Linux Audio

Check our new training course

Loading...
v5.4
  1/**************************************************************************
  2 *
  3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
  4 * Copyright 2016 Intel Corporation
  5 * All Rights Reserved.
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the
  9 * "Software"), to deal in the Software without restriction, including
 10 * without limitation the rights to use, copy, modify, merge, publish,
 11 * distribute, sub license, and/or sell copies of the Software, and to
 12 * permit persons to whom the Software is furnished to do so, subject to
 13 * the following conditions:
 14 *
 15 * The above copyright notice and this permission notice (including the
 16 * next paragraph) shall be included in all copies or substantial portions
 17 * of the Software.
 18 *
 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 26 *
 27 *
 28 **************************************************************************/
 29
 30/*
 31 * Generic simple memory manager implementation. Intended to be used as a base
 32 * class implementation for more advanced memory managers.
 33 *
 34 * Note that the algorithm used is quite simple and there might be substantial
 35 * performance gains if a smarter free list is implemented. Currently it is
 36 * just an unordered stack of free regions. This could easily be improved if
 37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
 38 *
 39 * Aligned allocations can also see improvement.
 40 *
 41 * Authors:
 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
 43 */
 44
 45#include <linux/export.h>
 46#include <linux/interval_tree_generic.h>
 47#include <linux/seq_file.h>
 48#include <linux/slab.h>
 49#include <linux/stacktrace.h>
 50
 51#include <drm/drm_mm.h>
 52
 53/**
 54 * DOC: Overview
 55 *
 56 * drm_mm provides a simple range allocator. The drivers are free to use the
 57 * resource allocator from the linux core if it suits them, the upside of drm_mm
 58 * is that it's in the DRM core. Which means that it's easier to extend for
 59 * some of the crazier special purpose needs of gpus.
 60 *
 61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
 62 * Drivers are free to embed either of them into their own suitable
 63 * datastructures. drm_mm itself will not do any memory allocations of its own,
 64 * so if drivers choose not to embed nodes they need to still allocate them
 65 * themselves.
 66 *
 67 * The range allocator also supports reservation of preallocated blocks. This is
 68 * useful for taking over initial mode setting configurations from the firmware,
 69 * where an object needs to be created which exactly matches the firmware's
 70 * scanout target. As long as the range is still free it can be inserted anytime
 71 * after the allocator is initialized, which helps with avoiding looped
 72 * dependencies in the driver load sequence.
 73 *
 74 * drm_mm maintains a stack of most recently freed holes, which of all
 75 * simplistic datastructures seems to be a fairly decent approach to clustering
 76 * allocations and avoiding too much fragmentation. This means free space
 77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
 78 * something better would be fairly complex and since gfx thrashing is a fairly
 79 * steep cliff not a real concern. Removing a node again is O(1).
 80 *
 81 * drm_mm supports a few features: Alignment and range restrictions can be
 82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
 83 * opaque unsigned long) which in conjunction with a driver callback can be used
 84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
 85 * this to implement guard pages between incompatible caching domains in the
 86 * graphics TT.
 87 *
 88 * Two behaviors are supported for searching and allocating: bottom-up and
 89 * top-down. The default is bottom-up. Top-down allocation can be used if the
 90 * memory area has different restrictions, or just to reduce fragmentation.
 91 *
 92 * Finally iteration helpers to walk all nodes and all holes are provided as are
 93 * some basic allocator dumpers for debugging.
 94 *
 95 * Note that this range allocator is not thread-safe, drivers need to protect
 96 * modifications with their own locking. The idea behind this is that for a full
 97 * memory manager additional data needs to be protected anyway, hence internal
 98 * locking would be fully redundant.
 99 */
100
101#ifdef CONFIG_DRM_DEBUG_MM
102#include <linux/stackdepot.h>
103
104#define STACKDEPTH 32
105#define BUFSZ 4096
106
107static noinline void save_stack(struct drm_mm_node *node)
108{
109	unsigned long entries[STACKDEPTH];
110	unsigned int n;
111
112	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
113
114	/* May be called under spinlock, so avoid sleeping */
115	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
116}
117
118static void show_leaks(struct drm_mm *mm)
119{
120	struct drm_mm_node *node;
121	unsigned long *entries;
122	unsigned int nr_entries;
123	char *buf;
124
125	buf = kmalloc(BUFSZ, GFP_KERNEL);
126	if (!buf)
127		return;
128
129	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
130		if (!node->stack) {
131			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
132				  node->start, node->size);
133			continue;
134		}
135
136		nr_entries = stack_depot_fetch(node->stack, &entries);
137		stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
138		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
139			  node->start, node->size, buf);
140	}
141
142	kfree(buf);
143}
144
145#undef STACKDEPTH
146#undef BUFSZ
147#else
148static void save_stack(struct drm_mm_node *node) { }
149static void show_leaks(struct drm_mm *mm) { }
150#endif
151
152#define START(node) ((node)->start)
153#define LAST(node)  ((node)->start + (node)->size - 1)
154
155INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
156		     u64, __subtree_last,
157		     START, LAST, static inline, drm_mm_interval_tree)
158
159struct drm_mm_node *
160__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
161{
162	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
163					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
164}
165EXPORT_SYMBOL(__drm_mm_interval_first);
166
167static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
168					  struct drm_mm_node *node)
169{
170	struct drm_mm *mm = hole_node->mm;
171	struct rb_node **link, *rb;
172	struct drm_mm_node *parent;
173	bool leftmost;
174
175	node->__subtree_last = LAST(node);
176
177	if (hole_node->allocated) {
178		rb = &hole_node->rb;
179		while (rb) {
180			parent = rb_entry(rb, struct drm_mm_node, rb);
181			if (parent->__subtree_last >= node->__subtree_last)
182				break;
183
184			parent->__subtree_last = node->__subtree_last;
185			rb = rb_parent(rb);
186		}
187
188		rb = &hole_node->rb;
189		link = &hole_node->rb.rb_right;
190		leftmost = false;
191	} else {
192		rb = NULL;
193		link = &mm->interval_tree.rb_root.rb_node;
194		leftmost = true;
195	}
196
197	while (*link) {
198		rb = *link;
199		parent = rb_entry(rb, struct drm_mm_node, rb);
200		if (parent->__subtree_last < node->__subtree_last)
201			parent->__subtree_last = node->__subtree_last;
202		if (node->start < parent->start) {
203			link = &parent->rb.rb_left;
204		} else {
205			link = &parent->rb.rb_right;
206			leftmost = false;
207		}
208	}
209
210	rb_link_node(&node->rb, rb, link);
211	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
212				   &drm_mm_interval_tree_augment);
213}
214
215#define RB_INSERT(root, member, expr) do { \
216	struct rb_node **link = &root.rb_node, *rb = NULL; \
217	u64 x = expr(node); \
218	while (*link) { \
219		rb = *link; \
220		if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
221			link = &rb->rb_left; \
222		else \
223			link = &rb->rb_right; \
224	} \
225	rb_link_node(&node->member, rb, link); \
226	rb_insert_color(&node->member, &root); \
227} while (0)
228
229#define HOLE_SIZE(NODE) ((NODE)->hole_size)
230#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
231
232static u64 rb_to_hole_size(struct rb_node *rb)
233{
234	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
235}
236
237static void insert_hole_size(struct rb_root_cached *root,
238			     struct drm_mm_node *node)
239{
240	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
241	u64 x = node->hole_size;
242	bool first = true;
243
244	while (*link) {
245		rb = *link;
246		if (x > rb_to_hole_size(rb)) {
247			link = &rb->rb_left;
248		} else {
249			link = &rb->rb_right;
250			first = false;
251		}
252	}
253
254	rb_link_node(&node->rb_hole_size, rb, link);
255	rb_insert_color_cached(&node->rb_hole_size, root, first);
256}
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258static void add_hole(struct drm_mm_node *node)
259{
260	struct drm_mm *mm = node->mm;
261
262	node->hole_size =
263		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
 
264	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
265
266	insert_hole_size(&mm->holes_size, node);
267	RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
268
269	list_add(&node->hole_stack, &mm->hole_stack);
270}
271
272static void rm_hole(struct drm_mm_node *node)
273{
274	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
275
276	list_del(&node->hole_stack);
277	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
278	rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
 
279	node->hole_size = 0;
 
280
281	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
282}
283
284static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
285{
286	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
287}
288
289static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
290{
291	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
292}
293
294static inline u64 rb_hole_size(struct rb_node *rb)
295{
296	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
297}
298
299static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
300{
301	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
302	struct drm_mm_node *best = NULL;
303
304	do {
305		struct drm_mm_node *node =
306			rb_entry(rb, struct drm_mm_node, rb_hole_size);
307
308		if (size <= node->hole_size) {
309			best = node;
310			rb = rb->rb_right;
311		} else {
312			rb = rb->rb_left;
313		}
314	} while (rb);
315
316	return best;
317}
318
319static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
 
 
 
 
 
320{
321	struct rb_node *rb = mm->holes_addr.rb_node;
322	struct drm_mm_node *node = NULL;
323
324	while (rb) {
325		u64 hole_start;
326
 
 
 
327		node = rb_hole_addr_to_node(rb);
328		hole_start = __drm_mm_hole_node_start(node);
329
330		if (addr < hole_start)
331			rb = node->rb_hole_addr.rb_left;
332		else if (addr > hole_start + node->hole_size)
333			rb = node->rb_hole_addr.rb_right;
334		else
335			break;
336	}
337
338	return node;
339}
340
341static struct drm_mm_node *
342first_hole(struct drm_mm *mm,
343	   u64 start, u64 end, u64 size,
344	   enum drm_mm_insert_mode mode)
345{
346	switch (mode) {
347	default:
348	case DRM_MM_INSERT_BEST:
349		return best_hole(mm, size);
350
351	case DRM_MM_INSERT_LOW:
352		return find_hole(mm, start);
353
354	case DRM_MM_INSERT_HIGH:
355		return find_hole(mm, end);
356
357	case DRM_MM_INSERT_EVICT:
358		return list_first_entry_or_null(&mm->hole_stack,
359						struct drm_mm_node,
360						hole_stack);
361	}
362}
363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364static struct drm_mm_node *
365next_hole(struct drm_mm *mm,
366	  struct drm_mm_node *node,
 
367	  enum drm_mm_insert_mode mode)
368{
369	switch (mode) {
370	default:
371	case DRM_MM_INSERT_BEST:
372		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
373
374	case DRM_MM_INSERT_LOW:
375		return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
376
377	case DRM_MM_INSERT_HIGH:
378		return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
379
380	case DRM_MM_INSERT_EVICT:
381		node = list_next_entry(node, hole_stack);
382		return &node->hole_stack == &mm->hole_stack ? NULL : node;
383	}
384}
385
386/**
387 * drm_mm_reserve_node - insert an pre-initialized node
388 * @mm: drm_mm allocator to insert @node into
389 * @node: drm_mm_node to insert
390 *
391 * This functions inserts an already set-up &drm_mm_node into the allocator,
392 * meaning that start, size and color must be set by the caller. All other
393 * fields must be cleared to 0. This is useful to initialize the allocator with
394 * preallocated objects which must be set-up before the range allocator can be
395 * set-up, e.g. when taking over a firmware framebuffer.
396 *
397 * Returns:
398 * 0 on success, -ENOSPC if there's no hole where @node is.
399 */
400int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
401{
402	u64 end = node->start + node->size;
403	struct drm_mm_node *hole;
404	u64 hole_start, hole_end;
405	u64 adj_start, adj_end;
 
406
407	end = node->start + node->size;
408	if (unlikely(end <= node->start))
409		return -ENOSPC;
410
411	/* Find the relevant hole to add our node to */
412	hole = find_hole(mm, node->start);
413	if (!hole)
414		return -ENOSPC;
415
416	adj_start = hole_start = __drm_mm_hole_node_start(hole);
417	adj_end = hole_end = hole_start + hole->hole_size;
418
419	if (mm->color_adjust)
420		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
421
422	if (adj_start > node->start || adj_end < end)
423		return -ENOSPC;
424
425	node->mm = mm;
426
 
427	list_add(&node->node_list, &hole->node_list);
428	drm_mm_interval_tree_add_node(hole, node);
429	node->allocated = true;
430	node->hole_size = 0;
431
432	rm_hole(hole);
433	if (node->start > hole_start)
434		add_hole(hole);
435	if (end < hole_end)
436		add_hole(node);
437
438	save_stack(node);
439	return 0;
440}
441EXPORT_SYMBOL(drm_mm_reserve_node);
442
443static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
444{
445	return rb ? rb_to_hole_size(rb) : 0;
446}
447
448/**
449 * drm_mm_insert_node_in_range - ranged search for space and insert @node
450 * @mm: drm_mm to allocate from
451 * @node: preallocate node to insert
452 * @size: size of the allocation
453 * @alignment: alignment of the allocation
454 * @color: opaque tag value to use for this node
455 * @range_start: start of the allowed range for this node
456 * @range_end: end of the allowed range for this node
457 * @mode: fine-tune the allocation search and placement
458 *
459 * The preallocated @node must be cleared to 0.
460 *
461 * Returns:
462 * 0 on success, -ENOSPC if there's no suitable hole.
463 */
464int drm_mm_insert_node_in_range(struct drm_mm * const mm,
465				struct drm_mm_node * const node,
466				u64 size, u64 alignment,
467				unsigned long color,
468				u64 range_start, u64 range_end,
469				enum drm_mm_insert_mode mode)
470{
471	struct drm_mm_node *hole;
472	u64 remainder_mask;
473	bool once;
474
475	DRM_MM_BUG_ON(range_start > range_end);
476
477	if (unlikely(size == 0 || range_end - range_start < size))
478		return -ENOSPC;
479
480	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
481		return -ENOSPC;
482
483	if (alignment <= 1)
484		alignment = 0;
485
486	once = mode & DRM_MM_INSERT_ONCE;
487	mode &= ~DRM_MM_INSERT_ONCE;
488
489	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
490	for (hole = first_hole(mm, range_start, range_end, size, mode);
491	     hole;
492	     hole = once ? NULL : next_hole(mm, hole, mode)) {
493		u64 hole_start = __drm_mm_hole_node_start(hole);
494		u64 hole_end = hole_start + hole->hole_size;
495		u64 adj_start, adj_end;
496		u64 col_start, col_end;
497
498		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
499			break;
500
501		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
502			break;
503
504		col_start = hole_start;
505		col_end = hole_end;
506		if (mm->color_adjust)
507			mm->color_adjust(hole, color, &col_start, &col_end);
508
509		adj_start = max(col_start, range_start);
510		adj_end = min(col_end, range_end);
511
512		if (adj_end <= adj_start || adj_end - adj_start < size)
513			continue;
514
515		if (mode == DRM_MM_INSERT_HIGH)
516			adj_start = adj_end - size;
517
518		if (alignment) {
519			u64 rem;
520
521			if (likely(remainder_mask))
522				rem = adj_start & remainder_mask;
523			else
524				div64_u64_rem(adj_start, alignment, &rem);
525			if (rem) {
526				adj_start -= rem;
527				if (mode != DRM_MM_INSERT_HIGH)
528					adj_start += alignment;
529
530				if (adj_start < max(col_start, range_start) ||
531				    min(col_end, range_end) - adj_start < size)
532					continue;
533
534				if (adj_end <= adj_start ||
535				    adj_end - adj_start < size)
536					continue;
537			}
538		}
539
540		node->mm = mm;
541		node->size = size;
542		node->start = adj_start;
543		node->color = color;
544		node->hole_size = 0;
545
 
546		list_add(&node->node_list, &hole->node_list);
547		drm_mm_interval_tree_add_node(hole, node);
548		node->allocated = true;
549
550		rm_hole(hole);
551		if (adj_start > hole_start)
552			add_hole(hole);
553		if (adj_start + size < hole_end)
554			add_hole(node);
555
556		save_stack(node);
557		return 0;
558	}
559
560	return -ENOSPC;
561}
562EXPORT_SYMBOL(drm_mm_insert_node_in_range);
563
 
 
 
 
 
564/**
565 * drm_mm_remove_node - Remove a memory node from the allocator.
566 * @node: drm_mm_node to remove
567 *
568 * This just removes a node from its drm_mm allocator. The node does not need to
569 * be cleared again before it can be re-inserted into this or any other drm_mm
570 * allocator. It is a bug to call this function on a unallocated node.
571 */
572void drm_mm_remove_node(struct drm_mm_node *node)
573{
574	struct drm_mm *mm = node->mm;
575	struct drm_mm_node *prev_node;
576
577	DRM_MM_BUG_ON(!node->allocated);
578	DRM_MM_BUG_ON(node->scanned_block);
579
580	prev_node = list_prev_entry(node, node_list);
581
582	if (drm_mm_hole_follows(node))
583		rm_hole(node);
584
585	drm_mm_interval_tree_remove(node, &mm->interval_tree);
586	list_del(&node->node_list);
587	node->allocated = false;
588
589	if (drm_mm_hole_follows(prev_node))
590		rm_hole(prev_node);
591	add_hole(prev_node);
592}
593EXPORT_SYMBOL(drm_mm_remove_node);
594
595/**
596 * drm_mm_replace_node - move an allocation from @old to @new
597 * @old: drm_mm_node to remove from the allocator
598 * @new: drm_mm_node which should inherit @old's allocation
599 *
600 * This is useful for when drivers embed the drm_mm_node structure and hence
601 * can't move allocations by reassigning pointers. It's a combination of remove
602 * and insert with the guarantee that the allocation start will match.
603 */
604void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
605{
606	struct drm_mm *mm = old->mm;
607
608	DRM_MM_BUG_ON(!old->allocated);
609
610	*new = *old;
611
612	list_replace(&old->node_list, &new->node_list);
613	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
614
615	if (drm_mm_hole_follows(old)) {
616		list_replace(&old->hole_stack, &new->hole_stack);
617		rb_replace_node_cached(&old->rb_hole_size,
618				       &new->rb_hole_size,
619				       &mm->holes_size);
620		rb_replace_node(&old->rb_hole_addr,
621				&new->rb_hole_addr,
622				&mm->holes_addr);
623	}
624
625	old->allocated = false;
626	new->allocated = true;
627}
628EXPORT_SYMBOL(drm_mm_replace_node);
629
630/**
631 * DOC: lru scan roster
632 *
633 * Very often GPUs need to have continuous allocations for a given object. When
634 * evicting objects to make space for a new one it is therefore not most
635 * efficient when we simply start to select all objects from the tail of an LRU
636 * until there's a suitable hole: Especially for big objects or nodes that
637 * otherwise have special allocation constraints there's a good chance we evict
638 * lots of (smaller) objects unnecessarily.
639 *
640 * The DRM range allocator supports this use-case through the scanning
641 * interfaces. First a scan operation needs to be initialized with
642 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
643 * objects to the roster, probably by walking an LRU list, but this can be
644 * freely implemented. Eviction candiates are added using
645 * drm_mm_scan_add_block() until a suitable hole is found or there are no
646 * further evictable objects. Eviction roster metadata is tracked in &struct
647 * drm_mm_scan.
648 *
649 * The driver must walk through all objects again in exactly the reverse
650 * order to restore the allocator state. Note that while the allocator is used
651 * in the scan mode no other operation is allowed.
652 *
653 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
654 * reported true) in the scan, and any overlapping nodes after color adjustment
655 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
656 * since freeing a node is also O(1) the overall complexity is
657 * O(scanned_objects). So like the free stack which needs to be walked before a
658 * scan operation even begins this is linear in the number of objects. It
659 * doesn't seem to hurt too badly.
660 */
661
662/**
663 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
664 * @scan: scan state
665 * @mm: drm_mm to scan
666 * @size: size of the allocation
667 * @alignment: alignment of the allocation
668 * @color: opaque tag value to use for the allocation
669 * @start: start of the allowed range for the allocation
670 * @end: end of the allowed range for the allocation
671 * @mode: fine-tune the allocation search and placement
672 *
673 * This simply sets up the scanning routines with the parameters for the desired
674 * hole.
675 *
676 * Warning:
677 * As long as the scan list is non-empty, no other operations than
678 * adding/removing nodes to/from the scan list are allowed.
679 */
680void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
681				 struct drm_mm *mm,
682				 u64 size,
683				 u64 alignment,
684				 unsigned long color,
685				 u64 start,
686				 u64 end,
687				 enum drm_mm_insert_mode mode)
688{
689	DRM_MM_BUG_ON(start >= end);
690	DRM_MM_BUG_ON(!size || size > end - start);
691	DRM_MM_BUG_ON(mm->scan_active);
692
693	scan->mm = mm;
694
695	if (alignment <= 1)
696		alignment = 0;
697
698	scan->color = color;
699	scan->alignment = alignment;
700	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
701	scan->size = size;
702	scan->mode = mode;
703
704	DRM_MM_BUG_ON(end <= start);
705	scan->range_start = start;
706	scan->range_end = end;
707
708	scan->hit_start = U64_MAX;
709	scan->hit_end = 0;
710}
711EXPORT_SYMBOL(drm_mm_scan_init_with_range);
712
713/**
714 * drm_mm_scan_add_block - add a node to the scan list
715 * @scan: the active drm_mm scanner
716 * @node: drm_mm_node to add
717 *
718 * Add a node to the scan list that might be freed to make space for the desired
719 * hole.
720 *
721 * Returns:
722 * True if a hole has been found, false otherwise.
723 */
724bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
725			   struct drm_mm_node *node)
726{
727	struct drm_mm *mm = scan->mm;
728	struct drm_mm_node *hole;
729	u64 hole_start, hole_end;
730	u64 col_start, col_end;
731	u64 adj_start, adj_end;
732
733	DRM_MM_BUG_ON(node->mm != mm);
734	DRM_MM_BUG_ON(!node->allocated);
735	DRM_MM_BUG_ON(node->scanned_block);
736	node->scanned_block = true;
737	mm->scan_active++;
738
739	/* Remove this block from the node_list so that we enlarge the hole
740	 * (distance between the end of our previous node and the start of
741	 * or next), without poisoning the link so that we can restore it
742	 * later in drm_mm_scan_remove_block().
743	 */
744	hole = list_prev_entry(node, node_list);
745	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
746	__list_del_entry(&node->node_list);
747
748	hole_start = __drm_mm_hole_node_start(hole);
749	hole_end = __drm_mm_hole_node_end(hole);
750
751	col_start = hole_start;
752	col_end = hole_end;
753	if (mm->color_adjust)
754		mm->color_adjust(hole, scan->color, &col_start, &col_end);
755
756	adj_start = max(col_start, scan->range_start);
757	adj_end = min(col_end, scan->range_end);
758	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
759		return false;
760
761	if (scan->mode == DRM_MM_INSERT_HIGH)
762		adj_start = adj_end - scan->size;
763
764	if (scan->alignment) {
765		u64 rem;
766
767		if (likely(scan->remainder_mask))
768			rem = adj_start & scan->remainder_mask;
769		else
770			div64_u64_rem(adj_start, scan->alignment, &rem);
771		if (rem) {
772			adj_start -= rem;
773			if (scan->mode != DRM_MM_INSERT_HIGH)
774				adj_start += scan->alignment;
775			if (adj_start < max(col_start, scan->range_start) ||
776			    min(col_end, scan->range_end) - adj_start < scan->size)
777				return false;
778
779			if (adj_end <= adj_start ||
780			    adj_end - adj_start < scan->size)
781				return false;
782		}
783	}
784
785	scan->hit_start = adj_start;
786	scan->hit_end = adj_start + scan->size;
787
788	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
789	DRM_MM_BUG_ON(scan->hit_start < hole_start);
790	DRM_MM_BUG_ON(scan->hit_end > hole_end);
791
792	return true;
793}
794EXPORT_SYMBOL(drm_mm_scan_add_block);
795
796/**
797 * drm_mm_scan_remove_block - remove a node from the scan list
798 * @scan: the active drm_mm scanner
799 * @node: drm_mm_node to remove
800 *
801 * Nodes **must** be removed in exactly the reverse order from the scan list as
802 * they have been added (e.g. using list_add() as they are added and then
803 * list_for_each() over that eviction list to remove), otherwise the internal
804 * state of the memory manager will be corrupted.
805 *
806 * When the scan list is empty, the selected memory nodes can be freed. An
807 * immediately following drm_mm_insert_node_in_range_generic() or one of the
808 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
809 * the just freed block (because it's at the top of the free_stack list).
810 *
811 * Returns:
812 * True if this block should be evicted, false otherwise. Will always
813 * return false when no hole has been found.
814 */
815bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
816			      struct drm_mm_node *node)
817{
818	struct drm_mm_node *prev_node;
819
820	DRM_MM_BUG_ON(node->mm != scan->mm);
821	DRM_MM_BUG_ON(!node->scanned_block);
822	node->scanned_block = false;
823
824	DRM_MM_BUG_ON(!node->mm->scan_active);
825	node->mm->scan_active--;
826
827	/* During drm_mm_scan_add_block() we decoupled this node leaving
828	 * its pointers intact. Now that the caller is walking back along
829	 * the eviction list we can restore this block into its rightful
830	 * place on the full node_list. To confirm that the caller is walking
831	 * backwards correctly we check that prev_node->next == node->next,
832	 * i.e. both believe the same node should be on the other side of the
833	 * hole.
834	 */
835	prev_node = list_prev_entry(node, node_list);
836	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
837		      list_next_entry(node, node_list));
838	list_add(&node->node_list, &prev_node->node_list);
839
840	return (node->start + node->size > scan->hit_start &&
841		node->start < scan->hit_end);
842}
843EXPORT_SYMBOL(drm_mm_scan_remove_block);
844
845/**
846 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
847 * @scan: drm_mm scan with target hole
848 *
849 * After completing an eviction scan and removing the selected nodes, we may
850 * need to remove a few more nodes from either side of the target hole if
851 * mm.color_adjust is being used.
852 *
853 * Returns:
854 * A node to evict, or NULL if there are no overlapping nodes.
855 */
856struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
857{
858	struct drm_mm *mm = scan->mm;
859	struct drm_mm_node *hole;
860	u64 hole_start, hole_end;
861
862	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
863
864	if (!mm->color_adjust)
865		return NULL;
866
867	/*
868	 * The hole found during scanning should ideally be the first element
869	 * in the hole_stack list, but due to side-effects in the driver it
870	 * may not be.
871	 */
872	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
873		hole_start = __drm_mm_hole_node_start(hole);
874		hole_end = hole_start + hole->hole_size;
875
876		if (hole_start <= scan->hit_start &&
877		    hole_end >= scan->hit_end)
878			break;
879	}
880
881	/* We should only be called after we found the hole previously */
882	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
883	if (unlikely(&hole->hole_stack == &mm->hole_stack))
884		return NULL;
885
886	DRM_MM_BUG_ON(hole_start > scan->hit_start);
887	DRM_MM_BUG_ON(hole_end < scan->hit_end);
888
889	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
890	if (hole_start > scan->hit_start)
891		return hole;
892	if (hole_end < scan->hit_end)
893		return list_next_entry(hole, node_list);
894
895	return NULL;
896}
897EXPORT_SYMBOL(drm_mm_scan_color_evict);
898
899/**
900 * drm_mm_init - initialize a drm-mm allocator
901 * @mm: the drm_mm structure to initialize
902 * @start: start of the range managed by @mm
903 * @size: end of the range managed by @mm
904 *
905 * Note that @mm must be cleared to 0 before calling this function.
906 */
907void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
908{
909	DRM_MM_BUG_ON(start + size <= start);
910
911	mm->color_adjust = NULL;
912
913	INIT_LIST_HEAD(&mm->hole_stack);
914	mm->interval_tree = RB_ROOT_CACHED;
915	mm->holes_size = RB_ROOT_CACHED;
916	mm->holes_addr = RB_ROOT;
917
918	/* Clever trick to avoid a special case in the free hole tracking. */
919	INIT_LIST_HEAD(&mm->head_node.node_list);
920	mm->head_node.allocated = false;
921	mm->head_node.mm = mm;
922	mm->head_node.start = start + size;
923	mm->head_node.size = -size;
924	add_hole(&mm->head_node);
925
926	mm->scan_active = 0;
 
 
 
 
927}
928EXPORT_SYMBOL(drm_mm_init);
929
930/**
931 * drm_mm_takedown - clean up a drm_mm allocator
932 * @mm: drm_mm allocator to clean up
933 *
934 * Note that it is a bug to call this function on an allocator which is not
935 * clean.
936 */
937void drm_mm_takedown(struct drm_mm *mm)
938{
939	if (WARN(!drm_mm_clean(mm),
940		 "Memory manager not clean during takedown.\n"))
941		show_leaks(mm);
942}
943EXPORT_SYMBOL(drm_mm_takedown);
944
945static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
946{
947	u64 start, size;
948
949	size = entry->hole_size;
950	if (size) {
951		start = drm_mm_hole_node_start(entry);
952		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
953			   start, start + size, size);
954	}
955
956	return size;
957}
958/**
959 * drm_mm_print - print allocator state
960 * @mm: drm_mm allocator to print
961 * @p: DRM printer to use
962 */
963void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
964{
965	const struct drm_mm_node *entry;
966	u64 total_used = 0, total_free = 0, total = 0;
967
968	total_free += drm_mm_dump_hole(p, &mm->head_node);
969
970	drm_mm_for_each_node(entry, mm) {
971		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
972			   entry->start + entry->size, entry->size);
973		total_used += entry->size;
974		total_free += drm_mm_dump_hole(p, entry);
975	}
976	total = total_free + total_used;
977
978	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
979		   total_used, total_free);
980}
981EXPORT_SYMBOL(drm_mm_print);
v6.13.7
   1/**************************************************************************
   2 *
   3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
   4 * Copyright 2016 Intel Corporation
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 *
  28 **************************************************************************/
  29
  30/*
  31 * Generic simple memory manager implementation. Intended to be used as a base
  32 * class implementation for more advanced memory managers.
  33 *
  34 * Note that the algorithm used is quite simple and there might be substantial
  35 * performance gains if a smarter free list is implemented. Currently it is
  36 * just an unordered stack of free regions. This could easily be improved if
  37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
  38 *
  39 * Aligned allocations can also see improvement.
  40 *
  41 * Authors:
  42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
  43 */
  44
  45#include <linux/export.h>
  46#include <linux/interval_tree_generic.h>
  47#include <linux/seq_file.h>
  48#include <linux/slab.h>
  49#include <linux/stacktrace.h>
  50
  51#include <drm/drm_mm.h>
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * drm_mm provides a simple range allocator. The drivers are free to use the
  57 * resource allocator from the linux core if it suits them, the upside of drm_mm
  58 * is that it's in the DRM core. Which means that it's easier to extend for
  59 * some of the crazier special purpose needs of gpus.
  60 *
  61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
  62 * Drivers are free to embed either of them into their own suitable
  63 * datastructures. drm_mm itself will not do any memory allocations of its own,
  64 * so if drivers choose not to embed nodes they need to still allocate them
  65 * themselves.
  66 *
  67 * The range allocator also supports reservation of preallocated blocks. This is
  68 * useful for taking over initial mode setting configurations from the firmware,
  69 * where an object needs to be created which exactly matches the firmware's
  70 * scanout target. As long as the range is still free it can be inserted anytime
  71 * after the allocator is initialized, which helps with avoiding looped
  72 * dependencies in the driver load sequence.
  73 *
  74 * drm_mm maintains a stack of most recently freed holes, which of all
  75 * simplistic datastructures seems to be a fairly decent approach to clustering
  76 * allocations and avoiding too much fragmentation. This means free space
  77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
  78 * something better would be fairly complex and since gfx thrashing is a fairly
  79 * steep cliff not a real concern. Removing a node again is O(1).
  80 *
  81 * drm_mm supports a few features: Alignment and range restrictions can be
  82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
  83 * opaque unsigned long) which in conjunction with a driver callback can be used
  84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
  85 * this to implement guard pages between incompatible caching domains in the
  86 * graphics TT.
  87 *
  88 * Two behaviors are supported for searching and allocating: bottom-up and
  89 * top-down. The default is bottom-up. Top-down allocation can be used if the
  90 * memory area has different restrictions, or just to reduce fragmentation.
  91 *
  92 * Finally iteration helpers to walk all nodes and all holes are provided as are
  93 * some basic allocator dumpers for debugging.
  94 *
  95 * Note that this range allocator is not thread-safe, drivers need to protect
  96 * modifications with their own locking. The idea behind this is that for a full
  97 * memory manager additional data needs to be protected anyway, hence internal
  98 * locking would be fully redundant.
  99 */
 100
 101#ifdef CONFIG_DRM_DEBUG_MM
 102#include <linux/stackdepot.h>
 103
 104#define STACKDEPTH 32
 105#define BUFSZ 4096
 106
 107static noinline void save_stack(struct drm_mm_node *node)
 108{
 109	unsigned long entries[STACKDEPTH];
 110	unsigned int n;
 111
 112	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
 113
 114	/* May be called under spinlock, so avoid sleeping */
 115	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
 116}
 117
 118static void show_leaks(struct drm_mm *mm)
 119{
 120	struct drm_mm_node *node;
 
 
 121	char *buf;
 122
 123	buf = kmalloc(BUFSZ, GFP_KERNEL);
 124	if (!buf)
 125		return;
 126
 127	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
 128		if (!node->stack) {
 129			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
 130				  node->start, node->size);
 131			continue;
 132		}
 133
 134		stack_depot_snprint(node->stack, buf, BUFSZ, 0);
 
 135		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
 136			  node->start, node->size, buf);
 137	}
 138
 139	kfree(buf);
 140}
 141
 142#undef STACKDEPTH
 143#undef BUFSZ
 144#else
 145static void save_stack(struct drm_mm_node *node) { }
 146static void show_leaks(struct drm_mm *mm) { }
 147#endif
 148
 149#define START(node) ((node)->start)
 150#define LAST(node)  ((node)->start + (node)->size - 1)
 151
 152INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
 153		     u64, __subtree_last,
 154		     START, LAST, static inline __maybe_unused, drm_mm_interval_tree)
 155
 156struct drm_mm_node *
 157__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
 158{
 159	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
 160					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
 161}
 162EXPORT_SYMBOL(__drm_mm_interval_first);
 163
 164static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
 165					  struct drm_mm_node *node)
 166{
 167	struct drm_mm *mm = hole_node->mm;
 168	struct rb_node **link, *rb;
 169	struct drm_mm_node *parent;
 170	bool leftmost;
 171
 172	node->__subtree_last = LAST(node);
 173
 174	if (drm_mm_node_allocated(hole_node)) {
 175		rb = &hole_node->rb;
 176		while (rb) {
 177			parent = rb_entry(rb, struct drm_mm_node, rb);
 178			if (parent->__subtree_last >= node->__subtree_last)
 179				break;
 180
 181			parent->__subtree_last = node->__subtree_last;
 182			rb = rb_parent(rb);
 183		}
 184
 185		rb = &hole_node->rb;
 186		link = &hole_node->rb.rb_right;
 187		leftmost = false;
 188	} else {
 189		rb = NULL;
 190		link = &mm->interval_tree.rb_root.rb_node;
 191		leftmost = true;
 192	}
 193
 194	while (*link) {
 195		rb = *link;
 196		parent = rb_entry(rb, struct drm_mm_node, rb);
 197		if (parent->__subtree_last < node->__subtree_last)
 198			parent->__subtree_last = node->__subtree_last;
 199		if (node->start < parent->start) {
 200			link = &parent->rb.rb_left;
 201		} else {
 202			link = &parent->rb.rb_right;
 203			leftmost = false;
 204		}
 205	}
 206
 207	rb_link_node(&node->rb, rb, link);
 208	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
 209				   &drm_mm_interval_tree_augment);
 210}
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212#define HOLE_SIZE(NODE) ((NODE)->hole_size)
 213#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
 214
 215static u64 rb_to_hole_size(struct rb_node *rb)
 216{
 217	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
 218}
 219
 220static void insert_hole_size(struct rb_root_cached *root,
 221			     struct drm_mm_node *node)
 222{
 223	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
 224	u64 x = node->hole_size;
 225	bool first = true;
 226
 227	while (*link) {
 228		rb = *link;
 229		if (x > rb_to_hole_size(rb)) {
 230			link = &rb->rb_left;
 231		} else {
 232			link = &rb->rb_right;
 233			first = false;
 234		}
 235	}
 236
 237	rb_link_node(&node->rb_hole_size, rb, link);
 238	rb_insert_color_cached(&node->rb_hole_size, root, first);
 239}
 240
 241RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks,
 242			 struct drm_mm_node, rb_hole_addr,
 243			 u64, subtree_max_hole, HOLE_SIZE)
 244
 245static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node)
 246{
 247	struct rb_node **link = &root->rb_node, *rb_parent = NULL;
 248	u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole;
 249	struct drm_mm_node *parent;
 250
 251	while (*link) {
 252		rb_parent = *link;
 253		parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr);
 254		if (parent->subtree_max_hole < subtree_max_hole)
 255			parent->subtree_max_hole = subtree_max_hole;
 256		if (start < HOLE_ADDR(parent))
 257			link = &parent->rb_hole_addr.rb_left;
 258		else
 259			link = &parent->rb_hole_addr.rb_right;
 260	}
 261
 262	rb_link_node(&node->rb_hole_addr, rb_parent, link);
 263	rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks);
 264}
 265
 266static void add_hole(struct drm_mm_node *node)
 267{
 268	struct drm_mm *mm = node->mm;
 269
 270	node->hole_size =
 271		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
 272	node->subtree_max_hole = node->hole_size;
 273	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 274
 275	insert_hole_size(&mm->holes_size, node);
 276	insert_hole_addr(&mm->holes_addr, node);
 277
 278	list_add(&node->hole_stack, &mm->hole_stack);
 279}
 280
 281static void rm_hole(struct drm_mm_node *node)
 282{
 283	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 284
 285	list_del(&node->hole_stack);
 286	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
 287	rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr,
 288			   &augment_callbacks);
 289	node->hole_size = 0;
 290	node->subtree_max_hole = 0;
 291
 292	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
 293}
 294
 295static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
 296{
 297	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
 298}
 299
 300static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
 301{
 302	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
 303}
 304
 
 
 
 
 
 305static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
 306{
 307	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
 308	struct drm_mm_node *best = NULL;
 309
 310	do {
 311		struct drm_mm_node *node =
 312			rb_entry(rb, struct drm_mm_node, rb_hole_size);
 313
 314		if (size <= node->hole_size) {
 315			best = node;
 316			rb = rb->rb_right;
 317		} else {
 318			rb = rb->rb_left;
 319		}
 320	} while (rb);
 321
 322	return best;
 323}
 324
 325static bool usable_hole_addr(struct rb_node *rb, u64 size)
 326{
 327	return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size;
 328}
 329
 330static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size)
 331{
 332	struct rb_node *rb = mm->holes_addr.rb_node;
 333	struct drm_mm_node *node = NULL;
 334
 335	while (rb) {
 336		u64 hole_start;
 337
 338		if (!usable_hole_addr(rb, size))
 339			break;
 340
 341		node = rb_hole_addr_to_node(rb);
 342		hole_start = __drm_mm_hole_node_start(node);
 343
 344		if (addr < hole_start)
 345			rb = node->rb_hole_addr.rb_left;
 346		else if (addr > hole_start + node->hole_size)
 347			rb = node->rb_hole_addr.rb_right;
 348		else
 349			break;
 350	}
 351
 352	return node;
 353}
 354
 355static struct drm_mm_node *
 356first_hole(struct drm_mm *mm,
 357	   u64 start, u64 end, u64 size,
 358	   enum drm_mm_insert_mode mode)
 359{
 360	switch (mode) {
 361	default:
 362	case DRM_MM_INSERT_BEST:
 363		return best_hole(mm, size);
 364
 365	case DRM_MM_INSERT_LOW:
 366		return find_hole_addr(mm, start, size);
 367
 368	case DRM_MM_INSERT_HIGH:
 369		return find_hole_addr(mm, end, size);
 370
 371	case DRM_MM_INSERT_EVICT:
 372		return list_first_entry_or_null(&mm->hole_stack,
 373						struct drm_mm_node,
 374						hole_stack);
 375	}
 376}
 377
 378/**
 379 * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions
 380 * @name: name of function to declare
 381 * @first: first rb member to traverse (either rb_left or rb_right).
 382 * @last: last rb member to traverse (either rb_right or rb_left).
 383 *
 384 * This macro declares a function to return the next hole of the addr rb tree.
 385 * While traversing the tree we take the searched size into account and only
 386 * visit branches with potential big enough holes.
 387 */
 388
 389#define DECLARE_NEXT_HOLE_ADDR(name, first, last)			\
 390static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size)	\
 391{									\
 392	struct rb_node *parent, *node = &entry->rb_hole_addr;		\
 393									\
 394	if (!entry || RB_EMPTY_NODE(node))				\
 395		return NULL;						\
 396									\
 397	if (usable_hole_addr(node->first, size)) {			\
 398		node = node->first;					\
 399		while (usable_hole_addr(node->last, size))		\
 400			node = node->last;				\
 401		return rb_hole_addr_to_node(node);			\
 402	}								\
 403									\
 404	while ((parent = rb_parent(node)) && node == parent->first)	\
 405		node = parent;						\
 406									\
 407	return rb_hole_addr_to_node(parent);				\
 408}
 409
 410DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right)
 411DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left)
 412
 413static struct drm_mm_node *
 414next_hole(struct drm_mm *mm,
 415	  struct drm_mm_node *node,
 416	  u64 size,
 417	  enum drm_mm_insert_mode mode)
 418{
 419	switch (mode) {
 420	default:
 421	case DRM_MM_INSERT_BEST:
 422		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
 423
 424	case DRM_MM_INSERT_LOW:
 425		return next_hole_low_addr(node, size);
 426
 427	case DRM_MM_INSERT_HIGH:
 428		return next_hole_high_addr(node, size);
 429
 430	case DRM_MM_INSERT_EVICT:
 431		node = list_next_entry(node, hole_stack);
 432		return &node->hole_stack == &mm->hole_stack ? NULL : node;
 433	}
 434}
 435
 436/**
 437 * drm_mm_reserve_node - insert an pre-initialized node
 438 * @mm: drm_mm allocator to insert @node into
 439 * @node: drm_mm_node to insert
 440 *
 441 * This functions inserts an already set-up &drm_mm_node into the allocator,
 442 * meaning that start, size and color must be set by the caller. All other
 443 * fields must be cleared to 0. This is useful to initialize the allocator with
 444 * preallocated objects which must be set-up before the range allocator can be
 445 * set-up, e.g. when taking over a firmware framebuffer.
 446 *
 447 * Returns:
 448 * 0 on success, -ENOSPC if there's no hole where @node is.
 449 */
 450int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
 451{
 
 452	struct drm_mm_node *hole;
 453	u64 hole_start, hole_end;
 454	u64 adj_start, adj_end;
 455	u64 end;
 456
 457	end = node->start + node->size;
 458	if (unlikely(end <= node->start))
 459		return -ENOSPC;
 460
 461	/* Find the relevant hole to add our node to */
 462	hole = find_hole_addr(mm, node->start, 0);
 463	if (!hole)
 464		return -ENOSPC;
 465
 466	adj_start = hole_start = __drm_mm_hole_node_start(hole);
 467	adj_end = hole_end = hole_start + hole->hole_size;
 468
 469	if (mm->color_adjust)
 470		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
 471
 472	if (adj_start > node->start || adj_end < end)
 473		return -ENOSPC;
 474
 475	node->mm = mm;
 476
 477	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
 478	list_add(&node->node_list, &hole->node_list);
 479	drm_mm_interval_tree_add_node(hole, node);
 
 480	node->hole_size = 0;
 481
 482	rm_hole(hole);
 483	if (node->start > hole_start)
 484		add_hole(hole);
 485	if (end < hole_end)
 486		add_hole(node);
 487
 488	save_stack(node);
 489	return 0;
 490}
 491EXPORT_SYMBOL(drm_mm_reserve_node);
 492
 493static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
 494{
 495	return rb ? rb_to_hole_size(rb) : 0;
 496}
 497
 498/**
 499 * drm_mm_insert_node_in_range - ranged search for space and insert @node
 500 * @mm: drm_mm to allocate from
 501 * @node: preallocate node to insert
 502 * @size: size of the allocation
 503 * @alignment: alignment of the allocation
 504 * @color: opaque tag value to use for this node
 505 * @range_start: start of the allowed range for this node
 506 * @range_end: end of the allowed range for this node
 507 * @mode: fine-tune the allocation search and placement
 508 *
 509 * The preallocated @node must be cleared to 0.
 510 *
 511 * Returns:
 512 * 0 on success, -ENOSPC if there's no suitable hole.
 513 */
 514int drm_mm_insert_node_in_range(struct drm_mm * const mm,
 515				struct drm_mm_node * const node,
 516				u64 size, u64 alignment,
 517				unsigned long color,
 518				u64 range_start, u64 range_end,
 519				enum drm_mm_insert_mode mode)
 520{
 521	struct drm_mm_node *hole;
 522	u64 remainder_mask;
 523	bool once;
 524
 525	DRM_MM_BUG_ON(range_start > range_end);
 526
 527	if (unlikely(size == 0 || range_end - range_start < size))
 528		return -ENOSPC;
 529
 530	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
 531		return -ENOSPC;
 532
 533	if (alignment <= 1)
 534		alignment = 0;
 535
 536	once = mode & DRM_MM_INSERT_ONCE;
 537	mode &= ~DRM_MM_INSERT_ONCE;
 538
 539	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 540	for (hole = first_hole(mm, range_start, range_end, size, mode);
 541	     hole;
 542	     hole = once ? NULL : next_hole(mm, hole, size, mode)) {
 543		u64 hole_start = __drm_mm_hole_node_start(hole);
 544		u64 hole_end = hole_start + hole->hole_size;
 545		u64 adj_start, adj_end;
 546		u64 col_start, col_end;
 547
 548		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
 549			break;
 550
 551		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
 552			break;
 553
 554		col_start = hole_start;
 555		col_end = hole_end;
 556		if (mm->color_adjust)
 557			mm->color_adjust(hole, color, &col_start, &col_end);
 558
 559		adj_start = max(col_start, range_start);
 560		adj_end = min(col_end, range_end);
 561
 562		if (adj_end <= adj_start || adj_end - adj_start < size)
 563			continue;
 564
 565		if (mode == DRM_MM_INSERT_HIGH)
 566			adj_start = adj_end - size;
 567
 568		if (alignment) {
 569			u64 rem;
 570
 571			if (likely(remainder_mask))
 572				rem = adj_start & remainder_mask;
 573			else
 574				div64_u64_rem(adj_start, alignment, &rem);
 575			if (rem) {
 576				adj_start -= rem;
 577				if (mode != DRM_MM_INSERT_HIGH)
 578					adj_start += alignment;
 579
 580				if (adj_start < max(col_start, range_start) ||
 581				    min(col_end, range_end) - adj_start < size)
 582					continue;
 583
 584				if (adj_end <= adj_start ||
 585				    adj_end - adj_start < size)
 586					continue;
 587			}
 588		}
 589
 590		node->mm = mm;
 591		node->size = size;
 592		node->start = adj_start;
 593		node->color = color;
 594		node->hole_size = 0;
 595
 596		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
 597		list_add(&node->node_list, &hole->node_list);
 598		drm_mm_interval_tree_add_node(hole, node);
 
 599
 600		rm_hole(hole);
 601		if (adj_start > hole_start)
 602			add_hole(hole);
 603		if (adj_start + size < hole_end)
 604			add_hole(node);
 605
 606		save_stack(node);
 607		return 0;
 608	}
 609
 610	return -ENOSPC;
 611}
 612EXPORT_SYMBOL(drm_mm_insert_node_in_range);
 613
 614static inline __maybe_unused bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
 615{
 616	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
 617}
 618
 619/**
 620 * drm_mm_remove_node - Remove a memory node from the allocator.
 621 * @node: drm_mm_node to remove
 622 *
 623 * This just removes a node from its drm_mm allocator. The node does not need to
 624 * be cleared again before it can be re-inserted into this or any other drm_mm
 625 * allocator. It is a bug to call this function on a unallocated node.
 626 */
 627void drm_mm_remove_node(struct drm_mm_node *node)
 628{
 629	struct drm_mm *mm = node->mm;
 630	struct drm_mm_node *prev_node;
 631
 632	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
 633	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
 634
 635	prev_node = list_prev_entry(node, node_list);
 636
 637	if (drm_mm_hole_follows(node))
 638		rm_hole(node);
 639
 640	drm_mm_interval_tree_remove(node, &mm->interval_tree);
 641	list_del(&node->node_list);
 
 642
 643	if (drm_mm_hole_follows(prev_node))
 644		rm_hole(prev_node);
 645	add_hole(prev_node);
 
 
 646
 647	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648}
 649EXPORT_SYMBOL(drm_mm_remove_node);
 650
 651/**
 652 * DOC: lru scan roster
 653 *
 654 * Very often GPUs need to have continuous allocations for a given object. When
 655 * evicting objects to make space for a new one it is therefore not most
 656 * efficient when we simply start to select all objects from the tail of an LRU
 657 * until there's a suitable hole: Especially for big objects or nodes that
 658 * otherwise have special allocation constraints there's a good chance we evict
 659 * lots of (smaller) objects unnecessarily.
 660 *
 661 * The DRM range allocator supports this use-case through the scanning
 662 * interfaces. First a scan operation needs to be initialized with
 663 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
 664 * objects to the roster, probably by walking an LRU list, but this can be
 665 * freely implemented. Eviction candidates are added using
 666 * drm_mm_scan_add_block() until a suitable hole is found or there are no
 667 * further evictable objects. Eviction roster metadata is tracked in &struct
 668 * drm_mm_scan.
 669 *
 670 * The driver must walk through all objects again in exactly the reverse
 671 * order to restore the allocator state. Note that while the allocator is used
 672 * in the scan mode no other operation is allowed.
 673 *
 674 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
 675 * reported true) in the scan, and any overlapping nodes after color adjustment
 676 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
 677 * since freeing a node is also O(1) the overall complexity is
 678 * O(scanned_objects). So like the free stack which needs to be walked before a
 679 * scan operation even begins this is linear in the number of objects. It
 680 * doesn't seem to hurt too badly.
 681 */
 682
 683/**
 684 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
 685 * @scan: scan state
 686 * @mm: drm_mm to scan
 687 * @size: size of the allocation
 688 * @alignment: alignment of the allocation
 689 * @color: opaque tag value to use for the allocation
 690 * @start: start of the allowed range for the allocation
 691 * @end: end of the allowed range for the allocation
 692 * @mode: fine-tune the allocation search and placement
 693 *
 694 * This simply sets up the scanning routines with the parameters for the desired
 695 * hole.
 696 *
 697 * Warning:
 698 * As long as the scan list is non-empty, no other operations than
 699 * adding/removing nodes to/from the scan list are allowed.
 700 */
 701void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
 702				 struct drm_mm *mm,
 703				 u64 size,
 704				 u64 alignment,
 705				 unsigned long color,
 706				 u64 start,
 707				 u64 end,
 708				 enum drm_mm_insert_mode mode)
 709{
 710	DRM_MM_BUG_ON(start >= end);
 711	DRM_MM_BUG_ON(!size || size > end - start);
 712	DRM_MM_BUG_ON(mm->scan_active);
 713
 714	scan->mm = mm;
 715
 716	if (alignment <= 1)
 717		alignment = 0;
 718
 719	scan->color = color;
 720	scan->alignment = alignment;
 721	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 722	scan->size = size;
 723	scan->mode = mode;
 724
 725	DRM_MM_BUG_ON(end <= start);
 726	scan->range_start = start;
 727	scan->range_end = end;
 728
 729	scan->hit_start = U64_MAX;
 730	scan->hit_end = 0;
 731}
 732EXPORT_SYMBOL(drm_mm_scan_init_with_range);
 733
 734/**
 735 * drm_mm_scan_add_block - add a node to the scan list
 736 * @scan: the active drm_mm scanner
 737 * @node: drm_mm_node to add
 738 *
 739 * Add a node to the scan list that might be freed to make space for the desired
 740 * hole.
 741 *
 742 * Returns:
 743 * True if a hole has been found, false otherwise.
 744 */
 745bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
 746			   struct drm_mm_node *node)
 747{
 748	struct drm_mm *mm = scan->mm;
 749	struct drm_mm_node *hole;
 750	u64 hole_start, hole_end;
 751	u64 col_start, col_end;
 752	u64 adj_start, adj_end;
 753
 754	DRM_MM_BUG_ON(node->mm != mm);
 755	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
 756	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
 757	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
 758	mm->scan_active++;
 759
 760	/* Remove this block from the node_list so that we enlarge the hole
 761	 * (distance between the end of our previous node and the start of
 762	 * or next), without poisoning the link so that we can restore it
 763	 * later in drm_mm_scan_remove_block().
 764	 */
 765	hole = list_prev_entry(node, node_list);
 766	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
 767	__list_del_entry(&node->node_list);
 768
 769	hole_start = __drm_mm_hole_node_start(hole);
 770	hole_end = __drm_mm_hole_node_end(hole);
 771
 772	col_start = hole_start;
 773	col_end = hole_end;
 774	if (mm->color_adjust)
 775		mm->color_adjust(hole, scan->color, &col_start, &col_end);
 776
 777	adj_start = max(col_start, scan->range_start);
 778	adj_end = min(col_end, scan->range_end);
 779	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
 780		return false;
 781
 782	if (scan->mode == DRM_MM_INSERT_HIGH)
 783		adj_start = adj_end - scan->size;
 784
 785	if (scan->alignment) {
 786		u64 rem;
 787
 788		if (likely(scan->remainder_mask))
 789			rem = adj_start & scan->remainder_mask;
 790		else
 791			div64_u64_rem(adj_start, scan->alignment, &rem);
 792		if (rem) {
 793			adj_start -= rem;
 794			if (scan->mode != DRM_MM_INSERT_HIGH)
 795				adj_start += scan->alignment;
 796			if (adj_start < max(col_start, scan->range_start) ||
 797			    min(col_end, scan->range_end) - adj_start < scan->size)
 798				return false;
 799
 800			if (adj_end <= adj_start ||
 801			    adj_end - adj_start < scan->size)
 802				return false;
 803		}
 804	}
 805
 806	scan->hit_start = adj_start;
 807	scan->hit_end = adj_start + scan->size;
 808
 809	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
 810	DRM_MM_BUG_ON(scan->hit_start < hole_start);
 811	DRM_MM_BUG_ON(scan->hit_end > hole_end);
 812
 813	return true;
 814}
 815EXPORT_SYMBOL(drm_mm_scan_add_block);
 816
 817/**
 818 * drm_mm_scan_remove_block - remove a node from the scan list
 819 * @scan: the active drm_mm scanner
 820 * @node: drm_mm_node to remove
 821 *
 822 * Nodes **must** be removed in exactly the reverse order from the scan list as
 823 * they have been added (e.g. using list_add() as they are added and then
 824 * list_for_each() over that eviction list to remove), otherwise the internal
 825 * state of the memory manager will be corrupted.
 826 *
 827 * When the scan list is empty, the selected memory nodes can be freed. An
 828 * immediately following drm_mm_insert_node_in_range_generic() or one of the
 829 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
 830 * the just freed block (because it's at the top of the free_stack list).
 831 *
 832 * Returns:
 833 * True if this block should be evicted, false otherwise. Will always
 834 * return false when no hole has been found.
 835 */
 836bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
 837			      struct drm_mm_node *node)
 838{
 839	struct drm_mm_node *prev_node;
 840
 841	DRM_MM_BUG_ON(node->mm != scan->mm);
 842	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
 843	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
 844
 845	DRM_MM_BUG_ON(!node->mm->scan_active);
 846	node->mm->scan_active--;
 847
 848	/* During drm_mm_scan_add_block() we decoupled this node leaving
 849	 * its pointers intact. Now that the caller is walking back along
 850	 * the eviction list we can restore this block into its rightful
 851	 * place on the full node_list. To confirm that the caller is walking
 852	 * backwards correctly we check that prev_node->next == node->next,
 853	 * i.e. both believe the same node should be on the other side of the
 854	 * hole.
 855	 */
 856	prev_node = list_prev_entry(node, node_list);
 857	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
 858		      list_next_entry(node, node_list));
 859	list_add(&node->node_list, &prev_node->node_list);
 860
 861	return (node->start + node->size > scan->hit_start &&
 862		node->start < scan->hit_end);
 863}
 864EXPORT_SYMBOL(drm_mm_scan_remove_block);
 865
 866/**
 867 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
 868 * @scan: drm_mm scan with target hole
 869 *
 870 * After completing an eviction scan and removing the selected nodes, we may
 871 * need to remove a few more nodes from either side of the target hole if
 872 * mm.color_adjust is being used.
 873 *
 874 * Returns:
 875 * A node to evict, or NULL if there are no overlapping nodes.
 876 */
 877struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
 878{
 879	struct drm_mm *mm = scan->mm;
 880	struct drm_mm_node *hole;
 881	u64 hole_start, hole_end;
 882
 883	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
 884
 885	if (!mm->color_adjust)
 886		return NULL;
 887
 888	/*
 889	 * The hole found during scanning should ideally be the first element
 890	 * in the hole_stack list, but due to side-effects in the driver it
 891	 * may not be.
 892	 */
 893	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
 894		hole_start = __drm_mm_hole_node_start(hole);
 895		hole_end = hole_start + hole->hole_size;
 896
 897		if (hole_start <= scan->hit_start &&
 898		    hole_end >= scan->hit_end)
 899			break;
 900	}
 901
 902	/* We should only be called after we found the hole previously */
 903	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
 904	if (unlikely(&hole->hole_stack == &mm->hole_stack))
 905		return NULL;
 906
 907	DRM_MM_BUG_ON(hole_start > scan->hit_start);
 908	DRM_MM_BUG_ON(hole_end < scan->hit_end);
 909
 910	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
 911	if (hole_start > scan->hit_start)
 912		return hole;
 913	if (hole_end < scan->hit_end)
 914		return list_next_entry(hole, node_list);
 915
 916	return NULL;
 917}
 918EXPORT_SYMBOL(drm_mm_scan_color_evict);
 919
 920/**
 921 * drm_mm_init - initialize a drm-mm allocator
 922 * @mm: the drm_mm structure to initialize
 923 * @start: start of the range managed by @mm
 924 * @size: end of the range managed by @mm
 925 *
 926 * Note that @mm must be cleared to 0 before calling this function.
 927 */
 928void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
 929{
 930	DRM_MM_BUG_ON(start + size <= start);
 931
 932	mm->color_adjust = NULL;
 933
 934	INIT_LIST_HEAD(&mm->hole_stack);
 935	mm->interval_tree = RB_ROOT_CACHED;
 936	mm->holes_size = RB_ROOT_CACHED;
 937	mm->holes_addr = RB_ROOT;
 938
 939	/* Clever trick to avoid a special case in the free hole tracking. */
 940	INIT_LIST_HEAD(&mm->head_node.node_list);
 941	mm->head_node.flags = 0;
 942	mm->head_node.mm = mm;
 943	mm->head_node.start = start + size;
 944	mm->head_node.size = -size;
 945	add_hole(&mm->head_node);
 946
 947	mm->scan_active = 0;
 948
 949#ifdef CONFIG_DRM_DEBUG_MM
 950	stack_depot_init();
 951#endif
 952}
 953EXPORT_SYMBOL(drm_mm_init);
 954
 955/**
 956 * drm_mm_takedown - clean up a drm_mm allocator
 957 * @mm: drm_mm allocator to clean up
 958 *
 959 * Note that it is a bug to call this function on an allocator which is not
 960 * clean.
 961 */
 962void drm_mm_takedown(struct drm_mm *mm)
 963{
 964	if (WARN(!drm_mm_clean(mm),
 965		 "Memory manager not clean during takedown.\n"))
 966		show_leaks(mm);
 967}
 968EXPORT_SYMBOL(drm_mm_takedown);
 969
 970static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
 971{
 972	u64 start, size;
 973
 974	size = entry->hole_size;
 975	if (size) {
 976		start = drm_mm_hole_node_start(entry);
 977		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
 978			   start, start + size, size);
 979	}
 980
 981	return size;
 982}
 983/**
 984 * drm_mm_print - print allocator state
 985 * @mm: drm_mm allocator to print
 986 * @p: DRM printer to use
 987 */
 988void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
 989{
 990	const struct drm_mm_node *entry;
 991	u64 total_used = 0, total_free = 0, total = 0;
 992
 993	total_free += drm_mm_dump_hole(p, &mm->head_node);
 994
 995	drm_mm_for_each_node(entry, mm) {
 996		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
 997			   entry->start + entry->size, entry->size);
 998		total_used += entry->size;
 999		total_free += drm_mm_dump_hole(p, entry);
1000	}
1001	total = total_free + total_used;
1002
1003	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
1004		   total_used, total_free);
1005}
1006EXPORT_SYMBOL(drm_mm_print);