + xtime_nsec_2
2050 * Which gives us:
2051 * xtime_nsec_2 = xtime_nsec_1 - offset
2052 * Which simplifies to:
2053 * xtime_nsec -= offset
2054 */
2055 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
2056 /* NTP adjustment caused clocksource mult overflow */
2057 WARN_ON_ONCE(1);
2058 return;
2059 }
2060
2061 tk->tkr_mono.mult += mult_adj;
2062 tk->xtime_interval += interval;
2063 tk->tkr_mono.xtime_nsec -= offset;
2064}
2065
2066/*
2067 * Adjust the timekeeper's multiplier to the correct frequency
2068 * and also to reduce the accumulated error value.
2069 */
2070static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2071{
2072 u64 ntp_tl = ntp_tick_length();
2073 u32 mult;
2074
2075 /*
2076 * Determine the multiplier from the current NTP tick length.
2077 * Avoid expensive division when the tick length doesn't change.
2078 */
2079 if (likely(tk->ntp_tick == ntp_tl)) {
2080 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2081 } else {
2082 tk->ntp_tick = ntp_tl;
2083 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2084 tk->xtime_remainder, tk->cycle_interval);
2085 }
2086
2087 /*
2088 * If the clock is behind the NTP time, increase the multiplier by 1
2089 * to catch up with it. If it's ahead and there was a remainder in the
2090 * tick division, the clock will slow down. Otherwise it will stay
2091 * ahead until the tick length changes to a non-divisible value.
2092 */
2093 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2094 mult += tk->ntp_err_mult;
2095
2096 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2097
2098 if (unlikely(tk->tkr_mono.clock->maxadj &&
2099 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2100 > tk->tkr_mono.clock->maxadj))) {
2101 printk_once(KERN_WARNING
2102 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2103 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2104 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2105 }
2106
2107 /*
2108 * It may be possible that when we entered this function, xtime_nsec
2109 * was very small. Further, if we're slightly speeding the clocksource
2110 * in the code above, its possible the required corrective factor to
2111 * xtime_nsec could cause it to underflow.
2112 *
2113 * Now, since we have already accumulated the second and the NTP
2114 * subsystem has been notified via second_overflow(), we need to skip
2115 * the next update.
2116 */
2117 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2118 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2119 tk->tkr_mono.shift;
2120 tk->xtime_sec--;
2121 tk->skip_second_overflow = 1;
2122 }
2123}
2124
2125/*
2126 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2127 *
2128 * Helper function that accumulates the nsecs greater than a second
2129 * from the xtime_nsec field to the xtime_secs field.
2130 * It also calls into the NTP code to handle leapsecond processing.
2131 */
2132static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2133{
2134 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2135 unsigned int clock_set = 0;
2136
2137 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2138 int leap;
2139
2140 tk->tkr_mono.xtime_nsec -= nsecps;
2141 tk->xtime_sec++;
2142
2143 /*
2144 * Skip NTP update if this second was accumulated before,
2145 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2146 */
2147 if (unlikely(tk->skip_second_overflow)) {
2148 tk->skip_second_overflow = 0;
2149 continue;
2150 }
2151
2152 /* Figure out if its a leap sec and apply if needed */
2153 leap = second_overflow(tk->xtime_sec);
2154 if (unlikely(leap)) {
2155 struct timespec64 ts;
2156
2157 tk->xtime_sec += leap;
2158
2159 ts.tv_sec = leap;
2160 ts.tv_nsec = 0;
2161 tk_set_wall_to_mono(tk,
2162 timespec64_sub(tk->wall_to_monotonic, ts));
2163
2164 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2165
2166 clock_set = TK_CLOCK_WAS_SET;
2167 }
2168 }
2169 return clock_set;
2170}
2171
2172/*
2173 * logarithmic_accumulation - shifted accumulation of cycles
2174 *
2175 * This functions accumulates a shifted interval of cycles into
2176 * a shifted interval nanoseconds. Allows for O(log) accumulation
2177 * loop.
2178 *
2179 * Returns the unconsumed cycles.
2180 */
2181static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2182 u32 shift, unsigned int *clock_set)
2183{
2184 u64 interval = tk->cycle_interval << shift;
2185 u64 snsec_per_sec;
2186
2187 /* If the offset is smaller than a shifted interval, do nothing */
2188 if (offset < interval)
2189 return offset;
2190
2191 /* Accumulate one shifted interval */
2192 offset -= interval;
2193 tk->tkr_mono.cycle_last += interval;
2194 tk->tkr_raw.cycle_last += interval;
2195
2196 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2197 *clock_set |= accumulate_nsecs_to_secs(tk);
2198
2199 /* Accumulate raw time */
2200 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2201 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2202 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2203 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2204 tk->raw_sec++;
2205 }
2206
2207 /* Accumulate error between NTP and clock interval */
2208 tk->ntp_error += tk->ntp_tick << shift;
2209 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2210 (tk->ntp_error_shift + shift);
2211
2212 return offset;
2213}
2214
2215/*
2216 * timekeeping_advance - Updates the timekeeper to the current time and
2217 * current NTP tick length
2218 */
2219static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2220{
2221 struct timekeeper *tk = &tk_core.shadow_timekeeper;
2222 struct timekeeper *real_tk = &tk_core.timekeeper;
2223 unsigned int clock_set = 0;
2224 int shift = 0, maxshift;
2225 u64 offset;
2226
2227 guard(raw_spinlock_irqsave)(&tk_core.lock);
2228
2229 /* Make sure we're fully resumed: */
2230 if (unlikely(timekeeping_suspended))
2231 return false;
2232
2233 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2234 tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
2235 tk->tkr_mono.clock->max_raw_delta);
2236
2237 /* Check if there's really nothing to do */
2238 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2239 return false;
2240
2241 /*
2242 * With NO_HZ we may have to accumulate many cycle_intervals
2243 * (think "ticks") worth of time at once. To do this efficiently,
2244 * we calculate the largest doubling multiple of cycle_intervals
2245 * that is smaller than the offset. We then accumulate that
2246 * chunk in one go, and then try to consume the next smaller
2247 * doubled multiple.
2248 */
2249 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2250 shift = max(0, shift);
2251 /* Bound shift to one less than what overflows tick_length */
2252 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2253 shift = min(shift, maxshift);
2254 while (offset >= tk->cycle_interval) {
2255 offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
2256 if (offset < tk->cycle_interval<<shift)
2257 shift--;
2258 }
2259
2260 /* Adjust the multiplier to correct NTP error */
2261 timekeeping_adjust(tk, offset);
2262
2263 /*
2264 * Finally, make sure that after the rounding
2265 * xtime_nsec isn't larger than NSEC_PER_SEC
2266 */
2267 clock_set |= accumulate_nsecs_to_secs(tk);
2268
2269 timekeeping_update_from_shadow(&tk_core, clock_set);
2270
2271 return !!clock_set;
2272}
2273
2274/**
2275 * update_wall_time - Uses the current clocksource to increment the wall time
2276 *
2277 */
2278void update_wall_time(void)
2279{
2280 if (timekeeping_advance(TK_ADV_TICK))
2281 clock_was_set_delayed();
2282}
2283
2284/**
2285 * getboottime64 - Return the real time of system boot.
2286 * @ts: pointer to the timespec64 to be set
2287 *
2288 * Returns the wall-time of boot in a timespec64.
2289 *
2290 * This is based on the wall_to_monotonic offset and the total suspend
2291 * time. Calls to settimeofday will affect the value returned (which
2292 * basically means that however wrong your real time clock is at boot time,
2293 * you get the right time here).
2294 */
2295void getboottime64(struct timespec64 *ts)
2296{
2297 struct timekeeper *tk = &tk_core.timekeeper;
2298 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2299
2300 *ts = ktime_to_timespec64(t);
2301}
2302EXPORT_SYMBOL_GPL(getboottime64);
2303
2304void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2305{
2306 struct timekeeper *tk = &tk_core.timekeeper;
2307 unsigned int seq;
2308
2309 do {
2310 seq = read_seqcount_begin(&tk_core.seq);
2311
2312 *ts = tk_xtime(tk);
2313 } while (read_seqcount_retry(&tk_core.seq, seq));
2314}
2315EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2316
2317/**
2318 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
2319 * @ts: timespec64 to be filled
2320 *
2321 * Fetch the global mg_floor value, convert it to realtime and compare it
2322 * to the current coarse-grained time. Fill @ts with whichever is
2323 * latest. Note that this is a filesystem-specific interface and should be
2324 * avoided outside of that context.
2325 */
2326void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
2327{
2328 struct timekeeper *tk = &tk_core.timekeeper;
2329 u64 floor = atomic64_read(&mg_floor);
2330 ktime_t f_real, offset, coarse;
2331 unsigned int seq;
2332
2333 do {
2334 seq = read_seqcount_begin(&tk_core.seq);
2335 *ts = tk_xtime(tk);
2336 offset = tk_core.timekeeper.offs_real;
2337 } while (read_seqcount_retry(&tk_core.seq, seq));
2338
2339 coarse = timespec64_to_ktime(*ts);
2340 f_real = ktime_add(floor, offset);
2341 if (ktime_after(f_real, coarse))
2342 *ts = ktime_to_timespec64(f_real);
2343}
2344
2345/**
2346 * ktime_get_real_ts64_mg - attempt to update floor value and return result
2347 * @ts: pointer to the timespec to be set
2348 *
2349 * Get a monotonic fine-grained time value and attempt to swap it into
2350 * mg_floor. If that succeeds then accept the new floor value. If it fails
2351 * then another task raced in during the interim time and updated the
2352 * floor. Since any update to the floor must be later than the previous
2353 * floor, either outcome is acceptable.
2354 *
2355 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
2356 * and determining that the resulting coarse-grained timestamp did not effect
2357 * a change in ctime. Any more recent floor value would effect a change to
2358 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
2359 *
2360 * @ts will be filled with the latest floor value, regardless of the outcome of
2361 * the cmpxchg. Note that this is a filesystem specific interface and should be
2362 * avoided outside of that context.
2363 */
2364void ktime_get_real_ts64_mg(struct timespec64 *ts)
2365{
2366 struct timekeeper *tk = &tk_core.timekeeper;
2367 ktime_t old = atomic64_read(&mg_floor);
2368 ktime_t offset, mono;
2369 unsigned int seq;
2370 u64 nsecs;
2371
2372 do {
2373 seq = read_seqcount_begin(&tk_core.seq);
2374
2375 ts->tv_sec = tk->xtime_sec;
2376 mono = tk->tkr_mono.base;
2377 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2378 offset = tk_core.timekeeper.offs_real;
2379 } while (read_seqcount_retry(&tk_core.seq, seq));
2380
2381 mono = ktime_add_ns(mono, nsecs);
2382
2383 /*
2384 * Attempt to update the floor with the new time value. As any
2385 * update must be later then the existing floor, and would effect
2386 * a change to ctime from the perspective of the current task,
2387 * accept the resulting floor value regardless of the outcome of
2388 * the swap.
2389 */
2390 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
2391 ts->tv_nsec = 0;
2392 timespec64_add_ns(ts, nsecs);
2393 timekeeping_inc_mg_floor_swaps();
2394 } else {
2395 /*
2396 * Another task changed mg_floor since "old" was fetched.
2397 * "old" has been updated with the latest value of "mg_floor".
2398 * That value is newer than the previous floor value, which
2399 * is enough to effect a change to ctime. Accept it.
2400 */
2401 *ts = ktime_to_timespec64(ktime_add(old, offset));
2402 }
2403}
2404
2405void ktime_get_coarse_ts64(struct timespec64 *ts)
2406{
2407 struct timekeeper *tk = &tk_core.timekeeper;
2408 struct timespec64 now, mono;
2409 unsigned int seq;
2410
2411 do {
2412 seq = read_seqcount_begin(&tk_core.seq);
2413
2414 now = tk_xtime(tk);
2415 mono = tk->wall_to_monotonic;
2416 } while (read_seqcount_retry(&tk_core.seq, seq));
2417
2418 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2419 now.tv_nsec + mono.tv_nsec);
2420}
2421EXPORT_SYMBOL(ktime_get_coarse_ts64);
2422
2423/*
2424 * Must hold jiffies_lock
2425 */
2426void do_timer(unsigned long ticks)
2427{
2428 jiffies_64 += ticks;
2429 calc_global_load();
2430}
2431
2432/**
2433 * ktime_get_update_offsets_now - hrtimer helper
2434 * @cwsseq: pointer to check and store the clock was set sequence number
2435 * @offs_real: pointer to storage for monotonic -> realtime offset
2436 * @offs_boot: pointer to storage for monotonic -> boottime offset
2437 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2438 *
2439 * Returns current monotonic time and updates the offsets if the
2440 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2441 * different.
2442 *
2443 * Called from hrtimer_interrupt() or retrigger_next_event()
2444 */
2445ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2446 ktime_t *offs_boot, ktime_t *offs_tai)
2447{
2448 struct timekeeper *tk = &tk_core.timekeeper;
2449 unsigned int seq;
2450 ktime_t base;
2451 u64 nsecs;
2452
2453 do {
2454 seq = read_seqcount_begin(&tk_core.seq);
2455
2456 base = tk->tkr_mono.base;
2457 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2458 base = ktime_add_ns(base, nsecs);
2459
2460 if (*cwsseq != tk->clock_was_set_seq) {
2461 *cwsseq = tk->clock_was_set_seq;
2462 *offs_real = tk->offs_real;
2463 *offs_boot = tk->offs_boot;
2464 *offs_tai = tk->offs_tai;
2465 }
2466
2467 /* Handle leapsecond insertion adjustments */
2468 if (unlikely(base >= tk->next_leap_ktime))
2469 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2470
2471 } while (read_seqcount_retry(&tk_core.seq, seq));
2472
2473 return base;
2474}
2475
2476/*
2477 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2478 */
2479static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2480{
2481 if (txc->modes & ADJ_ADJTIME) {
2482 /* singleshot must not be used with any other mode bits */
2483 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2484 return -EINVAL;
2485 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2486 !capable(CAP_SYS_TIME))
2487 return -EPERM;
2488 } else {
2489 /* In order to modify anything, you gotta be super-user! */
2490 if (txc->modes && !capable(CAP_SYS_TIME))
2491 return -EPERM;
2492 /*
2493 * if the quartz is off by more than 10% then
2494 * something is VERY wrong!
2495 */
2496 if (txc->modes & ADJ_TICK &&
2497 (txc->tick < 900000/USER_HZ ||
2498 txc->tick > 1100000/USER_HZ))
2499 return -EINVAL;
2500 }
2501
2502 if (txc->modes & ADJ_SETOFFSET) {
2503 /* In order to inject time, you gotta be super-user! */
2504 if (!capable(CAP_SYS_TIME))
2505 return -EPERM;
2506
2507 /*
2508 * Validate if a timespec/timeval used to inject a time
2509 * offset is valid. Offsets can be positive or negative, so
2510 * we don't check tv_sec. The value of the timeval/timespec
2511 * is the sum of its fields,but *NOTE*:
2512 * The field tv_usec/tv_nsec must always be non-negative and
2513 * we can't have more nanoseconds/microseconds than a second.
2514 */
2515 if (txc->time.tv_usec < 0)
2516 return -EINVAL;
2517
2518 if (txc->modes & ADJ_NANO) {
2519 if (txc->time.tv_usec >= NSEC_PER_SEC)
2520 return -EINVAL;
2521 } else {
2522 if (txc->time.tv_usec >= USEC_PER_SEC)
2523 return -EINVAL;
2524 }
2525 }
2526
2527 /*
2528 * Check for potential multiplication overflows that can
2529 * only happen on 64-bit systems:
2530 */
2531 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2532 if (LLONG_MIN / PPM_SCALE > txc->freq)
2533 return -EINVAL;
2534 if (LLONG_MAX / PPM_SCALE < txc->freq)
2535 return -EINVAL;
2536 }
2537
2538 return 0;
2539}
2540
2541/**
2542 * random_get_entropy_fallback - Returns the raw clock source value,
2543 * used by random.c for platforms with no valid random_get_entropy().
2544 */
2545unsigned long random_get_entropy_fallback(void)
2546{
2547 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2548 struct clocksource *clock = READ_ONCE(tkr->clock);
2549
2550 if (unlikely(timekeeping_suspended || !clock))
2551 return 0;
2552 return clock->read(clock);
2553}
2554EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2555
2556/**
2557 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2558 * @txc: Pointer to kernel_timex structure containing NTP parameters
2559 */
2560int do_adjtimex(struct __kernel_timex *txc)
2561{
2562 struct audit_ntp_data ad;
2563 bool offset_set = false;
2564 bool clock_set = false;
2565 struct timespec64 ts;
2566 int ret;
2567
2568 /* Validate the data before disabling interrupts */
2569 ret = timekeeping_validate_timex(txc);
2570 if (ret)
2571 return ret;
2572 add_device_randomness(txc, sizeof(*txc));
2573
2574 if (txc->modes & ADJ_SETOFFSET) {
2575 struct timespec64 delta;
2576
2577 delta.tv_sec = txc->time.tv_sec;
2578 delta.tv_nsec = txc->time.tv_usec;
2579 if (!(txc->modes & ADJ_NANO))
2580 delta.tv_nsec *= 1000;
2581 ret = timekeeping_inject_offset(&delta);
2582 if (ret)
2583 return ret;
2584
2585 offset_set = delta.tv_sec != 0;
2586 audit_tk_injoffset(delta);
2587 }
2588
2589 audit_ntp_init(&ad);
2590
2591 ktime_get_real_ts64(&ts);
2592 add_device_randomness(&ts, sizeof(ts));
2593
2594 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
2595 struct timekeeper *tks = &tk_core.shadow_timekeeper;
2596 s32 orig_tai, tai;
2597
2598 orig_tai = tai = tks->tai_offset;
2599 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2600
2601 if (tai != orig_tai) {
2602 __timekeeping_set_tai_offset(tks, tai);
2603 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
2604 clock_set = true;
2605 } else {
2606 tk_update_leap_state_all(&tk_core);
2607 }
2608 }
2609
2610 audit_ntp_log(&ad);
2611
2612 /* Update the multiplier immediately if frequency was set directly */
2613 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2614 clock_set |= timekeeping_advance(TK_ADV_FREQ);
2615
2616 if (clock_set)
2617 clock_was_set(CLOCK_SET_WALL);
2618
2619 ntp_notify_cmos_timer(offset_set);
2620
2621 return ret;
2622}
2623
2624#ifdef CONFIG_NTP_PPS
2625/**
2626 * hardpps() - Accessor function to NTP __hardpps function
2627 * @phase_ts: Pointer to timespec64 structure representing phase timestamp
2628 * @raw_ts: Pointer to timespec64 structure representing raw timestamp
2629 */
2630void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2631{
2632 guard(raw_spinlock_irqsave)(&tk_core.lock);
2633 __hardpps(phase_ts, raw_ts);
2634}
2635EXPORT_SYMBOL(hardpps);
2636#endif /* CONFIG_NTP_PPS */