Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2022 Intel Corporation
   4 */
   5
   6#include "xe_guc_submit.h"
   7
   8#include <linux/bitfield.h>
   9#include <linux/bitmap.h>
  10#include <linux/circ_buf.h>
  11#include <linux/delay.h>
  12#include <linux/dma-fence-array.h>
  13#include <linux/math64.h>
  14
  15#include <drm/drm_managed.h>
  16
  17#include "abi/guc_actions_abi.h"
  18#include "abi/guc_klvs_abi.h"
  19#include "regs/xe_lrc_layout.h"
  20#include "xe_assert.h"
  21#include "xe_devcoredump.h"
  22#include "xe_device.h"
  23#include "xe_exec_queue.h"
  24#include "xe_force_wake.h"
  25#include "xe_gpu_scheduler.h"
  26#include "xe_gt.h"
  27#include "xe_gt_clock.h"
  28#include "xe_gt_printk.h"
  29#include "xe_guc.h"
  30#include "xe_guc_capture.h"
  31#include "xe_guc_ct.h"
  32#include "xe_guc_exec_queue_types.h"
  33#include "xe_guc_id_mgr.h"
  34#include "xe_guc_submit_types.h"
  35#include "xe_hw_engine.h"
  36#include "xe_hw_fence.h"
  37#include "xe_lrc.h"
  38#include "xe_macros.h"
  39#include "xe_map.h"
  40#include "xe_mocs.h"
  41#include "xe_pm.h"
  42#include "xe_ring_ops_types.h"
  43#include "xe_sched_job.h"
  44#include "xe_trace.h"
  45#include "xe_vm.h"
  46
  47static struct xe_guc *
  48exec_queue_to_guc(struct xe_exec_queue *q)
  49{
  50	return &q->gt->uc.guc;
  51}
  52
  53/*
  54 * Helpers for engine state, using an atomic as some of the bits can transition
  55 * as the same time (e.g. a suspend can be happning at the same time as schedule
  56 * engine done being processed).
  57 */
  58#define EXEC_QUEUE_STATE_REGISTERED		(1 << 0)
  59#define EXEC_QUEUE_STATE_ENABLED		(1 << 1)
  60#define EXEC_QUEUE_STATE_PENDING_ENABLE		(1 << 2)
  61#define EXEC_QUEUE_STATE_PENDING_DISABLE	(1 << 3)
  62#define EXEC_QUEUE_STATE_DESTROYED		(1 << 4)
  63#define EXEC_QUEUE_STATE_SUSPENDED		(1 << 5)
  64#define EXEC_QUEUE_STATE_RESET			(1 << 6)
  65#define EXEC_QUEUE_STATE_KILLED			(1 << 7)
  66#define EXEC_QUEUE_STATE_WEDGED			(1 << 8)
  67#define EXEC_QUEUE_STATE_BANNED			(1 << 9)
  68#define EXEC_QUEUE_STATE_CHECK_TIMEOUT		(1 << 10)
  69#define EXEC_QUEUE_STATE_EXTRA_REF		(1 << 11)
  70
  71static bool exec_queue_registered(struct xe_exec_queue *q)
  72{
  73	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED;
  74}
  75
  76static void set_exec_queue_registered(struct xe_exec_queue *q)
  77{
  78	atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
  79}
  80
  81static void clear_exec_queue_registered(struct xe_exec_queue *q)
  82{
  83	atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state);
  84}
  85
  86static bool exec_queue_enabled(struct xe_exec_queue *q)
  87{
  88	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED;
  89}
  90
  91static void set_exec_queue_enabled(struct xe_exec_queue *q)
  92{
  93	atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
  94}
  95
  96static void clear_exec_queue_enabled(struct xe_exec_queue *q)
  97{
  98	atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state);
  99}
 100
 101static bool exec_queue_pending_enable(struct xe_exec_queue *q)
 102{
 103	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE;
 104}
 105
 106static void set_exec_queue_pending_enable(struct xe_exec_queue *q)
 107{
 108	atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
 109}
 110
 111static void clear_exec_queue_pending_enable(struct xe_exec_queue *q)
 112{
 113	atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state);
 114}
 115
 116static bool exec_queue_pending_disable(struct xe_exec_queue *q)
 117{
 118	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE;
 119}
 120
 121static void set_exec_queue_pending_disable(struct xe_exec_queue *q)
 122{
 123	atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
 124}
 125
 126static void clear_exec_queue_pending_disable(struct xe_exec_queue *q)
 127{
 128	atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state);
 129}
 130
 131static bool exec_queue_destroyed(struct xe_exec_queue *q)
 132{
 133	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED;
 134}
 135
 136static void set_exec_queue_destroyed(struct xe_exec_queue *q)
 137{
 138	atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state);
 139}
 140
 141static bool exec_queue_banned(struct xe_exec_queue *q)
 142{
 143	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED;
 144}
 145
 146static void set_exec_queue_banned(struct xe_exec_queue *q)
 147{
 148	atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state);
 149}
 150
 151static bool exec_queue_suspended(struct xe_exec_queue *q)
 152{
 153	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED;
 154}
 155
 156static void set_exec_queue_suspended(struct xe_exec_queue *q)
 157{
 158	atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
 159}
 160
 161static void clear_exec_queue_suspended(struct xe_exec_queue *q)
 162{
 163	atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state);
 164}
 165
 166static bool exec_queue_reset(struct xe_exec_queue *q)
 167{
 168	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET;
 169}
 170
 171static void set_exec_queue_reset(struct xe_exec_queue *q)
 172{
 173	atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state);
 174}
 175
 176static bool exec_queue_killed(struct xe_exec_queue *q)
 177{
 178	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED;
 179}
 180
 181static void set_exec_queue_killed(struct xe_exec_queue *q)
 182{
 183	atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state);
 184}
 185
 186static bool exec_queue_wedged(struct xe_exec_queue *q)
 187{
 188	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED;
 189}
 190
 191static void set_exec_queue_wedged(struct xe_exec_queue *q)
 192{
 193	atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state);
 194}
 195
 196static bool exec_queue_check_timeout(struct xe_exec_queue *q)
 197{
 198	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT;
 199}
 200
 201static void set_exec_queue_check_timeout(struct xe_exec_queue *q)
 202{
 203	atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
 204}
 205
 206static void clear_exec_queue_check_timeout(struct xe_exec_queue *q)
 207{
 208	atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state);
 209}
 210
 211static bool exec_queue_extra_ref(struct xe_exec_queue *q)
 212{
 213	return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF;
 214}
 215
 216static void set_exec_queue_extra_ref(struct xe_exec_queue *q)
 217{
 218	atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state);
 219}
 220
 221static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q)
 222{
 223	return (atomic_read(&q->guc->state) &
 224		(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED |
 225		 EXEC_QUEUE_STATE_BANNED));
 226}
 227
 228static void guc_submit_fini(struct drm_device *drm, void *arg)
 229{
 230	struct xe_guc *guc = arg;
 231
 232	xa_destroy(&guc->submission_state.exec_queue_lookup);
 233}
 234
 235static void guc_submit_wedged_fini(void *arg)
 236{
 237	struct xe_guc *guc = arg;
 238	struct xe_exec_queue *q;
 239	unsigned long index;
 240
 241	mutex_lock(&guc->submission_state.lock);
 242	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
 243		if (exec_queue_wedged(q)) {
 244			mutex_unlock(&guc->submission_state.lock);
 245			xe_exec_queue_put(q);
 246			mutex_lock(&guc->submission_state.lock);
 247		}
 248	}
 249	mutex_unlock(&guc->submission_state.lock);
 250}
 251
 252static const struct xe_exec_queue_ops guc_exec_queue_ops;
 253
 254static void primelockdep(struct xe_guc *guc)
 255{
 256	if (!IS_ENABLED(CONFIG_LOCKDEP))
 257		return;
 258
 259	fs_reclaim_acquire(GFP_KERNEL);
 260
 261	mutex_lock(&guc->submission_state.lock);
 262	mutex_unlock(&guc->submission_state.lock);
 263
 264	fs_reclaim_release(GFP_KERNEL);
 265}
 266
 267/**
 268 * xe_guc_submit_init() - Initialize GuC submission.
 269 * @guc: the &xe_guc to initialize
 270 * @num_ids: number of GuC context IDs to use
 271 *
 272 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all
 273 * GuC context IDs supported by the GuC firmware should be used for submission.
 274 *
 275 * Only VF drivers will have to provide explicit number of GuC context IDs
 276 * that they can use for submission.
 277 *
 278 * Return: 0 on success or a negative error code on failure.
 279 */
 280int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids)
 281{
 282	struct xe_device *xe = guc_to_xe(guc);
 283	struct xe_gt *gt = guc_to_gt(guc);
 284	int err;
 285
 286	err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock);
 287	if (err)
 288		return err;
 289
 290	err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids);
 291	if (err)
 292		return err;
 293
 294	gt->exec_queue_ops = &guc_exec_queue_ops;
 295
 296	xa_init(&guc->submission_state.exec_queue_lookup);
 297
 298	init_waitqueue_head(&guc->submission_state.fini_wq);
 299
 300	primelockdep(guc);
 301
 302	return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc);
 303}
 304
 305static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count)
 306{
 307	int i;
 308
 309	lockdep_assert_held(&guc->submission_state.lock);
 310
 311	for (i = 0; i < xa_count; ++i)
 312		xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i);
 313
 314	xe_guc_id_mgr_release_locked(&guc->submission_state.idm,
 315				     q->guc->id, q->width);
 316
 317	if (xa_empty(&guc->submission_state.exec_queue_lookup))
 318		wake_up(&guc->submission_state.fini_wq);
 319}
 320
 321static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
 322{
 323	int ret;
 324	int i;
 325
 326	/*
 327	 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path,
 328	 * worse case user gets -ENOMEM on engine create and has to try again.
 329	 *
 330	 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent
 331	 * failure.
 332	 */
 333	lockdep_assert_held(&guc->submission_state.lock);
 334
 335	ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm,
 336					   q->width);
 337	if (ret < 0)
 338		return ret;
 339
 340	q->guc->id = ret;
 341
 342	for (i = 0; i < q->width; ++i) {
 343		ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup,
 344				      q->guc->id + i, q, GFP_NOWAIT));
 345		if (ret)
 346			goto err_release;
 347	}
 348
 349	return 0;
 350
 351err_release:
 352	__release_guc_id(guc, q, i);
 353
 354	return ret;
 355}
 356
 357static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q)
 358{
 359	mutex_lock(&guc->submission_state.lock);
 360	__release_guc_id(guc, q, q->width);
 361	mutex_unlock(&guc->submission_state.lock);
 362}
 363
 364struct exec_queue_policy {
 365	u32 count;
 366	struct guc_update_exec_queue_policy h2g;
 367};
 368
 369static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy)
 370{
 371	size_t bytes = sizeof(policy->h2g.header) +
 372		       (sizeof(policy->h2g.klv[0]) * policy->count);
 373
 374	return bytes / sizeof(u32);
 375}
 376
 377static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy,
 378					      u16 guc_id)
 379{
 380	policy->h2g.header.action =
 381		XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
 382	policy->h2g.header.guc_id = guc_id;
 383	policy->count = 0;
 384}
 385
 386#define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \
 387static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \
 388					   u32 data) \
 389{ \
 390	XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
 391\
 392	policy->h2g.klv[policy->count].kl = \
 393		FIELD_PREP(GUC_KLV_0_KEY, \
 394			   GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
 395		FIELD_PREP(GUC_KLV_0_LEN, 1); \
 396	policy->h2g.klv[policy->count].value = data; \
 397	policy->count++; \
 398}
 399
 400MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
 401MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
 402MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY)
 403#undef MAKE_EXEC_QUEUE_POLICY_ADD
 404
 405static const int xe_exec_queue_prio_to_guc[] = {
 406	[XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL,
 407	[XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL,
 408	[XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH,
 409	[XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH,
 410};
 411
 412static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q)
 413{
 414	struct exec_queue_policy policy;
 415	struct xe_device *xe = guc_to_xe(guc);
 416	enum xe_exec_queue_priority prio = q->sched_props.priority;
 417	u32 timeslice_us = q->sched_props.timeslice_us;
 418	u32 preempt_timeout_us = q->sched_props.preempt_timeout_us;
 419
 420	xe_assert(xe, exec_queue_registered(q));
 421
 422	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
 423	__guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]);
 424	__guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us);
 425	__guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us);
 426
 427	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
 428		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
 429}
 430
 431static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q)
 432{
 433	struct exec_queue_policy policy;
 434
 435	__guc_exec_queue_policy_start_klv(&policy, q->guc->id);
 436	__guc_exec_queue_policy_add_preemption_timeout(&policy, 1);
 437
 438	xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g,
 439		       __guc_exec_queue_policy_action_size(&policy), 0, 0);
 440}
 441
 442#define parallel_read(xe_, map_, field_) \
 443	xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
 444			field_)
 445#define parallel_write(xe_, map_, field_, val_) \
 446	xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \
 447			field_, val_)
 448
 449static void __register_mlrc_exec_queue(struct xe_guc *guc,
 450				       struct xe_exec_queue *q,
 451				       struct guc_ctxt_registration_info *info)
 452{
 453#define MAX_MLRC_REG_SIZE      (13 + XE_HW_ENGINE_MAX_INSTANCE * 2)
 454	struct xe_device *xe = guc_to_xe(guc);
 455	u32 action[MAX_MLRC_REG_SIZE];
 456	int len = 0;
 457	int i;
 458
 459	xe_assert(xe, xe_exec_queue_is_parallel(q));
 460
 461	action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
 462	action[len++] = info->flags;
 463	action[len++] = info->context_idx;
 464	action[len++] = info->engine_class;
 465	action[len++] = info->engine_submit_mask;
 466	action[len++] = info->wq_desc_lo;
 467	action[len++] = info->wq_desc_hi;
 468	action[len++] = info->wq_base_lo;
 469	action[len++] = info->wq_base_hi;
 470	action[len++] = info->wq_size;
 471	action[len++] = q->width;
 472	action[len++] = info->hwlrca_lo;
 473	action[len++] = info->hwlrca_hi;
 474
 475	for (i = 1; i < q->width; ++i) {
 476		struct xe_lrc *lrc = q->lrc[i];
 477
 478		action[len++] = lower_32_bits(xe_lrc_descriptor(lrc));
 479		action[len++] = upper_32_bits(xe_lrc_descriptor(lrc));
 480	}
 481
 482	xe_assert(xe, len <= MAX_MLRC_REG_SIZE);
 483#undef MAX_MLRC_REG_SIZE
 484
 485	xe_guc_ct_send(&guc->ct, action, len, 0, 0);
 486}
 487
 488static void __register_exec_queue(struct xe_guc *guc,
 489				  struct guc_ctxt_registration_info *info)
 490{
 491	u32 action[] = {
 492		XE_GUC_ACTION_REGISTER_CONTEXT,
 493		info->flags,
 494		info->context_idx,
 495		info->engine_class,
 496		info->engine_submit_mask,
 497		info->wq_desc_lo,
 498		info->wq_desc_hi,
 499		info->wq_base_lo,
 500		info->wq_base_hi,
 501		info->wq_size,
 502		info->hwlrca_lo,
 503		info->hwlrca_hi,
 504	};
 505
 506	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
 507}
 508
 509static void register_exec_queue(struct xe_exec_queue *q)
 510{
 511	struct xe_guc *guc = exec_queue_to_guc(q);
 512	struct xe_device *xe = guc_to_xe(guc);
 513	struct xe_lrc *lrc = q->lrc[0];
 514	struct guc_ctxt_registration_info info;
 515
 516	xe_assert(xe, !exec_queue_registered(q));
 517
 518	memset(&info, 0, sizeof(info));
 519	info.context_idx = q->guc->id;
 520	info.engine_class = xe_engine_class_to_guc_class(q->class);
 521	info.engine_submit_mask = q->logical_mask;
 522	info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc));
 523	info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc));
 524	info.flags = CONTEXT_REGISTRATION_FLAG_KMD;
 525
 526	if (xe_exec_queue_is_parallel(q)) {
 527		u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc);
 528		struct iosys_map map = xe_lrc_parallel_map(lrc);
 529
 530		info.wq_desc_lo = lower_32_bits(ggtt_addr +
 531			offsetof(struct guc_submit_parallel_scratch, wq_desc));
 532		info.wq_desc_hi = upper_32_bits(ggtt_addr +
 533			offsetof(struct guc_submit_parallel_scratch, wq_desc));
 534		info.wq_base_lo = lower_32_bits(ggtt_addr +
 535			offsetof(struct guc_submit_parallel_scratch, wq[0]));
 536		info.wq_base_hi = upper_32_bits(ggtt_addr +
 537			offsetof(struct guc_submit_parallel_scratch, wq[0]));
 538		info.wq_size = WQ_SIZE;
 539
 540		q->guc->wqi_head = 0;
 541		q->guc->wqi_tail = 0;
 542		xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE);
 543		parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE);
 544	}
 545
 546	/*
 547	 * We must keep a reference for LR engines if engine is registered with
 548	 * the GuC as jobs signal immediately and can't destroy an engine if the
 549	 * GuC has a reference to it.
 550	 */
 551	if (xe_exec_queue_is_lr(q))
 552		xe_exec_queue_get(q);
 553
 554	set_exec_queue_registered(q);
 555	trace_xe_exec_queue_register(q);
 556	if (xe_exec_queue_is_parallel(q))
 557		__register_mlrc_exec_queue(guc, q, &info);
 558	else
 559		__register_exec_queue(guc, &info);
 560	init_policies(guc, q);
 561}
 562
 563static u32 wq_space_until_wrap(struct xe_exec_queue *q)
 564{
 565	return (WQ_SIZE - q->guc->wqi_tail);
 566}
 567
 568static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size)
 569{
 570	struct xe_guc *guc = exec_queue_to_guc(q);
 571	struct xe_device *xe = guc_to_xe(guc);
 572	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
 573	unsigned int sleep_period_ms = 1;
 574
 575#define AVAILABLE_SPACE \
 576	CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE)
 577	if (wqi_size > AVAILABLE_SPACE) {
 578try_again:
 579		q->guc->wqi_head = parallel_read(xe, map, wq_desc.head);
 580		if (wqi_size > AVAILABLE_SPACE) {
 581			if (sleep_period_ms == 1024) {
 582				xe_gt_reset_async(q->gt);
 583				return -ENODEV;
 584			}
 585
 586			msleep(sleep_period_ms);
 587			sleep_period_ms <<= 1;
 588			goto try_again;
 589		}
 590	}
 591#undef AVAILABLE_SPACE
 592
 593	return 0;
 594}
 595
 596static int wq_noop_append(struct xe_exec_queue *q)
 597{
 598	struct xe_guc *guc = exec_queue_to_guc(q);
 599	struct xe_device *xe = guc_to_xe(guc);
 600	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
 601	u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1;
 602
 603	if (wq_wait_for_space(q, wq_space_until_wrap(q)))
 604		return -ENODEV;
 605
 606	xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw));
 607
 608	parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)],
 609		       FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
 610		       FIELD_PREP(WQ_LEN_MASK, len_dw));
 611	q->guc->wqi_tail = 0;
 612
 613	return 0;
 614}
 615
 616static void wq_item_append(struct xe_exec_queue *q)
 617{
 618	struct xe_guc *guc = exec_queue_to_guc(q);
 619	struct xe_device *xe = guc_to_xe(guc);
 620	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
 621#define WQ_HEADER_SIZE	4	/* Includes 1 LRC address too */
 622	u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)];
 623	u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32);
 624	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
 625	int i = 0, j;
 626
 627	if (wqi_size > wq_space_until_wrap(q)) {
 628		if (wq_noop_append(q))
 629			return;
 630	}
 631	if (wq_wait_for_space(q, wqi_size))
 632		return;
 633
 634	wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
 635		FIELD_PREP(WQ_LEN_MASK, len_dw);
 636	wqi[i++] = xe_lrc_descriptor(q->lrc[0]);
 637	wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) |
 638		FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64));
 639	wqi[i++] = 0;
 640	for (j = 1; j < q->width; ++j) {
 641		struct xe_lrc *lrc = q->lrc[j];
 642
 643		wqi[i++] = lrc->ring.tail / sizeof(u64);
 644	}
 645
 646	xe_assert(xe, i == wqi_size / sizeof(u32));
 647
 648	iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch,
 649				      wq[q->guc->wqi_tail / sizeof(u32)]));
 650	xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size);
 651	q->guc->wqi_tail += wqi_size;
 652	xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE);
 653
 654	xe_device_wmb(xe);
 655
 656	map = xe_lrc_parallel_map(q->lrc[0]);
 657	parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail);
 658}
 659
 660#define RESUME_PENDING	~0x0ull
 661static void submit_exec_queue(struct xe_exec_queue *q)
 662{
 663	struct xe_guc *guc = exec_queue_to_guc(q);
 664	struct xe_device *xe = guc_to_xe(guc);
 665	struct xe_lrc *lrc = q->lrc[0];
 666	u32 action[3];
 667	u32 g2h_len = 0;
 668	u32 num_g2h = 0;
 669	int len = 0;
 670	bool extra_submit = false;
 671
 672	xe_assert(xe, exec_queue_registered(q));
 673
 674	if (xe_exec_queue_is_parallel(q))
 675		wq_item_append(q);
 676	else
 677		xe_lrc_set_ring_tail(lrc, lrc->ring.tail);
 678
 679	if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q))
 680		return;
 681
 682	if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) {
 683		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
 684		action[len++] = q->guc->id;
 685		action[len++] = GUC_CONTEXT_ENABLE;
 686		g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
 687		num_g2h = 1;
 688		if (xe_exec_queue_is_parallel(q))
 689			extra_submit = true;
 690
 691		q->guc->resume_time = RESUME_PENDING;
 692		set_exec_queue_pending_enable(q);
 693		set_exec_queue_enabled(q);
 694		trace_xe_exec_queue_scheduling_enable(q);
 695	} else {
 696		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
 697		action[len++] = q->guc->id;
 698		trace_xe_exec_queue_submit(q);
 699	}
 700
 701	xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h);
 702
 703	if (extra_submit) {
 704		len = 0;
 705		action[len++] = XE_GUC_ACTION_SCHED_CONTEXT;
 706		action[len++] = q->guc->id;
 707		trace_xe_exec_queue_submit(q);
 708
 709		xe_guc_ct_send(&guc->ct, action, len, 0, 0);
 710	}
 711}
 712
 713static struct dma_fence *
 714guc_exec_queue_run_job(struct drm_sched_job *drm_job)
 715{
 716	struct xe_sched_job *job = to_xe_sched_job(drm_job);
 717	struct xe_exec_queue *q = job->q;
 718	struct xe_guc *guc = exec_queue_to_guc(q);
 719	struct xe_device *xe = guc_to_xe(guc);
 720	struct dma_fence *fence = NULL;
 721	bool lr = xe_exec_queue_is_lr(q);
 722
 723	xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) ||
 724		  exec_queue_banned(q) || exec_queue_suspended(q));
 725
 726	trace_xe_sched_job_run(job);
 727
 728	if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) {
 729		if (!exec_queue_registered(q))
 730			register_exec_queue(q);
 731		if (!lr)	/* LR jobs are emitted in the exec IOCTL */
 732			q->ring_ops->emit_job(job);
 733		submit_exec_queue(q);
 734	}
 735
 736	if (lr) {
 737		xe_sched_job_set_error(job, -EOPNOTSUPP);
 738		dma_fence_put(job->fence);	/* Drop ref from xe_sched_job_arm */
 739	} else {
 740		fence = job->fence;
 741	}
 742
 743	return fence;
 744}
 745
 746static void guc_exec_queue_free_job(struct drm_sched_job *drm_job)
 747{
 748	struct xe_sched_job *job = to_xe_sched_job(drm_job);
 749
 750	trace_xe_sched_job_free(job);
 751	xe_sched_job_put(job);
 752}
 753
 754int xe_guc_read_stopped(struct xe_guc *guc)
 755{
 756	return atomic_read(&guc->submission_state.stopped);
 757}
 758
 759#define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable)			\
 760	u32 action[] = {						\
 761		XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET,			\
 762		q->guc->id,						\
 763		GUC_CONTEXT_##enable_disable,				\
 764	}
 765
 766static void disable_scheduling_deregister(struct xe_guc *guc,
 767					  struct xe_exec_queue *q)
 768{
 769	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
 770	int ret;
 771
 772	set_min_preemption_timeout(guc, q);
 773	smp_rmb();
 774	ret = wait_event_timeout(guc->ct.wq,
 775				 (!exec_queue_pending_enable(q) &&
 776				  !exec_queue_pending_disable(q)) ||
 777					 xe_guc_read_stopped(guc),
 778				 HZ * 5);
 779	if (!ret) {
 780		struct xe_gpu_scheduler *sched = &q->guc->sched;
 781
 782		xe_gt_warn(q->gt, "Pending enable/disable failed to respond\n");
 783		xe_sched_submission_start(sched);
 784		xe_gt_reset_async(q->gt);
 785		xe_sched_tdr_queue_imm(sched);
 786		return;
 787	}
 788
 789	clear_exec_queue_enabled(q);
 790	set_exec_queue_pending_disable(q);
 791	set_exec_queue_destroyed(q);
 792	trace_xe_exec_queue_scheduling_disable(q);
 793
 794	/*
 795	 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H
 796	 * handler and we are not allowed to reserved G2H space in handlers.
 797	 */
 798	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
 799		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET +
 800		       G2H_LEN_DW_DEREGISTER_CONTEXT, 2);
 801}
 802
 803static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q)
 804{
 805	struct xe_guc *guc = exec_queue_to_guc(q);
 806	struct xe_device *xe = guc_to_xe(guc);
 807
 808	/** to wakeup xe_wait_user_fence ioctl if exec queue is reset */
 809	wake_up_all(&xe->ufence_wq);
 810
 811	if (xe_exec_queue_is_lr(q))
 812		queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr);
 813	else
 814		xe_sched_tdr_queue_imm(&q->guc->sched);
 815}
 816
 817/**
 818 * xe_guc_submit_wedge() - Wedge GuC submission
 819 * @guc: the GuC object
 820 *
 821 * Save exec queue's registered with GuC state by taking a ref to each queue.
 822 * Register a DRMM handler to drop refs upon driver unload.
 823 */
 824void xe_guc_submit_wedge(struct xe_guc *guc)
 825{
 826	struct xe_device *xe = guc_to_xe(guc);
 827	struct xe_exec_queue *q;
 828	unsigned long index;
 829	int err;
 830
 831	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
 832
 833	err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev,
 834				       guc_submit_wedged_fini, guc);
 835	if (err) {
 836		drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n");
 837		return;
 838	}
 839
 840	mutex_lock(&guc->submission_state.lock);
 841	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
 842		if (xe_exec_queue_get_unless_zero(q))
 843			set_exec_queue_wedged(q);
 844	mutex_unlock(&guc->submission_state.lock);
 845}
 846
 847static bool guc_submit_hint_wedged(struct xe_guc *guc)
 848{
 849	struct xe_device *xe = guc_to_xe(guc);
 850
 851	if (xe->wedged.mode != 2)
 852		return false;
 853
 854	if (xe_device_wedged(xe))
 855		return true;
 856
 857	xe_device_declare_wedged(xe);
 858
 859	return true;
 860}
 861
 862static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w)
 863{
 864	struct xe_guc_exec_queue *ge =
 865		container_of(w, struct xe_guc_exec_queue, lr_tdr);
 866	struct xe_exec_queue *q = ge->q;
 867	struct xe_guc *guc = exec_queue_to_guc(q);
 868	struct xe_device *xe = guc_to_xe(guc);
 869	struct xe_gpu_scheduler *sched = &ge->sched;
 870	bool wedged;
 871
 872	xe_assert(xe, xe_exec_queue_is_lr(q));
 873	trace_xe_exec_queue_lr_cleanup(q);
 874
 875	wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
 876
 877	/* Kill the run_job / process_msg entry points */
 878	xe_sched_submission_stop(sched);
 879
 880	/*
 881	 * Engine state now mostly stable, disable scheduling / deregister if
 882	 * needed. This cleanup routine might be called multiple times, where
 883	 * the actual async engine deregister drops the final engine ref.
 884	 * Calling disable_scheduling_deregister will mark the engine as
 885	 * destroyed and fire off the CT requests to disable scheduling /
 886	 * deregister, which we only want to do once. We also don't want to mark
 887	 * the engine as pending_disable again as this may race with the
 888	 * xe_guc_deregister_done_handler() which treats it as an unexpected
 889	 * state.
 890	 */
 891	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
 892		struct xe_guc *guc = exec_queue_to_guc(q);
 893		int ret;
 894
 895		set_exec_queue_banned(q);
 896		disable_scheduling_deregister(guc, q);
 897
 898		/*
 899		 * Must wait for scheduling to be disabled before signalling
 900		 * any fences, if GT broken the GT reset code should signal us.
 901		 */
 902		ret = wait_event_timeout(guc->ct.wq,
 903					 !exec_queue_pending_disable(q) ||
 904					 xe_guc_read_stopped(guc), HZ * 5);
 905		if (!ret) {
 906			drm_warn(&xe->drm, "Schedule disable failed to respond");
 907			xe_sched_submission_start(sched);
 908			xe_gt_reset_async(q->gt);
 909			return;
 910		}
 911	}
 912
 913	xe_sched_submission_start(sched);
 914}
 915
 916#define ADJUST_FIVE_PERCENT(__t)	mul_u64_u32_div(__t, 105, 100)
 917
 918static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job)
 919{
 920	struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q));
 921	u32 ctx_timestamp, ctx_job_timestamp;
 922	u32 timeout_ms = q->sched_props.job_timeout_ms;
 923	u32 diff;
 924	u64 running_time_ms;
 925
 926	if (!xe_sched_job_started(job)) {
 927		xe_gt_warn(gt, "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, not started",
 928			   xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
 929			   q->guc->id);
 930
 931		return xe_sched_invalidate_job(job, 2);
 932	}
 933
 934	ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]);
 935	ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]);
 936
 937	/*
 938	 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch
 939	 * possible overflows with a high timeout.
 940	 */
 941	xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC);
 942
 943	if (ctx_timestamp < ctx_job_timestamp)
 944		diff = ctx_timestamp + U32_MAX - ctx_job_timestamp;
 945	else
 946		diff = ctx_timestamp - ctx_job_timestamp;
 947
 948	/*
 949	 * Ensure timeout is within 5% to account for an GuC scheduling latency
 950	 */
 951	running_time_ms =
 952		ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff));
 953
 954	xe_gt_dbg(gt,
 955		  "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x",
 956		  xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
 957		  q->guc->id, running_time_ms, timeout_ms, diff);
 958
 959	return running_time_ms >= timeout_ms;
 960}
 961
 962static void enable_scheduling(struct xe_exec_queue *q)
 963{
 964	MAKE_SCHED_CONTEXT_ACTION(q, ENABLE);
 965	struct xe_guc *guc = exec_queue_to_guc(q);
 966	int ret;
 967
 968	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
 969	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
 970	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
 971	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
 972
 973	set_exec_queue_pending_enable(q);
 974	set_exec_queue_enabled(q);
 975	trace_xe_exec_queue_scheduling_enable(q);
 976
 977	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
 978		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
 979
 980	ret = wait_event_timeout(guc->ct.wq,
 981				 !exec_queue_pending_enable(q) ||
 982				 xe_guc_read_stopped(guc), HZ * 5);
 983	if (!ret || xe_guc_read_stopped(guc)) {
 984		xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond");
 985		set_exec_queue_banned(q);
 986		xe_gt_reset_async(q->gt);
 987		xe_sched_tdr_queue_imm(&q->guc->sched);
 988	}
 989}
 990
 991static void disable_scheduling(struct xe_exec_queue *q, bool immediate)
 992{
 993	MAKE_SCHED_CONTEXT_ACTION(q, DISABLE);
 994	struct xe_guc *guc = exec_queue_to_guc(q);
 995
 996	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
 997	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
 998	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
 999
1000	if (immediate)
1001		set_min_preemption_timeout(guc, q);
1002	clear_exec_queue_enabled(q);
1003	set_exec_queue_pending_disable(q);
1004	trace_xe_exec_queue_scheduling_disable(q);
1005
1006	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1007		       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1);
1008}
1009
1010static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1011{
1012	u32 action[] = {
1013		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1014		q->guc->id,
1015	};
1016
1017	xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q));
1018	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1019	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1020	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1021
1022	set_exec_queue_destroyed(q);
1023	trace_xe_exec_queue_deregister(q);
1024
1025	xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action),
1026		       G2H_LEN_DW_DEREGISTER_CONTEXT, 1);
1027}
1028
1029static enum drm_gpu_sched_stat
1030guc_exec_queue_timedout_job(struct drm_sched_job *drm_job)
1031{
1032	struct xe_sched_job *job = to_xe_sched_job(drm_job);
1033	struct xe_sched_job *tmp_job;
1034	struct xe_exec_queue *q = job->q;
1035	struct xe_gpu_scheduler *sched = &q->guc->sched;
1036	struct xe_guc *guc = exec_queue_to_guc(q);
1037	const char *process_name = "no process";
1038	struct xe_device *xe = guc_to_xe(guc);
1039	unsigned int fw_ref;
1040	int err = -ETIME;
1041	pid_t pid = -1;
1042	int i = 0;
1043	bool wedged, skip_timeout_check;
1044
1045	/*
1046	 * TDR has fired before free job worker. Common if exec queue
1047	 * immediately closed after last fence signaled. Add back to pending
1048	 * list so job can be freed and kick scheduler ensuring free job is not
1049	 * lost.
1050	 */
1051	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) {
1052		xe_sched_add_pending_job(sched, job);
1053		xe_sched_submission_start(sched);
1054
1055		return DRM_GPU_SCHED_STAT_NOMINAL;
1056	}
1057
1058	/* Kill the run_job entry point */
1059	xe_sched_submission_stop(sched);
1060
1061	/* Must check all state after stopping scheduler */
1062	skip_timeout_check = exec_queue_reset(q) ||
1063		exec_queue_killed_or_banned_or_wedged(q) ||
1064		exec_queue_destroyed(q);
1065
1066	/*
1067	 * If devcoredump not captured and GuC capture for the job is not ready
1068	 * do manual capture first and decide later if we need to use it
1069	 */
1070	if (!exec_queue_killed(q) && !xe->devcoredump.captured &&
1071	    !xe_guc_capture_get_matching_and_lock(job)) {
1072		/* take force wake before engine register manual capture */
1073		fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
1074		if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
1075			xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n");
1076
1077		xe_engine_snapshot_capture_for_job(job);
1078
1079		xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
1080	}
1081
1082	/*
1083	 * XXX: Sampling timeout doesn't work in wedged mode as we have to
1084	 * modify scheduling state to read timestamp. We could read the
1085	 * timestamp from a register to accumulate current running time but this
1086	 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are
1087	 * genuine timeouts.
1088	 */
1089	wedged = guc_submit_hint_wedged(exec_queue_to_guc(q));
1090
1091	/* Engine state now stable, disable scheduling to check timestamp */
1092	if (!wedged && exec_queue_registered(q)) {
1093		int ret;
1094
1095		if (exec_queue_reset(q))
1096			err = -EIO;
1097
1098		if (!exec_queue_destroyed(q)) {
1099			/*
1100			 * Wait for any pending G2H to flush out before
1101			 * modifying state
1102			 */
1103			ret = wait_event_timeout(guc->ct.wq,
1104						 (!exec_queue_pending_enable(q) &&
1105						  !exec_queue_pending_disable(q)) ||
1106						 xe_guc_read_stopped(guc), HZ * 5);
1107			if (!ret || xe_guc_read_stopped(guc))
1108				goto trigger_reset;
1109
1110			/*
1111			 * Flag communicates to G2H handler that schedule
1112			 * disable originated from a timeout check. The G2H then
1113			 * avoid triggering cleanup or deregistering the exec
1114			 * queue.
1115			 */
1116			set_exec_queue_check_timeout(q);
1117			disable_scheduling(q, skip_timeout_check);
1118		}
1119
1120		/*
1121		 * Must wait for scheduling to be disabled before signalling
1122		 * any fences, if GT broken the GT reset code should signal us.
1123		 *
1124		 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault
1125		 * error) messages which can cause the schedule disable to get
1126		 * lost. If this occurs, trigger a GT reset to recover.
1127		 */
1128		smp_rmb();
1129		ret = wait_event_timeout(guc->ct.wq,
1130					 !exec_queue_pending_disable(q) ||
1131					 xe_guc_read_stopped(guc), HZ * 5);
1132		if (!ret || xe_guc_read_stopped(guc)) {
1133trigger_reset:
1134			if (!ret)
1135				xe_gt_warn(guc_to_gt(guc), "Schedule disable failed to respond");
1136			set_exec_queue_extra_ref(q);
1137			xe_exec_queue_get(q);	/* GT reset owns this */
1138			set_exec_queue_banned(q);
1139			xe_gt_reset_async(q->gt);
1140			xe_sched_tdr_queue_imm(sched);
1141			goto rearm;
1142		}
1143	}
1144
1145	/*
1146	 * Check if job is actually timed out, if so restart job execution and TDR
1147	 */
1148	if (!wedged && !skip_timeout_check && !check_timeout(q, job) &&
1149	    !exec_queue_reset(q) && exec_queue_registered(q)) {
1150		clear_exec_queue_check_timeout(q);
1151		goto sched_enable;
1152	}
1153
1154	if (q->vm && q->vm->xef) {
1155		process_name = q->vm->xef->process_name;
1156		pid = q->vm->xef->pid;
1157	}
1158	xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]",
1159		     xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job),
1160		     q->guc->id, q->flags, process_name, pid);
1161
1162	trace_xe_sched_job_timedout(job);
1163
1164	if (!exec_queue_killed(q))
1165		xe_devcoredump(job);
1166
1167	/*
1168	 * Kernel jobs should never fail, nor should VM jobs if they do
1169	 * somethings has gone wrong and the GT needs a reset
1170	 */
1171	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL,
1172		   "Kernel-submitted job timed out\n");
1173	xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q),
1174		   "VM job timed out on non-killed execqueue\n");
1175	if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL ||
1176			(q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) {
1177		if (!xe_sched_invalidate_job(job, 2)) {
1178			clear_exec_queue_check_timeout(q);
1179			xe_gt_reset_async(q->gt);
1180			goto rearm;
1181		}
1182	}
1183
1184	/* Finish cleaning up exec queue via deregister */
1185	set_exec_queue_banned(q);
1186	if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) {
1187		set_exec_queue_extra_ref(q);
1188		xe_exec_queue_get(q);
1189		__deregister_exec_queue(guc, q);
1190	}
1191
1192	/* Stop fence signaling */
1193	xe_hw_fence_irq_stop(q->fence_irq);
1194
1195	/*
1196	 * Fence state now stable, stop / start scheduler which cleans up any
1197	 * fences that are complete
1198	 */
1199	xe_sched_add_pending_job(sched, job);
1200	xe_sched_submission_start(sched);
1201
1202	xe_guc_exec_queue_trigger_cleanup(q);
1203
1204	/* Mark all outstanding jobs as bad, thus completing them */
1205	spin_lock(&sched->base.job_list_lock);
1206	list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list)
1207		xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED);
1208	spin_unlock(&sched->base.job_list_lock);
1209
1210	/* Start fence signaling */
1211	xe_hw_fence_irq_start(q->fence_irq);
1212
1213	return DRM_GPU_SCHED_STAT_NOMINAL;
1214
1215sched_enable:
1216	enable_scheduling(q);
1217rearm:
1218	/*
1219	 * XXX: Ideally want to adjust timeout based on current exection time
1220	 * but there is not currently an easy way to do in DRM scheduler. With
1221	 * some thought, do this in a follow up.
1222	 */
1223	xe_sched_add_pending_job(sched, job);
1224	xe_sched_submission_start(sched);
1225
1226	return DRM_GPU_SCHED_STAT_NOMINAL;
1227}
1228
1229static void __guc_exec_queue_fini_async(struct work_struct *w)
1230{
1231	struct xe_guc_exec_queue *ge =
1232		container_of(w, struct xe_guc_exec_queue, fini_async);
1233	struct xe_exec_queue *q = ge->q;
1234	struct xe_guc *guc = exec_queue_to_guc(q);
1235
1236	xe_pm_runtime_get(guc_to_xe(guc));
1237	trace_xe_exec_queue_destroy(q);
1238
1239	if (xe_exec_queue_is_lr(q))
1240		cancel_work_sync(&ge->lr_tdr);
1241	release_guc_id(guc, q);
1242	xe_sched_entity_fini(&ge->entity);
1243	xe_sched_fini(&ge->sched);
1244
1245	kfree(ge);
1246	xe_exec_queue_fini(q);
1247	xe_pm_runtime_put(guc_to_xe(guc));
1248}
1249
1250static void guc_exec_queue_fini_async(struct xe_exec_queue *q)
1251{
1252	struct xe_guc *guc = exec_queue_to_guc(q);
1253	struct xe_device *xe = guc_to_xe(guc);
1254
1255	INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async);
1256
1257	/* We must block on kernel engines so slabs are empty on driver unload */
1258	if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q))
1259		__guc_exec_queue_fini_async(&q->guc->fini_async);
1260	else
1261		queue_work(xe->destroy_wq, &q->guc->fini_async);
1262}
1263
1264static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q)
1265{
1266	/*
1267	 * Might be done from within the GPU scheduler, need to do async as we
1268	 * fini the scheduler when the engine is fini'd, the scheduler can't
1269	 * complete fini within itself (circular dependency). Async resolves
1270	 * this we and don't really care when everything is fini'd, just that it
1271	 * is.
1272	 */
1273	guc_exec_queue_fini_async(q);
1274}
1275
1276static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg)
1277{
1278	struct xe_exec_queue *q = msg->private_data;
1279	struct xe_guc *guc = exec_queue_to_guc(q);
1280	struct xe_device *xe = guc_to_xe(guc);
1281
1282	xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT));
1283	trace_xe_exec_queue_cleanup_entity(q);
1284
1285	if (exec_queue_registered(q))
1286		disable_scheduling_deregister(guc, q);
1287	else
1288		__guc_exec_queue_fini(guc, q);
1289}
1290
1291static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q)
1292{
1293	return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q);
1294}
1295
1296static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg)
1297{
1298	struct xe_exec_queue *q = msg->private_data;
1299	struct xe_guc *guc = exec_queue_to_guc(q);
1300
1301	if (guc_exec_queue_allowed_to_change_state(q))
1302		init_policies(guc, q);
1303	kfree(msg);
1304}
1305
1306static void __suspend_fence_signal(struct xe_exec_queue *q)
1307{
1308	if (!q->guc->suspend_pending)
1309		return;
1310
1311	WRITE_ONCE(q->guc->suspend_pending, false);
1312	wake_up(&q->guc->suspend_wait);
1313}
1314
1315static void suspend_fence_signal(struct xe_exec_queue *q)
1316{
1317	struct xe_guc *guc = exec_queue_to_guc(q);
1318	struct xe_device *xe = guc_to_xe(guc);
1319
1320	xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) ||
1321		  xe_guc_read_stopped(guc));
1322	xe_assert(xe, q->guc->suspend_pending);
1323
1324	__suspend_fence_signal(q);
1325}
1326
1327static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg)
1328{
1329	struct xe_exec_queue *q = msg->private_data;
1330	struct xe_guc *guc = exec_queue_to_guc(q);
1331
1332	if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) &&
1333	    exec_queue_enabled(q)) {
1334		wait_event(guc->ct.wq, (q->guc->resume_time != RESUME_PENDING ||
1335			   xe_guc_read_stopped(guc)) && !exec_queue_pending_disable(q));
1336
1337		if (!xe_guc_read_stopped(guc)) {
1338			s64 since_resume_ms =
1339				ktime_ms_delta(ktime_get(),
1340					       q->guc->resume_time);
1341			s64 wait_ms = q->vm->preempt.min_run_period_ms -
1342				since_resume_ms;
1343
1344			if (wait_ms > 0 && q->guc->resume_time)
1345				msleep(wait_ms);
1346
1347			set_exec_queue_suspended(q);
1348			disable_scheduling(q, false);
1349		}
1350	} else if (q->guc->suspend_pending) {
1351		set_exec_queue_suspended(q);
1352		suspend_fence_signal(q);
1353	}
1354}
1355
1356static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg)
1357{
1358	struct xe_exec_queue *q = msg->private_data;
1359
1360	if (guc_exec_queue_allowed_to_change_state(q)) {
1361		clear_exec_queue_suspended(q);
1362		if (!exec_queue_enabled(q)) {
1363			q->guc->resume_time = RESUME_PENDING;
1364			enable_scheduling(q);
1365		}
1366	} else {
1367		clear_exec_queue_suspended(q);
1368	}
1369}
1370
1371#define CLEANUP		1	/* Non-zero values to catch uninitialized msg */
1372#define SET_SCHED_PROPS	2
1373#define SUSPEND		3
1374#define RESUME		4
1375#define OPCODE_MASK	0xf
1376#define MSG_LOCKED	BIT(8)
1377
1378static void guc_exec_queue_process_msg(struct xe_sched_msg *msg)
1379{
1380	struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data));
1381
1382	trace_xe_sched_msg_recv(msg);
1383
1384	switch (msg->opcode) {
1385	case CLEANUP:
1386		__guc_exec_queue_process_msg_cleanup(msg);
1387		break;
1388	case SET_SCHED_PROPS:
1389		__guc_exec_queue_process_msg_set_sched_props(msg);
1390		break;
1391	case SUSPEND:
1392		__guc_exec_queue_process_msg_suspend(msg);
1393		break;
1394	case RESUME:
1395		__guc_exec_queue_process_msg_resume(msg);
1396		break;
1397	default:
1398		XE_WARN_ON("Unknown message type");
1399	}
1400
1401	xe_pm_runtime_put(xe);
1402}
1403
1404static const struct drm_sched_backend_ops drm_sched_ops = {
1405	.run_job = guc_exec_queue_run_job,
1406	.free_job = guc_exec_queue_free_job,
1407	.timedout_job = guc_exec_queue_timedout_job,
1408};
1409
1410static const struct xe_sched_backend_ops xe_sched_ops = {
1411	.process_msg = guc_exec_queue_process_msg,
1412};
1413
1414static int guc_exec_queue_init(struct xe_exec_queue *q)
1415{
1416	struct xe_gpu_scheduler *sched;
1417	struct xe_guc *guc = exec_queue_to_guc(q);
1418	struct xe_device *xe = guc_to_xe(guc);
1419	struct xe_guc_exec_queue *ge;
1420	long timeout;
1421	int err, i;
1422
1423	xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc)));
1424
1425	ge = kzalloc(sizeof(*ge), GFP_KERNEL);
1426	if (!ge)
1427		return -ENOMEM;
1428
1429	q->guc = ge;
1430	ge->q = q;
1431	init_waitqueue_head(&ge->suspend_wait);
1432
1433	for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i)
1434		INIT_LIST_HEAD(&ge->static_msgs[i].link);
1435
1436	timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT :
1437		  msecs_to_jiffies(q->sched_props.job_timeout_ms);
1438	err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops,
1439			    NULL, q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64,
1440			    timeout, guc_to_gt(guc)->ordered_wq, NULL,
1441			    q->name, gt_to_xe(q->gt)->drm.dev);
1442	if (err)
1443		goto err_free;
1444
1445	sched = &ge->sched;
1446	err = xe_sched_entity_init(&ge->entity, sched);
1447	if (err)
1448		goto err_sched;
1449
1450	if (xe_exec_queue_is_lr(q))
1451		INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup);
1452
1453	mutex_lock(&guc->submission_state.lock);
1454
1455	err = alloc_guc_id(guc, q);
1456	if (err)
1457		goto err_entity;
1458
1459	q->entity = &ge->entity;
1460
1461	if (xe_guc_read_stopped(guc))
1462		xe_sched_stop(sched);
1463
1464	mutex_unlock(&guc->submission_state.lock);
1465
1466	xe_exec_queue_assign_name(q, q->guc->id);
1467
1468	trace_xe_exec_queue_create(q);
1469
1470	return 0;
1471
1472err_entity:
1473	mutex_unlock(&guc->submission_state.lock);
1474	xe_sched_entity_fini(&ge->entity);
1475err_sched:
1476	xe_sched_fini(&ge->sched);
1477err_free:
1478	kfree(ge);
1479
1480	return err;
1481}
1482
1483static void guc_exec_queue_kill(struct xe_exec_queue *q)
1484{
1485	trace_xe_exec_queue_kill(q);
1486	set_exec_queue_killed(q);
1487	__suspend_fence_signal(q);
1488	xe_guc_exec_queue_trigger_cleanup(q);
1489}
1490
1491static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg,
1492				   u32 opcode)
1493{
1494	xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q)));
1495
1496	INIT_LIST_HEAD(&msg->link);
1497	msg->opcode = opcode & OPCODE_MASK;
1498	msg->private_data = q;
1499
1500	trace_xe_sched_msg_add(msg);
1501	if (opcode & MSG_LOCKED)
1502		xe_sched_add_msg_locked(&q->guc->sched, msg);
1503	else
1504		xe_sched_add_msg(&q->guc->sched, msg);
1505}
1506
1507static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q,
1508				       struct xe_sched_msg *msg,
1509				       u32 opcode)
1510{
1511	if (!list_empty(&msg->link))
1512		return false;
1513
1514	guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED);
1515
1516	return true;
1517}
1518
1519#define STATIC_MSG_CLEANUP	0
1520#define STATIC_MSG_SUSPEND	1
1521#define STATIC_MSG_RESUME	2
1522static void guc_exec_queue_fini(struct xe_exec_queue *q)
1523{
1524	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP;
1525
1526	if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q))
1527		guc_exec_queue_add_msg(q, msg, CLEANUP);
1528	else
1529		__guc_exec_queue_fini(exec_queue_to_guc(q), q);
1530}
1531
1532static int guc_exec_queue_set_priority(struct xe_exec_queue *q,
1533				       enum xe_exec_queue_priority priority)
1534{
1535	struct xe_sched_msg *msg;
1536
1537	if (q->sched_props.priority == priority ||
1538	    exec_queue_killed_or_banned_or_wedged(q))
1539		return 0;
1540
1541	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1542	if (!msg)
1543		return -ENOMEM;
1544
1545	q->sched_props.priority = priority;
1546	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1547
1548	return 0;
1549}
1550
1551static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us)
1552{
1553	struct xe_sched_msg *msg;
1554
1555	if (q->sched_props.timeslice_us == timeslice_us ||
1556	    exec_queue_killed_or_banned_or_wedged(q))
1557		return 0;
1558
1559	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1560	if (!msg)
1561		return -ENOMEM;
1562
1563	q->sched_props.timeslice_us = timeslice_us;
1564	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1565
1566	return 0;
1567}
1568
1569static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q,
1570					      u32 preempt_timeout_us)
1571{
1572	struct xe_sched_msg *msg;
1573
1574	if (q->sched_props.preempt_timeout_us == preempt_timeout_us ||
1575	    exec_queue_killed_or_banned_or_wedged(q))
1576		return 0;
1577
1578	msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1579	if (!msg)
1580		return -ENOMEM;
1581
1582	q->sched_props.preempt_timeout_us = preempt_timeout_us;
1583	guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS);
1584
1585	return 0;
1586}
1587
1588static int guc_exec_queue_suspend(struct xe_exec_queue *q)
1589{
1590	struct xe_gpu_scheduler *sched = &q->guc->sched;
1591	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND;
1592
1593	if (exec_queue_killed_or_banned_or_wedged(q))
1594		return -EINVAL;
1595
1596	xe_sched_msg_lock(sched);
1597	if (guc_exec_queue_try_add_msg(q, msg, SUSPEND))
1598		q->guc->suspend_pending = true;
1599	xe_sched_msg_unlock(sched);
1600
1601	return 0;
1602}
1603
1604static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q)
1605{
1606	struct xe_guc *guc = exec_queue_to_guc(q);
1607	int ret;
1608
1609	/*
1610	 * Likely don't need to check exec_queue_killed() as we clear
1611	 * suspend_pending upon kill but to be paranoid but races in which
1612	 * suspend_pending is set after kill also check kill here.
1613	 */
1614	ret = wait_event_interruptible_timeout(q->guc->suspend_wait,
1615					       !READ_ONCE(q->guc->suspend_pending) ||
1616					       exec_queue_killed(q) ||
1617					       xe_guc_read_stopped(guc),
1618					       HZ * 5);
1619
1620	if (!ret) {
1621		xe_gt_warn(guc_to_gt(guc),
1622			   "Suspend fence, guc_id=%d, failed to respond",
1623			   q->guc->id);
1624		/* XXX: Trigger GT reset? */
1625		return -ETIME;
1626	}
1627
1628	return ret < 0 ? ret : 0;
1629}
1630
1631static void guc_exec_queue_resume(struct xe_exec_queue *q)
1632{
1633	struct xe_gpu_scheduler *sched = &q->guc->sched;
1634	struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME;
1635	struct xe_guc *guc = exec_queue_to_guc(q);
1636	struct xe_device *xe = guc_to_xe(guc);
1637
1638	xe_assert(xe, !q->guc->suspend_pending);
1639
1640	xe_sched_msg_lock(sched);
1641	guc_exec_queue_try_add_msg(q, msg, RESUME);
1642	xe_sched_msg_unlock(sched);
1643}
1644
1645static bool guc_exec_queue_reset_status(struct xe_exec_queue *q)
1646{
1647	return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q);
1648}
1649
1650/*
1651 * All of these functions are an abstraction layer which other parts of XE can
1652 * use to trap into the GuC backend. All of these functions, aside from init,
1653 * really shouldn't do much other than trap into the DRM scheduler which
1654 * synchronizes these operations.
1655 */
1656static const struct xe_exec_queue_ops guc_exec_queue_ops = {
1657	.init = guc_exec_queue_init,
1658	.kill = guc_exec_queue_kill,
1659	.fini = guc_exec_queue_fini,
1660	.set_priority = guc_exec_queue_set_priority,
1661	.set_timeslice = guc_exec_queue_set_timeslice,
1662	.set_preempt_timeout = guc_exec_queue_set_preempt_timeout,
1663	.suspend = guc_exec_queue_suspend,
1664	.suspend_wait = guc_exec_queue_suspend_wait,
1665	.resume = guc_exec_queue_resume,
1666	.reset_status = guc_exec_queue_reset_status,
1667};
1668
1669static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q)
1670{
1671	struct xe_gpu_scheduler *sched = &q->guc->sched;
1672
1673	/* Stop scheduling + flush any DRM scheduler operations */
1674	xe_sched_submission_stop(sched);
1675
1676	/* Clean up lost G2H + reset engine state */
1677	if (exec_queue_registered(q)) {
1678		if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1679			xe_exec_queue_put(q);
1680		else if (exec_queue_destroyed(q))
1681			__guc_exec_queue_fini(guc, q);
1682	}
1683	if (q->guc->suspend_pending) {
1684		set_exec_queue_suspended(q);
1685		suspend_fence_signal(q);
1686	}
1687	atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED |
1688		   EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED |
1689		   EXEC_QUEUE_STATE_SUSPENDED,
1690		   &q->guc->state);
1691	q->guc->resume_time = 0;
1692	trace_xe_exec_queue_stop(q);
1693
1694	/*
1695	 * Ban any engine (aside from kernel and engines used for VM ops) with a
1696	 * started but not complete job or if a job has gone through a GT reset
1697	 * more than twice.
1698	 */
1699	if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
1700		struct xe_sched_job *job = xe_sched_first_pending_job(sched);
1701		bool ban = false;
1702
1703		if (job) {
1704			if ((xe_sched_job_started(job) &&
1705			    !xe_sched_job_completed(job)) ||
1706			    xe_sched_invalidate_job(job, 2)) {
1707				trace_xe_sched_job_ban(job);
1708				ban = true;
1709			}
1710		} else if (xe_exec_queue_is_lr(q) &&
1711			   (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) {
1712			ban = true;
1713		}
1714
1715		if (ban) {
1716			set_exec_queue_banned(q);
1717			xe_guc_exec_queue_trigger_cleanup(q);
1718		}
1719	}
1720}
1721
1722int xe_guc_submit_reset_prepare(struct xe_guc *guc)
1723{
1724	int ret;
1725
1726	/*
1727	 * Using an atomic here rather than submission_state.lock as this
1728	 * function can be called while holding the CT lock (engine reset
1729	 * failure). submission_state.lock needs the CT lock to resubmit jobs.
1730	 * Atomic is not ideal, but it works to prevent against concurrent reset
1731	 * and releasing any TDRs waiting on guc->submission_state.stopped.
1732	 */
1733	ret = atomic_fetch_or(1, &guc->submission_state.stopped);
1734	smp_wmb();
1735	wake_up_all(&guc->ct.wq);
1736
1737	return ret;
1738}
1739
1740void xe_guc_submit_reset_wait(struct xe_guc *guc)
1741{
1742	wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) ||
1743		   !xe_guc_read_stopped(guc));
1744}
1745
1746void xe_guc_submit_stop(struct xe_guc *guc)
1747{
1748	struct xe_exec_queue *q;
1749	unsigned long index;
1750	struct xe_device *xe = guc_to_xe(guc);
1751
1752	xe_assert(xe, xe_guc_read_stopped(guc) == 1);
1753
1754	mutex_lock(&guc->submission_state.lock);
1755
1756	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1757		/* Prevent redundant attempts to stop parallel queues */
1758		if (q->guc->id != index)
1759			continue;
1760
1761		guc_exec_queue_stop(guc, q);
1762	}
1763
1764	mutex_unlock(&guc->submission_state.lock);
1765
1766	/*
1767	 * No one can enter the backend at this point, aside from new engine
1768	 * creation which is protected by guc->submission_state.lock.
1769	 */
1770
1771}
1772
1773static void guc_exec_queue_start(struct xe_exec_queue *q)
1774{
1775	struct xe_gpu_scheduler *sched = &q->guc->sched;
1776
1777	if (!exec_queue_killed_or_banned_or_wedged(q)) {
1778		int i;
1779
1780		trace_xe_exec_queue_resubmit(q);
1781		for (i = 0; i < q->width; ++i)
1782			xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail);
1783		xe_sched_resubmit_jobs(sched);
1784	}
1785
1786	xe_sched_submission_start(sched);
1787	xe_sched_submission_resume_tdr(sched);
1788}
1789
1790int xe_guc_submit_start(struct xe_guc *guc)
1791{
1792	struct xe_exec_queue *q;
1793	unsigned long index;
1794	struct xe_device *xe = guc_to_xe(guc);
1795
1796	xe_assert(xe, xe_guc_read_stopped(guc) == 1);
1797
1798	mutex_lock(&guc->submission_state.lock);
1799	atomic_dec(&guc->submission_state.stopped);
1800	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) {
1801		/* Prevent redundant attempts to start parallel queues */
1802		if (q->guc->id != index)
1803			continue;
1804
1805		guc_exec_queue_start(q);
1806	}
1807	mutex_unlock(&guc->submission_state.lock);
1808
1809	wake_up_all(&guc->ct.wq);
1810
1811	return 0;
1812}
1813
1814static struct xe_exec_queue *
1815g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id)
1816{
1817	struct xe_device *xe = guc_to_xe(guc);
1818	struct xe_exec_queue *q;
1819
1820	if (unlikely(guc_id >= GUC_ID_MAX)) {
1821		drm_err(&xe->drm, "Invalid guc_id %u", guc_id);
1822		return NULL;
1823	}
1824
1825	q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id);
1826	if (unlikely(!q)) {
1827		drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id);
1828		return NULL;
1829	}
1830
1831	xe_assert(xe, guc_id >= q->guc->id);
1832	xe_assert(xe, guc_id < (q->guc->id + q->width));
1833
1834	return q;
1835}
1836
1837static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q)
1838{
1839	u32 action[] = {
1840		XE_GUC_ACTION_DEREGISTER_CONTEXT,
1841		q->guc->id,
1842	};
1843
1844	xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q));
1845	xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q));
1846	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q));
1847	xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q));
1848
1849	trace_xe_exec_queue_deregister(q);
1850
1851	xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
1852}
1853
1854static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q,
1855			      u32 runnable_state)
1856{
1857	trace_xe_exec_queue_scheduling_done(q);
1858
1859	if (runnable_state == 1) {
1860		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q));
1861
1862		q->guc->resume_time = ktime_get();
1863		clear_exec_queue_pending_enable(q);
1864		smp_wmb();
1865		wake_up_all(&guc->ct.wq);
1866	} else {
1867		bool check_timeout = exec_queue_check_timeout(q);
1868
1869		xe_gt_assert(guc_to_gt(guc), runnable_state == 0);
1870		xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q));
1871
1872		if (q->guc->suspend_pending) {
1873			suspend_fence_signal(q);
1874			clear_exec_queue_pending_disable(q);
1875		} else {
1876			if (exec_queue_banned(q) || check_timeout) {
1877				smp_wmb();
1878				wake_up_all(&guc->ct.wq);
1879			}
1880			if (!check_timeout && exec_queue_destroyed(q)) {
1881				/*
1882				 * Make sure to clear the pending_disable only
1883				 * after sampling the destroyed state. We want
1884				 * to ensure we don't trigger the unregister too
1885				 * early with something intending to only
1886				 * disable scheduling. The caller doing the
1887				 * destroy must wait for an ongoing
1888				 * pending_disable before marking as destroyed.
1889				 */
1890				clear_exec_queue_pending_disable(q);
1891				deregister_exec_queue(guc, q);
1892			} else {
1893				clear_exec_queue_pending_disable(q);
1894			}
1895		}
1896	}
1897}
1898
1899int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1900{
1901	struct xe_device *xe = guc_to_xe(guc);
1902	struct xe_exec_queue *q;
1903	u32 guc_id = msg[0];
1904	u32 runnable_state = msg[1];
1905
1906	if (unlikely(len < 2)) {
1907		drm_err(&xe->drm, "Invalid length %u", len);
1908		return -EPROTO;
1909	}
1910
1911	q = g2h_exec_queue_lookup(guc, guc_id);
1912	if (unlikely(!q))
1913		return -EPROTO;
1914
1915	if (unlikely(!exec_queue_pending_enable(q) &&
1916		     !exec_queue_pending_disable(q))) {
1917		xe_gt_err(guc_to_gt(guc),
1918			  "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u",
1919			  atomic_read(&q->guc->state), q->guc->id,
1920			  runnable_state);
1921		return -EPROTO;
1922	}
1923
1924	handle_sched_done(guc, q, runnable_state);
1925
1926	return 0;
1927}
1928
1929static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q)
1930{
1931	trace_xe_exec_queue_deregister_done(q);
1932
1933	clear_exec_queue_registered(q);
1934
1935	if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q))
1936		xe_exec_queue_put(q);
1937	else
1938		__guc_exec_queue_fini(guc, q);
1939}
1940
1941int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len)
1942{
1943	struct xe_device *xe = guc_to_xe(guc);
1944	struct xe_exec_queue *q;
1945	u32 guc_id = msg[0];
1946
1947	if (unlikely(len < 1)) {
1948		drm_err(&xe->drm, "Invalid length %u", len);
1949		return -EPROTO;
1950	}
1951
1952	q = g2h_exec_queue_lookup(guc, guc_id);
1953	if (unlikely(!q))
1954		return -EPROTO;
1955
1956	if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) ||
1957	    exec_queue_pending_enable(q) || exec_queue_enabled(q)) {
1958		xe_gt_err(guc_to_gt(guc),
1959			  "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d",
1960			  atomic_read(&q->guc->state), q->guc->id);
1961		return -EPROTO;
1962	}
1963
1964	handle_deregister_done(guc, q);
1965
1966	return 0;
1967}
1968
1969int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len)
1970{
1971	struct xe_gt *gt = guc_to_gt(guc);
1972	struct xe_device *xe = guc_to_xe(guc);
1973	struct xe_exec_queue *q;
1974	u32 guc_id = msg[0];
1975
1976	if (unlikely(len < 1)) {
1977		drm_err(&xe->drm, "Invalid length %u", len);
1978		return -EPROTO;
1979	}
1980
1981	q = g2h_exec_queue_lookup(guc, guc_id);
1982	if (unlikely(!q))
1983		return -EPROTO;
1984
1985	xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
1986		   xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
1987
1988	trace_xe_exec_queue_reset(q);
1989
1990	/*
1991	 * A banned engine is a NOP at this point (came from
1992	 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel
1993	 * jobs by setting timeout of the job to the minimum value kicking
1994	 * guc_exec_queue_timedout_job.
1995	 */
1996	set_exec_queue_reset(q);
1997	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
1998		xe_guc_exec_queue_trigger_cleanup(q);
1999
2000	return 0;
2001}
2002
2003/*
2004 * xe_guc_error_capture_handler - Handler of GuC captured message
2005 * @guc: The GuC object
2006 * @msg: Point to the message
2007 * @len: The message length
2008 *
2009 * When GuC captured data is ready, GuC will send message
2010 * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be
2011 * called 1st to check status before process the data comes with the message.
2012 *
2013 * Returns: error code. 0 if success
2014 */
2015int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len)
2016{
2017	u32 status;
2018
2019	if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN)) {
2020		xe_gt_dbg(guc_to_gt(guc), "Invalid length %u", len);
2021		return -EPROTO;
2022	}
2023
2024	status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
2025	if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
2026		xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space");
2027
2028	xe_guc_capture_process(guc);
2029
2030	return 0;
2031}
2032
2033int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg,
2034					       u32 len)
2035{
2036	struct xe_gt *gt = guc_to_gt(guc);
2037	struct xe_device *xe = guc_to_xe(guc);
2038	struct xe_exec_queue *q;
2039	u32 guc_id = msg[0];
2040
2041	if (unlikely(len < 1)) {
2042		drm_err(&xe->drm, "Invalid length %u", len);
2043		return -EPROTO;
2044	}
2045
2046	q = g2h_exec_queue_lookup(guc, guc_id);
2047	if (unlikely(!q))
2048		return -EPROTO;
2049
2050	xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d",
2051		  xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id);
2052
2053	trace_xe_exec_queue_memory_cat_error(q);
2054
2055	/* Treat the same as engine reset */
2056	set_exec_queue_reset(q);
2057	if (!exec_queue_banned(q) && !exec_queue_check_timeout(q))
2058		xe_guc_exec_queue_trigger_cleanup(q);
2059
2060	return 0;
2061}
2062
2063int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len)
2064{
2065	struct xe_device *xe = guc_to_xe(guc);
2066	u8 guc_class, instance;
2067	u32 reason;
2068
2069	if (unlikely(len != 3)) {
2070		drm_err(&xe->drm, "Invalid length %u", len);
2071		return -EPROTO;
2072	}
2073
2074	guc_class = msg[0];
2075	instance = msg[1];
2076	reason = msg[2];
2077
2078	/* Unexpected failure of a hardware feature, log an actual error */
2079	drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X",
2080		guc_class, instance, reason);
2081
2082	xe_gt_reset_async(guc_to_gt(guc));
2083
2084	return 0;
2085}
2086
2087static void
2088guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q,
2089				   struct xe_guc_submit_exec_queue_snapshot *snapshot)
2090{
2091	struct xe_guc *guc = exec_queue_to_guc(q);
2092	struct xe_device *xe = guc_to_xe(guc);
2093	struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]);
2094	int i;
2095
2096	snapshot->guc.wqi_head = q->guc->wqi_head;
2097	snapshot->guc.wqi_tail = q->guc->wqi_tail;
2098	snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head);
2099	snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail);
2100	snapshot->parallel.wq_desc.status = parallel_read(xe, map,
2101							  wq_desc.wq_status);
2102
2103	if (snapshot->parallel.wq_desc.head !=
2104	    snapshot->parallel.wq_desc.tail) {
2105		for (i = snapshot->parallel.wq_desc.head;
2106		     i != snapshot->parallel.wq_desc.tail;
2107		     i = (i + sizeof(u32)) % WQ_SIZE)
2108			snapshot->parallel.wq[i / sizeof(u32)] =
2109				parallel_read(xe, map, wq[i / sizeof(u32)]);
2110	}
2111}
2112
2113static void
2114guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2115				 struct drm_printer *p)
2116{
2117	int i;
2118
2119	drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n",
2120		   snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head);
2121	drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n",
2122		   snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail);
2123	drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status);
2124
2125	if (snapshot->parallel.wq_desc.head !=
2126	    snapshot->parallel.wq_desc.tail) {
2127		for (i = snapshot->parallel.wq_desc.head;
2128		     i != snapshot->parallel.wq_desc.tail;
2129		     i = (i + sizeof(u32)) % WQ_SIZE)
2130			drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32),
2131				   snapshot->parallel.wq[i / sizeof(u32)]);
2132	}
2133}
2134
2135/**
2136 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine.
2137 * @q: faulty exec queue
2138 *
2139 * This can be printed out in a later stage like during dev_coredump
2140 * analysis.
2141 *
2142 * Returns: a GuC Submit Engine snapshot object that must be freed by the
2143 * caller, using `xe_guc_exec_queue_snapshot_free`.
2144 */
2145struct xe_guc_submit_exec_queue_snapshot *
2146xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q)
2147{
2148	struct xe_gpu_scheduler *sched = &q->guc->sched;
2149	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2150	int i;
2151
2152	snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC);
2153
2154	if (!snapshot)
2155		return NULL;
2156
2157	snapshot->guc.id = q->guc->id;
2158	memcpy(&snapshot->name, &q->name, sizeof(snapshot->name));
2159	snapshot->class = q->class;
2160	snapshot->logical_mask = q->logical_mask;
2161	snapshot->width = q->width;
2162	snapshot->refcount = kref_read(&q->refcount);
2163	snapshot->sched_timeout = sched->base.timeout;
2164	snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us;
2165	snapshot->sched_props.preempt_timeout_us =
2166		q->sched_props.preempt_timeout_us;
2167
2168	snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *),
2169				      GFP_ATOMIC);
2170
2171	if (snapshot->lrc) {
2172		for (i = 0; i < q->width; ++i) {
2173			struct xe_lrc *lrc = q->lrc[i];
2174
2175			snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc);
2176		}
2177	}
2178
2179	snapshot->schedule_state = atomic_read(&q->guc->state);
2180	snapshot->exec_queue_flags = q->flags;
2181
2182	snapshot->parallel_execution = xe_exec_queue_is_parallel(q);
2183	if (snapshot->parallel_execution)
2184		guc_exec_queue_wq_snapshot_capture(q, snapshot);
2185
2186	spin_lock(&sched->base.job_list_lock);
2187	snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list);
2188	snapshot->pending_list = kmalloc_array(snapshot->pending_list_size,
2189					       sizeof(struct pending_list_snapshot),
2190					       GFP_ATOMIC);
2191
2192	if (snapshot->pending_list) {
2193		struct xe_sched_job *job_iter;
2194
2195		i = 0;
2196		list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) {
2197			snapshot->pending_list[i].seqno =
2198				xe_sched_job_seqno(job_iter);
2199			snapshot->pending_list[i].fence =
2200				dma_fence_is_signaled(job_iter->fence) ? 1 : 0;
2201			snapshot->pending_list[i].finished =
2202				dma_fence_is_signaled(&job_iter->drm.s_fence->finished)
2203				? 1 : 0;
2204			i++;
2205		}
2206	}
2207
2208	spin_unlock(&sched->base.job_list_lock);
2209
2210	return snapshot;
2211}
2212
2213/**
2214 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine.
2215 * @snapshot: Previously captured snapshot of job.
2216 *
2217 * This captures some data that requires taking some locks, so it cannot be done in signaling path.
2218 */
2219void
2220xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2221{
2222	int i;
2223
2224	if (!snapshot || !snapshot->lrc)
2225		return;
2226
2227	for (i = 0; i < snapshot->width; ++i)
2228		xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]);
2229}
2230
2231/**
2232 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot.
2233 * @snapshot: GuC Submit Engine snapshot object.
2234 * @p: drm_printer where it will be printed out.
2235 *
2236 * This function prints out a given GuC Submit Engine snapshot object.
2237 */
2238void
2239xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot,
2240				 struct drm_printer *p)
2241{
2242	int i;
2243
2244	if (!snapshot)
2245		return;
2246
2247	drm_printf(p, "GuC ID: %d\n", snapshot->guc.id);
2248	drm_printf(p, "\tName: %s\n", snapshot->name);
2249	drm_printf(p, "\tClass: %d\n", snapshot->class);
2250	drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask);
2251	drm_printf(p, "\tWidth: %d\n", snapshot->width);
2252	drm_printf(p, "\tRef: %d\n", snapshot->refcount);
2253	drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout);
2254	drm_printf(p, "\tTimeslice: %u (us)\n",
2255		   snapshot->sched_props.timeslice_us);
2256	drm_printf(p, "\tPreempt timeout: %u (us)\n",
2257		   snapshot->sched_props.preempt_timeout_us);
2258
2259	for (i = 0; snapshot->lrc && i < snapshot->width; ++i)
2260		xe_lrc_snapshot_print(snapshot->lrc[i], p);
2261
2262	drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state);
2263	drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags);
2264
2265	if (snapshot->parallel_execution)
2266		guc_exec_queue_wq_snapshot_print(snapshot, p);
2267
2268	for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size;
2269	     i++)
2270		drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n",
2271			   snapshot->pending_list[i].seqno,
2272			   snapshot->pending_list[i].fence,
2273			   snapshot->pending_list[i].finished);
2274}
2275
2276/**
2277 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given
2278 * snapshot.
2279 * @snapshot: GuC Submit Engine snapshot object.
2280 *
2281 * This function free all the memory that needed to be allocated at capture
2282 * time.
2283 */
2284void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot)
2285{
2286	int i;
2287
2288	if (!snapshot)
2289		return;
2290
2291	if (snapshot->lrc) {
2292		for (i = 0; i < snapshot->width; i++)
2293			xe_lrc_snapshot_free(snapshot->lrc[i]);
2294		kfree(snapshot->lrc);
2295	}
2296	kfree(snapshot->pending_list);
2297	kfree(snapshot);
2298}
2299
2300static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p)
2301{
2302	struct xe_guc_submit_exec_queue_snapshot *snapshot;
2303
2304	snapshot = xe_guc_exec_queue_snapshot_capture(q);
2305	xe_guc_exec_queue_snapshot_print(snapshot, p);
2306	xe_guc_exec_queue_snapshot_free(snapshot);
2307}
2308
2309/**
2310 * xe_guc_submit_print - GuC Submit Print.
2311 * @guc: GuC.
2312 * @p: drm_printer where it will be printed out.
2313 *
2314 * This function capture and prints snapshots of **all** GuC Engines.
2315 */
2316void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p)
2317{
2318	struct xe_exec_queue *q;
2319	unsigned long index;
2320
2321	if (!xe_device_uc_enabled(guc_to_xe(guc)))
2322		return;
2323
2324	mutex_lock(&guc->submission_state.lock);
2325	xa_for_each(&guc->submission_state.exec_queue_lookup, index, q)
2326		guc_exec_queue_print(q, p);
2327	mutex_unlock(&guc->submission_state.lock);
2328}