Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2017 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_mount.h"
12#include "xfs_btree.h"
13#include "xfs_log_format.h"
14#include "xfs_trans.h"
15#include "xfs_sb.h"
16#include "xfs_inode.h"
17#include "xfs_icache.h"
18#include "xfs_alloc.h"
19#include "xfs_alloc_btree.h"
20#include "xfs_ialloc.h"
21#include "xfs_ialloc_btree.h"
22#include "xfs_refcount_btree.h"
23#include "xfs_rmap.h"
24#include "xfs_rmap_btree.h"
25#include "xfs_log.h"
26#include "xfs_trans_priv.h"
27#include "xfs_attr.h"
28#include "xfs_reflink.h"
29#include "scrub/scrub.h"
30#include "scrub/common.h"
31#include "scrub/trace.h"
32#include "scrub/repair.h"
33#include "scrub/health.h"
34
35/* Common code for the metadata scrubbers. */
36
37/*
38 * Handling operational errors.
39 *
40 * The *_process_error() family of functions are used to process error return
41 * codes from functions called as part of a scrub operation.
42 *
43 * If there's no error, we return true to tell the caller that it's ok
44 * to move on to the next check in its list.
45 *
46 * For non-verifier errors (e.g. ENOMEM) we return false to tell the
47 * caller that something bad happened, and we preserve *error so that
48 * the caller can return the *error up the stack to userspace.
49 *
50 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
51 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words,
52 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
53 * not via return codes. We return false to tell the caller that
54 * something bad happened. Since the error has been cleared, the caller
55 * will (presumably) return that zero and scrubbing will move on to
56 * whatever's next.
57 *
58 * ftrace can be used to record the precise metadata location and the
59 * approximate code location of the failed operation.
60 */
61
62/* Check for operational errors. */
63static bool
64__xchk_process_error(
65 struct xfs_scrub *sc,
66 xfs_agnumber_t agno,
67 xfs_agblock_t bno,
68 int *error,
69 __u32 errflag,
70 void *ret_ip)
71{
72 switch (*error) {
73 case 0:
74 return true;
75 case -EDEADLOCK:
76 /* Used to restart an op with deadlock avoidance. */
77 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
78 break;
79 case -EFSBADCRC:
80 case -EFSCORRUPTED:
81 /* Note the badness but don't abort. */
82 sc->sm->sm_flags |= errflag;
83 *error = 0;
84 /* fall through */
85 default:
86 trace_xchk_op_error(sc, agno, bno, *error,
87 ret_ip);
88 break;
89 }
90 return false;
91}
92
93bool
94xchk_process_error(
95 struct xfs_scrub *sc,
96 xfs_agnumber_t agno,
97 xfs_agblock_t bno,
98 int *error)
99{
100 return __xchk_process_error(sc, agno, bno, error,
101 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
102}
103
104bool
105xchk_xref_process_error(
106 struct xfs_scrub *sc,
107 xfs_agnumber_t agno,
108 xfs_agblock_t bno,
109 int *error)
110{
111 return __xchk_process_error(sc, agno, bno, error,
112 XFS_SCRUB_OFLAG_XFAIL, __return_address);
113}
114
115/* Check for operational errors for a file offset. */
116static bool
117__xchk_fblock_process_error(
118 struct xfs_scrub *sc,
119 int whichfork,
120 xfs_fileoff_t offset,
121 int *error,
122 __u32 errflag,
123 void *ret_ip)
124{
125 switch (*error) {
126 case 0:
127 return true;
128 case -EDEADLOCK:
129 /* Used to restart an op with deadlock avoidance. */
130 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
131 break;
132 case -EFSBADCRC:
133 case -EFSCORRUPTED:
134 /* Note the badness but don't abort. */
135 sc->sm->sm_flags |= errflag;
136 *error = 0;
137 /* fall through */
138 default:
139 trace_xchk_file_op_error(sc, whichfork, offset, *error,
140 ret_ip);
141 break;
142 }
143 return false;
144}
145
146bool
147xchk_fblock_process_error(
148 struct xfs_scrub *sc,
149 int whichfork,
150 xfs_fileoff_t offset,
151 int *error)
152{
153 return __xchk_fblock_process_error(sc, whichfork, offset, error,
154 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
155}
156
157bool
158xchk_fblock_xref_process_error(
159 struct xfs_scrub *sc,
160 int whichfork,
161 xfs_fileoff_t offset,
162 int *error)
163{
164 return __xchk_fblock_process_error(sc, whichfork, offset, error,
165 XFS_SCRUB_OFLAG_XFAIL, __return_address);
166}
167
168/*
169 * Handling scrub corruption/optimization/warning checks.
170 *
171 * The *_set_{corrupt,preen,warning}() family of functions are used to
172 * record the presence of metadata that is incorrect (corrupt), could be
173 * optimized somehow (preen), or should be flagged for administrative
174 * review but is not incorrect (warn).
175 *
176 * ftrace can be used to record the precise metadata location and
177 * approximate code location of the failed check.
178 */
179
180/* Record a block which could be optimized. */
181void
182xchk_block_set_preen(
183 struct xfs_scrub *sc,
184 struct xfs_buf *bp)
185{
186 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
187 trace_xchk_block_preen(sc, bp->b_bn, __return_address);
188}
189
190/*
191 * Record an inode which could be optimized. The trace data will
192 * include the block given by bp if bp is given; otherwise it will use
193 * the block location of the inode record itself.
194 */
195void
196xchk_ino_set_preen(
197 struct xfs_scrub *sc,
198 xfs_ino_t ino)
199{
200 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
201 trace_xchk_ino_preen(sc, ino, __return_address);
202}
203
204/* Record something being wrong with the filesystem primary superblock. */
205void
206xchk_set_corrupt(
207 struct xfs_scrub *sc)
208{
209 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
210 trace_xchk_fs_error(sc, 0, __return_address);
211}
212
213/* Record a corrupt block. */
214void
215xchk_block_set_corrupt(
216 struct xfs_scrub *sc,
217 struct xfs_buf *bp)
218{
219 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
220 trace_xchk_block_error(sc, bp->b_bn, __return_address);
221}
222
223/* Record a corruption while cross-referencing. */
224void
225xchk_block_xref_set_corrupt(
226 struct xfs_scrub *sc,
227 struct xfs_buf *bp)
228{
229 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
230 trace_xchk_block_error(sc, bp->b_bn, __return_address);
231}
232
233/*
234 * Record a corrupt inode. The trace data will include the block given
235 * by bp if bp is given; otherwise it will use the block location of the
236 * inode record itself.
237 */
238void
239xchk_ino_set_corrupt(
240 struct xfs_scrub *sc,
241 xfs_ino_t ino)
242{
243 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
244 trace_xchk_ino_error(sc, ino, __return_address);
245}
246
247/* Record a corruption while cross-referencing with an inode. */
248void
249xchk_ino_xref_set_corrupt(
250 struct xfs_scrub *sc,
251 xfs_ino_t ino)
252{
253 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
254 trace_xchk_ino_error(sc, ino, __return_address);
255}
256
257/* Record corruption in a block indexed by a file fork. */
258void
259xchk_fblock_set_corrupt(
260 struct xfs_scrub *sc,
261 int whichfork,
262 xfs_fileoff_t offset)
263{
264 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
265 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
266}
267
268/* Record a corruption while cross-referencing a fork block. */
269void
270xchk_fblock_xref_set_corrupt(
271 struct xfs_scrub *sc,
272 int whichfork,
273 xfs_fileoff_t offset)
274{
275 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
276 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
277}
278
279/*
280 * Warn about inodes that need administrative review but is not
281 * incorrect.
282 */
283void
284xchk_ino_set_warning(
285 struct xfs_scrub *sc,
286 xfs_ino_t ino)
287{
288 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
289 trace_xchk_ino_warning(sc, ino, __return_address);
290}
291
292/* Warn about a block indexed by a file fork that needs review. */
293void
294xchk_fblock_set_warning(
295 struct xfs_scrub *sc,
296 int whichfork,
297 xfs_fileoff_t offset)
298{
299 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
300 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
301}
302
303/* Signal an incomplete scrub. */
304void
305xchk_set_incomplete(
306 struct xfs_scrub *sc)
307{
308 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
309 trace_xchk_incomplete(sc, __return_address);
310}
311
312/*
313 * rmap scrubbing -- compute the number of blocks with a given owner,
314 * at least according to the reverse mapping data.
315 */
316
317struct xchk_rmap_ownedby_info {
318 const struct xfs_owner_info *oinfo;
319 xfs_filblks_t *blocks;
320};
321
322STATIC int
323xchk_count_rmap_ownedby_irec(
324 struct xfs_btree_cur *cur,
325 struct xfs_rmap_irec *rec,
326 void *priv)
327{
328 struct xchk_rmap_ownedby_info *sroi = priv;
329 bool irec_attr;
330 bool oinfo_attr;
331
332 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
333 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
334
335 if (rec->rm_owner != sroi->oinfo->oi_owner)
336 return 0;
337
338 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
339 (*sroi->blocks) += rec->rm_blockcount;
340
341 return 0;
342}
343
344/*
345 * Calculate the number of blocks the rmap thinks are owned by something.
346 * The caller should pass us an rmapbt cursor.
347 */
348int
349xchk_count_rmap_ownedby_ag(
350 struct xfs_scrub *sc,
351 struct xfs_btree_cur *cur,
352 const struct xfs_owner_info *oinfo,
353 xfs_filblks_t *blocks)
354{
355 struct xchk_rmap_ownedby_info sroi = {
356 .oinfo = oinfo,
357 .blocks = blocks,
358 };
359
360 *blocks = 0;
361 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
362 &sroi);
363}
364
365/*
366 * AG scrubbing
367 *
368 * These helpers facilitate locking an allocation group's header
369 * buffers, setting up cursors for all btrees that are present, and
370 * cleaning everything up once we're through.
371 */
372
373/* Decide if we want to return an AG header read failure. */
374static inline bool
375want_ag_read_header_failure(
376 struct xfs_scrub *sc,
377 unsigned int type)
378{
379 /* Return all AG header read failures when scanning btrees. */
380 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
381 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
382 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
383 return true;
384 /*
385 * If we're scanning a given type of AG header, we only want to
386 * see read failures from that specific header. We'd like the
387 * other headers to cross-check them, but this isn't required.
388 */
389 if (sc->sm->sm_type == type)
390 return true;
391 return false;
392}
393
394/*
395 * Grab all the headers for an AG.
396 *
397 * The headers should be released by xchk_ag_free, but as a fail
398 * safe we attach all the buffers we grab to the scrub transaction so
399 * they'll all be freed when we cancel it.
400 */
401int
402xchk_ag_read_headers(
403 struct xfs_scrub *sc,
404 xfs_agnumber_t agno,
405 struct xfs_buf **agi,
406 struct xfs_buf **agf,
407 struct xfs_buf **agfl)
408{
409 struct xfs_mount *mp = sc->mp;
410 int error;
411
412 error = xfs_ialloc_read_agi(mp, sc->tp, agno, agi);
413 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
414 goto out;
415
416 error = xfs_alloc_read_agf(mp, sc->tp, agno, 0, agf);
417 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
418 goto out;
419
420 error = xfs_alloc_read_agfl(mp, sc->tp, agno, agfl);
421 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGFL))
422 goto out;
423 error = 0;
424out:
425 return error;
426}
427
428/* Release all the AG btree cursors. */
429void
430xchk_ag_btcur_free(
431 struct xchk_ag *sa)
432{
433 if (sa->refc_cur)
434 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
435 if (sa->rmap_cur)
436 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
437 if (sa->fino_cur)
438 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
439 if (sa->ino_cur)
440 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
441 if (sa->cnt_cur)
442 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
443 if (sa->bno_cur)
444 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
445
446 sa->refc_cur = NULL;
447 sa->rmap_cur = NULL;
448 sa->fino_cur = NULL;
449 sa->ino_cur = NULL;
450 sa->bno_cur = NULL;
451 sa->cnt_cur = NULL;
452}
453
454/* Initialize all the btree cursors for an AG. */
455int
456xchk_ag_btcur_init(
457 struct xfs_scrub *sc,
458 struct xchk_ag *sa)
459{
460 struct xfs_mount *mp = sc->mp;
461 xfs_agnumber_t agno = sa->agno;
462
463 xchk_perag_get(sc->mp, sa);
464 if (sa->agf_bp &&
465 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) {
466 /* Set up a bnobt cursor for cross-referencing. */
467 sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
468 agno, XFS_BTNUM_BNO);
469 if (!sa->bno_cur)
470 goto err;
471 }
472
473 if (sa->agf_bp &&
474 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) {
475 /* Set up a cntbt cursor for cross-referencing. */
476 sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
477 agno, XFS_BTNUM_CNT);
478 if (!sa->cnt_cur)
479 goto err;
480 }
481
482 /* Set up a inobt cursor for cross-referencing. */
483 if (sa->agi_bp &&
484 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) {
485 sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
486 agno, XFS_BTNUM_INO);
487 if (!sa->ino_cur)
488 goto err;
489 }
490
491 /* Set up a finobt cursor for cross-referencing. */
492 if (sa->agi_bp && xfs_sb_version_hasfinobt(&mp->m_sb) &&
493 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) {
494 sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
495 agno, XFS_BTNUM_FINO);
496 if (!sa->fino_cur)
497 goto err;
498 }
499
500 /* Set up a rmapbt cursor for cross-referencing. */
501 if (sa->agf_bp && xfs_sb_version_hasrmapbt(&mp->m_sb) &&
502 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) {
503 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
504 agno);
505 if (!sa->rmap_cur)
506 goto err;
507 }
508
509 /* Set up a refcountbt cursor for cross-referencing. */
510 if (sa->agf_bp && xfs_sb_version_hasreflink(&mp->m_sb) &&
511 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) {
512 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
513 sa->agf_bp, agno);
514 if (!sa->refc_cur)
515 goto err;
516 }
517
518 return 0;
519err:
520 return -ENOMEM;
521}
522
523/* Release the AG header context and btree cursors. */
524void
525xchk_ag_free(
526 struct xfs_scrub *sc,
527 struct xchk_ag *sa)
528{
529 xchk_ag_btcur_free(sa);
530 if (sa->agfl_bp) {
531 xfs_trans_brelse(sc->tp, sa->agfl_bp);
532 sa->agfl_bp = NULL;
533 }
534 if (sa->agf_bp) {
535 xfs_trans_brelse(sc->tp, sa->agf_bp);
536 sa->agf_bp = NULL;
537 }
538 if (sa->agi_bp) {
539 xfs_trans_brelse(sc->tp, sa->agi_bp);
540 sa->agi_bp = NULL;
541 }
542 if (sa->pag) {
543 xfs_perag_put(sa->pag);
544 sa->pag = NULL;
545 }
546 sa->agno = NULLAGNUMBER;
547}
548
549/*
550 * For scrub, grab the AGI and the AGF headers, in that order. Locking
551 * order requires us to get the AGI before the AGF. We use the
552 * transaction to avoid deadlocking on crosslinked metadata buffers;
553 * either the caller passes one in (bmap scrub) or we have to create a
554 * transaction ourselves.
555 */
556int
557xchk_ag_init(
558 struct xfs_scrub *sc,
559 xfs_agnumber_t agno,
560 struct xchk_ag *sa)
561{
562 int error;
563
564 sa->agno = agno;
565 error = xchk_ag_read_headers(sc, agno, &sa->agi_bp,
566 &sa->agf_bp, &sa->agfl_bp);
567 if (error)
568 return error;
569
570 return xchk_ag_btcur_init(sc, sa);
571}
572
573/*
574 * Grab the per-ag structure if we haven't already gotten it. Teardown of the
575 * xchk_ag will release it for us.
576 */
577void
578xchk_perag_get(
579 struct xfs_mount *mp,
580 struct xchk_ag *sa)
581{
582 if (!sa->pag)
583 sa->pag = xfs_perag_get(mp, sa->agno);
584}
585
586/* Per-scrubber setup functions */
587
588/*
589 * Grab an empty transaction so that we can re-grab locked buffers if
590 * one of our btrees turns out to be cyclic.
591 *
592 * If we're going to repair something, we need to ask for the largest possible
593 * log reservation so that we can handle the worst case scenario for metadata
594 * updates while rebuilding a metadata item. We also need to reserve as many
595 * blocks in the head transaction as we think we're going to need to rebuild
596 * the metadata object.
597 */
598int
599xchk_trans_alloc(
600 struct xfs_scrub *sc,
601 uint resblks)
602{
603 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
604 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
605 resblks, 0, 0, &sc->tp);
606
607 return xfs_trans_alloc_empty(sc->mp, &sc->tp);
608}
609
610/* Set us up with a transaction and an empty context. */
611int
612xchk_setup_fs(
613 struct xfs_scrub *sc,
614 struct xfs_inode *ip)
615{
616 uint resblks;
617
618 resblks = xrep_calc_ag_resblks(sc);
619 return xchk_trans_alloc(sc, resblks);
620}
621
622/* Set us up with AG headers and btree cursors. */
623int
624xchk_setup_ag_btree(
625 struct xfs_scrub *sc,
626 struct xfs_inode *ip,
627 bool force_log)
628{
629 struct xfs_mount *mp = sc->mp;
630 int error;
631
632 /*
633 * If the caller asks us to checkpont the log, do so. This
634 * expensive operation should be performed infrequently and only
635 * as a last resort. Any caller that sets force_log should
636 * document why they need to do so.
637 */
638 if (force_log) {
639 error = xchk_checkpoint_log(mp);
640 if (error)
641 return error;
642 }
643
644 error = xchk_setup_fs(sc, ip);
645 if (error)
646 return error;
647
648 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
649}
650
651/* Push everything out of the log onto disk. */
652int
653xchk_checkpoint_log(
654 struct xfs_mount *mp)
655{
656 int error;
657
658 error = xfs_log_force(mp, XFS_LOG_SYNC);
659 if (error)
660 return error;
661 xfs_ail_push_all_sync(mp->m_ail);
662 return 0;
663}
664
665/*
666 * Given an inode and the scrub control structure, grab either the
667 * inode referenced in the control structure or the inode passed in.
668 * The inode is not locked.
669 */
670int
671xchk_get_inode(
672 struct xfs_scrub *sc,
673 struct xfs_inode *ip_in)
674{
675 struct xfs_imap imap;
676 struct xfs_mount *mp = sc->mp;
677 struct xfs_inode *ip = NULL;
678 int error;
679
680 /* We want to scan the inode we already had opened. */
681 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) {
682 sc->ip = ip_in;
683 return 0;
684 }
685
686 /* Look up the inode, see if the generation number matches. */
687 if (xfs_internal_inum(mp, sc->sm->sm_ino))
688 return -ENOENT;
689 error = xfs_iget(mp, NULL, sc->sm->sm_ino,
690 XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip);
691 switch (error) {
692 case -ENOENT:
693 /* Inode doesn't exist, just bail out. */
694 return error;
695 case 0:
696 /* Got an inode, continue. */
697 break;
698 case -EINVAL:
699 /*
700 * -EINVAL with IGET_UNTRUSTED could mean one of several
701 * things: userspace gave us an inode number that doesn't
702 * correspond to fs space, or doesn't have an inobt entry;
703 * or it could simply mean that the inode buffer failed the
704 * read verifiers.
705 *
706 * Try just the inode mapping lookup -- if it succeeds, then
707 * the inode buffer verifier failed and something needs fixing.
708 * Otherwise, we really couldn't find it so tell userspace
709 * that it no longer exists.
710 */
711 error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap,
712 XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE);
713 if (error)
714 return -ENOENT;
715 error = -EFSCORRUPTED;
716 /* fall through */
717 default:
718 trace_xchk_op_error(sc,
719 XFS_INO_TO_AGNO(mp, sc->sm->sm_ino),
720 XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
721 error, __return_address);
722 return error;
723 }
724 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
725 xfs_irele(ip);
726 return -ENOENT;
727 }
728
729 sc->ip = ip;
730 return 0;
731}
732
733/* Set us up to scrub a file's contents. */
734int
735xchk_setup_inode_contents(
736 struct xfs_scrub *sc,
737 struct xfs_inode *ip,
738 unsigned int resblks)
739{
740 int error;
741
742 error = xchk_get_inode(sc, ip);
743 if (error)
744 return error;
745
746 /* Got the inode, lock it and we're ready to go. */
747 sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
748 xfs_ilock(sc->ip, sc->ilock_flags);
749 error = xchk_trans_alloc(sc, resblks);
750 if (error)
751 goto out;
752 sc->ilock_flags |= XFS_ILOCK_EXCL;
753 xfs_ilock(sc->ip, XFS_ILOCK_EXCL);
754
755out:
756 /* scrub teardown will unlock and release the inode for us */
757 return error;
758}
759
760/*
761 * Predicate that decides if we need to evaluate the cross-reference check.
762 * If there was an error accessing the cross-reference btree, just delete
763 * the cursor and skip the check.
764 */
765bool
766xchk_should_check_xref(
767 struct xfs_scrub *sc,
768 int *error,
769 struct xfs_btree_cur **curpp)
770{
771 /* No point in xref if we already know we're corrupt. */
772 if (xchk_skip_xref(sc->sm))
773 return false;
774
775 if (*error == 0)
776 return true;
777
778 if (curpp) {
779 /* If we've already given up on xref, just bail out. */
780 if (!*curpp)
781 return false;
782
783 /* xref error, delete cursor and bail out. */
784 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
785 *curpp = NULL;
786 }
787
788 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
789 trace_xchk_xref_error(sc, *error, __return_address);
790
791 /*
792 * Errors encountered during cross-referencing with another
793 * data structure should not cause this scrubber to abort.
794 */
795 *error = 0;
796 return false;
797}
798
799/* Run the structure verifiers on in-memory buffers to detect bad memory. */
800void
801xchk_buffer_recheck(
802 struct xfs_scrub *sc,
803 struct xfs_buf *bp)
804{
805 xfs_failaddr_t fa;
806
807 if (bp->b_ops == NULL) {
808 xchk_block_set_corrupt(sc, bp);
809 return;
810 }
811 if (bp->b_ops->verify_struct == NULL) {
812 xchk_set_incomplete(sc);
813 return;
814 }
815 fa = bp->b_ops->verify_struct(bp);
816 if (!fa)
817 return;
818 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
819 trace_xchk_block_error(sc, bp->b_bn, fa);
820}
821
822/*
823 * Scrub the attr/data forks of a metadata inode. The metadata inode must be
824 * pointed to by sc->ip and the ILOCK must be held.
825 */
826int
827xchk_metadata_inode_forks(
828 struct xfs_scrub *sc)
829{
830 __u32 smtype;
831 bool shared;
832 int error;
833
834 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
835 return 0;
836
837 /* Metadata inodes don't live on the rt device. */
838 if (sc->ip->i_d.di_flags & XFS_DIFLAG_REALTIME) {
839 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
840 return 0;
841 }
842
843 /* They should never participate in reflink. */
844 if (xfs_is_reflink_inode(sc->ip)) {
845 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
846 return 0;
847 }
848
849 /* They also should never have extended attributes. */
850 if (xfs_inode_hasattr(sc->ip)) {
851 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
852 return 0;
853 }
854
855 /* Invoke the data fork scrubber. */
856 smtype = sc->sm->sm_type;
857 sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD;
858 error = xchk_bmap_data(sc);
859 sc->sm->sm_type = smtype;
860 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
861 return error;
862
863 /* Look for incorrect shared blocks. */
864 if (xfs_sb_version_hasreflink(&sc->mp->m_sb)) {
865 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
866 &shared);
867 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
868 &error))
869 return error;
870 if (shared)
871 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
872 }
873
874 return error;
875}
876
877/*
878 * Try to lock an inode in violation of the usual locking order rules. For
879 * example, trying to get the IOLOCK while in transaction context, or just
880 * plain breaking AG-order or inode-order inode locking rules. Either way,
881 * the only way to avoid an ABBA deadlock is to use trylock and back off if
882 * we can't.
883 */
884int
885xchk_ilock_inverted(
886 struct xfs_inode *ip,
887 uint lock_mode)
888{
889 int i;
890
891 for (i = 0; i < 20; i++) {
892 if (xfs_ilock_nowait(ip, lock_mode))
893 return 0;
894 delay(1);
895 }
896 return -EDEADLOCK;
897}
898
899/* Pause background reaping of resources. */
900void
901xchk_stop_reaping(
902 struct xfs_scrub *sc)
903{
904 sc->flags |= XCHK_REAPING_DISABLED;
905 xfs_stop_block_reaping(sc->mp);
906}
907
908/* Restart background reaping of resources. */
909void
910xchk_start_reaping(
911 struct xfs_scrub *sc)
912{
913 xfs_start_block_reaping(sc->mp);
914 sc->flags &= ~XCHK_REAPING_DISABLED;
915}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2017-2023 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_mount.h"
12#include "xfs_btree.h"
13#include "xfs_log_format.h"
14#include "xfs_trans.h"
15#include "xfs_inode.h"
16#include "xfs_icache.h"
17#include "xfs_alloc.h"
18#include "xfs_alloc_btree.h"
19#include "xfs_ialloc.h"
20#include "xfs_ialloc_btree.h"
21#include "xfs_refcount_btree.h"
22#include "xfs_rmap.h"
23#include "xfs_rmap_btree.h"
24#include "xfs_log.h"
25#include "xfs_trans_priv.h"
26#include "xfs_da_format.h"
27#include "xfs_da_btree.h"
28#include "xfs_dir2_priv.h"
29#include "xfs_dir2.h"
30#include "xfs_attr.h"
31#include "xfs_reflink.h"
32#include "xfs_ag.h"
33#include "xfs_error.h"
34#include "xfs_quota.h"
35#include "xfs_exchmaps.h"
36#include "xfs_rtbitmap.h"
37#include "xfs_rtgroup.h"
38#include "scrub/scrub.h"
39#include "scrub/common.h"
40#include "scrub/trace.h"
41#include "scrub/repair.h"
42#include "scrub/health.h"
43#include "scrub/tempfile.h"
44
45/* Common code for the metadata scrubbers. */
46
47/*
48 * Handling operational errors.
49 *
50 * The *_process_error() family of functions are used to process error return
51 * codes from functions called as part of a scrub operation.
52 *
53 * If there's no error, we return true to tell the caller that it's ok
54 * to move on to the next check in its list.
55 *
56 * For non-verifier errors (e.g. ENOMEM) we return false to tell the
57 * caller that something bad happened, and we preserve *error so that
58 * the caller can return the *error up the stack to userspace.
59 *
60 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
61 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words,
62 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
63 * not via return codes. We return false to tell the caller that
64 * something bad happened. Since the error has been cleared, the caller
65 * will (presumably) return that zero and scrubbing will move on to
66 * whatever's next.
67 *
68 * ftrace can be used to record the precise metadata location and the
69 * approximate code location of the failed operation.
70 */
71
72/* Check for operational errors. */
73static bool
74__xchk_process_error(
75 struct xfs_scrub *sc,
76 xfs_agnumber_t agno,
77 xfs_agblock_t bno,
78 int *error,
79 __u32 errflag,
80 void *ret_ip)
81{
82 switch (*error) {
83 case 0:
84 return true;
85 case -EDEADLOCK:
86 case -ECHRNG:
87 /* Used to restart an op with deadlock avoidance. */
88 trace_xchk_deadlock_retry(
89 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
90 sc->sm, *error);
91 break;
92 case -ECANCELED:
93 /*
94 * ECANCELED here means that the caller set one of the scrub
95 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
96 * quickly. Set error to zero and do not continue.
97 */
98 trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
99 *error = 0;
100 break;
101 case -EFSBADCRC:
102 case -EFSCORRUPTED:
103 /* Note the badness but don't abort. */
104 sc->sm->sm_flags |= errflag;
105 *error = 0;
106 fallthrough;
107 default:
108 trace_xchk_op_error(sc, agno, bno, *error, ret_ip);
109 break;
110 }
111 return false;
112}
113
114bool
115xchk_process_error(
116 struct xfs_scrub *sc,
117 xfs_agnumber_t agno,
118 xfs_agblock_t bno,
119 int *error)
120{
121 return __xchk_process_error(sc, agno, bno, error,
122 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
123}
124
125bool
126xchk_process_rt_error(
127 struct xfs_scrub *sc,
128 xfs_rgnumber_t rgno,
129 xfs_rgblock_t rgbno,
130 int *error)
131{
132 return __xchk_process_error(sc, rgno, rgbno, error,
133 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
134}
135
136bool
137xchk_xref_process_error(
138 struct xfs_scrub *sc,
139 xfs_agnumber_t agno,
140 xfs_agblock_t bno,
141 int *error)
142{
143 return __xchk_process_error(sc, agno, bno, error,
144 XFS_SCRUB_OFLAG_XFAIL, __return_address);
145}
146
147/* Check for operational errors for a file offset. */
148static bool
149__xchk_fblock_process_error(
150 struct xfs_scrub *sc,
151 int whichfork,
152 xfs_fileoff_t offset,
153 int *error,
154 __u32 errflag,
155 void *ret_ip)
156{
157 switch (*error) {
158 case 0:
159 return true;
160 case -EDEADLOCK:
161 case -ECHRNG:
162 /* Used to restart an op with deadlock avoidance. */
163 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
164 break;
165 case -ECANCELED:
166 /*
167 * ECANCELED here means that the caller set one of the scrub
168 * outcome flags (corrupt, xfail, xcorrupt) and wants to exit
169 * quickly. Set error to zero and do not continue.
170 */
171 trace_xchk_file_op_error(sc, whichfork, offset, *error,
172 ret_ip);
173 *error = 0;
174 break;
175 case -EFSBADCRC:
176 case -EFSCORRUPTED:
177 /* Note the badness but don't abort. */
178 sc->sm->sm_flags |= errflag;
179 *error = 0;
180 fallthrough;
181 default:
182 trace_xchk_file_op_error(sc, whichfork, offset, *error,
183 ret_ip);
184 break;
185 }
186 return false;
187}
188
189bool
190xchk_fblock_process_error(
191 struct xfs_scrub *sc,
192 int whichfork,
193 xfs_fileoff_t offset,
194 int *error)
195{
196 return __xchk_fblock_process_error(sc, whichfork, offset, error,
197 XFS_SCRUB_OFLAG_CORRUPT, __return_address);
198}
199
200bool
201xchk_fblock_xref_process_error(
202 struct xfs_scrub *sc,
203 int whichfork,
204 xfs_fileoff_t offset,
205 int *error)
206{
207 return __xchk_fblock_process_error(sc, whichfork, offset, error,
208 XFS_SCRUB_OFLAG_XFAIL, __return_address);
209}
210
211/*
212 * Handling scrub corruption/optimization/warning checks.
213 *
214 * The *_set_{corrupt,preen,warning}() family of functions are used to
215 * record the presence of metadata that is incorrect (corrupt), could be
216 * optimized somehow (preen), or should be flagged for administrative
217 * review but is not incorrect (warn).
218 *
219 * ftrace can be used to record the precise metadata location and
220 * approximate code location of the failed check.
221 */
222
223/* Record a block which could be optimized. */
224void
225xchk_block_set_preen(
226 struct xfs_scrub *sc,
227 struct xfs_buf *bp)
228{
229 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
230 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
231}
232
233/*
234 * Record an inode which could be optimized. The trace data will
235 * include the block given by bp if bp is given; otherwise it will use
236 * the block location of the inode record itself.
237 */
238void
239xchk_ino_set_preen(
240 struct xfs_scrub *sc,
241 xfs_ino_t ino)
242{
243 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
244 trace_xchk_ino_preen(sc, ino, __return_address);
245}
246
247/* Record something being wrong with the filesystem primary superblock. */
248void
249xchk_set_corrupt(
250 struct xfs_scrub *sc)
251{
252 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
253 trace_xchk_fs_error(sc, 0, __return_address);
254}
255
256/* Record a corrupt block. */
257void
258xchk_block_set_corrupt(
259 struct xfs_scrub *sc,
260 struct xfs_buf *bp)
261{
262 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
263 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
264}
265
266#ifdef CONFIG_XFS_QUOTA
267/* Record a corrupt quota counter. */
268void
269xchk_qcheck_set_corrupt(
270 struct xfs_scrub *sc,
271 unsigned int dqtype,
272 xfs_dqid_t id)
273{
274 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
275 trace_xchk_qcheck_error(sc, dqtype, id, __return_address);
276}
277#endif
278
279/* Record a corruption while cross-referencing. */
280void
281xchk_block_xref_set_corrupt(
282 struct xfs_scrub *sc,
283 struct xfs_buf *bp)
284{
285 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
286 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
287}
288
289/*
290 * Record a corrupt inode. The trace data will include the block given
291 * by bp if bp is given; otherwise it will use the block location of the
292 * inode record itself.
293 */
294void
295xchk_ino_set_corrupt(
296 struct xfs_scrub *sc,
297 xfs_ino_t ino)
298{
299 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
300 trace_xchk_ino_error(sc, ino, __return_address);
301}
302
303/* Record a corruption while cross-referencing with an inode. */
304void
305xchk_ino_xref_set_corrupt(
306 struct xfs_scrub *sc,
307 xfs_ino_t ino)
308{
309 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
310 trace_xchk_ino_error(sc, ino, __return_address);
311}
312
313/* Record corruption in a block indexed by a file fork. */
314void
315xchk_fblock_set_corrupt(
316 struct xfs_scrub *sc,
317 int whichfork,
318 xfs_fileoff_t offset)
319{
320 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
321 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
322}
323
324/* Record a corruption while cross-referencing a fork block. */
325void
326xchk_fblock_xref_set_corrupt(
327 struct xfs_scrub *sc,
328 int whichfork,
329 xfs_fileoff_t offset)
330{
331 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
332 trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
333}
334
335/*
336 * Warn about inodes that need administrative review but is not
337 * incorrect.
338 */
339void
340xchk_ino_set_warning(
341 struct xfs_scrub *sc,
342 xfs_ino_t ino)
343{
344 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
345 trace_xchk_ino_warning(sc, ino, __return_address);
346}
347
348/* Warn about a block indexed by a file fork that needs review. */
349void
350xchk_fblock_set_warning(
351 struct xfs_scrub *sc,
352 int whichfork,
353 xfs_fileoff_t offset)
354{
355 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
356 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
357}
358
359/* Signal an incomplete scrub. */
360void
361xchk_set_incomplete(
362 struct xfs_scrub *sc)
363{
364 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
365 trace_xchk_incomplete(sc, __return_address);
366}
367
368/*
369 * rmap scrubbing -- compute the number of blocks with a given owner,
370 * at least according to the reverse mapping data.
371 */
372
373struct xchk_rmap_ownedby_info {
374 const struct xfs_owner_info *oinfo;
375 xfs_filblks_t *blocks;
376};
377
378STATIC int
379xchk_count_rmap_ownedby_irec(
380 struct xfs_btree_cur *cur,
381 const struct xfs_rmap_irec *rec,
382 void *priv)
383{
384 struct xchk_rmap_ownedby_info *sroi = priv;
385 bool irec_attr;
386 bool oinfo_attr;
387
388 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
389 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
390
391 if (rec->rm_owner != sroi->oinfo->oi_owner)
392 return 0;
393
394 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
395 (*sroi->blocks) += rec->rm_blockcount;
396
397 return 0;
398}
399
400/*
401 * Calculate the number of blocks the rmap thinks are owned by something.
402 * The caller should pass us an rmapbt cursor.
403 */
404int
405xchk_count_rmap_ownedby_ag(
406 struct xfs_scrub *sc,
407 struct xfs_btree_cur *cur,
408 const struct xfs_owner_info *oinfo,
409 xfs_filblks_t *blocks)
410{
411 struct xchk_rmap_ownedby_info sroi = {
412 .oinfo = oinfo,
413 .blocks = blocks,
414 };
415
416 *blocks = 0;
417 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
418 &sroi);
419}
420
421/*
422 * AG scrubbing
423 *
424 * These helpers facilitate locking an allocation group's header
425 * buffers, setting up cursors for all btrees that are present, and
426 * cleaning everything up once we're through.
427 */
428
429/* Decide if we want to return an AG header read failure. */
430static inline bool
431want_ag_read_header_failure(
432 struct xfs_scrub *sc,
433 unsigned int type)
434{
435 /* Return all AG header read failures when scanning btrees. */
436 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
437 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
438 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
439 return true;
440 /*
441 * If we're scanning a given type of AG header, we only want to
442 * see read failures from that specific header. We'd like the
443 * other headers to cross-check them, but this isn't required.
444 */
445 if (sc->sm->sm_type == type)
446 return true;
447 return false;
448}
449
450/*
451 * Grab the AG header buffers for the attached perag structure.
452 *
453 * The headers should be released by xchk_ag_free, but as a fail safe we attach
454 * all the buffers we grab to the scrub transaction so they'll all be freed
455 * when we cancel it.
456 */
457static inline int
458xchk_perag_read_headers(
459 struct xfs_scrub *sc,
460 struct xchk_ag *sa)
461{
462 int error;
463
464 error = xfs_ialloc_read_agi(sa->pag, sc->tp, 0, &sa->agi_bp);
465 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
466 return error;
467
468 error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
469 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
470 return error;
471
472 return 0;
473}
474
475/*
476 * Grab the AG headers for the attached perag structure and wait for pending
477 * intents to drain.
478 */
479int
480xchk_perag_drain_and_lock(
481 struct xfs_scrub *sc)
482{
483 struct xchk_ag *sa = &sc->sa;
484 int error = 0;
485
486 ASSERT(sa->pag != NULL);
487 ASSERT(sa->agi_bp == NULL);
488 ASSERT(sa->agf_bp == NULL);
489
490 do {
491 if (xchk_should_terminate(sc, &error))
492 return error;
493
494 error = xchk_perag_read_headers(sc, sa);
495 if (error)
496 return error;
497
498 /*
499 * If we've grabbed an inode for scrubbing then we assume that
500 * holding its ILOCK will suffice to coordinate with any intent
501 * chains involving this inode.
502 */
503 if (sc->ip)
504 return 0;
505
506 /*
507 * Decide if this AG is quiet enough for all metadata to be
508 * consistent with each other. XFS allows the AG header buffer
509 * locks to cycle across transaction rolls while processing
510 * chains of deferred ops, which means that there could be
511 * other threads in the middle of processing a chain of
512 * deferred ops. For regular operations we are careful about
513 * ordering operations to prevent collisions between threads
514 * (which is why we don't need a per-AG lock), but scrub and
515 * repair have to serialize against chained operations.
516 *
517 * We just locked all the AG headers buffers; now take a look
518 * to see if there are any intents in progress. If there are,
519 * drop the AG headers and wait for the intents to drain.
520 * Since we hold all the AG header locks for the duration of
521 * the scrub, this is the only time we have to sample the
522 * intents counter; any threads increasing it after this point
523 * can't possibly be in the middle of a chain of AG metadata
524 * updates.
525 *
526 * Obviously, this should be slanted against scrub and in favor
527 * of runtime threads.
528 */
529 if (!xfs_group_intent_busy(pag_group(sa->pag)))
530 return 0;
531
532 if (sa->agf_bp) {
533 xfs_trans_brelse(sc->tp, sa->agf_bp);
534 sa->agf_bp = NULL;
535 }
536
537 if (sa->agi_bp) {
538 xfs_trans_brelse(sc->tp, sa->agi_bp);
539 sa->agi_bp = NULL;
540 }
541
542 if (!(sc->flags & XCHK_FSGATES_DRAIN))
543 return -ECHRNG;
544 error = xfs_group_intent_drain(pag_group(sa->pag));
545 if (error == -ERESTARTSYS)
546 error = -EINTR;
547 } while (!error);
548
549 return error;
550}
551
552/*
553 * Grab the per-AG structure, grab all AG header buffers, and wait until there
554 * aren't any pending intents. Returns -ENOENT if we can't grab the perag
555 * structure.
556 */
557int
558xchk_ag_read_headers(
559 struct xfs_scrub *sc,
560 xfs_agnumber_t agno,
561 struct xchk_ag *sa)
562{
563 struct xfs_mount *mp = sc->mp;
564
565 ASSERT(!sa->pag);
566 sa->pag = xfs_perag_get(mp, agno);
567 if (!sa->pag)
568 return -ENOENT;
569
570 return xchk_perag_drain_and_lock(sc);
571}
572
573/* Release all the AG btree cursors. */
574void
575xchk_ag_btcur_free(
576 struct xchk_ag *sa)
577{
578 if (sa->refc_cur)
579 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
580 if (sa->rmap_cur)
581 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
582 if (sa->fino_cur)
583 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
584 if (sa->ino_cur)
585 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
586 if (sa->cnt_cur)
587 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
588 if (sa->bno_cur)
589 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
590
591 sa->refc_cur = NULL;
592 sa->rmap_cur = NULL;
593 sa->fino_cur = NULL;
594 sa->ino_cur = NULL;
595 sa->bno_cur = NULL;
596 sa->cnt_cur = NULL;
597}
598
599/* Initialize all the btree cursors for an AG. */
600void
601xchk_ag_btcur_init(
602 struct xfs_scrub *sc,
603 struct xchk_ag *sa)
604{
605 struct xfs_mount *mp = sc->mp;
606
607 if (sa->agf_bp) {
608 /* Set up a bnobt cursor for cross-referencing. */
609 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
610 sa->pag);
611 xchk_ag_btree_del_cursor_if_sick(sc, &sa->bno_cur,
612 XFS_SCRUB_TYPE_BNOBT);
613
614 /* Set up a cntbt cursor for cross-referencing. */
615 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
616 sa->pag);
617 xchk_ag_btree_del_cursor_if_sick(sc, &sa->cnt_cur,
618 XFS_SCRUB_TYPE_CNTBT);
619
620 /* Set up a rmapbt cursor for cross-referencing. */
621 if (xfs_has_rmapbt(mp)) {
622 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp,
623 sa->agf_bp, sa->pag);
624 xchk_ag_btree_del_cursor_if_sick(sc, &sa->rmap_cur,
625 XFS_SCRUB_TYPE_RMAPBT);
626 }
627
628 /* Set up a refcountbt cursor for cross-referencing. */
629 if (xfs_has_reflink(mp)) {
630 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
631 sa->agf_bp, sa->pag);
632 xchk_ag_btree_del_cursor_if_sick(sc, &sa->refc_cur,
633 XFS_SCRUB_TYPE_REFCNTBT);
634 }
635 }
636
637 if (sa->agi_bp) {
638 /* Set up a inobt cursor for cross-referencing. */
639 sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp,
640 sa->agi_bp);
641 xchk_ag_btree_del_cursor_if_sick(sc, &sa->ino_cur,
642 XFS_SCRUB_TYPE_INOBT);
643
644 /* Set up a finobt cursor for cross-referencing. */
645 if (xfs_has_finobt(mp)) {
646 sa->fino_cur = xfs_finobt_init_cursor(sa->pag, sc->tp,
647 sa->agi_bp);
648 xchk_ag_btree_del_cursor_if_sick(sc, &sa->fino_cur,
649 XFS_SCRUB_TYPE_FINOBT);
650 }
651 }
652}
653
654/* Release the AG header context and btree cursors. */
655void
656xchk_ag_free(
657 struct xfs_scrub *sc,
658 struct xchk_ag *sa)
659{
660 xchk_ag_btcur_free(sa);
661 xrep_reset_perag_resv(sc);
662 if (sa->agf_bp) {
663 xfs_trans_brelse(sc->tp, sa->agf_bp);
664 sa->agf_bp = NULL;
665 }
666 if (sa->agi_bp) {
667 xfs_trans_brelse(sc->tp, sa->agi_bp);
668 sa->agi_bp = NULL;
669 }
670 if (sa->pag) {
671 xfs_perag_put(sa->pag);
672 sa->pag = NULL;
673 }
674}
675
676/*
677 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
678 * order. Locking order requires us to get the AGI before the AGF. We use the
679 * transaction to avoid deadlocking on crosslinked metadata buffers; either the
680 * caller passes one in (bmap scrub) or we have to create a transaction
681 * ourselves. Returns ENOENT if the perag struct cannot be grabbed.
682 */
683int
684xchk_ag_init(
685 struct xfs_scrub *sc,
686 xfs_agnumber_t agno,
687 struct xchk_ag *sa)
688{
689 int error;
690
691 error = xchk_ag_read_headers(sc, agno, sa);
692 if (error)
693 return error;
694
695 xchk_ag_btcur_init(sc, sa);
696 return 0;
697}
698
699#ifdef CONFIG_XFS_RT
700/*
701 * For scrubbing a realtime group, grab all the in-core resources we'll need to
702 * check the metadata, which means taking the ILOCK of the realtime group's
703 * metadata inodes. Callers must not join these inodes to the transaction with
704 * non-zero lockflags or concurrency problems will result. The @rtglock_flags
705 * argument takes XFS_RTGLOCK_* flags.
706 */
707int
708xchk_rtgroup_init(
709 struct xfs_scrub *sc,
710 xfs_rgnumber_t rgno,
711 struct xchk_rt *sr)
712{
713 ASSERT(sr->rtg == NULL);
714 ASSERT(sr->rtlock_flags == 0);
715
716 sr->rtg = xfs_rtgroup_get(sc->mp, rgno);
717 if (!sr->rtg)
718 return -ENOENT;
719 return 0;
720}
721
722void
723xchk_rtgroup_lock(
724 struct xchk_rt *sr,
725 unsigned int rtglock_flags)
726{
727 xfs_rtgroup_lock(sr->rtg, rtglock_flags);
728 sr->rtlock_flags = rtglock_flags;
729}
730
731/*
732 * Unlock the realtime group. This must be done /after/ committing (or
733 * cancelling) the scrub transaction.
734 */
735static void
736xchk_rtgroup_unlock(
737 struct xchk_rt *sr)
738{
739 ASSERT(sr->rtg != NULL);
740
741 if (sr->rtlock_flags) {
742 xfs_rtgroup_unlock(sr->rtg, sr->rtlock_flags);
743 sr->rtlock_flags = 0;
744 }
745}
746
747/*
748 * Unlock the realtime group and release its resources. This must be done
749 * /after/ committing (or cancelling) the scrub transaction.
750 */
751void
752xchk_rtgroup_free(
753 struct xfs_scrub *sc,
754 struct xchk_rt *sr)
755{
756 ASSERT(sr->rtg != NULL);
757
758 xchk_rtgroup_unlock(sr);
759
760 xfs_rtgroup_put(sr->rtg);
761 sr->rtg = NULL;
762}
763#endif /* CONFIG_XFS_RT */
764
765/* Per-scrubber setup functions */
766
767void
768xchk_trans_cancel(
769 struct xfs_scrub *sc)
770{
771 xfs_trans_cancel(sc->tp);
772 sc->tp = NULL;
773}
774
775int
776xchk_trans_alloc_empty(
777 struct xfs_scrub *sc)
778{
779 return xfs_trans_alloc_empty(sc->mp, &sc->tp);
780}
781
782/*
783 * Grab an empty transaction so that we can re-grab locked buffers if
784 * one of our btrees turns out to be cyclic.
785 *
786 * If we're going to repair something, we need to ask for the largest possible
787 * log reservation so that we can handle the worst case scenario for metadata
788 * updates while rebuilding a metadata item. We also need to reserve as many
789 * blocks in the head transaction as we think we're going to need to rebuild
790 * the metadata object.
791 */
792int
793xchk_trans_alloc(
794 struct xfs_scrub *sc,
795 uint resblks)
796{
797 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
798 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
799 resblks, 0, 0, &sc->tp);
800
801 return xchk_trans_alloc_empty(sc);
802}
803
804/* Set us up with a transaction and an empty context. */
805int
806xchk_setup_fs(
807 struct xfs_scrub *sc)
808{
809 uint resblks;
810
811 resblks = xrep_calc_ag_resblks(sc);
812 return xchk_trans_alloc(sc, resblks);
813}
814
815/* Set us up with AG headers and btree cursors. */
816int
817xchk_setup_ag_btree(
818 struct xfs_scrub *sc,
819 bool force_log)
820{
821 struct xfs_mount *mp = sc->mp;
822 int error;
823
824 /*
825 * If the caller asks us to checkpont the log, do so. This
826 * expensive operation should be performed infrequently and only
827 * as a last resort. Any caller that sets force_log should
828 * document why they need to do so.
829 */
830 if (force_log) {
831 error = xchk_checkpoint_log(mp);
832 if (error)
833 return error;
834 }
835
836 error = xchk_setup_fs(sc);
837 if (error)
838 return error;
839
840 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
841}
842
843/* Push everything out of the log onto disk. */
844int
845xchk_checkpoint_log(
846 struct xfs_mount *mp)
847{
848 int error;
849
850 error = xfs_log_force(mp, XFS_LOG_SYNC);
851 if (error)
852 return error;
853 xfs_ail_push_all_sync(mp->m_ail);
854 return 0;
855}
856
857/* Verify that an inode is allocated ondisk, then return its cached inode. */
858int
859xchk_iget(
860 struct xfs_scrub *sc,
861 xfs_ino_t inum,
862 struct xfs_inode **ipp)
863{
864 ASSERT(sc->tp != NULL);
865
866 return xfs_iget(sc->mp, sc->tp, inum, XCHK_IGET_FLAGS, 0, ipp);
867}
868
869/*
870 * Try to grab an inode in a manner that avoids races with physical inode
871 * allocation. If we can't, return the locked AGI buffer so that the caller
872 * can single-step the loading process to see where things went wrong.
873 * Callers must have a valid scrub transaction.
874 *
875 * If the iget succeeds, return 0, a NULL AGI, and the inode.
876 *
877 * If the iget fails, return the error, the locked AGI, and a NULL inode. This
878 * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
879 * no longer allocated; or any other corruption or runtime error.
880 *
881 * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
882 *
883 * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
884 */
885int
886xchk_iget_agi(
887 struct xfs_scrub *sc,
888 xfs_ino_t inum,
889 struct xfs_buf **agi_bpp,
890 struct xfs_inode **ipp)
891{
892 struct xfs_mount *mp = sc->mp;
893 struct xfs_trans *tp = sc->tp;
894 struct xfs_perag *pag;
895 int error;
896
897 ASSERT(sc->tp != NULL);
898
899again:
900 *agi_bpp = NULL;
901 *ipp = NULL;
902 error = 0;
903
904 if (xchk_should_terminate(sc, &error))
905 return error;
906
907 /*
908 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
909 * in the iget cache miss path.
910 */
911 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
912 error = xfs_ialloc_read_agi(pag, tp, 0, agi_bpp);
913 xfs_perag_put(pag);
914 if (error)
915 return error;
916
917 error = xfs_iget(mp, tp, inum, XFS_IGET_NORETRY | XCHK_IGET_FLAGS, 0,
918 ipp);
919 if (error == -EAGAIN) {
920 /*
921 * The inode may be in core but temporarily unavailable and may
922 * require the AGI buffer before it can be returned. Drop the
923 * AGI buffer and retry the lookup.
924 *
925 * Incore lookup will fail with EAGAIN on a cache hit if the
926 * inode is queued to the inactivation list. The inactivation
927 * worker may remove the inode from the unlinked list and hence
928 * needs the AGI.
929 *
930 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
931 * to allow inodegc to make progress and move the inode to
932 * IRECLAIMABLE state where xfs_iget will be able to return it
933 * again if it can lock the inode.
934 */
935 xfs_trans_brelse(tp, *agi_bpp);
936 delay(1);
937 goto again;
938 }
939 if (error)
940 return error;
941
942 /* We got the inode, so we can release the AGI. */
943 ASSERT(*ipp != NULL);
944 xfs_trans_brelse(tp, *agi_bpp);
945 *agi_bpp = NULL;
946 return 0;
947}
948
949#ifdef CONFIG_XFS_QUOTA
950/*
951 * Try to attach dquots to this inode if we think we might want to repair it.
952 * Callers must not hold any ILOCKs. If the dquots are broken and cannot be
953 * attached, a quotacheck will be scheduled.
954 */
955int
956xchk_ino_dqattach(
957 struct xfs_scrub *sc)
958{
959 ASSERT(sc->tp != NULL);
960 ASSERT(sc->ip != NULL);
961
962 if (!xchk_could_repair(sc))
963 return 0;
964
965 return xrep_ino_dqattach(sc);
966}
967#endif
968
969/* Install an inode that we opened by handle for scrubbing. */
970int
971xchk_install_handle_inode(
972 struct xfs_scrub *sc,
973 struct xfs_inode *ip)
974{
975 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
976 xchk_irele(sc, ip);
977 return -ENOENT;
978 }
979
980 sc->ip = ip;
981 return 0;
982}
983
984/*
985 * Install an already-referenced inode for scrubbing. Get our own reference to
986 * the inode to make disposal simpler. The inode must not be in I_FREEING or
987 * I_WILL_FREE state!
988 */
989int
990xchk_install_live_inode(
991 struct xfs_scrub *sc,
992 struct xfs_inode *ip)
993{
994 if (!igrab(VFS_I(ip))) {
995 xchk_ino_set_corrupt(sc, ip->i_ino);
996 return -EFSCORRUPTED;
997 }
998
999 sc->ip = ip;
1000 return 0;
1001}
1002
1003/*
1004 * In preparation to scrub metadata structures that hang off of an inode,
1005 * grab either the inode referenced in the scrub control structure or the
1006 * inode passed in. If the inumber does not reference an allocated inode
1007 * record, the function returns ENOENT to end the scrub early. The inode
1008 * is not locked.
1009 */
1010int
1011xchk_iget_for_scrubbing(
1012 struct xfs_scrub *sc)
1013{
1014 struct xfs_imap imap;
1015 struct xfs_mount *mp = sc->mp;
1016 struct xfs_perag *pag;
1017 struct xfs_buf *agi_bp;
1018 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file));
1019 struct xfs_inode *ip = NULL;
1020 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
1021 int error;
1022
1023 ASSERT(sc->tp == NULL);
1024
1025 /* We want to scan the inode we already had opened. */
1026 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
1027 return xchk_install_live_inode(sc, ip_in);
1028
1029 /*
1030 * On pre-metadir filesystems, reject internal metadata files. For
1031 * metadir filesystems, limited scrubbing of any file in the metadata
1032 * directory tree by handle is allowed, because that is the only way to
1033 * validate the lack of parent pointers in the sb-root metadata inodes.
1034 */
1035 if (!xfs_has_metadir(mp) && xfs_is_sb_inum(mp, sc->sm->sm_ino))
1036 return -ENOENT;
1037 /* Reject obviously bad inode numbers. */
1038 if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
1039 return -ENOENT;
1040
1041 /* Try a safe untrusted iget. */
1042 error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
1043 if (!error)
1044 return xchk_install_handle_inode(sc, ip);
1045 if (error == -ENOENT)
1046 return error;
1047 if (error != -EINVAL)
1048 goto out_error;
1049
1050 /*
1051 * EINVAL with IGET_UNTRUSTED probably means one of several things:
1052 * userspace gave us an inode number that doesn't correspond to fs
1053 * space; the inode btree lacks a record for this inode; or there is a
1054 * record, and it says this inode is free.
1055 *
1056 * We want to look up this inode in the inobt to distinguish two
1057 * scenarios: (1) the inobt says the inode is free, in which case
1058 * there's nothing to do; and (2) the inobt says the inode is
1059 * allocated, but loading it failed due to corruption.
1060 *
1061 * Allocate a transaction and grab the AGI to prevent inobt activity
1062 * in this AG. Retry the iget in case someone allocated a new inode
1063 * after the first iget failed.
1064 */
1065 error = xchk_trans_alloc(sc, 0);
1066 if (error)
1067 goto out_error;
1068
1069 error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
1070 if (error == 0) {
1071 /* Actually got the inode, so install it. */
1072 xchk_trans_cancel(sc);
1073 return xchk_install_handle_inode(sc, ip);
1074 }
1075 if (error == -ENOENT)
1076 goto out_gone;
1077 if (error != -EINVAL)
1078 goto out_cancel;
1079
1080 /* Ensure that we have protected against inode allocation/freeing. */
1081 if (agi_bp == NULL) {
1082 ASSERT(agi_bp != NULL);
1083 error = -ECANCELED;
1084 goto out_cancel;
1085 }
1086
1087 /*
1088 * Untrusted iget failed a second time. Let's try an inobt lookup.
1089 * If the inobt thinks this the inode neither can exist inside the
1090 * filesystem nor is allocated, return ENOENT to signal that the check
1091 * can be skipped.
1092 *
1093 * If the lookup returns corruption, we'll mark this inode corrupt and
1094 * exit to userspace. There's little chance of fixing anything until
1095 * the inobt is straightened out, but there's nothing we can do here.
1096 *
1097 * If the lookup encounters any other error, exit to userspace.
1098 *
1099 * If the lookup succeeds, something else must be very wrong in the fs
1100 * such that setting up the incore inode failed in some strange way.
1101 * Treat those as corruptions.
1102 */
1103 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
1104 if (!pag) {
1105 error = -EFSCORRUPTED;
1106 goto out_cancel;
1107 }
1108
1109 error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
1110 XFS_IGET_UNTRUSTED);
1111 xfs_perag_put(pag);
1112 if (error == -EINVAL || error == -ENOENT)
1113 goto out_gone;
1114 if (!error)
1115 error = -EFSCORRUPTED;
1116
1117out_cancel:
1118 xchk_trans_cancel(sc);
1119out_error:
1120 trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
1121 error, __return_address);
1122 return error;
1123out_gone:
1124 /* The file is gone, so there's nothing to check. */
1125 xchk_trans_cancel(sc);
1126 return -ENOENT;
1127}
1128
1129/* Release an inode, possibly dropping it in the process. */
1130void
1131xchk_irele(
1132 struct xfs_scrub *sc,
1133 struct xfs_inode *ip)
1134{
1135 if (sc->tp) {
1136 /*
1137 * If we are in a transaction, we /cannot/ drop the inode
1138 * ourselves, because the VFS will trigger writeback, which
1139 * can require a transaction. Clear DONTCACHE to force the
1140 * inode to the LRU, where someone else can take care of
1141 * dropping it.
1142 *
1143 * Note that when we grabbed our reference to the inode, it
1144 * could have had an active ref and DONTCACHE set if a sysadmin
1145 * is trying to coerce a change in file access mode. icache
1146 * hits do not clear DONTCACHE, so we must do it here.
1147 */
1148 spin_lock(&VFS_I(ip)->i_lock);
1149 VFS_I(ip)->i_state &= ~I_DONTCACHE;
1150 spin_unlock(&VFS_I(ip)->i_lock);
1151 }
1152
1153 xfs_irele(ip);
1154}
1155
1156/*
1157 * Set us up to scrub metadata mapped by a file's fork. Callers must not use
1158 * this to operate on user-accessible regular file data because the MMAPLOCK is
1159 * not taken.
1160 */
1161int
1162xchk_setup_inode_contents(
1163 struct xfs_scrub *sc,
1164 unsigned int resblks)
1165{
1166 int error;
1167
1168 error = xchk_iget_for_scrubbing(sc);
1169 if (error)
1170 return error;
1171
1172 error = xrep_tempfile_adjust_directory_tree(sc);
1173 if (error)
1174 return error;
1175
1176 /* Lock the inode so the VFS cannot touch this file. */
1177 xchk_ilock(sc, XFS_IOLOCK_EXCL);
1178
1179 error = xchk_trans_alloc(sc, resblks);
1180 if (error)
1181 goto out;
1182
1183 error = xchk_ino_dqattach(sc);
1184 if (error)
1185 goto out;
1186
1187 xchk_ilock(sc, XFS_ILOCK_EXCL);
1188out:
1189 /* scrub teardown will unlock and release the inode for us */
1190 return error;
1191}
1192
1193void
1194xchk_ilock(
1195 struct xfs_scrub *sc,
1196 unsigned int ilock_flags)
1197{
1198 xfs_ilock(sc->ip, ilock_flags);
1199 sc->ilock_flags |= ilock_flags;
1200}
1201
1202bool
1203xchk_ilock_nowait(
1204 struct xfs_scrub *sc,
1205 unsigned int ilock_flags)
1206{
1207 if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1208 sc->ilock_flags |= ilock_flags;
1209 return true;
1210 }
1211
1212 return false;
1213}
1214
1215void
1216xchk_iunlock(
1217 struct xfs_scrub *sc,
1218 unsigned int ilock_flags)
1219{
1220 sc->ilock_flags &= ~ilock_flags;
1221 xfs_iunlock(sc->ip, ilock_flags);
1222}
1223
1224/*
1225 * Predicate that decides if we need to evaluate the cross-reference check.
1226 * If there was an error accessing the cross-reference btree, just delete
1227 * the cursor and skip the check.
1228 */
1229bool
1230xchk_should_check_xref(
1231 struct xfs_scrub *sc,
1232 int *error,
1233 struct xfs_btree_cur **curpp)
1234{
1235 /* No point in xref if we already know we're corrupt. */
1236 if (xchk_skip_xref(sc->sm))
1237 return false;
1238
1239 if (*error == 0)
1240 return true;
1241
1242 if (curpp) {
1243 /* If we've already given up on xref, just bail out. */
1244 if (!*curpp)
1245 return false;
1246
1247 /* xref error, delete cursor and bail out. */
1248 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1249 *curpp = NULL;
1250 }
1251
1252 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1253 trace_xchk_xref_error(sc, *error, __return_address);
1254
1255 /*
1256 * Errors encountered during cross-referencing with another
1257 * data structure should not cause this scrubber to abort.
1258 */
1259 *error = 0;
1260 return false;
1261}
1262
1263/* Run the structure verifiers on in-memory buffers to detect bad memory. */
1264void
1265xchk_buffer_recheck(
1266 struct xfs_scrub *sc,
1267 struct xfs_buf *bp)
1268{
1269 xfs_failaddr_t fa;
1270
1271 if (bp->b_ops == NULL) {
1272 xchk_block_set_corrupt(sc, bp);
1273 return;
1274 }
1275 if (bp->b_ops->verify_struct == NULL) {
1276 xchk_set_incomplete(sc);
1277 return;
1278 }
1279 fa = bp->b_ops->verify_struct(bp);
1280 if (!fa)
1281 return;
1282 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1283 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1284}
1285
1286static inline int
1287xchk_metadata_inode_subtype(
1288 struct xfs_scrub *sc,
1289 unsigned int scrub_type)
1290{
1291 struct xfs_scrub_subord *sub;
1292 int error;
1293
1294 sub = xchk_scrub_create_subord(sc, scrub_type);
1295 error = sub->sc.ops->scrub(&sub->sc);
1296 xchk_scrub_free_subord(sub);
1297 return error;
1298}
1299
1300/*
1301 * Scrub the attr/data forks of a metadata inode. The metadata inode must be
1302 * pointed to by sc->ip and the ILOCK must be held.
1303 */
1304int
1305xchk_metadata_inode_forks(
1306 struct xfs_scrub *sc)
1307{
1308 bool shared;
1309 int error;
1310
1311 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1312 return 0;
1313
1314 /* Check the inode record. */
1315 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1316 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1317 return error;
1318
1319 /* Metadata inodes don't live on the rt device. */
1320 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1321 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1322 return 0;
1323 }
1324
1325 /* They should never participate in reflink. */
1326 if (xfs_is_reflink_inode(sc->ip)) {
1327 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1328 return 0;
1329 }
1330
1331 /* Invoke the data fork scrubber. */
1332 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1333 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1334 return error;
1335
1336 /* Look for incorrect shared blocks. */
1337 if (xfs_has_reflink(sc->mp)) {
1338 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1339 &shared);
1340 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1341 &error))
1342 return error;
1343 if (shared)
1344 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1345 }
1346
1347 /*
1348 * Metadata files can only have extended attributes on metadir
1349 * filesystems, either for parent pointers or for actual xattr data.
1350 */
1351 if (xfs_inode_hasattr(sc->ip)) {
1352 if (!xfs_has_metadir(sc->mp)) {
1353 xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1354 return 0;
1355 }
1356
1357 error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1358 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1359 return error;
1360 }
1361
1362 return 0;
1363}
1364
1365/*
1366 * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1367 * operation. Callers must not hold any locks that intersect with the CPU
1368 * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1369 * to change kernel code.
1370 */
1371void
1372xchk_fsgates_enable(
1373 struct xfs_scrub *sc,
1374 unsigned int scrub_fsgates)
1375{
1376 ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1377 ASSERT(!(sc->flags & scrub_fsgates));
1378
1379 trace_xchk_fsgates_enable(sc, scrub_fsgates);
1380
1381 if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1382 xfs_drain_wait_enable();
1383
1384 if (scrub_fsgates & XCHK_FSGATES_QUOTA)
1385 xfs_dqtrx_hook_enable();
1386
1387 if (scrub_fsgates & XCHK_FSGATES_DIRENTS)
1388 xfs_dir_hook_enable();
1389
1390 if (scrub_fsgates & XCHK_FSGATES_RMAP)
1391 xfs_rmap_hook_enable();
1392
1393 sc->flags |= scrub_fsgates;
1394}
1395
1396/*
1397 * Decide if this is this a cached inode that's also allocated. The caller
1398 * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1399 * from being allocated or freed.
1400 *
1401 * Look up an inode by number in the given file system. If the inode number
1402 * is invalid, return -EINVAL. If the inode is not in cache, return -ENODATA.
1403 * If the inode is being reclaimed, return -ENODATA because we know the inode
1404 * cache cannot be updating the ondisk metadata.
1405 *
1406 * Otherwise, the incore inode is the one we want, and it is either live,
1407 * somewhere in the inactivation machinery, or reclaimable. The inode is
1408 * allocated if i_mode is nonzero. In all three cases, the cached inode will
1409 * be more up to date than the ondisk inode buffer, so we must use the incore
1410 * i_mode.
1411 */
1412int
1413xchk_inode_is_allocated(
1414 struct xfs_scrub *sc,
1415 xfs_agino_t agino,
1416 bool *inuse)
1417{
1418 struct xfs_mount *mp = sc->mp;
1419 struct xfs_perag *pag = sc->sa.pag;
1420 xfs_ino_t ino;
1421 struct xfs_inode *ip;
1422 int error;
1423
1424 /* caller must hold perag reference */
1425 if (pag == NULL) {
1426 ASSERT(pag != NULL);
1427 return -EINVAL;
1428 }
1429
1430 /* caller must have AGI buffer */
1431 if (sc->sa.agi_bp == NULL) {
1432 ASSERT(sc->sa.agi_bp != NULL);
1433 return -EINVAL;
1434 }
1435
1436 /* reject inode numbers outside existing AGs */
1437 ino = xfs_agino_to_ino(pag, agino);
1438 if (!xfs_verify_ino(mp, ino))
1439 return -EINVAL;
1440
1441 error = -ENODATA;
1442 rcu_read_lock();
1443 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1444 if (!ip) {
1445 /* cache miss */
1446 goto out_rcu;
1447 }
1448
1449 /*
1450 * If the inode number doesn't match, the incore inode got reused
1451 * during an RCU grace period and the radix tree hasn't been updated.
1452 * This isn't the inode we want.
1453 */
1454 spin_lock(&ip->i_flags_lock);
1455 if (ip->i_ino != ino)
1456 goto out_skip;
1457
1458 trace_xchk_inode_is_allocated(ip);
1459
1460 /*
1461 * We have an incore inode that matches the inode we want, and the
1462 * caller holds the perag structure and the AGI buffer. Let's check
1463 * our assumptions below:
1464 */
1465
1466#ifdef DEBUG
1467 /*
1468 * (1) If the incore inode is live (i.e. referenced from the dcache),
1469 * it will not be INEW, nor will it be in the inactivation or reclaim
1470 * machinery. The ondisk inode had better be allocated. This is the
1471 * most trivial case.
1472 */
1473 if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1474 XFS_INACTIVATING))) {
1475 /* live inode */
1476 ASSERT(VFS_I(ip)->i_mode != 0);
1477 }
1478
1479 /*
1480 * If the incore inode is INEW, there are several possibilities:
1481 *
1482 * (2) For a file that is being created, note that we allocate the
1483 * ondisk inode before allocating, initializing, and adding the incore
1484 * inode to the radix tree.
1485 *
1486 * (3) If the incore inode is being recycled, the inode has to be
1487 * allocated because we don't allow freed inodes to be recycled.
1488 * Recycling doesn't touch i_mode.
1489 */
1490 if (ip->i_flags & XFS_INEW) {
1491 /* created on disk already or recycling */
1492 ASSERT(VFS_I(ip)->i_mode != 0);
1493 }
1494
1495 /*
1496 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1497 * inactivation has not started (!INACTIVATING), it is still allocated.
1498 */
1499 if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1500 !(ip->i_flags & XFS_INACTIVATING)) {
1501 /* definitely before difree */
1502 ASSERT(VFS_I(ip)->i_mode != 0);
1503 }
1504#endif
1505
1506 /*
1507 * If the incore inode is undergoing inactivation (INACTIVATING), there
1508 * are two possibilities:
1509 *
1510 * (5) It is before the point where it would get freed ondisk, in which
1511 * case i_mode is still nonzero.
1512 *
1513 * (6) It has already been freed, in which case i_mode is zero.
1514 *
1515 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1516 * and we've taken the AGI buffer lock, which prevents that from
1517 * happening.
1518 */
1519
1520 /*
1521 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1522 * reclaim (IRECLAIMABLE) could be allocated or free. i_mode still
1523 * reflects the ondisk state.
1524 */
1525
1526 /*
1527 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1528 * the flush code uses i_mode to format the ondisk inode.
1529 */
1530
1531 /*
1532 * (9) If the inode is in IRECLAIM and was reachable via the radix
1533 * tree, it still has the same i_mode as it did before it entered
1534 * reclaim. The inode object is still alive because we hold the RCU
1535 * read lock.
1536 */
1537
1538 *inuse = VFS_I(ip)->i_mode != 0;
1539 error = 0;
1540
1541out_skip:
1542 spin_unlock(&ip->i_flags_lock);
1543out_rcu:
1544 rcu_read_unlock();
1545 return error;
1546}
1547
1548/* Is this inode a root directory for either tree? */
1549bool
1550xchk_inode_is_dirtree_root(const struct xfs_inode *ip)
1551{
1552 struct xfs_mount *mp = ip->i_mount;
1553
1554 return ip == mp->m_rootip ||
1555 (xfs_has_metadir(mp) && ip == mp->m_metadirip);
1556}
1557
1558/* Does the superblock point down to this inode? */
1559bool
1560xchk_inode_is_sb_rooted(const struct xfs_inode *ip)
1561{
1562 return xchk_inode_is_dirtree_root(ip) ||
1563 xfs_is_sb_inum(ip->i_mount, ip->i_ino);
1564}
1565
1566/* What is the root directory inumber for this inode? */
1567xfs_ino_t
1568xchk_inode_rootdir_inum(const struct xfs_inode *ip)
1569{
1570 struct xfs_mount *mp = ip->i_mount;
1571
1572 if (xfs_is_metadir_inode(ip))
1573 return mp->m_metadirip->i_ino;
1574 return mp->m_rootip->i_ino;
1575}