Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec.c - kexec system call core code.
   4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
 
   9#include <linux/capability.h>
  10#include <linux/mm.h>
  11#include <linux/file.h>
  12#include <linux/slab.h>
  13#include <linux/fs.h>
  14#include <linux/kexec.h>
  15#include <linux/mutex.h>
  16#include <linux/list.h>
  17#include <linux/highmem.h>
  18#include <linux/syscalls.h>
  19#include <linux/reboot.h>
  20#include <linux/ioport.h>
  21#include <linux/hardirq.h>
  22#include <linux/elf.h>
  23#include <linux/elfcore.h>
  24#include <linux/utsname.h>
  25#include <linux/numa.h>
  26#include <linux/suspend.h>
  27#include <linux/device.h>
  28#include <linux/freezer.h>
 
  29#include <linux/pm.h>
  30#include <linux/cpu.h>
  31#include <linux/uaccess.h>
  32#include <linux/io.h>
  33#include <linux/console.h>
  34#include <linux/vmalloc.h>
  35#include <linux/swap.h>
  36#include <linux/syscore_ops.h>
  37#include <linux/compiler.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frame.h>
 
  40
  41#include <asm/page.h>
  42#include <asm/sections.h>
  43
  44#include <crypto/hash.h>
  45#include <crypto/sha.h>
  46#include "kexec_internal.h"
  47
  48DEFINE_MUTEX(kexec_mutex);
  49
  50/* Per cpu memory for storing cpu states in case of system crash. */
  51note_buf_t __percpu *crash_notes;
  52
  53/* Flag to indicate we are going to kexec a new kernel */
  54bool kexec_in_progress = false;
  55
  56
  57/* Location of the reserved area for the crash kernel */
  58struct resource crashk_res = {
  59	.name  = "Crash kernel",
  60	.start = 0,
  61	.end   = 0,
  62	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  63	.desc  = IORES_DESC_CRASH_KERNEL
  64};
  65struct resource crashk_low_res = {
  66	.name  = "Crash kernel",
  67	.start = 0,
  68	.end   = 0,
  69	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  70	.desc  = IORES_DESC_CRASH_KERNEL
  71};
  72
  73int kexec_should_crash(struct task_struct *p)
  74{
  75	/*
  76	 * If crash_kexec_post_notifiers is enabled, don't run
  77	 * crash_kexec() here yet, which must be run after panic
  78	 * notifiers in panic().
  79	 */
  80	if (crash_kexec_post_notifiers)
  81		return 0;
  82	/*
  83	 * There are 4 panic() calls in do_exit() path, each of which
  84	 * corresponds to each of these 4 conditions.
  85	 */
  86	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  87		return 1;
  88	return 0;
  89}
  90
  91int kexec_crash_loaded(void)
  92{
  93	return !!kexec_crash_image;
  94}
  95EXPORT_SYMBOL_GPL(kexec_crash_loaded);
  96
  97/*
  98 * When kexec transitions to the new kernel there is a one-to-one
  99 * mapping between physical and virtual addresses.  On processors
 100 * where you can disable the MMU this is trivial, and easy.  For
 101 * others it is still a simple predictable page table to setup.
 102 *
 103 * In that environment kexec copies the new kernel to its final
 104 * resting place.  This means I can only support memory whose
 105 * physical address can fit in an unsigned long.  In particular
 106 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 107 * If the assembly stub has more restrictive requirements
 108 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 109 * defined more restrictively in <asm/kexec.h>.
 110 *
 111 * The code for the transition from the current kernel to the
 112 * the new kernel is placed in the control_code_buffer, whose size
 113 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 114 * page of memory is necessary, but some architectures require more.
 115 * Because this memory must be identity mapped in the transition from
 116 * virtual to physical addresses it must live in the range
 117 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 118 * modifiable.
 119 *
 120 * The assembly stub in the control code buffer is passed a linked list
 121 * of descriptor pages detailing the source pages of the new kernel,
 122 * and the destination addresses of those source pages.  As this data
 123 * structure is not used in the context of the current OS, it must
 124 * be self-contained.
 125 *
 126 * The code has been made to work with highmem pages and will use a
 127 * destination page in its final resting place (if it happens
 128 * to allocate it).  The end product of this is that most of the
 129 * physical address space, and most of RAM can be used.
 130 *
 131 * Future directions include:
 132 *  - allocating a page table with the control code buffer identity
 133 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 134 *    reliable.
 135 */
 136
 137/*
 138 * KIMAGE_NO_DEST is an impossible destination address..., for
 139 * allocating pages whose destination address we do not care about.
 140 */
 141#define KIMAGE_NO_DEST (-1UL)
 142#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 143
 144static struct page *kimage_alloc_page(struct kimage *image,
 145				       gfp_t gfp_mask,
 146				       unsigned long dest);
 147
 148int sanity_check_segment_list(struct kimage *image)
 149{
 150	int i;
 151	unsigned long nr_segments = image->nr_segments;
 152	unsigned long total_pages = 0;
 153	unsigned long nr_pages = totalram_pages();
 154
 155	/*
 156	 * Verify we have good destination addresses.  The caller is
 157	 * responsible for making certain we don't attempt to load
 158	 * the new image into invalid or reserved areas of RAM.  This
 159	 * just verifies it is an address we can use.
 160	 *
 161	 * Since the kernel does everything in page size chunks ensure
 162	 * the destination addresses are page aligned.  Too many
 163	 * special cases crop of when we don't do this.  The most
 164	 * insidious is getting overlapping destination addresses
 165	 * simply because addresses are changed to page size
 166	 * granularity.
 167	 */
 168	for (i = 0; i < nr_segments; i++) {
 169		unsigned long mstart, mend;
 170
 171		mstart = image->segment[i].mem;
 172		mend   = mstart + image->segment[i].memsz;
 173		if (mstart > mend)
 174			return -EADDRNOTAVAIL;
 175		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 176			return -EADDRNOTAVAIL;
 177		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 178			return -EADDRNOTAVAIL;
 179	}
 180
 181	/* Verify our destination addresses do not overlap.
 182	 * If we alloed overlapping destination addresses
 183	 * through very weird things can happen with no
 184	 * easy explanation as one segment stops on another.
 185	 */
 186	for (i = 0; i < nr_segments; i++) {
 187		unsigned long mstart, mend;
 188		unsigned long j;
 189
 190		mstart = image->segment[i].mem;
 191		mend   = mstart + image->segment[i].memsz;
 192		for (j = 0; j < i; j++) {
 193			unsigned long pstart, pend;
 194
 195			pstart = image->segment[j].mem;
 196			pend   = pstart + image->segment[j].memsz;
 197			/* Do the segments overlap ? */
 198			if ((mend > pstart) && (mstart < pend))
 199				return -EINVAL;
 200		}
 201	}
 202
 203	/* Ensure our buffer sizes are strictly less than
 204	 * our memory sizes.  This should always be the case,
 205	 * and it is easier to check up front than to be surprised
 206	 * later on.
 207	 */
 208	for (i = 0; i < nr_segments; i++) {
 209		if (image->segment[i].bufsz > image->segment[i].memsz)
 210			return -EINVAL;
 211	}
 212
 213	/*
 214	 * Verify that no more than half of memory will be consumed. If the
 215	 * request from userspace is too large, a large amount of time will be
 216	 * wasted allocating pages, which can cause a soft lockup.
 217	 */
 218	for (i = 0; i < nr_segments; i++) {
 219		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
 220			return -EINVAL;
 221
 222		total_pages += PAGE_COUNT(image->segment[i].memsz);
 223	}
 224
 225	if (total_pages > nr_pages / 2)
 226		return -EINVAL;
 227
 
 228	/*
 229	 * Verify we have good destination addresses.  Normally
 230	 * the caller is responsible for making certain we don't
 231	 * attempt to load the new image into invalid or reserved
 232	 * areas of RAM.  But crash kernels are preloaded into a
 233	 * reserved area of ram.  We must ensure the addresses
 234	 * are in the reserved area otherwise preloading the
 235	 * kernel could corrupt things.
 236	 */
 237
 238	if (image->type == KEXEC_TYPE_CRASH) {
 239		for (i = 0; i < nr_segments; i++) {
 240			unsigned long mstart, mend;
 241
 242			mstart = image->segment[i].mem;
 243			mend = mstart + image->segment[i].memsz - 1;
 244			/* Ensure we are within the crash kernel limits */
 245			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 246			    (mend > phys_to_boot_phys(crashk_res.end)))
 247				return -EADDRNOTAVAIL;
 248		}
 249	}
 
 250
 251	return 0;
 252}
 253
 254struct kimage *do_kimage_alloc_init(void)
 255{
 256	struct kimage *image;
 257
 258	/* Allocate a controlling structure */
 259	image = kzalloc(sizeof(*image), GFP_KERNEL);
 260	if (!image)
 261		return NULL;
 262
 263	image->head = 0;
 264	image->entry = &image->head;
 265	image->last_entry = &image->head;
 266	image->control_page = ~0; /* By default this does not apply */
 267	image->type = KEXEC_TYPE_DEFAULT;
 268
 269	/* Initialize the list of control pages */
 270	INIT_LIST_HEAD(&image->control_pages);
 271
 272	/* Initialize the list of destination pages */
 273	INIT_LIST_HEAD(&image->dest_pages);
 274
 275	/* Initialize the list of unusable pages */
 276	INIT_LIST_HEAD(&image->unusable_pages);
 277
 
 
 
 
 
 
 278	return image;
 279}
 280
 281int kimage_is_destination_range(struct kimage *image,
 282					unsigned long start,
 283					unsigned long end)
 284{
 285	unsigned long i;
 286
 287	for (i = 0; i < image->nr_segments; i++) {
 288		unsigned long mstart, mend;
 289
 290		mstart = image->segment[i].mem;
 291		mend = mstart + image->segment[i].memsz;
 292		if ((end > mstart) && (start < mend))
 293			return 1;
 294	}
 295
 296	return 0;
 297}
 298
 299static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 300{
 301	struct page *pages;
 302
 303	if (fatal_signal_pending(current))
 304		return NULL;
 305	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 306	if (pages) {
 307		unsigned int count, i;
 308
 309		pages->mapping = NULL;
 310		set_page_private(pages, order);
 311		count = 1 << order;
 312		for (i = 0; i < count; i++)
 313			SetPageReserved(pages + i);
 314
 315		arch_kexec_post_alloc_pages(page_address(pages), count,
 316					    gfp_mask);
 317
 318		if (gfp_mask & __GFP_ZERO)
 319			for (i = 0; i < count; i++)
 320				clear_highpage(pages + i);
 321	}
 322
 323	return pages;
 324}
 325
 326static void kimage_free_pages(struct page *page)
 327{
 328	unsigned int order, count, i;
 329
 330	order = page_private(page);
 331	count = 1 << order;
 332
 333	arch_kexec_pre_free_pages(page_address(page), count);
 334
 335	for (i = 0; i < count; i++)
 336		ClearPageReserved(page + i);
 337	__free_pages(page, order);
 338}
 339
 340void kimage_free_page_list(struct list_head *list)
 341{
 342	struct page *page, *next;
 343
 344	list_for_each_entry_safe(page, next, list, lru) {
 345		list_del(&page->lru);
 346		kimage_free_pages(page);
 347	}
 348}
 349
 350static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 351							unsigned int order)
 352{
 353	/* Control pages are special, they are the intermediaries
 354	 * that are needed while we copy the rest of the pages
 355	 * to their final resting place.  As such they must
 356	 * not conflict with either the destination addresses
 357	 * or memory the kernel is already using.
 358	 *
 359	 * The only case where we really need more than one of
 360	 * these are for architectures where we cannot disable
 361	 * the MMU and must instead generate an identity mapped
 362	 * page table for all of the memory.
 363	 *
 364	 * At worst this runs in O(N) of the image size.
 365	 */
 366	struct list_head extra_pages;
 367	struct page *pages;
 368	unsigned int count;
 369
 370	count = 1 << order;
 371	INIT_LIST_HEAD(&extra_pages);
 372
 373	/* Loop while I can allocate a page and the page allocated
 374	 * is a destination page.
 375	 */
 376	do {
 377		unsigned long pfn, epfn, addr, eaddr;
 378
 379		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 380		if (!pages)
 381			break;
 382		pfn   = page_to_boot_pfn(pages);
 383		epfn  = pfn + count;
 384		addr  = pfn << PAGE_SHIFT;
 385		eaddr = epfn << PAGE_SHIFT;
 386		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 387			      kimage_is_destination_range(image, addr, eaddr)) {
 388			list_add(&pages->lru, &extra_pages);
 389			pages = NULL;
 390		}
 391	} while (!pages);
 392
 393	if (pages) {
 394		/* Remember the allocated page... */
 395		list_add(&pages->lru, &image->control_pages);
 396
 397		/* Because the page is already in it's destination
 398		 * location we will never allocate another page at
 399		 * that address.  Therefore kimage_alloc_pages
 400		 * will not return it (again) and we don't need
 401		 * to give it an entry in image->segment[].
 402		 */
 403	}
 404	/* Deal with the destination pages I have inadvertently allocated.
 405	 *
 406	 * Ideally I would convert multi-page allocations into single
 407	 * page allocations, and add everything to image->dest_pages.
 408	 *
 409	 * For now it is simpler to just free the pages.
 410	 */
 411	kimage_free_page_list(&extra_pages);
 412
 413	return pages;
 414}
 415
 
 416static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 417						      unsigned int order)
 418{
 419	/* Control pages are special, they are the intermediaries
 420	 * that are needed while we copy the rest of the pages
 421	 * to their final resting place.  As such they must
 422	 * not conflict with either the destination addresses
 423	 * or memory the kernel is already using.
 424	 *
 425	 * Control pages are also the only pags we must allocate
 426	 * when loading a crash kernel.  All of the other pages
 427	 * are specified by the segments and we just memcpy
 428	 * into them directly.
 429	 *
 430	 * The only case where we really need more than one of
 431	 * these are for architectures where we cannot disable
 432	 * the MMU and must instead generate an identity mapped
 433	 * page table for all of the memory.
 434	 *
 435	 * Given the low demand this implements a very simple
 436	 * allocator that finds the first hole of the appropriate
 437	 * size in the reserved memory region, and allocates all
 438	 * of the memory up to and including the hole.
 439	 */
 440	unsigned long hole_start, hole_end, size;
 441	struct page *pages;
 442
 443	pages = NULL;
 444	size = (1 << order) << PAGE_SHIFT;
 445	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 446	hole_end   = hole_start + size - 1;
 447	while (hole_end <= crashk_res.end) {
 448		unsigned long i;
 449
 450		cond_resched();
 451
 452		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 453			break;
 454		/* See if I overlap any of the segments */
 455		for (i = 0; i < image->nr_segments; i++) {
 456			unsigned long mstart, mend;
 457
 458			mstart = image->segment[i].mem;
 459			mend   = mstart + image->segment[i].memsz - 1;
 460			if ((hole_end >= mstart) && (hole_start <= mend)) {
 461				/* Advance the hole to the end of the segment */
 462				hole_start = (mend + (size - 1)) & ~(size - 1);
 463				hole_end   = hole_start + size - 1;
 464				break;
 465			}
 466		}
 467		/* If I don't overlap any segments I have found my hole! */
 468		if (i == image->nr_segments) {
 469			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 470			image->control_page = hole_end;
 471			break;
 472		}
 473	}
 474
 475	/* Ensure that these pages are decrypted if SME is enabled. */
 476	if (pages)
 477		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
 478
 479	return pages;
 480}
 
 481
 482
 483struct page *kimage_alloc_control_pages(struct kimage *image,
 484					 unsigned int order)
 485{
 486	struct page *pages = NULL;
 487
 488	switch (image->type) {
 489	case KEXEC_TYPE_DEFAULT:
 490		pages = kimage_alloc_normal_control_pages(image, order);
 491		break;
 
 492	case KEXEC_TYPE_CRASH:
 493		pages = kimage_alloc_crash_control_pages(image, order);
 494		break;
 
 495	}
 496
 497	return pages;
 498}
 499
 500int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 501{
 502	struct page *vmcoreinfo_page;
 503	void *safecopy;
 504
 505	if (image->type != KEXEC_TYPE_CRASH)
 506		return 0;
 507
 508	/*
 509	 * For kdump, allocate one vmcoreinfo safe copy from the
 510	 * crash memory. as we have arch_kexec_protect_crashkres()
 511	 * after kexec syscall, we naturally protect it from write
 512	 * (even read) access under kernel direct mapping. But on
 513	 * the other hand, we still need to operate it when crash
 514	 * happens to generate vmcoreinfo note, hereby we rely on
 515	 * vmap for this purpose.
 516	 */
 517	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 518	if (!vmcoreinfo_page) {
 519		pr_warn("Could not allocate vmcoreinfo buffer\n");
 520		return -ENOMEM;
 521	}
 522	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 523	if (!safecopy) {
 524		pr_warn("Could not vmap vmcoreinfo buffer\n");
 525		return -ENOMEM;
 526	}
 527
 528	image->vmcoreinfo_data_copy = safecopy;
 529	crash_update_vmcoreinfo_safecopy(safecopy);
 530
 531	return 0;
 532}
 533
 534static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 535{
 536	if (*image->entry != 0)
 537		image->entry++;
 538
 539	if (image->entry == image->last_entry) {
 540		kimage_entry_t *ind_page;
 541		struct page *page;
 542
 543		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 544		if (!page)
 545			return -ENOMEM;
 546
 547		ind_page = page_address(page);
 548		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 549		image->entry = ind_page;
 550		image->last_entry = ind_page +
 551				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 552	}
 553	*image->entry = entry;
 554	image->entry++;
 555	*image->entry = 0;
 556
 557	return 0;
 558}
 559
 560static int kimage_set_destination(struct kimage *image,
 561				   unsigned long destination)
 562{
 563	int result;
 564
 565	destination &= PAGE_MASK;
 566	result = kimage_add_entry(image, destination | IND_DESTINATION);
 567
 568	return result;
 569}
 570
 571
 572static int kimage_add_page(struct kimage *image, unsigned long page)
 573{
 574	int result;
 575
 576	page &= PAGE_MASK;
 577	result = kimage_add_entry(image, page | IND_SOURCE);
 578
 579	return result;
 580}
 581
 582
 583static void kimage_free_extra_pages(struct kimage *image)
 584{
 585	/* Walk through and free any extra destination pages I may have */
 586	kimage_free_page_list(&image->dest_pages);
 587
 588	/* Walk through and free any unusable pages I have cached */
 589	kimage_free_page_list(&image->unusable_pages);
 590
 591}
 
 592void kimage_terminate(struct kimage *image)
 593{
 594	if (*image->entry != 0)
 595		image->entry++;
 596
 597	*image->entry = IND_DONE;
 598}
 599
 600#define for_each_kimage_entry(image, ptr, entry) \
 601	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 602		ptr = (entry & IND_INDIRECTION) ? \
 603			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 604
 605static void kimage_free_entry(kimage_entry_t entry)
 606{
 607	struct page *page;
 608
 609	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 610	kimage_free_pages(page);
 611}
 612
 613void kimage_free(struct kimage *image)
 614{
 615	kimage_entry_t *ptr, entry;
 616	kimage_entry_t ind = 0;
 617
 618	if (!image)
 619		return;
 620
 
 621	if (image->vmcoreinfo_data_copy) {
 622		crash_update_vmcoreinfo_safecopy(NULL);
 623		vunmap(image->vmcoreinfo_data_copy);
 624	}
 
 625
 626	kimage_free_extra_pages(image);
 627	for_each_kimage_entry(image, ptr, entry) {
 628		if (entry & IND_INDIRECTION) {
 629			/* Free the previous indirection page */
 630			if (ind & IND_INDIRECTION)
 631				kimage_free_entry(ind);
 632			/* Save this indirection page until we are
 633			 * done with it.
 634			 */
 635			ind = entry;
 636		} else if (entry & IND_SOURCE)
 637			kimage_free_entry(entry);
 638	}
 639	/* Free the final indirection page */
 640	if (ind & IND_INDIRECTION)
 641		kimage_free_entry(ind);
 642
 643	/* Handle any machine specific cleanup */
 644	machine_kexec_cleanup(image);
 645
 646	/* Free the kexec control pages... */
 647	kimage_free_page_list(&image->control_pages);
 648
 649	/*
 650	 * Free up any temporary buffers allocated. This might hit if
 651	 * error occurred much later after buffer allocation.
 652	 */
 653	if (image->file_mode)
 654		kimage_file_post_load_cleanup(image);
 655
 656	kfree(image);
 657}
 658
 659static kimage_entry_t *kimage_dst_used(struct kimage *image,
 660					unsigned long page)
 661{
 662	kimage_entry_t *ptr, entry;
 663	unsigned long destination = 0;
 664
 665	for_each_kimage_entry(image, ptr, entry) {
 666		if (entry & IND_DESTINATION)
 667			destination = entry & PAGE_MASK;
 668		else if (entry & IND_SOURCE) {
 669			if (page == destination)
 670				return ptr;
 671			destination += PAGE_SIZE;
 672		}
 673	}
 674
 675	return NULL;
 676}
 677
 678static struct page *kimage_alloc_page(struct kimage *image,
 679					gfp_t gfp_mask,
 680					unsigned long destination)
 681{
 682	/*
 683	 * Here we implement safeguards to ensure that a source page
 684	 * is not copied to its destination page before the data on
 685	 * the destination page is no longer useful.
 686	 *
 687	 * To do this we maintain the invariant that a source page is
 688	 * either its own destination page, or it is not a
 689	 * destination page at all.
 690	 *
 691	 * That is slightly stronger than required, but the proof
 692	 * that no problems will not occur is trivial, and the
 693	 * implementation is simply to verify.
 694	 *
 695	 * When allocating all pages normally this algorithm will run
 696	 * in O(N) time, but in the worst case it will run in O(N^2)
 697	 * time.   If the runtime is a problem the data structures can
 698	 * be fixed.
 699	 */
 700	struct page *page;
 701	unsigned long addr;
 702
 703	/*
 704	 * Walk through the list of destination pages, and see if I
 705	 * have a match.
 706	 */
 707	list_for_each_entry(page, &image->dest_pages, lru) {
 708		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 709		if (addr == destination) {
 710			list_del(&page->lru);
 711			return page;
 712		}
 713	}
 714	page = NULL;
 715	while (1) {
 716		kimage_entry_t *old;
 717
 718		/* Allocate a page, if we run out of memory give up */
 719		page = kimage_alloc_pages(gfp_mask, 0);
 720		if (!page)
 721			return NULL;
 722		/* If the page cannot be used file it away */
 723		if (page_to_boot_pfn(page) >
 724				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 725			list_add(&page->lru, &image->unusable_pages);
 726			continue;
 727		}
 728		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 729
 730		/* If it is the destination page we want use it */
 731		if (addr == destination)
 732			break;
 733
 734		/* If the page is not a destination page use it */
 735		if (!kimage_is_destination_range(image, addr,
 736						  addr + PAGE_SIZE))
 737			break;
 738
 739		/*
 740		 * I know that the page is someones destination page.
 741		 * See if there is already a source page for this
 742		 * destination page.  And if so swap the source pages.
 743		 */
 744		old = kimage_dst_used(image, addr);
 745		if (old) {
 746			/* If so move it */
 747			unsigned long old_addr;
 748			struct page *old_page;
 749
 750			old_addr = *old & PAGE_MASK;
 751			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 752			copy_highpage(page, old_page);
 753			*old = addr | (*old & ~PAGE_MASK);
 754
 755			/* The old page I have found cannot be a
 756			 * destination page, so return it if it's
 757			 * gfp_flags honor the ones passed in.
 758			 */
 759			if (!(gfp_mask & __GFP_HIGHMEM) &&
 760			    PageHighMem(old_page)) {
 761				kimage_free_pages(old_page);
 762				continue;
 763			}
 764			addr = old_addr;
 765			page = old_page;
 766			break;
 767		}
 768		/* Place the page on the destination list, to be used later */
 769		list_add(&page->lru, &image->dest_pages);
 770	}
 771
 772	return page;
 773}
 774
 775static int kimage_load_normal_segment(struct kimage *image,
 776					 struct kexec_segment *segment)
 777{
 778	unsigned long maddr;
 779	size_t ubytes, mbytes;
 780	int result;
 781	unsigned char __user *buf = NULL;
 782	unsigned char *kbuf = NULL;
 783
 784	result = 0;
 785	if (image->file_mode)
 786		kbuf = segment->kbuf;
 787	else
 788		buf = segment->buf;
 789	ubytes = segment->bufsz;
 790	mbytes = segment->memsz;
 791	maddr = segment->mem;
 792
 793	result = kimage_set_destination(image, maddr);
 794	if (result < 0)
 795		goto out;
 796
 797	while (mbytes) {
 798		struct page *page;
 799		char *ptr;
 800		size_t uchunk, mchunk;
 801
 802		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 803		if (!page) {
 804			result  = -ENOMEM;
 805			goto out;
 806		}
 807		result = kimage_add_page(image, page_to_boot_pfn(page)
 808								<< PAGE_SHIFT);
 809		if (result < 0)
 810			goto out;
 811
 812		ptr = kmap(page);
 813		/* Start with a clear page */
 814		clear_page(ptr);
 815		ptr += maddr & ~PAGE_MASK;
 816		mchunk = min_t(size_t, mbytes,
 817				PAGE_SIZE - (maddr & ~PAGE_MASK));
 818		uchunk = min(ubytes, mchunk);
 819
 820		/* For file based kexec, source pages are in kernel memory */
 821		if (image->file_mode)
 822			memcpy(ptr, kbuf, uchunk);
 823		else
 824			result = copy_from_user(ptr, buf, uchunk);
 825		kunmap(page);
 
 
 
 
 
 
 
 826		if (result) {
 827			result = -EFAULT;
 828			goto out;
 829		}
 830		ubytes -= uchunk;
 831		maddr  += mchunk;
 832		if (image->file_mode)
 833			kbuf += mchunk;
 834		else
 835			buf += mchunk;
 836		mbytes -= mchunk;
 837
 838		cond_resched();
 839	}
 840out:
 841	return result;
 842}
 843
 
 844static int kimage_load_crash_segment(struct kimage *image,
 845					struct kexec_segment *segment)
 846{
 847	/* For crash dumps kernels we simply copy the data from
 848	 * user space to it's destination.
 849	 * We do things a page at a time for the sake of kmap.
 850	 */
 851	unsigned long maddr;
 852	size_t ubytes, mbytes;
 853	int result;
 854	unsigned char __user *buf = NULL;
 855	unsigned char *kbuf = NULL;
 856
 857	result = 0;
 858	if (image->file_mode)
 859		kbuf = segment->kbuf;
 860	else
 861		buf = segment->buf;
 862	ubytes = segment->bufsz;
 863	mbytes = segment->memsz;
 864	maddr = segment->mem;
 865	while (mbytes) {
 866		struct page *page;
 867		char *ptr;
 868		size_t uchunk, mchunk;
 869
 870		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 871		if (!page) {
 872			result  = -ENOMEM;
 873			goto out;
 874		}
 875		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
 876		ptr = kmap(page);
 877		ptr += maddr & ~PAGE_MASK;
 878		mchunk = min_t(size_t, mbytes,
 879				PAGE_SIZE - (maddr & ~PAGE_MASK));
 880		uchunk = min(ubytes, mchunk);
 881		if (mchunk > uchunk) {
 882			/* Zero the trailing part of the page */
 883			memset(ptr + uchunk, 0, mchunk - uchunk);
 884		}
 885
 886		/* For file based kexec, source pages are in kernel memory */
 887		if (image->file_mode)
 888			memcpy(ptr, kbuf, uchunk);
 889		else
 890			result = copy_from_user(ptr, buf, uchunk);
 
 
 
 
 
 
 
 891		kexec_flush_icache_page(page);
 892		kunmap(page);
 893		arch_kexec_pre_free_pages(page_address(page), 1);
 894		if (result) {
 895			result = -EFAULT;
 896			goto out;
 897		}
 898		ubytes -= uchunk;
 899		maddr  += mchunk;
 900		if (image->file_mode)
 901			kbuf += mchunk;
 902		else
 903			buf += mchunk;
 904		mbytes -= mchunk;
 905
 906		cond_resched();
 907	}
 908out:
 909	return result;
 910}
 
 911
 912int kimage_load_segment(struct kimage *image,
 913				struct kexec_segment *segment)
 914{
 915	int result = -ENOMEM;
 916
 917	switch (image->type) {
 918	case KEXEC_TYPE_DEFAULT:
 919		result = kimage_load_normal_segment(image, segment);
 920		break;
 
 921	case KEXEC_TYPE_CRASH:
 922		result = kimage_load_crash_segment(image, segment);
 923		break;
 
 924	}
 925
 926	return result;
 927}
 928
 929struct kimage *kexec_image;
 930struct kimage *kexec_crash_image;
 931int kexec_load_disabled;
 932
 933/*
 934 * No panic_cpu check version of crash_kexec().  This function is called
 935 * only when panic_cpu holds the current CPU number; this is the only CPU
 936 * which processes crash_kexec routines.
 937 */
 938void __noclone __crash_kexec(struct pt_regs *regs)
 939{
 940	/* Take the kexec_mutex here to prevent sys_kexec_load
 941	 * running on one cpu from replacing the crash kernel
 942	 * we are using after a panic on a different cpu.
 943	 *
 944	 * If the crash kernel was not located in a fixed area
 945	 * of memory the xchg(&kexec_crash_image) would be
 946	 * sufficient.  But since I reuse the memory...
 947	 */
 948	if (mutex_trylock(&kexec_mutex)) {
 949		if (kexec_crash_image) {
 950			struct pt_regs fixed_regs;
 951
 952			crash_setup_regs(&fixed_regs, regs);
 953			crash_save_vmcoreinfo();
 954			machine_crash_shutdown(&fixed_regs);
 955			machine_kexec(kexec_crash_image);
 956		}
 957		mutex_unlock(&kexec_mutex);
 958	}
 959}
 960STACK_FRAME_NON_STANDARD(__crash_kexec);
 961
 962void crash_kexec(struct pt_regs *regs)
 963{
 964	int old_cpu, this_cpu;
 965
 966	/*
 967	 * Only one CPU is allowed to execute the crash_kexec() code as with
 968	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
 969	 * may stop each other.  To exclude them, we use panic_cpu here too.
 970	 */
 971	this_cpu = raw_smp_processor_id();
 972	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 973	if (old_cpu == PANIC_CPU_INVALID) {
 974		/* This is the 1st CPU which comes here, so go ahead. */
 975		printk_safe_flush_on_panic();
 976		__crash_kexec(regs);
 977
 978		/*
 979		 * Reset panic_cpu to allow another panic()/crash_kexec()
 980		 * call.
 981		 */
 982		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 983	}
 984}
 985
 986size_t crash_get_memory_size(void)
 987{
 988	size_t size = 0;
 989
 990	mutex_lock(&kexec_mutex);
 991	if (crashk_res.end != crashk_res.start)
 992		size = resource_size(&crashk_res);
 993	mutex_unlock(&kexec_mutex);
 994	return size;
 995}
 996
 997void __weak crash_free_reserved_phys_range(unsigned long begin,
 998					   unsigned long end)
 999{
1000	unsigned long addr;
1001
1002	for (addr = begin; addr < end; addr += PAGE_SIZE)
1003		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1004}
1005
1006int crash_shrink_memory(unsigned long new_size)
1007{
1008	int ret = 0;
1009	unsigned long start, end;
1010	unsigned long old_size;
1011	struct resource *ram_res;
 
 
 
 
 
 
 
 
 
 
 
1012
1013	mutex_lock(&kexec_mutex);
 
1014
1015	if (kexec_crash_image) {
1016		ret = -ENOENT;
1017		goto unlock;
1018	}
1019	start = crashk_res.start;
1020	end = crashk_res.end;
1021	old_size = (end == 0) ? 0 : end - start + 1;
1022	if (new_size >= old_size) {
1023		ret = (new_size == old_size) ? 0 : -EINVAL;
1024		goto unlock;
1025	}
1026
1027	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1028	if (!ram_res) {
1029		ret = -ENOMEM;
1030		goto unlock;
1031	}
1032
1033	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1034	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1035
1036	crash_free_reserved_phys_range(end, crashk_res.end);
1037
1038	if ((start == end) && (crashk_res.parent != NULL))
1039		release_resource(&crashk_res);
1040
1041	ram_res->start = end;
1042	ram_res->end = crashk_res.end;
1043	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1044	ram_res->name = "System RAM";
1045
1046	crashk_res.end = end - 1;
1047
1048	insert_resource(&iomem_resource, ram_res);
1049
1050unlock:
1051	mutex_unlock(&kexec_mutex);
1052	return ret;
1053}
1054
1055void crash_save_cpu(struct pt_regs *regs, int cpu)
1056{
1057	struct elf_prstatus prstatus;
1058	u32 *buf;
1059
1060	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1061		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062
1063	/* Using ELF notes here is opportunistic.
1064	 * I need a well defined structure format
1065	 * for the data I pass, and I need tags
1066	 * on the data to indicate what information I have
1067	 * squirrelled away.  ELF notes happen to provide
1068	 * all of that, so there is no need to invent something new.
1069	 */
1070	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1071	if (!buf)
1072		return;
1073	memset(&prstatus, 0, sizeof(prstatus));
1074	prstatus.pr_pid = current->pid;
1075	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1076	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1077			      &prstatus, sizeof(prstatus));
1078	final_note(buf);
1079}
 
 
1080
1081static int __init crash_notes_memory_init(void)
1082{
1083	/* Allocate memory for saving cpu registers. */
1084	size_t size, align;
1085
1086	/*
1087	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1088	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1089	 * pages are also on 2 continuous physical pages. In this case the
1090	 * 2nd part of crash_notes in 2nd page could be lost since only the
1091	 * starting address and size of crash_notes are exported through sysfs.
1092	 * Here round up the size of crash_notes to the nearest power of two
1093	 * and pass it to __alloc_percpu as align value. This can make sure
1094	 * crash_notes is allocated inside one physical page.
1095	 */
1096	size = sizeof(note_buf_t);
1097	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1098
1099	/*
1100	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1101	 * definitely will be in 2 pages with that.
1102	 */
1103	BUILD_BUG_ON(size > PAGE_SIZE);
 
 
 
 
 
 
1104
1105	crash_notes = __alloc_percpu(size, align);
1106	if (!crash_notes) {
1107		pr_warn("Memory allocation for saving cpu register states failed\n");
1108		return -ENOMEM;
1109	}
1110	return 0;
1111}
1112subsys_initcall(crash_notes_memory_init);
1113
1114
1115/*
1116 * Move into place and start executing a preloaded standalone
1117 * executable.  If nothing was preloaded return an error.
1118 */
1119int kernel_kexec(void)
1120{
1121	int error = 0;
1122
1123	if (!mutex_trylock(&kexec_mutex))
1124		return -EBUSY;
1125	if (!kexec_image) {
1126		error = -EINVAL;
1127		goto Unlock;
1128	}
1129
1130#ifdef CONFIG_KEXEC_JUMP
1131	if (kexec_image->preserve_context) {
1132		lock_system_sleep();
1133		pm_prepare_console();
1134		error = freeze_processes();
1135		if (error) {
1136			error = -EBUSY;
1137			goto Restore_console;
1138		}
1139		suspend_console();
1140		error = dpm_suspend_start(PMSG_FREEZE);
1141		if (error)
1142			goto Resume_console;
1143		/* At this point, dpm_suspend_start() has been called,
1144		 * but *not* dpm_suspend_end(). We *must* call
1145		 * dpm_suspend_end() now.  Otherwise, drivers for
1146		 * some devices (e.g. interrupt controllers) become
1147		 * desynchronized with the actual state of the
1148		 * hardware at resume time, and evil weirdness ensues.
1149		 */
1150		error = dpm_suspend_end(PMSG_FREEZE);
1151		if (error)
1152			goto Resume_devices;
1153		error = suspend_disable_secondary_cpus();
1154		if (error)
1155			goto Enable_cpus;
1156		local_irq_disable();
1157		error = syscore_suspend();
1158		if (error)
1159			goto Enable_irqs;
1160	} else
1161#endif
1162	{
1163		kexec_in_progress = true;
1164		kernel_restart_prepare(NULL);
1165		migrate_to_reboot_cpu();
 
1166
1167		/*
1168		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1169		 * no further code needs to use CPU hotplug (which is true in
1170		 * the reboot case). However, the kexec path depends on using
1171		 * CPU hotplug again; so re-enable it here.
1172		 */
1173		cpu_hotplug_enable();
1174		pr_emerg("Starting new kernel\n");
1175		machine_shutdown();
1176	}
1177
 
1178	machine_kexec(kexec_image);
1179
1180#ifdef CONFIG_KEXEC_JUMP
1181	if (kexec_image->preserve_context) {
1182		syscore_resume();
1183 Enable_irqs:
1184		local_irq_enable();
1185 Enable_cpus:
1186		suspend_enable_secondary_cpus();
1187		dpm_resume_start(PMSG_RESTORE);
1188 Resume_devices:
1189		dpm_resume_end(PMSG_RESTORE);
1190 Resume_console:
1191		resume_console();
1192		thaw_processes();
1193 Restore_console:
1194		pm_restore_console();
1195		unlock_system_sleep();
1196	}
1197#endif
1198
1199 Unlock:
1200	mutex_unlock(&kexec_mutex);
1201	return error;
1202}
1203
1204/*
1205 * Protection mechanism for crashkernel reserved memory after
1206 * the kdump kernel is loaded.
1207 *
1208 * Provide an empty default implementation here -- architecture
1209 * code may override this
1210 */
1211void __weak arch_kexec_protect_crashkres(void)
1212{}
1213
1214void __weak arch_kexec_unprotect_crashkres(void)
1215{}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec.c - kexec system call core code.
   4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/btf.h>
  10#include <linux/capability.h>
  11#include <linux/mm.h>
  12#include <linux/file.h>
  13#include <linux/slab.h>
  14#include <linux/fs.h>
  15#include <linux/kexec.h>
  16#include <linux/mutex.h>
  17#include <linux/list.h>
  18#include <linux/highmem.h>
  19#include <linux/syscalls.h>
  20#include <linux/reboot.h>
  21#include <linux/ioport.h>
  22#include <linux/hardirq.h>
  23#include <linux/elf.h>
  24#include <linux/elfcore.h>
  25#include <linux/utsname.h>
  26#include <linux/numa.h>
  27#include <linux/suspend.h>
  28#include <linux/device.h>
  29#include <linux/freezer.h>
  30#include <linux/panic_notifier.h>
  31#include <linux/pm.h>
  32#include <linux/cpu.h>
  33#include <linux/uaccess.h>
  34#include <linux/io.h>
  35#include <linux/console.h>
  36#include <linux/vmalloc.h>
  37#include <linux/swap.h>
  38#include <linux/syscore_ops.h>
  39#include <linux/compiler.h>
  40#include <linux/hugetlb.h>
  41#include <linux/objtool.h>
  42#include <linux/kmsg_dump.h>
  43
  44#include <asm/page.h>
  45#include <asm/sections.h>
  46
  47#include <crypto/hash.h>
 
  48#include "kexec_internal.h"
  49
  50atomic_t __kexec_lock = ATOMIC_INIT(0);
 
 
 
  51
  52/* Flag to indicate we are going to kexec a new kernel */
  53bool kexec_in_progress = false;
  54
  55bool kexec_file_dbg_print;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57/*
  58 * When kexec transitions to the new kernel there is a one-to-one
  59 * mapping between physical and virtual addresses.  On processors
  60 * where you can disable the MMU this is trivial, and easy.  For
  61 * others it is still a simple predictable page table to setup.
  62 *
  63 * In that environment kexec copies the new kernel to its final
  64 * resting place.  This means I can only support memory whose
  65 * physical address can fit in an unsigned long.  In particular
  66 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
  67 * If the assembly stub has more restrictive requirements
  68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
  69 * defined more restrictively in <asm/kexec.h>.
  70 *
  71 * The code for the transition from the current kernel to the
  72 * new kernel is placed in the control_code_buffer, whose size
  73 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
  74 * page of memory is necessary, but some architectures require more.
  75 * Because this memory must be identity mapped in the transition from
  76 * virtual to physical addresses it must live in the range
  77 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
  78 * modifiable.
  79 *
  80 * The assembly stub in the control code buffer is passed a linked list
  81 * of descriptor pages detailing the source pages of the new kernel,
  82 * and the destination addresses of those source pages.  As this data
  83 * structure is not used in the context of the current OS, it must
  84 * be self-contained.
  85 *
  86 * The code has been made to work with highmem pages and will use a
  87 * destination page in its final resting place (if it happens
  88 * to allocate it).  The end product of this is that most of the
  89 * physical address space, and most of RAM can be used.
  90 *
  91 * Future directions include:
  92 *  - allocating a page table with the control code buffer identity
  93 *    mapped, to simplify machine_kexec and make kexec_on_panic more
  94 *    reliable.
  95 */
  96
  97/*
  98 * KIMAGE_NO_DEST is an impossible destination address..., for
  99 * allocating pages whose destination address we do not care about.
 100 */
 101#define KIMAGE_NO_DEST (-1UL)
 102#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 103
 104static struct page *kimage_alloc_page(struct kimage *image,
 105				       gfp_t gfp_mask,
 106				       unsigned long dest);
 107
 108int sanity_check_segment_list(struct kimage *image)
 109{
 110	int i;
 111	unsigned long nr_segments = image->nr_segments;
 112	unsigned long total_pages = 0;
 113	unsigned long nr_pages = totalram_pages();
 114
 115	/*
 116	 * Verify we have good destination addresses.  The caller is
 117	 * responsible for making certain we don't attempt to load
 118	 * the new image into invalid or reserved areas of RAM.  This
 119	 * just verifies it is an address we can use.
 120	 *
 121	 * Since the kernel does everything in page size chunks ensure
 122	 * the destination addresses are page aligned.  Too many
 123	 * special cases crop of when we don't do this.  The most
 124	 * insidious is getting overlapping destination addresses
 125	 * simply because addresses are changed to page size
 126	 * granularity.
 127	 */
 128	for (i = 0; i < nr_segments; i++) {
 129		unsigned long mstart, mend;
 130
 131		mstart = image->segment[i].mem;
 132		mend   = mstart + image->segment[i].memsz;
 133		if (mstart > mend)
 134			return -EADDRNOTAVAIL;
 135		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 136			return -EADDRNOTAVAIL;
 137		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 138			return -EADDRNOTAVAIL;
 139	}
 140
 141	/* Verify our destination addresses do not overlap.
 142	 * If we alloed overlapping destination addresses
 143	 * through very weird things can happen with no
 144	 * easy explanation as one segment stops on another.
 145	 */
 146	for (i = 0; i < nr_segments; i++) {
 147		unsigned long mstart, mend;
 148		unsigned long j;
 149
 150		mstart = image->segment[i].mem;
 151		mend   = mstart + image->segment[i].memsz;
 152		for (j = 0; j < i; j++) {
 153			unsigned long pstart, pend;
 154
 155			pstart = image->segment[j].mem;
 156			pend   = pstart + image->segment[j].memsz;
 157			/* Do the segments overlap ? */
 158			if ((mend > pstart) && (mstart < pend))
 159				return -EINVAL;
 160		}
 161	}
 162
 163	/* Ensure our buffer sizes are strictly less than
 164	 * our memory sizes.  This should always be the case,
 165	 * and it is easier to check up front than to be surprised
 166	 * later on.
 167	 */
 168	for (i = 0; i < nr_segments; i++) {
 169		if (image->segment[i].bufsz > image->segment[i].memsz)
 170			return -EINVAL;
 171	}
 172
 173	/*
 174	 * Verify that no more than half of memory will be consumed. If the
 175	 * request from userspace is too large, a large amount of time will be
 176	 * wasted allocating pages, which can cause a soft lockup.
 177	 */
 178	for (i = 0; i < nr_segments; i++) {
 179		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
 180			return -EINVAL;
 181
 182		total_pages += PAGE_COUNT(image->segment[i].memsz);
 183	}
 184
 185	if (total_pages > nr_pages / 2)
 186		return -EINVAL;
 187
 188#ifdef CONFIG_CRASH_DUMP
 189	/*
 190	 * Verify we have good destination addresses.  Normally
 191	 * the caller is responsible for making certain we don't
 192	 * attempt to load the new image into invalid or reserved
 193	 * areas of RAM.  But crash kernels are preloaded into a
 194	 * reserved area of ram.  We must ensure the addresses
 195	 * are in the reserved area otherwise preloading the
 196	 * kernel could corrupt things.
 197	 */
 198
 199	if (image->type == KEXEC_TYPE_CRASH) {
 200		for (i = 0; i < nr_segments; i++) {
 201			unsigned long mstart, mend;
 202
 203			mstart = image->segment[i].mem;
 204			mend = mstart + image->segment[i].memsz - 1;
 205			/* Ensure we are within the crash kernel limits */
 206			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 207			    (mend > phys_to_boot_phys(crashk_res.end)))
 208				return -EADDRNOTAVAIL;
 209		}
 210	}
 211#endif
 212
 213	return 0;
 214}
 215
 216struct kimage *do_kimage_alloc_init(void)
 217{
 218	struct kimage *image;
 219
 220	/* Allocate a controlling structure */
 221	image = kzalloc(sizeof(*image), GFP_KERNEL);
 222	if (!image)
 223		return NULL;
 224
 225	image->head = 0;
 226	image->entry = &image->head;
 227	image->last_entry = &image->head;
 228	image->control_page = ~0; /* By default this does not apply */
 229	image->type = KEXEC_TYPE_DEFAULT;
 230
 231	/* Initialize the list of control pages */
 232	INIT_LIST_HEAD(&image->control_pages);
 233
 234	/* Initialize the list of destination pages */
 235	INIT_LIST_HEAD(&image->dest_pages);
 236
 237	/* Initialize the list of unusable pages */
 238	INIT_LIST_HEAD(&image->unusable_pages);
 239
 240#ifdef CONFIG_CRASH_HOTPLUG
 241	image->hp_action = KEXEC_CRASH_HP_NONE;
 242	image->elfcorehdr_index = -1;
 243	image->elfcorehdr_updated = false;
 244#endif
 245
 246	return image;
 247}
 248
 249int kimage_is_destination_range(struct kimage *image,
 250					unsigned long start,
 251					unsigned long end)
 252{
 253	unsigned long i;
 254
 255	for (i = 0; i < image->nr_segments; i++) {
 256		unsigned long mstart, mend;
 257
 258		mstart = image->segment[i].mem;
 259		mend = mstart + image->segment[i].memsz - 1;
 260		if ((end >= mstart) && (start <= mend))
 261			return 1;
 262	}
 263
 264	return 0;
 265}
 266
 267static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 268{
 269	struct page *pages;
 270
 271	if (fatal_signal_pending(current))
 272		return NULL;
 273	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 274	if (pages) {
 275		unsigned int count, i;
 276
 277		pages->mapping = NULL;
 278		set_page_private(pages, order);
 279		count = 1 << order;
 280		for (i = 0; i < count; i++)
 281			SetPageReserved(pages + i);
 282
 283		arch_kexec_post_alloc_pages(page_address(pages), count,
 284					    gfp_mask);
 285
 286		if (gfp_mask & __GFP_ZERO)
 287			for (i = 0; i < count; i++)
 288				clear_highpage(pages + i);
 289	}
 290
 291	return pages;
 292}
 293
 294static void kimage_free_pages(struct page *page)
 295{
 296	unsigned int order, count, i;
 297
 298	order = page_private(page);
 299	count = 1 << order;
 300
 301	arch_kexec_pre_free_pages(page_address(page), count);
 302
 303	for (i = 0; i < count; i++)
 304		ClearPageReserved(page + i);
 305	__free_pages(page, order);
 306}
 307
 308void kimage_free_page_list(struct list_head *list)
 309{
 310	struct page *page, *next;
 311
 312	list_for_each_entry_safe(page, next, list, lru) {
 313		list_del(&page->lru);
 314		kimage_free_pages(page);
 315	}
 316}
 317
 318static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 319							unsigned int order)
 320{
 321	/* Control pages are special, they are the intermediaries
 322	 * that are needed while we copy the rest of the pages
 323	 * to their final resting place.  As such they must
 324	 * not conflict with either the destination addresses
 325	 * or memory the kernel is already using.
 326	 *
 327	 * The only case where we really need more than one of
 328	 * these are for architectures where we cannot disable
 329	 * the MMU and must instead generate an identity mapped
 330	 * page table for all of the memory.
 331	 *
 332	 * At worst this runs in O(N) of the image size.
 333	 */
 334	struct list_head extra_pages;
 335	struct page *pages;
 336	unsigned int count;
 337
 338	count = 1 << order;
 339	INIT_LIST_HEAD(&extra_pages);
 340
 341	/* Loop while I can allocate a page and the page allocated
 342	 * is a destination page.
 343	 */
 344	do {
 345		unsigned long pfn, epfn, addr, eaddr;
 346
 347		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 348		if (!pages)
 349			break;
 350		pfn   = page_to_boot_pfn(pages);
 351		epfn  = pfn + count;
 352		addr  = pfn << PAGE_SHIFT;
 353		eaddr = (epfn << PAGE_SHIFT) - 1;
 354		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 355			      kimage_is_destination_range(image, addr, eaddr)) {
 356			list_add(&pages->lru, &extra_pages);
 357			pages = NULL;
 358		}
 359	} while (!pages);
 360
 361	if (pages) {
 362		/* Remember the allocated page... */
 363		list_add(&pages->lru, &image->control_pages);
 364
 365		/* Because the page is already in it's destination
 366		 * location we will never allocate another page at
 367		 * that address.  Therefore kimage_alloc_pages
 368		 * will not return it (again) and we don't need
 369		 * to give it an entry in image->segment[].
 370		 */
 371	}
 372	/* Deal with the destination pages I have inadvertently allocated.
 373	 *
 374	 * Ideally I would convert multi-page allocations into single
 375	 * page allocations, and add everything to image->dest_pages.
 376	 *
 377	 * For now it is simpler to just free the pages.
 378	 */
 379	kimage_free_page_list(&extra_pages);
 380
 381	return pages;
 382}
 383
 384#ifdef CONFIG_CRASH_DUMP
 385static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 386						      unsigned int order)
 387{
 388	/* Control pages are special, they are the intermediaries
 389	 * that are needed while we copy the rest of the pages
 390	 * to their final resting place.  As such they must
 391	 * not conflict with either the destination addresses
 392	 * or memory the kernel is already using.
 393	 *
 394	 * Control pages are also the only pags we must allocate
 395	 * when loading a crash kernel.  All of the other pages
 396	 * are specified by the segments and we just memcpy
 397	 * into them directly.
 398	 *
 399	 * The only case where we really need more than one of
 400	 * these are for architectures where we cannot disable
 401	 * the MMU and must instead generate an identity mapped
 402	 * page table for all of the memory.
 403	 *
 404	 * Given the low demand this implements a very simple
 405	 * allocator that finds the first hole of the appropriate
 406	 * size in the reserved memory region, and allocates all
 407	 * of the memory up to and including the hole.
 408	 */
 409	unsigned long hole_start, hole_end, size;
 410	struct page *pages;
 411
 412	pages = NULL;
 413	size = (1 << order) << PAGE_SHIFT;
 414	hole_start = ALIGN(image->control_page, size);
 415	hole_end   = hole_start + size - 1;
 416	while (hole_end <= crashk_res.end) {
 417		unsigned long i;
 418
 419		cond_resched();
 420
 421		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 422			break;
 423		/* See if I overlap any of the segments */
 424		for (i = 0; i < image->nr_segments; i++) {
 425			unsigned long mstart, mend;
 426
 427			mstart = image->segment[i].mem;
 428			mend   = mstart + image->segment[i].memsz - 1;
 429			if ((hole_end >= mstart) && (hole_start <= mend)) {
 430				/* Advance the hole to the end of the segment */
 431				hole_start = ALIGN(mend, size);
 432				hole_end   = hole_start + size - 1;
 433				break;
 434			}
 435		}
 436		/* If I don't overlap any segments I have found my hole! */
 437		if (i == image->nr_segments) {
 438			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 439			image->control_page = hole_end + 1;
 440			break;
 441		}
 442	}
 443
 444	/* Ensure that these pages are decrypted if SME is enabled. */
 445	if (pages)
 446		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
 447
 448	return pages;
 449}
 450#endif
 451
 452
 453struct page *kimage_alloc_control_pages(struct kimage *image,
 454					 unsigned int order)
 455{
 456	struct page *pages = NULL;
 457
 458	switch (image->type) {
 459	case KEXEC_TYPE_DEFAULT:
 460		pages = kimage_alloc_normal_control_pages(image, order);
 461		break;
 462#ifdef CONFIG_CRASH_DUMP
 463	case KEXEC_TYPE_CRASH:
 464		pages = kimage_alloc_crash_control_pages(image, order);
 465		break;
 466#endif
 467	}
 468
 469	return pages;
 470}
 471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 473{
 474	if (*image->entry != 0)
 475		image->entry++;
 476
 477	if (image->entry == image->last_entry) {
 478		kimage_entry_t *ind_page;
 479		struct page *page;
 480
 481		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 482		if (!page)
 483			return -ENOMEM;
 484
 485		ind_page = page_address(page);
 486		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 487		image->entry = ind_page;
 488		image->last_entry = ind_page +
 489				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 490	}
 491	*image->entry = entry;
 492	image->entry++;
 493	*image->entry = 0;
 494
 495	return 0;
 496}
 497
 498static int kimage_set_destination(struct kimage *image,
 499				   unsigned long destination)
 500{
 
 
 501	destination &= PAGE_MASK;
 
 502
 503	return kimage_add_entry(image, destination | IND_DESTINATION);
 504}
 505
 506
 507static int kimage_add_page(struct kimage *image, unsigned long page)
 508{
 
 
 509	page &= PAGE_MASK;
 
 510
 511	return kimage_add_entry(image, page | IND_SOURCE);
 512}
 513
 514
 515static void kimage_free_extra_pages(struct kimage *image)
 516{
 517	/* Walk through and free any extra destination pages I may have */
 518	kimage_free_page_list(&image->dest_pages);
 519
 520	/* Walk through and free any unusable pages I have cached */
 521	kimage_free_page_list(&image->unusable_pages);
 522
 523}
 524
 525void kimage_terminate(struct kimage *image)
 526{
 527	if (*image->entry != 0)
 528		image->entry++;
 529
 530	*image->entry = IND_DONE;
 531}
 532
 533#define for_each_kimage_entry(image, ptr, entry) \
 534	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 535		ptr = (entry & IND_INDIRECTION) ? \
 536			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 537
 538static void kimage_free_entry(kimage_entry_t entry)
 539{
 540	struct page *page;
 541
 542	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 543	kimage_free_pages(page);
 544}
 545
 546void kimage_free(struct kimage *image)
 547{
 548	kimage_entry_t *ptr, entry;
 549	kimage_entry_t ind = 0;
 550
 551	if (!image)
 552		return;
 553
 554#ifdef CONFIG_CRASH_DUMP
 555	if (image->vmcoreinfo_data_copy) {
 556		crash_update_vmcoreinfo_safecopy(NULL);
 557		vunmap(image->vmcoreinfo_data_copy);
 558	}
 559#endif
 560
 561	kimage_free_extra_pages(image);
 562	for_each_kimage_entry(image, ptr, entry) {
 563		if (entry & IND_INDIRECTION) {
 564			/* Free the previous indirection page */
 565			if (ind & IND_INDIRECTION)
 566				kimage_free_entry(ind);
 567			/* Save this indirection page until we are
 568			 * done with it.
 569			 */
 570			ind = entry;
 571		} else if (entry & IND_SOURCE)
 572			kimage_free_entry(entry);
 573	}
 574	/* Free the final indirection page */
 575	if (ind & IND_INDIRECTION)
 576		kimage_free_entry(ind);
 577
 578	/* Handle any machine specific cleanup */
 579	machine_kexec_cleanup(image);
 580
 581	/* Free the kexec control pages... */
 582	kimage_free_page_list(&image->control_pages);
 583
 584	/*
 585	 * Free up any temporary buffers allocated. This might hit if
 586	 * error occurred much later after buffer allocation.
 587	 */
 588	if (image->file_mode)
 589		kimage_file_post_load_cleanup(image);
 590
 591	kfree(image);
 592}
 593
 594static kimage_entry_t *kimage_dst_used(struct kimage *image,
 595					unsigned long page)
 596{
 597	kimage_entry_t *ptr, entry;
 598	unsigned long destination = 0;
 599
 600	for_each_kimage_entry(image, ptr, entry) {
 601		if (entry & IND_DESTINATION)
 602			destination = entry & PAGE_MASK;
 603		else if (entry & IND_SOURCE) {
 604			if (page == destination)
 605				return ptr;
 606			destination += PAGE_SIZE;
 607		}
 608	}
 609
 610	return NULL;
 611}
 612
 613static struct page *kimage_alloc_page(struct kimage *image,
 614					gfp_t gfp_mask,
 615					unsigned long destination)
 616{
 617	/*
 618	 * Here we implement safeguards to ensure that a source page
 619	 * is not copied to its destination page before the data on
 620	 * the destination page is no longer useful.
 621	 *
 622	 * To do this we maintain the invariant that a source page is
 623	 * either its own destination page, or it is not a
 624	 * destination page at all.
 625	 *
 626	 * That is slightly stronger than required, but the proof
 627	 * that no problems will not occur is trivial, and the
 628	 * implementation is simply to verify.
 629	 *
 630	 * When allocating all pages normally this algorithm will run
 631	 * in O(N) time, but in the worst case it will run in O(N^2)
 632	 * time.   If the runtime is a problem the data structures can
 633	 * be fixed.
 634	 */
 635	struct page *page;
 636	unsigned long addr;
 637
 638	/*
 639	 * Walk through the list of destination pages, and see if I
 640	 * have a match.
 641	 */
 642	list_for_each_entry(page, &image->dest_pages, lru) {
 643		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 644		if (addr == destination) {
 645			list_del(&page->lru);
 646			return page;
 647		}
 648	}
 649	page = NULL;
 650	while (1) {
 651		kimage_entry_t *old;
 652
 653		/* Allocate a page, if we run out of memory give up */
 654		page = kimage_alloc_pages(gfp_mask, 0);
 655		if (!page)
 656			return NULL;
 657		/* If the page cannot be used file it away */
 658		if (page_to_boot_pfn(page) >
 659				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 660			list_add(&page->lru, &image->unusable_pages);
 661			continue;
 662		}
 663		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 664
 665		/* If it is the destination page we want use it */
 666		if (addr == destination)
 667			break;
 668
 669		/* If the page is not a destination page use it */
 670		if (!kimage_is_destination_range(image, addr,
 671						  addr + PAGE_SIZE - 1))
 672			break;
 673
 674		/*
 675		 * I know that the page is someones destination page.
 676		 * See if there is already a source page for this
 677		 * destination page.  And if so swap the source pages.
 678		 */
 679		old = kimage_dst_used(image, addr);
 680		if (old) {
 681			/* If so move it */
 682			unsigned long old_addr;
 683			struct page *old_page;
 684
 685			old_addr = *old & PAGE_MASK;
 686			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 687			copy_highpage(page, old_page);
 688			*old = addr | (*old & ~PAGE_MASK);
 689
 690			/* The old page I have found cannot be a
 691			 * destination page, so return it if it's
 692			 * gfp_flags honor the ones passed in.
 693			 */
 694			if (!(gfp_mask & __GFP_HIGHMEM) &&
 695			    PageHighMem(old_page)) {
 696				kimage_free_pages(old_page);
 697				continue;
 698			}
 
 699			page = old_page;
 700			break;
 701		}
 702		/* Place the page on the destination list, to be used later */
 703		list_add(&page->lru, &image->dest_pages);
 704	}
 705
 706	return page;
 707}
 708
 709static int kimage_load_normal_segment(struct kimage *image,
 710					 struct kexec_segment *segment)
 711{
 712	unsigned long maddr;
 713	size_t ubytes, mbytes;
 714	int result;
 715	unsigned char __user *buf = NULL;
 716	unsigned char *kbuf = NULL;
 717
 
 718	if (image->file_mode)
 719		kbuf = segment->kbuf;
 720	else
 721		buf = segment->buf;
 722	ubytes = segment->bufsz;
 723	mbytes = segment->memsz;
 724	maddr = segment->mem;
 725
 726	result = kimage_set_destination(image, maddr);
 727	if (result < 0)
 728		goto out;
 729
 730	while (mbytes) {
 731		struct page *page;
 732		char *ptr;
 733		size_t uchunk, mchunk;
 734
 735		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 736		if (!page) {
 737			result  = -ENOMEM;
 738			goto out;
 739		}
 740		result = kimage_add_page(image, page_to_boot_pfn(page)
 741								<< PAGE_SHIFT);
 742		if (result < 0)
 743			goto out;
 744
 745		ptr = kmap_local_page(page);
 746		/* Start with a clear page */
 747		clear_page(ptr);
 748		ptr += maddr & ~PAGE_MASK;
 749		mchunk = min_t(size_t, mbytes,
 750				PAGE_SIZE - (maddr & ~PAGE_MASK));
 751		uchunk = min(ubytes, mchunk);
 752
 753		if (uchunk) {
 754			/* For file based kexec, source pages are in kernel memory */
 755			if (image->file_mode)
 756				memcpy(ptr, kbuf, uchunk);
 757			else
 758				result = copy_from_user(ptr, buf, uchunk);
 759			ubytes -= uchunk;
 760			if (image->file_mode)
 761				kbuf += uchunk;
 762			else
 763				buf += uchunk;
 764		}
 765		kunmap_local(ptr);
 766		if (result) {
 767			result = -EFAULT;
 768			goto out;
 769		}
 
 770		maddr  += mchunk;
 
 
 
 
 771		mbytes -= mchunk;
 772
 773		cond_resched();
 774	}
 775out:
 776	return result;
 777}
 778
 779#ifdef CONFIG_CRASH_DUMP
 780static int kimage_load_crash_segment(struct kimage *image,
 781					struct kexec_segment *segment)
 782{
 783	/* For crash dumps kernels we simply copy the data from
 784	 * user space to it's destination.
 785	 * We do things a page at a time for the sake of kmap.
 786	 */
 787	unsigned long maddr;
 788	size_t ubytes, mbytes;
 789	int result;
 790	unsigned char __user *buf = NULL;
 791	unsigned char *kbuf = NULL;
 792
 793	result = 0;
 794	if (image->file_mode)
 795		kbuf = segment->kbuf;
 796	else
 797		buf = segment->buf;
 798	ubytes = segment->bufsz;
 799	mbytes = segment->memsz;
 800	maddr = segment->mem;
 801	while (mbytes) {
 802		struct page *page;
 803		char *ptr;
 804		size_t uchunk, mchunk;
 805
 806		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 807		if (!page) {
 808			result  = -ENOMEM;
 809			goto out;
 810		}
 811		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
 812		ptr = kmap_local_page(page);
 813		ptr += maddr & ~PAGE_MASK;
 814		mchunk = min_t(size_t, mbytes,
 815				PAGE_SIZE - (maddr & ~PAGE_MASK));
 816		uchunk = min(ubytes, mchunk);
 817		if (mchunk > uchunk) {
 818			/* Zero the trailing part of the page */
 819			memset(ptr + uchunk, 0, mchunk - uchunk);
 820		}
 821
 822		if (uchunk) {
 823			/* For file based kexec, source pages are in kernel memory */
 824			if (image->file_mode)
 825				memcpy(ptr, kbuf, uchunk);
 826			else
 827				result = copy_from_user(ptr, buf, uchunk);
 828			ubytes -= uchunk;
 829			if (image->file_mode)
 830				kbuf += uchunk;
 831			else
 832				buf += uchunk;
 833		}
 834		kexec_flush_icache_page(page);
 835		kunmap_local(ptr);
 836		arch_kexec_pre_free_pages(page_address(page), 1);
 837		if (result) {
 838			result = -EFAULT;
 839			goto out;
 840		}
 
 841		maddr  += mchunk;
 
 
 
 
 842		mbytes -= mchunk;
 843
 844		cond_resched();
 845	}
 846out:
 847	return result;
 848}
 849#endif
 850
 851int kimage_load_segment(struct kimage *image,
 852				struct kexec_segment *segment)
 853{
 854	int result = -ENOMEM;
 855
 856	switch (image->type) {
 857	case KEXEC_TYPE_DEFAULT:
 858		result = kimage_load_normal_segment(image, segment);
 859		break;
 860#ifdef CONFIG_CRASH_DUMP
 861	case KEXEC_TYPE_CRASH:
 862		result = kimage_load_crash_segment(image, segment);
 863		break;
 864#endif
 865	}
 866
 867	return result;
 868}
 869
 870struct kexec_load_limit {
 871	/* Mutex protects the limit count. */
 872	struct mutex mutex;
 873	int limit;
 874};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875
 876static struct kexec_load_limit load_limit_reboot = {
 877	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
 878	.limit = -1,
 879};
 
 
 880
 881static struct kexec_load_limit load_limit_panic = {
 882	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
 883	.limit = -1,
 884};
 885
 886struct kimage *kexec_image;
 887struct kimage *kexec_crash_image;
 888static int kexec_load_disabled;
 889
 890#ifdef CONFIG_SYSCTL
 891static int kexec_limit_handler(const struct ctl_table *table, int write,
 892			       void *buffer, size_t *lenp, loff_t *ppos)
 893{
 894	struct kexec_load_limit *limit = table->data;
 895	int val;
 896	struct ctl_table tmp = {
 897		.data = &val,
 898		.maxlen = sizeof(val),
 899		.mode = table->mode,
 900	};
 901	int ret;
 902
 903	if (write) {
 904		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
 905		if (ret)
 906			return ret;
 907
 908		if (val < 0)
 909			return -EINVAL;
 910
 911		mutex_lock(&limit->mutex);
 912		if (limit->limit != -1 && val >= limit->limit)
 913			ret = -EINVAL;
 914		else
 915			limit->limit = val;
 916		mutex_unlock(&limit->mutex);
 
 
 
 
 
 917
 918		return ret;
 
 
 
 919	}
 920
 921	mutex_lock(&limit->mutex);
 922	val = limit->limit;
 923	mutex_unlock(&limit->mutex);
 
 
 
 
 
 
 
 
 
 924
 925	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
 
 
 
 
 
 
 926}
 927
 928static struct ctl_table kexec_core_sysctls[] = {
 929	{
 930		.procname	= "kexec_load_disabled",
 931		.data		= &kexec_load_disabled,
 932		.maxlen		= sizeof(int),
 933		.mode		= 0644,
 934		/* only handle a transition from default "0" to "1" */
 935		.proc_handler	= proc_dointvec_minmax,
 936		.extra1		= SYSCTL_ONE,
 937		.extra2		= SYSCTL_ONE,
 938	},
 939	{
 940		.procname	= "kexec_load_limit_panic",
 941		.data		= &load_limit_panic,
 942		.mode		= 0644,
 943		.proc_handler	= kexec_limit_handler,
 944	},
 945	{
 946		.procname	= "kexec_load_limit_reboot",
 947		.data		= &load_limit_reboot,
 948		.mode		= 0644,
 949		.proc_handler	= kexec_limit_handler,
 950	},
 951};
 952
 953static int __init kexec_core_sysctl_init(void)
 954{
 955	register_sysctl_init("kernel", kexec_core_sysctls);
 956	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 957}
 958late_initcall(kexec_core_sysctl_init);
 959#endif
 960
 961bool kexec_load_permitted(int kexec_image_type)
 962{
 963	struct kexec_load_limit *limit;
 
 964
 965	/*
 966	 * Only the superuser can use the kexec syscall and if it has not
 967	 * been disabled.
 
 
 
 
 
 
 968	 */
 969	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 970		return false;
 971
 972	/* Check limit counter and decrease it.*/
 973	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
 974		&load_limit_panic : &load_limit_reboot;
 975	mutex_lock(&limit->mutex);
 976	if (!limit->limit) {
 977		mutex_unlock(&limit->mutex);
 978		return false;
 979	}
 980	if (limit->limit != -1)
 981		limit->limit--;
 982	mutex_unlock(&limit->mutex);
 983
 984	return true;
 
 
 
 
 
 985}
 
 
 986
 987/*
 988 * Move into place and start executing a preloaded standalone
 989 * executable.  If nothing was preloaded return an error.
 990 */
 991int kernel_kexec(void)
 992{
 993	int error = 0;
 994
 995	if (!kexec_trylock())
 996		return -EBUSY;
 997	if (!kexec_image) {
 998		error = -EINVAL;
 999		goto Unlock;
1000	}
1001
1002#ifdef CONFIG_KEXEC_JUMP
1003	if (kexec_image->preserve_context) {
 
1004		pm_prepare_console();
1005		error = freeze_processes();
1006		if (error) {
1007			error = -EBUSY;
1008			goto Restore_console;
1009		}
1010		suspend_console();
1011		error = dpm_suspend_start(PMSG_FREEZE);
1012		if (error)
1013			goto Resume_console;
1014		/* At this point, dpm_suspend_start() has been called,
1015		 * but *not* dpm_suspend_end(). We *must* call
1016		 * dpm_suspend_end() now.  Otherwise, drivers for
1017		 * some devices (e.g. interrupt controllers) become
1018		 * desynchronized with the actual state of the
1019		 * hardware at resume time, and evil weirdness ensues.
1020		 */
1021		error = dpm_suspend_end(PMSG_FREEZE);
1022		if (error)
1023			goto Resume_devices;
1024		error = suspend_disable_secondary_cpus();
1025		if (error)
1026			goto Enable_cpus;
1027		local_irq_disable();
1028		error = syscore_suspend();
1029		if (error)
1030			goto Enable_irqs;
1031	} else
1032#endif
1033	{
1034		kexec_in_progress = true;
1035		kernel_restart_prepare("kexec reboot");
1036		migrate_to_reboot_cpu();
1037		syscore_shutdown();
1038
1039		/*
1040		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1041		 * no further code needs to use CPU hotplug (which is true in
1042		 * the reboot case). However, the kexec path depends on using
1043		 * CPU hotplug again; so re-enable it here.
1044		 */
1045		cpu_hotplug_enable();
1046		pr_notice("Starting new kernel\n");
1047		machine_shutdown();
1048	}
1049
1050	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1051	machine_kexec(kexec_image);
1052
1053#ifdef CONFIG_KEXEC_JUMP
1054	if (kexec_image->preserve_context) {
1055		syscore_resume();
1056 Enable_irqs:
1057		local_irq_enable();
1058 Enable_cpus:
1059		suspend_enable_secondary_cpus();
1060		dpm_resume_start(PMSG_RESTORE);
1061 Resume_devices:
1062		dpm_resume_end(PMSG_RESTORE);
1063 Resume_console:
1064		resume_console();
1065		thaw_processes();
1066 Restore_console:
1067		pm_restore_console();
 
1068	}
1069#endif
1070
1071 Unlock:
1072	kexec_unlock();
1073	return error;
1074}