Loading...
1/* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/module.h>
33#include <linux/pci.h>
34#include <linux/version.h>
35#include <linux/device.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/skbuff.h>
39#include <linux/errno.h>
40#include <linux/list.h>
41#include <linux/string.h>
42#include <linux/dma-mapping.h>
43#include <linux/interrupt.h>
44#include <asm/byteorder.h>
45#include <asm/param.h>
46#include <linux/io.h>
47#include <linux/netdev_features.h>
48#include <linux/udp.h>
49#include <linux/tcp.h>
50#include <net/udp_tunnel.h>
51#include <linux/ip.h>
52#include <net/ipv6.h>
53#include <net/tcp.h>
54#include <linux/if_ether.h>
55#include <linux/if_vlan.h>
56#include <linux/pkt_sched.h>
57#include <linux/ethtool.h>
58#include <linux/in.h>
59#include <linux/random.h>
60#include <net/ip6_checksum.h>
61#include <linux/bitops.h>
62#include <linux/vmalloc.h>
63#include "qede.h"
64#include "qede_ptp.h"
65
66static char version[] =
67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68
69MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70MODULE_LICENSE("GPL");
71MODULE_VERSION(DRV_MODULE_VERSION);
72
73static uint debug;
74module_param(debug, uint, 0);
75MODULE_PARM_DESC(debug, " Default debug msglevel");
76
77static const struct qed_eth_ops *qed_ops;
78
79#define CHIP_NUM_57980S_40 0x1634
80#define CHIP_NUM_57980S_10 0x1666
81#define CHIP_NUM_57980S_MF 0x1636
82#define CHIP_NUM_57980S_100 0x1644
83#define CHIP_NUM_57980S_50 0x1654
84#define CHIP_NUM_57980S_25 0x1656
85#define CHIP_NUM_57980S_IOV 0x1664
86#define CHIP_NUM_AH 0x8070
87#define CHIP_NUM_AH_IOV 0x8090
88
89#ifndef PCI_DEVICE_ID_NX2_57980E
90#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
91#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
92#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
93#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
94#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
95#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
96#define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
97#define PCI_DEVICE_ID_AH CHIP_NUM_AH
98#define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
99
100#endif
101
102enum qede_pci_private {
103 QEDE_PRIVATE_PF,
104 QEDE_PRIVATE_VF
105};
106
107static const struct pci_device_id qede_pci_tbl[] = {
108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114#ifdef CONFIG_QED_SRIOV
115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116#endif
117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118#ifdef CONFIG_QED_SRIOV
119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120#endif
121 { 0 }
122};
123
124MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125
126static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127
128#define TX_TIMEOUT (5 * HZ)
129
130/* Utilize last protocol index for XDP */
131#define XDP_PI 11
132
133static void qede_remove(struct pci_dev *pdev);
134static void qede_shutdown(struct pci_dev *pdev);
135static void qede_link_update(void *dev, struct qed_link_output *link);
136static void qede_schedule_recovery_handler(void *dev);
137static void qede_recovery_handler(struct qede_dev *edev);
138static void qede_get_eth_tlv_data(void *edev, void *data);
139static void qede_get_generic_tlv_data(void *edev,
140 struct qed_generic_tlvs *data);
141
142#ifdef CONFIG_QED_SRIOV
143static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
144 __be16 vlan_proto)
145{
146 struct qede_dev *edev = netdev_priv(ndev);
147
148 if (vlan > 4095) {
149 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
150 return -EINVAL;
151 }
152
153 if (vlan_proto != htons(ETH_P_8021Q))
154 return -EPROTONOSUPPORT;
155
156 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
157 vlan, vf);
158
159 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
160}
161
162static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
163{
164 struct qede_dev *edev = netdev_priv(ndev);
165
166 DP_VERBOSE(edev, QED_MSG_IOV,
167 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
168 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
169
170 if (!is_valid_ether_addr(mac)) {
171 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
172 return -EINVAL;
173 }
174
175 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
176}
177
178static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
179{
180 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
181 struct qed_dev_info *qed_info = &edev->dev_info.common;
182 struct qed_update_vport_params *vport_params;
183 int rc;
184
185 vport_params = vzalloc(sizeof(*vport_params));
186 if (!vport_params)
187 return -ENOMEM;
188 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
189
190 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
191
192 /* Enable/Disable Tx switching for PF */
193 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
194 !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
195 vport_params->vport_id = 0;
196 vport_params->update_tx_switching_flg = 1;
197 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
198 edev->ops->vport_update(edev->cdev, vport_params);
199 }
200
201 vfree(vport_params);
202 return rc;
203}
204#endif
205
206static struct pci_driver qede_pci_driver = {
207 .name = "qede",
208 .id_table = qede_pci_tbl,
209 .probe = qede_probe,
210 .remove = qede_remove,
211 .shutdown = qede_shutdown,
212#ifdef CONFIG_QED_SRIOV
213 .sriov_configure = qede_sriov_configure,
214#endif
215};
216
217static struct qed_eth_cb_ops qede_ll_ops = {
218 {
219#ifdef CONFIG_RFS_ACCEL
220 .arfs_filter_op = qede_arfs_filter_op,
221#endif
222 .link_update = qede_link_update,
223 .schedule_recovery_handler = qede_schedule_recovery_handler,
224 .get_generic_tlv_data = qede_get_generic_tlv_data,
225 .get_protocol_tlv_data = qede_get_eth_tlv_data,
226 },
227 .force_mac = qede_force_mac,
228 .ports_update = qede_udp_ports_update,
229};
230
231static int qede_netdev_event(struct notifier_block *this, unsigned long event,
232 void *ptr)
233{
234 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
235 struct ethtool_drvinfo drvinfo;
236 struct qede_dev *edev;
237
238 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
239 goto done;
240
241 /* Check whether this is a qede device */
242 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
243 goto done;
244
245 memset(&drvinfo, 0, sizeof(drvinfo));
246 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
247 if (strcmp(drvinfo.driver, "qede"))
248 goto done;
249 edev = netdev_priv(ndev);
250
251 switch (event) {
252 case NETDEV_CHANGENAME:
253 /* Notify qed of the name change */
254 if (!edev->ops || !edev->ops->common)
255 goto done;
256 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
257 break;
258 case NETDEV_CHANGEADDR:
259 edev = netdev_priv(ndev);
260 qede_rdma_event_changeaddr(edev);
261 break;
262 }
263
264done:
265 return NOTIFY_DONE;
266}
267
268static struct notifier_block qede_netdev_notifier = {
269 .notifier_call = qede_netdev_event,
270};
271
272static
273int __init qede_init(void)
274{
275 int ret;
276
277 pr_info("qede_init: %s\n", version);
278
279 qed_ops = qed_get_eth_ops();
280 if (!qed_ops) {
281 pr_notice("Failed to get qed ethtool operations\n");
282 return -EINVAL;
283 }
284
285 /* Must register notifier before pci ops, since we might miss
286 * interface rename after pci probe and netdev registration.
287 */
288 ret = register_netdevice_notifier(&qede_netdev_notifier);
289 if (ret) {
290 pr_notice("Failed to register netdevice_notifier\n");
291 qed_put_eth_ops();
292 return -EINVAL;
293 }
294
295 ret = pci_register_driver(&qede_pci_driver);
296 if (ret) {
297 pr_notice("Failed to register driver\n");
298 unregister_netdevice_notifier(&qede_netdev_notifier);
299 qed_put_eth_ops();
300 return -EINVAL;
301 }
302
303 return 0;
304}
305
306static void __exit qede_cleanup(void)
307{
308 if (debug & QED_LOG_INFO_MASK)
309 pr_info("qede_cleanup called\n");
310
311 unregister_netdevice_notifier(&qede_netdev_notifier);
312 pci_unregister_driver(&qede_pci_driver);
313 qed_put_eth_ops();
314}
315
316module_init(qede_init);
317module_exit(qede_cleanup);
318
319static int qede_open(struct net_device *ndev);
320static int qede_close(struct net_device *ndev);
321
322void qede_fill_by_demand_stats(struct qede_dev *edev)
323{
324 struct qede_stats_common *p_common = &edev->stats.common;
325 struct qed_eth_stats stats;
326
327 edev->ops->get_vport_stats(edev->cdev, &stats);
328
329 p_common->no_buff_discards = stats.common.no_buff_discards;
330 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
331 p_common->ttl0_discard = stats.common.ttl0_discard;
332 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
333 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
334 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
335 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
336 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
337 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
338 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
339 p_common->mac_filter_discards = stats.common.mac_filter_discards;
340 p_common->gft_filter_drop = stats.common.gft_filter_drop;
341
342 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
343 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
344 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
345 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
346 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
347 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
348 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
349 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
350 p_common->coalesced_events = stats.common.tpa_coalesced_events;
351 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
352 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
353 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
354
355 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
356 p_common->rx_65_to_127_byte_packets =
357 stats.common.rx_65_to_127_byte_packets;
358 p_common->rx_128_to_255_byte_packets =
359 stats.common.rx_128_to_255_byte_packets;
360 p_common->rx_256_to_511_byte_packets =
361 stats.common.rx_256_to_511_byte_packets;
362 p_common->rx_512_to_1023_byte_packets =
363 stats.common.rx_512_to_1023_byte_packets;
364 p_common->rx_1024_to_1518_byte_packets =
365 stats.common.rx_1024_to_1518_byte_packets;
366 p_common->rx_crc_errors = stats.common.rx_crc_errors;
367 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
368 p_common->rx_pause_frames = stats.common.rx_pause_frames;
369 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
370 p_common->rx_align_errors = stats.common.rx_align_errors;
371 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
372 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
373 p_common->rx_jabbers = stats.common.rx_jabbers;
374 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
375 p_common->rx_fragments = stats.common.rx_fragments;
376 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
377 p_common->tx_65_to_127_byte_packets =
378 stats.common.tx_65_to_127_byte_packets;
379 p_common->tx_128_to_255_byte_packets =
380 stats.common.tx_128_to_255_byte_packets;
381 p_common->tx_256_to_511_byte_packets =
382 stats.common.tx_256_to_511_byte_packets;
383 p_common->tx_512_to_1023_byte_packets =
384 stats.common.tx_512_to_1023_byte_packets;
385 p_common->tx_1024_to_1518_byte_packets =
386 stats.common.tx_1024_to_1518_byte_packets;
387 p_common->tx_pause_frames = stats.common.tx_pause_frames;
388 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
389 p_common->brb_truncates = stats.common.brb_truncates;
390 p_common->brb_discards = stats.common.brb_discards;
391 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
392 p_common->link_change_count = stats.common.link_change_count;
393 p_common->ptp_skip_txts = edev->ptp_skip_txts;
394
395 if (QEDE_IS_BB(edev)) {
396 struct qede_stats_bb *p_bb = &edev->stats.bb;
397
398 p_bb->rx_1519_to_1522_byte_packets =
399 stats.bb.rx_1519_to_1522_byte_packets;
400 p_bb->rx_1519_to_2047_byte_packets =
401 stats.bb.rx_1519_to_2047_byte_packets;
402 p_bb->rx_2048_to_4095_byte_packets =
403 stats.bb.rx_2048_to_4095_byte_packets;
404 p_bb->rx_4096_to_9216_byte_packets =
405 stats.bb.rx_4096_to_9216_byte_packets;
406 p_bb->rx_9217_to_16383_byte_packets =
407 stats.bb.rx_9217_to_16383_byte_packets;
408 p_bb->tx_1519_to_2047_byte_packets =
409 stats.bb.tx_1519_to_2047_byte_packets;
410 p_bb->tx_2048_to_4095_byte_packets =
411 stats.bb.tx_2048_to_4095_byte_packets;
412 p_bb->tx_4096_to_9216_byte_packets =
413 stats.bb.tx_4096_to_9216_byte_packets;
414 p_bb->tx_9217_to_16383_byte_packets =
415 stats.bb.tx_9217_to_16383_byte_packets;
416 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
417 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
418 } else {
419 struct qede_stats_ah *p_ah = &edev->stats.ah;
420
421 p_ah->rx_1519_to_max_byte_packets =
422 stats.ah.rx_1519_to_max_byte_packets;
423 p_ah->tx_1519_to_max_byte_packets =
424 stats.ah.tx_1519_to_max_byte_packets;
425 }
426}
427
428static void qede_get_stats64(struct net_device *dev,
429 struct rtnl_link_stats64 *stats)
430{
431 struct qede_dev *edev = netdev_priv(dev);
432 struct qede_stats_common *p_common;
433
434 qede_fill_by_demand_stats(edev);
435 p_common = &edev->stats.common;
436
437 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
438 p_common->rx_bcast_pkts;
439 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
440 p_common->tx_bcast_pkts;
441
442 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
443 p_common->rx_bcast_bytes;
444 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
445 p_common->tx_bcast_bytes;
446
447 stats->tx_errors = p_common->tx_err_drop_pkts;
448 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
449
450 stats->rx_fifo_errors = p_common->no_buff_discards;
451
452 if (QEDE_IS_BB(edev))
453 stats->collisions = edev->stats.bb.tx_total_collisions;
454 stats->rx_crc_errors = p_common->rx_crc_errors;
455 stats->rx_frame_errors = p_common->rx_align_errors;
456}
457
458#ifdef CONFIG_QED_SRIOV
459static int qede_get_vf_config(struct net_device *dev, int vfidx,
460 struct ifla_vf_info *ivi)
461{
462 struct qede_dev *edev = netdev_priv(dev);
463
464 if (!edev->ops)
465 return -EINVAL;
466
467 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
468}
469
470static int qede_set_vf_rate(struct net_device *dev, int vfidx,
471 int min_tx_rate, int max_tx_rate)
472{
473 struct qede_dev *edev = netdev_priv(dev);
474
475 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
476 max_tx_rate);
477}
478
479static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
480{
481 struct qede_dev *edev = netdev_priv(dev);
482
483 if (!edev->ops)
484 return -EINVAL;
485
486 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
487}
488
489static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
490 int link_state)
491{
492 struct qede_dev *edev = netdev_priv(dev);
493
494 if (!edev->ops)
495 return -EINVAL;
496
497 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
498}
499
500static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
501{
502 struct qede_dev *edev = netdev_priv(dev);
503
504 if (!edev->ops)
505 return -EINVAL;
506
507 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
508}
509#endif
510
511static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
512{
513 struct qede_dev *edev = netdev_priv(dev);
514
515 if (!netif_running(dev))
516 return -EAGAIN;
517
518 switch (cmd) {
519 case SIOCSHWTSTAMP:
520 return qede_ptp_hw_ts(edev, ifr);
521 default:
522 DP_VERBOSE(edev, QED_MSG_DEBUG,
523 "default IOCTL cmd 0x%x\n", cmd);
524 return -EOPNOTSUPP;
525 }
526
527 return 0;
528}
529
530static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
531{
532 struct qede_dev *edev = netdev_priv(ndev);
533 int cos, count, offset;
534
535 if (num_tc > edev->dev_info.num_tc)
536 return -EINVAL;
537
538 netdev_reset_tc(ndev);
539 netdev_set_num_tc(ndev, num_tc);
540
541 for_each_cos_in_txq(edev, cos) {
542 count = QEDE_TSS_COUNT(edev);
543 offset = cos * QEDE_TSS_COUNT(edev);
544 netdev_set_tc_queue(ndev, cos, count, offset);
545 }
546
547 return 0;
548}
549
550static int
551qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
552 __be16 proto)
553{
554 switch (f->command) {
555 case FLOW_CLS_REPLACE:
556 return qede_add_tc_flower_fltr(edev, proto, f);
557 case FLOW_CLS_DESTROY:
558 return qede_delete_flow_filter(edev, f->cookie);
559 default:
560 return -EOPNOTSUPP;
561 }
562}
563
564static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
565 void *cb_priv)
566{
567 struct flow_cls_offload *f;
568 struct qede_dev *edev = cb_priv;
569
570 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
571 return -EOPNOTSUPP;
572
573 switch (type) {
574 case TC_SETUP_CLSFLOWER:
575 f = type_data;
576 return qede_set_flower(edev, f, f->common.protocol);
577 default:
578 return -EOPNOTSUPP;
579 }
580}
581
582static LIST_HEAD(qede_block_cb_list);
583
584static int
585qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
586 void *type_data)
587{
588 struct qede_dev *edev = netdev_priv(dev);
589 struct tc_mqprio_qopt *mqprio;
590
591 switch (type) {
592 case TC_SETUP_BLOCK:
593 return flow_block_cb_setup_simple(type_data,
594 &qede_block_cb_list,
595 qede_setup_tc_block_cb,
596 edev, edev, true);
597 case TC_SETUP_QDISC_MQPRIO:
598 mqprio = type_data;
599
600 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
601 return qede_setup_tc(dev, mqprio->num_tc);
602 default:
603 return -EOPNOTSUPP;
604 }
605}
606
607static const struct net_device_ops qede_netdev_ops = {
608 .ndo_open = qede_open,
609 .ndo_stop = qede_close,
610 .ndo_start_xmit = qede_start_xmit,
611 .ndo_select_queue = qede_select_queue,
612 .ndo_set_rx_mode = qede_set_rx_mode,
613 .ndo_set_mac_address = qede_set_mac_addr,
614 .ndo_validate_addr = eth_validate_addr,
615 .ndo_change_mtu = qede_change_mtu,
616 .ndo_do_ioctl = qede_ioctl,
617#ifdef CONFIG_QED_SRIOV
618 .ndo_set_vf_mac = qede_set_vf_mac,
619 .ndo_set_vf_vlan = qede_set_vf_vlan,
620 .ndo_set_vf_trust = qede_set_vf_trust,
621#endif
622 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
623 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
624 .ndo_fix_features = qede_fix_features,
625 .ndo_set_features = qede_set_features,
626 .ndo_get_stats64 = qede_get_stats64,
627#ifdef CONFIG_QED_SRIOV
628 .ndo_set_vf_link_state = qede_set_vf_link_state,
629 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
630 .ndo_get_vf_config = qede_get_vf_config,
631 .ndo_set_vf_rate = qede_set_vf_rate,
632#endif
633 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
634 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
635 .ndo_features_check = qede_features_check,
636 .ndo_bpf = qede_xdp,
637#ifdef CONFIG_RFS_ACCEL
638 .ndo_rx_flow_steer = qede_rx_flow_steer,
639#endif
640 .ndo_setup_tc = qede_setup_tc_offload,
641};
642
643static const struct net_device_ops qede_netdev_vf_ops = {
644 .ndo_open = qede_open,
645 .ndo_stop = qede_close,
646 .ndo_start_xmit = qede_start_xmit,
647 .ndo_select_queue = qede_select_queue,
648 .ndo_set_rx_mode = qede_set_rx_mode,
649 .ndo_set_mac_address = qede_set_mac_addr,
650 .ndo_validate_addr = eth_validate_addr,
651 .ndo_change_mtu = qede_change_mtu,
652 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
653 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
654 .ndo_fix_features = qede_fix_features,
655 .ndo_set_features = qede_set_features,
656 .ndo_get_stats64 = qede_get_stats64,
657 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
658 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
659 .ndo_features_check = qede_features_check,
660};
661
662static const struct net_device_ops qede_netdev_vf_xdp_ops = {
663 .ndo_open = qede_open,
664 .ndo_stop = qede_close,
665 .ndo_start_xmit = qede_start_xmit,
666 .ndo_select_queue = qede_select_queue,
667 .ndo_set_rx_mode = qede_set_rx_mode,
668 .ndo_set_mac_address = qede_set_mac_addr,
669 .ndo_validate_addr = eth_validate_addr,
670 .ndo_change_mtu = qede_change_mtu,
671 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
672 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
673 .ndo_fix_features = qede_fix_features,
674 .ndo_set_features = qede_set_features,
675 .ndo_get_stats64 = qede_get_stats64,
676 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
677 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
678 .ndo_features_check = qede_features_check,
679 .ndo_bpf = qede_xdp,
680};
681
682/* -------------------------------------------------------------------------
683 * START OF PROBE / REMOVE
684 * -------------------------------------------------------------------------
685 */
686
687static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
688 struct pci_dev *pdev,
689 struct qed_dev_eth_info *info,
690 u32 dp_module, u8 dp_level)
691{
692 struct net_device *ndev;
693 struct qede_dev *edev;
694
695 ndev = alloc_etherdev_mqs(sizeof(*edev),
696 info->num_queues * info->num_tc,
697 info->num_queues);
698 if (!ndev) {
699 pr_err("etherdev allocation failed\n");
700 return NULL;
701 }
702
703 edev = netdev_priv(ndev);
704 edev->ndev = ndev;
705 edev->cdev = cdev;
706 edev->pdev = pdev;
707 edev->dp_module = dp_module;
708 edev->dp_level = dp_level;
709 edev->ops = qed_ops;
710 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
711 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
712
713 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
714 info->num_queues, info->num_queues);
715
716 SET_NETDEV_DEV(ndev, &pdev->dev);
717
718 memset(&edev->stats, 0, sizeof(edev->stats));
719 memcpy(&edev->dev_info, info, sizeof(*info));
720
721 /* As ethtool doesn't have the ability to show WoL behavior as
722 * 'default', if device supports it declare it's enabled.
723 */
724 if (edev->dev_info.common.wol_support)
725 edev->wol_enabled = true;
726
727 INIT_LIST_HEAD(&edev->vlan_list);
728
729 return edev;
730}
731
732static void qede_init_ndev(struct qede_dev *edev)
733{
734 struct net_device *ndev = edev->ndev;
735 struct pci_dev *pdev = edev->pdev;
736 bool udp_tunnel_enable = false;
737 netdev_features_t hw_features;
738
739 pci_set_drvdata(pdev, ndev);
740
741 ndev->mem_start = edev->dev_info.common.pci_mem_start;
742 ndev->base_addr = ndev->mem_start;
743 ndev->mem_end = edev->dev_info.common.pci_mem_end;
744 ndev->irq = edev->dev_info.common.pci_irq;
745
746 ndev->watchdog_timeo = TX_TIMEOUT;
747
748 if (IS_VF(edev)) {
749 if (edev->dev_info.xdp_supported)
750 ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
751 else
752 ndev->netdev_ops = &qede_netdev_vf_ops;
753 } else {
754 ndev->netdev_ops = &qede_netdev_ops;
755 }
756
757 qede_set_ethtool_ops(ndev);
758
759 ndev->priv_flags |= IFF_UNICAST_FLT;
760
761 /* user-changeble features */
762 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
763 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
764 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
765
766 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
767 hw_features |= NETIF_F_NTUPLE;
768
769 if (edev->dev_info.common.vxlan_enable ||
770 edev->dev_info.common.geneve_enable)
771 udp_tunnel_enable = true;
772
773 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
774 hw_features |= NETIF_F_TSO_ECN;
775 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
776 NETIF_F_SG | NETIF_F_TSO |
777 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
778 NETIF_F_RXCSUM;
779 }
780
781 if (udp_tunnel_enable) {
782 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
783 NETIF_F_GSO_UDP_TUNNEL_CSUM);
784 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
785 NETIF_F_GSO_UDP_TUNNEL_CSUM);
786 }
787
788 if (edev->dev_info.common.gre_enable) {
789 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
790 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
791 NETIF_F_GSO_GRE_CSUM);
792 }
793
794 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
795 NETIF_F_HIGHDMA;
796 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
797 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
798 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
799
800 ndev->hw_features = hw_features;
801
802 /* MTU range: 46 - 9600 */
803 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
804 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
805
806 /* Set network device HW mac */
807 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
808
809 ndev->mtu = edev->dev_info.common.mtu;
810}
811
812/* This function converts from 32b param to two params of level and module
813 * Input 32b decoding:
814 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
815 * 'happy' flow, e.g. memory allocation failed.
816 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
817 * and provide important parameters.
818 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
819 * module. VERBOSE prints are for tracking the specific flow in low level.
820 *
821 * Notice that the level should be that of the lowest required logs.
822 */
823void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
824{
825 *p_dp_level = QED_LEVEL_NOTICE;
826 *p_dp_module = 0;
827
828 if (debug & QED_LOG_VERBOSE_MASK) {
829 *p_dp_level = QED_LEVEL_VERBOSE;
830 *p_dp_module = (debug & 0x3FFFFFFF);
831 } else if (debug & QED_LOG_INFO_MASK) {
832 *p_dp_level = QED_LEVEL_INFO;
833 } else if (debug & QED_LOG_NOTICE_MASK) {
834 *p_dp_level = QED_LEVEL_NOTICE;
835 }
836}
837
838static void qede_free_fp_array(struct qede_dev *edev)
839{
840 if (edev->fp_array) {
841 struct qede_fastpath *fp;
842 int i;
843
844 for_each_queue(i) {
845 fp = &edev->fp_array[i];
846
847 kfree(fp->sb_info);
848 /* Handle mem alloc failure case where qede_init_fp
849 * didn't register xdp_rxq_info yet.
850 * Implicit only (fp->type & QEDE_FASTPATH_RX)
851 */
852 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
853 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
854 kfree(fp->rxq);
855 kfree(fp->xdp_tx);
856 kfree(fp->txq);
857 }
858 kfree(edev->fp_array);
859 }
860
861 edev->num_queues = 0;
862 edev->fp_num_tx = 0;
863 edev->fp_num_rx = 0;
864}
865
866static int qede_alloc_fp_array(struct qede_dev *edev)
867{
868 u8 fp_combined, fp_rx = edev->fp_num_rx;
869 struct qede_fastpath *fp;
870 int i;
871
872 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
873 sizeof(*edev->fp_array), GFP_KERNEL);
874 if (!edev->fp_array) {
875 DP_NOTICE(edev, "fp array allocation failed\n");
876 goto err;
877 }
878
879 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
880
881 /* Allocate the FP elements for Rx queues followed by combined and then
882 * the Tx. This ordering should be maintained so that the respective
883 * queues (Rx or Tx) will be together in the fastpath array and the
884 * associated ids will be sequential.
885 */
886 for_each_queue(i) {
887 fp = &edev->fp_array[i];
888
889 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
890 if (!fp->sb_info) {
891 DP_NOTICE(edev, "sb info struct allocation failed\n");
892 goto err;
893 }
894
895 if (fp_rx) {
896 fp->type = QEDE_FASTPATH_RX;
897 fp_rx--;
898 } else if (fp_combined) {
899 fp->type = QEDE_FASTPATH_COMBINED;
900 fp_combined--;
901 } else {
902 fp->type = QEDE_FASTPATH_TX;
903 }
904
905 if (fp->type & QEDE_FASTPATH_TX) {
906 fp->txq = kcalloc(edev->dev_info.num_tc,
907 sizeof(*fp->txq), GFP_KERNEL);
908 if (!fp->txq)
909 goto err;
910 }
911
912 if (fp->type & QEDE_FASTPATH_RX) {
913 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
914 if (!fp->rxq)
915 goto err;
916
917 if (edev->xdp_prog) {
918 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
919 GFP_KERNEL);
920 if (!fp->xdp_tx)
921 goto err;
922 fp->type |= QEDE_FASTPATH_XDP;
923 }
924 }
925 }
926
927 return 0;
928err:
929 qede_free_fp_array(edev);
930 return -ENOMEM;
931}
932
933/* The qede lock is used to protect driver state change and driver flows that
934 * are not reentrant.
935 */
936void __qede_lock(struct qede_dev *edev)
937{
938 mutex_lock(&edev->qede_lock);
939}
940
941void __qede_unlock(struct qede_dev *edev)
942{
943 mutex_unlock(&edev->qede_lock);
944}
945
946/* This version of the lock should be used when acquiring the RTNL lock is also
947 * needed in addition to the internal qede lock.
948 */
949static void qede_lock(struct qede_dev *edev)
950{
951 rtnl_lock();
952 __qede_lock(edev);
953}
954
955static void qede_unlock(struct qede_dev *edev)
956{
957 __qede_unlock(edev);
958 rtnl_unlock();
959}
960
961static void qede_sp_task(struct work_struct *work)
962{
963 struct qede_dev *edev = container_of(work, struct qede_dev,
964 sp_task.work);
965
966 /* The locking scheme depends on the specific flag:
967 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
968 * ensure that ongoing flows are ended and new ones are not started.
969 * In other cases - only the internal qede lock should be acquired.
970 */
971
972 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
973#ifdef CONFIG_QED_SRIOV
974 /* SRIOV must be disabled outside the lock to avoid a deadlock.
975 * The recovery of the active VFs is currently not supported.
976 */
977 qede_sriov_configure(edev->pdev, 0);
978#endif
979 qede_lock(edev);
980 qede_recovery_handler(edev);
981 qede_unlock(edev);
982 }
983
984 __qede_lock(edev);
985
986 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
987 if (edev->state == QEDE_STATE_OPEN)
988 qede_config_rx_mode(edev->ndev);
989
990#ifdef CONFIG_RFS_ACCEL
991 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
992 if (edev->state == QEDE_STATE_OPEN)
993 qede_process_arfs_filters(edev, false);
994 }
995#endif
996 __qede_unlock(edev);
997}
998
999static void qede_update_pf_params(struct qed_dev *cdev)
1000{
1001 struct qed_pf_params pf_params;
1002 u16 num_cons;
1003
1004 /* 64 rx + 64 tx + 64 XDP */
1005 memset(&pf_params, 0, sizeof(struct qed_pf_params));
1006
1007 /* 1 rx + 1 xdp + max tx cos */
1008 num_cons = QED_MIN_L2_CONS;
1009
1010 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1011
1012 /* Same for VFs - make sure they'll have sufficient connections
1013 * to support XDP Tx queues.
1014 */
1015 pf_params.eth_pf_params.num_vf_cons = 48;
1016
1017 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1018 qed_ops->common->update_pf_params(cdev, &pf_params);
1019}
1020
1021#define QEDE_FW_VER_STR_SIZE 80
1022
1023static void qede_log_probe(struct qede_dev *edev)
1024{
1025 struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1026 u8 buf[QEDE_FW_VER_STR_SIZE];
1027 size_t left_size;
1028
1029 snprintf(buf, QEDE_FW_VER_STR_SIZE,
1030 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1031 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1032 p_dev_info->fw_eng,
1033 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1034 QED_MFW_VERSION_3_OFFSET,
1035 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1036 QED_MFW_VERSION_2_OFFSET,
1037 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1038 QED_MFW_VERSION_1_OFFSET,
1039 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1040 QED_MFW_VERSION_0_OFFSET);
1041
1042 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1043 if (p_dev_info->mbi_version && left_size)
1044 snprintf(buf + strlen(buf), left_size,
1045 " [MBI %d.%d.%d]",
1046 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1047 QED_MBI_VERSION_2_OFFSET,
1048 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1049 QED_MBI_VERSION_1_OFFSET,
1050 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1051 QED_MBI_VERSION_0_OFFSET);
1052
1053 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1054 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1055 buf, edev->ndev->name);
1056}
1057
1058enum qede_probe_mode {
1059 QEDE_PROBE_NORMAL,
1060 QEDE_PROBE_RECOVERY,
1061};
1062
1063static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1064 bool is_vf, enum qede_probe_mode mode)
1065{
1066 struct qed_probe_params probe_params;
1067 struct qed_slowpath_params sp_params;
1068 struct qed_dev_eth_info dev_info;
1069 struct qede_dev *edev;
1070 struct qed_dev *cdev;
1071 int rc;
1072
1073 if (unlikely(dp_level & QED_LEVEL_INFO))
1074 pr_notice("Starting qede probe\n");
1075
1076 memset(&probe_params, 0, sizeof(probe_params));
1077 probe_params.protocol = QED_PROTOCOL_ETH;
1078 probe_params.dp_module = dp_module;
1079 probe_params.dp_level = dp_level;
1080 probe_params.is_vf = is_vf;
1081 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1082 cdev = qed_ops->common->probe(pdev, &probe_params);
1083 if (!cdev) {
1084 rc = -ENODEV;
1085 goto err0;
1086 }
1087
1088 qede_update_pf_params(cdev);
1089
1090 /* Start the Slowpath-process */
1091 memset(&sp_params, 0, sizeof(sp_params));
1092 sp_params.int_mode = QED_INT_MODE_MSIX;
1093 sp_params.drv_major = QEDE_MAJOR_VERSION;
1094 sp_params.drv_minor = QEDE_MINOR_VERSION;
1095 sp_params.drv_rev = QEDE_REVISION_VERSION;
1096 sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1097 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1098 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1099 if (rc) {
1100 pr_notice("Cannot start slowpath\n");
1101 goto err1;
1102 }
1103
1104 /* Learn information crucial for qede to progress */
1105 rc = qed_ops->fill_dev_info(cdev, &dev_info);
1106 if (rc)
1107 goto err2;
1108
1109 if (mode != QEDE_PROBE_RECOVERY) {
1110 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1111 dp_level);
1112 if (!edev) {
1113 rc = -ENOMEM;
1114 goto err2;
1115 }
1116 } else {
1117 struct net_device *ndev = pci_get_drvdata(pdev);
1118
1119 edev = netdev_priv(ndev);
1120 edev->cdev = cdev;
1121 memset(&edev->stats, 0, sizeof(edev->stats));
1122 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1123 }
1124
1125 if (is_vf)
1126 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1127
1128 qede_init_ndev(edev);
1129
1130 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1131 if (rc)
1132 goto err3;
1133
1134 if (mode != QEDE_PROBE_RECOVERY) {
1135 /* Prepare the lock prior to the registration of the netdev,
1136 * as once it's registered we might reach flows requiring it
1137 * [it's even possible to reach a flow needing it directly
1138 * from there, although it's unlikely].
1139 */
1140 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1141 mutex_init(&edev->qede_lock);
1142
1143 rc = register_netdev(edev->ndev);
1144 if (rc) {
1145 DP_NOTICE(edev, "Cannot register net-device\n");
1146 goto err4;
1147 }
1148 }
1149
1150 edev->ops->common->set_name(cdev, edev->ndev->name);
1151
1152 /* PTP not supported on VFs */
1153 if (!is_vf)
1154 qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1155
1156 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1157
1158#ifdef CONFIG_DCB
1159 if (!IS_VF(edev))
1160 qede_set_dcbnl_ops(edev->ndev);
1161#endif
1162
1163 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1164
1165 qede_log_probe(edev);
1166 return 0;
1167
1168err4:
1169 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1170err3:
1171 free_netdev(edev->ndev);
1172err2:
1173 qed_ops->common->slowpath_stop(cdev);
1174err1:
1175 qed_ops->common->remove(cdev);
1176err0:
1177 return rc;
1178}
1179
1180static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1181{
1182 bool is_vf = false;
1183 u32 dp_module = 0;
1184 u8 dp_level = 0;
1185
1186 switch ((enum qede_pci_private)id->driver_data) {
1187 case QEDE_PRIVATE_VF:
1188 if (debug & QED_LOG_VERBOSE_MASK)
1189 dev_err(&pdev->dev, "Probing a VF\n");
1190 is_vf = true;
1191 break;
1192 default:
1193 if (debug & QED_LOG_VERBOSE_MASK)
1194 dev_err(&pdev->dev, "Probing a PF\n");
1195 }
1196
1197 qede_config_debug(debug, &dp_module, &dp_level);
1198
1199 return __qede_probe(pdev, dp_module, dp_level, is_vf,
1200 QEDE_PROBE_NORMAL);
1201}
1202
1203enum qede_remove_mode {
1204 QEDE_REMOVE_NORMAL,
1205 QEDE_REMOVE_RECOVERY,
1206};
1207
1208static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1209{
1210 struct net_device *ndev = pci_get_drvdata(pdev);
1211 struct qede_dev *edev;
1212 struct qed_dev *cdev;
1213
1214 if (!ndev) {
1215 dev_info(&pdev->dev, "Device has already been removed\n");
1216 return;
1217 }
1218
1219 edev = netdev_priv(ndev);
1220 cdev = edev->cdev;
1221
1222 DP_INFO(edev, "Starting qede_remove\n");
1223
1224 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1225
1226 if (mode != QEDE_REMOVE_RECOVERY) {
1227 unregister_netdev(ndev);
1228
1229 cancel_delayed_work_sync(&edev->sp_task);
1230
1231 edev->ops->common->set_power_state(cdev, PCI_D0);
1232
1233 pci_set_drvdata(pdev, NULL);
1234 }
1235
1236 qede_ptp_disable(edev);
1237
1238 /* Use global ops since we've freed edev */
1239 qed_ops->common->slowpath_stop(cdev);
1240 if (system_state == SYSTEM_POWER_OFF)
1241 return;
1242 qed_ops->common->remove(cdev);
1243
1244 /* Since this can happen out-of-sync with other flows,
1245 * don't release the netdevice until after slowpath stop
1246 * has been called to guarantee various other contexts
1247 * [e.g., QED register callbacks] won't break anything when
1248 * accessing the netdevice.
1249 */
1250 if (mode != QEDE_REMOVE_RECOVERY)
1251 free_netdev(ndev);
1252
1253 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1254}
1255
1256static void qede_remove(struct pci_dev *pdev)
1257{
1258 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1259}
1260
1261static void qede_shutdown(struct pci_dev *pdev)
1262{
1263 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1264}
1265
1266/* -------------------------------------------------------------------------
1267 * START OF LOAD / UNLOAD
1268 * -------------------------------------------------------------------------
1269 */
1270
1271static int qede_set_num_queues(struct qede_dev *edev)
1272{
1273 int rc;
1274 u16 rss_num;
1275
1276 /* Setup queues according to possible resources*/
1277 if (edev->req_queues)
1278 rss_num = edev->req_queues;
1279 else
1280 rss_num = netif_get_num_default_rss_queues() *
1281 edev->dev_info.common.num_hwfns;
1282
1283 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1284
1285 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1286 if (rc > 0) {
1287 /* Managed to request interrupts for our queues */
1288 edev->num_queues = rc;
1289 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1290 QEDE_QUEUE_CNT(edev), rss_num);
1291 rc = 0;
1292 }
1293
1294 edev->fp_num_tx = edev->req_num_tx;
1295 edev->fp_num_rx = edev->req_num_rx;
1296
1297 return rc;
1298}
1299
1300static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1301 u16 sb_id)
1302{
1303 if (sb_info->sb_virt) {
1304 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1305 QED_SB_TYPE_L2_QUEUE);
1306 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1307 (void *)sb_info->sb_virt, sb_info->sb_phys);
1308 memset(sb_info, 0, sizeof(*sb_info));
1309 }
1310}
1311
1312/* This function allocates fast-path status block memory */
1313static int qede_alloc_mem_sb(struct qede_dev *edev,
1314 struct qed_sb_info *sb_info, u16 sb_id)
1315{
1316 struct status_block_e4 *sb_virt;
1317 dma_addr_t sb_phys;
1318 int rc;
1319
1320 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1321 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1322 if (!sb_virt) {
1323 DP_ERR(edev, "Status block allocation failed\n");
1324 return -ENOMEM;
1325 }
1326
1327 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1328 sb_virt, sb_phys, sb_id,
1329 QED_SB_TYPE_L2_QUEUE);
1330 if (rc) {
1331 DP_ERR(edev, "Status block initialization failed\n");
1332 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1333 sb_virt, sb_phys);
1334 return rc;
1335 }
1336
1337 return 0;
1338}
1339
1340static void qede_free_rx_buffers(struct qede_dev *edev,
1341 struct qede_rx_queue *rxq)
1342{
1343 u16 i;
1344
1345 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1346 struct sw_rx_data *rx_buf;
1347 struct page *data;
1348
1349 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1350 data = rx_buf->data;
1351
1352 dma_unmap_page(&edev->pdev->dev,
1353 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1354
1355 rx_buf->data = NULL;
1356 __free_page(data);
1357 }
1358}
1359
1360static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1361{
1362 /* Free rx buffers */
1363 qede_free_rx_buffers(edev, rxq);
1364
1365 /* Free the parallel SW ring */
1366 kfree(rxq->sw_rx_ring);
1367
1368 /* Free the real RQ ring used by FW */
1369 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1370 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1371}
1372
1373static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1374{
1375 int i;
1376
1377 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1378 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1379
1380 tpa_info->state = QEDE_AGG_STATE_NONE;
1381 }
1382}
1383
1384/* This function allocates all memory needed per Rx queue */
1385static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1386{
1387 int i, rc, size;
1388
1389 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1390
1391 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1392
1393 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1394 size = rxq->rx_headroom +
1395 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1396
1397 /* Make sure that the headroom and payload fit in a single page */
1398 if (rxq->rx_buf_size + size > PAGE_SIZE)
1399 rxq->rx_buf_size = PAGE_SIZE - size;
1400
1401 /* Segment size to spilt a page in multiple equal parts ,
1402 * unless XDP is used in which case we'd use the entire page.
1403 */
1404 if (!edev->xdp_prog) {
1405 size = size + rxq->rx_buf_size;
1406 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1407 } else {
1408 rxq->rx_buf_seg_size = PAGE_SIZE;
1409 }
1410
1411 /* Allocate the parallel driver ring for Rx buffers */
1412 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1413 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1414 if (!rxq->sw_rx_ring) {
1415 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1416 rc = -ENOMEM;
1417 goto err;
1418 }
1419
1420 /* Allocate FW Rx ring */
1421 rc = edev->ops->common->chain_alloc(edev->cdev,
1422 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1423 QED_CHAIN_MODE_NEXT_PTR,
1424 QED_CHAIN_CNT_TYPE_U16,
1425 RX_RING_SIZE,
1426 sizeof(struct eth_rx_bd),
1427 &rxq->rx_bd_ring, NULL);
1428 if (rc)
1429 goto err;
1430
1431 /* Allocate FW completion ring */
1432 rc = edev->ops->common->chain_alloc(edev->cdev,
1433 QED_CHAIN_USE_TO_CONSUME,
1434 QED_CHAIN_MODE_PBL,
1435 QED_CHAIN_CNT_TYPE_U16,
1436 RX_RING_SIZE,
1437 sizeof(union eth_rx_cqe),
1438 &rxq->rx_comp_ring, NULL);
1439 if (rc)
1440 goto err;
1441
1442 /* Allocate buffers for the Rx ring */
1443 rxq->filled_buffers = 0;
1444 for (i = 0; i < rxq->num_rx_buffers; i++) {
1445 rc = qede_alloc_rx_buffer(rxq, false);
1446 if (rc) {
1447 DP_ERR(edev,
1448 "Rx buffers allocation failed at index %d\n", i);
1449 goto err;
1450 }
1451 }
1452
1453 if (!edev->gro_disable)
1454 qede_set_tpa_param(rxq);
1455err:
1456 return rc;
1457}
1458
1459static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1460{
1461 /* Free the parallel SW ring */
1462 if (txq->is_xdp)
1463 kfree(txq->sw_tx_ring.xdp);
1464 else
1465 kfree(txq->sw_tx_ring.skbs);
1466
1467 /* Free the real RQ ring used by FW */
1468 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1469}
1470
1471/* This function allocates all memory needed per Tx queue */
1472static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1473{
1474 union eth_tx_bd_types *p_virt;
1475 int size, rc;
1476
1477 txq->num_tx_buffers = edev->q_num_tx_buffers;
1478
1479 /* Allocate the parallel driver ring for Tx buffers */
1480 if (txq->is_xdp) {
1481 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1482 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1483 if (!txq->sw_tx_ring.xdp)
1484 goto err;
1485 } else {
1486 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1487 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1488 if (!txq->sw_tx_ring.skbs)
1489 goto err;
1490 }
1491
1492 rc = edev->ops->common->chain_alloc(edev->cdev,
1493 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1494 QED_CHAIN_MODE_PBL,
1495 QED_CHAIN_CNT_TYPE_U16,
1496 txq->num_tx_buffers,
1497 sizeof(*p_virt),
1498 &txq->tx_pbl, NULL);
1499 if (rc)
1500 goto err;
1501
1502 return 0;
1503
1504err:
1505 qede_free_mem_txq(edev, txq);
1506 return -ENOMEM;
1507}
1508
1509/* This function frees all memory of a single fp */
1510static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1511{
1512 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1513
1514 if (fp->type & QEDE_FASTPATH_RX)
1515 qede_free_mem_rxq(edev, fp->rxq);
1516
1517 if (fp->type & QEDE_FASTPATH_XDP)
1518 qede_free_mem_txq(edev, fp->xdp_tx);
1519
1520 if (fp->type & QEDE_FASTPATH_TX) {
1521 int cos;
1522
1523 for_each_cos_in_txq(edev, cos)
1524 qede_free_mem_txq(edev, &fp->txq[cos]);
1525 }
1526}
1527
1528/* This function allocates all memory needed for a single fp (i.e. an entity
1529 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1530 */
1531static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1532{
1533 int rc = 0;
1534
1535 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1536 if (rc)
1537 goto out;
1538
1539 if (fp->type & QEDE_FASTPATH_RX) {
1540 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1541 if (rc)
1542 goto out;
1543 }
1544
1545 if (fp->type & QEDE_FASTPATH_XDP) {
1546 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1547 if (rc)
1548 goto out;
1549 }
1550
1551 if (fp->type & QEDE_FASTPATH_TX) {
1552 int cos;
1553
1554 for_each_cos_in_txq(edev, cos) {
1555 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1556 if (rc)
1557 goto out;
1558 }
1559 }
1560
1561out:
1562 return rc;
1563}
1564
1565static void qede_free_mem_load(struct qede_dev *edev)
1566{
1567 int i;
1568
1569 for_each_queue(i) {
1570 struct qede_fastpath *fp = &edev->fp_array[i];
1571
1572 qede_free_mem_fp(edev, fp);
1573 }
1574}
1575
1576/* This function allocates all qede memory at NIC load. */
1577static int qede_alloc_mem_load(struct qede_dev *edev)
1578{
1579 int rc = 0, queue_id;
1580
1581 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1582 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1583
1584 rc = qede_alloc_mem_fp(edev, fp);
1585 if (rc) {
1586 DP_ERR(edev,
1587 "Failed to allocate memory for fastpath - rss id = %d\n",
1588 queue_id);
1589 qede_free_mem_load(edev);
1590 return rc;
1591 }
1592 }
1593
1594 return 0;
1595}
1596
1597static void qede_empty_tx_queue(struct qede_dev *edev,
1598 struct qede_tx_queue *txq)
1599{
1600 unsigned int pkts_compl = 0, bytes_compl = 0;
1601 struct netdev_queue *netdev_txq;
1602 int rc, len = 0;
1603
1604 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1605
1606 while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1607 qed_chain_get_prod_idx(&txq->tx_pbl)) {
1608 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1609 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1610 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1611 qed_chain_get_prod_idx(&txq->tx_pbl));
1612
1613 rc = qede_free_tx_pkt(edev, txq, &len);
1614 if (rc) {
1615 DP_NOTICE(edev,
1616 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1617 txq->index,
1618 qed_chain_get_cons_idx(&txq->tx_pbl),
1619 qed_chain_get_prod_idx(&txq->tx_pbl));
1620 break;
1621 }
1622
1623 bytes_compl += len;
1624 pkts_compl++;
1625 txq->sw_tx_cons++;
1626 }
1627
1628 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1629}
1630
1631static void qede_empty_tx_queues(struct qede_dev *edev)
1632{
1633 int i;
1634
1635 for_each_queue(i)
1636 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1637 int cos;
1638
1639 for_each_cos_in_txq(edev, cos) {
1640 struct qede_fastpath *fp;
1641
1642 fp = &edev->fp_array[i];
1643 qede_empty_tx_queue(edev,
1644 &fp->txq[cos]);
1645 }
1646 }
1647}
1648
1649/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1650static void qede_init_fp(struct qede_dev *edev)
1651{
1652 int queue_id, rxq_index = 0, txq_index = 0;
1653 struct qede_fastpath *fp;
1654
1655 for_each_queue(queue_id) {
1656 fp = &edev->fp_array[queue_id];
1657
1658 fp->edev = edev;
1659 fp->id = queue_id;
1660
1661 if (fp->type & QEDE_FASTPATH_XDP) {
1662 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1663 rxq_index);
1664 fp->xdp_tx->is_xdp = 1;
1665 }
1666
1667 if (fp->type & QEDE_FASTPATH_RX) {
1668 fp->rxq->rxq_id = rxq_index++;
1669
1670 /* Determine how to map buffers for this queue */
1671 if (fp->type & QEDE_FASTPATH_XDP)
1672 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1673 else
1674 fp->rxq->data_direction = DMA_FROM_DEVICE;
1675 fp->rxq->dev = &edev->pdev->dev;
1676
1677 /* Driver have no error path from here */
1678 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1679 fp->rxq->rxq_id) < 0);
1680 }
1681
1682 if (fp->type & QEDE_FASTPATH_TX) {
1683 int cos;
1684
1685 for_each_cos_in_txq(edev, cos) {
1686 struct qede_tx_queue *txq = &fp->txq[cos];
1687 u16 ndev_tx_id;
1688
1689 txq->cos = cos;
1690 txq->index = txq_index;
1691 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1692 txq->ndev_txq_id = ndev_tx_id;
1693
1694 if (edev->dev_info.is_legacy)
1695 txq->is_legacy = 1;
1696 txq->dev = &edev->pdev->dev;
1697 }
1698
1699 txq_index++;
1700 }
1701
1702 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1703 edev->ndev->name, queue_id);
1704 }
1705
1706 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1707}
1708
1709static int qede_set_real_num_queues(struct qede_dev *edev)
1710{
1711 int rc = 0;
1712
1713 rc = netif_set_real_num_tx_queues(edev->ndev,
1714 QEDE_TSS_COUNT(edev) *
1715 edev->dev_info.num_tc);
1716 if (rc) {
1717 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1718 return rc;
1719 }
1720
1721 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1722 if (rc) {
1723 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1724 return rc;
1725 }
1726
1727 return 0;
1728}
1729
1730static void qede_napi_disable_remove(struct qede_dev *edev)
1731{
1732 int i;
1733
1734 for_each_queue(i) {
1735 napi_disable(&edev->fp_array[i].napi);
1736
1737 netif_napi_del(&edev->fp_array[i].napi);
1738 }
1739}
1740
1741static void qede_napi_add_enable(struct qede_dev *edev)
1742{
1743 int i;
1744
1745 /* Add NAPI objects */
1746 for_each_queue(i) {
1747 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1748 qede_poll, NAPI_POLL_WEIGHT);
1749 napi_enable(&edev->fp_array[i].napi);
1750 }
1751}
1752
1753static void qede_sync_free_irqs(struct qede_dev *edev)
1754{
1755 int i;
1756
1757 for (i = 0; i < edev->int_info.used_cnt; i++) {
1758 if (edev->int_info.msix_cnt) {
1759 synchronize_irq(edev->int_info.msix[i].vector);
1760 free_irq(edev->int_info.msix[i].vector,
1761 &edev->fp_array[i]);
1762 } else {
1763 edev->ops->common->simd_handler_clean(edev->cdev, i);
1764 }
1765 }
1766
1767 edev->int_info.used_cnt = 0;
1768}
1769
1770static int qede_req_msix_irqs(struct qede_dev *edev)
1771{
1772 int i, rc;
1773
1774 /* Sanitize number of interrupts == number of prepared RSS queues */
1775 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1776 DP_ERR(edev,
1777 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1778 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1779 return -EINVAL;
1780 }
1781
1782 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1783#ifdef CONFIG_RFS_ACCEL
1784 struct qede_fastpath *fp = &edev->fp_array[i];
1785
1786 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1787 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1788 edev->int_info.msix[i].vector);
1789 if (rc) {
1790 DP_ERR(edev, "Failed to add CPU rmap\n");
1791 qede_free_arfs(edev);
1792 }
1793 }
1794#endif
1795 rc = request_irq(edev->int_info.msix[i].vector,
1796 qede_msix_fp_int, 0, edev->fp_array[i].name,
1797 &edev->fp_array[i]);
1798 if (rc) {
1799 DP_ERR(edev, "Request fp %d irq failed\n", i);
1800 qede_sync_free_irqs(edev);
1801 return rc;
1802 }
1803 DP_VERBOSE(edev, NETIF_MSG_INTR,
1804 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1805 edev->fp_array[i].name, i,
1806 &edev->fp_array[i]);
1807 edev->int_info.used_cnt++;
1808 }
1809
1810 return 0;
1811}
1812
1813static void qede_simd_fp_handler(void *cookie)
1814{
1815 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1816
1817 napi_schedule_irqoff(&fp->napi);
1818}
1819
1820static int qede_setup_irqs(struct qede_dev *edev)
1821{
1822 int i, rc = 0;
1823
1824 /* Learn Interrupt configuration */
1825 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1826 if (rc)
1827 return rc;
1828
1829 if (edev->int_info.msix_cnt) {
1830 rc = qede_req_msix_irqs(edev);
1831 if (rc)
1832 return rc;
1833 edev->ndev->irq = edev->int_info.msix[0].vector;
1834 } else {
1835 const struct qed_common_ops *ops;
1836
1837 /* qed should learn receive the RSS ids and callbacks */
1838 ops = edev->ops->common;
1839 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1840 ops->simd_handler_config(edev->cdev,
1841 &edev->fp_array[i], i,
1842 qede_simd_fp_handler);
1843 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1844 }
1845 return 0;
1846}
1847
1848static int qede_drain_txq(struct qede_dev *edev,
1849 struct qede_tx_queue *txq, bool allow_drain)
1850{
1851 int rc, cnt = 1000;
1852
1853 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1854 if (!cnt) {
1855 if (allow_drain) {
1856 DP_NOTICE(edev,
1857 "Tx queue[%d] is stuck, requesting MCP to drain\n",
1858 txq->index);
1859 rc = edev->ops->common->drain(edev->cdev);
1860 if (rc)
1861 return rc;
1862 return qede_drain_txq(edev, txq, false);
1863 }
1864 DP_NOTICE(edev,
1865 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1866 txq->index, txq->sw_tx_prod,
1867 txq->sw_tx_cons);
1868 return -ENODEV;
1869 }
1870 cnt--;
1871 usleep_range(1000, 2000);
1872 barrier();
1873 }
1874
1875 /* FW finished processing, wait for HW to transmit all tx packets */
1876 usleep_range(1000, 2000);
1877
1878 return 0;
1879}
1880
1881static int qede_stop_txq(struct qede_dev *edev,
1882 struct qede_tx_queue *txq, int rss_id)
1883{
1884 /* delete doorbell from doorbell recovery mechanism */
1885 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1886 &txq->tx_db);
1887
1888 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1889}
1890
1891static int qede_stop_queues(struct qede_dev *edev)
1892{
1893 struct qed_update_vport_params *vport_update_params;
1894 struct qed_dev *cdev = edev->cdev;
1895 struct qede_fastpath *fp;
1896 int rc, i;
1897
1898 /* Disable the vport */
1899 vport_update_params = vzalloc(sizeof(*vport_update_params));
1900 if (!vport_update_params)
1901 return -ENOMEM;
1902
1903 vport_update_params->vport_id = 0;
1904 vport_update_params->update_vport_active_flg = 1;
1905 vport_update_params->vport_active_flg = 0;
1906 vport_update_params->update_rss_flg = 0;
1907
1908 rc = edev->ops->vport_update(cdev, vport_update_params);
1909 vfree(vport_update_params);
1910
1911 if (rc) {
1912 DP_ERR(edev, "Failed to update vport\n");
1913 return rc;
1914 }
1915
1916 /* Flush Tx queues. If needed, request drain from MCP */
1917 for_each_queue(i) {
1918 fp = &edev->fp_array[i];
1919
1920 if (fp->type & QEDE_FASTPATH_TX) {
1921 int cos;
1922
1923 for_each_cos_in_txq(edev, cos) {
1924 rc = qede_drain_txq(edev, &fp->txq[cos], true);
1925 if (rc)
1926 return rc;
1927 }
1928 }
1929
1930 if (fp->type & QEDE_FASTPATH_XDP) {
1931 rc = qede_drain_txq(edev, fp->xdp_tx, true);
1932 if (rc)
1933 return rc;
1934 }
1935 }
1936
1937 /* Stop all Queues in reverse order */
1938 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1939 fp = &edev->fp_array[i];
1940
1941 /* Stop the Tx Queue(s) */
1942 if (fp->type & QEDE_FASTPATH_TX) {
1943 int cos;
1944
1945 for_each_cos_in_txq(edev, cos) {
1946 rc = qede_stop_txq(edev, &fp->txq[cos], i);
1947 if (rc)
1948 return rc;
1949 }
1950 }
1951
1952 /* Stop the Rx Queue */
1953 if (fp->type & QEDE_FASTPATH_RX) {
1954 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1955 if (rc) {
1956 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1957 return rc;
1958 }
1959 }
1960
1961 /* Stop the XDP forwarding queue */
1962 if (fp->type & QEDE_FASTPATH_XDP) {
1963 rc = qede_stop_txq(edev, fp->xdp_tx, i);
1964 if (rc)
1965 return rc;
1966
1967 bpf_prog_put(fp->rxq->xdp_prog);
1968 }
1969 }
1970
1971 /* Stop the vport */
1972 rc = edev->ops->vport_stop(cdev, 0);
1973 if (rc)
1974 DP_ERR(edev, "Failed to stop VPORT\n");
1975
1976 return rc;
1977}
1978
1979static int qede_start_txq(struct qede_dev *edev,
1980 struct qede_fastpath *fp,
1981 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1982{
1983 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1984 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1985 struct qed_queue_start_common_params params;
1986 struct qed_txq_start_ret_params ret_params;
1987 int rc;
1988
1989 memset(¶ms, 0, sizeof(params));
1990 memset(&ret_params, 0, sizeof(ret_params));
1991
1992 /* Let the XDP queue share the queue-zone with one of the regular txq.
1993 * We don't really care about its coalescing.
1994 */
1995 if (txq->is_xdp)
1996 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1997 else
1998 params.queue_id = txq->index;
1999
2000 params.p_sb = fp->sb_info;
2001 params.sb_idx = sb_idx;
2002 params.tc = txq->cos;
2003
2004 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table,
2005 page_cnt, &ret_params);
2006 if (rc) {
2007 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2008 return rc;
2009 }
2010
2011 txq->doorbell_addr = ret_params.p_doorbell;
2012 txq->handle = ret_params.p_handle;
2013
2014 /* Determine the FW consumer address associated */
2015 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2016
2017 /* Prepare the doorbell parameters */
2018 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2019 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2020 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2021 DQ_XCM_ETH_TX_BD_PROD_CMD);
2022 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2023
2024 /* register doorbell with doorbell recovery mechanism */
2025 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2026 &txq->tx_db, DB_REC_WIDTH_32B,
2027 DB_REC_KERNEL);
2028
2029 return rc;
2030}
2031
2032static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2033{
2034 int vlan_removal_en = 1;
2035 struct qed_dev *cdev = edev->cdev;
2036 struct qed_dev_info *qed_info = &edev->dev_info.common;
2037 struct qed_update_vport_params *vport_update_params;
2038 struct qed_queue_start_common_params q_params;
2039 struct qed_start_vport_params start = {0};
2040 int rc, i;
2041
2042 if (!edev->num_queues) {
2043 DP_ERR(edev,
2044 "Cannot update V-VPORT as active as there are no Rx queues\n");
2045 return -EINVAL;
2046 }
2047
2048 vport_update_params = vzalloc(sizeof(*vport_update_params));
2049 if (!vport_update_params)
2050 return -ENOMEM;
2051
2052 start.handle_ptp_pkts = !!(edev->ptp);
2053 start.gro_enable = !edev->gro_disable;
2054 start.mtu = edev->ndev->mtu;
2055 start.vport_id = 0;
2056 start.drop_ttl0 = true;
2057 start.remove_inner_vlan = vlan_removal_en;
2058 start.clear_stats = clear_stats;
2059
2060 rc = edev->ops->vport_start(cdev, &start);
2061
2062 if (rc) {
2063 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2064 goto out;
2065 }
2066
2067 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2068 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2069 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2070
2071 for_each_queue(i) {
2072 struct qede_fastpath *fp = &edev->fp_array[i];
2073 dma_addr_t p_phys_table;
2074 u32 page_cnt;
2075
2076 if (fp->type & QEDE_FASTPATH_RX) {
2077 struct qed_rxq_start_ret_params ret_params;
2078 struct qede_rx_queue *rxq = fp->rxq;
2079 __le16 *val;
2080
2081 memset(&ret_params, 0, sizeof(ret_params));
2082 memset(&q_params, 0, sizeof(q_params));
2083 q_params.queue_id = rxq->rxq_id;
2084 q_params.vport_id = 0;
2085 q_params.p_sb = fp->sb_info;
2086 q_params.sb_idx = RX_PI;
2087
2088 p_phys_table =
2089 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2090 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2091
2092 rc = edev->ops->q_rx_start(cdev, i, &q_params,
2093 rxq->rx_buf_size,
2094 rxq->rx_bd_ring.p_phys_addr,
2095 p_phys_table,
2096 page_cnt, &ret_params);
2097 if (rc) {
2098 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2099 rc);
2100 goto out;
2101 }
2102
2103 /* Use the return parameters */
2104 rxq->hw_rxq_prod_addr = ret_params.p_prod;
2105 rxq->handle = ret_params.p_handle;
2106
2107 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2108 rxq->hw_cons_ptr = val;
2109
2110 qede_update_rx_prod(edev, rxq);
2111 }
2112
2113 if (fp->type & QEDE_FASTPATH_XDP) {
2114 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2115 if (rc)
2116 goto out;
2117
2118 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2119 if (IS_ERR(fp->rxq->xdp_prog)) {
2120 rc = PTR_ERR(fp->rxq->xdp_prog);
2121 fp->rxq->xdp_prog = NULL;
2122 goto out;
2123 }
2124 }
2125
2126 if (fp->type & QEDE_FASTPATH_TX) {
2127 int cos;
2128
2129 for_each_cos_in_txq(edev, cos) {
2130 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2131 TX_PI(cos));
2132 if (rc)
2133 goto out;
2134 }
2135 }
2136 }
2137
2138 /* Prepare and send the vport enable */
2139 vport_update_params->vport_id = start.vport_id;
2140 vport_update_params->update_vport_active_flg = 1;
2141 vport_update_params->vport_active_flg = 1;
2142
2143 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2144 qed_info->tx_switching) {
2145 vport_update_params->update_tx_switching_flg = 1;
2146 vport_update_params->tx_switching_flg = 1;
2147 }
2148
2149 qede_fill_rss_params(edev, &vport_update_params->rss_params,
2150 &vport_update_params->update_rss_flg);
2151
2152 rc = edev->ops->vport_update(cdev, vport_update_params);
2153 if (rc)
2154 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2155
2156out:
2157 vfree(vport_update_params);
2158 return rc;
2159}
2160
2161enum qede_unload_mode {
2162 QEDE_UNLOAD_NORMAL,
2163 QEDE_UNLOAD_RECOVERY,
2164};
2165
2166static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2167 bool is_locked)
2168{
2169 struct qed_link_params link_params;
2170 int rc;
2171
2172 DP_INFO(edev, "Starting qede unload\n");
2173
2174 if (!is_locked)
2175 __qede_lock(edev);
2176
2177 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2178
2179 if (mode != QEDE_UNLOAD_RECOVERY)
2180 edev->state = QEDE_STATE_CLOSED;
2181
2182 qede_rdma_dev_event_close(edev);
2183
2184 /* Close OS Tx */
2185 netif_tx_disable(edev->ndev);
2186 netif_carrier_off(edev->ndev);
2187
2188 if (mode != QEDE_UNLOAD_RECOVERY) {
2189 /* Reset the link */
2190 memset(&link_params, 0, sizeof(link_params));
2191 link_params.link_up = false;
2192 edev->ops->common->set_link(edev->cdev, &link_params);
2193
2194 rc = qede_stop_queues(edev);
2195 if (rc) {
2196 qede_sync_free_irqs(edev);
2197 goto out;
2198 }
2199
2200 DP_INFO(edev, "Stopped Queues\n");
2201 }
2202
2203 qede_vlan_mark_nonconfigured(edev);
2204 edev->ops->fastpath_stop(edev->cdev);
2205
2206 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2207 qede_poll_for_freeing_arfs_filters(edev);
2208 qede_free_arfs(edev);
2209 }
2210
2211 /* Release the interrupts */
2212 qede_sync_free_irqs(edev);
2213 edev->ops->common->set_fp_int(edev->cdev, 0);
2214
2215 qede_napi_disable_remove(edev);
2216
2217 if (mode == QEDE_UNLOAD_RECOVERY)
2218 qede_empty_tx_queues(edev);
2219
2220 qede_free_mem_load(edev);
2221 qede_free_fp_array(edev);
2222
2223out:
2224 if (!is_locked)
2225 __qede_unlock(edev);
2226
2227 if (mode != QEDE_UNLOAD_RECOVERY)
2228 DP_NOTICE(edev, "Link is down\n");
2229
2230 edev->ptp_skip_txts = 0;
2231
2232 DP_INFO(edev, "Ending qede unload\n");
2233}
2234
2235enum qede_load_mode {
2236 QEDE_LOAD_NORMAL,
2237 QEDE_LOAD_RELOAD,
2238 QEDE_LOAD_RECOVERY,
2239};
2240
2241static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2242 bool is_locked)
2243{
2244 struct qed_link_params link_params;
2245 u8 num_tc;
2246 int rc;
2247
2248 DP_INFO(edev, "Starting qede load\n");
2249
2250 if (!is_locked)
2251 __qede_lock(edev);
2252
2253 rc = qede_set_num_queues(edev);
2254 if (rc)
2255 goto out;
2256
2257 rc = qede_alloc_fp_array(edev);
2258 if (rc)
2259 goto out;
2260
2261 qede_init_fp(edev);
2262
2263 rc = qede_alloc_mem_load(edev);
2264 if (rc)
2265 goto err1;
2266 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2267 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2268
2269 rc = qede_set_real_num_queues(edev);
2270 if (rc)
2271 goto err2;
2272
2273 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2274 rc = qede_alloc_arfs(edev);
2275 if (rc)
2276 DP_NOTICE(edev, "aRFS memory allocation failed\n");
2277 }
2278
2279 qede_napi_add_enable(edev);
2280 DP_INFO(edev, "Napi added and enabled\n");
2281
2282 rc = qede_setup_irqs(edev);
2283 if (rc)
2284 goto err3;
2285 DP_INFO(edev, "Setup IRQs succeeded\n");
2286
2287 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2288 if (rc)
2289 goto err4;
2290 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2291
2292 num_tc = netdev_get_num_tc(edev->ndev);
2293 num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2294 qede_setup_tc(edev->ndev, num_tc);
2295
2296 /* Program un-configured VLANs */
2297 qede_configure_vlan_filters(edev);
2298
2299 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2300
2301 /* Ask for link-up using current configuration */
2302 memset(&link_params, 0, sizeof(link_params));
2303 link_params.link_up = true;
2304 edev->ops->common->set_link(edev->cdev, &link_params);
2305
2306 edev->state = QEDE_STATE_OPEN;
2307
2308 DP_INFO(edev, "Ending successfully qede load\n");
2309
2310 goto out;
2311err4:
2312 qede_sync_free_irqs(edev);
2313 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2314err3:
2315 qede_napi_disable_remove(edev);
2316err2:
2317 qede_free_mem_load(edev);
2318err1:
2319 edev->ops->common->set_fp_int(edev->cdev, 0);
2320 qede_free_fp_array(edev);
2321 edev->num_queues = 0;
2322 edev->fp_num_tx = 0;
2323 edev->fp_num_rx = 0;
2324out:
2325 if (!is_locked)
2326 __qede_unlock(edev);
2327
2328 return rc;
2329}
2330
2331/* 'func' should be able to run between unload and reload assuming interface
2332 * is actually running, or afterwards in case it's currently DOWN.
2333 */
2334void qede_reload(struct qede_dev *edev,
2335 struct qede_reload_args *args, bool is_locked)
2336{
2337 if (!is_locked)
2338 __qede_lock(edev);
2339
2340 /* Since qede_lock is held, internal state wouldn't change even
2341 * if netdev state would start transitioning. Check whether current
2342 * internal configuration indicates device is up, then reload.
2343 */
2344 if (edev->state == QEDE_STATE_OPEN) {
2345 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2346 if (args)
2347 args->func(edev, args);
2348 qede_load(edev, QEDE_LOAD_RELOAD, true);
2349
2350 /* Since no one is going to do it for us, re-configure */
2351 qede_config_rx_mode(edev->ndev);
2352 } else if (args) {
2353 args->func(edev, args);
2354 }
2355
2356 if (!is_locked)
2357 __qede_unlock(edev);
2358}
2359
2360/* called with rtnl_lock */
2361static int qede_open(struct net_device *ndev)
2362{
2363 struct qede_dev *edev = netdev_priv(ndev);
2364 int rc;
2365
2366 netif_carrier_off(ndev);
2367
2368 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2369
2370 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2371 if (rc)
2372 return rc;
2373
2374 udp_tunnel_get_rx_info(ndev);
2375
2376 edev->ops->common->update_drv_state(edev->cdev, true);
2377
2378 return 0;
2379}
2380
2381static int qede_close(struct net_device *ndev)
2382{
2383 struct qede_dev *edev = netdev_priv(ndev);
2384
2385 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2386
2387 edev->ops->common->update_drv_state(edev->cdev, false);
2388
2389 return 0;
2390}
2391
2392static void qede_link_update(void *dev, struct qed_link_output *link)
2393{
2394 struct qede_dev *edev = dev;
2395
2396 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2397 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2398 return;
2399 }
2400
2401 if (link->link_up) {
2402 if (!netif_carrier_ok(edev->ndev)) {
2403 DP_NOTICE(edev, "Link is up\n");
2404 netif_tx_start_all_queues(edev->ndev);
2405 netif_carrier_on(edev->ndev);
2406 qede_rdma_dev_event_open(edev);
2407 }
2408 } else {
2409 if (netif_carrier_ok(edev->ndev)) {
2410 DP_NOTICE(edev, "Link is down\n");
2411 netif_tx_disable(edev->ndev);
2412 netif_carrier_off(edev->ndev);
2413 qede_rdma_dev_event_close(edev);
2414 }
2415 }
2416}
2417
2418static void qede_schedule_recovery_handler(void *dev)
2419{
2420 struct qede_dev *edev = dev;
2421
2422 if (edev->state == QEDE_STATE_RECOVERY) {
2423 DP_NOTICE(edev,
2424 "Avoid scheduling a recovery handling since already in recovery state\n");
2425 return;
2426 }
2427
2428 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2429 schedule_delayed_work(&edev->sp_task, 0);
2430
2431 DP_INFO(edev, "Scheduled a recovery handler\n");
2432}
2433
2434static void qede_recovery_failed(struct qede_dev *edev)
2435{
2436 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2437
2438 netif_device_detach(edev->ndev);
2439
2440 if (edev->cdev)
2441 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2442}
2443
2444static void qede_recovery_handler(struct qede_dev *edev)
2445{
2446 u32 curr_state = edev->state;
2447 int rc;
2448
2449 DP_NOTICE(edev, "Starting a recovery process\n");
2450
2451 /* No need to acquire first the qede_lock since is done by qede_sp_task
2452 * before calling this function.
2453 */
2454 edev->state = QEDE_STATE_RECOVERY;
2455
2456 edev->ops->common->recovery_prolog(edev->cdev);
2457
2458 if (curr_state == QEDE_STATE_OPEN)
2459 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2460
2461 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2462
2463 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2464 IS_VF(edev), QEDE_PROBE_RECOVERY);
2465 if (rc) {
2466 edev->cdev = NULL;
2467 goto err;
2468 }
2469
2470 if (curr_state == QEDE_STATE_OPEN) {
2471 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2472 if (rc)
2473 goto err;
2474
2475 qede_config_rx_mode(edev->ndev);
2476 udp_tunnel_get_rx_info(edev->ndev);
2477 }
2478
2479 edev->state = curr_state;
2480
2481 DP_NOTICE(edev, "Recovery handling is done\n");
2482
2483 return;
2484
2485err:
2486 qede_recovery_failed(edev);
2487}
2488
2489static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2490{
2491 struct netdev_queue *netdev_txq;
2492
2493 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2494 if (netif_xmit_stopped(netdev_txq))
2495 return true;
2496
2497 return false;
2498}
2499
2500static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2501{
2502 struct qede_dev *edev = dev;
2503 struct netdev_hw_addr *ha;
2504 int i;
2505
2506 if (edev->ndev->features & NETIF_F_IP_CSUM)
2507 data->feat_flags |= QED_TLV_IP_CSUM;
2508 if (edev->ndev->features & NETIF_F_TSO)
2509 data->feat_flags |= QED_TLV_LSO;
2510
2511 ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2512 memset(data->mac[1], 0, ETH_ALEN);
2513 memset(data->mac[2], 0, ETH_ALEN);
2514 /* Copy the first two UC macs */
2515 netif_addr_lock_bh(edev->ndev);
2516 i = 1;
2517 netdev_for_each_uc_addr(ha, edev->ndev) {
2518 ether_addr_copy(data->mac[i++], ha->addr);
2519 if (i == QED_TLV_MAC_COUNT)
2520 break;
2521 }
2522
2523 netif_addr_unlock_bh(edev->ndev);
2524}
2525
2526static void qede_get_eth_tlv_data(void *dev, void *data)
2527{
2528 struct qed_mfw_tlv_eth *etlv = data;
2529 struct qede_dev *edev = dev;
2530 struct qede_fastpath *fp;
2531 int i;
2532
2533 etlv->lso_maxoff_size = 0XFFFF;
2534 etlv->lso_maxoff_size_set = true;
2535 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2536 etlv->lso_minseg_size_set = true;
2537 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2538 etlv->prom_mode_set = true;
2539 etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2540 etlv->tx_descr_size_set = true;
2541 etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2542 etlv->rx_descr_size_set = true;
2543 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2544 etlv->iov_offload_set = true;
2545
2546 /* Fill information regarding queues; Should be done under the qede
2547 * lock to guarantee those don't change beneath our feet.
2548 */
2549 etlv->txqs_empty = true;
2550 etlv->rxqs_empty = true;
2551 etlv->num_txqs_full = 0;
2552 etlv->num_rxqs_full = 0;
2553
2554 __qede_lock(edev);
2555 for_each_queue(i) {
2556 fp = &edev->fp_array[i];
2557 if (fp->type & QEDE_FASTPATH_TX) {
2558 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2559
2560 if (txq->sw_tx_cons != txq->sw_tx_prod)
2561 etlv->txqs_empty = false;
2562 if (qede_is_txq_full(edev, txq))
2563 etlv->num_txqs_full++;
2564 }
2565 if (fp->type & QEDE_FASTPATH_RX) {
2566 if (qede_has_rx_work(fp->rxq))
2567 etlv->rxqs_empty = false;
2568
2569 /* This one is a bit tricky; Firmware might stop
2570 * placing packets if ring is not yet full.
2571 * Give an approximation.
2572 */
2573 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2574 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2575 RX_RING_SIZE - 100)
2576 etlv->num_rxqs_full++;
2577 }
2578 }
2579 __qede_unlock(edev);
2580
2581 etlv->txqs_empty_set = true;
2582 etlv->rxqs_empty_set = true;
2583 etlv->num_txqs_full_set = true;
2584 etlv->num_rxqs_full_set = true;
2585}
1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2/* QLogic qede NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7#include <linux/crash_dump.h>
8#include <linux/module.h>
9#include <linux/pci.h>
10#include <linux/device.h>
11#include <linux/netdevice.h>
12#include <linux/etherdevice.h>
13#include <linux/skbuff.h>
14#include <linux/errno.h>
15#include <linux/list.h>
16#include <linux/string.h>
17#include <linux/dma-mapping.h>
18#include <linux/interrupt.h>
19#include <asm/byteorder.h>
20#include <asm/param.h>
21#include <linux/io.h>
22#include <linux/netdev_features.h>
23#include <linux/udp.h>
24#include <linux/tcp.h>
25#include <net/udp_tunnel.h>
26#include <linux/ip.h>
27#include <net/ipv6.h>
28#include <net/tcp.h>
29#include <linux/if_ether.h>
30#include <linux/if_vlan.h>
31#include <linux/pkt_sched.h>
32#include <linux/ethtool.h>
33#include <linux/in.h>
34#include <linux/random.h>
35#include <net/ip6_checksum.h>
36#include <linux/bitops.h>
37#include <linux/vmalloc.h>
38#include "qede.h"
39#include "qede_ptp.h"
40
41MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
42MODULE_LICENSE("GPL");
43
44static uint debug;
45module_param(debug, uint, 0);
46MODULE_PARM_DESC(debug, " Default debug msglevel");
47
48static const struct qed_eth_ops *qed_ops;
49
50#define CHIP_NUM_57980S_40 0x1634
51#define CHIP_NUM_57980S_10 0x1666
52#define CHIP_NUM_57980S_MF 0x1636
53#define CHIP_NUM_57980S_100 0x1644
54#define CHIP_NUM_57980S_50 0x1654
55#define CHIP_NUM_57980S_25 0x1656
56#define CHIP_NUM_57980S_IOV 0x1664
57#define CHIP_NUM_AH 0x8070
58#define CHIP_NUM_AH_IOV 0x8090
59
60#ifndef PCI_DEVICE_ID_NX2_57980E
61#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
62#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
63#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
64#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
65#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
66#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
67#define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
68#define PCI_DEVICE_ID_AH CHIP_NUM_AH
69#define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
70
71#endif
72
73enum qede_pci_private {
74 QEDE_PRIVATE_PF,
75 QEDE_PRIVATE_VF
76};
77
78static const struct pci_device_id qede_pci_tbl[] = {
79 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85#ifdef CONFIG_QED_SRIOV
86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87#endif
88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
89#ifdef CONFIG_QED_SRIOV
90 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
91#endif
92 { 0 }
93};
94
95MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
96
97static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
98static pci_ers_result_t
99qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
100
101#define TX_TIMEOUT (5 * HZ)
102
103/* Utilize last protocol index for XDP */
104#define XDP_PI 11
105
106static void qede_remove(struct pci_dev *pdev);
107static void qede_shutdown(struct pci_dev *pdev);
108static void qede_link_update(void *dev, struct qed_link_output *link);
109static void qede_schedule_recovery_handler(void *dev);
110static void qede_recovery_handler(struct qede_dev *edev);
111static void qede_schedule_hw_err_handler(void *dev,
112 enum qed_hw_err_type err_type);
113static void qede_get_eth_tlv_data(void *edev, void *data);
114static void qede_get_generic_tlv_data(void *edev,
115 struct qed_generic_tlvs *data);
116static void qede_generic_hw_err_handler(struct qede_dev *edev);
117#ifdef CONFIG_QED_SRIOV
118static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
119 __be16 vlan_proto)
120{
121 struct qede_dev *edev = netdev_priv(ndev);
122
123 if (vlan > 4095) {
124 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
125 return -EINVAL;
126 }
127
128 if (vlan_proto != htons(ETH_P_8021Q))
129 return -EPROTONOSUPPORT;
130
131 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
132 vlan, vf);
133
134 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
135}
136
137static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
138{
139 struct qede_dev *edev = netdev_priv(ndev);
140
141 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
142
143 if (!is_valid_ether_addr(mac)) {
144 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
145 return -EINVAL;
146 }
147
148 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
149}
150
151static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
152{
153 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
154 struct qed_dev_info *qed_info = &edev->dev_info.common;
155 struct qed_update_vport_params *vport_params;
156 int rc;
157
158 vport_params = vzalloc(sizeof(*vport_params));
159 if (!vport_params)
160 return -ENOMEM;
161 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
162
163 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
164
165 /* Enable/Disable Tx switching for PF */
166 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
167 !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
168 vport_params->vport_id = 0;
169 vport_params->update_tx_switching_flg = 1;
170 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
171 edev->ops->vport_update(edev->cdev, vport_params);
172 }
173
174 vfree(vport_params);
175 return rc;
176}
177#endif
178
179static int __maybe_unused qede_suspend(struct device *dev)
180{
181 dev_info(dev, "Device does not support suspend operation\n");
182
183 return -EOPNOTSUPP;
184}
185
186static DEFINE_SIMPLE_DEV_PM_OPS(qede_pm_ops, qede_suspend, NULL);
187
188static const struct pci_error_handlers qede_err_handler = {
189 .error_detected = qede_io_error_detected,
190};
191
192static struct pci_driver qede_pci_driver = {
193 .name = "qede",
194 .id_table = qede_pci_tbl,
195 .probe = qede_probe,
196 .remove = qede_remove,
197 .shutdown = qede_shutdown,
198#ifdef CONFIG_QED_SRIOV
199 .sriov_configure = qede_sriov_configure,
200#endif
201 .err_handler = &qede_err_handler,
202 .driver.pm = &qede_pm_ops,
203};
204
205static struct qed_eth_cb_ops qede_ll_ops = {
206 {
207#ifdef CONFIG_RFS_ACCEL
208 .arfs_filter_op = qede_arfs_filter_op,
209#endif
210 .link_update = qede_link_update,
211 .schedule_recovery_handler = qede_schedule_recovery_handler,
212 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
213 .get_generic_tlv_data = qede_get_generic_tlv_data,
214 .get_protocol_tlv_data = qede_get_eth_tlv_data,
215 },
216 .force_mac = qede_force_mac,
217 .ports_update = qede_udp_ports_update,
218};
219
220static int qede_netdev_event(struct notifier_block *this, unsigned long event,
221 void *ptr)
222{
223 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
224 struct ethtool_drvinfo drvinfo;
225 struct qede_dev *edev;
226
227 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
228 goto done;
229
230 /* Check whether this is a qede device */
231 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
232 goto done;
233
234 memset(&drvinfo, 0, sizeof(drvinfo));
235 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
236 if (strcmp(drvinfo.driver, "qede"))
237 goto done;
238 edev = netdev_priv(ndev);
239
240 switch (event) {
241 case NETDEV_CHANGENAME:
242 /* Notify qed of the name change */
243 if (!edev->ops || !edev->ops->common)
244 goto done;
245 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
246 break;
247 case NETDEV_CHANGEADDR:
248 edev = netdev_priv(ndev);
249 qede_rdma_event_changeaddr(edev);
250 break;
251 }
252
253done:
254 return NOTIFY_DONE;
255}
256
257static struct notifier_block qede_netdev_notifier = {
258 .notifier_call = qede_netdev_event,
259};
260
261static
262int __init qede_init(void)
263{
264 int ret;
265
266 pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
267
268 qede_forced_speed_maps_init();
269
270 qed_ops = qed_get_eth_ops();
271 if (!qed_ops) {
272 pr_notice("Failed to get qed ethtool operations\n");
273 return -EINVAL;
274 }
275
276 /* Must register notifier before pci ops, since we might miss
277 * interface rename after pci probe and netdev registration.
278 */
279 ret = register_netdevice_notifier(&qede_netdev_notifier);
280 if (ret) {
281 pr_notice("Failed to register netdevice_notifier\n");
282 qed_put_eth_ops();
283 return -EINVAL;
284 }
285
286 ret = pci_register_driver(&qede_pci_driver);
287 if (ret) {
288 pr_notice("Failed to register driver\n");
289 unregister_netdevice_notifier(&qede_netdev_notifier);
290 qed_put_eth_ops();
291 return -EINVAL;
292 }
293
294 return 0;
295}
296
297static void __exit qede_cleanup(void)
298{
299 if (debug & QED_LOG_INFO_MASK)
300 pr_info("qede_cleanup called\n");
301
302 unregister_netdevice_notifier(&qede_netdev_notifier);
303 pci_unregister_driver(&qede_pci_driver);
304 qed_put_eth_ops();
305}
306
307module_init(qede_init);
308module_exit(qede_cleanup);
309
310static int qede_open(struct net_device *ndev);
311static int qede_close(struct net_device *ndev);
312
313void qede_fill_by_demand_stats(struct qede_dev *edev)
314{
315 struct qede_stats_common *p_common = &edev->stats.common;
316 struct qed_eth_stats stats;
317
318 edev->ops->get_vport_stats(edev->cdev, &stats);
319
320 spin_lock(&edev->stats_lock);
321
322 p_common->no_buff_discards = stats.common.no_buff_discards;
323 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
324 p_common->ttl0_discard = stats.common.ttl0_discard;
325 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
326 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
327 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
328 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
329 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
330 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
331 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
332 p_common->mac_filter_discards = stats.common.mac_filter_discards;
333 p_common->gft_filter_drop = stats.common.gft_filter_drop;
334
335 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
336 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
337 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
338 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
339 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
340 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
341 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
342 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
343 p_common->coalesced_events = stats.common.tpa_coalesced_events;
344 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
345 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
346 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
347
348 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
349 p_common->rx_65_to_127_byte_packets =
350 stats.common.rx_65_to_127_byte_packets;
351 p_common->rx_128_to_255_byte_packets =
352 stats.common.rx_128_to_255_byte_packets;
353 p_common->rx_256_to_511_byte_packets =
354 stats.common.rx_256_to_511_byte_packets;
355 p_common->rx_512_to_1023_byte_packets =
356 stats.common.rx_512_to_1023_byte_packets;
357 p_common->rx_1024_to_1518_byte_packets =
358 stats.common.rx_1024_to_1518_byte_packets;
359 p_common->rx_crc_errors = stats.common.rx_crc_errors;
360 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
361 p_common->rx_pause_frames = stats.common.rx_pause_frames;
362 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
363 p_common->rx_align_errors = stats.common.rx_align_errors;
364 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
365 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
366 p_common->rx_jabbers = stats.common.rx_jabbers;
367 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
368 p_common->rx_fragments = stats.common.rx_fragments;
369 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
370 p_common->tx_65_to_127_byte_packets =
371 stats.common.tx_65_to_127_byte_packets;
372 p_common->tx_128_to_255_byte_packets =
373 stats.common.tx_128_to_255_byte_packets;
374 p_common->tx_256_to_511_byte_packets =
375 stats.common.tx_256_to_511_byte_packets;
376 p_common->tx_512_to_1023_byte_packets =
377 stats.common.tx_512_to_1023_byte_packets;
378 p_common->tx_1024_to_1518_byte_packets =
379 stats.common.tx_1024_to_1518_byte_packets;
380 p_common->tx_pause_frames = stats.common.tx_pause_frames;
381 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
382 p_common->brb_truncates = stats.common.brb_truncates;
383 p_common->brb_discards = stats.common.brb_discards;
384 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
385 p_common->link_change_count = stats.common.link_change_count;
386 p_common->ptp_skip_txts = edev->ptp_skip_txts;
387
388 if (QEDE_IS_BB(edev)) {
389 struct qede_stats_bb *p_bb = &edev->stats.bb;
390
391 p_bb->rx_1519_to_1522_byte_packets =
392 stats.bb.rx_1519_to_1522_byte_packets;
393 p_bb->rx_1519_to_2047_byte_packets =
394 stats.bb.rx_1519_to_2047_byte_packets;
395 p_bb->rx_2048_to_4095_byte_packets =
396 stats.bb.rx_2048_to_4095_byte_packets;
397 p_bb->rx_4096_to_9216_byte_packets =
398 stats.bb.rx_4096_to_9216_byte_packets;
399 p_bb->rx_9217_to_16383_byte_packets =
400 stats.bb.rx_9217_to_16383_byte_packets;
401 p_bb->tx_1519_to_2047_byte_packets =
402 stats.bb.tx_1519_to_2047_byte_packets;
403 p_bb->tx_2048_to_4095_byte_packets =
404 stats.bb.tx_2048_to_4095_byte_packets;
405 p_bb->tx_4096_to_9216_byte_packets =
406 stats.bb.tx_4096_to_9216_byte_packets;
407 p_bb->tx_9217_to_16383_byte_packets =
408 stats.bb.tx_9217_to_16383_byte_packets;
409 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
410 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
411 } else {
412 struct qede_stats_ah *p_ah = &edev->stats.ah;
413
414 p_ah->rx_1519_to_max_byte_packets =
415 stats.ah.rx_1519_to_max_byte_packets;
416 p_ah->tx_1519_to_max_byte_packets =
417 stats.ah.tx_1519_to_max_byte_packets;
418 }
419
420 spin_unlock(&edev->stats_lock);
421}
422
423static void qede_get_stats64(struct net_device *dev,
424 struct rtnl_link_stats64 *stats)
425{
426 struct qede_dev *edev = netdev_priv(dev);
427 struct qede_stats_common *p_common;
428
429 p_common = &edev->stats.common;
430
431 spin_lock(&edev->stats_lock);
432
433 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
434 p_common->rx_bcast_pkts;
435 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
436 p_common->tx_bcast_pkts;
437
438 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
439 p_common->rx_bcast_bytes;
440 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
441 p_common->tx_bcast_bytes;
442
443 stats->tx_errors = p_common->tx_err_drop_pkts;
444 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
445
446 stats->rx_fifo_errors = p_common->no_buff_discards;
447
448 if (QEDE_IS_BB(edev))
449 stats->collisions = edev->stats.bb.tx_total_collisions;
450 stats->rx_crc_errors = p_common->rx_crc_errors;
451 stats->rx_frame_errors = p_common->rx_align_errors;
452
453 spin_unlock(&edev->stats_lock);
454}
455
456#ifdef CONFIG_QED_SRIOV
457static int qede_get_vf_config(struct net_device *dev, int vfidx,
458 struct ifla_vf_info *ivi)
459{
460 struct qede_dev *edev = netdev_priv(dev);
461
462 if (!edev->ops)
463 return -EINVAL;
464
465 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
466}
467
468static int qede_set_vf_rate(struct net_device *dev, int vfidx,
469 int min_tx_rate, int max_tx_rate)
470{
471 struct qede_dev *edev = netdev_priv(dev);
472
473 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
474 max_tx_rate);
475}
476
477static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
478{
479 struct qede_dev *edev = netdev_priv(dev);
480
481 if (!edev->ops)
482 return -EINVAL;
483
484 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
485}
486
487static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
488 int link_state)
489{
490 struct qede_dev *edev = netdev_priv(dev);
491
492 if (!edev->ops)
493 return -EINVAL;
494
495 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
496}
497
498static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
499{
500 struct qede_dev *edev = netdev_priv(dev);
501
502 if (!edev->ops)
503 return -EINVAL;
504
505 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
506}
507#endif
508
509static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
510{
511 struct qede_dev *edev = netdev_priv(dev);
512
513 if (!netif_running(dev))
514 return -EAGAIN;
515
516 switch (cmd) {
517 case SIOCSHWTSTAMP:
518 return qede_ptp_hw_ts(edev, ifr);
519 default:
520 DP_VERBOSE(edev, QED_MSG_DEBUG,
521 "default IOCTL cmd 0x%x\n", cmd);
522 return -EOPNOTSUPP;
523 }
524
525 return 0;
526}
527
528static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
529{
530 char *p_sb = (char *)fp->sb_info->sb_virt;
531 u32 sb_size, i;
532
533 sb_size = sizeof(struct status_block);
534
535 for (i = 0; i < sb_size; i += 8)
536 DP_NOTICE(edev,
537 "%02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX\n",
538 p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
539 p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
540}
541
542static void
543qede_txq_fp_log_metadata(struct qede_dev *edev,
544 struct qede_fastpath *fp, struct qede_tx_queue *txq)
545{
546 struct qed_chain *p_chain = &txq->tx_pbl;
547
548 /* Dump txq/fp/sb ids etc. other metadata */
549 DP_NOTICE(edev,
550 "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
551 fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
552 p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
553
554 /* Dump all the relevant prod/cons indexes */
555 DP_NOTICE(edev,
556 "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
557 le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
558 qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
559}
560
561static void
562qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
563{
564 struct qed_sb_info_dbg sb_dbg;
565 int rc;
566
567 /* sb info */
568 qede_fp_sb_dump(edev, fp);
569
570 memset(&sb_dbg, 0, sizeof(sb_dbg));
571 rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
572
573 DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
574 sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
575
576 /* report to mfw */
577 edev->ops->common->mfw_report(edev->cdev,
578 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
579 txq->index, le16_to_cpu(*txq->hw_cons_ptr),
580 qed_chain_get_cons_idx(&txq->tx_pbl),
581 qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
582 if (!rc)
583 edev->ops->common->mfw_report(edev->cdev,
584 "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
585 txq->index, fp->sb_info->igu_sb_id,
586 sb_dbg.igu_prod, sb_dbg.igu_cons,
587 sb_dbg.pi[TX_PI(txq->cos)]);
588}
589
590static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
591{
592 struct qede_dev *edev = netdev_priv(dev);
593 int i;
594
595 netif_carrier_off(dev);
596 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
597
598 for_each_queue(i) {
599 struct qede_tx_queue *txq;
600 struct qede_fastpath *fp;
601 int cos;
602
603 fp = &edev->fp_array[i];
604 if (!(fp->type & QEDE_FASTPATH_TX))
605 continue;
606
607 for_each_cos_in_txq(edev, cos) {
608 txq = &fp->txq[cos];
609
610 /* Dump basic metadata for all queues */
611 qede_txq_fp_log_metadata(edev, fp, txq);
612
613 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
614 qed_chain_get_prod_idx(&txq->tx_pbl))
615 qede_tx_log_print(edev, fp, txq);
616 }
617 }
618
619 if (IS_VF(edev))
620 return;
621
622 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
623 edev->state == QEDE_STATE_RECOVERY) {
624 DP_INFO(edev,
625 "Avoid handling a Tx timeout while another HW error is being handled\n");
626 return;
627 }
628
629 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
630 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
631 schedule_delayed_work(&edev->sp_task, 0);
632}
633
634static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
635{
636 struct qede_dev *edev = netdev_priv(ndev);
637 int cos, count, offset;
638
639 if (num_tc > edev->dev_info.num_tc)
640 return -EINVAL;
641
642 netdev_reset_tc(ndev);
643 netdev_set_num_tc(ndev, num_tc);
644
645 for_each_cos_in_txq(edev, cos) {
646 count = QEDE_TSS_COUNT(edev);
647 offset = cos * QEDE_TSS_COUNT(edev);
648 netdev_set_tc_queue(ndev, cos, count, offset);
649 }
650
651 return 0;
652}
653
654static int
655qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
656 __be16 proto)
657{
658 switch (f->command) {
659 case FLOW_CLS_REPLACE:
660 return qede_add_tc_flower_fltr(edev, proto, f);
661 case FLOW_CLS_DESTROY:
662 return qede_delete_flow_filter(edev, f->cookie);
663 default:
664 return -EOPNOTSUPP;
665 }
666}
667
668static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
669 void *cb_priv)
670{
671 struct flow_cls_offload *f;
672 struct qede_dev *edev = cb_priv;
673
674 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
675 return -EOPNOTSUPP;
676
677 switch (type) {
678 case TC_SETUP_CLSFLOWER:
679 f = type_data;
680 return qede_set_flower(edev, f, f->common.protocol);
681 default:
682 return -EOPNOTSUPP;
683 }
684}
685
686static LIST_HEAD(qede_block_cb_list);
687
688static int
689qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
690 void *type_data)
691{
692 struct qede_dev *edev = netdev_priv(dev);
693 struct tc_mqprio_qopt *mqprio;
694
695 switch (type) {
696 case TC_SETUP_BLOCK:
697 return flow_block_cb_setup_simple(type_data,
698 &qede_block_cb_list,
699 qede_setup_tc_block_cb,
700 edev, edev, true);
701 case TC_SETUP_QDISC_MQPRIO:
702 mqprio = type_data;
703
704 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
705 return qede_setup_tc(dev, mqprio->num_tc);
706 default:
707 return -EOPNOTSUPP;
708 }
709}
710
711static const struct net_device_ops qede_netdev_ops = {
712 .ndo_open = qede_open,
713 .ndo_stop = qede_close,
714 .ndo_start_xmit = qede_start_xmit,
715 .ndo_select_queue = qede_select_queue,
716 .ndo_set_rx_mode = qede_set_rx_mode,
717 .ndo_set_mac_address = qede_set_mac_addr,
718 .ndo_validate_addr = eth_validate_addr,
719 .ndo_change_mtu = qede_change_mtu,
720 .ndo_eth_ioctl = qede_ioctl,
721 .ndo_tx_timeout = qede_tx_timeout,
722#ifdef CONFIG_QED_SRIOV
723 .ndo_set_vf_mac = qede_set_vf_mac,
724 .ndo_set_vf_vlan = qede_set_vf_vlan,
725 .ndo_set_vf_trust = qede_set_vf_trust,
726#endif
727 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
728 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
729 .ndo_fix_features = qede_fix_features,
730 .ndo_set_features = qede_set_features,
731 .ndo_get_stats64 = qede_get_stats64,
732#ifdef CONFIG_QED_SRIOV
733 .ndo_set_vf_link_state = qede_set_vf_link_state,
734 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
735 .ndo_get_vf_config = qede_get_vf_config,
736 .ndo_set_vf_rate = qede_set_vf_rate,
737#endif
738 .ndo_features_check = qede_features_check,
739 .ndo_bpf = qede_xdp,
740#ifdef CONFIG_RFS_ACCEL
741 .ndo_rx_flow_steer = qede_rx_flow_steer,
742#endif
743 .ndo_xdp_xmit = qede_xdp_transmit,
744 .ndo_setup_tc = qede_setup_tc_offload,
745};
746
747static const struct net_device_ops qede_netdev_vf_ops = {
748 .ndo_open = qede_open,
749 .ndo_stop = qede_close,
750 .ndo_start_xmit = qede_start_xmit,
751 .ndo_select_queue = qede_select_queue,
752 .ndo_set_rx_mode = qede_set_rx_mode,
753 .ndo_set_mac_address = qede_set_mac_addr,
754 .ndo_validate_addr = eth_validate_addr,
755 .ndo_change_mtu = qede_change_mtu,
756 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
757 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
758 .ndo_fix_features = qede_fix_features,
759 .ndo_set_features = qede_set_features,
760 .ndo_get_stats64 = qede_get_stats64,
761 .ndo_features_check = qede_features_check,
762};
763
764static const struct net_device_ops qede_netdev_vf_xdp_ops = {
765 .ndo_open = qede_open,
766 .ndo_stop = qede_close,
767 .ndo_start_xmit = qede_start_xmit,
768 .ndo_select_queue = qede_select_queue,
769 .ndo_set_rx_mode = qede_set_rx_mode,
770 .ndo_set_mac_address = qede_set_mac_addr,
771 .ndo_validate_addr = eth_validate_addr,
772 .ndo_change_mtu = qede_change_mtu,
773 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
774 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
775 .ndo_fix_features = qede_fix_features,
776 .ndo_set_features = qede_set_features,
777 .ndo_get_stats64 = qede_get_stats64,
778 .ndo_features_check = qede_features_check,
779 .ndo_bpf = qede_xdp,
780 .ndo_xdp_xmit = qede_xdp_transmit,
781};
782
783/* -------------------------------------------------------------------------
784 * START OF PROBE / REMOVE
785 * -------------------------------------------------------------------------
786 */
787
788static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
789 struct pci_dev *pdev,
790 struct qed_dev_eth_info *info,
791 u32 dp_module, u8 dp_level)
792{
793 struct net_device *ndev;
794 struct qede_dev *edev;
795
796 ndev = alloc_etherdev_mqs(sizeof(*edev),
797 info->num_queues * info->num_tc,
798 info->num_queues);
799 if (!ndev) {
800 pr_err("etherdev allocation failed\n");
801 return NULL;
802 }
803
804 edev = netdev_priv(ndev);
805 edev->ndev = ndev;
806 edev->cdev = cdev;
807 edev->pdev = pdev;
808 edev->dp_module = dp_module;
809 edev->dp_level = dp_level;
810 edev->ops = qed_ops;
811
812 if (is_kdump_kernel()) {
813 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
814 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
815 } else {
816 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
817 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
818 }
819
820 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
821 info->num_queues, info->num_queues);
822
823 SET_NETDEV_DEV(ndev, &pdev->dev);
824
825 memset(&edev->stats, 0, sizeof(edev->stats));
826 memcpy(&edev->dev_info, info, sizeof(*info));
827
828 /* As ethtool doesn't have the ability to show WoL behavior as
829 * 'default', if device supports it declare it's enabled.
830 */
831 if (edev->dev_info.common.wol_support)
832 edev->wol_enabled = true;
833
834 INIT_LIST_HEAD(&edev->vlan_list);
835
836 return edev;
837}
838
839static void qede_init_ndev(struct qede_dev *edev)
840{
841 struct net_device *ndev = edev->ndev;
842 struct pci_dev *pdev = edev->pdev;
843 bool udp_tunnel_enable = false;
844 netdev_features_t hw_features;
845
846 pci_set_drvdata(pdev, ndev);
847
848 ndev->mem_start = edev->dev_info.common.pci_mem_start;
849 ndev->base_addr = ndev->mem_start;
850 ndev->mem_end = edev->dev_info.common.pci_mem_end;
851 ndev->irq = edev->dev_info.common.pci_irq;
852
853 ndev->watchdog_timeo = TX_TIMEOUT;
854
855 if (IS_VF(edev)) {
856 if (edev->dev_info.xdp_supported)
857 ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
858 else
859 ndev->netdev_ops = &qede_netdev_vf_ops;
860 } else {
861 ndev->netdev_ops = &qede_netdev_ops;
862 }
863
864 qede_set_ethtool_ops(ndev);
865
866 ndev->priv_flags |= IFF_UNICAST_FLT;
867
868 /* user-changeble features */
869 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
870 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
871 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
872
873 if (edev->dev_info.common.b_arfs_capable)
874 hw_features |= NETIF_F_NTUPLE;
875
876 if (edev->dev_info.common.vxlan_enable ||
877 edev->dev_info.common.geneve_enable)
878 udp_tunnel_enable = true;
879
880 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
881 hw_features |= NETIF_F_TSO_ECN;
882 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
883 NETIF_F_SG | NETIF_F_TSO |
884 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
885 NETIF_F_RXCSUM;
886 }
887
888 if (udp_tunnel_enable) {
889 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
890 NETIF_F_GSO_UDP_TUNNEL_CSUM);
891 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
892 NETIF_F_GSO_UDP_TUNNEL_CSUM);
893
894 qede_set_udp_tunnels(edev);
895 }
896
897 if (edev->dev_info.common.gre_enable) {
898 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
899 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
900 NETIF_F_GSO_GRE_CSUM);
901 }
902
903 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
904 NETIF_F_HIGHDMA;
905 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
906 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
907 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
908
909 ndev->hw_features = hw_features;
910
911 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
912 NETDEV_XDP_ACT_NDO_XMIT;
913
914 /* MTU range: 46 - 9600 */
915 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
916 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
917
918 /* Set network device HW mac */
919 eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
920
921 ndev->mtu = edev->dev_info.common.mtu;
922}
923
924/* This function converts from 32b param to two params of level and module
925 * Input 32b decoding:
926 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
927 * 'happy' flow, e.g. memory allocation failed.
928 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
929 * and provide important parameters.
930 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
931 * module. VERBOSE prints are for tracking the specific flow in low level.
932 *
933 * Notice that the level should be that of the lowest required logs.
934 */
935void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
936{
937 *p_dp_level = QED_LEVEL_NOTICE;
938 *p_dp_module = 0;
939
940 if (debug & QED_LOG_VERBOSE_MASK) {
941 *p_dp_level = QED_LEVEL_VERBOSE;
942 *p_dp_module = (debug & 0x3FFFFFFF);
943 } else if (debug & QED_LOG_INFO_MASK) {
944 *p_dp_level = QED_LEVEL_INFO;
945 } else if (debug & QED_LOG_NOTICE_MASK) {
946 *p_dp_level = QED_LEVEL_NOTICE;
947 }
948}
949
950static void qede_free_fp_array(struct qede_dev *edev)
951{
952 if (edev->fp_array) {
953 struct qede_fastpath *fp;
954 int i;
955
956 for_each_queue(i) {
957 fp = &edev->fp_array[i];
958
959 kfree(fp->sb_info);
960 /* Handle mem alloc failure case where qede_init_fp
961 * didn't register xdp_rxq_info yet.
962 * Implicit only (fp->type & QEDE_FASTPATH_RX)
963 */
964 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
965 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
966 kfree(fp->rxq);
967 kfree(fp->xdp_tx);
968 kfree(fp->txq);
969 }
970 kfree(edev->fp_array);
971 }
972
973 edev->num_queues = 0;
974 edev->fp_num_tx = 0;
975 edev->fp_num_rx = 0;
976}
977
978static int qede_alloc_fp_array(struct qede_dev *edev)
979{
980 u8 fp_combined, fp_rx = edev->fp_num_rx;
981 struct qede_fastpath *fp;
982 int i;
983
984 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
985 sizeof(*edev->fp_array), GFP_KERNEL);
986 if (!edev->fp_array) {
987 DP_NOTICE(edev, "fp array allocation failed\n");
988 goto err;
989 }
990
991 if (!edev->coal_entry) {
992 edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev),
993 sizeof(*edev->coal_entry),
994 GFP_KERNEL);
995 if (!edev->coal_entry) {
996 DP_ERR(edev, "coalesce entry allocation failed\n");
997 goto err;
998 }
999 }
1000
1001 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
1002
1003 /* Allocate the FP elements for Rx queues followed by combined and then
1004 * the Tx. This ordering should be maintained so that the respective
1005 * queues (Rx or Tx) will be together in the fastpath array and the
1006 * associated ids will be sequential.
1007 */
1008 for_each_queue(i) {
1009 fp = &edev->fp_array[i];
1010
1011 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
1012 if (!fp->sb_info) {
1013 DP_NOTICE(edev, "sb info struct allocation failed\n");
1014 goto err;
1015 }
1016
1017 if (fp_rx) {
1018 fp->type = QEDE_FASTPATH_RX;
1019 fp_rx--;
1020 } else if (fp_combined) {
1021 fp->type = QEDE_FASTPATH_COMBINED;
1022 fp_combined--;
1023 } else {
1024 fp->type = QEDE_FASTPATH_TX;
1025 }
1026
1027 if (fp->type & QEDE_FASTPATH_TX) {
1028 fp->txq = kcalloc(edev->dev_info.num_tc,
1029 sizeof(*fp->txq), GFP_KERNEL);
1030 if (!fp->txq)
1031 goto err;
1032 }
1033
1034 if (fp->type & QEDE_FASTPATH_RX) {
1035 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1036 if (!fp->rxq)
1037 goto err;
1038
1039 if (edev->xdp_prog) {
1040 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1041 GFP_KERNEL);
1042 if (!fp->xdp_tx)
1043 goto err;
1044 fp->type |= QEDE_FASTPATH_XDP;
1045 }
1046 }
1047 }
1048
1049 return 0;
1050err:
1051 qede_free_fp_array(edev);
1052 return -ENOMEM;
1053}
1054
1055/* The qede lock is used to protect driver state change and driver flows that
1056 * are not reentrant.
1057 */
1058void __qede_lock(struct qede_dev *edev)
1059{
1060 mutex_lock(&edev->qede_lock);
1061}
1062
1063void __qede_unlock(struct qede_dev *edev)
1064{
1065 mutex_unlock(&edev->qede_lock);
1066}
1067
1068/* This version of the lock should be used when acquiring the RTNL lock is also
1069 * needed in addition to the internal qede lock.
1070 */
1071static void qede_lock(struct qede_dev *edev)
1072{
1073 rtnl_lock();
1074 __qede_lock(edev);
1075}
1076
1077static void qede_unlock(struct qede_dev *edev)
1078{
1079 __qede_unlock(edev);
1080 rtnl_unlock();
1081}
1082
1083static void qede_periodic_task(struct work_struct *work)
1084{
1085 struct qede_dev *edev = container_of(work, struct qede_dev,
1086 periodic_task.work);
1087
1088 qede_fill_by_demand_stats(edev);
1089 schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks);
1090}
1091
1092static void qede_init_periodic_task(struct qede_dev *edev)
1093{
1094 INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task);
1095 spin_lock_init(&edev->stats_lock);
1096 edev->stats_coal_usecs = USEC_PER_SEC;
1097 edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC);
1098}
1099
1100static void qede_sp_task(struct work_struct *work)
1101{
1102 struct qede_dev *edev = container_of(work, struct qede_dev,
1103 sp_task.work);
1104
1105 /* Disable execution of this deferred work once
1106 * qede removal is in progress, this stop any future
1107 * scheduling of sp_task.
1108 */
1109 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1110 return;
1111
1112 /* The locking scheme depends on the specific flag:
1113 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1114 * ensure that ongoing flows are ended and new ones are not started.
1115 * In other cases - only the internal qede lock should be acquired.
1116 */
1117
1118 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1119 cancel_delayed_work_sync(&edev->periodic_task);
1120#ifdef CONFIG_QED_SRIOV
1121 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1122 * The recovery of the active VFs is currently not supported.
1123 */
1124 if (pci_num_vf(edev->pdev))
1125 qede_sriov_configure(edev->pdev, 0);
1126#endif
1127 qede_lock(edev);
1128 qede_recovery_handler(edev);
1129 qede_unlock(edev);
1130 }
1131
1132 __qede_lock(edev);
1133
1134 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1135 if (edev->state == QEDE_STATE_OPEN)
1136 qede_config_rx_mode(edev->ndev);
1137
1138#ifdef CONFIG_RFS_ACCEL
1139 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1140 if (edev->state == QEDE_STATE_OPEN)
1141 qede_process_arfs_filters(edev, false);
1142 }
1143#endif
1144 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1145 qede_generic_hw_err_handler(edev);
1146 __qede_unlock(edev);
1147
1148 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1149#ifdef CONFIG_QED_SRIOV
1150 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1151 * The recovery of the active VFs is currently not supported.
1152 */
1153 if (pci_num_vf(edev->pdev))
1154 qede_sriov_configure(edev->pdev, 0);
1155#endif
1156 edev->ops->common->recovery_process(edev->cdev);
1157 }
1158}
1159
1160static void qede_update_pf_params(struct qed_dev *cdev)
1161{
1162 struct qed_pf_params pf_params;
1163 u16 num_cons;
1164
1165 /* 64 rx + 64 tx + 64 XDP */
1166 memset(&pf_params, 0, sizeof(struct qed_pf_params));
1167
1168 /* 1 rx + 1 xdp + max tx cos */
1169 num_cons = QED_MIN_L2_CONS;
1170
1171 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1172
1173 /* Same for VFs - make sure they'll have sufficient connections
1174 * to support XDP Tx queues.
1175 */
1176 pf_params.eth_pf_params.num_vf_cons = 48;
1177
1178 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1179 qed_ops->common->update_pf_params(cdev, &pf_params);
1180}
1181
1182#define QEDE_FW_VER_STR_SIZE 80
1183
1184static void qede_log_probe(struct qede_dev *edev)
1185{
1186 struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1187 u8 buf[QEDE_FW_VER_STR_SIZE];
1188 size_t left_size;
1189
1190 snprintf(buf, QEDE_FW_VER_STR_SIZE,
1191 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1192 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1193 p_dev_info->fw_eng,
1194 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1195 QED_MFW_VERSION_3_OFFSET,
1196 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1197 QED_MFW_VERSION_2_OFFSET,
1198 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1199 QED_MFW_VERSION_1_OFFSET,
1200 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1201 QED_MFW_VERSION_0_OFFSET);
1202
1203 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1204 if (p_dev_info->mbi_version && left_size)
1205 snprintf(buf + strlen(buf), left_size,
1206 " [MBI %d.%d.%d]",
1207 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1208 QED_MBI_VERSION_2_OFFSET,
1209 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1210 QED_MBI_VERSION_1_OFFSET,
1211 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1212 QED_MBI_VERSION_0_OFFSET);
1213
1214 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1215 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1216 buf, edev->ndev->name);
1217}
1218
1219enum qede_probe_mode {
1220 QEDE_PROBE_NORMAL,
1221 QEDE_PROBE_RECOVERY,
1222};
1223
1224static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1225 bool is_vf, enum qede_probe_mode mode)
1226{
1227 struct qed_probe_params probe_params;
1228 struct qed_slowpath_params sp_params;
1229 struct qed_dev_eth_info dev_info;
1230 struct qede_dev *edev;
1231 struct qed_dev *cdev;
1232 int rc;
1233
1234 if (unlikely(dp_level & QED_LEVEL_INFO))
1235 pr_notice("Starting qede probe\n");
1236
1237 memset(&probe_params, 0, sizeof(probe_params));
1238 probe_params.protocol = QED_PROTOCOL_ETH;
1239 probe_params.dp_module = dp_module;
1240 probe_params.dp_level = dp_level;
1241 probe_params.is_vf = is_vf;
1242 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1243 cdev = qed_ops->common->probe(pdev, &probe_params);
1244 if (!cdev) {
1245 rc = -ENODEV;
1246 goto err0;
1247 }
1248
1249 qede_update_pf_params(cdev);
1250
1251 /* Start the Slowpath-process */
1252 memset(&sp_params, 0, sizeof(sp_params));
1253 sp_params.int_mode = QED_INT_MODE_MSIX;
1254 strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1255 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1256 if (rc) {
1257 pr_notice("Cannot start slowpath\n");
1258 goto err1;
1259 }
1260
1261 /* Learn information crucial for qede to progress */
1262 rc = qed_ops->fill_dev_info(cdev, &dev_info);
1263 if (rc)
1264 goto err2;
1265
1266 if (mode != QEDE_PROBE_RECOVERY) {
1267 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1268 dp_level);
1269 if (!edev) {
1270 rc = -ENOMEM;
1271 goto err2;
1272 }
1273
1274 edev->devlink = qed_ops->common->devlink_register(cdev);
1275 if (IS_ERR(edev->devlink)) {
1276 DP_NOTICE(edev, "Cannot register devlink\n");
1277 rc = PTR_ERR(edev->devlink);
1278 edev->devlink = NULL;
1279 goto err3;
1280 }
1281 } else {
1282 struct net_device *ndev = pci_get_drvdata(pdev);
1283 struct qed_devlink *qdl;
1284
1285 edev = netdev_priv(ndev);
1286 qdl = devlink_priv(edev->devlink);
1287 qdl->cdev = cdev;
1288 edev->cdev = cdev;
1289 memset(&edev->stats, 0, sizeof(edev->stats));
1290 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1291 }
1292
1293 if (is_vf)
1294 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1295
1296 qede_init_ndev(edev);
1297
1298 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1299 if (rc)
1300 goto err3;
1301
1302 if (mode != QEDE_PROBE_RECOVERY) {
1303 /* Prepare the lock prior to the registration of the netdev,
1304 * as once it's registered we might reach flows requiring it
1305 * [it's even possible to reach a flow needing it directly
1306 * from there, although it's unlikely].
1307 */
1308 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1309 mutex_init(&edev->qede_lock);
1310 qede_init_periodic_task(edev);
1311
1312 rc = register_netdev(edev->ndev);
1313 if (rc) {
1314 DP_NOTICE(edev, "Cannot register net-device\n");
1315 goto err4;
1316 }
1317 }
1318
1319 edev->ops->common->set_name(cdev, edev->ndev->name);
1320
1321 /* PTP not supported on VFs */
1322 if (!is_vf)
1323 qede_ptp_enable(edev);
1324
1325 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1326
1327#ifdef CONFIG_DCB
1328 if (!IS_VF(edev))
1329 qede_set_dcbnl_ops(edev->ndev);
1330#endif
1331
1332 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1333
1334 qede_log_probe(edev);
1335
1336 /* retain user config (for example - after recovery) */
1337 if (edev->stats_coal_usecs)
1338 schedule_delayed_work(&edev->periodic_task, 0);
1339
1340 return 0;
1341
1342err4:
1343 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1344err3:
1345 if (mode != QEDE_PROBE_RECOVERY)
1346 free_netdev(edev->ndev);
1347 else
1348 edev->cdev = NULL;
1349err2:
1350 qed_ops->common->slowpath_stop(cdev);
1351err1:
1352 qed_ops->common->remove(cdev);
1353err0:
1354 return rc;
1355}
1356
1357static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1358{
1359 bool is_vf = false;
1360 u32 dp_module = 0;
1361 u8 dp_level = 0;
1362
1363 switch ((enum qede_pci_private)id->driver_data) {
1364 case QEDE_PRIVATE_VF:
1365 if (debug & QED_LOG_VERBOSE_MASK)
1366 dev_err(&pdev->dev, "Probing a VF\n");
1367 is_vf = true;
1368 break;
1369 default:
1370 if (debug & QED_LOG_VERBOSE_MASK)
1371 dev_err(&pdev->dev, "Probing a PF\n");
1372 }
1373
1374 qede_config_debug(debug, &dp_module, &dp_level);
1375
1376 return __qede_probe(pdev, dp_module, dp_level, is_vf,
1377 QEDE_PROBE_NORMAL);
1378}
1379
1380enum qede_remove_mode {
1381 QEDE_REMOVE_NORMAL,
1382 QEDE_REMOVE_RECOVERY,
1383};
1384
1385static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1386{
1387 struct net_device *ndev = pci_get_drvdata(pdev);
1388 struct qede_dev *edev;
1389 struct qed_dev *cdev;
1390
1391 if (!ndev) {
1392 dev_info(&pdev->dev, "Device has already been removed\n");
1393 return;
1394 }
1395
1396 edev = netdev_priv(ndev);
1397 cdev = edev->cdev;
1398
1399 DP_INFO(edev, "Starting qede_remove\n");
1400
1401 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1402
1403 if (mode != QEDE_REMOVE_RECOVERY) {
1404 set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1405 unregister_netdev(ndev);
1406
1407 cancel_delayed_work_sync(&edev->sp_task);
1408 cancel_delayed_work_sync(&edev->periodic_task);
1409
1410 edev->ops->common->set_power_state(cdev, PCI_D0);
1411
1412 pci_set_drvdata(pdev, NULL);
1413 }
1414
1415 qede_ptp_disable(edev);
1416
1417 /* Use global ops since we've freed edev */
1418 qed_ops->common->slowpath_stop(cdev);
1419 if (system_state == SYSTEM_POWER_OFF)
1420 return;
1421
1422 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1423 qed_ops->common->devlink_unregister(edev->devlink);
1424 edev->devlink = NULL;
1425 }
1426 qed_ops->common->remove(cdev);
1427 edev->cdev = NULL;
1428
1429 /* Since this can happen out-of-sync with other flows,
1430 * don't release the netdevice until after slowpath stop
1431 * has been called to guarantee various other contexts
1432 * [e.g., QED register callbacks] won't break anything when
1433 * accessing the netdevice.
1434 */
1435 if (mode != QEDE_REMOVE_RECOVERY) {
1436 kfree(edev->coal_entry);
1437 free_netdev(ndev);
1438 }
1439
1440 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1441}
1442
1443static void qede_remove(struct pci_dev *pdev)
1444{
1445 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1446}
1447
1448static void qede_shutdown(struct pci_dev *pdev)
1449{
1450 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1451}
1452
1453/* -------------------------------------------------------------------------
1454 * START OF LOAD / UNLOAD
1455 * -------------------------------------------------------------------------
1456 */
1457
1458static int qede_set_num_queues(struct qede_dev *edev)
1459{
1460 int rc;
1461 u16 rss_num;
1462
1463 /* Setup queues according to possible resources*/
1464 if (edev->req_queues)
1465 rss_num = edev->req_queues;
1466 else
1467 rss_num = netif_get_num_default_rss_queues() *
1468 edev->dev_info.common.num_hwfns;
1469
1470 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1471
1472 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1473 if (rc > 0) {
1474 /* Managed to request interrupts for our queues */
1475 edev->num_queues = rc;
1476 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1477 QEDE_QUEUE_CNT(edev), rss_num);
1478 rc = 0;
1479 }
1480
1481 edev->fp_num_tx = edev->req_num_tx;
1482 edev->fp_num_rx = edev->req_num_rx;
1483
1484 return rc;
1485}
1486
1487static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1488 u16 sb_id)
1489{
1490 if (sb_info->sb_virt) {
1491 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1492 QED_SB_TYPE_L2_QUEUE);
1493 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1494 (void *)sb_info->sb_virt, sb_info->sb_phys);
1495 memset(sb_info, 0, sizeof(*sb_info));
1496 }
1497}
1498
1499/* This function allocates fast-path status block memory */
1500static int qede_alloc_mem_sb(struct qede_dev *edev,
1501 struct qed_sb_info *sb_info, u16 sb_id)
1502{
1503 struct status_block *sb_virt;
1504 dma_addr_t sb_phys;
1505 int rc;
1506
1507 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1508 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1509 if (!sb_virt) {
1510 DP_ERR(edev, "Status block allocation failed\n");
1511 return -ENOMEM;
1512 }
1513
1514 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1515 sb_virt, sb_phys, sb_id,
1516 QED_SB_TYPE_L2_QUEUE);
1517 if (rc) {
1518 DP_ERR(edev, "Status block initialization failed\n");
1519 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1520 sb_virt, sb_phys);
1521 return rc;
1522 }
1523
1524 return 0;
1525}
1526
1527static void qede_free_rx_buffers(struct qede_dev *edev,
1528 struct qede_rx_queue *rxq)
1529{
1530 u16 i;
1531
1532 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1533 struct sw_rx_data *rx_buf;
1534 struct page *data;
1535
1536 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1537 data = rx_buf->data;
1538
1539 dma_unmap_page(&edev->pdev->dev,
1540 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1541
1542 rx_buf->data = NULL;
1543 __free_page(data);
1544 }
1545}
1546
1547static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1548{
1549 /* Free rx buffers */
1550 qede_free_rx_buffers(edev, rxq);
1551
1552 /* Free the parallel SW ring */
1553 kfree(rxq->sw_rx_ring);
1554
1555 /* Free the real RQ ring used by FW */
1556 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1557 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1558}
1559
1560static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1561{
1562 int i;
1563
1564 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1565 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1566
1567 tpa_info->state = QEDE_AGG_STATE_NONE;
1568 }
1569}
1570
1571/* This function allocates all memory needed per Rx queue */
1572static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1573{
1574 struct qed_chain_init_params params = {
1575 .cnt_type = QED_CHAIN_CNT_TYPE_U16,
1576 .num_elems = RX_RING_SIZE,
1577 };
1578 struct qed_dev *cdev = edev->cdev;
1579 int i, rc, size;
1580
1581 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1582
1583 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1584
1585 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1586 size = rxq->rx_headroom +
1587 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1588
1589 /* Make sure that the headroom and payload fit in a single page */
1590 if (rxq->rx_buf_size + size > PAGE_SIZE)
1591 rxq->rx_buf_size = PAGE_SIZE - size;
1592
1593 /* Segment size to split a page in multiple equal parts,
1594 * unless XDP is used in which case we'd use the entire page.
1595 */
1596 if (!edev->xdp_prog) {
1597 size = size + rxq->rx_buf_size;
1598 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1599 } else {
1600 rxq->rx_buf_seg_size = PAGE_SIZE;
1601 edev->ndev->features &= ~NETIF_F_GRO_HW;
1602 }
1603
1604 /* Allocate the parallel driver ring for Rx buffers */
1605 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1606 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1607 if (!rxq->sw_rx_ring) {
1608 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1609 rc = -ENOMEM;
1610 goto err;
1611 }
1612
1613 /* Allocate FW Rx ring */
1614 params.mode = QED_CHAIN_MODE_NEXT_PTR;
1615 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1616 params.elem_size = sizeof(struct eth_rx_bd);
1617
1618 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, ¶ms);
1619 if (rc)
1620 goto err;
1621
1622 /* Allocate FW completion ring */
1623 params.mode = QED_CHAIN_MODE_PBL;
1624 params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1625 params.elem_size = sizeof(union eth_rx_cqe);
1626
1627 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, ¶ms);
1628 if (rc)
1629 goto err;
1630
1631 /* Allocate buffers for the Rx ring */
1632 rxq->filled_buffers = 0;
1633 for (i = 0; i < rxq->num_rx_buffers; i++) {
1634 rc = qede_alloc_rx_buffer(rxq, false);
1635 if (rc) {
1636 DP_ERR(edev,
1637 "Rx buffers allocation failed at index %d\n", i);
1638 goto err;
1639 }
1640 }
1641
1642 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1643 if (!edev->gro_disable)
1644 qede_set_tpa_param(rxq);
1645err:
1646 return rc;
1647}
1648
1649static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1650{
1651 /* Free the parallel SW ring */
1652 if (txq->is_xdp)
1653 kfree(txq->sw_tx_ring.xdp);
1654 else
1655 kfree(txq->sw_tx_ring.skbs);
1656
1657 /* Free the real RQ ring used by FW */
1658 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1659}
1660
1661/* This function allocates all memory needed per Tx queue */
1662static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1663{
1664 struct qed_chain_init_params params = {
1665 .mode = QED_CHAIN_MODE_PBL,
1666 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1667 .cnt_type = QED_CHAIN_CNT_TYPE_U16,
1668 .num_elems = edev->q_num_tx_buffers,
1669 .elem_size = sizeof(union eth_tx_bd_types),
1670 };
1671 int size, rc;
1672
1673 txq->num_tx_buffers = edev->q_num_tx_buffers;
1674
1675 /* Allocate the parallel driver ring for Tx buffers */
1676 if (txq->is_xdp) {
1677 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1678 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1679 if (!txq->sw_tx_ring.xdp)
1680 goto err;
1681 } else {
1682 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1683 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1684 if (!txq->sw_tx_ring.skbs)
1685 goto err;
1686 }
1687
1688 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, ¶ms);
1689 if (rc)
1690 goto err;
1691
1692 return 0;
1693
1694err:
1695 qede_free_mem_txq(edev, txq);
1696 return -ENOMEM;
1697}
1698
1699/* This function frees all memory of a single fp */
1700static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1701{
1702 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1703
1704 if (fp->type & QEDE_FASTPATH_RX)
1705 qede_free_mem_rxq(edev, fp->rxq);
1706
1707 if (fp->type & QEDE_FASTPATH_XDP)
1708 qede_free_mem_txq(edev, fp->xdp_tx);
1709
1710 if (fp->type & QEDE_FASTPATH_TX) {
1711 int cos;
1712
1713 for_each_cos_in_txq(edev, cos)
1714 qede_free_mem_txq(edev, &fp->txq[cos]);
1715 }
1716}
1717
1718/* This function allocates all memory needed for a single fp (i.e. an entity
1719 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1720 */
1721static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1722{
1723 int rc = 0;
1724
1725 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1726 if (rc)
1727 goto out;
1728
1729 if (fp->type & QEDE_FASTPATH_RX) {
1730 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1731 if (rc)
1732 goto out;
1733 }
1734
1735 if (fp->type & QEDE_FASTPATH_XDP) {
1736 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1737 if (rc)
1738 goto out;
1739 }
1740
1741 if (fp->type & QEDE_FASTPATH_TX) {
1742 int cos;
1743
1744 for_each_cos_in_txq(edev, cos) {
1745 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1746 if (rc)
1747 goto out;
1748 }
1749 }
1750
1751out:
1752 return rc;
1753}
1754
1755static void qede_free_mem_load(struct qede_dev *edev)
1756{
1757 int i;
1758
1759 for_each_queue(i) {
1760 struct qede_fastpath *fp = &edev->fp_array[i];
1761
1762 qede_free_mem_fp(edev, fp);
1763 }
1764}
1765
1766/* This function allocates all qede memory at NIC load. */
1767static int qede_alloc_mem_load(struct qede_dev *edev)
1768{
1769 int rc = 0, queue_id;
1770
1771 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1772 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1773
1774 rc = qede_alloc_mem_fp(edev, fp);
1775 if (rc) {
1776 DP_ERR(edev,
1777 "Failed to allocate memory for fastpath - rss id = %d\n",
1778 queue_id);
1779 qede_free_mem_load(edev);
1780 return rc;
1781 }
1782 }
1783
1784 return 0;
1785}
1786
1787static void qede_empty_tx_queue(struct qede_dev *edev,
1788 struct qede_tx_queue *txq)
1789{
1790 unsigned int pkts_compl = 0, bytes_compl = 0;
1791 struct netdev_queue *netdev_txq;
1792 int rc, len = 0;
1793
1794 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1795
1796 while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1797 qed_chain_get_prod_idx(&txq->tx_pbl)) {
1798 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1799 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1800 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1801 qed_chain_get_prod_idx(&txq->tx_pbl));
1802
1803 rc = qede_free_tx_pkt(edev, txq, &len);
1804 if (rc) {
1805 DP_NOTICE(edev,
1806 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1807 txq->index,
1808 qed_chain_get_cons_idx(&txq->tx_pbl),
1809 qed_chain_get_prod_idx(&txq->tx_pbl));
1810 break;
1811 }
1812
1813 bytes_compl += len;
1814 pkts_compl++;
1815 txq->sw_tx_cons++;
1816 }
1817
1818 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1819}
1820
1821static void qede_empty_tx_queues(struct qede_dev *edev)
1822{
1823 int i;
1824
1825 for_each_queue(i)
1826 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1827 int cos;
1828
1829 for_each_cos_in_txq(edev, cos) {
1830 struct qede_fastpath *fp;
1831
1832 fp = &edev->fp_array[i];
1833 qede_empty_tx_queue(edev,
1834 &fp->txq[cos]);
1835 }
1836 }
1837}
1838
1839/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1840static void qede_init_fp(struct qede_dev *edev)
1841{
1842 int queue_id, rxq_index = 0, txq_index = 0;
1843 struct qede_fastpath *fp;
1844 bool init_xdp = false;
1845
1846 for_each_queue(queue_id) {
1847 fp = &edev->fp_array[queue_id];
1848
1849 fp->edev = edev;
1850 fp->id = queue_id;
1851
1852 if (fp->type & QEDE_FASTPATH_XDP) {
1853 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1854 rxq_index);
1855 fp->xdp_tx->is_xdp = 1;
1856
1857 spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1858 init_xdp = true;
1859 }
1860
1861 if (fp->type & QEDE_FASTPATH_RX) {
1862 fp->rxq->rxq_id = rxq_index++;
1863
1864 /* Determine how to map buffers for this queue */
1865 if (fp->type & QEDE_FASTPATH_XDP)
1866 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1867 else
1868 fp->rxq->data_direction = DMA_FROM_DEVICE;
1869 fp->rxq->dev = &edev->pdev->dev;
1870
1871 /* Driver have no error path from here */
1872 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1873 fp->rxq->rxq_id, 0) < 0);
1874
1875 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1876 MEM_TYPE_PAGE_ORDER0,
1877 NULL)) {
1878 DP_NOTICE(edev,
1879 "Failed to register XDP memory model\n");
1880 }
1881 }
1882
1883 if (fp->type & QEDE_FASTPATH_TX) {
1884 int cos;
1885
1886 for_each_cos_in_txq(edev, cos) {
1887 struct qede_tx_queue *txq = &fp->txq[cos];
1888 u16 ndev_tx_id;
1889
1890 txq->cos = cos;
1891 txq->index = txq_index;
1892 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1893 txq->ndev_txq_id = ndev_tx_id;
1894
1895 if (edev->dev_info.is_legacy)
1896 txq->is_legacy = true;
1897 txq->dev = &edev->pdev->dev;
1898 }
1899
1900 txq_index++;
1901 }
1902
1903 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1904 edev->ndev->name, queue_id);
1905 }
1906
1907 if (init_xdp) {
1908 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1909 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1910 }
1911}
1912
1913static int qede_set_real_num_queues(struct qede_dev *edev)
1914{
1915 int rc = 0;
1916
1917 rc = netif_set_real_num_tx_queues(edev->ndev,
1918 QEDE_TSS_COUNT(edev) *
1919 edev->dev_info.num_tc);
1920 if (rc) {
1921 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1922 return rc;
1923 }
1924
1925 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1926 if (rc) {
1927 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1928 return rc;
1929 }
1930
1931 return 0;
1932}
1933
1934static void qede_napi_disable_remove(struct qede_dev *edev)
1935{
1936 int i;
1937
1938 for_each_queue(i) {
1939 napi_disable(&edev->fp_array[i].napi);
1940
1941 netif_napi_del(&edev->fp_array[i].napi);
1942 }
1943}
1944
1945static void qede_napi_add_enable(struct qede_dev *edev)
1946{
1947 int i;
1948
1949 /* Add NAPI objects */
1950 for_each_queue(i) {
1951 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll);
1952 napi_enable(&edev->fp_array[i].napi);
1953 }
1954}
1955
1956static void qede_sync_free_irqs(struct qede_dev *edev)
1957{
1958 int i;
1959
1960 for (i = 0; i < edev->int_info.used_cnt; i++) {
1961 if (edev->int_info.msix_cnt) {
1962 free_irq(edev->int_info.msix[i].vector,
1963 &edev->fp_array[i]);
1964 } else {
1965 edev->ops->common->simd_handler_clean(edev->cdev, i);
1966 }
1967 }
1968
1969 edev->int_info.used_cnt = 0;
1970 edev->int_info.msix_cnt = 0;
1971}
1972
1973static int qede_req_msix_irqs(struct qede_dev *edev)
1974{
1975 int i, rc;
1976
1977 /* Sanitize number of interrupts == number of prepared RSS queues */
1978 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1979 DP_ERR(edev,
1980 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1981 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1982 return -EINVAL;
1983 }
1984
1985 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1986#ifdef CONFIG_RFS_ACCEL
1987 struct qede_fastpath *fp = &edev->fp_array[i];
1988
1989 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1990 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1991 edev->int_info.msix[i].vector);
1992 if (rc) {
1993 DP_ERR(edev, "Failed to add CPU rmap\n");
1994 qede_free_arfs(edev);
1995 }
1996 }
1997#endif
1998 rc = request_irq(edev->int_info.msix[i].vector,
1999 qede_msix_fp_int, 0, edev->fp_array[i].name,
2000 &edev->fp_array[i]);
2001 if (rc) {
2002 DP_ERR(edev, "Request fp %d irq failed\n", i);
2003#ifdef CONFIG_RFS_ACCEL
2004 if (edev->ndev->rx_cpu_rmap)
2005 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2006
2007 edev->ndev->rx_cpu_rmap = NULL;
2008#endif
2009 qede_sync_free_irqs(edev);
2010 return rc;
2011 }
2012 DP_VERBOSE(edev, NETIF_MSG_INTR,
2013 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2014 edev->fp_array[i].name, i,
2015 &edev->fp_array[i]);
2016 edev->int_info.used_cnt++;
2017 }
2018
2019 return 0;
2020}
2021
2022static void qede_simd_fp_handler(void *cookie)
2023{
2024 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2025
2026 napi_schedule_irqoff(&fp->napi);
2027}
2028
2029static int qede_setup_irqs(struct qede_dev *edev)
2030{
2031 int i, rc = 0;
2032
2033 /* Learn Interrupt configuration */
2034 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2035 if (rc)
2036 return rc;
2037
2038 if (edev->int_info.msix_cnt) {
2039 rc = qede_req_msix_irqs(edev);
2040 if (rc)
2041 return rc;
2042 edev->ndev->irq = edev->int_info.msix[0].vector;
2043 } else {
2044 const struct qed_common_ops *ops;
2045
2046 /* qed should learn receive the RSS ids and callbacks */
2047 ops = edev->ops->common;
2048 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2049 ops->simd_handler_config(edev->cdev,
2050 &edev->fp_array[i], i,
2051 qede_simd_fp_handler);
2052 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2053 }
2054 return 0;
2055}
2056
2057static int qede_drain_txq(struct qede_dev *edev,
2058 struct qede_tx_queue *txq, bool allow_drain)
2059{
2060 int rc, cnt = 1000;
2061
2062 while (txq->sw_tx_cons != txq->sw_tx_prod) {
2063 if (!cnt) {
2064 if (allow_drain) {
2065 DP_NOTICE(edev,
2066 "Tx queue[%d] is stuck, requesting MCP to drain\n",
2067 txq->index);
2068 rc = edev->ops->common->drain(edev->cdev);
2069 if (rc)
2070 return rc;
2071 return qede_drain_txq(edev, txq, false);
2072 }
2073 DP_NOTICE(edev,
2074 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2075 txq->index, txq->sw_tx_prod,
2076 txq->sw_tx_cons);
2077 return -ENODEV;
2078 }
2079 cnt--;
2080 usleep_range(1000, 2000);
2081 barrier();
2082 }
2083
2084 /* FW finished processing, wait for HW to transmit all tx packets */
2085 usleep_range(1000, 2000);
2086
2087 return 0;
2088}
2089
2090static int qede_stop_txq(struct qede_dev *edev,
2091 struct qede_tx_queue *txq, int rss_id)
2092{
2093 /* delete doorbell from doorbell recovery mechanism */
2094 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2095 &txq->tx_db);
2096
2097 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2098}
2099
2100static int qede_stop_queues(struct qede_dev *edev)
2101{
2102 struct qed_update_vport_params *vport_update_params;
2103 struct qed_dev *cdev = edev->cdev;
2104 struct qede_fastpath *fp;
2105 int rc, i;
2106
2107 /* Disable the vport */
2108 vport_update_params = vzalloc(sizeof(*vport_update_params));
2109 if (!vport_update_params)
2110 return -ENOMEM;
2111
2112 vport_update_params->vport_id = 0;
2113 vport_update_params->update_vport_active_flg = 1;
2114 vport_update_params->vport_active_flg = 0;
2115 vport_update_params->update_rss_flg = 0;
2116
2117 rc = edev->ops->vport_update(cdev, vport_update_params);
2118 vfree(vport_update_params);
2119
2120 if (rc) {
2121 DP_ERR(edev, "Failed to update vport\n");
2122 return rc;
2123 }
2124
2125 /* Flush Tx queues. If needed, request drain from MCP */
2126 for_each_queue(i) {
2127 fp = &edev->fp_array[i];
2128
2129 if (fp->type & QEDE_FASTPATH_TX) {
2130 int cos;
2131
2132 for_each_cos_in_txq(edev, cos) {
2133 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2134 if (rc)
2135 return rc;
2136 }
2137 }
2138
2139 if (fp->type & QEDE_FASTPATH_XDP) {
2140 rc = qede_drain_txq(edev, fp->xdp_tx, true);
2141 if (rc)
2142 return rc;
2143 }
2144 }
2145
2146 /* Stop all Queues in reverse order */
2147 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2148 fp = &edev->fp_array[i];
2149
2150 /* Stop the Tx Queue(s) */
2151 if (fp->type & QEDE_FASTPATH_TX) {
2152 int cos;
2153
2154 for_each_cos_in_txq(edev, cos) {
2155 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2156 if (rc)
2157 return rc;
2158 }
2159 }
2160
2161 /* Stop the Rx Queue */
2162 if (fp->type & QEDE_FASTPATH_RX) {
2163 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2164 if (rc) {
2165 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2166 return rc;
2167 }
2168 }
2169
2170 /* Stop the XDP forwarding queue */
2171 if (fp->type & QEDE_FASTPATH_XDP) {
2172 rc = qede_stop_txq(edev, fp->xdp_tx, i);
2173 if (rc)
2174 return rc;
2175
2176 bpf_prog_put(fp->rxq->xdp_prog);
2177 }
2178 }
2179
2180 /* Stop the vport */
2181 rc = edev->ops->vport_stop(cdev, 0);
2182 if (rc)
2183 DP_ERR(edev, "Failed to stop VPORT\n");
2184
2185 return rc;
2186}
2187
2188static int qede_start_txq(struct qede_dev *edev,
2189 struct qede_fastpath *fp,
2190 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2191{
2192 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2193 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2194 struct qed_queue_start_common_params params;
2195 struct qed_txq_start_ret_params ret_params;
2196 int rc;
2197
2198 memset(¶ms, 0, sizeof(params));
2199 memset(&ret_params, 0, sizeof(ret_params));
2200
2201 /* Let the XDP queue share the queue-zone with one of the regular txq.
2202 * We don't really care about its coalescing.
2203 */
2204 if (txq->is_xdp)
2205 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2206 else
2207 params.queue_id = txq->index;
2208
2209 params.p_sb = fp->sb_info;
2210 params.sb_idx = sb_idx;
2211 params.tc = txq->cos;
2212
2213 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table,
2214 page_cnt, &ret_params);
2215 if (rc) {
2216 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2217 return rc;
2218 }
2219
2220 txq->doorbell_addr = ret_params.p_doorbell;
2221 txq->handle = ret_params.p_handle;
2222
2223 /* Determine the FW consumer address associated */
2224 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2225
2226 /* Prepare the doorbell parameters */
2227 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2228 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2229 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2230 DQ_XCM_ETH_TX_BD_PROD_CMD);
2231 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2232
2233 /* register doorbell with doorbell recovery mechanism */
2234 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2235 &txq->tx_db, DB_REC_WIDTH_32B,
2236 DB_REC_KERNEL);
2237
2238 return rc;
2239}
2240
2241static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2242{
2243 int vlan_removal_en = 1;
2244 struct qed_dev *cdev = edev->cdev;
2245 struct qed_dev_info *qed_info = &edev->dev_info.common;
2246 struct qed_update_vport_params *vport_update_params;
2247 struct qed_queue_start_common_params q_params;
2248 struct qed_start_vport_params start = {0};
2249 int rc, i;
2250
2251 if (!edev->num_queues) {
2252 DP_ERR(edev,
2253 "Cannot update V-VPORT as active as there are no Rx queues\n");
2254 return -EINVAL;
2255 }
2256
2257 vport_update_params = vzalloc(sizeof(*vport_update_params));
2258 if (!vport_update_params)
2259 return -ENOMEM;
2260
2261 start.handle_ptp_pkts = !!(edev->ptp);
2262 start.gro_enable = !edev->gro_disable;
2263 start.mtu = edev->ndev->mtu;
2264 start.vport_id = 0;
2265 start.drop_ttl0 = true;
2266 start.remove_inner_vlan = vlan_removal_en;
2267 start.clear_stats = clear_stats;
2268
2269 rc = edev->ops->vport_start(cdev, &start);
2270
2271 if (rc) {
2272 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2273 goto out;
2274 }
2275
2276 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2277 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2278 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2279
2280 for_each_queue(i) {
2281 struct qede_fastpath *fp = &edev->fp_array[i];
2282 dma_addr_t p_phys_table;
2283 u32 page_cnt;
2284
2285 if (fp->type & QEDE_FASTPATH_RX) {
2286 struct qed_rxq_start_ret_params ret_params;
2287 struct qede_rx_queue *rxq = fp->rxq;
2288 __le16 *val;
2289
2290 memset(&ret_params, 0, sizeof(ret_params));
2291 memset(&q_params, 0, sizeof(q_params));
2292 q_params.queue_id = rxq->rxq_id;
2293 q_params.vport_id = 0;
2294 q_params.p_sb = fp->sb_info;
2295 q_params.sb_idx = RX_PI;
2296
2297 p_phys_table =
2298 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2299 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2300
2301 rc = edev->ops->q_rx_start(cdev, i, &q_params,
2302 rxq->rx_buf_size,
2303 rxq->rx_bd_ring.p_phys_addr,
2304 p_phys_table,
2305 page_cnt, &ret_params);
2306 if (rc) {
2307 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2308 rc);
2309 goto out;
2310 }
2311
2312 /* Use the return parameters */
2313 rxq->hw_rxq_prod_addr = ret_params.p_prod;
2314 rxq->handle = ret_params.p_handle;
2315
2316 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2317 rxq->hw_cons_ptr = val;
2318
2319 qede_update_rx_prod(edev, rxq);
2320 }
2321
2322 if (fp->type & QEDE_FASTPATH_XDP) {
2323 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2324 if (rc)
2325 goto out;
2326
2327 bpf_prog_add(edev->xdp_prog, 1);
2328 fp->rxq->xdp_prog = edev->xdp_prog;
2329 }
2330
2331 if (fp->type & QEDE_FASTPATH_TX) {
2332 int cos;
2333
2334 for_each_cos_in_txq(edev, cos) {
2335 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2336 TX_PI(cos));
2337 if (rc)
2338 goto out;
2339 }
2340 }
2341 }
2342
2343 /* Prepare and send the vport enable */
2344 vport_update_params->vport_id = start.vport_id;
2345 vport_update_params->update_vport_active_flg = 1;
2346 vport_update_params->vport_active_flg = 1;
2347
2348 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2349 qed_info->tx_switching) {
2350 vport_update_params->update_tx_switching_flg = 1;
2351 vport_update_params->tx_switching_flg = 1;
2352 }
2353
2354 qede_fill_rss_params(edev, &vport_update_params->rss_params,
2355 &vport_update_params->update_rss_flg);
2356
2357 rc = edev->ops->vport_update(cdev, vport_update_params);
2358 if (rc)
2359 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2360
2361out:
2362 vfree(vport_update_params);
2363 return rc;
2364}
2365
2366enum qede_unload_mode {
2367 QEDE_UNLOAD_NORMAL,
2368 QEDE_UNLOAD_RECOVERY,
2369};
2370
2371static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2372 bool is_locked)
2373{
2374 struct qed_link_params link_params;
2375 int rc;
2376
2377 DP_INFO(edev, "Starting qede unload\n");
2378
2379 if (!is_locked)
2380 __qede_lock(edev);
2381
2382 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2383
2384 if (mode != QEDE_UNLOAD_RECOVERY)
2385 edev->state = QEDE_STATE_CLOSED;
2386
2387 qede_rdma_dev_event_close(edev);
2388
2389 /* Close OS Tx */
2390 netif_tx_disable(edev->ndev);
2391 netif_carrier_off(edev->ndev);
2392
2393 if (mode != QEDE_UNLOAD_RECOVERY) {
2394 /* Reset the link */
2395 memset(&link_params, 0, sizeof(link_params));
2396 link_params.link_up = false;
2397 edev->ops->common->set_link(edev->cdev, &link_params);
2398
2399 rc = qede_stop_queues(edev);
2400 if (rc) {
2401#ifdef CONFIG_RFS_ACCEL
2402 if (edev->dev_info.common.b_arfs_capable) {
2403 qede_poll_for_freeing_arfs_filters(edev);
2404 if (edev->ndev->rx_cpu_rmap)
2405 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2406
2407 edev->ndev->rx_cpu_rmap = NULL;
2408 }
2409#endif
2410 qede_sync_free_irqs(edev);
2411 goto out;
2412 }
2413
2414 DP_INFO(edev, "Stopped Queues\n");
2415 }
2416
2417 qede_vlan_mark_nonconfigured(edev);
2418 edev->ops->fastpath_stop(edev->cdev);
2419
2420 if (edev->dev_info.common.b_arfs_capable) {
2421 qede_poll_for_freeing_arfs_filters(edev);
2422 qede_free_arfs(edev);
2423 }
2424
2425 /* Release the interrupts */
2426 qede_sync_free_irqs(edev);
2427 edev->ops->common->set_fp_int(edev->cdev, 0);
2428
2429 qede_napi_disable_remove(edev);
2430
2431 if (mode == QEDE_UNLOAD_RECOVERY)
2432 qede_empty_tx_queues(edev);
2433
2434 qede_free_mem_load(edev);
2435 qede_free_fp_array(edev);
2436
2437out:
2438 if (!is_locked)
2439 __qede_unlock(edev);
2440
2441 if (mode != QEDE_UNLOAD_RECOVERY)
2442 DP_NOTICE(edev, "Link is down\n");
2443
2444 edev->ptp_skip_txts = 0;
2445
2446 DP_INFO(edev, "Ending qede unload\n");
2447}
2448
2449enum qede_load_mode {
2450 QEDE_LOAD_NORMAL,
2451 QEDE_LOAD_RELOAD,
2452 QEDE_LOAD_RECOVERY,
2453};
2454
2455static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2456 bool is_locked)
2457{
2458 struct qed_link_params link_params;
2459 struct ethtool_coalesce coal = {};
2460 u8 num_tc;
2461 int rc, i;
2462
2463 DP_INFO(edev, "Starting qede load\n");
2464
2465 if (!is_locked)
2466 __qede_lock(edev);
2467
2468 rc = qede_set_num_queues(edev);
2469 if (rc)
2470 goto out;
2471
2472 rc = qede_alloc_fp_array(edev);
2473 if (rc)
2474 goto out;
2475
2476 qede_init_fp(edev);
2477
2478 rc = qede_alloc_mem_load(edev);
2479 if (rc)
2480 goto err1;
2481 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2482 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2483
2484 rc = qede_set_real_num_queues(edev);
2485 if (rc)
2486 goto err2;
2487
2488 if (qede_alloc_arfs(edev)) {
2489 edev->ndev->features &= ~NETIF_F_NTUPLE;
2490 edev->dev_info.common.b_arfs_capable = false;
2491 }
2492
2493 qede_napi_add_enable(edev);
2494 DP_INFO(edev, "Napi added and enabled\n");
2495
2496 rc = qede_setup_irqs(edev);
2497 if (rc)
2498 goto err3;
2499 DP_INFO(edev, "Setup IRQs succeeded\n");
2500
2501 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2502 if (rc)
2503 goto err4;
2504 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2505
2506 num_tc = netdev_get_num_tc(edev->ndev);
2507 num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2508 qede_setup_tc(edev->ndev, num_tc);
2509
2510 /* Program un-configured VLANs */
2511 qede_configure_vlan_filters(edev);
2512
2513 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2514
2515 /* Ask for link-up using current configuration */
2516 memset(&link_params, 0, sizeof(link_params));
2517 link_params.link_up = true;
2518 edev->ops->common->set_link(edev->cdev, &link_params);
2519
2520 edev->state = QEDE_STATE_OPEN;
2521
2522 coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2523 coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2524
2525 for_each_queue(i) {
2526 if (edev->coal_entry[i].isvalid) {
2527 coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2528 coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2529 }
2530 __qede_unlock(edev);
2531 qede_set_per_coalesce(edev->ndev, i, &coal);
2532 __qede_lock(edev);
2533 }
2534 DP_INFO(edev, "Ending successfully qede load\n");
2535
2536 goto out;
2537err4:
2538 qede_sync_free_irqs(edev);
2539err3:
2540 qede_napi_disable_remove(edev);
2541err2:
2542 qede_free_mem_load(edev);
2543err1:
2544 edev->ops->common->set_fp_int(edev->cdev, 0);
2545 qede_free_fp_array(edev);
2546 edev->num_queues = 0;
2547 edev->fp_num_tx = 0;
2548 edev->fp_num_rx = 0;
2549out:
2550 if (!is_locked)
2551 __qede_unlock(edev);
2552
2553 return rc;
2554}
2555
2556/* 'func' should be able to run between unload and reload assuming interface
2557 * is actually running, or afterwards in case it's currently DOWN.
2558 */
2559void qede_reload(struct qede_dev *edev,
2560 struct qede_reload_args *args, bool is_locked)
2561{
2562 if (!is_locked)
2563 __qede_lock(edev);
2564
2565 /* Since qede_lock is held, internal state wouldn't change even
2566 * if netdev state would start transitioning. Check whether current
2567 * internal configuration indicates device is up, then reload.
2568 */
2569 if (edev->state == QEDE_STATE_OPEN) {
2570 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2571 if (args)
2572 args->func(edev, args);
2573 qede_load(edev, QEDE_LOAD_RELOAD, true);
2574
2575 /* Since no one is going to do it for us, re-configure */
2576 qede_config_rx_mode(edev->ndev);
2577 } else if (args) {
2578 args->func(edev, args);
2579 }
2580
2581 if (!is_locked)
2582 __qede_unlock(edev);
2583}
2584
2585/* called with rtnl_lock */
2586static int qede_open(struct net_device *ndev)
2587{
2588 struct qede_dev *edev = netdev_priv(ndev);
2589 int rc;
2590
2591 netif_carrier_off(ndev);
2592
2593 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2594
2595 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2596 if (rc)
2597 return rc;
2598
2599 udp_tunnel_nic_reset_ntf(ndev);
2600
2601 edev->ops->common->update_drv_state(edev->cdev, true);
2602
2603 return 0;
2604}
2605
2606static int qede_close(struct net_device *ndev)
2607{
2608 struct qede_dev *edev = netdev_priv(ndev);
2609
2610 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2611
2612 if (edev->cdev)
2613 edev->ops->common->update_drv_state(edev->cdev, false);
2614
2615 return 0;
2616}
2617
2618static void qede_link_update(void *dev, struct qed_link_output *link)
2619{
2620 struct qede_dev *edev = dev;
2621
2622 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2623 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2624 return;
2625 }
2626
2627 if (link->link_up) {
2628 if (!netif_carrier_ok(edev->ndev)) {
2629 DP_NOTICE(edev, "Link is up\n");
2630 netif_tx_start_all_queues(edev->ndev);
2631 netif_carrier_on(edev->ndev);
2632 qede_rdma_dev_event_open(edev);
2633 }
2634 } else {
2635 if (netif_carrier_ok(edev->ndev)) {
2636 DP_NOTICE(edev, "Link is down\n");
2637 netif_tx_disable(edev->ndev);
2638 netif_carrier_off(edev->ndev);
2639 qede_rdma_dev_event_close(edev);
2640 }
2641 }
2642}
2643
2644static void qede_schedule_recovery_handler(void *dev)
2645{
2646 struct qede_dev *edev = dev;
2647
2648 if (edev->state == QEDE_STATE_RECOVERY) {
2649 DP_NOTICE(edev,
2650 "Avoid scheduling a recovery handling since already in recovery state\n");
2651 return;
2652 }
2653
2654 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2655 schedule_delayed_work(&edev->sp_task, 0);
2656
2657 DP_INFO(edev, "Scheduled a recovery handler\n");
2658}
2659
2660static void qede_recovery_failed(struct qede_dev *edev)
2661{
2662 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2663
2664 netif_device_detach(edev->ndev);
2665
2666 if (edev->cdev)
2667 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2668}
2669
2670static void qede_recovery_handler(struct qede_dev *edev)
2671{
2672 u32 curr_state = edev->state;
2673 int rc;
2674
2675 DP_NOTICE(edev, "Starting a recovery process\n");
2676
2677 /* No need to acquire first the qede_lock since is done by qede_sp_task
2678 * before calling this function.
2679 */
2680 edev->state = QEDE_STATE_RECOVERY;
2681
2682 edev->ops->common->recovery_prolog(edev->cdev);
2683
2684 if (curr_state == QEDE_STATE_OPEN)
2685 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2686
2687 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2688
2689 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2690 IS_VF(edev), QEDE_PROBE_RECOVERY);
2691 if (rc) {
2692 edev->cdev = NULL;
2693 goto err;
2694 }
2695
2696 if (curr_state == QEDE_STATE_OPEN) {
2697 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2698 if (rc)
2699 goto err;
2700
2701 qede_config_rx_mode(edev->ndev);
2702 udp_tunnel_nic_reset_ntf(edev->ndev);
2703 }
2704
2705 edev->state = curr_state;
2706
2707 DP_NOTICE(edev, "Recovery handling is done\n");
2708
2709 return;
2710
2711err:
2712 qede_recovery_failed(edev);
2713}
2714
2715static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2716{
2717 struct qed_dev *cdev = edev->cdev;
2718
2719 DP_NOTICE(edev,
2720 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2721 edev->err_flags);
2722
2723 /* Get a call trace of the flow that led to the error */
2724 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2725
2726 /* Prevent HW attentions from being reasserted */
2727 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2728 edev->ops->common->attn_clr_enable(cdev, true);
2729
2730 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2731}
2732
2733static void qede_generic_hw_err_handler(struct qede_dev *edev)
2734{
2735 DP_NOTICE(edev,
2736 "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2737 edev->err_flags);
2738
2739 if (edev->devlink) {
2740 DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2741 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2742 }
2743
2744 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2745
2746 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2747}
2748
2749static void qede_set_hw_err_flags(struct qede_dev *edev,
2750 enum qed_hw_err_type err_type)
2751{
2752 unsigned long err_flags = 0;
2753
2754 switch (err_type) {
2755 case QED_HW_ERR_DMAE_FAIL:
2756 set_bit(QEDE_ERR_WARN, &err_flags);
2757 fallthrough;
2758 case QED_HW_ERR_MFW_RESP_FAIL:
2759 case QED_HW_ERR_HW_ATTN:
2760 case QED_HW_ERR_RAMROD_FAIL:
2761 case QED_HW_ERR_FW_ASSERT:
2762 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2763 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2764 /* make this error as recoverable and start recovery*/
2765 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2766 break;
2767
2768 default:
2769 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2770 break;
2771 }
2772
2773 edev->err_flags |= err_flags;
2774}
2775
2776static void qede_schedule_hw_err_handler(void *dev,
2777 enum qed_hw_err_type err_type)
2778{
2779 struct qede_dev *edev = dev;
2780
2781 /* Fan failure cannot be masked by handling of another HW error or by a
2782 * concurrent recovery process.
2783 */
2784 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2785 edev->state == QEDE_STATE_RECOVERY) &&
2786 err_type != QED_HW_ERR_FAN_FAIL) {
2787 DP_INFO(edev,
2788 "Avoid scheduling an error handling while another HW error is being handled\n");
2789 return;
2790 }
2791
2792 if (err_type >= QED_HW_ERR_LAST) {
2793 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2794 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2795 return;
2796 }
2797
2798 edev->last_err_type = err_type;
2799 qede_set_hw_err_flags(edev, err_type);
2800 qede_atomic_hw_err_handler(edev);
2801 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2802 schedule_delayed_work(&edev->sp_task, 0);
2803
2804 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2805}
2806
2807static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2808{
2809 struct netdev_queue *netdev_txq;
2810
2811 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2812 if (netif_xmit_stopped(netdev_txq))
2813 return true;
2814
2815 return false;
2816}
2817
2818static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2819{
2820 struct qede_dev *edev = dev;
2821 struct netdev_hw_addr *ha;
2822 int i;
2823
2824 if (edev->ndev->features & NETIF_F_IP_CSUM)
2825 data->feat_flags |= QED_TLV_IP_CSUM;
2826 if (edev->ndev->features & NETIF_F_TSO)
2827 data->feat_flags |= QED_TLV_LSO;
2828
2829 ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2830 eth_zero_addr(data->mac[1]);
2831 eth_zero_addr(data->mac[2]);
2832 /* Copy the first two UC macs */
2833 netif_addr_lock_bh(edev->ndev);
2834 i = 1;
2835 netdev_for_each_uc_addr(ha, edev->ndev) {
2836 ether_addr_copy(data->mac[i++], ha->addr);
2837 if (i == QED_TLV_MAC_COUNT)
2838 break;
2839 }
2840
2841 netif_addr_unlock_bh(edev->ndev);
2842}
2843
2844static void qede_get_eth_tlv_data(void *dev, void *data)
2845{
2846 struct qed_mfw_tlv_eth *etlv = data;
2847 struct qede_dev *edev = dev;
2848 struct qede_fastpath *fp;
2849 int i;
2850
2851 etlv->lso_maxoff_size = 0XFFFF;
2852 etlv->lso_maxoff_size_set = true;
2853 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2854 etlv->lso_minseg_size_set = true;
2855 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2856 etlv->prom_mode_set = true;
2857 etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2858 etlv->tx_descr_size_set = true;
2859 etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2860 etlv->rx_descr_size_set = true;
2861 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2862 etlv->iov_offload_set = true;
2863
2864 /* Fill information regarding queues; Should be done under the qede
2865 * lock to guarantee those don't change beneath our feet.
2866 */
2867 etlv->txqs_empty = true;
2868 etlv->rxqs_empty = true;
2869 etlv->num_txqs_full = 0;
2870 etlv->num_rxqs_full = 0;
2871
2872 __qede_lock(edev);
2873 for_each_queue(i) {
2874 fp = &edev->fp_array[i];
2875 if (fp->type & QEDE_FASTPATH_TX) {
2876 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2877
2878 if (txq->sw_tx_cons != txq->sw_tx_prod)
2879 etlv->txqs_empty = false;
2880 if (qede_is_txq_full(edev, txq))
2881 etlv->num_txqs_full++;
2882 }
2883 if (fp->type & QEDE_FASTPATH_RX) {
2884 if (qede_has_rx_work(fp->rxq))
2885 etlv->rxqs_empty = false;
2886
2887 /* This one is a bit tricky; Firmware might stop
2888 * placing packets if ring is not yet full.
2889 * Give an approximation.
2890 */
2891 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2892 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2893 RX_RING_SIZE - 100)
2894 etlv->num_rxqs_full++;
2895 }
2896 }
2897 __qede_unlock(edev);
2898
2899 etlv->txqs_empty_set = true;
2900 etlv->rxqs_empty_set = true;
2901 etlv->num_txqs_full_set = true;
2902 etlv->num_rxqs_full_set = true;
2903}
2904
2905/**
2906 * qede_io_error_detected(): Called when PCI error is detected
2907 *
2908 * @pdev: Pointer to PCI device
2909 * @state: The current pci connection state
2910 *
2911 *Return: pci_ers_result_t.
2912 *
2913 * This function is called after a PCI bus error affecting
2914 * this device has been detected.
2915 */
2916static pci_ers_result_t
2917qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2918{
2919 struct net_device *dev = pci_get_drvdata(pdev);
2920 struct qede_dev *edev = netdev_priv(dev);
2921
2922 if (!edev)
2923 return PCI_ERS_RESULT_NONE;
2924
2925 DP_NOTICE(edev, "IO error detected [%d]\n", state);
2926
2927 __qede_lock(edev);
2928 if (edev->state == QEDE_STATE_RECOVERY) {
2929 DP_NOTICE(edev, "Device already in the recovery state\n");
2930 __qede_unlock(edev);
2931 return PCI_ERS_RESULT_NONE;
2932 }
2933
2934 /* PF handles the recovery of its VFs */
2935 if (IS_VF(edev)) {
2936 DP_VERBOSE(edev, QED_MSG_IOV,
2937 "VF recovery is handled by its PF\n");
2938 __qede_unlock(edev);
2939 return PCI_ERS_RESULT_RECOVERED;
2940 }
2941
2942 /* Close OS Tx */
2943 netif_tx_disable(edev->ndev);
2944 netif_carrier_off(edev->ndev);
2945
2946 set_bit(QEDE_SP_AER, &edev->sp_flags);
2947 schedule_delayed_work(&edev->sp_task, 0);
2948
2949 __qede_unlock(edev);
2950
2951 return PCI_ERS_RESULT_CAN_RECOVER;
2952}