Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* include/asm-generic/tlb.h
  3 *
  4 *	Generic TLB shootdown code
  5 *
  6 * Copyright 2001 Red Hat, Inc.
  7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
  8 *
  9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
 10 */
 11#ifndef _ASM_GENERIC__TLB_H
 12#define _ASM_GENERIC__TLB_H
 13
 14#include <linux/mmu_notifier.h>
 15#include <linux/swap.h>
 16#include <asm/pgalloc.h>
 17#include <asm/tlbflush.h>
 18#include <asm/cacheflush.h>
 19
 20/*
 21 * Blindly accessing user memory from NMI context can be dangerous
 22 * if we're in the middle of switching the current user task or switching
 23 * the loaded mm.
 24 */
 25#ifndef nmi_uaccess_okay
 26# define nmi_uaccess_okay() true
 27#endif
 28
 29#ifdef CONFIG_MMU
 30
 31/*
 32 * Generic MMU-gather implementation.
 33 *
 34 * The mmu_gather data structure is used by the mm code to implement the
 35 * correct and efficient ordering of freeing pages and TLB invalidations.
 36 *
 37 * This correct ordering is:
 38 *
 39 *  1) unhook page
 40 *  2) TLB invalidate page
 41 *  3) free page
 42 *
 43 * That is, we must never free a page before we have ensured there are no live
 44 * translations left to it. Otherwise it might be possible to observe (or
 45 * worse, change) the page content after it has been reused.
 46 *
 47 * The mmu_gather API consists of:
 48 *
 49 *  - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather
 
 
 50 *
 51 *    Finish in particular will issue a (final) TLB invalidate and free
 52 *    all (remaining) queued pages.
 53 *
 54 *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
 55 *
 56 *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
 57 *    there's large holes between the VMAs.
 58 *
 
 
 
 
 
 
 
 
 
 59 *  - tlb_remove_page() / __tlb_remove_page()
 60 *  - tlb_remove_page_size() / __tlb_remove_page_size()
 
 61 *
 62 *    __tlb_remove_page_size() is the basic primitive that queues a page for
 63 *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
 64 *    boolean indicating if the queue is (now) full and a call to
 65 *    tlb_flush_mmu() is required.
 66 *
 67 *    tlb_remove_page() and tlb_remove_page_size() imply the call to
 68 *    tlb_flush_mmu() when required and has no return value.
 69 *
 
 
 
 
 
 70 *  - tlb_change_page_size()
 71 *
 72 *    call before __tlb_remove_page*() to set the current page-size; implies a
 73 *    possible tlb_flush_mmu() call.
 74 *
 75 *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
 76 *
 77 *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
 78 *                              related state, like the range)
 79 *
 80 *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
 81 *			whatever pages are still batched.
 82 *
 83 *  - mmu_gather::fullmm
 84 *
 85 *    A flag set by tlb_gather_mmu() to indicate we're going to free
 86 *    the entire mm; this allows a number of optimizations.
 87 *
 88 *    - We can ignore tlb_{start,end}_vma(); because we don't
 89 *      care about ranges. Everything will be shot down.
 90 *
 91 *    - (RISC) architectures that use ASIDs can cycle to a new ASID
 92 *      and delay the invalidation until ASID space runs out.
 93 *
 94 *  - mmu_gather::need_flush_all
 95 *
 96 *    A flag that can be set by the arch code if it wants to force
 97 *    flush the entire TLB irrespective of the range. For instance
 98 *    x86-PAE needs this when changing top-level entries.
 99 *
100 * And allows the architecture to provide and implement tlb_flush():
101 *
102 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
103 * use of:
104 *
105 *  - mmu_gather::start / mmu_gather::end
106 *
107 *    which provides the range that needs to be flushed to cover the pages to
108 *    be freed.
109 *
110 *  - mmu_gather::freed_tables
111 *
112 *    set when we freed page table pages
113 *
114 *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
115 *
116 *    returns the smallest TLB entry size unmapped in this range.
117 *
118 * If an architecture does not provide tlb_flush() a default implementation
119 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
120 * specified, in which case we'll default to flush_tlb_mm().
121 *
122 * Additionally there are a few opt-in features:
123 *
124 *  HAVE_MMU_GATHER_PAGE_SIZE
125 *
126 *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
127 *  changes the size and provides mmu_gather::page_size to tlb_flush().
128 *
129 *  HAVE_RCU_TABLE_FREE
 
 
 
130 *
131 *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
132 *  for page directores (__p*_free_tlb()). This provides separate freeing of
133 *  the page-table pages themselves in a semi-RCU fashion (see comment below).
134 *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
135 *  and therefore doesn't naturally serialize with software page-table walkers.
136 *
137 *  When used, an architecture is expected to provide __tlb_remove_table()
138 *  which does the actual freeing of these pages.
139 *
140 *  HAVE_RCU_TABLE_NO_INVALIDATE
141 *
142 *  This makes HAVE_RCU_TABLE_FREE avoid calling tlb_flush_mmu_tlbonly() before
143 *  freeing the page-table pages. This can be avoided if you use
144 *  HAVE_RCU_TABLE_FREE and your architecture does _NOT_ use the Linux
145 *  page-tables natively.
146 *
147 *  MMU_GATHER_NO_RANGE
 
148 *
149 *  Use this if your architecture lacks an efficient flush_tlb_range().
150 */
151
152#ifdef CONFIG_HAVE_RCU_TABLE_FREE
153/*
154 * Semi RCU freeing of the page directories.
155 *
156 * This is needed by some architectures to implement software pagetable walkers.
 
 
157 *
158 * gup_fast() and other software pagetable walkers do a lockless page-table
159 * walk and therefore needs some synchronization with the freeing of the page
160 * directories. The chosen means to accomplish that is by disabling IRQs over
161 * the walk.
162 *
163 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
164 * since we unlink the page, flush TLBs, free the page. Since the disabling of
165 * IRQs delays the completion of the TLB flush we can never observe an already
166 * freed page.
167 *
168 * Architectures that do not have this (PPC) need to delay the freeing by some
169 * other means, this is that means.
170 *
171 * What we do is batch the freed directory pages (tables) and RCU free them.
172 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
173 * holds off grace periods.
174 *
175 * However, in order to batch these pages we need to allocate storage, this
176 * allocation is deep inside the MM code and can thus easily fail on memory
177 * pressure. To guarantee progress we fall back to single table freeing, see
178 * the implementation of tlb_remove_table_one().
179 *
 
 
180 */
 
 
 
181struct mmu_table_batch {
 
182	struct rcu_head		rcu;
 
183	unsigned int		nr;
184	void			*tables[0];
185};
186
187#define MAX_TABLE_BATCH		\
188	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
189
190extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192#endif
193
194#ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
 
 
 
 
 
195/*
196 * If we can't allocate a page to make a big batch of page pointers
197 * to work on, then just handle a few from the on-stack structure.
198 */
199#define MMU_GATHER_BUNDLE	8
200
201struct mmu_gather_batch {
202	struct mmu_gather_batch	*next;
203	unsigned int		nr;
204	unsigned int		max;
205	struct page		*pages[0];
206};
207
208#define MAX_GATHER_BATCH	\
209	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
210
211/*
212 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
213 * lockups for non-preemptible kernels on huge machines when a lot of memory
214 * is zapped during unmapping.
215 * 10K pages freed at once should be safe even without a preemption point.
216 */
217#define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
218
219extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
220				   int page_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221#endif
222
223/*
224 * struct mmu_gather is an opaque type used by the mm code for passing around
225 * any data needed by arch specific code for tlb_remove_page.
226 */
227struct mmu_gather {
228	struct mm_struct	*mm;
229
230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
231	struct mmu_table_batch	*batch;
232#endif
233
234	unsigned long		start;
235	unsigned long		end;
236	/*
237	 * we are in the middle of an operation to clear
238	 * a full mm and can make some optimizations
239	 */
240	unsigned int		fullmm : 1;
241
242	/*
243	 * we have performed an operation which
244	 * requires a complete flush of the tlb
245	 */
246	unsigned int		need_flush_all : 1;
247
248	/*
249	 * we have removed page directories
250	 */
251	unsigned int		freed_tables : 1;
252
253	/*
 
 
 
 
 
254	 * at which levels have we cleared entries?
255	 */
256	unsigned int		cleared_ptes : 1;
257	unsigned int		cleared_pmds : 1;
258	unsigned int		cleared_puds : 1;
259	unsigned int		cleared_p4ds : 1;
260
261	/*
262	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
263	 */
264	unsigned int		vma_exec : 1;
265	unsigned int		vma_huge : 1;
 
266
267	unsigned int		batch_count;
268
269#ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
270	struct mmu_gather_batch *active;
271	struct mmu_gather_batch	local;
272	struct page		*__pages[MMU_GATHER_BUNDLE];
273
274#ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
275	unsigned int page_size;
276#endif
277#endif
278};
279
280void arch_tlb_gather_mmu(struct mmu_gather *tlb,
281	struct mm_struct *mm, unsigned long start, unsigned long end);
282void tlb_flush_mmu(struct mmu_gather *tlb);
283void arch_tlb_finish_mmu(struct mmu_gather *tlb,
284			 unsigned long start, unsigned long end, bool force);
285
286static inline void __tlb_adjust_range(struct mmu_gather *tlb,
287				      unsigned long address,
288				      unsigned int range_size)
289{
290	tlb->start = min(tlb->start, address);
291	tlb->end = max(tlb->end, address + range_size);
292}
293
294static inline void __tlb_reset_range(struct mmu_gather *tlb)
295{
296	if (tlb->fullmm) {
297		tlb->start = tlb->end = ~0;
298	} else {
299		tlb->start = TASK_SIZE;
300		tlb->end = 0;
301	}
302	tlb->freed_tables = 0;
303	tlb->cleared_ptes = 0;
304	tlb->cleared_pmds = 0;
305	tlb->cleared_puds = 0;
306	tlb->cleared_p4ds = 0;
307	/*
308	 * Do not reset mmu_gather::vma_* fields here, we do not
309	 * call into tlb_start_vma() again to set them if there is an
310	 * intermediate flush.
311	 */
312}
313
314#ifdef CONFIG_MMU_GATHER_NO_RANGE
315
316#if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
317#error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
318#endif
319
320/*
321 * When an architecture does not have efficient means of range flushing TLBs
322 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
323 * range small. We equally don't have to worry about page granularity or other
324 * things.
325 *
326 * All we need to do is issue a full flush for any !0 range.
327 */
328static inline void tlb_flush(struct mmu_gather *tlb)
329{
330	if (tlb->end)
331		flush_tlb_mm(tlb->mm);
332}
333
334static inline void
335tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
336
337#define tlb_end_vma tlb_end_vma
338static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
339
340#else /* CONFIG_MMU_GATHER_NO_RANGE */
341
342#ifndef tlb_flush
343
344#if defined(tlb_start_vma) || defined(tlb_end_vma)
345#error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
346#endif
347
348/*
349 * When an architecture does not provide its own tlb_flush() implementation
350 * but does have a reasonably efficient flush_vma_range() implementation
351 * use that.
352 */
353static inline void tlb_flush(struct mmu_gather *tlb)
354{
355	if (tlb->fullmm || tlb->need_flush_all) {
356		flush_tlb_mm(tlb->mm);
357	} else if (tlb->end) {
358		struct vm_area_struct vma = {
359			.vm_mm = tlb->mm,
360			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
361				    (tlb->vma_huge ? VM_HUGETLB : 0),
362		};
363
364		flush_tlb_range(&vma, tlb->start, tlb->end);
365	}
366}
 
 
 
367
368static inline void
369tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
370{
371	/*
372	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
373	 * mips-4k) flush only large pages.
374	 *
375	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
376	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
377	 * range.
378	 *
379	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
380	 * these values the batch is empty.
381	 */
382	tlb->vma_huge = !!(vma->vm_flags & VM_HUGETLB);
383	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
 
384}
385
386#else
387
388static inline void
389tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
390
391#endif
392
393#endif /* CONFIG_MMU_GATHER_NO_RANGE */
394
395static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
396{
397	if (!tlb->end)
 
 
 
 
 
398		return;
399
400	tlb_flush(tlb);
401	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
402	__tlb_reset_range(tlb);
403}
404
405static inline void tlb_remove_page_size(struct mmu_gather *tlb,
406					struct page *page, int page_size)
407{
408	if (__tlb_remove_page_size(tlb, page, page_size))
409		tlb_flush_mmu(tlb);
410}
411
412static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 
413{
414	return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
415}
416
417/* tlb_remove_page
418 *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
419 *	required.
420 */
421static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
422{
423	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
424}
425
 
 
 
 
 
 
 
 
 
 
 
426static inline void tlb_change_page_size(struct mmu_gather *tlb,
427						     unsigned int page_size)
428{
429#ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
430	if (tlb->page_size && tlb->page_size != page_size) {
431		if (!tlb->fullmm)
432			tlb_flush_mmu(tlb);
433	}
434
435	tlb->page_size = page_size;
436#endif
437}
438
439static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
440{
441	if (tlb->cleared_ptes)
442		return PAGE_SHIFT;
443	if (tlb->cleared_pmds)
444		return PMD_SHIFT;
445	if (tlb->cleared_puds)
446		return PUD_SHIFT;
447	if (tlb->cleared_p4ds)
448		return P4D_SHIFT;
449
450	return PAGE_SHIFT;
451}
452
453static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
454{
455	return 1UL << tlb_get_unmap_shift(tlb);
456}
457
458/*
459 * In the case of tlb vma handling, we can optimise these away in the
460 * case where we're doing a full MM flush.  When we're doing a munmap,
461 * the vmas are adjusted to only cover the region to be torn down.
462 */
463#ifndef tlb_start_vma
464static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
465{
466	if (tlb->fullmm)
467		return;
468
469	tlb_update_vma_flags(tlb, vma);
 
470	flush_cache_range(vma, vma->vm_start, vma->vm_end);
471}
472#endif
 
473
474#ifndef tlb_end_vma
475static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
476{
477	if (tlb->fullmm)
478		return;
479
480	/*
481	 * Do a TLB flush and reset the range at VMA boundaries; this avoids
482	 * the ranges growing with the unused space between consecutive VMAs,
483	 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
484	 * this.
485	 */
486	tlb_flush_mmu_tlbonly(tlb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487}
488#endif
489
490#ifndef __tlb_remove_tlb_entry
491#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
 
 
492#endif
493
494/**
495 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
496 *
497 * Record the fact that pte's were really unmapped by updating the range,
498 * so we can later optimise away the tlb invalidate.   This helps when
499 * userspace is unmapping already-unmapped pages, which happens quite a lot.
500 */
501#define tlb_remove_tlb_entry(tlb, ptep, address)		\
502	do {							\
503		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
504		tlb->cleared_ptes = 1;				\
505		__tlb_remove_tlb_entry(tlb, ptep, address);	\
506	} while (0)
507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
509	do {							\
510		unsigned long _sz = huge_page_size(h);		\
511		__tlb_adjust_range(tlb, address, _sz);		\
512		if (_sz == PMD_SIZE)				\
513			tlb->cleared_pmds = 1;			\
514		else if (_sz == PUD_SIZE)			\
515			tlb->cleared_puds = 1;			\
 
 
 
516		__tlb_remove_tlb_entry(tlb, ptep, address);	\
517	} while (0)
518
519/**
520 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
521 * This is a nop so far, because only x86 needs it.
522 */
523#ifndef __tlb_remove_pmd_tlb_entry
524#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
525#endif
526
527#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
528	do {								\
529		__tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE);	\
530		tlb->cleared_pmds = 1;					\
531		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
532	} while (0)
533
534/**
535 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
536 * invalidation. This is a nop so far, because only x86 needs it.
537 */
538#ifndef __tlb_remove_pud_tlb_entry
539#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
540#endif
541
542#define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
543	do {								\
544		__tlb_adjust_range(tlb, address, HPAGE_PUD_SIZE);	\
545		tlb->cleared_puds = 1;					\
546		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
547	} while (0)
548
549/*
550 * For things like page tables caches (ie caching addresses "inside" the
551 * page tables, like x86 does), for legacy reasons, flushing an
552 * individual page had better flush the page table caches behind it. This
553 * is definitely how x86 works, for example. And if you have an
554 * architected non-legacy page table cache (which I'm not aware of
555 * anybody actually doing), you're going to have some architecturally
556 * explicit flushing for that, likely *separate* from a regular TLB entry
557 * flush, and thus you'd need more than just some range expansion..
558 *
559 * So if we ever find an architecture
560 * that would want something that odd, I think it is up to that
561 * architecture to do its own odd thing, not cause pain for others
562 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
563 *
564 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
565 */
566
567#ifndef pte_free_tlb
568#define pte_free_tlb(tlb, ptep, address)			\
569	do {							\
570		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
571		tlb->freed_tables = 1;				\
572		tlb->cleared_pmds = 1;				\
573		__pte_free_tlb(tlb, ptep, address);		\
574	} while (0)
575#endif
576
577#ifndef pmd_free_tlb
578#define pmd_free_tlb(tlb, pmdp, address)			\
579	do {							\
580		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
581		tlb->freed_tables = 1;				\
582		tlb->cleared_puds = 1;				\
583		__pmd_free_tlb(tlb, pmdp, address);		\
584	} while (0)
585#endif
586
587#ifndef __ARCH_HAS_4LEVEL_HACK
588#ifndef pud_free_tlb
589#define pud_free_tlb(tlb, pudp, address)			\
590	do {							\
591		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
592		tlb->freed_tables = 1;				\
593		tlb->cleared_p4ds = 1;				\
594		__pud_free_tlb(tlb, pudp, address);		\
595	} while (0)
596#endif
597#endif
598
599#ifndef __ARCH_HAS_5LEVEL_HACK
600#ifndef p4d_free_tlb
601#define p4d_free_tlb(tlb, pudp, address)			\
602	do {							\
603		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
604		tlb->freed_tables = 1;				\
605		__p4d_free_tlb(tlb, pudp, address);		\
606	} while (0)
607#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
608#endif
609
610#endif /* CONFIG_MMU */
611
612#endif /* _ASM_GENERIC__TLB_H */
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* include/asm-generic/tlb.h
  3 *
  4 *	Generic TLB shootdown code
  5 *
  6 * Copyright 2001 Red Hat, Inc.
  7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
  8 *
  9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
 10 */
 11#ifndef _ASM_GENERIC__TLB_H
 12#define _ASM_GENERIC__TLB_H
 13
 14#include <linux/mmu_notifier.h>
 15#include <linux/swap.h>
 16#include <linux/hugetlb_inline.h>
 17#include <asm/tlbflush.h>
 18#include <asm/cacheflush.h>
 19
 20/*
 21 * Blindly accessing user memory from NMI context can be dangerous
 22 * if we're in the middle of switching the current user task or switching
 23 * the loaded mm.
 24 */
 25#ifndef nmi_uaccess_okay
 26# define nmi_uaccess_okay() true
 27#endif
 28
 29#ifdef CONFIG_MMU
 30
 31/*
 32 * Generic MMU-gather implementation.
 33 *
 34 * The mmu_gather data structure is used by the mm code to implement the
 35 * correct and efficient ordering of freeing pages and TLB invalidations.
 36 *
 37 * This correct ordering is:
 38 *
 39 *  1) unhook page
 40 *  2) TLB invalidate page
 41 *  3) free page
 42 *
 43 * That is, we must never free a page before we have ensured there are no live
 44 * translations left to it. Otherwise it might be possible to observe (or
 45 * worse, change) the page content after it has been reused.
 46 *
 47 * The mmu_gather API consists of:
 48 *
 49 *  - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
 50 *
 51 *    start and finish a mmu_gather
 52 *
 53 *    Finish in particular will issue a (final) TLB invalidate and free
 54 *    all (remaining) queued pages.
 55 *
 56 *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
 57 *
 58 *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
 59 *    there's large holes between the VMAs.
 60 *
 61 *  - tlb_remove_table()
 62 *
 63 *    tlb_remove_table() is the basic primitive to free page-table directories
 64 *    (__p*_free_tlb()).  In it's most primitive form it is an alias for
 65 *    tlb_remove_page() below, for when page directories are pages and have no
 66 *    additional constraints.
 67 *
 68 *    See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
 69 *
 70 *  - tlb_remove_page() / __tlb_remove_page()
 71 *  - tlb_remove_page_size() / __tlb_remove_page_size()
 72 *  - __tlb_remove_folio_pages()
 73 *
 74 *    __tlb_remove_page_size() is the basic primitive that queues a page for
 75 *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
 76 *    boolean indicating if the queue is (now) full and a call to
 77 *    tlb_flush_mmu() is required.
 78 *
 79 *    tlb_remove_page() and tlb_remove_page_size() imply the call to
 80 *    tlb_flush_mmu() when required and has no return value.
 81 *
 82 *    __tlb_remove_folio_pages() is similar to __tlb_remove_page(), however,
 83 *    instead of removing a single page, remove the given number of consecutive
 84 *    pages that are all part of the same (large) folio: just like calling
 85 *    __tlb_remove_page() on each page individually.
 86 *
 87 *  - tlb_change_page_size()
 88 *
 89 *    call before __tlb_remove_page*() to set the current page-size; implies a
 90 *    possible tlb_flush_mmu() call.
 91 *
 92 *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
 93 *
 94 *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
 95 *                              related state, like the range)
 96 *
 97 *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
 98 *			whatever pages are still batched.
 99 *
100 *  - mmu_gather::fullmm
101 *
102 *    A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
103 *    the entire mm; this allows a number of optimizations.
104 *
105 *    - We can ignore tlb_{start,end}_vma(); because we don't
106 *      care about ranges. Everything will be shot down.
107 *
108 *    - (RISC) architectures that use ASIDs can cycle to a new ASID
109 *      and delay the invalidation until ASID space runs out.
110 *
111 *  - mmu_gather::need_flush_all
112 *
113 *    A flag that can be set by the arch code if it wants to force
114 *    flush the entire TLB irrespective of the range. For instance
115 *    x86-PAE needs this when changing top-level entries.
116 *
117 * And allows the architecture to provide and implement tlb_flush():
118 *
119 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
120 * use of:
121 *
122 *  - mmu_gather::start / mmu_gather::end
123 *
124 *    which provides the range that needs to be flushed to cover the pages to
125 *    be freed.
126 *
127 *  - mmu_gather::freed_tables
128 *
129 *    set when we freed page table pages
130 *
131 *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
132 *
133 *    returns the smallest TLB entry size unmapped in this range.
134 *
135 * If an architecture does not provide tlb_flush() a default implementation
136 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
137 * specified, in which case we'll default to flush_tlb_mm().
138 *
139 * Additionally there are a few opt-in features:
140 *
141 *  MMU_GATHER_PAGE_SIZE
142 *
143 *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
144 *  changes the size and provides mmu_gather::page_size to tlb_flush().
145 *
146 *  This might be useful if your architecture has size specific TLB
147 *  invalidation instructions.
148 *
149 *  MMU_GATHER_TABLE_FREE
150 *
151 *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
152 *  for page directores (__p*_free_tlb()).
153 *
154 *  Useful if your architecture has non-page page directories.
 
155 *
156 *  When used, an architecture is expected to provide __tlb_remove_table()
157 *  which does the actual freeing of these pages.
158 *
159 *  MMU_GATHER_RCU_TABLE_FREE
160 *
161 *  Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
162 *  comment below).
 
 
163 *
164 *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
165 *  and therefore doesn't naturally serialize with software page-table walkers.
166 *
167 *  MMU_GATHER_NO_FLUSH_CACHE
168 *
169 *  Indicates the architecture has flush_cache_range() but it needs *NOT* be called
170 *  before unmapping a VMA.
 
 
171 *
172 *  NOTE: strictly speaking we shouldn't have this knob and instead rely on
173 *	  flush_cache_range() being a NOP, except Sparc64 seems to be
174 *	  different here.
175 *
176 *  MMU_GATHER_MERGE_VMAS
 
 
 
177 *
178 *  Indicates the architecture wants to merge ranges over VMAs; typical when
179 *  multiple range invalidates are more expensive than a full invalidate.
180 *
181 *  MMU_GATHER_NO_RANGE
182 *
183 *  Use this if your architecture lacks an efficient flush_tlb_range(). This
184 *  option implies MMU_GATHER_MERGE_VMAS above.
185 *
186 *  MMU_GATHER_NO_GATHER
 
 
187 *
188 *  If the option is set the mmu_gather will not track individual pages for
189 *  delayed page free anymore. A platform that enables the option needs to
190 *  provide its own implementation of the __tlb_remove_page_size() function to
191 *  free pages.
192 *
193 *  This is useful if your architecture already flushes TLB entries in the
194 *  various ptep_get_and_clear() functions.
195 */
196
197#ifdef CONFIG_MMU_GATHER_TABLE_FREE
198
199struct mmu_table_batch {
200#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
201	struct rcu_head		rcu;
202#endif
203	unsigned int		nr;
204	void			*tables[];
205};
206
207#define MAX_TABLE_BATCH		\
208	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
209
210extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
211
212#else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
213
214/*
215 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
216 * page directories and we can use the normal page batching to free them.
217 */
218#define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
219
220#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
221
222#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
223/*
224 * This allows an architecture that does not use the linux page-tables for
225 * hardware to skip the TLBI when freeing page tables.
226 */
227#ifndef tlb_needs_table_invalidate
228#define tlb_needs_table_invalidate() (true)
229#endif
230
231void tlb_remove_table_sync_one(void);
232
233#else
234
235#ifdef tlb_needs_table_invalidate
236#error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
237#endif
238
239static inline void tlb_remove_table_sync_one(void) { }
240
241#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
242
243
244#ifndef CONFIG_MMU_GATHER_NO_GATHER
245/*
246 * If we can't allocate a page to make a big batch of page pointers
247 * to work on, then just handle a few from the on-stack structure.
248 */
249#define MMU_GATHER_BUNDLE	8
250
251struct mmu_gather_batch {
252	struct mmu_gather_batch	*next;
253	unsigned int		nr;
254	unsigned int		max;
255	struct encoded_page	*encoded_pages[];
256};
257
258#define MAX_GATHER_BATCH	\
259	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
260
261/*
262 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
263 * lockups for non-preemptible kernels on huge machines when a lot of memory
264 * is zapped during unmapping.
265 * 10K pages freed at once should be safe even without a preemption point.
266 */
267#define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
268
269extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
270		bool delay_rmap, int page_size);
271bool __tlb_remove_folio_pages(struct mmu_gather *tlb, struct page *page,
272		unsigned int nr_pages, bool delay_rmap);
273
274#ifdef CONFIG_SMP
275/*
276 * This both sets 'delayed_rmap', and returns true. It would be an inline
277 * function, except we define it before the 'struct mmu_gather'.
278 */
279#define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true)
280extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma);
281#endif
282
283#endif
284
285/*
286 * We have a no-op version of the rmap removal that doesn't
287 * delay anything. That is used on S390, which flushes remote
288 * TLBs synchronously, and on UP, which doesn't have any
289 * remote TLBs to flush and is not preemptible due to this
290 * all happening under the page table lock.
291 */
292#ifndef tlb_delay_rmap
293#define tlb_delay_rmap(tlb) (false)
294static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
295#endif
296
297/*
298 * struct mmu_gather is an opaque type used by the mm code for passing around
299 * any data needed by arch specific code for tlb_remove_page.
300 */
301struct mmu_gather {
302	struct mm_struct	*mm;
303
304#ifdef CONFIG_MMU_GATHER_TABLE_FREE
305	struct mmu_table_batch	*batch;
306#endif
307
308	unsigned long		start;
309	unsigned long		end;
310	/*
311	 * we are in the middle of an operation to clear
312	 * a full mm and can make some optimizations
313	 */
314	unsigned int		fullmm : 1;
315
316	/*
317	 * we have performed an operation which
318	 * requires a complete flush of the tlb
319	 */
320	unsigned int		need_flush_all : 1;
321
322	/*
323	 * we have removed page directories
324	 */
325	unsigned int		freed_tables : 1;
326
327	/*
328	 * Do we have pending delayed rmap removals?
329	 */
330	unsigned int		delayed_rmap : 1;
331
332	/*
333	 * at which levels have we cleared entries?
334	 */
335	unsigned int		cleared_ptes : 1;
336	unsigned int		cleared_pmds : 1;
337	unsigned int		cleared_puds : 1;
338	unsigned int		cleared_p4ds : 1;
339
340	/*
341	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
342	 */
343	unsigned int		vma_exec : 1;
344	unsigned int		vma_huge : 1;
345	unsigned int		vma_pfn  : 1;
346
347	unsigned int		batch_count;
348
349#ifndef CONFIG_MMU_GATHER_NO_GATHER
350	struct mmu_gather_batch *active;
351	struct mmu_gather_batch	local;
352	struct page		*__pages[MMU_GATHER_BUNDLE];
353
354#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
355	unsigned int page_size;
356#endif
357#endif
358};
359
 
 
360void tlb_flush_mmu(struct mmu_gather *tlb);
 
 
361
362static inline void __tlb_adjust_range(struct mmu_gather *tlb,
363				      unsigned long address,
364				      unsigned int range_size)
365{
366	tlb->start = min(tlb->start, address);
367	tlb->end = max(tlb->end, address + range_size);
368}
369
370static inline void __tlb_reset_range(struct mmu_gather *tlb)
371{
372	if (tlb->fullmm) {
373		tlb->start = tlb->end = ~0;
374	} else {
375		tlb->start = TASK_SIZE;
376		tlb->end = 0;
377	}
378	tlb->freed_tables = 0;
379	tlb->cleared_ptes = 0;
380	tlb->cleared_pmds = 0;
381	tlb->cleared_puds = 0;
382	tlb->cleared_p4ds = 0;
383	/*
384	 * Do not reset mmu_gather::vma_* fields here, we do not
385	 * call into tlb_start_vma() again to set them if there is an
386	 * intermediate flush.
387	 */
388}
389
390#ifdef CONFIG_MMU_GATHER_NO_RANGE
391
392#if defined(tlb_flush)
393#error MMU_GATHER_NO_RANGE relies on default tlb_flush()
394#endif
395
396/*
397 * When an architecture does not have efficient means of range flushing TLBs
398 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
399 * range small. We equally don't have to worry about page granularity or other
400 * things.
401 *
402 * All we need to do is issue a full flush for any !0 range.
403 */
404static inline void tlb_flush(struct mmu_gather *tlb)
405{
406	if (tlb->end)
407		flush_tlb_mm(tlb->mm);
408}
409
 
 
 
 
 
 
410#else /* CONFIG_MMU_GATHER_NO_RANGE */
411
412#ifndef tlb_flush
 
 
 
 
 
413/*
414 * When an architecture does not provide its own tlb_flush() implementation
415 * but does have a reasonably efficient flush_vma_range() implementation
416 * use that.
417 */
418static inline void tlb_flush(struct mmu_gather *tlb)
419{
420	if (tlb->fullmm || tlb->need_flush_all) {
421		flush_tlb_mm(tlb->mm);
422	} else if (tlb->end) {
423		struct vm_area_struct vma = {
424			.vm_mm = tlb->mm,
425			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
426				    (tlb->vma_huge ? VM_HUGETLB : 0),
427		};
428
429		flush_tlb_range(&vma, tlb->start, tlb->end);
430	}
431}
432#endif
433
434#endif /* CONFIG_MMU_GATHER_NO_RANGE */
435
436static inline void
437tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
438{
439	/*
440	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
441	 * mips-4k) flush only large pages.
442	 *
443	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
444	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
445	 * range.
446	 *
447	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
448	 * these values the batch is empty.
449	 */
450	tlb->vma_huge = is_vm_hugetlb_page(vma);
451	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
452	tlb->vma_pfn  = !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP));
453}
454
 
 
 
 
 
 
 
 
 
455static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
456{
457	/*
458	 * Anything calling __tlb_adjust_range() also sets at least one of
459	 * these bits.
460	 */
461	if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
462	      tlb->cleared_puds || tlb->cleared_p4ds))
463		return;
464
465	tlb_flush(tlb);
 
466	__tlb_reset_range(tlb);
467}
468
469static inline void tlb_remove_page_size(struct mmu_gather *tlb,
470					struct page *page, int page_size)
471{
472	if (__tlb_remove_page_size(tlb, page, false, page_size))
473		tlb_flush_mmu(tlb);
474}
475
476static __always_inline bool __tlb_remove_page(struct mmu_gather *tlb,
477		struct page *page, bool delay_rmap)
478{
479	return __tlb_remove_page_size(tlb, page, delay_rmap, PAGE_SIZE);
480}
481
482/* tlb_remove_page
483 *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
484 *	required.
485 */
486static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
487{
488	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
489}
490
491static inline void tlb_remove_ptdesc(struct mmu_gather *tlb, void *pt)
492{
493	tlb_remove_table(tlb, pt);
494}
495
496/* Like tlb_remove_ptdesc, but for page-like page directories. */
497static inline void tlb_remove_page_ptdesc(struct mmu_gather *tlb, struct ptdesc *pt)
498{
499	tlb_remove_page(tlb, ptdesc_page(pt));
500}
501
502static inline void tlb_change_page_size(struct mmu_gather *tlb,
503						     unsigned int page_size)
504{
505#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
506	if (tlb->page_size && tlb->page_size != page_size) {
507		if (!tlb->fullmm && !tlb->need_flush_all)
508			tlb_flush_mmu(tlb);
509	}
510
511	tlb->page_size = page_size;
512#endif
513}
514
515static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
516{
517	if (tlb->cleared_ptes)
518		return PAGE_SHIFT;
519	if (tlb->cleared_pmds)
520		return PMD_SHIFT;
521	if (tlb->cleared_puds)
522		return PUD_SHIFT;
523	if (tlb->cleared_p4ds)
524		return P4D_SHIFT;
525
526	return PAGE_SHIFT;
527}
528
529static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
530{
531	return 1UL << tlb_get_unmap_shift(tlb);
532}
533
534/*
535 * In the case of tlb vma handling, we can optimise these away in the
536 * case where we're doing a full MM flush.  When we're doing a munmap,
537 * the vmas are adjusted to only cover the region to be torn down.
538 */
 
539static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
540{
541	if (tlb->fullmm)
542		return;
543
544	tlb_update_vma_flags(tlb, vma);
545#ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE
546	flush_cache_range(vma, vma->vm_start, vma->vm_end);
 
547#endif
548}
549
 
550static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
551{
552	if (tlb->fullmm)
553		return;
554
555	/*
556	 * VM_PFNMAP is more fragile because the core mm will not track the
557	 * page mapcount -- there might not be page-frames for these PFNs after
558	 * all. Force flush TLBs for such ranges to avoid munmap() vs
559	 * unmap_mapping_range() races.
560	 */
561	if (tlb->vma_pfn || !IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) {
562		/*
563		 * Do a TLB flush and reset the range at VMA boundaries; this avoids
564		 * the ranges growing with the unused space between consecutive VMAs.
565		 */
566		tlb_flush_mmu_tlbonly(tlb);
567	}
568}
569
570/*
571 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
572 * and set corresponding cleared_*.
573 */
574static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
575				     unsigned long address, unsigned long size)
576{
577	__tlb_adjust_range(tlb, address, size);
578	tlb->cleared_ptes = 1;
579}
580
581static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
582				     unsigned long address, unsigned long size)
583{
584	__tlb_adjust_range(tlb, address, size);
585	tlb->cleared_pmds = 1;
586}
587
588static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
589				     unsigned long address, unsigned long size)
590{
591	__tlb_adjust_range(tlb, address, size);
592	tlb->cleared_puds = 1;
593}
594
595static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
596				     unsigned long address, unsigned long size)
597{
598	__tlb_adjust_range(tlb, address, size);
599	tlb->cleared_p4ds = 1;
600}
 
601
602#ifndef __tlb_remove_tlb_entry
603static inline void __tlb_remove_tlb_entry(struct mmu_gather *tlb, pte_t *ptep, unsigned long address)
604{
605}
606#endif
607
608/**
609 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
610 *
611 * Record the fact that pte's were really unmapped by updating the range,
612 * so we can later optimise away the tlb invalidate.   This helps when
613 * userspace is unmapping already-unmapped pages, which happens quite a lot.
614 */
615#define tlb_remove_tlb_entry(tlb, ptep, address)		\
616	do {							\
617		tlb_flush_pte_range(tlb, address, PAGE_SIZE);	\
 
618		__tlb_remove_tlb_entry(tlb, ptep, address);	\
619	} while (0)
620
621/**
622 * tlb_remove_tlb_entries - remember unmapping of multiple consecutive ptes for
623 *			    later tlb invalidation.
624 *
625 * Similar to tlb_remove_tlb_entry(), but remember unmapping of multiple
626 * consecutive ptes instead of only a single one.
627 */
628static inline void tlb_remove_tlb_entries(struct mmu_gather *tlb,
629		pte_t *ptep, unsigned int nr, unsigned long address)
630{
631	tlb_flush_pte_range(tlb, address, PAGE_SIZE * nr);
632	for (;;) {
633		__tlb_remove_tlb_entry(tlb, ptep, address);
634		if (--nr == 0)
635			break;
636		ptep++;
637		address += PAGE_SIZE;
638	}
639}
640
641#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
642	do {							\
643		unsigned long _sz = huge_page_size(h);		\
644		if (_sz >= P4D_SIZE)				\
645			tlb_flush_p4d_range(tlb, address, _sz);	\
646		else if (_sz >= PUD_SIZE)			\
647			tlb_flush_pud_range(tlb, address, _sz);	\
648		else if (_sz >= PMD_SIZE)			\
649			tlb_flush_pmd_range(tlb, address, _sz);	\
650		else						\
651			tlb_flush_pte_range(tlb, address, _sz);	\
652		__tlb_remove_tlb_entry(tlb, ptep, address);	\
653	} while (0)
654
655/**
656 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
657 * This is a nop so far, because only x86 needs it.
658 */
659#ifndef __tlb_remove_pmd_tlb_entry
660#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
661#endif
662
663#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
664	do {								\
665		tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE);	\
 
666		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
667	} while (0)
668
669/**
670 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
671 * invalidation. This is a nop so far, because only x86 needs it.
672 */
673#ifndef __tlb_remove_pud_tlb_entry
674#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
675#endif
676
677#define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
678	do {								\
679		tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE);	\
 
680		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
681	} while (0)
682
683/*
684 * For things like page tables caches (ie caching addresses "inside" the
685 * page tables, like x86 does), for legacy reasons, flushing an
686 * individual page had better flush the page table caches behind it. This
687 * is definitely how x86 works, for example. And if you have an
688 * architected non-legacy page table cache (which I'm not aware of
689 * anybody actually doing), you're going to have some architecturally
690 * explicit flushing for that, likely *separate* from a regular TLB entry
691 * flush, and thus you'd need more than just some range expansion..
692 *
693 * So if we ever find an architecture
694 * that would want something that odd, I think it is up to that
695 * architecture to do its own odd thing, not cause pain for others
696 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
697 *
698 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
699 */
700
701#ifndef pte_free_tlb
702#define pte_free_tlb(tlb, ptep, address)			\
703	do {							\
704		tlb_flush_pmd_range(tlb, address, PAGE_SIZE);	\
705		tlb->freed_tables = 1;				\
 
706		__pte_free_tlb(tlb, ptep, address);		\
707	} while (0)
708#endif
709
710#ifndef pmd_free_tlb
711#define pmd_free_tlb(tlb, pmdp, address)			\
712	do {							\
713		tlb_flush_pud_range(tlb, address, PAGE_SIZE);	\
714		tlb->freed_tables = 1;				\
 
715		__pmd_free_tlb(tlb, pmdp, address);		\
716	} while (0)
717#endif
718
 
719#ifndef pud_free_tlb
720#define pud_free_tlb(tlb, pudp, address)			\
721	do {							\
722		tlb_flush_p4d_range(tlb, address, PAGE_SIZE);	\
723		tlb->freed_tables = 1;				\
 
724		__pud_free_tlb(tlb, pudp, address);		\
725	} while (0)
726#endif
 
727
 
728#ifndef p4d_free_tlb
729#define p4d_free_tlb(tlb, pudp, address)			\
730	do {							\
731		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
732		tlb->freed_tables = 1;				\
733		__p4d_free_tlb(tlb, pudp, address);		\
734	} while (0)
735#endif
736
737#ifndef pte_needs_flush
738static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte)
739{
740	return true;
741}
742#endif
743
744#ifndef huge_pmd_needs_flush
745static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd)
746{
747	return true;
748}
749#endif
750
751#endif /* CONFIG_MMU */
752
753#endif /* _ASM_GENERIC__TLB_H */