Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
 
 
 
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/fs_parser.h>
  21#include <linux/hid.h>
  22#include <linux/mm.h>
  23#include <linux/module.h>
  24#include <linux/scatterlist.h>
  25#include <linux/sched/signal.h>
  26#include <linux/uio.h>
  27#include <linux/vmalloc.h>
  28#include <asm/unaligned.h>
  29
  30#include <linux/usb/ccid.h>
  31#include <linux/usb/composite.h>
  32#include <linux/usb/functionfs.h>
 
  33
  34#include <linux/aio.h>
  35#include <linux/mmu_context.h>
  36#include <linux/poll.h>
  37#include <linux/eventfd.h>
  38
  39#include "u_fs.h"
  40#include "u_f.h"
  41#include "u_os_desc.h"
  42#include "configfs.h"
  43
  44#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
 
 
 
 
 
  45
  46/* Reference counter handling */
  47static void ffs_data_get(struct ffs_data *ffs);
  48static void ffs_data_put(struct ffs_data *ffs);
  49/* Creates new ffs_data object. */
  50static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  51	__attribute__((malloc));
  52
  53/* Opened counter handling. */
  54static void ffs_data_opened(struct ffs_data *ffs);
  55static void ffs_data_closed(struct ffs_data *ffs);
  56
  57/* Called with ffs->mutex held; take over ownership of data. */
  58static int __must_check
  59__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  60static int __must_check
  61__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  62
  63
  64/* The function structure ***************************************************/
  65
  66struct ffs_ep;
  67
  68struct ffs_function {
  69	struct usb_configuration	*conf;
  70	struct usb_gadget		*gadget;
  71	struct ffs_data			*ffs;
  72
  73	struct ffs_ep			*eps;
  74	u8				eps_revmap[16];
  75	short				*interfaces_nums;
  76
  77	struct usb_function		function;
 
  78};
  79
  80
  81static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  82{
  83	return container_of(f, struct ffs_function, function);
  84}
  85
  86
  87static inline enum ffs_setup_state
  88ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  89{
  90	return (enum ffs_setup_state)
  91		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  92}
  93
  94
  95static void ffs_func_eps_disable(struct ffs_function *func);
  96static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  97
  98static int ffs_func_bind(struct usb_configuration *,
  99			 struct usb_function *);
 100static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 
 101static void ffs_func_disable(struct usb_function *);
 102static int ffs_func_setup(struct usb_function *,
 103			  const struct usb_ctrlrequest *);
 104static bool ffs_func_req_match(struct usb_function *,
 105			       const struct usb_ctrlrequest *,
 106			       bool config0);
 107static void ffs_func_suspend(struct usb_function *);
 108static void ffs_func_resume(struct usb_function *);
 109
 110
 111static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 112static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 113
 114
 115/* The endpoints structures *************************************************/
 116
 117struct ffs_ep {
 118	struct usb_ep			*ep;	/* P: ffs->eps_lock */
 119	struct usb_request		*req;	/* P: epfile->mutex */
 120
 121	/* [0]: full speed, [1]: high speed, [2]: super speed */
 122	struct usb_endpoint_descriptor	*descs[3];
 123
 124	u8				num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125
 126	int				status;	/* P: epfile->mutex */
 
 
 
 127};
 128
 129struct ffs_epfile {
 130	/* Protects ep->ep and ep->req. */
 131	struct mutex			mutex;
 132
 133	struct ffs_data			*ffs;
 134	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
 135
 136	struct dentry			*dentry;
 137
 138	/*
 139	 * Buffer for holding data from partial reads which may happen since
 140	 * we’re rounding user read requests to a multiple of a max packet size.
 141	 *
 142	 * The pointer is initialised with NULL value and may be set by
 143	 * __ffs_epfile_read_data function to point to a temporary buffer.
 144	 *
 145	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
 146	 * data from said buffer and eventually free it.  Importantly, while the
 147	 * function is using the buffer, it sets the pointer to NULL.  This is
 148	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 149	 * can never run concurrently (they are synchronised by epfile->mutex)
 150	 * so the latter will not assign a new value to the pointer.
 151	 *
 152	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 153	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 154	 * value is crux of the synchronisation between ffs_func_eps_disable and
 155	 * __ffs_epfile_read_data.
 156	 *
 157	 * Once __ffs_epfile_read_data is about to finish it will try to set the
 158	 * pointer back to its old value (as described above), but seeing as the
 159	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 160	 * the buffer.
 161	 *
 162	 * == State transitions ==
 163	 *
 164	 * • ptr == NULL:  (initial state)
 165	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 166	 *   â—¦ __ffs_epfile_read_buffered:    nop
 167	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 168	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 169	 * • ptr == DROP:
 170	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 171	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL
 172	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 173	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 174	 * • ptr == buf:
 175	 *   â—¦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 176	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 177	 *   â—¦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 178	 *                                    is always called first
 179	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 180	 * • ptr == NULL and reading:
 181	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 182	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 183	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 184	 *   ◦ reading finishes and …
 185	 *     … all data read:               free buf, go to ptr == NULL
 186	 *     … otherwise:                   go to ptr == buf and reading
 187	 * • ptr == DROP and reading:
 188	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 189	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 190	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 191	 *   â—¦ reading finishes:              free buf, go to ptr == DROP
 192	 */
 193	struct ffs_buffer		*read_buffer;
 194#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 195
 196	char				name[5];
 197
 198	unsigned char			in;	/* P: ffs->eps_lock */
 199	unsigned char			isoc;	/* P: ffs->eps_lock */
 200
 201	unsigned char			_pad;
 
 
 
 
 
 202};
 203
 204struct ffs_buffer {
 205	size_t length;
 206	char *data;
 207	char storage[];
 208};
 209
 210/*  ffs_io_data structure ***************************************************/
 211
 212struct ffs_io_data {
 213	bool aio;
 214	bool read;
 215
 216	struct kiocb *kiocb;
 217	struct iov_iter data;
 218	const void *to_free;
 219	char *buf;
 220
 221	struct mm_struct *mm;
 222	struct work_struct work;
 223
 224	struct usb_ep *ep;
 225	struct usb_request *req;
 226	struct sg_table sgt;
 227	bool use_sg;
 228
 229	struct ffs_data *ffs;
 
 
 
 230};
 231
 232struct ffs_desc_helper {
 233	struct ffs_data *ffs;
 234	unsigned interfaces_count;
 235	unsigned eps_count;
 236};
 237
 238static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 239static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 240
 241static struct dentry *
 242ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 243		   const struct file_operations *fops);
 244
 245/* Devices management *******************************************************/
 246
 247DEFINE_MUTEX(ffs_lock);
 248EXPORT_SYMBOL_GPL(ffs_lock);
 249
 250static struct ffs_dev *_ffs_find_dev(const char *name);
 251static struct ffs_dev *_ffs_alloc_dev(void);
 252static void _ffs_free_dev(struct ffs_dev *dev);
 253static void *ffs_acquire_dev(const char *dev_name);
 254static void ffs_release_dev(struct ffs_data *ffs_data);
 255static int ffs_ready(struct ffs_data *ffs);
 256static void ffs_closed(struct ffs_data *ffs);
 257
 258/* Misc helper functions ****************************************************/
 259
 260static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 261	__attribute__((warn_unused_result, nonnull));
 262static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 263	__attribute__((warn_unused_result, nonnull));
 264
 265
 266/* Control file aka ep0 *****************************************************/
 267
 268static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 269{
 270	struct ffs_data *ffs = req->context;
 271
 272	complete(&ffs->ep0req_completion);
 273}
 274
 275static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 276	__releases(&ffs->ev.waitq.lock)
 277{
 278	struct usb_request *req = ffs->ep0req;
 279	int ret;
 280
 
 
 
 
 
 281	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 282
 283	spin_unlock_irq(&ffs->ev.waitq.lock);
 284
 285	req->buf      = data;
 286	req->length   = len;
 287
 288	/*
 289	 * UDC layer requires to provide a buffer even for ZLP, but should
 290	 * not use it at all. Let's provide some poisoned pointer to catch
 291	 * possible bug in the driver.
 292	 */
 293	if (req->buf == NULL)
 294		req->buf = (void *)0xDEADBABE;
 295
 296	reinit_completion(&ffs->ep0req_completion);
 297
 298	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 299	if (unlikely(ret < 0))
 300		return ret;
 301
 302	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 303	if (unlikely(ret)) {
 304		usb_ep_dequeue(ffs->gadget->ep0, req);
 305		return -EINTR;
 306	}
 307
 308	ffs->setup_state = FFS_NO_SETUP;
 309	return req->status ? req->status : req->actual;
 310}
 311
 312static int __ffs_ep0_stall(struct ffs_data *ffs)
 313{
 314	if (ffs->ev.can_stall) {
 315		pr_vdebug("ep0 stall\n");
 316		usb_ep_set_halt(ffs->gadget->ep0);
 317		ffs->setup_state = FFS_NO_SETUP;
 318		return -EL2HLT;
 319	} else {
 320		pr_debug("bogus ep0 stall!\n");
 321		return -ESRCH;
 322	}
 323}
 324
 325static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 326			     size_t len, loff_t *ptr)
 327{
 328	struct ffs_data *ffs = file->private_data;
 329	ssize_t ret;
 330	char *data;
 331
 332	ENTER();
 333
 334	/* Fast check if setup was canceled */
 335	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 336		return -EIDRM;
 337
 338	/* Acquire mutex */
 339	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 340	if (unlikely(ret < 0))
 341		return ret;
 342
 343	/* Check state */
 344	switch (ffs->state) {
 345	case FFS_READ_DESCRIPTORS:
 346	case FFS_READ_STRINGS:
 347		/* Copy data */
 348		if (unlikely(len < 16)) {
 349			ret = -EINVAL;
 350			break;
 351		}
 352
 353		data = ffs_prepare_buffer(buf, len);
 354		if (IS_ERR(data)) {
 355			ret = PTR_ERR(data);
 356			break;
 357		}
 358
 359		/* Handle data */
 360		if (ffs->state == FFS_READ_DESCRIPTORS) {
 361			pr_info("read descriptors\n");
 362			ret = __ffs_data_got_descs(ffs, data, len);
 363			if (unlikely(ret < 0))
 364				break;
 365
 366			ffs->state = FFS_READ_STRINGS;
 367			ret = len;
 368		} else {
 369			pr_info("read strings\n");
 370			ret = __ffs_data_got_strings(ffs, data, len);
 371			if (unlikely(ret < 0))
 372				break;
 373
 374			ret = ffs_epfiles_create(ffs);
 375			if (unlikely(ret)) {
 376				ffs->state = FFS_CLOSING;
 377				break;
 378			}
 379
 380			ffs->state = FFS_ACTIVE;
 381			mutex_unlock(&ffs->mutex);
 382
 383			ret = ffs_ready(ffs);
 384			if (unlikely(ret < 0)) {
 385				ffs->state = FFS_CLOSING;
 386				return ret;
 387			}
 388
 389			return len;
 390		}
 391		break;
 392
 393	case FFS_ACTIVE:
 394		data = NULL;
 395		/*
 396		 * We're called from user space, we can use _irq
 397		 * rather then _irqsave
 398		 */
 399		spin_lock_irq(&ffs->ev.waitq.lock);
 400		switch (ffs_setup_state_clear_cancelled(ffs)) {
 401		case FFS_SETUP_CANCELLED:
 402			ret = -EIDRM;
 403			goto done_spin;
 404
 405		case FFS_NO_SETUP:
 406			ret = -ESRCH;
 407			goto done_spin;
 408
 409		case FFS_SETUP_PENDING:
 410			break;
 411		}
 412
 413		/* FFS_SETUP_PENDING */
 414		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 415			spin_unlock_irq(&ffs->ev.waitq.lock);
 416			ret = __ffs_ep0_stall(ffs);
 417			break;
 418		}
 419
 420		/* FFS_SETUP_PENDING and not stall */
 421		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 422
 423		spin_unlock_irq(&ffs->ev.waitq.lock);
 424
 425		data = ffs_prepare_buffer(buf, len);
 426		if (IS_ERR(data)) {
 427			ret = PTR_ERR(data);
 428			break;
 429		}
 430
 431		spin_lock_irq(&ffs->ev.waitq.lock);
 432
 433		/*
 434		 * We are guaranteed to be still in FFS_ACTIVE state
 435		 * but the state of setup could have changed from
 436		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 437		 * to check for that.  If that happened we copied data
 438		 * from user space in vain but it's unlikely.
 439		 *
 440		 * For sure we are not in FFS_NO_SETUP since this is
 441		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 442		 * transition can be performed and it's protected by
 443		 * mutex.
 444		 */
 445		if (ffs_setup_state_clear_cancelled(ffs) ==
 446		    FFS_SETUP_CANCELLED) {
 447			ret = -EIDRM;
 448done_spin:
 449			spin_unlock_irq(&ffs->ev.waitq.lock);
 450		} else {
 451			/* unlocks spinlock */
 452			ret = __ffs_ep0_queue_wait(ffs, data, len);
 453		}
 454		kfree(data);
 455		break;
 456
 457	default:
 458		ret = -EBADFD;
 459		break;
 460	}
 461
 462	mutex_unlock(&ffs->mutex);
 463	return ret;
 464}
 465
 466/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 467static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 468				     size_t n)
 469	__releases(&ffs->ev.waitq.lock)
 470{
 471	/*
 472	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 473	 * size of ffs->ev.types array (which is four) so that's how much space
 474	 * we reserve.
 475	 */
 476	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 477	const size_t size = n * sizeof *events;
 478	unsigned i = 0;
 479
 480	memset(events, 0, size);
 481
 482	do {
 483		events[i].type = ffs->ev.types[i];
 484		if (events[i].type == FUNCTIONFS_SETUP) {
 485			events[i].u.setup = ffs->ev.setup;
 486			ffs->setup_state = FFS_SETUP_PENDING;
 487		}
 488	} while (++i < n);
 489
 490	ffs->ev.count -= n;
 491	if (ffs->ev.count)
 492		memmove(ffs->ev.types, ffs->ev.types + n,
 493			ffs->ev.count * sizeof *ffs->ev.types);
 494
 495	spin_unlock_irq(&ffs->ev.waitq.lock);
 496	mutex_unlock(&ffs->mutex);
 497
 498	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 499}
 500
 501static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 502			    size_t len, loff_t *ptr)
 503{
 504	struct ffs_data *ffs = file->private_data;
 505	char *data = NULL;
 506	size_t n;
 507	int ret;
 508
 509	ENTER();
 510
 511	/* Fast check if setup was canceled */
 512	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 513		return -EIDRM;
 514
 515	/* Acquire mutex */
 516	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 517	if (unlikely(ret < 0))
 518		return ret;
 519
 520	/* Check state */
 521	if (ffs->state != FFS_ACTIVE) {
 522		ret = -EBADFD;
 523		goto done_mutex;
 524	}
 525
 526	/*
 527	 * We're called from user space, we can use _irq rather then
 528	 * _irqsave
 529	 */
 530	spin_lock_irq(&ffs->ev.waitq.lock);
 531
 532	switch (ffs_setup_state_clear_cancelled(ffs)) {
 533	case FFS_SETUP_CANCELLED:
 534		ret = -EIDRM;
 535		break;
 536
 537	case FFS_NO_SETUP:
 538		n = len / sizeof(struct usb_functionfs_event);
 539		if (unlikely(!n)) {
 540			ret = -EINVAL;
 541			break;
 542		}
 543
 544		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 545			ret = -EAGAIN;
 546			break;
 547		}
 548
 549		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 550							ffs->ev.count)) {
 551			ret = -EINTR;
 552			break;
 553		}
 554
 555		/* unlocks spinlock */
 556		return __ffs_ep0_read_events(ffs, buf,
 557					     min(n, (size_t)ffs->ev.count));
 558
 559	case FFS_SETUP_PENDING:
 560		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 561			spin_unlock_irq(&ffs->ev.waitq.lock);
 562			ret = __ffs_ep0_stall(ffs);
 563			goto done_mutex;
 564		}
 565
 566		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 567
 568		spin_unlock_irq(&ffs->ev.waitq.lock);
 569
 570		if (likely(len)) {
 571			data = kmalloc(len, GFP_KERNEL);
 572			if (unlikely(!data)) {
 573				ret = -ENOMEM;
 574				goto done_mutex;
 575			}
 576		}
 577
 578		spin_lock_irq(&ffs->ev.waitq.lock);
 579
 580		/* See ffs_ep0_write() */
 581		if (ffs_setup_state_clear_cancelled(ffs) ==
 582		    FFS_SETUP_CANCELLED) {
 583			ret = -EIDRM;
 584			break;
 585		}
 586
 587		/* unlocks spinlock */
 588		ret = __ffs_ep0_queue_wait(ffs, data, len);
 589		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 590			ret = -EFAULT;
 591		goto done_mutex;
 592
 593	default:
 594		ret = -EBADFD;
 595		break;
 596	}
 597
 598	spin_unlock_irq(&ffs->ev.waitq.lock);
 599done_mutex:
 600	mutex_unlock(&ffs->mutex);
 601	kfree(data);
 602	return ret;
 603}
 604
 605static int ffs_ep0_open(struct inode *inode, struct file *file)
 606{
 607	struct ffs_data *ffs = inode->i_private;
 608
 609	ENTER();
 610
 611	if (unlikely(ffs->state == FFS_CLOSING))
 612		return -EBUSY;
 613
 614	file->private_data = ffs;
 615	ffs_data_opened(ffs);
 616
 617	return 0;
 618}
 619
 620static int ffs_ep0_release(struct inode *inode, struct file *file)
 621{
 622	struct ffs_data *ffs = file->private_data;
 623
 624	ENTER();
 625
 626	ffs_data_closed(ffs);
 627
 628	return 0;
 629}
 630
 631static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 632{
 633	struct ffs_data *ffs = file->private_data;
 634	struct usb_gadget *gadget = ffs->gadget;
 635	long ret;
 636
 637	ENTER();
 638
 639	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 640		struct ffs_function *func = ffs->func;
 641		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 642	} else if (gadget && gadget->ops->ioctl) {
 643		ret = gadget->ops->ioctl(gadget, code, value);
 644	} else {
 645		ret = -ENOTTY;
 646	}
 647
 648	return ret;
 649}
 650
 651static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 652{
 653	struct ffs_data *ffs = file->private_data;
 654	__poll_t mask = EPOLLWRNORM;
 655	int ret;
 656
 657	poll_wait(file, &ffs->ev.waitq, wait);
 658
 659	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 660	if (unlikely(ret < 0))
 661		return mask;
 662
 663	switch (ffs->state) {
 664	case FFS_READ_DESCRIPTORS:
 665	case FFS_READ_STRINGS:
 666		mask |= EPOLLOUT;
 667		break;
 668
 669	case FFS_ACTIVE:
 670		switch (ffs->setup_state) {
 671		case FFS_NO_SETUP:
 672			if (ffs->ev.count)
 673				mask |= EPOLLIN;
 674			break;
 675
 676		case FFS_SETUP_PENDING:
 677		case FFS_SETUP_CANCELLED:
 678			mask |= (EPOLLIN | EPOLLOUT);
 679			break;
 680		}
 
 
 681	case FFS_CLOSING:
 682		break;
 683	case FFS_DEACTIVATED:
 684		break;
 685	}
 686
 687	mutex_unlock(&ffs->mutex);
 688
 689	return mask;
 690}
 691
 692static const struct file_operations ffs_ep0_operations = {
 693	.llseek =	no_llseek,
 694
 695	.open =		ffs_ep0_open,
 696	.write =	ffs_ep0_write,
 697	.read =		ffs_ep0_read,
 698	.release =	ffs_ep0_release,
 699	.unlocked_ioctl =	ffs_ep0_ioctl,
 700	.poll =		ffs_ep0_poll,
 701};
 702
 703
 704/* "Normal" endpoints operations ********************************************/
 705
 706static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 707{
 708	ENTER();
 709	if (likely(req->context)) {
 710		struct ffs_ep *ep = _ep->driver_data;
 711		ep->status = req->status ? req->status : req->actual;
 712		complete(req->context);
 713	}
 
 
 714}
 715
 716static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 717{
 718	ssize_t ret = copy_to_iter(data, data_len, iter);
 719	if (likely(ret == data_len))
 720		return ret;
 721
 722	if (unlikely(iov_iter_count(iter)))
 723		return -EFAULT;
 724
 725	/*
 726	 * Dear user space developer!
 727	 *
 728	 * TL;DR: To stop getting below error message in your kernel log, change
 729	 * user space code using functionfs to align read buffers to a max
 730	 * packet size.
 731	 *
 732	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 733	 * packet size.  When unaligned buffer is passed to functionfs, it
 734	 * internally uses a larger, aligned buffer so that such UDCs are happy.
 735	 *
 736	 * Unfortunately, this means that host may send more data than was
 737	 * requested in read(2) system call.  f_fs doesn’t know what to do with
 738	 * that excess data so it simply drops it.
 739	 *
 740	 * Was the buffer aligned in the first place, no such problem would
 741	 * happen.
 742	 *
 743	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
 744	 * by splitting a request into multiple parts.  This splitting may still
 745	 * be a problem though so it’s likely best to align the buffer
 746	 * regardless of it being AIO or not..
 747	 *
 748	 * This only affects OUT endpoints, i.e. reading data with a read(2),
 749	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 750	 * affected.
 751	 */
 752	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 753	       "Align read buffer size to max packet size to avoid the problem.\n",
 754	       data_len, ret);
 755
 756	return ret;
 757}
 758
 759/*
 760 * allocate a virtually contiguous buffer and create a scatterlist describing it
 761 * @sg_table	- pointer to a place to be filled with sg_table contents
 762 * @size	- required buffer size
 763 */
 764static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 765{
 766	struct page **pages;
 767	void *vaddr, *ptr;
 768	unsigned int n_pages;
 769	int i;
 770
 771	vaddr = vmalloc(sz);
 772	if (!vaddr)
 773		return NULL;
 774
 775	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 776	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 777	if (!pages) {
 778		vfree(vaddr);
 779
 780		return NULL;
 781	}
 782	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 783		pages[i] = vmalloc_to_page(ptr);
 784
 785	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 786		kvfree(pages);
 787		vfree(vaddr);
 788
 789		return NULL;
 790	}
 791	kvfree(pages);
 792
 793	return vaddr;
 794}
 795
 796static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 797	size_t data_len)
 798{
 799	if (io_data->use_sg)
 800		return ffs_build_sg_list(&io_data->sgt, data_len);
 801
 802	return kmalloc(data_len, GFP_KERNEL);
 803}
 804
 805static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 806{
 807	if (!io_data->buf)
 808		return;
 809
 810	if (io_data->use_sg) {
 811		sg_free_table(&io_data->sgt);
 812		vfree(io_data->buf);
 813	} else {
 814		kfree(io_data->buf);
 815	}
 816}
 817
 818static void ffs_user_copy_worker(struct work_struct *work)
 819{
 820	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 821						   work);
 822	int ret = io_data->req->status ? io_data->req->status :
 823					 io_data->req->actual;
 824	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 
 825
 826	if (io_data->read && ret > 0) {
 827		mm_segment_t oldfs = get_fs();
 828
 829		set_fs(USER_DS);
 830		use_mm(io_data->mm);
 831		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 832		unuse_mm(io_data->mm);
 833		set_fs(oldfs);
 834	}
 835
 836	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 837
 838	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 839		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 840
 
 841	usb_ep_free_request(io_data->ep, io_data->req);
 
 
 842
 843	if (io_data->read)
 844		kfree(io_data->to_free);
 845	ffs_free_buffer(io_data);
 846	kfree(io_data);
 847}
 848
 849static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 850					 struct usb_request *req)
 851{
 852	struct ffs_io_data *io_data = req->context;
 853	struct ffs_data *ffs = io_data->ffs;
 854
 855	ENTER();
 856
 857	INIT_WORK(&io_data->work, ffs_user_copy_worker);
 858	queue_work(ffs->io_completion_wq, &io_data->work);
 859}
 860
 861static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 862{
 863	/*
 864	 * See comment in struct ffs_epfile for full read_buffer pointer
 865	 * synchronisation story.
 866	 */
 867	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 868	if (buf && buf != READ_BUFFER_DROP)
 869		kfree(buf);
 870}
 871
 872/* Assumes epfile->mutex is held. */
 873static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 874					  struct iov_iter *iter)
 875{
 876	/*
 877	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 878	 * the buffer while we are using it.  See comment in struct ffs_epfile
 879	 * for full read_buffer pointer synchronisation story.
 880	 */
 881	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 882	ssize_t ret;
 883	if (!buf || buf == READ_BUFFER_DROP)
 884		return 0;
 885
 886	ret = copy_to_iter(buf->data, buf->length, iter);
 887	if (buf->length == ret) {
 888		kfree(buf);
 889		return ret;
 890	}
 891
 892	if (unlikely(iov_iter_count(iter))) {
 893		ret = -EFAULT;
 894	} else {
 895		buf->length -= ret;
 896		buf->data += ret;
 897	}
 898
 899	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 900		kfree(buf);
 901
 902	return ret;
 903}
 904
 905/* Assumes epfile->mutex is held. */
 906static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 907				      void *data, int data_len,
 908				      struct iov_iter *iter)
 909{
 910	struct ffs_buffer *buf;
 911
 912	ssize_t ret = copy_to_iter(data, data_len, iter);
 913	if (likely(data_len == ret))
 914		return ret;
 915
 916	if (unlikely(iov_iter_count(iter)))
 917		return -EFAULT;
 918
 919	/* See ffs_copy_to_iter for more context. */
 920	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 921		data_len, ret);
 922
 923	data_len -= ret;
 924	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 925	if (!buf)
 926		return -ENOMEM;
 927	buf->length = data_len;
 928	buf->data = buf->storage;
 929	memcpy(buf->storage, data + ret, data_len);
 930
 931	/*
 932	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 933	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
 934	 * in struct ffs_epfile for full read_buffer pointer synchronisation
 935	 * story.
 936	 */
 937	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
 938		kfree(buf);
 939
 940	return ret;
 941}
 942
 943static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 944{
 945	struct ffs_epfile *epfile = file->private_data;
 946	struct usb_request *req;
 947	struct ffs_ep *ep;
 948	char *data = NULL;
 949	ssize_t ret, data_len = -EINVAL;
 950	int halt;
 951
 952	/* Are we still active? */
 953	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 954		return -ENODEV;
 955
 956	/* Wait for endpoint to be enabled */
 957	ep = epfile->ep;
 958	if (!ep) {
 959		if (file->f_flags & O_NONBLOCK)
 960			return -EAGAIN;
 961
 962		ret = wait_event_interruptible(
 963				epfile->ffs->wait, (ep = epfile->ep));
 964		if (ret)
 965			return -EINTR;
 966	}
 967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968	/* Do we halt? */
 969	halt = (!io_data->read == !epfile->in);
 970	if (halt && epfile->isoc)
 971		return -EINVAL;
 972
 973	/* We will be using request and read_buffer */
 974	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 975	if (unlikely(ret))
 976		goto error;
 977
 978	/* Allocate & copy */
 979	if (!halt) {
 980		struct usb_gadget *gadget;
 981
 982		/*
 983		 * Do we have buffered data from previous partial read?  Check
 984		 * that for synchronous case only because we do not have
 985		 * facility to ‘wake up’ a pending asynchronous read and push
 986		 * buffered data to it which we would need to make things behave
 987		 * consistently.
 988		 */
 989		if (!io_data->aio && io_data->read) {
 990			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 991			if (ret)
 992				goto error_mutex;
 993		}
 994
 995		/*
 996		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 997		 * before the waiting completes, so do not assign to 'gadget'
 998		 * earlier
 999		 */
1000		gadget = epfile->ffs->gadget;
1001
1002		spin_lock_irq(&epfile->ffs->eps_lock);
1003		/* In the meantime, endpoint got disabled or changed. */
1004		if (epfile->ep != ep) {
1005			ret = -ESHUTDOWN;
1006			goto error_lock;
1007		}
1008		data_len = iov_iter_count(&io_data->data);
1009		/*
1010		 * Controller may require buffer size to be aligned to
1011		 * maxpacketsize of an out endpoint.
1012		 */
1013		if (io_data->read)
1014			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015
1016		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1017		spin_unlock_irq(&epfile->ffs->eps_lock);
1018
1019		data = ffs_alloc_buffer(io_data, data_len);
1020		if (unlikely(!data)) {
1021			ret = -ENOMEM;
1022			goto error_mutex;
1023		}
1024		if (!io_data->read &&
1025		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1026			ret = -EFAULT;
1027			goto error_mutex;
1028		}
1029	}
1030
1031	spin_lock_irq(&epfile->ffs->eps_lock);
1032
1033	if (epfile->ep != ep) {
1034		/* In the meantime, endpoint got disabled or changed. */
1035		ret = -ESHUTDOWN;
1036	} else if (halt) {
1037		ret = usb_ep_set_halt(ep->ep);
1038		if (!ret)
1039			ret = -EBADMSG;
1040	} else if (unlikely(data_len == -EINVAL)) {
1041		/*
1042		 * Sanity Check: even though data_len can't be used
1043		 * uninitialized at the time I write this comment, some
1044		 * compilers complain about this situation.
1045		 * In order to keep the code clean from warnings, data_len is
1046		 * being initialized to -EINVAL during its declaration, which
1047		 * means we can't rely on compiler anymore to warn no future
1048		 * changes won't result in data_len being used uninitialized.
1049		 * For such reason, we're adding this redundant sanity check
1050		 * here.
1051		 */
1052		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1053		ret = -EINVAL;
1054	} else if (!io_data->aio) {
1055		DECLARE_COMPLETION_ONSTACK(done);
1056		bool interrupted = false;
1057
1058		req = ep->req;
1059		if (io_data->use_sg) {
1060			req->buf = NULL;
1061			req->sg	= io_data->sgt.sgl;
1062			req->num_sgs = io_data->sgt.nents;
1063		} else {
1064			req->buf = data;
 
1065		}
1066		req->length = data_len;
1067
1068		io_data->buf = data;
1069
1070		req->context  = &done;
 
1071		req->complete = ffs_epfile_io_complete;
1072
1073		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1074		if (unlikely(ret < 0))
1075			goto error_lock;
1076
1077		spin_unlock_irq(&epfile->ffs->eps_lock);
1078
1079		if (unlikely(wait_for_completion_interruptible(&done))) {
 
 
 
 
 
1080			/*
1081			 * To avoid race condition with ffs_epfile_io_complete,
1082			 * dequeue the request first then check
1083			 * status. usb_ep_dequeue API should guarantee no race
1084			 * condition with req->complete callback.
1085			 */
1086			usb_ep_dequeue(ep->ep, req);
1087			wait_for_completion(&done);
1088			interrupted = ep->status < 0;
 
1089		}
1090
1091		if (interrupted)
1092			ret = -EINTR;
1093		else if (io_data->read && ep->status > 0)
1094			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1095						     &io_data->data);
1096		else
1097			ret = ep->status;
1098		goto error_mutex;
1099	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1100		ret = -ENOMEM;
1101	} else {
1102		if (io_data->use_sg) {
1103			req->buf = NULL;
1104			req->sg	= io_data->sgt.sgl;
1105			req->num_sgs = io_data->sgt.nents;
1106		} else {
1107			req->buf = data;
 
1108		}
1109		req->length = data_len;
1110
1111		io_data->buf = data;
1112		io_data->ep = ep->ep;
1113		io_data->req = req;
1114		io_data->ffs = epfile->ffs;
1115
1116		req->context  = io_data;
1117		req->complete = ffs_epfile_async_io_complete;
1118
1119		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120		if (unlikely(ret)) {
 
1121			usb_ep_free_request(ep->ep, req);
1122			goto error_lock;
1123		}
1124
1125		ret = -EIOCBQUEUED;
1126		/*
1127		 * Do not kfree the buffer in this function.  It will be freed
1128		 * by ffs_user_copy_worker.
1129		 */
1130		data = NULL;
1131	}
1132
1133error_lock:
1134	spin_unlock_irq(&epfile->ffs->eps_lock);
1135error_mutex:
1136	mutex_unlock(&epfile->mutex);
1137error:
1138	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1139		ffs_free_buffer(io_data);
1140	return ret;
1141}
1142
1143static int
1144ffs_epfile_open(struct inode *inode, struct file *file)
1145{
1146	struct ffs_epfile *epfile = inode->i_private;
1147
1148	ENTER();
1149
1150	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1151		return -ENODEV;
1152
1153	file->private_data = epfile;
1154	ffs_data_opened(epfile->ffs);
1155
1156	return 0;
1157}
1158
1159static int ffs_aio_cancel(struct kiocb *kiocb)
1160{
1161	struct ffs_io_data *io_data = kiocb->private;
1162	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
 
1163	int value;
1164
1165	ENTER();
1166
1167	spin_lock_irq(&epfile->ffs->eps_lock);
1168
1169	if (likely(io_data && io_data->ep && io_data->req))
1170		value = usb_ep_dequeue(io_data->ep, io_data->req);
1171	else
1172		value = -EINVAL;
1173
1174	spin_unlock_irq(&epfile->ffs->eps_lock);
1175
1176	return value;
1177}
1178
1179static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180{
1181	struct ffs_io_data io_data, *p = &io_data;
1182	ssize_t res;
1183
1184	ENTER();
1185
1186	if (!is_sync_kiocb(kiocb)) {
1187		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1188		if (unlikely(!p))
1189			return -ENOMEM;
1190		p->aio = true;
1191	} else {
1192		memset(p, 0, sizeof(*p));
1193		p->aio = false;
1194	}
1195
1196	p->read = false;
1197	p->kiocb = kiocb;
1198	p->data = *from;
1199	p->mm = current->mm;
1200
1201	kiocb->private = p;
1202
1203	if (p->aio)
1204		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1205
1206	res = ffs_epfile_io(kiocb->ki_filp, p);
1207	if (res == -EIOCBQUEUED)
1208		return res;
1209	if (p->aio)
1210		kfree(p);
1211	else
1212		*from = p->data;
1213	return res;
1214}
1215
1216static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1217{
1218	struct ffs_io_data io_data, *p = &io_data;
1219	ssize_t res;
1220
1221	ENTER();
1222
1223	if (!is_sync_kiocb(kiocb)) {
1224		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1225		if (unlikely(!p))
1226			return -ENOMEM;
1227		p->aio = true;
1228	} else {
1229		memset(p, 0, sizeof(*p));
1230		p->aio = false;
1231	}
1232
1233	p->read = true;
1234	p->kiocb = kiocb;
1235	if (p->aio) {
1236		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1237		if (!p->to_free) {
1238			kfree(p);
1239			return -ENOMEM;
1240		}
1241	} else {
1242		p->data = *to;
1243		p->to_free = NULL;
1244	}
1245	p->mm = current->mm;
1246
1247	kiocb->private = p;
1248
1249	if (p->aio)
1250		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1251
1252	res = ffs_epfile_io(kiocb->ki_filp, p);
1253	if (res == -EIOCBQUEUED)
1254		return res;
1255
1256	if (p->aio) {
1257		kfree(p->to_free);
1258		kfree(p);
1259	} else {
1260		*to = p->data;
1261	}
1262	return res;
1263}
1264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265static int
1266ffs_epfile_release(struct inode *inode, struct file *file)
1267{
1268	struct ffs_epfile *epfile = inode->i_private;
 
 
1269
1270	ENTER();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271
1272	__ffs_epfile_read_buffer_free(epfile);
1273	ffs_data_closed(epfile->ffs);
1274
1275	return 0;
1276}
1277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1278static long ffs_epfile_ioctl(struct file *file, unsigned code,
1279			     unsigned long value)
1280{
1281	struct ffs_epfile *epfile = file->private_data;
1282	struct ffs_ep *ep;
1283	int ret;
1284
1285	ENTER();
1286
1287	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1288		return -ENODEV;
1289
1290	/* Wait for endpoint to be enabled */
1291	ep = epfile->ep;
1292	if (!ep) {
1293		if (file->f_flags & O_NONBLOCK)
1294			return -EAGAIN;
1295
1296		ret = wait_event_interruptible(
1297				epfile->ffs->wait, (ep = epfile->ep));
1298		if (ret)
1299			return -EINTR;
 
 
 
 
 
 
 
 
 
 
 
 
 
1300	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301
1302	spin_lock_irq(&epfile->ffs->eps_lock);
1303
1304	/* In the meantime, endpoint got disabled or changed. */
1305	if (epfile->ep != ep) {
1306		spin_unlock_irq(&epfile->ffs->eps_lock);
1307		return -ESHUTDOWN;
1308	}
1309
1310	switch (code) {
1311	case FUNCTIONFS_FIFO_STATUS:
1312		ret = usb_ep_fifo_status(epfile->ep->ep);
1313		break;
1314	case FUNCTIONFS_FIFO_FLUSH:
1315		usb_ep_fifo_flush(epfile->ep->ep);
1316		ret = 0;
1317		break;
1318	case FUNCTIONFS_CLEAR_HALT:
1319		ret = usb_ep_clear_halt(epfile->ep->ep);
1320		break;
1321	case FUNCTIONFS_ENDPOINT_REVMAP:
1322		ret = epfile->ep->num;
1323		break;
1324	case FUNCTIONFS_ENDPOINT_DESC:
1325	{
1326		int desc_idx;
1327		struct usb_endpoint_descriptor *desc;
1328
1329		switch (epfile->ffs->gadget->speed) {
1330		case USB_SPEED_SUPER:
 
1331			desc_idx = 2;
1332			break;
1333		case USB_SPEED_HIGH:
1334			desc_idx = 1;
1335			break;
1336		default:
1337			desc_idx = 0;
1338		}
 
1339		desc = epfile->ep->descs[desc_idx];
 
1340
1341		spin_unlock_irq(&epfile->ffs->eps_lock);
1342		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1343		if (ret)
1344			ret = -EFAULT;
1345		return ret;
1346	}
1347	default:
1348		ret = -ENOTTY;
1349	}
1350	spin_unlock_irq(&epfile->ffs->eps_lock);
1351
1352	return ret;
1353}
1354
1355#ifdef CONFIG_COMPAT
1356static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1357		unsigned long value)
1358{
1359	return ffs_epfile_ioctl(file, code, value);
1360}
1361#endif
1362
1363static const struct file_operations ffs_epfile_operations = {
1364	.llseek =	no_llseek,
1365
1366	.open =		ffs_epfile_open,
1367	.write_iter =	ffs_epfile_write_iter,
1368	.read_iter =	ffs_epfile_read_iter,
1369	.release =	ffs_epfile_release,
1370	.unlocked_ioctl =	ffs_epfile_ioctl,
1371#ifdef CONFIG_COMPAT
1372	.compat_ioctl = ffs_epfile_compat_ioctl,
1373#endif
1374};
1375
1376
1377/* File system and super block operations ***********************************/
1378
1379/*
1380 * Mounting the file system creates a controller file, used first for
1381 * function configuration then later for event monitoring.
1382 */
1383
1384static struct inode *__must_check
1385ffs_sb_make_inode(struct super_block *sb, void *data,
1386		  const struct file_operations *fops,
1387		  const struct inode_operations *iops,
1388		  struct ffs_file_perms *perms)
1389{
1390	struct inode *inode;
1391
1392	ENTER();
1393
1394	inode = new_inode(sb);
1395
1396	if (likely(inode)) {
1397		struct timespec64 ts = current_time(inode);
1398
1399		inode->i_ino	 = get_next_ino();
1400		inode->i_mode    = perms->mode;
1401		inode->i_uid     = perms->uid;
1402		inode->i_gid     = perms->gid;
1403		inode->i_atime   = ts;
1404		inode->i_mtime   = ts;
1405		inode->i_ctime   = ts;
1406		inode->i_private = data;
1407		if (fops)
1408			inode->i_fop = fops;
1409		if (iops)
1410			inode->i_op  = iops;
1411	}
1412
1413	return inode;
1414}
1415
1416/* Create "regular" file */
1417static struct dentry *ffs_sb_create_file(struct super_block *sb,
1418					const char *name, void *data,
1419					const struct file_operations *fops)
1420{
1421	struct ffs_data	*ffs = sb->s_fs_info;
1422	struct dentry	*dentry;
1423	struct inode	*inode;
1424
1425	ENTER();
1426
1427	dentry = d_alloc_name(sb->s_root, name);
1428	if (unlikely(!dentry))
1429		return NULL;
1430
1431	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1432	if (unlikely(!inode)) {
1433		dput(dentry);
1434		return NULL;
1435	}
1436
1437	d_add(dentry, inode);
1438	return dentry;
1439}
1440
1441/* Super block */
1442static const struct super_operations ffs_sb_operations = {
1443	.statfs =	simple_statfs,
1444	.drop_inode =	generic_delete_inode,
1445};
1446
1447struct ffs_sb_fill_data {
1448	struct ffs_file_perms perms;
1449	umode_t root_mode;
1450	const char *dev_name;
1451	bool no_disconnect;
1452	struct ffs_data *ffs_data;
1453};
1454
1455static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1456{
1457	struct ffs_sb_fill_data *data = fc->fs_private;
1458	struct inode	*inode;
1459	struct ffs_data	*ffs = data->ffs_data;
1460
1461	ENTER();
1462
1463	ffs->sb              = sb;
1464	data->ffs_data       = NULL;
1465	sb->s_fs_info        = ffs;
1466	sb->s_blocksize      = PAGE_SIZE;
1467	sb->s_blocksize_bits = PAGE_SHIFT;
1468	sb->s_magic          = FUNCTIONFS_MAGIC;
1469	sb->s_op             = &ffs_sb_operations;
1470	sb->s_time_gran      = 1;
1471
1472	/* Root inode */
1473	data->perms.mode = data->root_mode;
1474	inode = ffs_sb_make_inode(sb, NULL,
1475				  &simple_dir_operations,
1476				  &simple_dir_inode_operations,
1477				  &data->perms);
1478	sb->s_root = d_make_root(inode);
1479	if (unlikely(!sb->s_root))
1480		return -ENOMEM;
1481
1482	/* EP0 file */
1483	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1484					 &ffs_ep0_operations)))
1485		return -ENOMEM;
1486
1487	return 0;
1488}
1489
1490enum {
1491	Opt_no_disconnect,
1492	Opt_rmode,
1493	Opt_fmode,
1494	Opt_mode,
1495	Opt_uid,
1496	Opt_gid,
1497};
1498
1499static const struct fs_parameter_spec ffs_fs_param_specs[] = {
1500	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1501	fsparam_u32	("rmode",		Opt_rmode),
1502	fsparam_u32	("fmode",		Opt_fmode),
1503	fsparam_u32	("mode",		Opt_mode),
1504	fsparam_u32	("uid",			Opt_uid),
1505	fsparam_u32	("gid",			Opt_gid),
1506	{}
1507};
1508
1509static const struct fs_parameter_description ffs_fs_fs_parameters = {
1510	.name		= "kAFS",
1511	.specs		= ffs_fs_param_specs,
1512};
1513
1514static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1515{
1516	struct ffs_sb_fill_data *data = fc->fs_private;
1517	struct fs_parse_result result;
1518	int opt;
1519
1520	ENTER();
1521
1522	opt = fs_parse(fc, &ffs_fs_fs_parameters, param, &result);
1523	if (opt < 0)
1524		return opt;
1525
1526	switch (opt) {
1527	case Opt_no_disconnect:
1528		data->no_disconnect = result.boolean;
1529		break;
1530	case Opt_rmode:
1531		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1532		break;
1533	case Opt_fmode:
1534		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1535		break;
1536	case Opt_mode:
1537		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1538		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1539		break;
1540
1541	case Opt_uid:
1542		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1543		if (!uid_valid(data->perms.uid))
1544			goto unmapped_value;
1545		break;
1546	case Opt_gid:
1547		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1548		if (!gid_valid(data->perms.gid))
1549			goto unmapped_value;
1550		break;
1551
1552	default:
1553		return -ENOPARAM;
1554	}
1555
1556	return 0;
1557
1558unmapped_value:
1559	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1560}
1561
1562/*
1563 * Set up the superblock for a mount.
1564 */
1565static int ffs_fs_get_tree(struct fs_context *fc)
1566{
1567	struct ffs_sb_fill_data *ctx = fc->fs_private;
1568	void *ffs_dev;
1569	struct ffs_data	*ffs;
1570
1571	ENTER();
1572
1573	if (!fc->source)
1574		return invalf(fc, "No source specified");
1575
1576	ffs = ffs_data_new(fc->source);
1577	if (unlikely(!ffs))
1578		return -ENOMEM;
1579	ffs->file_perms = ctx->perms;
1580	ffs->no_disconnect = ctx->no_disconnect;
1581
1582	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1583	if (unlikely(!ffs->dev_name)) {
1584		ffs_data_put(ffs);
1585		return -ENOMEM;
1586	}
1587
1588	ffs_dev = ffs_acquire_dev(ffs->dev_name);
1589	if (IS_ERR(ffs_dev)) {
1590		ffs_data_put(ffs);
1591		return PTR_ERR(ffs_dev);
1592	}
1593
1594	ffs->private_data = ffs_dev;
1595	ctx->ffs_data = ffs;
1596	return get_tree_nodev(fc, ffs_sb_fill);
1597}
1598
1599static void ffs_fs_free_fc(struct fs_context *fc)
1600{
1601	struct ffs_sb_fill_data *ctx = fc->fs_private;
1602
1603	if (ctx) {
1604		if (ctx->ffs_data) {
1605			ffs_release_dev(ctx->ffs_data);
1606			ffs_data_put(ctx->ffs_data);
1607		}
1608
1609		kfree(ctx);
1610	}
1611}
1612
1613static const struct fs_context_operations ffs_fs_context_ops = {
1614	.free		= ffs_fs_free_fc,
1615	.parse_param	= ffs_fs_parse_param,
1616	.get_tree	= ffs_fs_get_tree,
1617};
1618
1619static int ffs_fs_init_fs_context(struct fs_context *fc)
1620{
1621	struct ffs_sb_fill_data *ctx;
1622
1623	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1624	if (!ctx)
1625		return -ENOMEM;
1626
1627	ctx->perms.mode = S_IFREG | 0600;
1628	ctx->perms.uid = GLOBAL_ROOT_UID;
1629	ctx->perms.gid = GLOBAL_ROOT_GID;
1630	ctx->root_mode = S_IFDIR | 0500;
1631	ctx->no_disconnect = false;
1632
1633	fc->fs_private = ctx;
1634	fc->ops = &ffs_fs_context_ops;
1635	return 0;
1636}
1637
1638static void
1639ffs_fs_kill_sb(struct super_block *sb)
1640{
1641	ENTER();
1642
1643	kill_litter_super(sb);
1644	if (sb->s_fs_info) {
1645		ffs_release_dev(sb->s_fs_info);
1646		ffs_data_closed(sb->s_fs_info);
1647	}
1648}
1649
1650static struct file_system_type ffs_fs_type = {
1651	.owner		= THIS_MODULE,
1652	.name		= "functionfs",
1653	.init_fs_context = ffs_fs_init_fs_context,
1654	.parameters	= &ffs_fs_fs_parameters,
1655	.kill_sb	= ffs_fs_kill_sb,
1656};
1657MODULE_ALIAS_FS("functionfs");
1658
1659
1660/* Driver's main init/cleanup functions *************************************/
1661
1662static int functionfs_init(void)
1663{
1664	int ret;
1665
1666	ENTER();
1667
1668	ret = register_filesystem(&ffs_fs_type);
1669	if (likely(!ret))
1670		pr_info("file system registered\n");
1671	else
1672		pr_err("failed registering file system (%d)\n", ret);
1673
1674	return ret;
1675}
1676
1677static void functionfs_cleanup(void)
1678{
1679	ENTER();
1680
1681	pr_info("unloading\n");
1682	unregister_filesystem(&ffs_fs_type);
1683}
1684
1685
1686/* ffs_data and ffs_function construction and destruction code **************/
1687
1688static void ffs_data_clear(struct ffs_data *ffs);
1689static void ffs_data_reset(struct ffs_data *ffs);
1690
1691static void ffs_data_get(struct ffs_data *ffs)
1692{
1693	ENTER();
1694
1695	refcount_inc(&ffs->ref);
1696}
1697
1698static void ffs_data_opened(struct ffs_data *ffs)
1699{
1700	ENTER();
1701
1702	refcount_inc(&ffs->ref);
1703	if (atomic_add_return(1, &ffs->opened) == 1 &&
1704			ffs->state == FFS_DEACTIVATED) {
1705		ffs->state = FFS_CLOSING;
1706		ffs_data_reset(ffs);
1707	}
1708}
1709
1710static void ffs_data_put(struct ffs_data *ffs)
1711{
1712	ENTER();
1713
1714	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1715		pr_info("%s(): freeing\n", __func__);
1716		ffs_data_clear(ffs);
 
1717		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1718		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1719		       waitqueue_active(&ffs->wait));
1720		destroy_workqueue(ffs->io_completion_wq);
1721		kfree(ffs->dev_name);
1722		kfree(ffs);
1723	}
1724}
1725
1726static void ffs_data_closed(struct ffs_data *ffs)
1727{
1728	ENTER();
 
1729
1730	if (atomic_dec_and_test(&ffs->opened)) {
1731		if (ffs->no_disconnect) {
1732			ffs->state = FFS_DEACTIVATED;
1733			if (ffs->epfiles) {
1734				ffs_epfiles_destroy(ffs->epfiles,
1735						   ffs->eps_count);
1736				ffs->epfiles = NULL;
1737			}
 
 
 
 
 
1738			if (ffs->setup_state == FFS_SETUP_PENDING)
1739				__ffs_ep0_stall(ffs);
1740		} else {
1741			ffs->state = FFS_CLOSING;
1742			ffs_data_reset(ffs);
1743		}
1744	}
1745	if (atomic_read(&ffs->opened) < 0) {
1746		ffs->state = FFS_CLOSING;
1747		ffs_data_reset(ffs);
1748	}
1749
1750	ffs_data_put(ffs);
1751}
1752
1753static struct ffs_data *ffs_data_new(const char *dev_name)
1754{
1755	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1756	if (unlikely(!ffs))
1757		return NULL;
1758
1759	ENTER();
1760
1761	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1762	if (!ffs->io_completion_wq) {
1763		kfree(ffs);
1764		return NULL;
1765	}
1766
1767	refcount_set(&ffs->ref, 1);
1768	atomic_set(&ffs->opened, 0);
1769	ffs->state = FFS_READ_DESCRIPTORS;
1770	mutex_init(&ffs->mutex);
1771	spin_lock_init(&ffs->eps_lock);
1772	init_waitqueue_head(&ffs->ev.waitq);
1773	init_waitqueue_head(&ffs->wait);
1774	init_completion(&ffs->ep0req_completion);
1775
1776	/* XXX REVISIT need to update it in some places, or do we? */
1777	ffs->ev.can_stall = 1;
1778
1779	return ffs;
1780}
1781
1782static void ffs_data_clear(struct ffs_data *ffs)
1783{
1784	ENTER();
 
1785
1786	ffs_closed(ffs);
1787
1788	BUG_ON(ffs->gadget);
1789
1790	if (ffs->epfiles)
1791		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
 
 
1792
1793	if (ffs->ffs_eventfd)
 
 
 
 
 
 
 
 
 
 
1794		eventfd_ctx_put(ffs->ffs_eventfd);
 
 
1795
1796	kfree(ffs->raw_descs_data);
1797	kfree(ffs->raw_strings);
1798	kfree(ffs->stringtabs);
1799}
1800
1801static void ffs_data_reset(struct ffs_data *ffs)
1802{
1803	ENTER();
1804
1805	ffs_data_clear(ffs);
1806
1807	ffs->epfiles = NULL;
1808	ffs->raw_descs_data = NULL;
1809	ffs->raw_descs = NULL;
1810	ffs->raw_strings = NULL;
1811	ffs->stringtabs = NULL;
1812
1813	ffs->raw_descs_length = 0;
1814	ffs->fs_descs_count = 0;
1815	ffs->hs_descs_count = 0;
1816	ffs->ss_descs_count = 0;
1817
1818	ffs->strings_count = 0;
1819	ffs->interfaces_count = 0;
1820	ffs->eps_count = 0;
1821
1822	ffs->ev.count = 0;
1823
1824	ffs->state = FFS_READ_DESCRIPTORS;
1825	ffs->setup_state = FFS_NO_SETUP;
1826	ffs->flags = 0;
 
 
 
 
1827}
1828
1829
1830static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1831{
1832	struct usb_gadget_strings **lang;
1833	int first_id;
1834
1835	ENTER();
1836
1837	if (WARN_ON(ffs->state != FFS_ACTIVE
1838		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1839		return -EBADFD;
1840
1841	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1842	if (unlikely(first_id < 0))
1843		return first_id;
1844
1845	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1846	if (unlikely(!ffs->ep0req))
1847		return -ENOMEM;
1848	ffs->ep0req->complete = ffs_ep0_complete;
1849	ffs->ep0req->context = ffs;
1850
1851	lang = ffs->stringtabs;
1852	if (lang) {
1853		for (; *lang; ++lang) {
1854			struct usb_string *str = (*lang)->strings;
1855			int id = first_id;
1856			for (; str->s; ++id, ++str)
1857				str->id = id;
1858		}
1859	}
1860
1861	ffs->gadget = cdev->gadget;
1862	ffs_data_get(ffs);
1863	return 0;
1864}
1865
1866static void functionfs_unbind(struct ffs_data *ffs)
1867{
1868	ENTER();
1869
1870	if (!WARN_ON(!ffs->gadget)) {
 
 
 
1871		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1872		ffs->ep0req = NULL;
1873		ffs->gadget = NULL;
1874		clear_bit(FFS_FL_BOUND, &ffs->flags);
 
1875		ffs_data_put(ffs);
1876	}
1877}
1878
1879static int ffs_epfiles_create(struct ffs_data *ffs)
1880{
1881	struct ffs_epfile *epfile, *epfiles;
1882	unsigned i, count;
1883
1884	ENTER();
1885
1886	count = ffs->eps_count;
1887	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1888	if (!epfiles)
1889		return -ENOMEM;
1890
1891	epfile = epfiles;
1892	for (i = 1; i <= count; ++i, ++epfile) {
1893		epfile->ffs = ffs;
1894		mutex_init(&epfile->mutex);
 
 
1895		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1896			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1897		else
1898			sprintf(epfile->name, "ep%u", i);
1899		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1900						 epfile,
1901						 &ffs_epfile_operations);
1902		if (unlikely(!epfile->dentry)) {
1903			ffs_epfiles_destroy(epfiles, i - 1);
1904			return -ENOMEM;
1905		}
1906	}
1907
1908	ffs->epfiles = epfiles;
1909	return 0;
1910}
1911
1912static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1913{
1914	struct ffs_epfile *epfile = epfiles;
1915
1916	ENTER();
1917
1918	for (; count; --count, ++epfile) {
1919		BUG_ON(mutex_is_locked(&epfile->mutex));
1920		if (epfile->dentry) {
1921			d_delete(epfile->dentry);
1922			dput(epfile->dentry);
1923			epfile->dentry = NULL;
1924		}
1925	}
1926
1927	kfree(epfiles);
1928}
1929
1930static void ffs_func_eps_disable(struct ffs_function *func)
1931{
1932	struct ffs_ep *ep         = func->eps;
1933	struct ffs_epfile *epfile = func->ffs->epfiles;
1934	unsigned count            = func->ffs->eps_count;
1935	unsigned long flags;
1936
1937	spin_lock_irqsave(&func->ffs->eps_lock, flags);
 
 
 
1938	while (count--) {
1939		/* pending requests get nuked */
1940		if (likely(ep->ep))
1941			usb_ep_disable(ep->ep);
1942		++ep;
1943
1944		if (epfile) {
1945			epfile->ep = NULL;
1946			__ffs_epfile_read_buffer_free(epfile);
1947			++epfile;
1948		}
1949	}
1950	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1951}
1952
1953static int ffs_func_eps_enable(struct ffs_function *func)
1954{
1955	struct ffs_data *ffs      = func->ffs;
1956	struct ffs_ep *ep         = func->eps;
1957	struct ffs_epfile *epfile = ffs->epfiles;
1958	unsigned count            = ffs->eps_count;
1959	unsigned long flags;
1960	int ret = 0;
1961
1962	spin_lock_irqsave(&func->ffs->eps_lock, flags);
 
 
 
 
1963	while(count--) {
1964		ep->ep->driver_data = ep;
1965
1966		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1967		if (ret) {
1968			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1969					__func__, ep->ep->name, ret);
1970			break;
1971		}
1972
1973		ret = usb_ep_enable(ep->ep);
1974		if (likely(!ret)) {
1975			epfile->ep = ep;
1976			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1977			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1978		} else {
1979			break;
1980		}
1981
1982		++ep;
1983		++epfile;
1984	}
1985
1986	wake_up_interruptible(&ffs->wait);
1987	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1988
1989	return ret;
1990}
1991
1992
1993/* Parsing and building descriptors and strings *****************************/
1994
1995/*
1996 * This validates if data pointed by data is a valid USB descriptor as
1997 * well as record how many interfaces, endpoints and strings are
1998 * required by given configuration.  Returns address after the
1999 * descriptor or NULL if data is invalid.
2000 */
2001
2002enum ffs_entity_type {
2003	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2004};
2005
2006enum ffs_os_desc_type {
2007	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2008};
2009
2010typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2011				   u8 *valuep,
2012				   struct usb_descriptor_header *desc,
2013				   void *priv);
2014
2015typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2016				    struct usb_os_desc_header *h, void *data,
2017				    unsigned len, void *priv);
2018
2019static int __must_check ffs_do_single_desc(char *data, unsigned len,
2020					   ffs_entity_callback entity,
2021					   void *priv, int *current_class)
2022{
2023	struct usb_descriptor_header *_ds = (void *)data;
2024	u8 length;
2025	int ret;
2026
2027	ENTER();
2028
2029	/* At least two bytes are required: length and type */
2030	if (len < 2) {
2031		pr_vdebug("descriptor too short\n");
2032		return -EINVAL;
2033	}
2034
2035	/* If we have at least as many bytes as the descriptor takes? */
2036	length = _ds->bLength;
2037	if (len < length) {
2038		pr_vdebug("descriptor longer then available data\n");
2039		return -EINVAL;
2040	}
2041
2042#define __entity_check_INTERFACE(val)  1
2043#define __entity_check_STRING(val)     (val)
2044#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2045#define __entity(type, val) do {					\
2046		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2047		if (unlikely(!__entity_check_ ##type(val))) {		\
2048			pr_vdebug("invalid entity's value\n");		\
2049			return -EINVAL;					\
2050		}							\
2051		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2052		if (unlikely(ret < 0)) {				\
2053			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2054				 (val), ret);				\
2055			return ret;					\
2056		}							\
2057	} while (0)
2058
2059	/* Parse descriptor depending on type. */
2060	switch (_ds->bDescriptorType) {
2061	case USB_DT_DEVICE:
2062	case USB_DT_CONFIG:
2063	case USB_DT_STRING:
2064	case USB_DT_DEVICE_QUALIFIER:
2065		/* function can't have any of those */
2066		pr_vdebug("descriptor reserved for gadget: %d\n",
2067		      _ds->bDescriptorType);
2068		return -EINVAL;
2069
2070	case USB_DT_INTERFACE: {
2071		struct usb_interface_descriptor *ds = (void *)_ds;
2072		pr_vdebug("interface descriptor\n");
2073		if (length != sizeof *ds)
2074			goto inv_length;
2075
2076		__entity(INTERFACE, ds->bInterfaceNumber);
2077		if (ds->iInterface)
2078			__entity(STRING, ds->iInterface);
2079		*current_class = ds->bInterfaceClass;
 
2080	}
2081		break;
2082
2083	case USB_DT_ENDPOINT: {
2084		struct usb_endpoint_descriptor *ds = (void *)_ds;
2085		pr_vdebug("endpoint descriptor\n");
2086		if (length != USB_DT_ENDPOINT_SIZE &&
2087		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2088			goto inv_length;
2089		__entity(ENDPOINT, ds->bEndpointAddress);
2090	}
2091		break;
2092
2093	case USB_TYPE_CLASS | 0x01:
2094                if (*current_class == USB_INTERFACE_CLASS_HID) {
2095			pr_vdebug("hid descriptor\n");
2096			if (length != sizeof(struct hid_descriptor))
2097				goto inv_length;
2098			break;
2099		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2100			pr_vdebug("ccid descriptor\n");
2101			if (length != sizeof(struct ccid_descriptor))
2102				goto inv_length;
2103			break;
 
 
 
 
 
 
2104		} else {
2105			pr_vdebug("unknown descriptor: %d for class %d\n",
2106			      _ds->bDescriptorType, *current_class);
2107			return -EINVAL;
2108		}
2109
2110	case USB_DT_OTG:
2111		if (length != sizeof(struct usb_otg_descriptor))
2112			goto inv_length;
2113		break;
2114
2115	case USB_DT_INTERFACE_ASSOCIATION: {
2116		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2117		pr_vdebug("interface association descriptor\n");
2118		if (length != sizeof *ds)
2119			goto inv_length;
2120		if (ds->iFunction)
2121			__entity(STRING, ds->iFunction);
2122	}
2123		break;
2124
2125	case USB_DT_SS_ENDPOINT_COMP:
2126		pr_vdebug("EP SS companion descriptor\n");
2127		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2128			goto inv_length;
2129		break;
2130
2131	case USB_DT_OTHER_SPEED_CONFIG:
2132	case USB_DT_INTERFACE_POWER:
2133	case USB_DT_DEBUG:
2134	case USB_DT_SECURITY:
2135	case USB_DT_CS_RADIO_CONTROL:
2136		/* TODO */
2137		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2138		return -EINVAL;
2139
2140	default:
2141		/* We should never be here */
2142		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2143		return -EINVAL;
2144
2145inv_length:
2146		pr_vdebug("invalid length: %d (descriptor %d)\n",
2147			  _ds->bLength, _ds->bDescriptorType);
2148		return -EINVAL;
2149	}
2150
2151#undef __entity
2152#undef __entity_check_DESCRIPTOR
2153#undef __entity_check_INTERFACE
2154#undef __entity_check_STRING
2155#undef __entity_check_ENDPOINT
2156
2157	return length;
2158}
2159
2160static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2161				     ffs_entity_callback entity, void *priv)
2162{
2163	const unsigned _len = len;
2164	unsigned long num = 0;
2165	int current_class = -1;
2166
2167	ENTER();
2168
2169	for (;;) {
2170		int ret;
2171
2172		if (num == count)
2173			data = NULL;
2174
2175		/* Record "descriptor" entity */
2176		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2177		if (unlikely(ret < 0)) {
2178			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2179				 num, ret);
2180			return ret;
2181		}
2182
2183		if (!data)
2184			return _len - len;
2185
2186		ret = ffs_do_single_desc(data, len, entity, priv,
2187			&current_class);
2188		if (unlikely(ret < 0)) {
2189			pr_debug("%s returns %d\n", __func__, ret);
2190			return ret;
2191		}
2192
2193		len -= ret;
2194		data += ret;
2195		++num;
2196	}
2197}
2198
2199static int __ffs_data_do_entity(enum ffs_entity_type type,
2200				u8 *valuep, struct usb_descriptor_header *desc,
2201				void *priv)
2202{
2203	struct ffs_desc_helper *helper = priv;
2204	struct usb_endpoint_descriptor *d;
2205
2206	ENTER();
2207
2208	switch (type) {
2209	case FFS_DESCRIPTOR:
2210		break;
2211
2212	case FFS_INTERFACE:
2213		/*
2214		 * Interfaces are indexed from zero so if we
2215		 * encountered interface "n" then there are at least
2216		 * "n+1" interfaces.
2217		 */
2218		if (*valuep >= helper->interfaces_count)
2219			helper->interfaces_count = *valuep + 1;
2220		break;
2221
2222	case FFS_STRING:
2223		/*
2224		 * Strings are indexed from 1 (0 is reserved
2225		 * for languages list)
2226		 */
2227		if (*valuep > helper->ffs->strings_count)
2228			helper->ffs->strings_count = *valuep;
2229		break;
2230
2231	case FFS_ENDPOINT:
2232		d = (void *)desc;
2233		helper->eps_count++;
2234		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2235			return -EINVAL;
2236		/* Check if descriptors for any speed were already parsed */
2237		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2238			helper->ffs->eps_addrmap[helper->eps_count] =
2239				d->bEndpointAddress;
2240		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2241				d->bEndpointAddress)
2242			return -EINVAL;
2243		break;
2244	}
2245
2246	return 0;
2247}
2248
2249static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2250				   struct usb_os_desc_header *desc)
2251{
2252	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2253	u16 w_index = le16_to_cpu(desc->wIndex);
2254
2255	if (bcd_version != 1) {
2256		pr_vdebug("unsupported os descriptors version: %d",
 
 
 
2257			  bcd_version);
2258		return -EINVAL;
2259	}
2260	switch (w_index) {
2261	case 0x4:
2262		*next_type = FFS_OS_DESC_EXT_COMPAT;
2263		break;
2264	case 0x5:
2265		*next_type = FFS_OS_DESC_EXT_PROP;
2266		break;
2267	default:
2268		pr_vdebug("unsupported os descriptor type: %d", w_index);
2269		return -EINVAL;
2270	}
2271
2272	return sizeof(*desc);
2273}
2274
2275/*
2276 * Process all extended compatibility/extended property descriptors
2277 * of a feature descriptor
2278 */
2279static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2280					      enum ffs_os_desc_type type,
2281					      u16 feature_count,
2282					      ffs_os_desc_callback entity,
2283					      void *priv,
2284					      struct usb_os_desc_header *h)
2285{
2286	int ret;
2287	const unsigned _len = len;
2288
2289	ENTER();
2290
2291	/* loop over all ext compat/ext prop descriptors */
2292	while (feature_count--) {
2293		ret = entity(type, h, data, len, priv);
2294		if (unlikely(ret < 0)) {
2295			pr_debug("bad OS descriptor, type: %d\n", type);
2296			return ret;
2297		}
2298		data += ret;
2299		len -= ret;
2300	}
2301	return _len - len;
2302}
2303
2304/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2305static int __must_check ffs_do_os_descs(unsigned count,
2306					char *data, unsigned len,
2307					ffs_os_desc_callback entity, void *priv)
2308{
2309	const unsigned _len = len;
2310	unsigned long num = 0;
2311
2312	ENTER();
2313
2314	for (num = 0; num < count; ++num) {
2315		int ret;
2316		enum ffs_os_desc_type type;
2317		u16 feature_count;
2318		struct usb_os_desc_header *desc = (void *)data;
2319
2320		if (len < sizeof(*desc))
2321			return -EINVAL;
2322
2323		/*
2324		 * Record "descriptor" entity.
2325		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2326		 * Move the data pointer to the beginning of extended
2327		 * compatibilities proper or extended properties proper
2328		 * portions of the data
2329		 */
2330		if (le32_to_cpu(desc->dwLength) > len)
2331			return -EINVAL;
2332
2333		ret = __ffs_do_os_desc_header(&type, desc);
2334		if (unlikely(ret < 0)) {
2335			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2336				 num, ret);
2337			return ret;
2338		}
2339		/*
2340		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2341		 */
2342		feature_count = le16_to_cpu(desc->wCount);
2343		if (type == FFS_OS_DESC_EXT_COMPAT &&
2344		    (feature_count > 255 || desc->Reserved))
2345				return -EINVAL;
2346		len -= ret;
2347		data += ret;
2348
2349		/*
2350		 * Process all function/property descriptors
2351		 * of this Feature Descriptor
2352		 */
2353		ret = ffs_do_single_os_desc(data, len, type,
2354					    feature_count, entity, priv, desc);
2355		if (unlikely(ret < 0)) {
2356			pr_debug("%s returns %d\n", __func__, ret);
2357			return ret;
2358		}
2359
2360		len -= ret;
2361		data += ret;
2362	}
2363	return _len - len;
2364}
2365
2366/**
2367 * Validate contents of the buffer from userspace related to OS descriptors.
2368 */
2369static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2370				 struct usb_os_desc_header *h, void *data,
2371				 unsigned len, void *priv)
2372{
2373	struct ffs_data *ffs = priv;
2374	u8 length;
2375
2376	ENTER();
2377
2378	switch (type) {
2379	case FFS_OS_DESC_EXT_COMPAT: {
2380		struct usb_ext_compat_desc *d = data;
2381		int i;
2382
2383		if (len < sizeof(*d) ||
2384		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2385			return -EINVAL;
2386		if (d->Reserved1 != 1) {
2387			/*
2388			 * According to the spec, Reserved1 must be set to 1
2389			 * but older kernels incorrectly rejected non-zero
2390			 * values.  We fix it here to avoid returning EINVAL
2391			 * in response to values we used to accept.
2392			 */
2393			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2394			d->Reserved1 = 1;
2395		}
2396		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2397			if (d->Reserved2[i])
2398				return -EINVAL;
2399
2400		length = sizeof(struct usb_ext_compat_desc);
2401	}
2402		break;
2403	case FFS_OS_DESC_EXT_PROP: {
2404		struct usb_ext_prop_desc *d = data;
2405		u32 type, pdl;
2406		u16 pnl;
2407
2408		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2409			return -EINVAL;
2410		length = le32_to_cpu(d->dwSize);
2411		if (len < length)
2412			return -EINVAL;
2413		type = le32_to_cpu(d->dwPropertyDataType);
2414		if (type < USB_EXT_PROP_UNICODE ||
2415		    type > USB_EXT_PROP_UNICODE_MULTI) {
2416			pr_vdebug("unsupported os descriptor property type: %d",
2417				  type);
2418			return -EINVAL;
2419		}
2420		pnl = le16_to_cpu(d->wPropertyNameLength);
2421		if (length < 14 + pnl) {
2422			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2423				  length, pnl, type);
2424			return -EINVAL;
2425		}
2426		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2427		if (length != 14 + pnl + pdl) {
2428			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2429				  length, pnl, pdl, type);
2430			return -EINVAL;
2431		}
2432		++ffs->ms_os_descs_ext_prop_count;
2433		/* property name reported to the host as "WCHAR"s */
2434		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2435		ffs->ms_os_descs_ext_prop_data_len += pdl;
2436	}
2437		break;
2438	default:
2439		pr_vdebug("unknown descriptor: %d\n", type);
2440		return -EINVAL;
2441	}
2442	return length;
2443}
2444
2445static int __ffs_data_got_descs(struct ffs_data *ffs,
2446				char *const _data, size_t len)
2447{
2448	char *data = _data, *raw_descs;
2449	unsigned os_descs_count = 0, counts[3], flags;
2450	int ret = -EINVAL, i;
2451	struct ffs_desc_helper helper;
2452
2453	ENTER();
2454
2455	if (get_unaligned_le32(data + 4) != len)
2456		goto error;
2457
2458	switch (get_unaligned_le32(data)) {
2459	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2460		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2461		data += 8;
2462		len  -= 8;
2463		break;
2464	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2465		flags = get_unaligned_le32(data + 8);
2466		ffs->user_flags = flags;
2467		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2468			      FUNCTIONFS_HAS_HS_DESC |
2469			      FUNCTIONFS_HAS_SS_DESC |
2470			      FUNCTIONFS_HAS_MS_OS_DESC |
2471			      FUNCTIONFS_VIRTUAL_ADDR |
2472			      FUNCTIONFS_EVENTFD |
2473			      FUNCTIONFS_ALL_CTRL_RECIP |
2474			      FUNCTIONFS_CONFIG0_SETUP)) {
2475			ret = -ENOSYS;
2476			goto error;
2477		}
2478		data += 12;
2479		len  -= 12;
2480		break;
2481	default:
2482		goto error;
2483	}
2484
2485	if (flags & FUNCTIONFS_EVENTFD) {
2486		if (len < 4)
2487			goto error;
2488		ffs->ffs_eventfd =
2489			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2490		if (IS_ERR(ffs->ffs_eventfd)) {
2491			ret = PTR_ERR(ffs->ffs_eventfd);
2492			ffs->ffs_eventfd = NULL;
2493			goto error;
2494		}
2495		data += 4;
2496		len  -= 4;
2497	}
2498
2499	/* Read fs_count, hs_count and ss_count (if present) */
2500	for (i = 0; i < 3; ++i) {
2501		if (!(flags & (1 << i))) {
2502			counts[i] = 0;
2503		} else if (len < 4) {
2504			goto error;
2505		} else {
2506			counts[i] = get_unaligned_le32(data);
2507			data += 4;
2508			len  -= 4;
2509		}
2510	}
2511	if (flags & (1 << i)) {
2512		if (len < 4) {
2513			goto error;
2514		}
2515		os_descs_count = get_unaligned_le32(data);
2516		data += 4;
2517		len -= 4;
2518	};
2519
2520	/* Read descriptors */
2521	raw_descs = data;
2522	helper.ffs = ffs;
2523	for (i = 0; i < 3; ++i) {
2524		if (!counts[i])
2525			continue;
2526		helper.interfaces_count = 0;
2527		helper.eps_count = 0;
2528		ret = ffs_do_descs(counts[i], data, len,
2529				   __ffs_data_do_entity, &helper);
2530		if (ret < 0)
2531			goto error;
2532		if (!ffs->eps_count && !ffs->interfaces_count) {
2533			ffs->eps_count = helper.eps_count;
2534			ffs->interfaces_count = helper.interfaces_count;
2535		} else {
2536			if (ffs->eps_count != helper.eps_count) {
2537				ret = -EINVAL;
2538				goto error;
2539			}
2540			if (ffs->interfaces_count != helper.interfaces_count) {
2541				ret = -EINVAL;
2542				goto error;
2543			}
2544		}
2545		data += ret;
2546		len  -= ret;
2547	}
2548	if (os_descs_count) {
2549		ret = ffs_do_os_descs(os_descs_count, data, len,
2550				      __ffs_data_do_os_desc, ffs);
2551		if (ret < 0)
2552			goto error;
2553		data += ret;
2554		len -= ret;
2555	}
2556
2557	if (raw_descs == data || len) {
2558		ret = -EINVAL;
2559		goto error;
2560	}
2561
2562	ffs->raw_descs_data	= _data;
2563	ffs->raw_descs		= raw_descs;
2564	ffs->raw_descs_length	= data - raw_descs;
2565	ffs->fs_descs_count	= counts[0];
2566	ffs->hs_descs_count	= counts[1];
2567	ffs->ss_descs_count	= counts[2];
2568	ffs->ms_os_descs_count	= os_descs_count;
2569
2570	return 0;
2571
2572error:
2573	kfree(_data);
2574	return ret;
2575}
2576
2577static int __ffs_data_got_strings(struct ffs_data *ffs,
2578				  char *const _data, size_t len)
2579{
2580	u32 str_count, needed_count, lang_count;
2581	struct usb_gadget_strings **stringtabs, *t;
2582	const char *data = _data;
2583	struct usb_string *s;
2584
2585	ENTER();
2586
2587	if (unlikely(len < 16 ||
2588		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2589		     get_unaligned_le32(data + 4) != len))
2590		goto error;
2591	str_count  = get_unaligned_le32(data + 8);
2592	lang_count = get_unaligned_le32(data + 12);
2593
2594	/* if one is zero the other must be zero */
2595	if (unlikely(!str_count != !lang_count))
2596		goto error;
2597
2598	/* Do we have at least as many strings as descriptors need? */
2599	needed_count = ffs->strings_count;
2600	if (unlikely(str_count < needed_count))
2601		goto error;
2602
2603	/*
2604	 * If we don't need any strings just return and free all
2605	 * memory.
2606	 */
2607	if (!needed_count) {
2608		kfree(_data);
2609		return 0;
2610	}
2611
2612	/* Allocate everything in one chunk so there's less maintenance. */
2613	{
2614		unsigned i = 0;
2615		vla_group(d);
2616		vla_item(d, struct usb_gadget_strings *, stringtabs,
2617			lang_count + 1);
2618		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2619		vla_item(d, struct usb_string, strings,
2620			lang_count*(needed_count+1));
2621
2622		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2623
2624		if (unlikely(!vlabuf)) {
2625			kfree(_data);
2626			return -ENOMEM;
2627		}
2628
2629		/* Initialize the VLA pointers */
2630		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2631		t = vla_ptr(vlabuf, d, stringtab);
2632		i = lang_count;
2633		do {
2634			*stringtabs++ = t++;
2635		} while (--i);
2636		*stringtabs = NULL;
2637
2638		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2639		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2640		t = vla_ptr(vlabuf, d, stringtab);
2641		s = vla_ptr(vlabuf, d, strings);
2642	}
2643
2644	/* For each language */
2645	data += 16;
2646	len -= 16;
2647
2648	do { /* lang_count > 0 so we can use do-while */
2649		unsigned needed = needed_count;
 
2650
2651		if (unlikely(len < 3))
2652			goto error_free;
2653		t->language = get_unaligned_le16(data);
2654		t->strings  = s;
2655		++t;
2656
2657		data += 2;
2658		len -= 2;
2659
2660		/* For each string */
2661		do { /* str_count > 0 so we can use do-while */
2662			size_t length = strnlen(data, len);
2663
2664			if (unlikely(length == len))
2665				goto error_free;
2666
2667			/*
2668			 * User may provide more strings then we need,
2669			 * if that's the case we simply ignore the
2670			 * rest
2671			 */
2672			if (likely(needed)) {
2673				/*
2674				 * s->id will be set while adding
2675				 * function to configuration so for
2676				 * now just leave garbage here.
2677				 */
2678				s->s = data;
2679				--needed;
2680				++s;
2681			}
2682
2683			data += length + 1;
2684			len -= length + 1;
2685		} while (--str_count);
2686
2687		s->id = 0;   /* terminator */
2688		s->s = NULL;
2689		++s;
2690
2691	} while (--lang_count);
2692
2693	/* Some garbage left? */
2694	if (unlikely(len))
2695		goto error_free;
2696
2697	/* Done! */
2698	ffs->stringtabs = stringtabs;
2699	ffs->raw_strings = _data;
2700
2701	return 0;
2702
2703error_free:
2704	kfree(stringtabs);
2705error:
2706	kfree(_data);
2707	return -EINVAL;
2708}
2709
2710
2711/* Events handling and management *******************************************/
2712
2713static void __ffs_event_add(struct ffs_data *ffs,
2714			    enum usb_functionfs_event_type type)
2715{
2716	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2717	int neg = 0;
2718
2719	/*
2720	 * Abort any unhandled setup
2721	 *
2722	 * We do not need to worry about some cmpxchg() changing value
2723	 * of ffs->setup_state without holding the lock because when
2724	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2725	 * the source does nothing.
2726	 */
2727	if (ffs->setup_state == FFS_SETUP_PENDING)
2728		ffs->setup_state = FFS_SETUP_CANCELLED;
2729
2730	/*
2731	 * Logic of this function guarantees that there are at most four pending
2732	 * evens on ffs->ev.types queue.  This is important because the queue
2733	 * has space for four elements only and __ffs_ep0_read_events function
2734	 * depends on that limit as well.  If more event types are added, those
2735	 * limits have to be revisited or guaranteed to still hold.
2736	 */
2737	switch (type) {
2738	case FUNCTIONFS_RESUME:
2739		rem_type2 = FUNCTIONFS_SUSPEND;
2740		/* FALL THROUGH */
2741	case FUNCTIONFS_SUSPEND:
2742	case FUNCTIONFS_SETUP:
2743		rem_type1 = type;
2744		/* Discard all similar events */
2745		break;
2746
2747	case FUNCTIONFS_BIND:
2748	case FUNCTIONFS_UNBIND:
2749	case FUNCTIONFS_DISABLE:
2750	case FUNCTIONFS_ENABLE:
2751		/* Discard everything other then power management. */
2752		rem_type1 = FUNCTIONFS_SUSPEND;
2753		rem_type2 = FUNCTIONFS_RESUME;
2754		neg = 1;
2755		break;
2756
2757	default:
2758		WARN(1, "%d: unknown event, this should not happen\n", type);
2759		return;
2760	}
2761
2762	{
2763		u8 *ev  = ffs->ev.types, *out = ev;
2764		unsigned n = ffs->ev.count;
2765		for (; n; --n, ++ev)
2766			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2767				*out++ = *ev;
2768			else
2769				pr_vdebug("purging event %d\n", *ev);
2770		ffs->ev.count = out - ffs->ev.types;
2771	}
2772
2773	pr_vdebug("adding event %d\n", type);
2774	ffs->ev.types[ffs->ev.count++] = type;
2775	wake_up_locked(&ffs->ev.waitq);
2776	if (ffs->ffs_eventfd)
2777		eventfd_signal(ffs->ffs_eventfd, 1);
2778}
2779
2780static void ffs_event_add(struct ffs_data *ffs,
2781			  enum usb_functionfs_event_type type)
2782{
2783	unsigned long flags;
2784	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2785	__ffs_event_add(ffs, type);
2786	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2787}
2788
2789/* Bind/unbind USB function hooks *******************************************/
2790
2791static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2792{
2793	int i;
2794
2795	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2796		if (ffs->eps_addrmap[i] == endpoint_address)
2797			return i;
2798	return -ENOENT;
2799}
2800
2801static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2802				    struct usb_descriptor_header *desc,
2803				    void *priv)
2804{
2805	struct usb_endpoint_descriptor *ds = (void *)desc;
2806	struct ffs_function *func = priv;
2807	struct ffs_ep *ffs_ep;
2808	unsigned ep_desc_id;
2809	int idx;
2810	static const char *speed_names[] = { "full", "high", "super" };
2811
2812	if (type != FFS_DESCRIPTOR)
2813		return 0;
2814
2815	/*
2816	 * If ss_descriptors is not NULL, we are reading super speed
2817	 * descriptors; if hs_descriptors is not NULL, we are reading high
2818	 * speed descriptors; otherwise, we are reading full speed
2819	 * descriptors.
2820	 */
2821	if (func->function.ss_descriptors) {
2822		ep_desc_id = 2;
2823		func->function.ss_descriptors[(long)valuep] = desc;
2824	} else if (func->function.hs_descriptors) {
2825		ep_desc_id = 1;
2826		func->function.hs_descriptors[(long)valuep] = desc;
2827	} else {
2828		ep_desc_id = 0;
2829		func->function.fs_descriptors[(long)valuep]    = desc;
2830	}
2831
2832	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2833		return 0;
2834
2835	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2836	if (idx < 0)
2837		return idx;
2838
2839	ffs_ep = func->eps + idx;
2840
2841	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2842		pr_err("two %sspeed descriptors for EP %d\n",
2843			  speed_names[ep_desc_id],
2844			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2845		return -EINVAL;
2846	}
2847	ffs_ep->descs[ep_desc_id] = ds;
2848
2849	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2850	if (ffs_ep->ep) {
2851		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2852		if (!ds->wMaxPacketSize)
2853			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2854	} else {
2855		struct usb_request *req;
2856		struct usb_ep *ep;
2857		u8 bEndpointAddress;
2858		u16 wMaxPacketSize;
2859
2860		/*
2861		 * We back up bEndpointAddress because autoconfig overwrites
2862		 * it with physical endpoint address.
2863		 */
2864		bEndpointAddress = ds->bEndpointAddress;
2865		/*
2866		 * We back up wMaxPacketSize because autoconfig treats
2867		 * endpoint descriptors as if they were full speed.
2868		 */
2869		wMaxPacketSize = ds->wMaxPacketSize;
2870		pr_vdebug("autoconfig\n");
2871		ep = usb_ep_autoconfig(func->gadget, ds);
2872		if (unlikely(!ep))
2873			return -ENOTSUPP;
2874		ep->driver_data = func->eps + idx;
2875
2876		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2877		if (unlikely(!req))
2878			return -ENOMEM;
2879
2880		ffs_ep->ep  = ep;
2881		ffs_ep->req = req;
2882		func->eps_revmap[ds->bEndpointAddress &
2883				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2884		/*
2885		 * If we use virtual address mapping, we restore
2886		 * original bEndpointAddress value.
2887		 */
2888		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2889			ds->bEndpointAddress = bEndpointAddress;
2890		/*
2891		 * Restore wMaxPacketSize which was potentially
2892		 * overwritten by autoconfig.
2893		 */
2894		ds->wMaxPacketSize = wMaxPacketSize;
2895	}
2896	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2897
2898	return 0;
2899}
2900
2901static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2902				   struct usb_descriptor_header *desc,
2903				   void *priv)
2904{
2905	struct ffs_function *func = priv;
2906	unsigned idx;
2907	u8 newValue;
2908
2909	switch (type) {
2910	default:
2911	case FFS_DESCRIPTOR:
2912		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2913		return 0;
2914
2915	case FFS_INTERFACE:
2916		idx = *valuep;
2917		if (func->interfaces_nums[idx] < 0) {
2918			int id = usb_interface_id(func->conf, &func->function);
2919			if (unlikely(id < 0))
2920				return id;
2921			func->interfaces_nums[idx] = id;
2922		}
2923		newValue = func->interfaces_nums[idx];
2924		break;
2925
2926	case FFS_STRING:
2927		/* String' IDs are allocated when fsf_data is bound to cdev */
2928		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2929		break;
2930
2931	case FFS_ENDPOINT:
2932		/*
2933		 * USB_DT_ENDPOINT are handled in
2934		 * __ffs_func_bind_do_descs().
2935		 */
2936		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2937			return 0;
2938
2939		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2940		if (unlikely(!func->eps[idx].ep))
2941			return -EINVAL;
2942
2943		{
2944			struct usb_endpoint_descriptor **descs;
2945			descs = func->eps[idx].descs;
2946			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2947		}
2948		break;
2949	}
2950
2951	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2952	*valuep = newValue;
2953	return 0;
2954}
2955
2956static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2957				      struct usb_os_desc_header *h, void *data,
2958				      unsigned len, void *priv)
2959{
2960	struct ffs_function *func = priv;
2961	u8 length = 0;
2962
2963	switch (type) {
2964	case FFS_OS_DESC_EXT_COMPAT: {
2965		struct usb_ext_compat_desc *desc = data;
2966		struct usb_os_desc_table *t;
2967
2968		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2969		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2970		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2971		       ARRAY_SIZE(desc->CompatibleID) +
2972		       ARRAY_SIZE(desc->SubCompatibleID));
2973		length = sizeof(*desc);
2974	}
2975		break;
2976	case FFS_OS_DESC_EXT_PROP: {
2977		struct usb_ext_prop_desc *desc = data;
2978		struct usb_os_desc_table *t;
2979		struct usb_os_desc_ext_prop *ext_prop;
2980		char *ext_prop_name;
2981		char *ext_prop_data;
2982
2983		t = &func->function.os_desc_table[h->interface];
2984		t->if_id = func->interfaces_nums[h->interface];
2985
2986		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2987		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2988
2989		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2990		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2991		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2992			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2993		length = ext_prop->name_len + ext_prop->data_len + 14;
2994
2995		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2996		func->ffs->ms_os_descs_ext_prop_name_avail +=
2997			ext_prop->name_len;
2998
2999		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3000		func->ffs->ms_os_descs_ext_prop_data_avail +=
3001			ext_prop->data_len;
3002		memcpy(ext_prop_data,
3003		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3004		       ext_prop->data_len);
3005		/* unicode data reported to the host as "WCHAR"s */
3006		switch (ext_prop->type) {
3007		case USB_EXT_PROP_UNICODE:
3008		case USB_EXT_PROP_UNICODE_ENV:
3009		case USB_EXT_PROP_UNICODE_LINK:
3010		case USB_EXT_PROP_UNICODE_MULTI:
3011			ext_prop->data_len *= 2;
3012			break;
3013		}
3014		ext_prop->data = ext_prop_data;
3015
3016		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3017		       ext_prop->name_len);
3018		/* property name reported to the host as "WCHAR"s */
3019		ext_prop->name_len *= 2;
3020		ext_prop->name = ext_prop_name;
3021
3022		t->os_desc->ext_prop_len +=
3023			ext_prop->name_len + ext_prop->data_len + 14;
3024		++t->os_desc->ext_prop_count;
3025		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3026	}
3027		break;
3028	default:
3029		pr_vdebug("unknown descriptor: %d\n", type);
3030	}
3031
3032	return length;
3033}
3034
3035static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3036						struct usb_configuration *c)
3037{
3038	struct ffs_function *func = ffs_func_from_usb(f);
3039	struct f_fs_opts *ffs_opts =
3040		container_of(f->fi, struct f_fs_opts, func_inst);
 
3041	int ret;
3042
3043	ENTER();
3044
3045	/*
3046	 * Legacy gadget triggers binding in functionfs_ready_callback,
3047	 * which already uses locking; taking the same lock here would
3048	 * cause a deadlock.
3049	 *
3050	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3051	 */
3052	if (!ffs_opts->no_configfs)
3053		ffs_dev_lock();
3054	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3055	func->ffs = ffs_opts->dev->ffs_data;
3056	if (!ffs_opts->no_configfs)
3057		ffs_dev_unlock();
3058	if (ret)
3059		return ERR_PTR(ret);
3060
 
3061	func->conf = c;
3062	func->gadget = c->cdev->gadget;
3063
3064	/*
3065	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3066	 * configurations are bound in sequence with list_for_each_entry,
3067	 * in each configuration its functions are bound in sequence
3068	 * with list_for_each_entry, so we assume no race condition
3069	 * with regard to ffs_opts->bound access
3070	 */
3071	if (!ffs_opts->refcnt) {
3072		ret = functionfs_bind(func->ffs, c->cdev);
3073		if (ret)
3074			return ERR_PTR(ret);
3075	}
3076	ffs_opts->refcnt++;
3077	func->function.strings = func->ffs->stringtabs;
3078
3079	return ffs_opts;
3080}
3081
3082static int _ffs_func_bind(struct usb_configuration *c,
3083			  struct usb_function *f)
3084{
3085	struct ffs_function *func = ffs_func_from_usb(f);
3086	struct ffs_data *ffs = func->ffs;
3087
3088	const int full = !!func->ffs->fs_descs_count;
3089	const int high = !!func->ffs->hs_descs_count;
3090	const int super = !!func->ffs->ss_descs_count;
3091
3092	int fs_len, hs_len, ss_len, ret, i;
3093	struct ffs_ep *eps_ptr;
3094
3095	/* Make it a single chunk, less management later on */
3096	vla_group(d);
3097	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3098	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3099		full ? ffs->fs_descs_count + 1 : 0);
3100	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3101		high ? ffs->hs_descs_count + 1 : 0);
3102	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3103		super ? ffs->ss_descs_count + 1 : 0);
3104	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3105	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3106			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3107	vla_item_with_sz(d, char[16], ext_compat,
3108			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3109	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3110			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3111	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3112			 ffs->ms_os_descs_ext_prop_count);
3113	vla_item_with_sz(d, char, ext_prop_name,
3114			 ffs->ms_os_descs_ext_prop_name_len);
3115	vla_item_with_sz(d, char, ext_prop_data,
3116			 ffs->ms_os_descs_ext_prop_data_len);
3117	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3118	char *vlabuf;
3119
3120	ENTER();
3121
3122	/* Has descriptors only for speeds gadget does not support */
3123	if (unlikely(!(full | high | super)))
3124		return -ENOTSUPP;
3125
3126	/* Allocate a single chunk, less management later on */
3127	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3128	if (unlikely(!vlabuf))
3129		return -ENOMEM;
3130
3131	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3132	ffs->ms_os_descs_ext_prop_name_avail =
3133		vla_ptr(vlabuf, d, ext_prop_name);
3134	ffs->ms_os_descs_ext_prop_data_avail =
3135		vla_ptr(vlabuf, d, ext_prop_data);
3136
3137	/* Copy descriptors  */
3138	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3139	       ffs->raw_descs_length);
3140
3141	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3142	eps_ptr = vla_ptr(vlabuf, d, eps);
3143	for (i = 0; i < ffs->eps_count; i++)
3144		eps_ptr[i].num = -1;
3145
3146	/* Save pointers
3147	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3148	*/
3149	func->eps             = vla_ptr(vlabuf, d, eps);
3150	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3151
3152	/*
3153	 * Go through all the endpoint descriptors and allocate
3154	 * endpoints first, so that later we can rewrite the endpoint
3155	 * numbers without worrying that it may be described later on.
3156	 */
3157	if (likely(full)) {
3158		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3159		fs_len = ffs_do_descs(ffs->fs_descs_count,
3160				      vla_ptr(vlabuf, d, raw_descs),
3161				      d_raw_descs__sz,
3162				      __ffs_func_bind_do_descs, func);
3163		if (unlikely(fs_len < 0)) {
3164			ret = fs_len;
3165			goto error;
3166		}
3167	} else {
3168		fs_len = 0;
3169	}
3170
3171	if (likely(high)) {
3172		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3173		hs_len = ffs_do_descs(ffs->hs_descs_count,
3174				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3175				      d_raw_descs__sz - fs_len,
3176				      __ffs_func_bind_do_descs, func);
3177		if (unlikely(hs_len < 0)) {
3178			ret = hs_len;
3179			goto error;
3180		}
3181	} else {
3182		hs_len = 0;
3183	}
3184
3185	if (likely(super)) {
3186		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
 
3187		ss_len = ffs_do_descs(ffs->ss_descs_count,
3188				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3189				d_raw_descs__sz - fs_len - hs_len,
3190				__ffs_func_bind_do_descs, func);
3191		if (unlikely(ss_len < 0)) {
3192			ret = ss_len;
3193			goto error;
3194		}
3195	} else {
3196		ss_len = 0;
3197	}
3198
3199	/*
3200	 * Now handle interface numbers allocation and interface and
3201	 * endpoint numbers rewriting.  We can do that in one go
3202	 * now.
3203	 */
3204	ret = ffs_do_descs(ffs->fs_descs_count +
3205			   (high ? ffs->hs_descs_count : 0) +
3206			   (super ? ffs->ss_descs_count : 0),
3207			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3208			   __ffs_func_bind_do_nums, func);
3209	if (unlikely(ret < 0))
3210		goto error;
3211
3212	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3213	if (c->cdev->use_os_string) {
3214		for (i = 0; i < ffs->interfaces_count; ++i) {
3215			struct usb_os_desc *desc;
3216
3217			desc = func->function.os_desc_table[i].os_desc =
3218				vla_ptr(vlabuf, d, os_desc) +
3219				i * sizeof(struct usb_os_desc);
3220			desc->ext_compat_id =
3221				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3222			INIT_LIST_HEAD(&desc->ext_prop);
3223		}
3224		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3225				      vla_ptr(vlabuf, d, raw_descs) +
3226				      fs_len + hs_len + ss_len,
3227				      d_raw_descs__sz - fs_len - hs_len -
3228				      ss_len,
3229				      __ffs_func_bind_do_os_desc, func);
3230		if (unlikely(ret < 0))
3231			goto error;
3232	}
3233	func->function.os_desc_n =
3234		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3235
3236	/* And we're done */
3237	ffs_event_add(ffs, FUNCTIONFS_BIND);
3238	return 0;
3239
3240error:
3241	/* XXX Do we need to release all claimed endpoints here? */
3242	return ret;
3243}
3244
3245static int ffs_func_bind(struct usb_configuration *c,
3246			 struct usb_function *f)
3247{
3248	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3249	struct ffs_function *func = ffs_func_from_usb(f);
3250	int ret;
3251
3252	if (IS_ERR(ffs_opts))
3253		return PTR_ERR(ffs_opts);
3254
3255	ret = _ffs_func_bind(c, f);
3256	if (ret && !--ffs_opts->refcnt)
3257		functionfs_unbind(func->ffs);
3258
3259	return ret;
3260}
3261
3262
3263/* Other USB function hooks *************************************************/
3264
3265static void ffs_reset_work(struct work_struct *work)
3266{
3267	struct ffs_data *ffs = container_of(work,
3268		struct ffs_data, reset_work);
3269	ffs_data_reset(ffs);
3270}
3271
 
 
 
 
 
 
 
 
 
3272static int ffs_func_set_alt(struct usb_function *f,
3273			    unsigned interface, unsigned alt)
3274{
3275	struct ffs_function *func = ffs_func_from_usb(f);
3276	struct ffs_data *ffs = func->ffs;
3277	int ret = 0, intf;
3278
3279	if (alt != (unsigned)-1) {
3280		intf = ffs_func_revmap_intf(func, interface);
3281		if (unlikely(intf < 0))
3282			return intf;
3283	}
 
3284
3285	if (ffs->func)
3286		ffs_func_eps_disable(ffs->func);
3287
3288	if (ffs->state == FFS_DEACTIVATED) {
3289		ffs->state = FFS_CLOSING;
3290		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3291		schedule_work(&ffs->reset_work);
3292		return -ENODEV;
3293	}
3294
3295	if (ffs->state != FFS_ACTIVE)
3296		return -ENODEV;
3297
3298	if (alt == (unsigned)-1) {
3299		ffs->func = NULL;
3300		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3301		return 0;
3302	}
3303
3304	ffs->func = func;
3305	ret = ffs_func_eps_enable(func);
3306	if (likely(ret >= 0))
3307		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
 
 
3308	return ret;
3309}
3310
3311static void ffs_func_disable(struct usb_function *f)
3312{
3313	ffs_func_set_alt(f, 0, (unsigned)-1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3314}
3315
3316static int ffs_func_setup(struct usb_function *f,
3317			  const struct usb_ctrlrequest *creq)
3318{
3319	struct ffs_function *func = ffs_func_from_usb(f);
3320	struct ffs_data *ffs = func->ffs;
3321	unsigned long flags;
3322	int ret;
3323
3324	ENTER();
3325
3326	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3327	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3328	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3329	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3330	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3331
3332	/*
3333	 * Most requests directed to interface go through here
3334	 * (notable exceptions are set/get interface) so we need to
3335	 * handle them.  All other either handled by composite or
3336	 * passed to usb_configuration->setup() (if one is set).  No
3337	 * matter, we will handle requests directed to endpoint here
3338	 * as well (as it's straightforward).  Other request recipient
3339	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3340	 * is being used.
3341	 */
3342	if (ffs->state != FFS_ACTIVE)
3343		return -ENODEV;
3344
3345	switch (creq->bRequestType & USB_RECIP_MASK) {
3346	case USB_RECIP_INTERFACE:
3347		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3348		if (unlikely(ret < 0))
3349			return ret;
3350		break;
3351
3352	case USB_RECIP_ENDPOINT:
3353		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3354		if (unlikely(ret < 0))
3355			return ret;
3356		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3357			ret = func->ffs->eps_addrmap[ret];
3358		break;
3359
3360	default:
3361		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3362			ret = le16_to_cpu(creq->wIndex);
3363		else
3364			return -EOPNOTSUPP;
3365	}
3366
3367	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3368	ffs->ev.setup = *creq;
3369	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3370	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3371	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3372
3373	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3374}
3375
3376static bool ffs_func_req_match(struct usb_function *f,
3377			       const struct usb_ctrlrequest *creq,
3378			       bool config0)
3379{
3380	struct ffs_function *func = ffs_func_from_usb(f);
3381
3382	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3383		return false;
3384
3385	switch (creq->bRequestType & USB_RECIP_MASK) {
3386	case USB_RECIP_INTERFACE:
3387		return (ffs_func_revmap_intf(func,
3388					     le16_to_cpu(creq->wIndex)) >= 0);
3389	case USB_RECIP_ENDPOINT:
3390		return (ffs_func_revmap_ep(func,
3391					   le16_to_cpu(creq->wIndex)) >= 0);
3392	default:
3393		return (bool) (func->ffs->user_flags &
3394			       FUNCTIONFS_ALL_CTRL_RECIP);
3395	}
3396}
3397
3398static void ffs_func_suspend(struct usb_function *f)
3399{
3400	ENTER();
3401	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3402}
3403
3404static void ffs_func_resume(struct usb_function *f)
3405{
3406	ENTER();
3407	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3408}
3409
3410
3411/* Endpoint and interface numbers reverse mapping ***************************/
3412
3413static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3414{
3415	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3416	return num ? num : -EDOM;
3417}
3418
3419static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3420{
3421	short *nums = func->interfaces_nums;
3422	unsigned count = func->ffs->interfaces_count;
3423
3424	for (; count; --count, ++nums) {
3425		if (*nums >= 0 && *nums == intf)
3426			return nums - func->interfaces_nums;
3427	}
3428
3429	return -EDOM;
3430}
3431
3432
3433/* Devices management *******************************************************/
3434
3435static LIST_HEAD(ffs_devices);
3436
3437static struct ffs_dev *_ffs_do_find_dev(const char *name)
3438{
3439	struct ffs_dev *dev;
3440
3441	if (!name)
3442		return NULL;
3443
3444	list_for_each_entry(dev, &ffs_devices, entry) {
3445		if (strcmp(dev->name, name) == 0)
3446			return dev;
3447	}
3448
3449	return NULL;
3450}
3451
3452/*
3453 * ffs_lock must be taken by the caller of this function
3454 */
3455static struct ffs_dev *_ffs_get_single_dev(void)
3456{
3457	struct ffs_dev *dev;
3458
3459	if (list_is_singular(&ffs_devices)) {
3460		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3461		if (dev->single)
3462			return dev;
3463	}
3464
3465	return NULL;
3466}
3467
3468/*
3469 * ffs_lock must be taken by the caller of this function
3470 */
3471static struct ffs_dev *_ffs_find_dev(const char *name)
3472{
3473	struct ffs_dev *dev;
3474
3475	dev = _ffs_get_single_dev();
3476	if (dev)
3477		return dev;
3478
3479	return _ffs_do_find_dev(name);
3480}
3481
3482/* Configfs support *********************************************************/
3483
3484static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3485{
3486	return container_of(to_config_group(item), struct f_fs_opts,
3487			    func_inst.group);
3488}
3489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3490static void ffs_attr_release(struct config_item *item)
3491{
3492	struct f_fs_opts *opts = to_ffs_opts(item);
3493
3494	usb_put_function_instance(&opts->func_inst);
3495}
3496
3497static struct configfs_item_operations ffs_item_ops = {
3498	.release	= ffs_attr_release,
3499};
3500
3501static const struct config_item_type ffs_func_type = {
3502	.ct_item_ops	= &ffs_item_ops,
 
3503	.ct_owner	= THIS_MODULE,
3504};
3505
3506
3507/* Function registration interface ******************************************/
3508
3509static void ffs_free_inst(struct usb_function_instance *f)
3510{
3511	struct f_fs_opts *opts;
3512
3513	opts = to_f_fs_opts(f);
 
3514	ffs_dev_lock();
3515	_ffs_free_dev(opts->dev);
3516	ffs_dev_unlock();
3517	kfree(opts);
3518}
3519
3520static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3521{
3522	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3523		return -ENAMETOOLONG;
3524	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3525}
3526
3527static struct usb_function_instance *ffs_alloc_inst(void)
3528{
3529	struct f_fs_opts *opts;
3530	struct ffs_dev *dev;
3531
3532	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3533	if (!opts)
3534		return ERR_PTR(-ENOMEM);
3535
3536	opts->func_inst.set_inst_name = ffs_set_inst_name;
3537	opts->func_inst.free_func_inst = ffs_free_inst;
3538	ffs_dev_lock();
3539	dev = _ffs_alloc_dev();
3540	ffs_dev_unlock();
3541	if (IS_ERR(dev)) {
3542		kfree(opts);
3543		return ERR_CAST(dev);
3544	}
3545	opts->dev = dev;
3546	dev->opts = opts;
3547
3548	config_group_init_type_name(&opts->func_inst.group, "",
3549				    &ffs_func_type);
3550	return &opts->func_inst;
3551}
3552
3553static void ffs_free(struct usb_function *f)
3554{
3555	kfree(ffs_func_from_usb(f));
3556}
3557
3558static void ffs_func_unbind(struct usb_configuration *c,
3559			    struct usb_function *f)
3560{
3561	struct ffs_function *func = ffs_func_from_usb(f);
3562	struct ffs_data *ffs = func->ffs;
3563	struct f_fs_opts *opts =
3564		container_of(f->fi, struct f_fs_opts, func_inst);
3565	struct ffs_ep *ep = func->eps;
3566	unsigned count = ffs->eps_count;
3567	unsigned long flags;
3568
3569	ENTER();
3570	if (ffs->func == func) {
3571		ffs_func_eps_disable(func);
3572		ffs->func = NULL;
3573	}
3574
 
 
 
 
3575	if (!--opts->refcnt)
3576		functionfs_unbind(ffs);
3577
3578	/* cleanup after autoconfig */
3579	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3580	while (count--) {
3581		if (ep->ep && ep->req)
3582			usb_ep_free_request(ep->ep, ep->req);
3583		ep->req = NULL;
3584		++ep;
3585	}
3586	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3587	kfree(func->eps);
3588	func->eps = NULL;
3589	/*
3590	 * eps, descriptors and interfaces_nums are allocated in the
3591	 * same chunk so only one free is required.
3592	 */
3593	func->function.fs_descriptors = NULL;
3594	func->function.hs_descriptors = NULL;
3595	func->function.ss_descriptors = NULL;
 
3596	func->interfaces_nums = NULL;
3597
3598	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3599}
3600
3601static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3602{
3603	struct ffs_function *func;
3604
3605	ENTER();
3606
3607	func = kzalloc(sizeof(*func), GFP_KERNEL);
3608	if (unlikely(!func))
3609		return ERR_PTR(-ENOMEM);
3610
3611	func->function.name    = "Function FS Gadget";
3612
3613	func->function.bind    = ffs_func_bind;
3614	func->function.unbind  = ffs_func_unbind;
3615	func->function.set_alt = ffs_func_set_alt;
 
3616	func->function.disable = ffs_func_disable;
3617	func->function.setup   = ffs_func_setup;
3618	func->function.req_match = ffs_func_req_match;
3619	func->function.suspend = ffs_func_suspend;
3620	func->function.resume  = ffs_func_resume;
3621	func->function.free_func = ffs_free;
3622
3623	return &func->function;
3624}
3625
3626/*
3627 * ffs_lock must be taken by the caller of this function
3628 */
3629static struct ffs_dev *_ffs_alloc_dev(void)
3630{
3631	struct ffs_dev *dev;
3632	int ret;
3633
3634	if (_ffs_get_single_dev())
3635			return ERR_PTR(-EBUSY);
3636
3637	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3638	if (!dev)
3639		return ERR_PTR(-ENOMEM);
3640
3641	if (list_empty(&ffs_devices)) {
3642		ret = functionfs_init();
3643		if (ret) {
3644			kfree(dev);
3645			return ERR_PTR(ret);
3646		}
3647	}
3648
3649	list_add(&dev->entry, &ffs_devices);
3650
3651	return dev;
3652}
3653
3654int ffs_name_dev(struct ffs_dev *dev, const char *name)
3655{
3656	struct ffs_dev *existing;
3657	int ret = 0;
3658
3659	ffs_dev_lock();
3660
3661	existing = _ffs_do_find_dev(name);
3662	if (!existing)
3663		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3664	else if (existing != dev)
3665		ret = -EBUSY;
3666
3667	ffs_dev_unlock();
3668
3669	return ret;
3670}
3671EXPORT_SYMBOL_GPL(ffs_name_dev);
3672
3673int ffs_single_dev(struct ffs_dev *dev)
3674{
3675	int ret;
3676
3677	ret = 0;
3678	ffs_dev_lock();
3679
3680	if (!list_is_singular(&ffs_devices))
3681		ret = -EBUSY;
3682	else
3683		dev->single = true;
3684
3685	ffs_dev_unlock();
3686	return ret;
3687}
3688EXPORT_SYMBOL_GPL(ffs_single_dev);
3689
3690/*
3691 * ffs_lock must be taken by the caller of this function
3692 */
3693static void _ffs_free_dev(struct ffs_dev *dev)
3694{
3695	list_del(&dev->entry);
3696
3697	/* Clear the private_data pointer to stop incorrect dev access */
3698	if (dev->ffs_data)
3699		dev->ffs_data->private_data = NULL;
3700
3701	kfree(dev);
3702	if (list_empty(&ffs_devices))
3703		functionfs_cleanup();
3704}
3705
3706static void *ffs_acquire_dev(const char *dev_name)
3707{
 
3708	struct ffs_dev *ffs_dev;
3709
3710	ENTER();
3711	ffs_dev_lock();
3712
3713	ffs_dev = _ffs_find_dev(dev_name);
3714	if (!ffs_dev)
3715		ffs_dev = ERR_PTR(-ENOENT);
3716	else if (ffs_dev->mounted)
3717		ffs_dev = ERR_PTR(-EBUSY);
3718	else if (ffs_dev->ffs_acquire_dev_callback &&
3719	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3720		ffs_dev = ERR_PTR(-ENOENT);
3721	else
3722		ffs_dev->mounted = true;
 
 
 
3723
3724	ffs_dev_unlock();
3725	return ffs_dev;
3726}
3727
3728static void ffs_release_dev(struct ffs_data *ffs_data)
3729{
3730	struct ffs_dev *ffs_dev;
3731
3732	ENTER();
3733	ffs_dev_lock();
3734
3735	ffs_dev = ffs_data->private_data;
3736	if (ffs_dev) {
3737		ffs_dev->mounted = false;
 
 
 
 
3738
3739		if (ffs_dev->ffs_release_dev_callback)
3740			ffs_dev->ffs_release_dev_callback(ffs_dev);
3741	}
3742
3743	ffs_dev_unlock();
3744}
3745
3746static int ffs_ready(struct ffs_data *ffs)
3747{
3748	struct ffs_dev *ffs_obj;
3749	int ret = 0;
3750
3751	ENTER();
3752	ffs_dev_lock();
3753
3754	ffs_obj = ffs->private_data;
3755	if (!ffs_obj) {
3756		ret = -EINVAL;
3757		goto done;
3758	}
3759	if (WARN_ON(ffs_obj->desc_ready)) {
3760		ret = -EBUSY;
3761		goto done;
3762	}
3763
3764	ffs_obj->desc_ready = true;
3765	ffs_obj->ffs_data = ffs;
3766
3767	if (ffs_obj->ffs_ready_callback) {
3768		ret = ffs_obj->ffs_ready_callback(ffs);
3769		if (ret)
3770			goto done;
3771	}
3772
3773	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3774done:
3775	ffs_dev_unlock();
3776	return ret;
3777}
3778
3779static void ffs_closed(struct ffs_data *ffs)
3780{
3781	struct ffs_dev *ffs_obj;
3782	struct f_fs_opts *opts;
3783	struct config_item *ci;
3784
3785	ENTER();
3786	ffs_dev_lock();
3787
3788	ffs_obj = ffs->private_data;
3789	if (!ffs_obj)
3790		goto done;
3791
3792	ffs_obj->desc_ready = false;
3793	ffs_obj->ffs_data = NULL;
3794
3795	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3796	    ffs_obj->ffs_closed_callback)
3797		ffs_obj->ffs_closed_callback(ffs);
3798
3799	if (ffs_obj->opts)
3800		opts = ffs_obj->opts;
3801	else
3802		goto done;
3803
3804	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3805	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3806		goto done;
3807
3808	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3809	ffs_dev_unlock();
3810
3811	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3812		unregister_gadget_item(ci);
3813	return;
3814done:
3815	ffs_dev_unlock();
3816}
3817
3818/* Misc helper functions ****************************************************/
3819
3820static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3821{
3822	return nonblock
3823		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3824		: mutex_lock_interruptible(mutex);
3825}
3826
3827static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3828{
3829	char *data;
3830
3831	if (unlikely(!len))
3832		return NULL;
3833
3834	data = kmalloc(len, GFP_KERNEL);
3835	if (unlikely(!data))
3836		return ERR_PTR(-ENOMEM);
3837
3838	if (unlikely(copy_from_user(data, buf, len))) {
3839		kfree(data);
3840		return ERR_PTR(-EFAULT);
3841	}
3842
3843	pr_vdebug("Buffer from user space:\n");
3844	ffs_dump_mem("", data, len);
3845
3846	return data;
3847}
3848
3849DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
 
3850MODULE_LICENSE("GPL");
3851MODULE_AUTHOR("Michal Nazarewicz");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/dma-buf.h>
  19#include <linux/dma-fence.h>
  20#include <linux/dma-resv.h>
  21#include <linux/pagemap.h>
  22#include <linux/export.h>
  23#include <linux/fs_parser.h>
  24#include <linux/hid.h>
  25#include <linux/mm.h>
  26#include <linux/module.h>
  27#include <linux/scatterlist.h>
  28#include <linux/sched/signal.h>
  29#include <linux/uio.h>
  30#include <linux/vmalloc.h>
  31#include <linux/unaligned.h>
  32
  33#include <linux/usb/ccid.h>
  34#include <linux/usb/composite.h>
  35#include <linux/usb/functionfs.h>
  36#include <linux/usb/func_utils.h>
  37
  38#include <linux/aio.h>
  39#include <linux/kthread.h>
  40#include <linux/poll.h>
  41#include <linux/eventfd.h>
  42
  43#include "u_fs.h"
 
  44#include "u_os_desc.h"
  45#include "configfs.h"
  46
  47#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
  48#define MAX_ALT_SETTINGS	2		  /* Allow up to 2 alt settings to be set. */
  49
  50#define DMABUF_ENQUEUE_TIMEOUT_MS 5000
  51
  52MODULE_IMPORT_NS("DMA_BUF");
  53
  54/* Reference counter handling */
  55static void ffs_data_get(struct ffs_data *ffs);
  56static void ffs_data_put(struct ffs_data *ffs);
  57/* Creates new ffs_data object. */
  58static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  59	__attribute__((malloc));
  60
  61/* Opened counter handling. */
  62static void ffs_data_opened(struct ffs_data *ffs);
  63static void ffs_data_closed(struct ffs_data *ffs);
  64
  65/* Called with ffs->mutex held; take over ownership of data. */
  66static int __must_check
  67__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  68static int __must_check
  69__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  70
  71
  72/* The function structure ***************************************************/
  73
  74struct ffs_ep;
  75
  76struct ffs_function {
  77	struct usb_configuration	*conf;
  78	struct usb_gadget		*gadget;
  79	struct ffs_data			*ffs;
  80
  81	struct ffs_ep			*eps;
  82	u8				eps_revmap[16];
  83	short				*interfaces_nums;
  84
  85	struct usb_function		function;
  86	int				cur_alt[MAX_CONFIG_INTERFACES];
  87};
  88
  89
  90static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  91{
  92	return container_of(f, struct ffs_function, function);
  93}
  94
  95
  96static inline enum ffs_setup_state
  97ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  98{
  99	return (enum ffs_setup_state)
 100		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
 101}
 102
 103
 104static void ffs_func_eps_disable(struct ffs_function *func);
 105static int __must_check ffs_func_eps_enable(struct ffs_function *func);
 106
 107static int ffs_func_bind(struct usb_configuration *,
 108			 struct usb_function *);
 109static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 110static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
 111static void ffs_func_disable(struct usb_function *);
 112static int ffs_func_setup(struct usb_function *,
 113			  const struct usb_ctrlrequest *);
 114static bool ffs_func_req_match(struct usb_function *,
 115			       const struct usb_ctrlrequest *,
 116			       bool config0);
 117static void ffs_func_suspend(struct usb_function *);
 118static void ffs_func_resume(struct usb_function *);
 119
 120
 121static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 122static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 123
 124
 125/* The endpoints structures *************************************************/
 126
 127struct ffs_ep {
 128	struct usb_ep			*ep;	/* P: ffs->eps_lock */
 129	struct usb_request		*req;	/* P: epfile->mutex */
 130
 131	/* [0]: full speed, [1]: high speed, [2]: super speed */
 132	struct usb_endpoint_descriptor	*descs[3];
 133
 134	u8				num;
 135};
 136
 137struct ffs_dmabuf_priv {
 138	struct list_head entry;
 139	struct kref ref;
 140	struct ffs_data *ffs;
 141	struct dma_buf_attachment *attach;
 142	struct sg_table *sgt;
 143	enum dma_data_direction dir;
 144	spinlock_t lock;
 145	u64 context;
 146	struct usb_request *req;	/* P: ffs->eps_lock */
 147	struct usb_ep *ep;		/* P: ffs->eps_lock */
 148};
 149
 150struct ffs_dma_fence {
 151	struct dma_fence base;
 152	struct ffs_dmabuf_priv *priv;
 153	struct work_struct work;
 154};
 155
 156struct ffs_epfile {
 157	/* Protects ep->ep and ep->req. */
 158	struct mutex			mutex;
 159
 160	struct ffs_data			*ffs;
 161	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
 162
 163	struct dentry			*dentry;
 164
 165	/*
 166	 * Buffer for holding data from partial reads which may happen since
 167	 * we’re rounding user read requests to a multiple of a max packet size.
 168	 *
 169	 * The pointer is initialised with NULL value and may be set by
 170	 * __ffs_epfile_read_data function to point to a temporary buffer.
 171	 *
 172	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
 173	 * data from said buffer and eventually free it.  Importantly, while the
 174	 * function is using the buffer, it sets the pointer to NULL.  This is
 175	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 176	 * can never run concurrently (they are synchronised by epfile->mutex)
 177	 * so the latter will not assign a new value to the pointer.
 178	 *
 179	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 180	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 181	 * value is crux of the synchronisation between ffs_func_eps_disable and
 182	 * __ffs_epfile_read_data.
 183	 *
 184	 * Once __ffs_epfile_read_data is about to finish it will try to set the
 185	 * pointer back to its old value (as described above), but seeing as the
 186	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 187	 * the buffer.
 188	 *
 189	 * == State transitions ==
 190	 *
 191	 * • ptr == NULL:  (initial state)
 192	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 193	 *   â—¦ __ffs_epfile_read_buffered:    nop
 194	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 195	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 196	 * • ptr == DROP:
 197	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 198	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL
 199	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 200	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 201	 * • ptr == buf:
 202	 *   â—¦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 203	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 204	 *   â—¦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 205	 *                                    is always called first
 206	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 207	 * • ptr == NULL and reading:
 208	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 209	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 210	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 211	 *   ◦ reading finishes and …
 212	 *     … all data read:               free buf, go to ptr == NULL
 213	 *     … otherwise:                   go to ptr == buf and reading
 214	 * • ptr == DROP and reading:
 215	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 216	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 217	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 218	 *   â—¦ reading finishes:              free buf, go to ptr == DROP
 219	 */
 220	struct ffs_buffer		*read_buffer;
 221#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 222
 223	char				name[5];
 224
 225	unsigned char			in;	/* P: ffs->eps_lock */
 226	unsigned char			isoc;	/* P: ffs->eps_lock */
 227
 228	unsigned char			_pad;
 229
 230	/* Protects dmabufs */
 231	struct mutex			dmabufs_mutex;
 232	struct list_head		dmabufs; /* P: dmabufs_mutex */
 233	atomic_t			seqno;
 234};
 235
 236struct ffs_buffer {
 237	size_t length;
 238	char *data;
 239	char storage[] __counted_by(length);
 240};
 241
 242/*  ffs_io_data structure ***************************************************/
 243
 244struct ffs_io_data {
 245	bool aio;
 246	bool read;
 247
 248	struct kiocb *kiocb;
 249	struct iov_iter data;
 250	const void *to_free;
 251	char *buf;
 252
 253	struct mm_struct *mm;
 254	struct work_struct work;
 255
 256	struct usb_ep *ep;
 257	struct usb_request *req;
 258	struct sg_table sgt;
 259	bool use_sg;
 260
 261	struct ffs_data *ffs;
 262
 263	int status;
 264	struct completion done;
 265};
 266
 267struct ffs_desc_helper {
 268	struct ffs_data *ffs;
 269	unsigned interfaces_count;
 270	unsigned eps_count;
 271};
 272
 273static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 274static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 275
 276static struct dentry *
 277ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 278		   const struct file_operations *fops);
 279
 280/* Devices management *******************************************************/
 281
 282DEFINE_MUTEX(ffs_lock);
 283EXPORT_SYMBOL_GPL(ffs_lock);
 284
 285static struct ffs_dev *_ffs_find_dev(const char *name);
 286static struct ffs_dev *_ffs_alloc_dev(void);
 287static void _ffs_free_dev(struct ffs_dev *dev);
 288static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
 289static void ffs_release_dev(struct ffs_dev *ffs_dev);
 290static int ffs_ready(struct ffs_data *ffs);
 291static void ffs_closed(struct ffs_data *ffs);
 292
 293/* Misc helper functions ****************************************************/
 294
 295static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 296	__attribute__((warn_unused_result, nonnull));
 297static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 298	__attribute__((warn_unused_result, nonnull));
 299
 300
 301/* Control file aka ep0 *****************************************************/
 302
 303static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 304{
 305	struct ffs_data *ffs = req->context;
 306
 307	complete(&ffs->ep0req_completion);
 308}
 309
 310static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 311	__releases(&ffs->ev.waitq.lock)
 312{
 313	struct usb_request *req = ffs->ep0req;
 314	int ret;
 315
 316	if (!req) {
 317		spin_unlock_irq(&ffs->ev.waitq.lock);
 318		return -EINVAL;
 319	}
 320
 321	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 322
 323	spin_unlock_irq(&ffs->ev.waitq.lock);
 324
 325	req->buf      = data;
 326	req->length   = len;
 327
 328	/*
 329	 * UDC layer requires to provide a buffer even for ZLP, but should
 330	 * not use it at all. Let's provide some poisoned pointer to catch
 331	 * possible bug in the driver.
 332	 */
 333	if (req->buf == NULL)
 334		req->buf = (void *)0xDEADBABE;
 335
 336	reinit_completion(&ffs->ep0req_completion);
 337
 338	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 339	if (ret < 0)
 340		return ret;
 341
 342	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 343	if (ret) {
 344		usb_ep_dequeue(ffs->gadget->ep0, req);
 345		return -EINTR;
 346	}
 347
 348	ffs->setup_state = FFS_NO_SETUP;
 349	return req->status ? req->status : req->actual;
 350}
 351
 352static int __ffs_ep0_stall(struct ffs_data *ffs)
 353{
 354	if (ffs->ev.can_stall) {
 355		pr_vdebug("ep0 stall\n");
 356		usb_ep_set_halt(ffs->gadget->ep0);
 357		ffs->setup_state = FFS_NO_SETUP;
 358		return -EL2HLT;
 359	} else {
 360		pr_debug("bogus ep0 stall!\n");
 361		return -ESRCH;
 362	}
 363}
 364
 365static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 366			     size_t len, loff_t *ptr)
 367{
 368	struct ffs_data *ffs = file->private_data;
 369	ssize_t ret;
 370	char *data;
 371
 
 
 372	/* Fast check if setup was canceled */
 373	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 374		return -EIDRM;
 375
 376	/* Acquire mutex */
 377	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 378	if (ret < 0)
 379		return ret;
 380
 381	/* Check state */
 382	switch (ffs->state) {
 383	case FFS_READ_DESCRIPTORS:
 384	case FFS_READ_STRINGS:
 385		/* Copy data */
 386		if (len < 16) {
 387			ret = -EINVAL;
 388			break;
 389		}
 390
 391		data = ffs_prepare_buffer(buf, len);
 392		if (IS_ERR(data)) {
 393			ret = PTR_ERR(data);
 394			break;
 395		}
 396
 397		/* Handle data */
 398		if (ffs->state == FFS_READ_DESCRIPTORS) {
 399			pr_info("read descriptors\n");
 400			ret = __ffs_data_got_descs(ffs, data, len);
 401			if (ret < 0)
 402				break;
 403
 404			ffs->state = FFS_READ_STRINGS;
 405			ret = len;
 406		} else {
 407			pr_info("read strings\n");
 408			ret = __ffs_data_got_strings(ffs, data, len);
 409			if (ret < 0)
 410				break;
 411
 412			ret = ffs_epfiles_create(ffs);
 413			if (ret) {
 414				ffs->state = FFS_CLOSING;
 415				break;
 416			}
 417
 418			ffs->state = FFS_ACTIVE;
 419			mutex_unlock(&ffs->mutex);
 420
 421			ret = ffs_ready(ffs);
 422			if (ret < 0) {
 423				ffs->state = FFS_CLOSING;
 424				return ret;
 425			}
 426
 427			return len;
 428		}
 429		break;
 430
 431	case FFS_ACTIVE:
 432		data = NULL;
 433		/*
 434		 * We're called from user space, we can use _irq
 435		 * rather then _irqsave
 436		 */
 437		spin_lock_irq(&ffs->ev.waitq.lock);
 438		switch (ffs_setup_state_clear_cancelled(ffs)) {
 439		case FFS_SETUP_CANCELLED:
 440			ret = -EIDRM;
 441			goto done_spin;
 442
 443		case FFS_NO_SETUP:
 444			ret = -ESRCH;
 445			goto done_spin;
 446
 447		case FFS_SETUP_PENDING:
 448			break;
 449		}
 450
 451		/* FFS_SETUP_PENDING */
 452		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 453			spin_unlock_irq(&ffs->ev.waitq.lock);
 454			ret = __ffs_ep0_stall(ffs);
 455			break;
 456		}
 457
 458		/* FFS_SETUP_PENDING and not stall */
 459		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
 460
 461		spin_unlock_irq(&ffs->ev.waitq.lock);
 462
 463		data = ffs_prepare_buffer(buf, len);
 464		if (IS_ERR(data)) {
 465			ret = PTR_ERR(data);
 466			break;
 467		}
 468
 469		spin_lock_irq(&ffs->ev.waitq.lock);
 470
 471		/*
 472		 * We are guaranteed to be still in FFS_ACTIVE state
 473		 * but the state of setup could have changed from
 474		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 475		 * to check for that.  If that happened we copied data
 476		 * from user space in vain but it's unlikely.
 477		 *
 478		 * For sure we are not in FFS_NO_SETUP since this is
 479		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 480		 * transition can be performed and it's protected by
 481		 * mutex.
 482		 */
 483		if (ffs_setup_state_clear_cancelled(ffs) ==
 484		    FFS_SETUP_CANCELLED) {
 485			ret = -EIDRM;
 486done_spin:
 487			spin_unlock_irq(&ffs->ev.waitq.lock);
 488		} else {
 489			/* unlocks spinlock */
 490			ret = __ffs_ep0_queue_wait(ffs, data, len);
 491		}
 492		kfree(data);
 493		break;
 494
 495	default:
 496		ret = -EBADFD;
 497		break;
 498	}
 499
 500	mutex_unlock(&ffs->mutex);
 501	return ret;
 502}
 503
 504/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 505static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 506				     size_t n)
 507	__releases(&ffs->ev.waitq.lock)
 508{
 509	/*
 510	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 511	 * size of ffs->ev.types array (which is four) so that's how much space
 512	 * we reserve.
 513	 */
 514	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 515	const size_t size = n * sizeof *events;
 516	unsigned i = 0;
 517
 518	memset(events, 0, size);
 519
 520	do {
 521		events[i].type = ffs->ev.types[i];
 522		if (events[i].type == FUNCTIONFS_SETUP) {
 523			events[i].u.setup = ffs->ev.setup;
 524			ffs->setup_state = FFS_SETUP_PENDING;
 525		}
 526	} while (++i < n);
 527
 528	ffs->ev.count -= n;
 529	if (ffs->ev.count)
 530		memmove(ffs->ev.types, ffs->ev.types + n,
 531			ffs->ev.count * sizeof *ffs->ev.types);
 532
 533	spin_unlock_irq(&ffs->ev.waitq.lock);
 534	mutex_unlock(&ffs->mutex);
 535
 536	return copy_to_user(buf, events, size) ? -EFAULT : size;
 537}
 538
 539static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 540			    size_t len, loff_t *ptr)
 541{
 542	struct ffs_data *ffs = file->private_data;
 543	char *data = NULL;
 544	size_t n;
 545	int ret;
 546
 
 
 547	/* Fast check if setup was canceled */
 548	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 549		return -EIDRM;
 550
 551	/* Acquire mutex */
 552	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 553	if (ret < 0)
 554		return ret;
 555
 556	/* Check state */
 557	if (ffs->state != FFS_ACTIVE) {
 558		ret = -EBADFD;
 559		goto done_mutex;
 560	}
 561
 562	/*
 563	 * We're called from user space, we can use _irq rather then
 564	 * _irqsave
 565	 */
 566	spin_lock_irq(&ffs->ev.waitq.lock);
 567
 568	switch (ffs_setup_state_clear_cancelled(ffs)) {
 569	case FFS_SETUP_CANCELLED:
 570		ret = -EIDRM;
 571		break;
 572
 573	case FFS_NO_SETUP:
 574		n = len / sizeof(struct usb_functionfs_event);
 575		if (!n) {
 576			ret = -EINVAL;
 577			break;
 578		}
 579
 580		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 581			ret = -EAGAIN;
 582			break;
 583		}
 584
 585		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 586							ffs->ev.count)) {
 587			ret = -EINTR;
 588			break;
 589		}
 590
 591		/* unlocks spinlock */
 592		return __ffs_ep0_read_events(ffs, buf,
 593					     min_t(size_t, n, ffs->ev.count));
 594
 595	case FFS_SETUP_PENDING:
 596		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 597			spin_unlock_irq(&ffs->ev.waitq.lock);
 598			ret = __ffs_ep0_stall(ffs);
 599			goto done_mutex;
 600		}
 601
 602		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
 603
 604		spin_unlock_irq(&ffs->ev.waitq.lock);
 605
 606		if (len) {
 607			data = kmalloc(len, GFP_KERNEL);
 608			if (!data) {
 609				ret = -ENOMEM;
 610				goto done_mutex;
 611			}
 612		}
 613
 614		spin_lock_irq(&ffs->ev.waitq.lock);
 615
 616		/* See ffs_ep0_write() */
 617		if (ffs_setup_state_clear_cancelled(ffs) ==
 618		    FFS_SETUP_CANCELLED) {
 619			ret = -EIDRM;
 620			break;
 621		}
 622
 623		/* unlocks spinlock */
 624		ret = __ffs_ep0_queue_wait(ffs, data, len);
 625		if ((ret > 0) && (copy_to_user(buf, data, len)))
 626			ret = -EFAULT;
 627		goto done_mutex;
 628
 629	default:
 630		ret = -EBADFD;
 631		break;
 632	}
 633
 634	spin_unlock_irq(&ffs->ev.waitq.lock);
 635done_mutex:
 636	mutex_unlock(&ffs->mutex);
 637	kfree(data);
 638	return ret;
 639}
 640
 641static int ffs_ep0_open(struct inode *inode, struct file *file)
 642{
 643	struct ffs_data *ffs = inode->i_private;
 644
 645	if (ffs->state == FFS_CLOSING)
 
 
 646		return -EBUSY;
 647
 648	file->private_data = ffs;
 649	ffs_data_opened(ffs);
 650
 651	return stream_open(inode, file);
 652}
 653
 654static int ffs_ep0_release(struct inode *inode, struct file *file)
 655{
 656	struct ffs_data *ffs = file->private_data;
 657
 
 
 658	ffs_data_closed(ffs);
 659
 660	return 0;
 661}
 662
 663static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 664{
 665	struct ffs_data *ffs = file->private_data;
 666	struct usb_gadget *gadget = ffs->gadget;
 667	long ret;
 668
 
 
 669	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 670		struct ffs_function *func = ffs->func;
 671		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 672	} else if (gadget && gadget->ops->ioctl) {
 673		ret = gadget->ops->ioctl(gadget, code, value);
 674	} else {
 675		ret = -ENOTTY;
 676	}
 677
 678	return ret;
 679}
 680
 681static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 682{
 683	struct ffs_data *ffs = file->private_data;
 684	__poll_t mask = EPOLLWRNORM;
 685	int ret;
 686
 687	poll_wait(file, &ffs->ev.waitq, wait);
 688
 689	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 690	if (ret < 0)
 691		return mask;
 692
 693	switch (ffs->state) {
 694	case FFS_READ_DESCRIPTORS:
 695	case FFS_READ_STRINGS:
 696		mask |= EPOLLOUT;
 697		break;
 698
 699	case FFS_ACTIVE:
 700		switch (ffs->setup_state) {
 701		case FFS_NO_SETUP:
 702			if (ffs->ev.count)
 703				mask |= EPOLLIN;
 704			break;
 705
 706		case FFS_SETUP_PENDING:
 707		case FFS_SETUP_CANCELLED:
 708			mask |= (EPOLLIN | EPOLLOUT);
 709			break;
 710		}
 711		break;
 712
 713	case FFS_CLOSING:
 714		break;
 715	case FFS_DEACTIVATED:
 716		break;
 717	}
 718
 719	mutex_unlock(&ffs->mutex);
 720
 721	return mask;
 722}
 723
 724static const struct file_operations ffs_ep0_operations = {
 
 725
 726	.open =		ffs_ep0_open,
 727	.write =	ffs_ep0_write,
 728	.read =		ffs_ep0_read,
 729	.release =	ffs_ep0_release,
 730	.unlocked_ioctl =	ffs_ep0_ioctl,
 731	.poll =		ffs_ep0_poll,
 732};
 733
 734
 735/* "Normal" endpoints operations ********************************************/
 736
 737static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 738{
 739	struct ffs_io_data *io_data = req->context;
 740
 741	if (req->status)
 742		io_data->status = req->status;
 743	else
 744		io_data->status = req->actual;
 745
 746	complete(&io_data->done);
 747}
 748
 749static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 750{
 751	ssize_t ret = copy_to_iter(data, data_len, iter);
 752	if (ret == data_len)
 753		return ret;
 754
 755	if (iov_iter_count(iter))
 756		return -EFAULT;
 757
 758	/*
 759	 * Dear user space developer!
 760	 *
 761	 * TL;DR: To stop getting below error message in your kernel log, change
 762	 * user space code using functionfs to align read buffers to a max
 763	 * packet size.
 764	 *
 765	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 766	 * packet size.  When unaligned buffer is passed to functionfs, it
 767	 * internally uses a larger, aligned buffer so that such UDCs are happy.
 768	 *
 769	 * Unfortunately, this means that host may send more data than was
 770	 * requested in read(2) system call.  f_fs doesn’t know what to do with
 771	 * that excess data so it simply drops it.
 772	 *
 773	 * Was the buffer aligned in the first place, no such problem would
 774	 * happen.
 775	 *
 776	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
 777	 * by splitting a request into multiple parts.  This splitting may still
 778	 * be a problem though so it’s likely best to align the buffer
 779	 * regardless of it being AIO or not..
 780	 *
 781	 * This only affects OUT endpoints, i.e. reading data with a read(2),
 782	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 783	 * affected.
 784	 */
 785	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 786	       "Align read buffer size to max packet size to avoid the problem.\n",
 787	       data_len, ret);
 788
 789	return ret;
 790}
 791
 792/*
 793 * allocate a virtually contiguous buffer and create a scatterlist describing it
 794 * @sg_table	- pointer to a place to be filled with sg_table contents
 795 * @size	- required buffer size
 796 */
 797static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 798{
 799	struct page **pages;
 800	void *vaddr, *ptr;
 801	unsigned int n_pages;
 802	int i;
 803
 804	vaddr = vmalloc(sz);
 805	if (!vaddr)
 806		return NULL;
 807
 808	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 809	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 810	if (!pages) {
 811		vfree(vaddr);
 812
 813		return NULL;
 814	}
 815	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 816		pages[i] = vmalloc_to_page(ptr);
 817
 818	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 819		kvfree(pages);
 820		vfree(vaddr);
 821
 822		return NULL;
 823	}
 824	kvfree(pages);
 825
 826	return vaddr;
 827}
 828
 829static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 830	size_t data_len)
 831{
 832	if (io_data->use_sg)
 833		return ffs_build_sg_list(&io_data->sgt, data_len);
 834
 835	return kmalloc(data_len, GFP_KERNEL);
 836}
 837
 838static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 839{
 840	if (!io_data->buf)
 841		return;
 842
 843	if (io_data->use_sg) {
 844		sg_free_table(&io_data->sgt);
 845		vfree(io_data->buf);
 846	} else {
 847		kfree(io_data->buf);
 848	}
 849}
 850
 851static void ffs_user_copy_worker(struct work_struct *work)
 852{
 853	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 854						   work);
 855	int ret = io_data->status;
 
 856	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 857	unsigned long flags;
 858
 859	if (io_data->read && ret > 0) {
 860		kthread_use_mm(io_data->mm);
 
 
 
 861		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 862		kthread_unuse_mm(io_data->mm);
 
 863	}
 864
 865	io_data->kiocb->ki_complete(io_data->kiocb, ret);
 866
 867	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 868		eventfd_signal(io_data->ffs->ffs_eventfd);
 869
 870	spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
 871	usb_ep_free_request(io_data->ep, io_data->req);
 872	io_data->req = NULL;
 873	spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
 874
 875	if (io_data->read)
 876		kfree(io_data->to_free);
 877	ffs_free_buffer(io_data);
 878	kfree(io_data);
 879}
 880
 881static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 882					 struct usb_request *req)
 883{
 884	struct ffs_io_data *io_data = req->context;
 885	struct ffs_data *ffs = io_data->ffs;
 886
 887	io_data->status = req->status ? req->status : req->actual;
 888
 889	INIT_WORK(&io_data->work, ffs_user_copy_worker);
 890	queue_work(ffs->io_completion_wq, &io_data->work);
 891}
 892
 893static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 894{
 895	/*
 896	 * See comment in struct ffs_epfile for full read_buffer pointer
 897	 * synchronisation story.
 898	 */
 899	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 900	if (buf && buf != READ_BUFFER_DROP)
 901		kfree(buf);
 902}
 903
 904/* Assumes epfile->mutex is held. */
 905static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 906					  struct iov_iter *iter)
 907{
 908	/*
 909	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 910	 * the buffer while we are using it.  See comment in struct ffs_epfile
 911	 * for full read_buffer pointer synchronisation story.
 912	 */
 913	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 914	ssize_t ret;
 915	if (!buf || buf == READ_BUFFER_DROP)
 916		return 0;
 917
 918	ret = copy_to_iter(buf->data, buf->length, iter);
 919	if (buf->length == ret) {
 920		kfree(buf);
 921		return ret;
 922	}
 923
 924	if (iov_iter_count(iter)) {
 925		ret = -EFAULT;
 926	} else {
 927		buf->length -= ret;
 928		buf->data += ret;
 929	}
 930
 931	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 932		kfree(buf);
 933
 934	return ret;
 935}
 936
 937/* Assumes epfile->mutex is held. */
 938static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 939				      void *data, int data_len,
 940				      struct iov_iter *iter)
 941{
 942	struct ffs_buffer *buf;
 943
 944	ssize_t ret = copy_to_iter(data, data_len, iter);
 945	if (data_len == ret)
 946		return ret;
 947
 948	if (iov_iter_count(iter))
 949		return -EFAULT;
 950
 951	/* See ffs_copy_to_iter for more context. */
 952	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 953		data_len, ret);
 954
 955	data_len -= ret;
 956	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
 957	if (!buf)
 958		return -ENOMEM;
 959	buf->length = data_len;
 960	buf->data = buf->storage;
 961	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
 962
 963	/*
 964	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 965	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
 966	 * in struct ffs_epfile for full read_buffer pointer synchronisation
 967	 * story.
 968	 */
 969	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 970		kfree(buf);
 971
 972	return ret;
 973}
 974
 975static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
 976{
 977	struct ffs_epfile *epfile = file->private_data;
 
 978	struct ffs_ep *ep;
 979	int ret;
 
 
 
 
 
 
 980
 981	/* Wait for endpoint to be enabled */
 982	ep = epfile->ep;
 983	if (!ep) {
 984		if (file->f_flags & O_NONBLOCK)
 985			return ERR_PTR(-EAGAIN);
 986
 987		ret = wait_event_interruptible(
 988				epfile->ffs->wait, (ep = epfile->ep));
 989		if (ret)
 990			return ERR_PTR(-EINTR);
 991	}
 992
 993	return ep;
 994}
 995
 996static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 997{
 998	struct ffs_epfile *epfile = file->private_data;
 999	struct usb_request *req;
1000	struct ffs_ep *ep;
1001	char *data = NULL;
1002	ssize_t ret, data_len = -EINVAL;
1003	int halt;
1004
1005	/* Are we still active? */
1006	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1007		return -ENODEV;
1008
1009	ep = ffs_epfile_wait_ep(file);
1010	if (IS_ERR(ep))
1011		return PTR_ERR(ep);
1012
1013	/* Do we halt? */
1014	halt = (!io_data->read == !epfile->in);
1015	if (halt && epfile->isoc)
1016		return -EINVAL;
1017
1018	/* We will be using request and read_buffer */
1019	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1020	if (ret)
1021		goto error;
1022
1023	/* Allocate & copy */
1024	if (!halt) {
1025		struct usb_gadget *gadget;
1026
1027		/*
1028		 * Do we have buffered data from previous partial read?  Check
1029		 * that for synchronous case only because we do not have
1030		 * facility to ‘wake up’ a pending asynchronous read and push
1031		 * buffered data to it which we would need to make things behave
1032		 * consistently.
1033		 */
1034		if (!io_data->aio && io_data->read) {
1035			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1036			if (ret)
1037				goto error_mutex;
1038		}
1039
1040		/*
1041		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1042		 * before the waiting completes, so do not assign to 'gadget'
1043		 * earlier
1044		 */
1045		gadget = epfile->ffs->gadget;
1046
1047		spin_lock_irq(&epfile->ffs->eps_lock);
1048		/* In the meantime, endpoint got disabled or changed. */
1049		if (epfile->ep != ep) {
1050			ret = -ESHUTDOWN;
1051			goto error_lock;
1052		}
1053		data_len = iov_iter_count(&io_data->data);
1054		/*
1055		 * Controller may require buffer size to be aligned to
1056		 * maxpacketsize of an out endpoint.
1057		 */
1058		if (io_data->read)
1059			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1060
1061		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1062		spin_unlock_irq(&epfile->ffs->eps_lock);
1063
1064		data = ffs_alloc_buffer(io_data, data_len);
1065		if (!data) {
1066			ret = -ENOMEM;
1067			goto error_mutex;
1068		}
1069		if (!io_data->read &&
1070		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1071			ret = -EFAULT;
1072			goto error_mutex;
1073		}
1074	}
1075
1076	spin_lock_irq(&epfile->ffs->eps_lock);
1077
1078	if (epfile->ep != ep) {
1079		/* In the meantime, endpoint got disabled or changed. */
1080		ret = -ESHUTDOWN;
1081	} else if (halt) {
1082		ret = usb_ep_set_halt(ep->ep);
1083		if (!ret)
1084			ret = -EBADMSG;
1085	} else if (data_len == -EINVAL) {
1086		/*
1087		 * Sanity Check: even though data_len can't be used
1088		 * uninitialized at the time I write this comment, some
1089		 * compilers complain about this situation.
1090		 * In order to keep the code clean from warnings, data_len is
1091		 * being initialized to -EINVAL during its declaration, which
1092		 * means we can't rely on compiler anymore to warn no future
1093		 * changes won't result in data_len being used uninitialized.
1094		 * For such reason, we're adding this redundant sanity check
1095		 * here.
1096		 */
1097		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1098		ret = -EINVAL;
1099	} else if (!io_data->aio) {
 
1100		bool interrupted = false;
1101
1102		req = ep->req;
1103		if (io_data->use_sg) {
1104			req->buf = NULL;
1105			req->sg	= io_data->sgt.sgl;
1106			req->num_sgs = io_data->sgt.nents;
1107		} else {
1108			req->buf = data;
1109			req->num_sgs = 0;
1110		}
1111		req->length = data_len;
1112
1113		io_data->buf = data;
1114
1115		init_completion(&io_data->done);
1116		req->context  = io_data;
1117		req->complete = ffs_epfile_io_complete;
1118
1119		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120		if (ret < 0)
1121			goto error_lock;
1122
1123		spin_unlock_irq(&epfile->ffs->eps_lock);
1124
1125		if (wait_for_completion_interruptible(&io_data->done)) {
1126			spin_lock_irq(&epfile->ffs->eps_lock);
1127			if (epfile->ep != ep) {
1128				ret = -ESHUTDOWN;
1129				goto error_lock;
1130			}
1131			/*
1132			 * To avoid race condition with ffs_epfile_io_complete,
1133			 * dequeue the request first then check
1134			 * status. usb_ep_dequeue API should guarantee no race
1135			 * condition with req->complete callback.
1136			 */
1137			usb_ep_dequeue(ep->ep, req);
1138			spin_unlock_irq(&epfile->ffs->eps_lock);
1139			wait_for_completion(&io_data->done);
1140			interrupted = io_data->status < 0;
1141		}
1142
1143		if (interrupted)
1144			ret = -EINTR;
1145		else if (io_data->read && io_data->status > 0)
1146			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1147						     &io_data->data);
1148		else
1149			ret = io_data->status;
1150		goto error_mutex;
1151	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1152		ret = -ENOMEM;
1153	} else {
1154		if (io_data->use_sg) {
1155			req->buf = NULL;
1156			req->sg	= io_data->sgt.sgl;
1157			req->num_sgs = io_data->sgt.nents;
1158		} else {
1159			req->buf = data;
1160			req->num_sgs = 0;
1161		}
1162		req->length = data_len;
1163
1164		io_data->buf = data;
1165		io_data->ep = ep->ep;
1166		io_data->req = req;
1167		io_data->ffs = epfile->ffs;
1168
1169		req->context  = io_data;
1170		req->complete = ffs_epfile_async_io_complete;
1171
1172		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1173		if (ret) {
1174			io_data->req = NULL;
1175			usb_ep_free_request(ep->ep, req);
1176			goto error_lock;
1177		}
1178
1179		ret = -EIOCBQUEUED;
1180		/*
1181		 * Do not kfree the buffer in this function.  It will be freed
1182		 * by ffs_user_copy_worker.
1183		 */
1184		data = NULL;
1185	}
1186
1187error_lock:
1188	spin_unlock_irq(&epfile->ffs->eps_lock);
1189error_mutex:
1190	mutex_unlock(&epfile->mutex);
1191error:
1192	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1193		ffs_free_buffer(io_data);
1194	return ret;
1195}
1196
1197static int
1198ffs_epfile_open(struct inode *inode, struct file *file)
1199{
1200	struct ffs_epfile *epfile = inode->i_private;
1201
 
 
1202	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1203		return -ENODEV;
1204
1205	file->private_data = epfile;
1206	ffs_data_opened(epfile->ffs);
1207
1208	return stream_open(inode, file);
1209}
1210
1211static int ffs_aio_cancel(struct kiocb *kiocb)
1212{
1213	struct ffs_io_data *io_data = kiocb->private;
1214	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1215	unsigned long flags;
1216	int value;
1217
1218	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1219
1220	if (io_data && io_data->ep && io_data->req)
 
 
1221		value = usb_ep_dequeue(io_data->ep, io_data->req);
1222	else
1223		value = -EINVAL;
1224
1225	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1226
1227	return value;
1228}
1229
1230static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1231{
1232	struct ffs_io_data io_data, *p = &io_data;
1233	ssize_t res;
1234
 
 
1235	if (!is_sync_kiocb(kiocb)) {
1236		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1237		if (!p)
1238			return -ENOMEM;
1239		p->aio = true;
1240	} else {
1241		memset(p, 0, sizeof(*p));
1242		p->aio = false;
1243	}
1244
1245	p->read = false;
1246	p->kiocb = kiocb;
1247	p->data = *from;
1248	p->mm = current->mm;
1249
1250	kiocb->private = p;
1251
1252	if (p->aio)
1253		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1254
1255	res = ffs_epfile_io(kiocb->ki_filp, p);
1256	if (res == -EIOCBQUEUED)
1257		return res;
1258	if (p->aio)
1259		kfree(p);
1260	else
1261		*from = p->data;
1262	return res;
1263}
1264
1265static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1266{
1267	struct ffs_io_data io_data, *p = &io_data;
1268	ssize_t res;
1269
 
 
1270	if (!is_sync_kiocb(kiocb)) {
1271		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1272		if (!p)
1273			return -ENOMEM;
1274		p->aio = true;
1275	} else {
1276		memset(p, 0, sizeof(*p));
1277		p->aio = false;
1278	}
1279
1280	p->read = true;
1281	p->kiocb = kiocb;
1282	if (p->aio) {
1283		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1284		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1285			kfree(p);
1286			return -ENOMEM;
1287		}
1288	} else {
1289		p->data = *to;
1290		p->to_free = NULL;
1291	}
1292	p->mm = current->mm;
1293
1294	kiocb->private = p;
1295
1296	if (p->aio)
1297		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1298
1299	res = ffs_epfile_io(kiocb->ki_filp, p);
1300	if (res == -EIOCBQUEUED)
1301		return res;
1302
1303	if (p->aio) {
1304		kfree(p->to_free);
1305		kfree(p);
1306	} else {
1307		*to = p->data;
1308	}
1309	return res;
1310}
1311
1312static void ffs_dmabuf_release(struct kref *ref)
1313{
1314	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1315	struct dma_buf_attachment *attach = priv->attach;
1316	struct dma_buf *dmabuf = attach->dmabuf;
1317
1318	pr_vdebug("FFS DMABUF release\n");
1319	dma_resv_lock(dmabuf->resv, NULL);
1320	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1321	dma_resv_unlock(dmabuf->resv);
1322
1323	dma_buf_detach(attach->dmabuf, attach);
1324	dma_buf_put(dmabuf);
1325	kfree(priv);
1326}
1327
1328static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1329{
1330	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1331
1332	kref_get(&priv->ref);
1333}
1334
1335static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1336{
1337	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1338
1339	kref_put(&priv->ref, ffs_dmabuf_release);
1340}
1341
1342static int
1343ffs_epfile_release(struct inode *inode, struct file *file)
1344{
1345	struct ffs_epfile *epfile = inode->i_private;
1346	struct ffs_dmabuf_priv *priv, *tmp;
1347	struct ffs_data *ffs = epfile->ffs;
1348
1349	mutex_lock(&epfile->dmabufs_mutex);
1350
1351	/* Close all attached DMABUFs */
1352	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1353		/* Cancel any pending transfer */
1354		spin_lock_irq(&ffs->eps_lock);
1355		if (priv->ep && priv->req)
1356			usb_ep_dequeue(priv->ep, priv->req);
1357		spin_unlock_irq(&ffs->eps_lock);
1358
1359		list_del(&priv->entry);
1360		ffs_dmabuf_put(priv->attach);
1361	}
1362
1363	mutex_unlock(&epfile->dmabufs_mutex);
1364
1365	__ffs_epfile_read_buffer_free(epfile);
1366	ffs_data_closed(epfile->ffs);
1367
1368	return 0;
1369}
1370
1371static void ffs_dmabuf_cleanup(struct work_struct *work)
1372{
1373	struct ffs_dma_fence *dma_fence =
1374		container_of(work, struct ffs_dma_fence, work);
1375	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1376	struct dma_buf_attachment *attach = priv->attach;
1377	struct dma_fence *fence = &dma_fence->base;
1378
1379	ffs_dmabuf_put(attach);
1380	dma_fence_put(fence);
1381}
1382
1383static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1384{
1385	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1386	struct dma_fence *fence = &dma_fence->base;
1387	bool cookie = dma_fence_begin_signalling();
1388
1389	dma_fence_get(fence);
1390	fence->error = ret;
1391	dma_fence_signal(fence);
1392	dma_fence_end_signalling(cookie);
1393
1394	/*
1395	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1396	 * It can't be done here, as the unref functions might try to lock
1397	 * the resv object, which would deadlock.
1398	 */
1399	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1400	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1401}
1402
1403static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1404					  struct usb_request *req)
1405{
1406	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1407	ffs_dmabuf_signal_done(req->context, req->status);
1408	usb_ep_free_request(ep, req);
1409}
1410
1411static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1412{
1413	return "functionfs";
1414}
1415
1416static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1417{
1418	return "";
1419}
1420
1421static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1422{
1423	struct ffs_dma_fence *dma_fence =
1424		container_of(fence, struct ffs_dma_fence, base);
1425
1426	kfree(dma_fence);
1427}
1428
1429static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1430	.get_driver_name	= ffs_dmabuf_get_driver_name,
1431	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1432	.release		= ffs_dmabuf_fence_release,
1433};
1434
1435static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1436{
1437	if (!nonblock)
1438		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1439
1440	if (!dma_resv_trylock(dmabuf->resv))
1441		return -EBUSY;
1442
1443	return 0;
1444}
1445
1446static struct dma_buf_attachment *
1447ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1448{
1449	struct device *dev = epfile->ffs->gadget->dev.parent;
1450	struct dma_buf_attachment *attach = NULL;
1451	struct ffs_dmabuf_priv *priv;
1452
1453	mutex_lock(&epfile->dmabufs_mutex);
1454
1455	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1456		if (priv->attach->dev == dev
1457		    && priv->attach->dmabuf == dmabuf) {
1458			attach = priv->attach;
1459			break;
1460		}
1461	}
1462
1463	if (attach)
1464		ffs_dmabuf_get(attach);
1465
1466	mutex_unlock(&epfile->dmabufs_mutex);
1467
1468	return attach ?: ERR_PTR(-EPERM);
1469}
1470
1471static int ffs_dmabuf_attach(struct file *file, int fd)
1472{
1473	bool nonblock = file->f_flags & O_NONBLOCK;
1474	struct ffs_epfile *epfile = file->private_data;
1475	struct usb_gadget *gadget = epfile->ffs->gadget;
1476	struct dma_buf_attachment *attach;
1477	struct ffs_dmabuf_priv *priv;
1478	enum dma_data_direction dir;
1479	struct sg_table *sg_table;
1480	struct dma_buf *dmabuf;
1481	int err;
1482
1483	if (!gadget || !gadget->sg_supported)
1484		return -EPERM;
1485
1486	dmabuf = dma_buf_get(fd);
1487	if (IS_ERR(dmabuf))
1488		return PTR_ERR(dmabuf);
1489
1490	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1491	if (IS_ERR(attach)) {
1492		err = PTR_ERR(attach);
1493		goto err_dmabuf_put;
1494	}
1495
1496	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1497	if (!priv) {
1498		err = -ENOMEM;
1499		goto err_dmabuf_detach;
1500	}
1501
1502	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1503
1504	err = ffs_dma_resv_lock(dmabuf, nonblock);
1505	if (err)
1506		goto err_free_priv;
1507
1508	sg_table = dma_buf_map_attachment(attach, dir);
1509	dma_resv_unlock(dmabuf->resv);
1510
1511	if (IS_ERR(sg_table)) {
1512		err = PTR_ERR(sg_table);
1513		goto err_free_priv;
1514	}
1515
1516	attach->importer_priv = priv;
1517
1518	priv->sgt = sg_table;
1519	priv->dir = dir;
1520	priv->ffs = epfile->ffs;
1521	priv->attach = attach;
1522	spin_lock_init(&priv->lock);
1523	kref_init(&priv->ref);
1524	priv->context = dma_fence_context_alloc(1);
1525
1526	mutex_lock(&epfile->dmabufs_mutex);
1527	list_add(&priv->entry, &epfile->dmabufs);
1528	mutex_unlock(&epfile->dmabufs_mutex);
1529
1530	return 0;
1531
1532err_free_priv:
1533	kfree(priv);
1534err_dmabuf_detach:
1535	dma_buf_detach(dmabuf, attach);
1536err_dmabuf_put:
1537	dma_buf_put(dmabuf);
1538
1539	return err;
1540}
1541
1542static int ffs_dmabuf_detach(struct file *file, int fd)
1543{
1544	struct ffs_epfile *epfile = file->private_data;
1545	struct ffs_data *ffs = epfile->ffs;
1546	struct device *dev = ffs->gadget->dev.parent;
1547	struct ffs_dmabuf_priv *priv, *tmp;
1548	struct dma_buf *dmabuf;
1549	int ret = -EPERM;
1550
1551	dmabuf = dma_buf_get(fd);
1552	if (IS_ERR(dmabuf))
1553		return PTR_ERR(dmabuf);
1554
1555	mutex_lock(&epfile->dmabufs_mutex);
1556
1557	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1558		if (priv->attach->dev == dev
1559		    && priv->attach->dmabuf == dmabuf) {
1560			/* Cancel any pending transfer */
1561			spin_lock_irq(&ffs->eps_lock);
1562			if (priv->ep && priv->req)
1563				usb_ep_dequeue(priv->ep, priv->req);
1564			spin_unlock_irq(&ffs->eps_lock);
1565
1566			list_del(&priv->entry);
1567
1568			/* Unref the reference from ffs_dmabuf_attach() */
1569			ffs_dmabuf_put(priv->attach);
1570			ret = 0;
1571			break;
1572		}
1573	}
1574
1575	mutex_unlock(&epfile->dmabufs_mutex);
1576	dma_buf_put(dmabuf);
1577
1578	return ret;
1579}
1580
1581static int ffs_dmabuf_transfer(struct file *file,
1582			       const struct usb_ffs_dmabuf_transfer_req *req)
1583{
1584	bool nonblock = file->f_flags & O_NONBLOCK;
1585	struct ffs_epfile *epfile = file->private_data;
1586	struct dma_buf_attachment *attach;
1587	struct ffs_dmabuf_priv *priv;
1588	struct ffs_dma_fence *fence;
1589	struct usb_request *usb_req;
1590	enum dma_resv_usage resv_dir;
1591	struct dma_buf *dmabuf;
1592	unsigned long timeout;
1593	struct ffs_ep *ep;
1594	bool cookie;
1595	u32 seqno;
1596	long retl;
1597	int ret;
1598
1599	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1600		return -EINVAL;
1601
1602	dmabuf = dma_buf_get(req->fd);
1603	if (IS_ERR(dmabuf))
1604		return PTR_ERR(dmabuf);
1605
1606	if (req->length > dmabuf->size || req->length == 0) {
1607		ret = -EINVAL;
1608		goto err_dmabuf_put;
1609	}
1610
1611	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1612	if (IS_ERR(attach)) {
1613		ret = PTR_ERR(attach);
1614		goto err_dmabuf_put;
1615	}
1616
1617	priv = attach->importer_priv;
1618
1619	ep = ffs_epfile_wait_ep(file);
1620	if (IS_ERR(ep)) {
1621		ret = PTR_ERR(ep);
1622		goto err_attachment_put;
1623	}
1624
1625	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1626	if (ret)
1627		goto err_attachment_put;
1628
1629	/* Make sure we don't have writers */
1630	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1631	retl = dma_resv_wait_timeout(dmabuf->resv,
1632				     dma_resv_usage_rw(epfile->in),
1633				     true, timeout);
1634	if (retl == 0)
1635		retl = -EBUSY;
1636	if (retl < 0) {
1637		ret = (int)retl;
1638		goto err_resv_unlock;
1639	}
1640
1641	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1642	if (ret)
1643		goto err_resv_unlock;
1644
1645	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1646	if (!fence) {
1647		ret = -ENOMEM;
1648		goto err_resv_unlock;
1649	}
1650
1651	fence->priv = priv;
1652
1653	spin_lock_irq(&epfile->ffs->eps_lock);
1654
1655	/* In the meantime, endpoint got disabled or changed. */
1656	if (epfile->ep != ep) {
1657		ret = -ESHUTDOWN;
1658		goto err_fence_put;
1659	}
1660
1661	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1662	if (!usb_req) {
1663		ret = -ENOMEM;
1664		goto err_fence_put;
1665	}
1666
1667	/*
1668	 * usb_ep_queue() guarantees that all transfers are processed in the
1669	 * order they are enqueued, so we can use a simple incrementing
1670	 * sequence number for the dma_fence.
1671	 */
1672	seqno = atomic_add_return(1, &epfile->seqno);
1673
1674	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1675		       &priv->lock, priv->context, seqno);
1676
1677	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1678
1679	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1680	dma_resv_unlock(dmabuf->resv);
1681
1682	/* Now that the dma_fence is in place, queue the transfer. */
1683
1684	usb_req->length = req->length;
1685	usb_req->buf = NULL;
1686	usb_req->sg = priv->sgt->sgl;
1687	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1688	usb_req->sg_was_mapped = true;
1689	usb_req->context  = fence;
1690	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1691
1692	cookie = dma_fence_begin_signalling();
1693	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1694	dma_fence_end_signalling(cookie);
1695	if (!ret) {
1696		priv->req = usb_req;
1697		priv->ep = ep->ep;
1698	} else {
1699		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1700		ffs_dmabuf_signal_done(fence, ret);
1701		usb_ep_free_request(ep->ep, usb_req);
1702	}
1703
1704	spin_unlock_irq(&epfile->ffs->eps_lock);
1705	dma_buf_put(dmabuf);
1706
1707	return ret;
1708
1709err_fence_put:
1710	spin_unlock_irq(&epfile->ffs->eps_lock);
1711	dma_fence_put(&fence->base);
1712err_resv_unlock:
1713	dma_resv_unlock(dmabuf->resv);
1714err_attachment_put:
1715	ffs_dmabuf_put(attach);
1716err_dmabuf_put:
1717	dma_buf_put(dmabuf);
1718
1719	return ret;
1720}
1721
1722static long ffs_epfile_ioctl(struct file *file, unsigned code,
1723			     unsigned long value)
1724{
1725	struct ffs_epfile *epfile = file->private_data;
1726	struct ffs_ep *ep;
1727	int ret;
1728
 
 
1729	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1730		return -ENODEV;
1731
1732	switch (code) {
1733	case FUNCTIONFS_DMABUF_ATTACH:
1734	{
1735		int fd;
 
1736
1737		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1738			ret = -EFAULT;
1739			break;
1740		}
1741
1742		return ffs_dmabuf_attach(file, fd);
1743	}
1744	case FUNCTIONFS_DMABUF_DETACH:
1745	{
1746		int fd;
1747
1748		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1749			ret = -EFAULT;
1750			break;
1751		}
1752
1753		return ffs_dmabuf_detach(file, fd);
1754	}
1755	case FUNCTIONFS_DMABUF_TRANSFER:
1756	{
1757		struct usb_ffs_dmabuf_transfer_req req;
1758
1759		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1760			ret = -EFAULT;
1761			break;
1762		}
1763
1764		return ffs_dmabuf_transfer(file, &req);
1765	}
1766	default:
1767		break;
1768	}
1769
1770	/* Wait for endpoint to be enabled */
1771	ep = ffs_epfile_wait_ep(file);
1772	if (IS_ERR(ep))
1773		return PTR_ERR(ep);
1774
1775	spin_lock_irq(&epfile->ffs->eps_lock);
1776
1777	/* In the meantime, endpoint got disabled or changed. */
1778	if (epfile->ep != ep) {
1779		spin_unlock_irq(&epfile->ffs->eps_lock);
1780		return -ESHUTDOWN;
1781	}
1782
1783	switch (code) {
1784	case FUNCTIONFS_FIFO_STATUS:
1785		ret = usb_ep_fifo_status(epfile->ep->ep);
1786		break;
1787	case FUNCTIONFS_FIFO_FLUSH:
1788		usb_ep_fifo_flush(epfile->ep->ep);
1789		ret = 0;
1790		break;
1791	case FUNCTIONFS_CLEAR_HALT:
1792		ret = usb_ep_clear_halt(epfile->ep->ep);
1793		break;
1794	case FUNCTIONFS_ENDPOINT_REVMAP:
1795		ret = epfile->ep->num;
1796		break;
1797	case FUNCTIONFS_ENDPOINT_DESC:
1798	{
1799		int desc_idx;
1800		struct usb_endpoint_descriptor desc1, *desc;
1801
1802		switch (epfile->ffs->gadget->speed) {
1803		case USB_SPEED_SUPER:
1804		case USB_SPEED_SUPER_PLUS:
1805			desc_idx = 2;
1806			break;
1807		case USB_SPEED_HIGH:
1808			desc_idx = 1;
1809			break;
1810		default:
1811			desc_idx = 0;
1812		}
1813
1814		desc = epfile->ep->descs[desc_idx];
1815		memcpy(&desc1, desc, desc->bLength);
1816
1817		spin_unlock_irq(&epfile->ffs->eps_lock);
1818		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1819		if (ret)
1820			ret = -EFAULT;
1821		return ret;
1822	}
1823	default:
1824		ret = -ENOTTY;
1825	}
1826	spin_unlock_irq(&epfile->ffs->eps_lock);
1827
1828	return ret;
1829}
1830
 
 
 
 
 
 
 
 
1831static const struct file_operations ffs_epfile_operations = {
 
1832
1833	.open =		ffs_epfile_open,
1834	.write_iter =	ffs_epfile_write_iter,
1835	.read_iter =	ffs_epfile_read_iter,
1836	.release =	ffs_epfile_release,
1837	.unlocked_ioctl =	ffs_epfile_ioctl,
1838	.compat_ioctl = compat_ptr_ioctl,
 
 
1839};
1840
1841
1842/* File system and super block operations ***********************************/
1843
1844/*
1845 * Mounting the file system creates a controller file, used first for
1846 * function configuration then later for event monitoring.
1847 */
1848
1849static struct inode *__must_check
1850ffs_sb_make_inode(struct super_block *sb, void *data,
1851		  const struct file_operations *fops,
1852		  const struct inode_operations *iops,
1853		  struct ffs_file_perms *perms)
1854{
1855	struct inode *inode;
1856
 
 
1857	inode = new_inode(sb);
1858
1859	if (inode) {
1860		struct timespec64 ts = inode_set_ctime_current(inode);
1861
1862		inode->i_ino	 = get_next_ino();
1863		inode->i_mode    = perms->mode;
1864		inode->i_uid     = perms->uid;
1865		inode->i_gid     = perms->gid;
1866		inode_set_atime_to_ts(inode, ts);
1867		inode_set_mtime_to_ts(inode, ts);
 
1868		inode->i_private = data;
1869		if (fops)
1870			inode->i_fop = fops;
1871		if (iops)
1872			inode->i_op  = iops;
1873	}
1874
1875	return inode;
1876}
1877
1878/* Create "regular" file */
1879static struct dentry *ffs_sb_create_file(struct super_block *sb,
1880					const char *name, void *data,
1881					const struct file_operations *fops)
1882{
1883	struct ffs_data	*ffs = sb->s_fs_info;
1884	struct dentry	*dentry;
1885	struct inode	*inode;
1886
 
 
1887	dentry = d_alloc_name(sb->s_root, name);
1888	if (!dentry)
1889		return NULL;
1890
1891	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1892	if (!inode) {
1893		dput(dentry);
1894		return NULL;
1895	}
1896
1897	d_add(dentry, inode);
1898	return dentry;
1899}
1900
1901/* Super block */
1902static const struct super_operations ffs_sb_operations = {
1903	.statfs =	simple_statfs,
1904	.drop_inode =	generic_delete_inode,
1905};
1906
1907struct ffs_sb_fill_data {
1908	struct ffs_file_perms perms;
1909	umode_t root_mode;
1910	const char *dev_name;
1911	bool no_disconnect;
1912	struct ffs_data *ffs_data;
1913};
1914
1915static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1916{
1917	struct ffs_sb_fill_data *data = fc->fs_private;
1918	struct inode	*inode;
1919	struct ffs_data	*ffs = data->ffs_data;
1920
 
 
1921	ffs->sb              = sb;
1922	data->ffs_data       = NULL;
1923	sb->s_fs_info        = ffs;
1924	sb->s_blocksize      = PAGE_SIZE;
1925	sb->s_blocksize_bits = PAGE_SHIFT;
1926	sb->s_magic          = FUNCTIONFS_MAGIC;
1927	sb->s_op             = &ffs_sb_operations;
1928	sb->s_time_gran      = 1;
1929
1930	/* Root inode */
1931	data->perms.mode = data->root_mode;
1932	inode = ffs_sb_make_inode(sb, NULL,
1933				  &simple_dir_operations,
1934				  &simple_dir_inode_operations,
1935				  &data->perms);
1936	sb->s_root = d_make_root(inode);
1937	if (!sb->s_root)
1938		return -ENOMEM;
1939
1940	/* EP0 file */
1941	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
 
1942		return -ENOMEM;
1943
1944	return 0;
1945}
1946
1947enum {
1948	Opt_no_disconnect,
1949	Opt_rmode,
1950	Opt_fmode,
1951	Opt_mode,
1952	Opt_uid,
1953	Opt_gid,
1954};
1955
1956static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1957	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1958	fsparam_u32	("rmode",		Opt_rmode),
1959	fsparam_u32	("fmode",		Opt_fmode),
1960	fsparam_u32	("mode",		Opt_mode),
1961	fsparam_u32	("uid",			Opt_uid),
1962	fsparam_u32	("gid",			Opt_gid),
1963	{}
1964};
1965
 
 
 
 
 
1966static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1967{
1968	struct ffs_sb_fill_data *data = fc->fs_private;
1969	struct fs_parse_result result;
1970	int opt;
1971
1972	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
 
 
1973	if (opt < 0)
1974		return opt;
1975
1976	switch (opt) {
1977	case Opt_no_disconnect:
1978		data->no_disconnect = result.boolean;
1979		break;
1980	case Opt_rmode:
1981		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1982		break;
1983	case Opt_fmode:
1984		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1985		break;
1986	case Opt_mode:
1987		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1988		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1989		break;
1990
1991	case Opt_uid:
1992		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1993		if (!uid_valid(data->perms.uid))
1994			goto unmapped_value;
1995		break;
1996	case Opt_gid:
1997		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1998		if (!gid_valid(data->perms.gid))
1999			goto unmapped_value;
2000		break;
2001
2002	default:
2003		return -ENOPARAM;
2004	}
2005
2006	return 0;
2007
2008unmapped_value:
2009	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2010}
2011
2012/*
2013 * Set up the superblock for a mount.
2014 */
2015static int ffs_fs_get_tree(struct fs_context *fc)
2016{
2017	struct ffs_sb_fill_data *ctx = fc->fs_private;
 
2018	struct ffs_data	*ffs;
2019	int ret;
 
2020
2021	if (!fc->source)
2022		return invalf(fc, "No source specified");
2023
2024	ffs = ffs_data_new(fc->source);
2025	if (!ffs)
2026		return -ENOMEM;
2027	ffs->file_perms = ctx->perms;
2028	ffs->no_disconnect = ctx->no_disconnect;
2029
2030	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2031	if (!ffs->dev_name) {
2032		ffs_data_put(ffs);
2033		return -ENOMEM;
2034	}
2035
2036	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2037	if (ret) {
2038		ffs_data_put(ffs);
2039		return ret;
2040	}
2041
 
2042	ctx->ffs_data = ffs;
2043	return get_tree_nodev(fc, ffs_sb_fill);
2044}
2045
2046static void ffs_fs_free_fc(struct fs_context *fc)
2047{
2048	struct ffs_sb_fill_data *ctx = fc->fs_private;
2049
2050	if (ctx) {
2051		if (ctx->ffs_data) {
 
2052			ffs_data_put(ctx->ffs_data);
2053		}
2054
2055		kfree(ctx);
2056	}
2057}
2058
2059static const struct fs_context_operations ffs_fs_context_ops = {
2060	.free		= ffs_fs_free_fc,
2061	.parse_param	= ffs_fs_parse_param,
2062	.get_tree	= ffs_fs_get_tree,
2063};
2064
2065static int ffs_fs_init_fs_context(struct fs_context *fc)
2066{
2067	struct ffs_sb_fill_data *ctx;
2068
2069	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2070	if (!ctx)
2071		return -ENOMEM;
2072
2073	ctx->perms.mode = S_IFREG | 0600;
2074	ctx->perms.uid = GLOBAL_ROOT_UID;
2075	ctx->perms.gid = GLOBAL_ROOT_GID;
2076	ctx->root_mode = S_IFDIR | 0500;
2077	ctx->no_disconnect = false;
2078
2079	fc->fs_private = ctx;
2080	fc->ops = &ffs_fs_context_ops;
2081	return 0;
2082}
2083
2084static void
2085ffs_fs_kill_sb(struct super_block *sb)
2086{
 
 
2087	kill_litter_super(sb);
2088	if (sb->s_fs_info)
 
2089		ffs_data_closed(sb->s_fs_info);
 
2090}
2091
2092static struct file_system_type ffs_fs_type = {
2093	.owner		= THIS_MODULE,
2094	.name		= "functionfs",
2095	.init_fs_context = ffs_fs_init_fs_context,
2096	.parameters	= ffs_fs_fs_parameters,
2097	.kill_sb	= ffs_fs_kill_sb,
2098};
2099MODULE_ALIAS_FS("functionfs");
2100
2101
2102/* Driver's main init/cleanup functions *************************************/
2103
2104static int functionfs_init(void)
2105{
2106	int ret;
2107
 
 
2108	ret = register_filesystem(&ffs_fs_type);
2109	if (!ret)
2110		pr_info("file system registered\n");
2111	else
2112		pr_err("failed registering file system (%d)\n", ret);
2113
2114	return ret;
2115}
2116
2117static void functionfs_cleanup(void)
2118{
 
 
2119	pr_info("unloading\n");
2120	unregister_filesystem(&ffs_fs_type);
2121}
2122
2123
2124/* ffs_data and ffs_function construction and destruction code **************/
2125
2126static void ffs_data_clear(struct ffs_data *ffs);
2127static void ffs_data_reset(struct ffs_data *ffs);
2128
2129static void ffs_data_get(struct ffs_data *ffs)
2130{
 
 
2131	refcount_inc(&ffs->ref);
2132}
2133
2134static void ffs_data_opened(struct ffs_data *ffs)
2135{
 
 
2136	refcount_inc(&ffs->ref);
2137	if (atomic_add_return(1, &ffs->opened) == 1 &&
2138			ffs->state == FFS_DEACTIVATED) {
2139		ffs->state = FFS_CLOSING;
2140		ffs_data_reset(ffs);
2141	}
2142}
2143
2144static void ffs_data_put(struct ffs_data *ffs)
2145{
2146	if (refcount_dec_and_test(&ffs->ref)) {
 
 
2147		pr_info("%s(): freeing\n", __func__);
2148		ffs_data_clear(ffs);
2149		ffs_release_dev(ffs->private_data);
2150		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2151		       swait_active(&ffs->ep0req_completion.wait) ||
2152		       waitqueue_active(&ffs->wait));
2153		destroy_workqueue(ffs->io_completion_wq);
2154		kfree(ffs->dev_name);
2155		kfree(ffs);
2156	}
2157}
2158
2159static void ffs_data_closed(struct ffs_data *ffs)
2160{
2161	struct ffs_epfile *epfiles;
2162	unsigned long flags;
2163
2164	if (atomic_dec_and_test(&ffs->opened)) {
2165		if (ffs->no_disconnect) {
2166			ffs->state = FFS_DEACTIVATED;
2167			spin_lock_irqsave(&ffs->eps_lock, flags);
2168			epfiles = ffs->epfiles;
2169			ffs->epfiles = NULL;
2170			spin_unlock_irqrestore(&ffs->eps_lock,
2171							flags);
2172
2173			if (epfiles)
2174				ffs_epfiles_destroy(epfiles,
2175						 ffs->eps_count);
2176
2177			if (ffs->setup_state == FFS_SETUP_PENDING)
2178				__ffs_ep0_stall(ffs);
2179		} else {
2180			ffs->state = FFS_CLOSING;
2181			ffs_data_reset(ffs);
2182		}
2183	}
2184	if (atomic_read(&ffs->opened) < 0) {
2185		ffs->state = FFS_CLOSING;
2186		ffs_data_reset(ffs);
2187	}
2188
2189	ffs_data_put(ffs);
2190}
2191
2192static struct ffs_data *ffs_data_new(const char *dev_name)
2193{
2194	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2195	if (!ffs)
2196		return NULL;
2197
 
 
2198	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2199	if (!ffs->io_completion_wq) {
2200		kfree(ffs);
2201		return NULL;
2202	}
2203
2204	refcount_set(&ffs->ref, 1);
2205	atomic_set(&ffs->opened, 0);
2206	ffs->state = FFS_READ_DESCRIPTORS;
2207	mutex_init(&ffs->mutex);
2208	spin_lock_init(&ffs->eps_lock);
2209	init_waitqueue_head(&ffs->ev.waitq);
2210	init_waitqueue_head(&ffs->wait);
2211	init_completion(&ffs->ep0req_completion);
2212
2213	/* XXX REVISIT need to update it in some places, or do we? */
2214	ffs->ev.can_stall = 1;
2215
2216	return ffs;
2217}
2218
2219static void ffs_data_clear(struct ffs_data *ffs)
2220{
2221	struct ffs_epfile *epfiles;
2222	unsigned long flags;
2223
2224	ffs_closed(ffs);
2225
2226	BUG_ON(ffs->gadget);
2227
2228	spin_lock_irqsave(&ffs->eps_lock, flags);
2229	epfiles = ffs->epfiles;
2230	ffs->epfiles = NULL;
2231	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2232
2233	/*
2234	 * potential race possible between ffs_func_eps_disable
2235	 * & ffs_epfile_release therefore maintaining a local
2236	 * copy of epfile will save us from use-after-free.
2237	 */
2238	if (epfiles) {
2239		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2240		ffs->epfiles = NULL;
2241	}
2242
2243	if (ffs->ffs_eventfd) {
2244		eventfd_ctx_put(ffs->ffs_eventfd);
2245		ffs->ffs_eventfd = NULL;
2246	}
2247
2248	kfree(ffs->raw_descs_data);
2249	kfree(ffs->raw_strings);
2250	kfree(ffs->stringtabs);
2251}
2252
2253static void ffs_data_reset(struct ffs_data *ffs)
2254{
 
 
2255	ffs_data_clear(ffs);
2256
 
2257	ffs->raw_descs_data = NULL;
2258	ffs->raw_descs = NULL;
2259	ffs->raw_strings = NULL;
2260	ffs->stringtabs = NULL;
2261
2262	ffs->raw_descs_length = 0;
2263	ffs->fs_descs_count = 0;
2264	ffs->hs_descs_count = 0;
2265	ffs->ss_descs_count = 0;
2266
2267	ffs->strings_count = 0;
2268	ffs->interfaces_count = 0;
2269	ffs->eps_count = 0;
2270
2271	ffs->ev.count = 0;
2272
2273	ffs->state = FFS_READ_DESCRIPTORS;
2274	ffs->setup_state = FFS_NO_SETUP;
2275	ffs->flags = 0;
2276
2277	ffs->ms_os_descs_ext_prop_count = 0;
2278	ffs->ms_os_descs_ext_prop_name_len = 0;
2279	ffs->ms_os_descs_ext_prop_data_len = 0;
2280}
2281
2282
2283static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2284{
2285	struct usb_gadget_strings **lang;
2286	int first_id;
2287
2288	if ((ffs->state != FFS_ACTIVE
 
 
2289		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2290		return -EBADFD;
2291
2292	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2293	if (first_id < 0)
2294		return first_id;
2295
2296	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2297	if (!ffs->ep0req)
2298		return -ENOMEM;
2299	ffs->ep0req->complete = ffs_ep0_complete;
2300	ffs->ep0req->context = ffs;
2301
2302	lang = ffs->stringtabs;
2303	if (lang) {
2304		for (; *lang; ++lang) {
2305			struct usb_string *str = (*lang)->strings;
2306			int id = first_id;
2307			for (; str->s; ++id, ++str)
2308				str->id = id;
2309		}
2310	}
2311
2312	ffs->gadget = cdev->gadget;
2313	ffs_data_get(ffs);
2314	return 0;
2315}
2316
2317static void functionfs_unbind(struct ffs_data *ffs)
2318{
 
 
2319	if (!WARN_ON(!ffs->gadget)) {
2320		/* dequeue before freeing ep0req */
2321		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2322		mutex_lock(&ffs->mutex);
2323		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2324		ffs->ep0req = NULL;
2325		ffs->gadget = NULL;
2326		clear_bit(FFS_FL_BOUND, &ffs->flags);
2327		mutex_unlock(&ffs->mutex);
2328		ffs_data_put(ffs);
2329	}
2330}
2331
2332static int ffs_epfiles_create(struct ffs_data *ffs)
2333{
2334	struct ffs_epfile *epfile, *epfiles;
2335	unsigned i, count;
2336
 
 
2337	count = ffs->eps_count;
2338	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2339	if (!epfiles)
2340		return -ENOMEM;
2341
2342	epfile = epfiles;
2343	for (i = 1; i <= count; ++i, ++epfile) {
2344		epfile->ffs = ffs;
2345		mutex_init(&epfile->mutex);
2346		mutex_init(&epfile->dmabufs_mutex);
2347		INIT_LIST_HEAD(&epfile->dmabufs);
2348		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2349			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2350		else
2351			sprintf(epfile->name, "ep%u", i);
2352		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2353						 epfile,
2354						 &ffs_epfile_operations);
2355		if (!epfile->dentry) {
2356			ffs_epfiles_destroy(epfiles, i - 1);
2357			return -ENOMEM;
2358		}
2359	}
2360
2361	ffs->epfiles = epfiles;
2362	return 0;
2363}
2364
2365static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2366{
2367	struct ffs_epfile *epfile = epfiles;
2368
 
 
2369	for (; count; --count, ++epfile) {
2370		BUG_ON(mutex_is_locked(&epfile->mutex));
2371		if (epfile->dentry) {
2372			d_delete(epfile->dentry);
2373			dput(epfile->dentry);
2374			epfile->dentry = NULL;
2375		}
2376	}
2377
2378	kfree(epfiles);
2379}
2380
2381static void ffs_func_eps_disable(struct ffs_function *func)
2382{
2383	struct ffs_ep *ep;
2384	struct ffs_epfile *epfile;
2385	unsigned short count;
2386	unsigned long flags;
2387
2388	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2389	count = func->ffs->eps_count;
2390	epfile = func->ffs->epfiles;
2391	ep = func->eps;
2392	while (count--) {
2393		/* pending requests get nuked */
2394		if (ep->ep)
2395			usb_ep_disable(ep->ep);
2396		++ep;
2397
2398		if (epfile) {
2399			epfile->ep = NULL;
2400			__ffs_epfile_read_buffer_free(epfile);
2401			++epfile;
2402		}
2403	}
2404	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2405}
2406
2407static int ffs_func_eps_enable(struct ffs_function *func)
2408{
2409	struct ffs_data *ffs;
2410	struct ffs_ep *ep;
2411	struct ffs_epfile *epfile;
2412	unsigned short count;
2413	unsigned long flags;
2414	int ret = 0;
2415
2416	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2417	ffs = func->ffs;
2418	ep = func->eps;
2419	epfile = ffs->epfiles;
2420	count = ffs->eps_count;
2421	while(count--) {
2422		ep->ep->driver_data = ep;
2423
2424		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2425		if (ret) {
2426			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2427					__func__, ep->ep->name, ret);
2428			break;
2429		}
2430
2431		ret = usb_ep_enable(ep->ep);
2432		if (!ret) {
2433			epfile->ep = ep;
2434			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2435			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2436		} else {
2437			break;
2438		}
2439
2440		++ep;
2441		++epfile;
2442	}
2443
2444	wake_up_interruptible(&ffs->wait);
2445	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2446
2447	return ret;
2448}
2449
2450
2451/* Parsing and building descriptors and strings *****************************/
2452
2453/*
2454 * This validates if data pointed by data is a valid USB descriptor as
2455 * well as record how many interfaces, endpoints and strings are
2456 * required by given configuration.  Returns address after the
2457 * descriptor or NULL if data is invalid.
2458 */
2459
2460enum ffs_entity_type {
2461	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2462};
2463
2464enum ffs_os_desc_type {
2465	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2466};
2467
2468typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2469				   u8 *valuep,
2470				   struct usb_descriptor_header *desc,
2471				   void *priv);
2472
2473typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2474				    struct usb_os_desc_header *h, void *data,
2475				    unsigned len, void *priv);
2476
2477static int __must_check ffs_do_single_desc(char *data, unsigned len,
2478					   ffs_entity_callback entity,
2479					   void *priv, int *current_class, int *current_subclass)
2480{
2481	struct usb_descriptor_header *_ds = (void *)data;
2482	u8 length;
2483	int ret;
2484
 
 
2485	/* At least two bytes are required: length and type */
2486	if (len < 2) {
2487		pr_vdebug("descriptor too short\n");
2488		return -EINVAL;
2489	}
2490
2491	/* If we have at least as many bytes as the descriptor takes? */
2492	length = _ds->bLength;
2493	if (len < length) {
2494		pr_vdebug("descriptor longer then available data\n");
2495		return -EINVAL;
2496	}
2497
2498#define __entity_check_INTERFACE(val)  1
2499#define __entity_check_STRING(val)     (val)
2500#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2501#define __entity(type, val) do {					\
2502		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2503		if (!__entity_check_ ##type(val)) {			\
2504			pr_vdebug("invalid entity's value\n");		\
2505			return -EINVAL;					\
2506		}							\
2507		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2508		if (ret < 0) {						\
2509			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2510				 (val), ret);				\
2511			return ret;					\
2512		}							\
2513	} while (0)
2514
2515	/* Parse descriptor depending on type. */
2516	switch (_ds->bDescriptorType) {
2517	case USB_DT_DEVICE:
2518	case USB_DT_CONFIG:
2519	case USB_DT_STRING:
2520	case USB_DT_DEVICE_QUALIFIER:
2521		/* function can't have any of those */
2522		pr_vdebug("descriptor reserved for gadget: %d\n",
2523		      _ds->bDescriptorType);
2524		return -EINVAL;
2525
2526	case USB_DT_INTERFACE: {
2527		struct usb_interface_descriptor *ds = (void *)_ds;
2528		pr_vdebug("interface descriptor\n");
2529		if (length != sizeof *ds)
2530			goto inv_length;
2531
2532		__entity(INTERFACE, ds->bInterfaceNumber);
2533		if (ds->iInterface)
2534			__entity(STRING, ds->iInterface);
2535		*current_class = ds->bInterfaceClass;
2536		*current_subclass = ds->bInterfaceSubClass;
2537	}
2538		break;
2539
2540	case USB_DT_ENDPOINT: {
2541		struct usb_endpoint_descriptor *ds = (void *)_ds;
2542		pr_vdebug("endpoint descriptor\n");
2543		if (length != USB_DT_ENDPOINT_SIZE &&
2544		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2545			goto inv_length;
2546		__entity(ENDPOINT, ds->bEndpointAddress);
2547	}
2548		break;
2549
2550	case USB_TYPE_CLASS | 0x01:
2551		if (*current_class == USB_INTERFACE_CLASS_HID) {
2552			pr_vdebug("hid descriptor\n");
2553			if (length != sizeof(struct hid_descriptor))
2554				goto inv_length;
2555			break;
2556		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2557			pr_vdebug("ccid descriptor\n");
2558			if (length != sizeof(struct ccid_descriptor))
2559				goto inv_length;
2560			break;
2561		} else if (*current_class == USB_CLASS_APP_SPEC &&
2562			   *current_subclass == USB_SUBCLASS_DFU) {
2563			pr_vdebug("dfu functional descriptor\n");
2564			if (length != sizeof(struct usb_dfu_functional_descriptor))
2565				goto inv_length;
2566			break;
2567		} else {
2568			pr_vdebug("unknown descriptor: %d for class %d\n",
2569			      _ds->bDescriptorType, *current_class);
2570			return -EINVAL;
2571		}
2572
2573	case USB_DT_OTG:
2574		if (length != sizeof(struct usb_otg_descriptor))
2575			goto inv_length;
2576		break;
2577
2578	case USB_DT_INTERFACE_ASSOCIATION: {
2579		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2580		pr_vdebug("interface association descriptor\n");
2581		if (length != sizeof *ds)
2582			goto inv_length;
2583		if (ds->iFunction)
2584			__entity(STRING, ds->iFunction);
2585	}
2586		break;
2587
2588	case USB_DT_SS_ENDPOINT_COMP:
2589		pr_vdebug("EP SS companion descriptor\n");
2590		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2591			goto inv_length;
2592		break;
2593
2594	case USB_DT_OTHER_SPEED_CONFIG:
2595	case USB_DT_INTERFACE_POWER:
2596	case USB_DT_DEBUG:
2597	case USB_DT_SECURITY:
2598	case USB_DT_CS_RADIO_CONTROL:
2599		/* TODO */
2600		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2601		return -EINVAL;
2602
2603	default:
2604		/* We should never be here */
2605		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2606		return -EINVAL;
2607
2608inv_length:
2609		pr_vdebug("invalid length: %d (descriptor %d)\n",
2610			  _ds->bLength, _ds->bDescriptorType);
2611		return -EINVAL;
2612	}
2613
2614#undef __entity
2615#undef __entity_check_DESCRIPTOR
2616#undef __entity_check_INTERFACE
2617#undef __entity_check_STRING
2618#undef __entity_check_ENDPOINT
2619
2620	return length;
2621}
2622
2623static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2624				     ffs_entity_callback entity, void *priv)
2625{
2626	const unsigned _len = len;
2627	unsigned long num = 0;
2628	int current_class = -1;
2629	int current_subclass = -1;
 
2630
2631	for (;;) {
2632		int ret;
2633
2634		if (num == count)
2635			data = NULL;
2636
2637		/* Record "descriptor" entity */
2638		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2639		if (ret < 0) {
2640			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2641				 num, ret);
2642			return ret;
2643		}
2644
2645		if (!data)
2646			return _len - len;
2647
2648		ret = ffs_do_single_desc(data, len, entity, priv,
2649			&current_class, &current_subclass);
2650		if (ret < 0) {
2651			pr_debug("%s returns %d\n", __func__, ret);
2652			return ret;
2653		}
2654
2655		len -= ret;
2656		data += ret;
2657		++num;
2658	}
2659}
2660
2661static int __ffs_data_do_entity(enum ffs_entity_type type,
2662				u8 *valuep, struct usb_descriptor_header *desc,
2663				void *priv)
2664{
2665	struct ffs_desc_helper *helper = priv;
2666	struct usb_endpoint_descriptor *d;
2667
 
 
2668	switch (type) {
2669	case FFS_DESCRIPTOR:
2670		break;
2671
2672	case FFS_INTERFACE:
2673		/*
2674		 * Interfaces are indexed from zero so if we
2675		 * encountered interface "n" then there are at least
2676		 * "n+1" interfaces.
2677		 */
2678		if (*valuep >= helper->interfaces_count)
2679			helper->interfaces_count = *valuep + 1;
2680		break;
2681
2682	case FFS_STRING:
2683		/*
2684		 * Strings are indexed from 1 (0 is reserved
2685		 * for languages list)
2686		 */
2687		if (*valuep > helper->ffs->strings_count)
2688			helper->ffs->strings_count = *valuep;
2689		break;
2690
2691	case FFS_ENDPOINT:
2692		d = (void *)desc;
2693		helper->eps_count++;
2694		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2695			return -EINVAL;
2696		/* Check if descriptors for any speed were already parsed */
2697		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2698			helper->ffs->eps_addrmap[helper->eps_count] =
2699				d->bEndpointAddress;
2700		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2701				d->bEndpointAddress)
2702			return -EINVAL;
2703		break;
2704	}
2705
2706	return 0;
2707}
2708
2709static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2710				   struct usb_os_desc_header *desc)
2711{
2712	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2713	u16 w_index = le16_to_cpu(desc->wIndex);
2714
2715	if (bcd_version == 0x1) {
2716		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2717			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2718	} else if (bcd_version != 0x100) {
2719		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2720			  bcd_version);
2721		return -EINVAL;
2722	}
2723	switch (w_index) {
2724	case 0x4:
2725		*next_type = FFS_OS_DESC_EXT_COMPAT;
2726		break;
2727	case 0x5:
2728		*next_type = FFS_OS_DESC_EXT_PROP;
2729		break;
2730	default:
2731		pr_vdebug("unsupported os descriptor type: %d", w_index);
2732		return -EINVAL;
2733	}
2734
2735	return sizeof(*desc);
2736}
2737
2738/*
2739 * Process all extended compatibility/extended property descriptors
2740 * of a feature descriptor
2741 */
2742static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2743					      enum ffs_os_desc_type type,
2744					      u16 feature_count,
2745					      ffs_os_desc_callback entity,
2746					      void *priv,
2747					      struct usb_os_desc_header *h)
2748{
2749	int ret;
2750	const unsigned _len = len;
2751
 
 
2752	/* loop over all ext compat/ext prop descriptors */
2753	while (feature_count--) {
2754		ret = entity(type, h, data, len, priv);
2755		if (ret < 0) {
2756			pr_debug("bad OS descriptor, type: %d\n", type);
2757			return ret;
2758		}
2759		data += ret;
2760		len -= ret;
2761	}
2762	return _len - len;
2763}
2764
2765/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2766static int __must_check ffs_do_os_descs(unsigned count,
2767					char *data, unsigned len,
2768					ffs_os_desc_callback entity, void *priv)
2769{
2770	const unsigned _len = len;
2771	unsigned long num = 0;
2772
 
 
2773	for (num = 0; num < count; ++num) {
2774		int ret;
2775		enum ffs_os_desc_type type;
2776		u16 feature_count;
2777		struct usb_os_desc_header *desc = (void *)data;
2778
2779		if (len < sizeof(*desc))
2780			return -EINVAL;
2781
2782		/*
2783		 * Record "descriptor" entity.
2784		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2785		 * Move the data pointer to the beginning of extended
2786		 * compatibilities proper or extended properties proper
2787		 * portions of the data
2788		 */
2789		if (le32_to_cpu(desc->dwLength) > len)
2790			return -EINVAL;
2791
2792		ret = __ffs_do_os_desc_header(&type, desc);
2793		if (ret < 0) {
2794			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2795				 num, ret);
2796			return ret;
2797		}
2798		/*
2799		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2800		 */
2801		feature_count = le16_to_cpu(desc->wCount);
2802		if (type == FFS_OS_DESC_EXT_COMPAT &&
2803		    (feature_count > 255 || desc->Reserved))
2804				return -EINVAL;
2805		len -= ret;
2806		data += ret;
2807
2808		/*
2809		 * Process all function/property descriptors
2810		 * of this Feature Descriptor
2811		 */
2812		ret = ffs_do_single_os_desc(data, len, type,
2813					    feature_count, entity, priv, desc);
2814		if (ret < 0) {
2815			pr_debug("%s returns %d\n", __func__, ret);
2816			return ret;
2817		}
2818
2819		len -= ret;
2820		data += ret;
2821	}
2822	return _len - len;
2823}
2824
2825/*
2826 * Validate contents of the buffer from userspace related to OS descriptors.
2827 */
2828static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2829				 struct usb_os_desc_header *h, void *data,
2830				 unsigned len, void *priv)
2831{
2832	struct ffs_data *ffs = priv;
2833	u8 length;
2834
 
 
2835	switch (type) {
2836	case FFS_OS_DESC_EXT_COMPAT: {
2837		struct usb_ext_compat_desc *d = data;
2838		int i;
2839
2840		if (len < sizeof(*d) ||
2841		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2842			return -EINVAL;
2843		if (d->Reserved1 != 1) {
2844			/*
2845			 * According to the spec, Reserved1 must be set to 1
2846			 * but older kernels incorrectly rejected non-zero
2847			 * values.  We fix it here to avoid returning EINVAL
2848			 * in response to values we used to accept.
2849			 */
2850			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2851			d->Reserved1 = 1;
2852		}
2853		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2854			if (d->Reserved2[i])
2855				return -EINVAL;
2856
2857		length = sizeof(struct usb_ext_compat_desc);
2858	}
2859		break;
2860	case FFS_OS_DESC_EXT_PROP: {
2861		struct usb_ext_prop_desc *d = data;
2862		u32 type, pdl;
2863		u16 pnl;
2864
2865		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2866			return -EINVAL;
2867		length = le32_to_cpu(d->dwSize);
2868		if (len < length)
2869			return -EINVAL;
2870		type = le32_to_cpu(d->dwPropertyDataType);
2871		if (type < USB_EXT_PROP_UNICODE ||
2872		    type > USB_EXT_PROP_UNICODE_MULTI) {
2873			pr_vdebug("unsupported os descriptor property type: %d",
2874				  type);
2875			return -EINVAL;
2876		}
2877		pnl = le16_to_cpu(d->wPropertyNameLength);
2878		if (length < 14 + pnl) {
2879			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2880				  length, pnl, type);
2881			return -EINVAL;
2882		}
2883		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2884		if (length != 14 + pnl + pdl) {
2885			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2886				  length, pnl, pdl, type);
2887			return -EINVAL;
2888		}
2889		++ffs->ms_os_descs_ext_prop_count;
2890		/* property name reported to the host as "WCHAR"s */
2891		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2892		ffs->ms_os_descs_ext_prop_data_len += pdl;
2893	}
2894		break;
2895	default:
2896		pr_vdebug("unknown descriptor: %d\n", type);
2897		return -EINVAL;
2898	}
2899	return length;
2900}
2901
2902static int __ffs_data_got_descs(struct ffs_data *ffs,
2903				char *const _data, size_t len)
2904{
2905	char *data = _data, *raw_descs;
2906	unsigned os_descs_count = 0, counts[3], flags;
2907	int ret = -EINVAL, i;
2908	struct ffs_desc_helper helper;
2909
 
 
2910	if (get_unaligned_le32(data + 4) != len)
2911		goto error;
2912
2913	switch (get_unaligned_le32(data)) {
2914	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2915		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2916		data += 8;
2917		len  -= 8;
2918		break;
2919	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2920		flags = get_unaligned_le32(data + 8);
2921		ffs->user_flags = flags;
2922		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2923			      FUNCTIONFS_HAS_HS_DESC |
2924			      FUNCTIONFS_HAS_SS_DESC |
2925			      FUNCTIONFS_HAS_MS_OS_DESC |
2926			      FUNCTIONFS_VIRTUAL_ADDR |
2927			      FUNCTIONFS_EVENTFD |
2928			      FUNCTIONFS_ALL_CTRL_RECIP |
2929			      FUNCTIONFS_CONFIG0_SETUP)) {
2930			ret = -ENOSYS;
2931			goto error;
2932		}
2933		data += 12;
2934		len  -= 12;
2935		break;
2936	default:
2937		goto error;
2938	}
2939
2940	if (flags & FUNCTIONFS_EVENTFD) {
2941		if (len < 4)
2942			goto error;
2943		ffs->ffs_eventfd =
2944			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2945		if (IS_ERR(ffs->ffs_eventfd)) {
2946			ret = PTR_ERR(ffs->ffs_eventfd);
2947			ffs->ffs_eventfd = NULL;
2948			goto error;
2949		}
2950		data += 4;
2951		len  -= 4;
2952	}
2953
2954	/* Read fs_count, hs_count and ss_count (if present) */
2955	for (i = 0; i < 3; ++i) {
2956		if (!(flags & (1 << i))) {
2957			counts[i] = 0;
2958		} else if (len < 4) {
2959			goto error;
2960		} else {
2961			counts[i] = get_unaligned_le32(data);
2962			data += 4;
2963			len  -= 4;
2964		}
2965	}
2966	if (flags & (1 << i)) {
2967		if (len < 4) {
2968			goto error;
2969		}
2970		os_descs_count = get_unaligned_le32(data);
2971		data += 4;
2972		len -= 4;
2973	}
2974
2975	/* Read descriptors */
2976	raw_descs = data;
2977	helper.ffs = ffs;
2978	for (i = 0; i < 3; ++i) {
2979		if (!counts[i])
2980			continue;
2981		helper.interfaces_count = 0;
2982		helper.eps_count = 0;
2983		ret = ffs_do_descs(counts[i], data, len,
2984				   __ffs_data_do_entity, &helper);
2985		if (ret < 0)
2986			goto error;
2987		if (!ffs->eps_count && !ffs->interfaces_count) {
2988			ffs->eps_count = helper.eps_count;
2989			ffs->interfaces_count = helper.interfaces_count;
2990		} else {
2991			if (ffs->eps_count != helper.eps_count) {
2992				ret = -EINVAL;
2993				goto error;
2994			}
2995			if (ffs->interfaces_count != helper.interfaces_count) {
2996				ret = -EINVAL;
2997				goto error;
2998			}
2999		}
3000		data += ret;
3001		len  -= ret;
3002	}
3003	if (os_descs_count) {
3004		ret = ffs_do_os_descs(os_descs_count, data, len,
3005				      __ffs_data_do_os_desc, ffs);
3006		if (ret < 0)
3007			goto error;
3008		data += ret;
3009		len -= ret;
3010	}
3011
3012	if (raw_descs == data || len) {
3013		ret = -EINVAL;
3014		goto error;
3015	}
3016
3017	ffs->raw_descs_data	= _data;
3018	ffs->raw_descs		= raw_descs;
3019	ffs->raw_descs_length	= data - raw_descs;
3020	ffs->fs_descs_count	= counts[0];
3021	ffs->hs_descs_count	= counts[1];
3022	ffs->ss_descs_count	= counts[2];
3023	ffs->ms_os_descs_count	= os_descs_count;
3024
3025	return 0;
3026
3027error:
3028	kfree(_data);
3029	return ret;
3030}
3031
3032static int __ffs_data_got_strings(struct ffs_data *ffs,
3033				  char *const _data, size_t len)
3034{
3035	u32 str_count, needed_count, lang_count;
3036	struct usb_gadget_strings **stringtabs, *t;
3037	const char *data = _data;
3038	struct usb_string *s;
3039
3040	if (len < 16 ||
3041	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3042	    get_unaligned_le32(data + 4) != len)
 
 
3043		goto error;
3044	str_count  = get_unaligned_le32(data + 8);
3045	lang_count = get_unaligned_le32(data + 12);
3046
3047	/* if one is zero the other must be zero */
3048	if (!str_count != !lang_count)
3049		goto error;
3050
3051	/* Do we have at least as many strings as descriptors need? */
3052	needed_count = ffs->strings_count;
3053	if (str_count < needed_count)
3054		goto error;
3055
3056	/*
3057	 * If we don't need any strings just return and free all
3058	 * memory.
3059	 */
3060	if (!needed_count) {
3061		kfree(_data);
3062		return 0;
3063	}
3064
3065	/* Allocate everything in one chunk so there's less maintenance. */
3066	{
3067		unsigned i = 0;
3068		vla_group(d);
3069		vla_item(d, struct usb_gadget_strings *, stringtabs,
3070			size_add(lang_count, 1));
3071		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3072		vla_item(d, struct usb_string, strings,
3073			size_mul(lang_count, (needed_count + 1)));
3074
3075		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3076
3077		if (!vlabuf) {
3078			kfree(_data);
3079			return -ENOMEM;
3080		}
3081
3082		/* Initialize the VLA pointers */
3083		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3084		t = vla_ptr(vlabuf, d, stringtab);
3085		i = lang_count;
3086		do {
3087			*stringtabs++ = t++;
3088		} while (--i);
3089		*stringtabs = NULL;
3090
3091		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3092		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3093		t = vla_ptr(vlabuf, d, stringtab);
3094		s = vla_ptr(vlabuf, d, strings);
3095	}
3096
3097	/* For each language */
3098	data += 16;
3099	len -= 16;
3100
3101	do { /* lang_count > 0 so we can use do-while */
3102		unsigned needed = needed_count;
3103		u32 str_per_lang = str_count;
3104
3105		if (len < 3)
3106			goto error_free;
3107		t->language = get_unaligned_le16(data);
3108		t->strings  = s;
3109		++t;
3110
3111		data += 2;
3112		len -= 2;
3113
3114		/* For each string */
3115		do { /* str_count > 0 so we can use do-while */
3116			size_t length = strnlen(data, len);
3117
3118			if (length == len)
3119				goto error_free;
3120
3121			/*
3122			 * User may provide more strings then we need,
3123			 * if that's the case we simply ignore the
3124			 * rest
3125			 */
3126			if (needed) {
3127				/*
3128				 * s->id will be set while adding
3129				 * function to configuration so for
3130				 * now just leave garbage here.
3131				 */
3132				s->s = data;
3133				--needed;
3134				++s;
3135			}
3136
3137			data += length + 1;
3138			len -= length + 1;
3139		} while (--str_per_lang);
3140
3141		s->id = 0;   /* terminator */
3142		s->s = NULL;
3143		++s;
3144
3145	} while (--lang_count);
3146
3147	/* Some garbage left? */
3148	if (len)
3149		goto error_free;
3150
3151	/* Done! */
3152	ffs->stringtabs = stringtabs;
3153	ffs->raw_strings = _data;
3154
3155	return 0;
3156
3157error_free:
3158	kfree(stringtabs);
3159error:
3160	kfree(_data);
3161	return -EINVAL;
3162}
3163
3164
3165/* Events handling and management *******************************************/
3166
3167static void __ffs_event_add(struct ffs_data *ffs,
3168			    enum usb_functionfs_event_type type)
3169{
3170	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3171	int neg = 0;
3172
3173	/*
3174	 * Abort any unhandled setup
3175	 *
3176	 * We do not need to worry about some cmpxchg() changing value
3177	 * of ffs->setup_state without holding the lock because when
3178	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3179	 * the source does nothing.
3180	 */
3181	if (ffs->setup_state == FFS_SETUP_PENDING)
3182		ffs->setup_state = FFS_SETUP_CANCELLED;
3183
3184	/*
3185	 * Logic of this function guarantees that there are at most four pending
3186	 * evens on ffs->ev.types queue.  This is important because the queue
3187	 * has space for four elements only and __ffs_ep0_read_events function
3188	 * depends on that limit as well.  If more event types are added, those
3189	 * limits have to be revisited or guaranteed to still hold.
3190	 */
3191	switch (type) {
3192	case FUNCTIONFS_RESUME:
3193		rem_type2 = FUNCTIONFS_SUSPEND;
3194		fallthrough;
3195	case FUNCTIONFS_SUSPEND:
3196	case FUNCTIONFS_SETUP:
3197		rem_type1 = type;
3198		/* Discard all similar events */
3199		break;
3200
3201	case FUNCTIONFS_BIND:
3202	case FUNCTIONFS_UNBIND:
3203	case FUNCTIONFS_DISABLE:
3204	case FUNCTIONFS_ENABLE:
3205		/* Discard everything other then power management. */
3206		rem_type1 = FUNCTIONFS_SUSPEND;
3207		rem_type2 = FUNCTIONFS_RESUME;
3208		neg = 1;
3209		break;
3210
3211	default:
3212		WARN(1, "%d: unknown event, this should not happen\n", type);
3213		return;
3214	}
3215
3216	{
3217		u8 *ev  = ffs->ev.types, *out = ev;
3218		unsigned n = ffs->ev.count;
3219		for (; n; --n, ++ev)
3220			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3221				*out++ = *ev;
3222			else
3223				pr_vdebug("purging event %d\n", *ev);
3224		ffs->ev.count = out - ffs->ev.types;
3225	}
3226
3227	pr_vdebug("adding event %d\n", type);
3228	ffs->ev.types[ffs->ev.count++] = type;
3229	wake_up_locked(&ffs->ev.waitq);
3230	if (ffs->ffs_eventfd)
3231		eventfd_signal(ffs->ffs_eventfd);
3232}
3233
3234static void ffs_event_add(struct ffs_data *ffs,
3235			  enum usb_functionfs_event_type type)
3236{
3237	unsigned long flags;
3238	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3239	__ffs_event_add(ffs, type);
3240	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3241}
3242
3243/* Bind/unbind USB function hooks *******************************************/
3244
3245static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3246{
3247	int i;
3248
3249	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3250		if (ffs->eps_addrmap[i] == endpoint_address)
3251			return i;
3252	return -ENOENT;
3253}
3254
3255static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3256				    struct usb_descriptor_header *desc,
3257				    void *priv)
3258{
3259	struct usb_endpoint_descriptor *ds = (void *)desc;
3260	struct ffs_function *func = priv;
3261	struct ffs_ep *ffs_ep;
3262	unsigned ep_desc_id;
3263	int idx;
3264	static const char *speed_names[] = { "full", "high", "super" };
3265
3266	if (type != FFS_DESCRIPTOR)
3267		return 0;
3268
3269	/*
3270	 * If ss_descriptors is not NULL, we are reading super speed
3271	 * descriptors; if hs_descriptors is not NULL, we are reading high
3272	 * speed descriptors; otherwise, we are reading full speed
3273	 * descriptors.
3274	 */
3275	if (func->function.ss_descriptors) {
3276		ep_desc_id = 2;
3277		func->function.ss_descriptors[(long)valuep] = desc;
3278	} else if (func->function.hs_descriptors) {
3279		ep_desc_id = 1;
3280		func->function.hs_descriptors[(long)valuep] = desc;
3281	} else {
3282		ep_desc_id = 0;
3283		func->function.fs_descriptors[(long)valuep]    = desc;
3284	}
3285
3286	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3287		return 0;
3288
3289	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3290	if (idx < 0)
3291		return idx;
3292
3293	ffs_ep = func->eps + idx;
3294
3295	if (ffs_ep->descs[ep_desc_id]) {
3296		pr_err("two %sspeed descriptors for EP %d\n",
3297			  speed_names[ep_desc_id],
3298			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3299		return -EINVAL;
3300	}
3301	ffs_ep->descs[ep_desc_id] = ds;
3302
3303	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3304	if (ffs_ep->ep) {
3305		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3306		if (!ds->wMaxPacketSize)
3307			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3308	} else {
3309		struct usb_request *req;
3310		struct usb_ep *ep;
3311		u8 bEndpointAddress;
3312		u16 wMaxPacketSize;
3313
3314		/*
3315		 * We back up bEndpointAddress because autoconfig overwrites
3316		 * it with physical endpoint address.
3317		 */
3318		bEndpointAddress = ds->bEndpointAddress;
3319		/*
3320		 * We back up wMaxPacketSize because autoconfig treats
3321		 * endpoint descriptors as if they were full speed.
3322		 */
3323		wMaxPacketSize = ds->wMaxPacketSize;
3324		pr_vdebug("autoconfig\n");
3325		ep = usb_ep_autoconfig(func->gadget, ds);
3326		if (!ep)
3327			return -ENOTSUPP;
3328		ep->driver_data = func->eps + idx;
3329
3330		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3331		if (!req)
3332			return -ENOMEM;
3333
3334		ffs_ep->ep  = ep;
3335		ffs_ep->req = req;
3336		func->eps_revmap[ds->bEndpointAddress &
3337				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3338		/*
3339		 * If we use virtual address mapping, we restore
3340		 * original bEndpointAddress value.
3341		 */
3342		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3343			ds->bEndpointAddress = bEndpointAddress;
3344		/*
3345		 * Restore wMaxPacketSize which was potentially
3346		 * overwritten by autoconfig.
3347		 */
3348		ds->wMaxPacketSize = wMaxPacketSize;
3349	}
3350	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3351
3352	return 0;
3353}
3354
3355static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3356				   struct usb_descriptor_header *desc,
3357				   void *priv)
3358{
3359	struct ffs_function *func = priv;
3360	unsigned idx;
3361	u8 newValue;
3362
3363	switch (type) {
3364	default:
3365	case FFS_DESCRIPTOR:
3366		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3367		return 0;
3368
3369	case FFS_INTERFACE:
3370		idx = *valuep;
3371		if (func->interfaces_nums[idx] < 0) {
3372			int id = usb_interface_id(func->conf, &func->function);
3373			if (id < 0)
3374				return id;
3375			func->interfaces_nums[idx] = id;
3376		}
3377		newValue = func->interfaces_nums[idx];
3378		break;
3379
3380	case FFS_STRING:
3381		/* String' IDs are allocated when fsf_data is bound to cdev */
3382		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3383		break;
3384
3385	case FFS_ENDPOINT:
3386		/*
3387		 * USB_DT_ENDPOINT are handled in
3388		 * __ffs_func_bind_do_descs().
3389		 */
3390		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3391			return 0;
3392
3393		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3394		if (!func->eps[idx].ep)
3395			return -EINVAL;
3396
3397		{
3398			struct usb_endpoint_descriptor **descs;
3399			descs = func->eps[idx].descs;
3400			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3401		}
3402		break;
3403	}
3404
3405	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3406	*valuep = newValue;
3407	return 0;
3408}
3409
3410static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3411				      struct usb_os_desc_header *h, void *data,
3412				      unsigned len, void *priv)
3413{
3414	struct ffs_function *func = priv;
3415	u8 length = 0;
3416
3417	switch (type) {
3418	case FFS_OS_DESC_EXT_COMPAT: {
3419		struct usb_ext_compat_desc *desc = data;
3420		struct usb_os_desc_table *t;
3421
3422		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3423		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3424		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3425		       sizeof_field(struct usb_ext_compat_desc, IDs));
 
3426		length = sizeof(*desc);
3427	}
3428		break;
3429	case FFS_OS_DESC_EXT_PROP: {
3430		struct usb_ext_prop_desc *desc = data;
3431		struct usb_os_desc_table *t;
3432		struct usb_os_desc_ext_prop *ext_prop;
3433		char *ext_prop_name;
3434		char *ext_prop_data;
3435
3436		t = &func->function.os_desc_table[h->interface];
3437		t->if_id = func->interfaces_nums[h->interface];
3438
3439		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3440		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3441
3442		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3443		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3444		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3445			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3446		length = ext_prop->name_len + ext_prop->data_len + 14;
3447
3448		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3449		func->ffs->ms_os_descs_ext_prop_name_avail +=
3450			ext_prop->name_len;
3451
3452		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3453		func->ffs->ms_os_descs_ext_prop_data_avail +=
3454			ext_prop->data_len;
3455		memcpy(ext_prop_data,
3456		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3457		       ext_prop->data_len);
3458		/* unicode data reported to the host as "WCHAR"s */
3459		switch (ext_prop->type) {
3460		case USB_EXT_PROP_UNICODE:
3461		case USB_EXT_PROP_UNICODE_ENV:
3462		case USB_EXT_PROP_UNICODE_LINK:
3463		case USB_EXT_PROP_UNICODE_MULTI:
3464			ext_prop->data_len *= 2;
3465			break;
3466		}
3467		ext_prop->data = ext_prop_data;
3468
3469		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3470		       ext_prop->name_len);
3471		/* property name reported to the host as "WCHAR"s */
3472		ext_prop->name_len *= 2;
3473		ext_prop->name = ext_prop_name;
3474
3475		t->os_desc->ext_prop_len +=
3476			ext_prop->name_len + ext_prop->data_len + 14;
3477		++t->os_desc->ext_prop_count;
3478		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3479	}
3480		break;
3481	default:
3482		pr_vdebug("unknown descriptor: %d\n", type);
3483	}
3484
3485	return length;
3486}
3487
3488static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3489						struct usb_configuration *c)
3490{
3491	struct ffs_function *func = ffs_func_from_usb(f);
3492	struct f_fs_opts *ffs_opts =
3493		container_of(f->fi, struct f_fs_opts, func_inst);
3494	struct ffs_data *ffs_data;
3495	int ret;
3496
 
 
3497	/*
3498	 * Legacy gadget triggers binding in functionfs_ready_callback,
3499	 * which already uses locking; taking the same lock here would
3500	 * cause a deadlock.
3501	 *
3502	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3503	 */
3504	if (!ffs_opts->no_configfs)
3505		ffs_dev_lock();
3506	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3507	ffs_data = ffs_opts->dev->ffs_data;
3508	if (!ffs_opts->no_configfs)
3509		ffs_dev_unlock();
3510	if (ret)
3511		return ERR_PTR(ret);
3512
3513	func->ffs = ffs_data;
3514	func->conf = c;
3515	func->gadget = c->cdev->gadget;
3516
3517	/*
3518	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3519	 * configurations are bound in sequence with list_for_each_entry,
3520	 * in each configuration its functions are bound in sequence
3521	 * with list_for_each_entry, so we assume no race condition
3522	 * with regard to ffs_opts->bound access
3523	 */
3524	if (!ffs_opts->refcnt) {
3525		ret = functionfs_bind(func->ffs, c->cdev);
3526		if (ret)
3527			return ERR_PTR(ret);
3528	}
3529	ffs_opts->refcnt++;
3530	func->function.strings = func->ffs->stringtabs;
3531
3532	return ffs_opts;
3533}
3534
3535static int _ffs_func_bind(struct usb_configuration *c,
3536			  struct usb_function *f)
3537{
3538	struct ffs_function *func = ffs_func_from_usb(f);
3539	struct ffs_data *ffs = func->ffs;
3540
3541	const int full = !!func->ffs->fs_descs_count;
3542	const int high = !!func->ffs->hs_descs_count;
3543	const int super = !!func->ffs->ss_descs_count;
3544
3545	int fs_len, hs_len, ss_len, ret, i;
3546	struct ffs_ep *eps_ptr;
3547
3548	/* Make it a single chunk, less management later on */
3549	vla_group(d);
3550	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3551	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3552		full ? ffs->fs_descs_count + 1 : 0);
3553	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3554		high ? ffs->hs_descs_count + 1 : 0);
3555	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3556		super ? ffs->ss_descs_count + 1 : 0);
3557	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3558	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3559			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3560	vla_item_with_sz(d, char[16], ext_compat,
3561			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3562	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3563			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3564	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3565			 ffs->ms_os_descs_ext_prop_count);
3566	vla_item_with_sz(d, char, ext_prop_name,
3567			 ffs->ms_os_descs_ext_prop_name_len);
3568	vla_item_with_sz(d, char, ext_prop_data,
3569			 ffs->ms_os_descs_ext_prop_data_len);
3570	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3571	char *vlabuf;
3572
 
 
3573	/* Has descriptors only for speeds gadget does not support */
3574	if (!(full | high | super))
3575		return -ENOTSUPP;
3576
3577	/* Allocate a single chunk, less management later on */
3578	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3579	if (!vlabuf)
3580		return -ENOMEM;
3581
3582	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3583	ffs->ms_os_descs_ext_prop_name_avail =
3584		vla_ptr(vlabuf, d, ext_prop_name);
3585	ffs->ms_os_descs_ext_prop_data_avail =
3586		vla_ptr(vlabuf, d, ext_prop_data);
3587
3588	/* Copy descriptors  */
3589	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3590	       ffs->raw_descs_length);
3591
3592	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3593	eps_ptr = vla_ptr(vlabuf, d, eps);
3594	for (i = 0; i < ffs->eps_count; i++)
3595		eps_ptr[i].num = -1;
3596
3597	/* Save pointers
3598	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3599	*/
3600	func->eps             = vla_ptr(vlabuf, d, eps);
3601	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3602
3603	/*
3604	 * Go through all the endpoint descriptors and allocate
3605	 * endpoints first, so that later we can rewrite the endpoint
3606	 * numbers without worrying that it may be described later on.
3607	 */
3608	if (full) {
3609		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3610		fs_len = ffs_do_descs(ffs->fs_descs_count,
3611				      vla_ptr(vlabuf, d, raw_descs),
3612				      d_raw_descs__sz,
3613				      __ffs_func_bind_do_descs, func);
3614		if (fs_len < 0) {
3615			ret = fs_len;
3616			goto error;
3617		}
3618	} else {
3619		fs_len = 0;
3620	}
3621
3622	if (high) {
3623		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3624		hs_len = ffs_do_descs(ffs->hs_descs_count,
3625				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3626				      d_raw_descs__sz - fs_len,
3627				      __ffs_func_bind_do_descs, func);
3628		if (hs_len < 0) {
3629			ret = hs_len;
3630			goto error;
3631		}
3632	} else {
3633		hs_len = 0;
3634	}
3635
3636	if (super) {
3637		func->function.ss_descriptors = func->function.ssp_descriptors =
3638			vla_ptr(vlabuf, d, ss_descs);
3639		ss_len = ffs_do_descs(ffs->ss_descs_count,
3640				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3641				d_raw_descs__sz - fs_len - hs_len,
3642				__ffs_func_bind_do_descs, func);
3643		if (ss_len < 0) {
3644			ret = ss_len;
3645			goto error;
3646		}
3647	} else {
3648		ss_len = 0;
3649	}
3650
3651	/*
3652	 * Now handle interface numbers allocation and interface and
3653	 * endpoint numbers rewriting.  We can do that in one go
3654	 * now.
3655	 */
3656	ret = ffs_do_descs(ffs->fs_descs_count +
3657			   (high ? ffs->hs_descs_count : 0) +
3658			   (super ? ffs->ss_descs_count : 0),
3659			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3660			   __ffs_func_bind_do_nums, func);
3661	if (ret < 0)
3662		goto error;
3663
3664	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3665	if (c->cdev->use_os_string) {
3666		for (i = 0; i < ffs->interfaces_count; ++i) {
3667			struct usb_os_desc *desc;
3668
3669			desc = func->function.os_desc_table[i].os_desc =
3670				vla_ptr(vlabuf, d, os_desc) +
3671				i * sizeof(struct usb_os_desc);
3672			desc->ext_compat_id =
3673				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3674			INIT_LIST_HEAD(&desc->ext_prop);
3675		}
3676		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3677				      vla_ptr(vlabuf, d, raw_descs) +
3678				      fs_len + hs_len + ss_len,
3679				      d_raw_descs__sz - fs_len - hs_len -
3680				      ss_len,
3681				      __ffs_func_bind_do_os_desc, func);
3682		if (ret < 0)
3683			goto error;
3684	}
3685	func->function.os_desc_n =
3686		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3687
3688	/* And we're done */
3689	ffs_event_add(ffs, FUNCTIONFS_BIND);
3690	return 0;
3691
3692error:
3693	/* XXX Do we need to release all claimed endpoints here? */
3694	return ret;
3695}
3696
3697static int ffs_func_bind(struct usb_configuration *c,
3698			 struct usb_function *f)
3699{
3700	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3701	struct ffs_function *func = ffs_func_from_usb(f);
3702	int ret;
3703
3704	if (IS_ERR(ffs_opts))
3705		return PTR_ERR(ffs_opts);
3706
3707	ret = _ffs_func_bind(c, f);
3708	if (ret && !--ffs_opts->refcnt)
3709		functionfs_unbind(func->ffs);
3710
3711	return ret;
3712}
3713
3714
3715/* Other USB function hooks *************************************************/
3716
3717static void ffs_reset_work(struct work_struct *work)
3718{
3719	struct ffs_data *ffs = container_of(work,
3720		struct ffs_data, reset_work);
3721	ffs_data_reset(ffs);
3722}
3723
3724static int ffs_func_get_alt(struct usb_function *f,
3725			    unsigned int interface)
3726{
3727	struct ffs_function *func = ffs_func_from_usb(f);
3728	int intf = ffs_func_revmap_intf(func, interface);
3729
3730	return (intf < 0) ? intf : func->cur_alt[interface];
3731}
3732
3733static int ffs_func_set_alt(struct usb_function *f,
3734			    unsigned interface, unsigned alt)
3735{
3736	struct ffs_function *func = ffs_func_from_usb(f);
3737	struct ffs_data *ffs = func->ffs;
3738	int ret = 0, intf;
3739
3740	if (alt > MAX_ALT_SETTINGS)
3741		return -EINVAL;
3742
3743	intf = ffs_func_revmap_intf(func, interface);
3744	if (intf < 0)
3745		return intf;
3746
3747	if (ffs->func)
3748		ffs_func_eps_disable(ffs->func);
3749
3750	if (ffs->state == FFS_DEACTIVATED) {
3751		ffs->state = FFS_CLOSING;
3752		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3753		schedule_work(&ffs->reset_work);
3754		return -ENODEV;
3755	}
3756
3757	if (ffs->state != FFS_ACTIVE)
3758		return -ENODEV;
3759
 
 
 
 
 
 
3760	ffs->func = func;
3761	ret = ffs_func_eps_enable(func);
3762	if (ret >= 0) {
3763		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3764		func->cur_alt[interface] = alt;
3765	}
3766	return ret;
3767}
3768
3769static void ffs_func_disable(struct usb_function *f)
3770{
3771	struct ffs_function *func = ffs_func_from_usb(f);
3772	struct ffs_data *ffs = func->ffs;
3773
3774	if (ffs->func)
3775		ffs_func_eps_disable(ffs->func);
3776
3777	if (ffs->state == FFS_DEACTIVATED) {
3778		ffs->state = FFS_CLOSING;
3779		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3780		schedule_work(&ffs->reset_work);
3781		return;
3782	}
3783
3784	if (ffs->state == FFS_ACTIVE) {
3785		ffs->func = NULL;
3786		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3787	}
3788}
3789
3790static int ffs_func_setup(struct usb_function *f,
3791			  const struct usb_ctrlrequest *creq)
3792{
3793	struct ffs_function *func = ffs_func_from_usb(f);
3794	struct ffs_data *ffs = func->ffs;
3795	unsigned long flags;
3796	int ret;
3797
 
 
3798	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3799	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3800	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3801	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3802	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3803
3804	/*
3805	 * Most requests directed to interface go through here
3806	 * (notable exceptions are set/get interface) so we need to
3807	 * handle them.  All other either handled by composite or
3808	 * passed to usb_configuration->setup() (if one is set).  No
3809	 * matter, we will handle requests directed to endpoint here
3810	 * as well (as it's straightforward).  Other request recipient
3811	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3812	 * is being used.
3813	 */
3814	if (ffs->state != FFS_ACTIVE)
3815		return -ENODEV;
3816
3817	switch (creq->bRequestType & USB_RECIP_MASK) {
3818	case USB_RECIP_INTERFACE:
3819		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3820		if (ret < 0)
3821			return ret;
3822		break;
3823
3824	case USB_RECIP_ENDPOINT:
3825		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3826		if (ret < 0)
3827			return ret;
3828		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3829			ret = func->ffs->eps_addrmap[ret];
3830		break;
3831
3832	default:
3833		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3834			ret = le16_to_cpu(creq->wIndex);
3835		else
3836			return -EOPNOTSUPP;
3837	}
3838
3839	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3840	ffs->ev.setup = *creq;
3841	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3842	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3843	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3844
3845	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3846}
3847
3848static bool ffs_func_req_match(struct usb_function *f,
3849			       const struct usb_ctrlrequest *creq,
3850			       bool config0)
3851{
3852	struct ffs_function *func = ffs_func_from_usb(f);
3853
3854	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3855		return false;
3856
3857	switch (creq->bRequestType & USB_RECIP_MASK) {
3858	case USB_RECIP_INTERFACE:
3859		return (ffs_func_revmap_intf(func,
3860					     le16_to_cpu(creq->wIndex)) >= 0);
3861	case USB_RECIP_ENDPOINT:
3862		return (ffs_func_revmap_ep(func,
3863					   le16_to_cpu(creq->wIndex)) >= 0);
3864	default:
3865		return (bool) (func->ffs->user_flags &
3866			       FUNCTIONFS_ALL_CTRL_RECIP);
3867	}
3868}
3869
3870static void ffs_func_suspend(struct usb_function *f)
3871{
 
3872	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3873}
3874
3875static void ffs_func_resume(struct usb_function *f)
3876{
 
3877	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3878}
3879
3880
3881/* Endpoint and interface numbers reverse mapping ***************************/
3882
3883static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3884{
3885	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3886	return num ? num : -EDOM;
3887}
3888
3889static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3890{
3891	short *nums = func->interfaces_nums;
3892	unsigned count = func->ffs->interfaces_count;
3893
3894	for (; count; --count, ++nums) {
3895		if (*nums >= 0 && *nums == intf)
3896			return nums - func->interfaces_nums;
3897	}
3898
3899	return -EDOM;
3900}
3901
3902
3903/* Devices management *******************************************************/
3904
3905static LIST_HEAD(ffs_devices);
3906
3907static struct ffs_dev *_ffs_do_find_dev(const char *name)
3908{
3909	struct ffs_dev *dev;
3910
3911	if (!name)
3912		return NULL;
3913
3914	list_for_each_entry(dev, &ffs_devices, entry) {
3915		if (strcmp(dev->name, name) == 0)
3916			return dev;
3917	}
3918
3919	return NULL;
3920}
3921
3922/*
3923 * ffs_lock must be taken by the caller of this function
3924 */
3925static struct ffs_dev *_ffs_get_single_dev(void)
3926{
3927	struct ffs_dev *dev;
3928
3929	if (list_is_singular(&ffs_devices)) {
3930		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3931		if (dev->single)
3932			return dev;
3933	}
3934
3935	return NULL;
3936}
3937
3938/*
3939 * ffs_lock must be taken by the caller of this function
3940 */
3941static struct ffs_dev *_ffs_find_dev(const char *name)
3942{
3943	struct ffs_dev *dev;
3944
3945	dev = _ffs_get_single_dev();
3946	if (dev)
3947		return dev;
3948
3949	return _ffs_do_find_dev(name);
3950}
3951
3952/* Configfs support *********************************************************/
3953
3954static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3955{
3956	return container_of(to_config_group(item), struct f_fs_opts,
3957			    func_inst.group);
3958}
3959
3960static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3961{
3962	struct f_fs_opts *opts = to_ffs_opts(item);
3963	int ready;
3964
3965	ffs_dev_lock();
3966	ready = opts->dev->desc_ready;
3967	ffs_dev_unlock();
3968
3969	return sprintf(page, "%d\n", ready);
3970}
3971
3972CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3973
3974static struct configfs_attribute *ffs_attrs[] = {
3975	&f_fs_opts_attr_ready,
3976	NULL,
3977};
3978
3979static void ffs_attr_release(struct config_item *item)
3980{
3981	struct f_fs_opts *opts = to_ffs_opts(item);
3982
3983	usb_put_function_instance(&opts->func_inst);
3984}
3985
3986static struct configfs_item_operations ffs_item_ops = {
3987	.release	= ffs_attr_release,
3988};
3989
3990static const struct config_item_type ffs_func_type = {
3991	.ct_item_ops	= &ffs_item_ops,
3992	.ct_attrs	= ffs_attrs,
3993	.ct_owner	= THIS_MODULE,
3994};
3995
3996
3997/* Function registration interface ******************************************/
3998
3999static void ffs_free_inst(struct usb_function_instance *f)
4000{
4001	struct f_fs_opts *opts;
4002
4003	opts = to_f_fs_opts(f);
4004	ffs_release_dev(opts->dev);
4005	ffs_dev_lock();
4006	_ffs_free_dev(opts->dev);
4007	ffs_dev_unlock();
4008	kfree(opts);
4009}
4010
4011static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4012{
4013	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4014		return -ENAMETOOLONG;
4015	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4016}
4017
4018static struct usb_function_instance *ffs_alloc_inst(void)
4019{
4020	struct f_fs_opts *opts;
4021	struct ffs_dev *dev;
4022
4023	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4024	if (!opts)
4025		return ERR_PTR(-ENOMEM);
4026
4027	opts->func_inst.set_inst_name = ffs_set_inst_name;
4028	opts->func_inst.free_func_inst = ffs_free_inst;
4029	ffs_dev_lock();
4030	dev = _ffs_alloc_dev();
4031	ffs_dev_unlock();
4032	if (IS_ERR(dev)) {
4033		kfree(opts);
4034		return ERR_CAST(dev);
4035	}
4036	opts->dev = dev;
4037	dev->opts = opts;
4038
4039	config_group_init_type_name(&opts->func_inst.group, "",
4040				    &ffs_func_type);
4041	return &opts->func_inst;
4042}
4043
4044static void ffs_free(struct usb_function *f)
4045{
4046	kfree(ffs_func_from_usb(f));
4047}
4048
4049static void ffs_func_unbind(struct usb_configuration *c,
4050			    struct usb_function *f)
4051{
4052	struct ffs_function *func = ffs_func_from_usb(f);
4053	struct ffs_data *ffs = func->ffs;
4054	struct f_fs_opts *opts =
4055		container_of(f->fi, struct f_fs_opts, func_inst);
4056	struct ffs_ep *ep = func->eps;
4057	unsigned count = ffs->eps_count;
4058	unsigned long flags;
4059
 
4060	if (ffs->func == func) {
4061		ffs_func_eps_disable(func);
4062		ffs->func = NULL;
4063	}
4064
4065	/* Drain any pending AIO completions */
4066	drain_workqueue(ffs->io_completion_wq);
4067
4068	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4069	if (!--opts->refcnt)
4070		functionfs_unbind(ffs);
4071
4072	/* cleanup after autoconfig */
4073	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4074	while (count--) {
4075		if (ep->ep && ep->req)
4076			usb_ep_free_request(ep->ep, ep->req);
4077		ep->req = NULL;
4078		++ep;
4079	}
4080	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4081	kfree(func->eps);
4082	func->eps = NULL;
4083	/*
4084	 * eps, descriptors and interfaces_nums are allocated in the
4085	 * same chunk so only one free is required.
4086	 */
4087	func->function.fs_descriptors = NULL;
4088	func->function.hs_descriptors = NULL;
4089	func->function.ss_descriptors = NULL;
4090	func->function.ssp_descriptors = NULL;
4091	func->interfaces_nums = NULL;
4092
 
4093}
4094
4095static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4096{
4097	struct ffs_function *func;
4098
 
 
4099	func = kzalloc(sizeof(*func), GFP_KERNEL);
4100	if (!func)
4101		return ERR_PTR(-ENOMEM);
4102
4103	func->function.name    = "Function FS Gadget";
4104
4105	func->function.bind    = ffs_func_bind;
4106	func->function.unbind  = ffs_func_unbind;
4107	func->function.set_alt = ffs_func_set_alt;
4108	func->function.get_alt = ffs_func_get_alt;
4109	func->function.disable = ffs_func_disable;
4110	func->function.setup   = ffs_func_setup;
4111	func->function.req_match = ffs_func_req_match;
4112	func->function.suspend = ffs_func_suspend;
4113	func->function.resume  = ffs_func_resume;
4114	func->function.free_func = ffs_free;
4115
4116	return &func->function;
4117}
4118
4119/*
4120 * ffs_lock must be taken by the caller of this function
4121 */
4122static struct ffs_dev *_ffs_alloc_dev(void)
4123{
4124	struct ffs_dev *dev;
4125	int ret;
4126
4127	if (_ffs_get_single_dev())
4128			return ERR_PTR(-EBUSY);
4129
4130	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4131	if (!dev)
4132		return ERR_PTR(-ENOMEM);
4133
4134	if (list_empty(&ffs_devices)) {
4135		ret = functionfs_init();
4136		if (ret) {
4137			kfree(dev);
4138			return ERR_PTR(ret);
4139		}
4140	}
4141
4142	list_add(&dev->entry, &ffs_devices);
4143
4144	return dev;
4145}
4146
4147int ffs_name_dev(struct ffs_dev *dev, const char *name)
4148{
4149	struct ffs_dev *existing;
4150	int ret = 0;
4151
4152	ffs_dev_lock();
4153
4154	existing = _ffs_do_find_dev(name);
4155	if (!existing)
4156		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4157	else if (existing != dev)
4158		ret = -EBUSY;
4159
4160	ffs_dev_unlock();
4161
4162	return ret;
4163}
4164EXPORT_SYMBOL_GPL(ffs_name_dev);
4165
4166int ffs_single_dev(struct ffs_dev *dev)
4167{
4168	int ret;
4169
4170	ret = 0;
4171	ffs_dev_lock();
4172
4173	if (!list_is_singular(&ffs_devices))
4174		ret = -EBUSY;
4175	else
4176		dev->single = true;
4177
4178	ffs_dev_unlock();
4179	return ret;
4180}
4181EXPORT_SYMBOL_GPL(ffs_single_dev);
4182
4183/*
4184 * ffs_lock must be taken by the caller of this function
4185 */
4186static void _ffs_free_dev(struct ffs_dev *dev)
4187{
4188	list_del(&dev->entry);
4189
 
 
 
 
4190	kfree(dev);
4191	if (list_empty(&ffs_devices))
4192		functionfs_cleanup();
4193}
4194
4195static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4196{
4197	int ret = 0;
4198	struct ffs_dev *ffs_dev;
4199
 
4200	ffs_dev_lock();
4201
4202	ffs_dev = _ffs_find_dev(dev_name);
4203	if (!ffs_dev) {
4204		ret = -ENOENT;
4205	} else if (ffs_dev->mounted) {
4206		ret = -EBUSY;
4207	} else if (ffs_dev->ffs_acquire_dev_callback &&
4208		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4209		ret = -ENOENT;
4210	} else {
4211		ffs_dev->mounted = true;
4212		ffs_dev->ffs_data = ffs_data;
4213		ffs_data->private_data = ffs_dev;
4214	}
4215
4216	ffs_dev_unlock();
4217	return ret;
4218}
4219
4220static void ffs_release_dev(struct ffs_dev *ffs_dev)
4221{
 
 
 
4222	ffs_dev_lock();
4223
4224	if (ffs_dev && ffs_dev->mounted) {
 
4225		ffs_dev->mounted = false;
4226		if (ffs_dev->ffs_data) {
4227			ffs_dev->ffs_data->private_data = NULL;
4228			ffs_dev->ffs_data = NULL;
4229		}
4230
4231		if (ffs_dev->ffs_release_dev_callback)
4232			ffs_dev->ffs_release_dev_callback(ffs_dev);
4233	}
4234
4235	ffs_dev_unlock();
4236}
4237
4238static int ffs_ready(struct ffs_data *ffs)
4239{
4240	struct ffs_dev *ffs_obj;
4241	int ret = 0;
4242
 
4243	ffs_dev_lock();
4244
4245	ffs_obj = ffs->private_data;
4246	if (!ffs_obj) {
4247		ret = -EINVAL;
4248		goto done;
4249	}
4250	if (WARN_ON(ffs_obj->desc_ready)) {
4251		ret = -EBUSY;
4252		goto done;
4253	}
4254
4255	ffs_obj->desc_ready = true;
 
4256
4257	if (ffs_obj->ffs_ready_callback) {
4258		ret = ffs_obj->ffs_ready_callback(ffs);
4259		if (ret)
4260			goto done;
4261	}
4262
4263	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4264done:
4265	ffs_dev_unlock();
4266	return ret;
4267}
4268
4269static void ffs_closed(struct ffs_data *ffs)
4270{
4271	struct ffs_dev *ffs_obj;
4272	struct f_fs_opts *opts;
4273	struct config_item *ci;
4274
 
4275	ffs_dev_lock();
4276
4277	ffs_obj = ffs->private_data;
4278	if (!ffs_obj)
4279		goto done;
4280
4281	ffs_obj->desc_ready = false;
 
4282
4283	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4284	    ffs_obj->ffs_closed_callback)
4285		ffs_obj->ffs_closed_callback(ffs);
4286
4287	if (ffs_obj->opts)
4288		opts = ffs_obj->opts;
4289	else
4290		goto done;
4291
4292	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4293	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4294		goto done;
4295
4296	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4297	ffs_dev_unlock();
4298
4299	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4300		unregister_gadget_item(ci);
4301	return;
4302done:
4303	ffs_dev_unlock();
4304}
4305
4306/* Misc helper functions ****************************************************/
4307
4308static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4309{
4310	return nonblock
4311		? mutex_trylock(mutex) ? 0 : -EAGAIN
4312		: mutex_lock_interruptible(mutex);
4313}
4314
4315static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4316{
4317	char *data;
4318
4319	if (!len)
4320		return NULL;
4321
4322	data = memdup_user(buf, len);
4323	if (IS_ERR(data))
4324		return data;
 
 
 
 
 
4325
4326	pr_vdebug("Buffer from user space:\n");
4327	ffs_dump_mem("", data, len);
4328
4329	return data;
4330}
4331
4332DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4333MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4334MODULE_LICENSE("GPL");
4335MODULE_AUTHOR("Michal Nazarewicz");