Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *	PDC == Processor Dependent Code
   6 *
   7 * See http://www.parisc-linux.org/documentation/index.html
 
   8 * for documentation describing the entry points and calling
   9 * conventions defined below.
  10 *
  11 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  12 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  13 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  14 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  15 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  16 */
  17
  18/*	I think it would be in everyone's best interest to follow this
  19 *	guidelines when writing PDC wrappers:
  20 *
  21 *	 - the name of the pdc wrapper should match one of the macros
  22 *	   used for the first two arguments
  23 *	 - don't use caps for random parts of the name
  24 *	 - use the static PDC result buffers and "copyout" to structs
  25 *	   supplied by the caller to encapsulate alignment restrictions
  26 *	 - hold pdc_lock while in PDC or using static result buffers
  27 *	 - use __pa() to convert virtual (kernel) pointers to physical
  28 *	   ones.
  29 *	 - the name of the struct used for pdc return values should equal
  30 *	   one of the macros used for the first two arguments to the
  31 *	   corresponding PDC call
  32 *	 - keep the order of arguments
  33 *	 - don't be smart (setting trailing NUL bytes for strings, return
  34 *	   something useful even if the call failed) unless you are sure
  35 *	   it's not going to affect functionality or performance
  36 *
  37 *	Example:
  38 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  39 *	{
  40 *		int retval;
  41 *
  42 *		spin_lock_irq(&pdc_lock);
  43 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  44 *		convert_to_wide(pdc_result);
  45 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  46 *		spin_unlock_irq(&pdc_lock);
  47 *
  48 *		return retval;
  49 *	}
  50 *					prumpf	991016	
  51 */
  52
  53#include <stdarg.h>
  54
  55#include <linux/delay.h>
  56#include <linux/init.h>
  57#include <linux/kernel.h>
  58#include <linux/module.h>
  59#include <linux/string.h>
  60#include <linux/spinlock.h>
  61
  62#include <asm/page.h>
  63#include <asm/pdc.h>
  64#include <asm/pdcpat.h>
  65#include <asm/processor.h>	/* for boot_cpu_data */
  66
  67#if defined(BOOTLOADER)
  68# undef  spin_lock_irqsave
  69# define spin_lock_irqsave(a, b) { b = 1; }
  70# undef  spin_unlock_irqrestore
  71# define spin_unlock_irqrestore(a, b)
  72#else
  73static DEFINE_SPINLOCK(pdc_lock);
  74#endif
  75
  76extern unsigned long pdc_result[NUM_PDC_RESULT];
  77extern unsigned long pdc_result2[NUM_PDC_RESULT];
  78
  79#ifdef CONFIG_64BIT
  80#define WIDE_FIRMWARE 0x1
  81#define NARROW_FIRMWARE 0x2
  82
  83/* Firmware needs to be initially set to narrow to determine the 
  84 * actual firmware width. */
  85int parisc_narrow_firmware __ro_after_init = 1;
  86#endif
  87
  88/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  89 * and MEM_PDC calls are always the same width as the OS.
  90 * Some PAT boxes may have 64-bit IODC I/O.
  91 *
  92 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  93 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  94 * This allowed wide kernels to run on Cxxx boxes.
  95 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  96 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  97 */
  98
  99#ifdef CONFIG_64BIT
 100long real64_call(unsigned long function, ...);
 101#endif
 102long real32_call(unsigned long function, ...);
 103
 104#ifdef CONFIG_64BIT
 105#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 107#else
 108#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 109#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 110#endif
 111
 112
 113/**
 114 * f_extend - Convert PDC addresses to kernel addresses.
 115 * @address: Address returned from PDC.
 116 *
 117 * This function is used to convert PDC addresses into kernel addresses
 118 * when the PDC address size and kernel address size are different.
 119 */
 120static unsigned long f_extend(unsigned long address)
 121{
 122#ifdef CONFIG_64BIT
 123	if(unlikely(parisc_narrow_firmware)) {
 124		if((address & 0xff000000) == 0xf0000000)
 125			return 0xf0f0f0f000000000UL | (u32)address;
 126
 127		if((address & 0xf0000000) == 0xf0000000)
 128			return 0xffffffff00000000UL | (u32)address;
 129	}
 130#endif
 131	return address;
 132}
 133
 134/**
 135 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 136 * @address: The return buffer from PDC.
 137 *
 138 * This function is used to convert the return buffer addresses retrieved from PDC
 139 * into kernel addresses when the PDC address size and kernel address size are
 140 * different.
 141 */
 142static void convert_to_wide(unsigned long *addr)
 143{
 144#ifdef CONFIG_64BIT
 145	int i;
 146	unsigned int *p = (unsigned int *)addr;
 147
 148	if (unlikely(parisc_narrow_firmware)) {
 149		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 150			addr[i] = p[i];
 151	}
 152#endif
 153}
 154
 155#ifdef CONFIG_64BIT
 156void set_firmware_width_unlocked(void)
 157{
 158	int ret;
 159
 160	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 161		__pa(pdc_result), 0);
 
 
 162	convert_to_wide(pdc_result);
 163	if (pdc_result[0] != NARROW_FIRMWARE)
 164		parisc_narrow_firmware = 0;
 165}
 166	
 167/**
 168 * set_firmware_width - Determine if the firmware is wide or narrow.
 169 * 
 170 * This function must be called before any pdc_* function that uses the
 171 * convert_to_wide function.
 172 */
 173void set_firmware_width(void)
 174{
 175	unsigned long flags;
 
 
 
 
 
 176	spin_lock_irqsave(&pdc_lock, flags);
 177	set_firmware_width_unlocked();
 178	spin_unlock_irqrestore(&pdc_lock, flags);
 179}
 180#else
 181void set_firmware_width_unlocked(void)
 182{
 183	return;
 184}
 185
 186void set_firmware_width(void)
 187{
 188	return;
 189}
 190#endif /*CONFIG_64BIT*/
 191
 192
 193#if !defined(BOOTLOADER)
 194/**
 195 * pdc_emergency_unlock - Unlock the linux pdc lock
 196 *
 197 * This call unlocks the linux pdc lock in case we need some PDC functions
 198 * (like pdc_add_valid) during kernel stack dump.
 199 */
 200void pdc_emergency_unlock(void)
 201{
 202 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 203        if (spin_is_locked(&pdc_lock))
 204		spin_unlock(&pdc_lock);
 205}
 206
 207
 208/**
 209 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 210 * @address: Address to be verified.
 211 *
 212 * This PDC call attempts to read from the specified address and verifies
 213 * if the address is valid.
 214 * 
 215 * The return value is PDC_OK (0) in case accessing this address is valid.
 216 */
 217int pdc_add_valid(unsigned long address)
 218{
 219        int retval;
 220	unsigned long flags;
 221
 222        spin_lock_irqsave(&pdc_lock, flags);
 223        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 224        spin_unlock_irqrestore(&pdc_lock, flags);
 225
 226        return retval;
 227}
 228EXPORT_SYMBOL(pdc_add_valid);
 229
 230/**
 231 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 232 * @instr: Pointer to variable which will get instruction opcode.
 233 *
 234 * The return value is PDC_OK (0) in case call succeeded.
 235 */
 236int __init pdc_instr(unsigned int *instr)
 237{
 238	int retval;
 239	unsigned long flags;
 240
 241	spin_lock_irqsave(&pdc_lock, flags);
 242	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 243	convert_to_wide(pdc_result);
 244	*instr = pdc_result[0];
 245	spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247	return retval;
 248}
 249
 250/**
 251 * pdc_chassis_info - Return chassis information.
 252 * @result: The return buffer.
 253 * @chassis_info: The memory buffer address.
 
 254 * @len: The size of the memory buffer address.
 255 *
 256 * An HVERSION dependent call for returning the chassis information.
 257 */
 258int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 259{
 260        int retval;
 261	unsigned long flags;
 262
 263        spin_lock_irqsave(&pdc_lock, flags);
 264        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 265        memcpy(&pdc_result2, led_info, len);
 266        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 267                              __pa(pdc_result), __pa(pdc_result2), len);
 268        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 269        memcpy(led_info, pdc_result2, len);
 270        spin_unlock_irqrestore(&pdc_lock, flags);
 271
 272        return retval;
 273}
 274
 275/**
 276 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 277 * @retval: -1 on error, 0 on success. Other value are PDC errors
 
 278 * 
 279 * Must be correctly formatted or expect system crash
 280 */
 281#ifdef CONFIG_64BIT
 282int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 283{
 284	int retval = 0;
 285	unsigned long flags;
 286        
 287	if (!is_pdc_pat())
 288		return -1;
 289
 290	spin_lock_irqsave(&pdc_lock, flags);
 291	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 292	spin_unlock_irqrestore(&pdc_lock, flags);
 293
 294	return retval;
 295}
 296#endif
 297
 298/**
 299 * pdc_chassis_disp - Updates chassis code
 300 * @retval: -1 on error, 0 on success
 301 */
 302int pdc_chassis_disp(unsigned long disp)
 303{
 304	int retval = 0;
 305	unsigned long flags;
 306
 307	spin_lock_irqsave(&pdc_lock, flags);
 308	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 309	spin_unlock_irqrestore(&pdc_lock, flags);
 310
 311	return retval;
 312}
 313
 314/**
 315 * pdc_cpu_rendenzvous - Stop currently executing CPU
 316 * @retval: -1 on error, 0 on success
 317 */
 318int __pdc_cpu_rendezvous(void)
 319{
 320	if (is_pdc_pat())
 321		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 322	else
 323		return mem_pdc_call(PDC_PROC, 1, 0);
 324}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326
 
 
 
 
 
 
 
 
 327/**
 328 * pdc_chassis_warn - Fetches chassis warnings
 329 * @retval: -1 on error, 0 on success
 330 */
 331int pdc_chassis_warn(unsigned long *warn)
 332{
 333	int retval = 0;
 334	unsigned long flags;
 335
 336	spin_lock_irqsave(&pdc_lock, flags);
 337	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 338	*warn = pdc_result[0];
 339	spin_unlock_irqrestore(&pdc_lock, flags);
 340
 341	return retval;
 342}
 343
 344int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 345{
 346	int ret;
 347
 348	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 349	convert_to_wide(pdc_result);
 350	pdc_coproc_info->ccr_functional = pdc_result[0];
 351	pdc_coproc_info->ccr_present = pdc_result[1];
 352	pdc_coproc_info->revision = pdc_result[17];
 353	pdc_coproc_info->model = pdc_result[18];
 354
 355	return ret;
 356}
 357
 358/**
 359 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 360 * @pdc_coproc_info: Return buffer address.
 361 *
 362 * This PDC call returns the presence and status of all the coprocessors
 363 * attached to the processor.
 364 */
 365int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 366{
 367	int ret;
 368	unsigned long flags;
 369
 370	spin_lock_irqsave(&pdc_lock, flags);
 371	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 372	spin_unlock_irqrestore(&pdc_lock, flags);
 373
 374	return ret;
 375}
 376
 377/**
 378 * pdc_iodc_read - Read data from the modules IODC.
 379 * @actcnt: The actual number of bytes.
 380 * @hpa: The HPA of the module for the iodc read.
 381 * @index: The iodc entry point.
 382 * @iodc_data: A buffer memory for the iodc options.
 383 * @iodc_data_size: Size of the memory buffer.
 384 *
 385 * This PDC call reads from the IODC of the module specified by the hpa
 386 * argument.
 387 */
 388int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 389		  void *iodc_data, unsigned int iodc_data_size)
 390{
 391	int retval;
 392	unsigned long flags;
 393
 394	spin_lock_irqsave(&pdc_lock, flags);
 395	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 396			      index, __pa(pdc_result2), iodc_data_size);
 397	convert_to_wide(pdc_result);
 398	*actcnt = pdc_result[0];
 399	memcpy(iodc_data, pdc_result2, iodc_data_size);
 400	spin_unlock_irqrestore(&pdc_lock, flags);
 401
 402	return retval;
 403}
 404EXPORT_SYMBOL(pdc_iodc_read);
 405
 406/**
 407 * pdc_system_map_find_mods - Locate unarchitected modules.
 408 * @pdc_mod_info: Return buffer address.
 409 * @mod_path: pointer to dev path structure.
 410 * @mod_index: fixed address module index.
 411 *
 412 * To locate and identify modules which reside at fixed I/O addresses, which
 413 * do not self-identify via architected bus walks.
 414 */
 415int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 416			     struct pdc_module_path *mod_path, long mod_index)
 417{
 418	int retval;
 419	unsigned long flags;
 420
 421	spin_lock_irqsave(&pdc_lock, flags);
 422	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 423			      __pa(pdc_result2), mod_index);
 424	convert_to_wide(pdc_result);
 425	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 426	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 427	spin_unlock_irqrestore(&pdc_lock, flags);
 428
 429	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 430	return retval;
 431}
 432
 433/**
 434 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 435 * @pdc_addr_info: Return buffer address.
 436 * @mod_index: Fixed address module index.
 437 * @addr_index: Address range index.
 438 * 
 439 * Retrieve additional information about subsequent address ranges for modules
 440 * with multiple address ranges.  
 441 */
 442int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 443			      long mod_index, long addr_index)
 444{
 445	int retval;
 446	unsigned long flags;
 447
 448	spin_lock_irqsave(&pdc_lock, flags);
 449	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 450			      mod_index, addr_index);
 451	convert_to_wide(pdc_result);
 452	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 453	spin_unlock_irqrestore(&pdc_lock, flags);
 454
 455	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 456	return retval;
 457}
 458
 459/**
 460 * pdc_model_info - Return model information about the processor.
 461 * @model: The return buffer.
 462 *
 463 * Returns the version numbers, identifiers, and capabilities from the processor module.
 464 */
 465int pdc_model_info(struct pdc_model *model) 
 466{
 467	int retval;
 468	unsigned long flags;
 469
 470	spin_lock_irqsave(&pdc_lock, flags);
 471	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 472	convert_to_wide(pdc_result);
 473	memcpy(model, pdc_result, sizeof(*model));
 474	spin_unlock_irqrestore(&pdc_lock, flags);
 475
 476	return retval;
 477}
 478
 479/**
 480 * pdc_model_sysmodel - Get the system model name.
 
 481 * @name: A char array of at least 81 characters.
 482 *
 483 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 484 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 485 * on HP/UX.
 486 */
 487int pdc_model_sysmodel(char *name)
 488{
 489        int retval;
 490	unsigned long flags;
 491
 492        spin_lock_irqsave(&pdc_lock, flags);
 493        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 494                              OS_ID_HPUX, __pa(name));
 495        convert_to_wide(pdc_result);
 496
 497        if (retval == PDC_OK) {
 498                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 499        } else {
 500                name[0] = 0;
 501        }
 502        spin_unlock_irqrestore(&pdc_lock, flags);
 503
 504        return retval;
 505}
 506
 507/**
 508 * pdc_model_versions - Identify the version number of each processor.
 509 * @cpu_id: The return buffer.
 510 * @id: The id of the processor to check.
 511 *
 512 * Returns the version number for each processor component.
 513 *
 514 * This comment was here before, but I do not know what it means :( -RB
 515 * id: 0 = cpu revision, 1 = boot-rom-version
 516 */
 517int pdc_model_versions(unsigned long *versions, int id)
 518{
 519        int retval;
 520	unsigned long flags;
 521
 522        spin_lock_irqsave(&pdc_lock, flags);
 523        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 524        convert_to_wide(pdc_result);
 525        *versions = pdc_result[0];
 526        spin_unlock_irqrestore(&pdc_lock, flags);
 527
 528        return retval;
 529}
 530
 531/**
 532 * pdc_model_cpuid - Returns the CPU_ID.
 533 * @cpu_id: The return buffer.
 534 *
 535 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 536 * the processor module.
 537 */
 538int pdc_model_cpuid(unsigned long *cpu_id)
 539{
 540        int retval;
 541	unsigned long flags;
 542
 543        spin_lock_irqsave(&pdc_lock, flags);
 544        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 545        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 546        convert_to_wide(pdc_result);
 547        *cpu_id = pdc_result[0];
 548        spin_unlock_irqrestore(&pdc_lock, flags);
 549
 550        return retval;
 551}
 552
 553/**
 554 * pdc_model_capabilities - Returns the platform capabilities.
 555 * @capabilities: The return buffer.
 556 *
 557 * Returns information about platform support for 32- and/or 64-bit
 558 * OSes, IO-PDIR coherency, and virtual aliasing.
 559 */
 560int pdc_model_capabilities(unsigned long *capabilities)
 561{
 562        int retval;
 563	unsigned long flags;
 564
 565        spin_lock_irqsave(&pdc_lock, flags);
 566        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 567        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 568        convert_to_wide(pdc_result);
 569        if (retval == PDC_OK) {
 570                *capabilities = pdc_result[0];
 571        } else {
 572                *capabilities = PDC_MODEL_OS32;
 573        }
 574        spin_unlock_irqrestore(&pdc_lock, flags);
 575
 576        return retval;
 577}
 578
 579/**
 580 * pdc_model_platform_info - Returns machine product and serial number.
 581 * @orig_prod_num: Return buffer for original product number.
 582 * @current_prod_num: Return buffer for current product number.
 583 * @serial_no: Return buffer for serial number.
 584 *
 585 * Returns strings containing the original and current product numbers and the
 586 * serial number of the system.
 587 */
 588int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 589		char *serial_no)
 590{
 591	int retval;
 592	unsigned long flags;
 593
 594	spin_lock_irqsave(&pdc_lock, flags);
 595	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 596		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 597	convert_to_wide(pdc_result);
 598	spin_unlock_irqrestore(&pdc_lock, flags);
 599
 600	return retval;
 601}
 602
 603/**
 604 * pdc_cache_info - Return cache and TLB information.
 605 * @cache_info: The return buffer.
 606 *
 607 * Returns information about the processor's cache and TLB.
 608 */
 609int pdc_cache_info(struct pdc_cache_info *cache_info)
 610{
 611        int retval;
 612	unsigned long flags;
 613
 614        spin_lock_irqsave(&pdc_lock, flags);
 615        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 616        convert_to_wide(pdc_result);
 617        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 618        spin_unlock_irqrestore(&pdc_lock, flags);
 619
 620        return retval;
 621}
 622
 623/**
 624 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 625 * @space_bits: Should be 0, if not, bad mojo!
 626 *
 627 * Returns information about Space ID hashing.
 628 */
 629int pdc_spaceid_bits(unsigned long *space_bits)
 630{
 631	int retval;
 632	unsigned long flags;
 633
 634	spin_lock_irqsave(&pdc_lock, flags);
 635	pdc_result[0] = 0;
 636	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 637	convert_to_wide(pdc_result);
 638	*space_bits = pdc_result[0];
 639	spin_unlock_irqrestore(&pdc_lock, flags);
 640
 641	return retval;
 642}
 643
 644#ifndef CONFIG_PA20
 645/**
 646 * pdc_btlb_info - Return block TLB information.
 647 * @btlb: The return buffer.
 648 *
 649 * Returns information about the hardware Block TLB.
 650 */
 651int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 652{
 653        int retval;
 654	unsigned long flags;
 655
 656        spin_lock_irqsave(&pdc_lock, flags);
 657        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 658        memcpy(btlb, pdc_result, sizeof(*btlb));
 659        spin_unlock_irqrestore(&pdc_lock, flags);
 660
 661        if(retval < 0) {
 662                btlb->max_size = 0;
 663        }
 664        return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665}
 666
 667/**
 668 * pdc_mem_map_hpa - Find fixed module information.  
 669 * @address: The return buffer
 670 * @mod_path: pointer to dev path structure.
 671 *
 672 * This call was developed for S700 workstations to allow the kernel to find
 673 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 674 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 675 * call.
 676 *
 677 * This call is supported by all existing S700 workstations (up to  Gecko).
 678 */
 679int pdc_mem_map_hpa(struct pdc_memory_map *address,
 680		struct pdc_module_path *mod_path)
 681{
 682        int retval;
 683	unsigned long flags;
 684
 
 
 
 685        spin_lock_irqsave(&pdc_lock, flags);
 686        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 687        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 688				__pa(pdc_result2));
 689        memcpy(address, pdc_result, sizeof(*address));
 690        spin_unlock_irqrestore(&pdc_lock, flags);
 691
 692        return retval;
 693}
 694#endif	/* !CONFIG_PA20 */
 695
 696/**
 697 * pdc_lan_station_id - Get the LAN address.
 698 * @lan_addr: The return buffer.
 699 * @hpa: The network device HPA.
 700 *
 701 * Get the LAN station address when it is not directly available from the LAN hardware.
 702 */
 703int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 704{
 705	int retval;
 706	unsigned long flags;
 707
 708	spin_lock_irqsave(&pdc_lock, flags);
 709	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 710			__pa(pdc_result), hpa);
 711	if (retval < 0) {
 712		/* FIXME: else read MAC from NVRAM */
 713		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 714	} else {
 715		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 716	}
 717	spin_unlock_irqrestore(&pdc_lock, flags);
 718
 719	return retval;
 720}
 721EXPORT_SYMBOL(pdc_lan_station_id);
 722
 723/**
 724 * pdc_stable_read - Read data from Stable Storage.
 725 * @staddr: Stable Storage address to access.
 726 * @memaddr: The memory address where Stable Storage data shall be copied.
 727 * @count: number of bytes to transfer. count is multiple of 4.
 728 *
 729 * This PDC call reads from the Stable Storage address supplied in staddr
 730 * and copies count bytes to the memory address memaddr.
 731 * The call will fail if staddr+count > PDC_STABLE size.
 732 */
 733int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 734{
 735       int retval;
 736	unsigned long flags;
 737
 738       spin_lock_irqsave(&pdc_lock, flags);
 739       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 740               __pa(pdc_result), count);
 741       convert_to_wide(pdc_result);
 742       memcpy(memaddr, pdc_result, count);
 743       spin_unlock_irqrestore(&pdc_lock, flags);
 744
 745       return retval;
 746}
 747EXPORT_SYMBOL(pdc_stable_read);
 748
 749/**
 750 * pdc_stable_write - Write data to Stable Storage.
 751 * @staddr: Stable Storage address to access.
 752 * @memaddr: The memory address where Stable Storage data shall be read from.
 753 * @count: number of bytes to transfer. count is multiple of 4.
 754 *
 755 * This PDC call reads count bytes from the supplied memaddr address,
 756 * and copies count bytes to the Stable Storage address staddr.
 757 * The call will fail if staddr+count > PDC_STABLE size.
 758 */
 759int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 760{
 761       int retval;
 762	unsigned long flags;
 763
 764       spin_lock_irqsave(&pdc_lock, flags);
 765       memcpy(pdc_result, memaddr, count);
 766       convert_to_wide(pdc_result);
 767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 768               __pa(pdc_result), count);
 769       spin_unlock_irqrestore(&pdc_lock, flags);
 770
 771       return retval;
 772}
 773EXPORT_SYMBOL(pdc_stable_write);
 774
 775/**
 776 * pdc_stable_get_size - Get Stable Storage size in bytes.
 777 * @size: pointer where the size will be stored.
 778 *
 779 * This PDC call returns the number of bytes in the processor's Stable
 780 * Storage, which is the number of contiguous bytes implemented in Stable
 781 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 782 * which is a multiple of four.
 783 */
 784int pdc_stable_get_size(unsigned long *size)
 785{
 786       int retval;
 787	unsigned long flags;
 788
 789       spin_lock_irqsave(&pdc_lock, flags);
 790       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 791       *size = pdc_result[0];
 792       spin_unlock_irqrestore(&pdc_lock, flags);
 793
 794       return retval;
 795}
 796EXPORT_SYMBOL(pdc_stable_get_size);
 797
 798/**
 799 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 800 *
 801 * This PDC call is meant to be used to check the integrity of the current
 802 * contents of Stable Storage.
 803 */
 804int pdc_stable_verify_contents(void)
 805{
 806       int retval;
 807	unsigned long flags;
 808
 809       spin_lock_irqsave(&pdc_lock, flags);
 810       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 811       spin_unlock_irqrestore(&pdc_lock, flags);
 812
 813       return retval;
 814}
 815EXPORT_SYMBOL(pdc_stable_verify_contents);
 816
 817/**
 818 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 819 * the validity indicator.
 820 *
 821 * This PDC call will erase all contents of Stable Storage. Use with care!
 822 */
 823int pdc_stable_initialize(void)
 824{
 825       int retval;
 826	unsigned long flags;
 827
 828       spin_lock_irqsave(&pdc_lock, flags);
 829       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 830       spin_unlock_irqrestore(&pdc_lock, flags);
 831
 832       return retval;
 833}
 834EXPORT_SYMBOL(pdc_stable_initialize);
 835
 836/**
 837 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 838 * @hwpath: fully bc.mod style path to the device.
 839 * @initiator: the array to return the result into
 840 *
 841 * Get the SCSI operational parameters from PDC.
 842 * Needed since HPUX never used BIOS or symbios card NVRAM.
 843 * Most ncr/sym cards won't have an entry and just use whatever
 844 * capabilities of the card are (eg Ultra, LVD). But there are
 845 * several cases where it's useful:
 846 *    o set SCSI id for Multi-initiator clusters,
 847 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 848 *    o bus width exported is less than what the interface chip supports.
 849 */
 850int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 851{
 852	int retval;
 853	unsigned long flags;
 854
 855	spin_lock_irqsave(&pdc_lock, flags);
 856
 857/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 858#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 859	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 860
 861	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 862			      __pa(pdc_result), __pa(hwpath));
 863	if (retval < PDC_OK)
 864		goto out;
 865
 866	if (pdc_result[0] < 16) {
 867		initiator->host_id = pdc_result[0];
 868	} else {
 869		initiator->host_id = -1;
 870	}
 871
 872	/*
 873	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 874	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 875	 */
 876	switch (pdc_result[1]) {
 877		case  1: initiator->factor = 50; break;
 878		case  2: initiator->factor = 25; break;
 879		case  5: initiator->factor = 12; break;
 880		case 25: initiator->factor = 10; break;
 881		case 20: initiator->factor = 12; break;
 882		case 40: initiator->factor = 10; break;
 883		default: initiator->factor = -1; break;
 884	}
 885
 886	if (IS_SPROCKETS()) {
 887		initiator->width = pdc_result[4];
 888		initiator->mode = pdc_result[5];
 889	} else {
 890		initiator->width = -1;
 891		initiator->mode = -1;
 892	}
 893
 894 out:
 895	spin_unlock_irqrestore(&pdc_lock, flags);
 896
 897	return (retval >= PDC_OK);
 898}
 899EXPORT_SYMBOL(pdc_get_initiator);
 900
 901
 902/**
 903 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 904 * @num_entries: The return value.
 905 * @hpa: The HPA for the device.
 906 *
 907 * This PDC function returns the number of entries in the specified cell's
 908 * interrupt table.
 909 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 910 */ 
 911int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 912{
 913	int retval;
 914	unsigned long flags;
 915
 916	spin_lock_irqsave(&pdc_lock, flags);
 917	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 918			      __pa(pdc_result), hpa);
 919	convert_to_wide(pdc_result);
 920	*num_entries = pdc_result[0];
 921	spin_unlock_irqrestore(&pdc_lock, flags);
 922
 923	return retval;
 924}
 925
 926/** 
 927 * pdc_pci_irt - Get the PCI interrupt routing table.
 928 * @num_entries: The number of entries in the table.
 929 * @hpa: The Hard Physical Address of the device.
 930 * @tbl: 
 931 *
 932 * Get the PCI interrupt routing table for the device at the given HPA.
 933 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 934 */
 935int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 936{
 937	int retval;
 938	unsigned long flags;
 939
 940	BUG_ON((unsigned long)tbl & 0x7);
 941
 942	spin_lock_irqsave(&pdc_lock, flags);
 943	pdc_result[0] = num_entries;
 944	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 945			      __pa(pdc_result), hpa, __pa(tbl));
 946	spin_unlock_irqrestore(&pdc_lock, flags);
 947
 948	return retval;
 949}
 950
 951
 952#if 0	/* UNTEST CODE - left here in case someone needs it */
 953
 954/** 
 955 * pdc_pci_config_read - read PCI config space.
 956 * @hpa		token from PDC to indicate which PCI device
 957 * @pci_addr	configuration space address to read from
 958 *
 959 * Read PCI Configuration space *before* linux PCI subsystem is running.
 960 */
 961unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 962{
 963	int retval;
 964	unsigned long flags;
 965
 966	spin_lock_irqsave(&pdc_lock, flags);
 967	pdc_result[0] = 0;
 968	pdc_result[1] = 0;
 969	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 970			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 971	spin_unlock_irqrestore(&pdc_lock, flags);
 972
 973	return retval ? ~0 : (unsigned int) pdc_result[0];
 974}
 975
 976
 977/** 
 978 * pdc_pci_config_write - read PCI config space.
 979 * @hpa		token from PDC to indicate which PCI device
 980 * @pci_addr	configuration space address to write
 981 * @val		value we want in the 32-bit register
 982 *
 983 * Write PCI Configuration space *before* linux PCI subsystem is running.
 984 */
 985void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 986{
 987	int retval;
 988	unsigned long flags;
 989
 990	spin_lock_irqsave(&pdc_lock, flags);
 991	pdc_result[0] = 0;
 992	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 993			      __pa(pdc_result), hpa,
 994			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 995	spin_unlock_irqrestore(&pdc_lock, flags);
 996
 997	return retval;
 998}
 999#endif /* UNTESTED CODE */
1000
1001/**
1002 * pdc_tod_read - Read the Time-Of-Day clock.
1003 * @tod: The return buffer:
1004 *
1005 * Read the Time-Of-Day clock
1006 */
1007int pdc_tod_read(struct pdc_tod *tod)
1008{
1009        int retval;
1010	unsigned long flags;
1011
1012        spin_lock_irqsave(&pdc_lock, flags);
1013        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1014        convert_to_wide(pdc_result);
1015        memcpy(tod, pdc_result, sizeof(*tod));
1016        spin_unlock_irqrestore(&pdc_lock, flags);
1017
1018        return retval;
1019}
1020EXPORT_SYMBOL(pdc_tod_read);
1021
1022int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1023{
1024	int retval;
1025	unsigned long flags;
1026
1027	spin_lock_irqsave(&pdc_lock, flags);
1028	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1029	convert_to_wide(pdc_result);
1030	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1031	spin_unlock_irqrestore(&pdc_lock, flags);
1032
1033	return retval;
1034}
1035
1036int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1037		unsigned long *pdt_entries_ptr)
1038{
1039	int retval;
1040	unsigned long flags;
1041
1042	spin_lock_irqsave(&pdc_lock, flags);
1043	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1044			__pa(pdt_entries_ptr));
1045	if (retval == PDC_OK) {
1046		convert_to_wide(pdc_result);
1047		memcpy(pret, pdc_result, sizeof(*pret));
1048	}
1049	spin_unlock_irqrestore(&pdc_lock, flags);
1050
1051#ifdef CONFIG_64BIT
1052	/*
1053	 * 64-bit kernels should not call this PDT function in narrow mode.
1054	 * The pdt_entries_ptr array above will now contain 32-bit values
1055	 */
1056	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1057		return PDC_ERROR;
1058#endif
1059
1060	return retval;
1061}
1062
1063/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064 * pdc_tod_set - Set the Time-Of-Day clock.
1065 * @sec: The number of seconds since epoch.
1066 * @usec: The number of micro seconds.
1067 *
1068 * Set the Time-Of-Day clock.
1069 */ 
1070int pdc_tod_set(unsigned long sec, unsigned long usec)
1071{
1072        int retval;
1073	unsigned long flags;
1074
1075        spin_lock_irqsave(&pdc_lock, flags);
1076        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1077        spin_unlock_irqrestore(&pdc_lock, flags);
1078
1079        return retval;
1080}
1081EXPORT_SYMBOL(pdc_tod_set);
1082
1083#ifdef CONFIG_64BIT
1084int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1085		struct pdc_memory_table *tbl, unsigned long entries)
1086{
1087	int retval;
1088	unsigned long flags;
1089
1090	spin_lock_irqsave(&pdc_lock, flags);
1091	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1092	convert_to_wide(pdc_result);
1093	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1094	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1095	spin_unlock_irqrestore(&pdc_lock, flags);
1096
1097	return retval;
1098}
1099#endif /* CONFIG_64BIT */
1100
1101/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1102 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1103 * it later. :)
1104 */
1105int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1106{
1107        int retval;
1108	unsigned long flags;
1109
1110        spin_lock_irqsave(&pdc_lock, flags);
1111        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1112                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1113        spin_unlock_irqrestore(&pdc_lock, flags);
1114
1115        return retval;
1116}
1117
1118/*
1119 * pdc_do_reset - Reset the system.
1120 *
1121 * Reset the system.
1122 */
1123int pdc_do_reset(void)
1124{
1125        int retval;
1126	unsigned long flags;
1127
1128        spin_lock_irqsave(&pdc_lock, flags);
1129        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1130        spin_unlock_irqrestore(&pdc_lock, flags);
1131
1132        return retval;
1133}
1134
1135/*
1136 * pdc_soft_power_info - Enable soft power switch.
1137 * @power_reg: address of soft power register
1138 *
1139 * Return the absolute address of the soft power switch register
1140 */
1141int __init pdc_soft_power_info(unsigned long *power_reg)
1142{
1143	int retval;
1144	unsigned long flags;
1145
1146	*power_reg = (unsigned long) (-1);
1147	
1148	spin_lock_irqsave(&pdc_lock, flags);
1149	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1150	if (retval == PDC_OK) {
1151                convert_to_wide(pdc_result);
1152                *power_reg = f_extend(pdc_result[0]);
1153	}
1154	spin_unlock_irqrestore(&pdc_lock, flags);
1155
1156	return retval;
1157}
1158
1159/*
1160 * pdc_soft_power_button - Control the soft power button behaviour
1161 * @sw_control: 0 for hardware control, 1 for software control 
1162 *
1163 *
1164 * This PDC function places the soft power button under software or
1165 * hardware control.
1166 * Under software control the OS may control to when to allow to shut 
1167 * down the system. Under hardware control pressing the power button 
1168 * powers off the system immediately.
 
 
 
1169 */
1170int pdc_soft_power_button(int sw_control)
1171{
1172	int retval;
1173	unsigned long flags;
1174
1175	spin_lock_irqsave(&pdc_lock, flags);
1176	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1177	spin_unlock_irqrestore(&pdc_lock, flags);
1178
1179	return retval;
1180}
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182/*
1183 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1184 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1185 * who knows what other platform firmware might do with this OS "hook".
1186 */
1187void pdc_io_reset(void)
1188{
1189	unsigned long flags;
1190
1191	spin_lock_irqsave(&pdc_lock, flags);
1192	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1193	spin_unlock_irqrestore(&pdc_lock, flags);
1194}
1195
1196/*
1197 * pdc_io_reset_devices - Hack to Stop USB controller
1198 *
1199 * If PDC used the usb controller, the usb controller
1200 * is still running and will crash the machines during iommu 
1201 * setup, because of still running DMA. This PDC call
1202 * stops the USB controller.
1203 * Normally called after calling pdc_io_reset().
1204 */
1205void pdc_io_reset_devices(void)
1206{
1207	unsigned long flags;
1208
1209	spin_lock_irqsave(&pdc_lock, flags);
1210	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1211	spin_unlock_irqrestore(&pdc_lock, flags);
1212}
1213
1214#endif /* defined(BOOTLOADER) */
1215
1216/* locked by pdc_console_lock */
1217static int __attribute__((aligned(8)))   iodc_retbuf[32];
1218static char __attribute__((aligned(64))) iodc_dbuf[4096];
1219
1220/**
1221 * pdc_iodc_print - Console print using IODC.
1222 * @str: the string to output.
1223 * @count: length of str
1224 *
1225 * Note that only these special chars are architected for console IODC io:
1226 * BEL, BS, CR, and LF. Others are passed through.
1227 * Since the HP console requires CR+LF to perform a 'newline', we translate
1228 * "\n" to "\r\n".
1229 */
1230int pdc_iodc_print(const unsigned char *str, unsigned count)
1231{
1232	unsigned int i;
1233	unsigned long flags;
1234
 
 
 
1235	for (i = 0; i < count;) {
1236		switch(str[i]) {
1237		case '\n':
1238			iodc_dbuf[i+0] = '\r';
1239			iodc_dbuf[i+1] = '\n';
1240			i += 2;
 
1241			goto print;
1242		default:
1243			iodc_dbuf[i] = str[i];
1244			i++;
1245			break;
1246		}
1247	}
1248
1249print:
1250        spin_lock_irqsave(&pdc_lock, flags);
1251        real32_call(PAGE0->mem_cons.iodc_io,
1252                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1253                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1254                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1255        spin_unlock_irqrestore(&pdc_lock, flags);
1256
1257	return i;
1258}
1259
1260#if !defined(BOOTLOADER)
1261/**
1262 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1263 *
1264 * Read a character (non-blocking) from the PDC console, returns -1 if
1265 * key is not present.
1266 */
1267int pdc_iodc_getc(void)
1268{
1269	int ch;
1270	int status;
1271	unsigned long flags;
1272
1273	/* Bail if no console input device. */
1274	if (!PAGE0->mem_kbd.iodc_io)
1275		return 0;
1276	
1277	/* wait for a keyboard (rs232)-input */
1278	spin_lock_irqsave(&pdc_lock, flags);
1279	real32_call(PAGE0->mem_kbd.iodc_io,
1280		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1281		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1282		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1283
1284	ch = *iodc_dbuf;
1285	status = *iodc_retbuf;
 
1286	spin_unlock_irqrestore(&pdc_lock, flags);
1287
1288	if (status == 0)
1289	    return -1;
1290	
1291	return ch;
1292}
1293
1294int pdc_sti_call(unsigned long func, unsigned long flags,
1295                 unsigned long inptr, unsigned long outputr,
1296                 unsigned long glob_cfg)
1297{
1298        int retval;
1299	unsigned long irqflags;
1300
1301        spin_lock_irqsave(&pdc_lock, irqflags);  
1302        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1303        spin_unlock_irqrestore(&pdc_lock, irqflags);
 
 
 
 
 
 
 
 
1304
1305        return retval;
1306}
1307EXPORT_SYMBOL(pdc_sti_call);
1308
1309#ifdef CONFIG_64BIT
1310/**
1311 * pdc_pat_cell_get_number - Returns the cell number.
1312 * @cell_info: The return buffer.
1313 *
1314 * This PDC call returns the cell number of the cell from which the call
1315 * is made.
1316 */
1317int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1318{
1319	int retval;
1320	unsigned long flags;
1321
1322	spin_lock_irqsave(&pdc_lock, flags);
1323	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1324	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1325	spin_unlock_irqrestore(&pdc_lock, flags);
1326
1327	return retval;
1328}
1329
1330/**
1331 * pdc_pat_cell_module - Retrieve the cell's module information.
1332 * @actcnt: The number of bytes written to mem_addr.
1333 * @ploc: The physical location.
1334 * @mod: The module index.
1335 * @view_type: The view of the address type.
1336 * @mem_addr: The return buffer.
1337 *
1338 * This PDC call returns information about each module attached to the cell
1339 * at the specified location.
1340 */
1341int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1342			unsigned long view_type, void *mem_addr)
1343{
1344	int retval;
1345	unsigned long flags;
1346	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1347
1348	spin_lock_irqsave(&pdc_lock, flags);
1349	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1350			      ploc, mod, view_type, __pa(&result));
1351	if(!retval) {
1352		*actcnt = pdc_result[0];
1353		memcpy(mem_addr, &result, *actcnt);
1354	}
1355	spin_unlock_irqrestore(&pdc_lock, flags);
1356
1357	return retval;
1358}
1359
1360/**
1361 * pdc_pat_cell_info - Retrieve the cell's information.
1362 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1363 * @actcnt: The number of bytes which should be written to info.
1364 * @offset: offset of the structure.
1365 * @cell_number: The cell number which should be asked, or -1 for current cell.
1366 *
1367 * This PDC call returns information about the given cell (or all cells).
1368 */
1369int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1370		unsigned long *actcnt, unsigned long offset,
1371		unsigned long cell_number)
1372{
1373	int retval;
1374	unsigned long flags;
1375	struct pdc_pat_cell_info_rtn_block result;
1376
1377	spin_lock_irqsave(&pdc_lock, flags);
1378	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1379			__pa(pdc_result), __pa(&result), *actcnt,
1380			offset, cell_number);
1381	if (!retval) {
1382		*actcnt = pdc_result[0];
1383		memcpy(info, &result, *actcnt);
1384	}
1385	spin_unlock_irqrestore(&pdc_lock, flags);
1386
1387	return retval;
1388}
1389
1390/**
1391 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1392 * @cpu_info: The return buffer.
1393 * @hpa: The Hard Physical Address of the CPU.
1394 *
1395 * Retrieve the cpu number for the cpu at the specified HPA.
1396 */
1397int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1398{
1399	int retval;
1400	unsigned long flags;
1401
1402	spin_lock_irqsave(&pdc_lock, flags);
1403	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1404			      __pa(&pdc_result), hpa);
1405	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1406	spin_unlock_irqrestore(&pdc_lock, flags);
1407
1408	return retval;
1409}
1410
1411/**
1412 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1413 * @num_entries: The return value.
1414 * @cell_num: The target cell.
1415 *
1416 * This PDC function returns the number of entries in the specified cell's
1417 * interrupt table.
1418 */
1419int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1420{
1421	int retval;
1422	unsigned long flags;
1423
1424	spin_lock_irqsave(&pdc_lock, flags);
1425	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1426			      __pa(pdc_result), cell_num);
1427	*num_entries = pdc_result[0];
1428	spin_unlock_irqrestore(&pdc_lock, flags);
1429
1430	return retval;
1431}
1432
1433/**
1434 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1435 * @r_addr: The return buffer.
1436 * @cell_num: The target cell.
1437 *
1438 * This PDC function returns the actual interrupt table for the specified cell.
1439 */
1440int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1441{
1442	int retval;
1443	unsigned long flags;
1444
1445	spin_lock_irqsave(&pdc_lock, flags);
1446	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1447			      __pa(r_addr), cell_num);
1448	spin_unlock_irqrestore(&pdc_lock, flags);
1449
1450	return retval;
1451}
1452
1453/**
1454 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1455 * @actlen: The return buffer.
1456 * @mem_addr: Pointer to the memory buffer.
1457 * @count: The number of bytes to read from the buffer.
1458 * @offset: The offset with respect to the beginning of the buffer.
1459 *
1460 */
1461int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1462			    unsigned long count, unsigned long offset)
1463{
1464	int retval;
1465	unsigned long flags;
1466
1467	spin_lock_irqsave(&pdc_lock, flags);
1468	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1469			      __pa(pdc_result2), count, offset);
1470	*actual_len = pdc_result[0];
1471	memcpy(mem_addr, pdc_result2, *actual_len);
1472	spin_unlock_irqrestore(&pdc_lock, flags);
1473
1474	return retval;
1475}
1476
1477/**
1478 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1479 * @legacy_rev: The legacy revision.
1480 * @pat_rev: The PAT revision.
1481 * @pdc_cap: The PDC capabilities.
1482 *
1483 */
1484int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1485		unsigned long *pat_rev, unsigned long *pdc_cap)
1486{
1487	int retval;
1488	unsigned long flags;
1489
1490	spin_lock_irqsave(&pdc_lock, flags);
1491	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1492				__pa(pdc_result));
1493	if (retval == PDC_OK) {
1494		*legacy_rev = pdc_result[0];
1495		*pat_rev = pdc_result[1];
1496		*pdc_cap = pdc_result[2];
1497	}
1498	spin_unlock_irqrestore(&pdc_lock, flags);
1499
1500	return retval;
1501}
1502
1503
1504/**
1505 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1506 * @pci_addr: PCI configuration space address for which the read request is being made.
1507 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1508 * @mem_addr: Pointer to return memory buffer.
1509 *
1510 */
1511int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1512{
1513	int retval;
1514	unsigned long flags;
1515
1516	spin_lock_irqsave(&pdc_lock, flags);
1517	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1518					__pa(pdc_result), pci_addr, pci_size);
1519	switch(pci_size) {
1520		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1521		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1522		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1523	}
1524	spin_unlock_irqrestore(&pdc_lock, flags);
1525
1526	return retval;
1527}
1528
1529/**
1530 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1531 * @pci_addr: PCI configuration space address for which the write  request is being made.
1532 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1533 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1534 *         written to PCI Config space.
1535 *
1536 */
1537int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1538{
1539	int retval;
1540	unsigned long flags;
1541
1542	spin_lock_irqsave(&pdc_lock, flags);
1543	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1544				pci_addr, pci_size, val);
1545	spin_unlock_irqrestore(&pdc_lock, flags);
1546
1547	return retval;
1548}
1549
1550/**
1551 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1552 * @rinfo: memory pdt information
1553 *
1554 */
1555int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1556{
1557	int retval;
1558	unsigned long flags;
1559
1560	spin_lock_irqsave(&pdc_lock, flags);
1561	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1562			__pa(&pdc_result));
1563	if (retval == PDC_OK)
1564		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1565	spin_unlock_irqrestore(&pdc_lock, flags);
1566
1567	return retval;
1568}
1569
1570/**
1571 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1572 *				table of a cell
1573 * @rinfo: memory pdt information
1574 * @cell: cell number
1575 *
1576 */
1577int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1578		unsigned long cell)
1579{
1580	int retval;
1581	unsigned long flags;
1582
1583	spin_lock_irqsave(&pdc_lock, flags);
1584	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1585			__pa(&pdc_result), cell);
1586	if (retval == PDC_OK)
1587		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1588	spin_unlock_irqrestore(&pdc_lock, flags);
1589
1590	return retval;
1591}
1592
1593/**
1594 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1595 * @pret: array of PDT entries
1596 * @pdt_entries_ptr: ptr to hold number of PDT entries
1597 * @max_entries: maximum number of entries to be read
1598 *
1599 */
1600int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1601		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1602{
1603	int retval;
1604	unsigned long flags, entries;
1605
1606	spin_lock_irqsave(&pdc_lock, flags);
1607	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1608	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1609			__pa(&pdc_result), parisc_cell_num,
1610			__pa(pdt_entries_ptr));
1611
1612	if (retval == PDC_OK) {
1613		/* build up return value as for PDC_PAT_MEM_PD_READ */
1614		entries = min(pdc_result[0], max_entries);
1615		pret->pdt_entries = entries;
1616		pret->actual_count_bytes = entries * sizeof(unsigned long);
1617	}
1618
1619	spin_unlock_irqrestore(&pdc_lock, flags);
1620	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1621
1622	return retval;
1623}
1624/**
1625 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1626 * @pret: array of PDT entries
1627 * @pdt_entries_ptr: ptr to hold number of PDT entries
1628 * @count: number of bytes to read
1629 * @offset: offset to start (in bytes)
1630 *
1631 */
1632int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1633		unsigned long *pdt_entries_ptr, unsigned long count,
1634		unsigned long offset)
1635{
1636	int retval;
1637	unsigned long flags, entries;
1638
1639	spin_lock_irqsave(&pdc_lock, flags);
1640	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1641		__pa(&pdc_result), __pa(pdt_entries_ptr),
1642		count, offset);
1643
1644	if (retval == PDC_OK) {
1645		entries = min(pdc_result[0], count);
1646		pret->actual_count_bytes = entries;
1647		pret->pdt_entries = entries / sizeof(unsigned long);
1648	}
1649
1650	spin_unlock_irqrestore(&pdc_lock, flags);
1651
1652	return retval;
1653}
1654
1655/**
1656 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1657 * @pret: ptr to hold returned information
1658 * @phys_addr: physical address to examine
1659 *
1660 */
1661int pdc_pat_mem_get_dimm_phys_location(
1662		struct pdc_pat_mem_phys_mem_location *pret,
1663		unsigned long phys_addr)
1664{
1665	int retval;
1666	unsigned long flags;
1667
1668	spin_lock_irqsave(&pdc_lock, flags);
1669	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1670		__pa(&pdc_result), phys_addr);
1671
1672	if (retval == PDC_OK)
1673		memcpy(pret, &pdc_result, sizeof(*pret));
1674
1675	spin_unlock_irqrestore(&pdc_lock, flags);
1676
1677	return retval;
1678}
1679#endif /* CONFIG_64BIT */
1680#endif /* defined(BOOTLOADER) */
1681
1682
1683/***************** 32-bit real-mode calls ***********/
1684/* The struct below is used
1685 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1686 * real32_call_asm() then uses this stack in narrow real mode
1687 */
1688
1689struct narrow_stack {
1690	/* use int, not long which is 64 bits */
1691	unsigned int arg13;
1692	unsigned int arg12;
1693	unsigned int arg11;
1694	unsigned int arg10;
1695	unsigned int arg9;
1696	unsigned int arg8;
1697	unsigned int arg7;
1698	unsigned int arg6;
1699	unsigned int arg5;
1700	unsigned int arg4;
1701	unsigned int arg3;
1702	unsigned int arg2;
1703	unsigned int arg1;
1704	unsigned int arg0;
1705	unsigned int frame_marker[8];
1706	unsigned int sp;
1707	/* in reality, there's nearly 8k of stack after this */
1708};
1709
1710long real32_call(unsigned long fn, ...)
1711{
1712	va_list args;
1713	extern struct narrow_stack real_stack;
1714	extern unsigned long real32_call_asm(unsigned int *,
1715					     unsigned int *, 
1716					     unsigned int);
1717	
1718	va_start(args, fn);
1719	real_stack.arg0 = va_arg(args, unsigned int);
1720	real_stack.arg1 = va_arg(args, unsigned int);
1721	real_stack.arg2 = va_arg(args, unsigned int);
1722	real_stack.arg3 = va_arg(args, unsigned int);
1723	real_stack.arg4 = va_arg(args, unsigned int);
1724	real_stack.arg5 = va_arg(args, unsigned int);
1725	real_stack.arg6 = va_arg(args, unsigned int);
1726	real_stack.arg7 = va_arg(args, unsigned int);
1727	real_stack.arg8 = va_arg(args, unsigned int);
1728	real_stack.arg9 = va_arg(args, unsigned int);
1729	real_stack.arg10 = va_arg(args, unsigned int);
1730	real_stack.arg11 = va_arg(args, unsigned int);
1731	real_stack.arg12 = va_arg(args, unsigned int);
1732	real_stack.arg13 = va_arg(args, unsigned int);
1733	va_end(args);
1734	
1735	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1736}
1737
1738#ifdef CONFIG_64BIT
1739/***************** 64-bit real-mode calls ***********/
1740
1741struct wide_stack {
1742	unsigned long arg0;
1743	unsigned long arg1;
1744	unsigned long arg2;
1745	unsigned long arg3;
1746	unsigned long arg4;
1747	unsigned long arg5;
1748	unsigned long arg6;
1749	unsigned long arg7;
1750	unsigned long arg8;
1751	unsigned long arg9;
1752	unsigned long arg10;
1753	unsigned long arg11;
1754	unsigned long arg12;
1755	unsigned long arg13;
1756	unsigned long frame_marker[2];	/* rp, previous sp */
1757	unsigned long sp;
1758	/* in reality, there's nearly 8k of stack after this */
1759};
1760
1761long real64_call(unsigned long fn, ...)
1762{
1763	va_list args;
1764	extern struct wide_stack real64_stack;
1765	extern unsigned long real64_call_asm(unsigned long *,
1766					     unsigned long *, 
1767					     unsigned long);
1768    
1769	va_start(args, fn);
1770	real64_stack.arg0 = va_arg(args, unsigned long);
1771	real64_stack.arg1 = va_arg(args, unsigned long);
1772	real64_stack.arg2 = va_arg(args, unsigned long);
1773	real64_stack.arg3 = va_arg(args, unsigned long);
1774	real64_stack.arg4 = va_arg(args, unsigned long);
1775	real64_stack.arg5 = va_arg(args, unsigned long);
1776	real64_stack.arg6 = va_arg(args, unsigned long);
1777	real64_stack.arg7 = va_arg(args, unsigned long);
1778	real64_stack.arg8 = va_arg(args, unsigned long);
1779	real64_stack.arg9 = va_arg(args, unsigned long);
1780	real64_stack.arg10 = va_arg(args, unsigned long);
1781	real64_stack.arg11 = va_arg(args, unsigned long);
1782	real64_stack.arg12 = va_arg(args, unsigned long);
1783	real64_stack.arg13 = va_arg(args, unsigned long);
1784	va_end(args);
1785	
1786	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1787}
1788
1789#endif /* CONFIG_64BIT */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *	PDC == Processor Dependent Code
   6 *
   7 * See PDC documentation at
   8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
   9 * for documentation describing the entry points and calling
  10 * conventions defined below.
  11 *
  12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  17 */
  18
  19/*	I think it would be in everyone's best interest to follow this
  20 *	guidelines when writing PDC wrappers:
  21 *
  22 *	 - the name of the pdc wrapper should match one of the macros
  23 *	   used for the first two arguments
  24 *	 - don't use caps for random parts of the name
  25 *	 - use the static PDC result buffers and "copyout" to structs
  26 *	   supplied by the caller to encapsulate alignment restrictions
  27 *	 - hold pdc_lock while in PDC or using static result buffers
  28 *	 - use __pa() to convert virtual (kernel) pointers to physical
  29 *	   ones.
  30 *	 - the name of the struct used for pdc return values should equal
  31 *	   one of the macros used for the first two arguments to the
  32 *	   corresponding PDC call
  33 *	 - keep the order of arguments
  34 *	 - don't be smart (setting trailing NUL bytes for strings, return
  35 *	   something useful even if the call failed) unless you are sure
  36 *	   it's not going to affect functionality or performance
  37 *
  38 *	Example:
  39 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  40 *	{
  41 *		int retval;
  42 *
  43 *		spin_lock_irq(&pdc_lock);
  44 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  45 *		convert_to_wide(pdc_result);
  46 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  47 *		spin_unlock_irq(&pdc_lock);
  48 *
  49 *		return retval;
  50 *	}
  51 *					prumpf	991016	
  52 */
  53
  54#include <linux/stdarg.h>
  55
  56#include <linux/delay.h>
  57#include <linux/init.h>
  58#include <linux/kernel.h>
  59#include <linux/module.h>
  60#include <linux/string.h>
  61#include <linux/spinlock.h>
  62
  63#include <asm/page.h>
  64#include <asm/pdc.h>
  65#include <asm/pdcpat.h>
  66#include <asm/processor.h>	/* for boot_cpu_data */
  67
  68#if defined(BOOTLOADER)
  69# undef  spin_lock_irqsave
  70# define spin_lock_irqsave(a, b) { b = 1; }
  71# undef  spin_unlock_irqrestore
  72# define spin_unlock_irqrestore(a, b)
  73#else
  74static DEFINE_SPINLOCK(pdc_lock);
  75#endif
  76
  77static unsigned long pdc_result[NUM_PDC_RESULT]  __aligned(8);
  78static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
  79
  80#ifdef CONFIG_64BIT
  81#define WIDE_FIRMWARE		PDC_MODEL_OS64
  82#define NARROW_FIRMWARE		PDC_MODEL_OS32
  83
  84/* Firmware needs to be initially set to narrow to determine the
  85 * actual firmware width. */
  86int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE;
  87#endif
  88
  89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  90 * and MEM_PDC calls are always the same width as the OS.
  91 * Some PAT boxes may have 64-bit IODC I/O.
  92 *
  93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  95 * This allowed wide kernels to run on Cxxx boxes.
  96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  98 */
  99
 100#ifdef CONFIG_64BIT
 101long real64_call(unsigned long function, ...);
 102#endif
 103long real32_call(unsigned long function, ...);
 104
 105#ifdef CONFIG_64BIT
 106#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 108#else
 109#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 110#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 111#endif
 112
 113
 114/**
 115 * f_extend - Convert PDC addresses to kernel addresses.
 116 * @address: Address returned from PDC.
 117 *
 118 * This function is used to convert PDC addresses into kernel addresses
 119 * when the PDC address size and kernel address size are different.
 120 */
 121static unsigned long f_extend(unsigned long address)
 122{
 123#ifdef CONFIG_64BIT
 124	if(unlikely(parisc_narrow_firmware)) {
 125		if((address & 0xff000000) == 0xf0000000)
 126			return (0xfffffff0UL << 32) | (u32)address;
 127
 128		if((address & 0xf0000000) == 0xf0000000)
 129			return (0xffffffffUL << 32) | (u32)address;
 130	}
 131#endif
 132	return address;
 133}
 134
 135/**
 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 137 * @addr: The return buffer from PDC.
 138 *
 139 * This function is used to convert the return buffer addresses retrieved from PDC
 140 * into kernel addresses when the PDC address size and kernel address size are
 141 * different.
 142 */
 143static void convert_to_wide(unsigned long *addr)
 144{
 145#ifdef CONFIG_64BIT
 146	int i;
 147	unsigned int *p = (unsigned int *)addr;
 148
 149	if (unlikely(parisc_narrow_firmware)) {
 150		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 151			addr[i] = p[i];
 152	}
 153#endif
 154}
 155
 156#ifdef CONFIG_64BIT
 157void set_firmware_width_unlocked(void)
 158{
 159	int ret;
 160
 161	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 162		__pa(pdc_result), 0);
 163	if (ret < 0)
 164		return;
 165	convert_to_wide(pdc_result);
 166	if (pdc_result[0] != NARROW_FIRMWARE)
 167		parisc_narrow_firmware = 0;
 168}
 169
 170/**
 171 * set_firmware_width - Determine if the firmware is wide or narrow.
 172 *
 173 * This function must be called before any pdc_* function that uses the
 174 * convert_to_wide function.
 175 */
 176void set_firmware_width(void)
 177{
 178	unsigned long flags;
 179
 180	/* already initialized? */
 181	if (parisc_narrow_firmware != NARROW_FIRMWARE)
 182		return;
 183
 184	spin_lock_irqsave(&pdc_lock, flags);
 185	set_firmware_width_unlocked();
 186	spin_unlock_irqrestore(&pdc_lock, flags);
 187}
 188#else
 189void set_firmware_width_unlocked(void)
 190{
 191	return;
 192}
 193
 194void set_firmware_width(void)
 195{
 196	return;
 197}
 198#endif /*CONFIG_64BIT*/
 199
 200
 201#if !defined(BOOTLOADER)
 202/**
 203 * pdc_emergency_unlock - Unlock the linux pdc lock
 204 *
 205 * This call unlocks the linux pdc lock in case we need some PDC functions
 206 * (like pdc_add_valid) during kernel stack dump.
 207 */
 208void pdc_emergency_unlock(void)
 209{
 210 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 211        if (spin_is_locked(&pdc_lock))
 212		spin_unlock(&pdc_lock);
 213}
 214
 215
 216/**
 217 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 218 * @address: Address to be verified.
 219 *
 220 * This PDC call attempts to read from the specified address and verifies
 221 * if the address is valid.
 222 * 
 223 * The return value is PDC_OK (0) in case accessing this address is valid.
 224 */
 225int pdc_add_valid(unsigned long address)
 226{
 227        int retval;
 228	unsigned long flags;
 229
 230        spin_lock_irqsave(&pdc_lock, flags);
 231        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 232        spin_unlock_irqrestore(&pdc_lock, flags);
 233
 234        return retval;
 235}
 236EXPORT_SYMBOL(pdc_add_valid);
 237
 238/**
 239 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 240 * @instr: Pointer to variable which will get instruction opcode.
 241 *
 242 * The return value is PDC_OK (0) in case call succeeded.
 243 */
 244int __init pdc_instr(unsigned int *instr)
 245{
 246	int retval;
 247	unsigned long flags;
 248
 249	spin_lock_irqsave(&pdc_lock, flags);
 250	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 251	convert_to_wide(pdc_result);
 252	*instr = pdc_result[0];
 253	spin_unlock_irqrestore(&pdc_lock, flags);
 254
 255	return retval;
 256}
 257
 258/**
 259 * pdc_chassis_info - Return chassis information.
 
 260 * @chassis_info: The memory buffer address.
 261 * @led_info: The size of the memory buffer address.
 262 * @len: The size of the memory buffer address.
 263 *
 264 * An HVERSION dependent call for returning the chassis information.
 265 */
 266int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 267{
 268        int retval;
 269	unsigned long flags;
 270
 271        spin_lock_irqsave(&pdc_lock, flags);
 272        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 273        memcpy(&pdc_result2, led_info, len);
 274        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 275                              __pa(pdc_result), __pa(pdc_result2), len);
 276        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 277        memcpy(led_info, pdc_result2, len);
 278        spin_unlock_irqrestore(&pdc_lock, flags);
 279
 280        return retval;
 281}
 282
 283/**
 284 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 285 * @state: state of the machine
 286 * @data: value for that state
 287 * 
 288 * Must be correctly formatted or expect system crash
 289 */
 290#ifdef CONFIG_64BIT
 291int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 292{
 293	int retval = 0;
 294	unsigned long flags;
 295        
 296	if (!is_pdc_pat())
 297		return -1;
 298
 299	spin_lock_irqsave(&pdc_lock, flags);
 300	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 301	spin_unlock_irqrestore(&pdc_lock, flags);
 302
 303	return retval;
 304}
 305#endif
 306
 307/**
 308 * pdc_chassis_disp - Updates chassis code
 309 * @disp: value to show on display
 310 */
 311int pdc_chassis_disp(unsigned long disp)
 312{
 313	int retval = 0;
 314	unsigned long flags;
 315
 316	spin_lock_irqsave(&pdc_lock, flags);
 317	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 318	spin_unlock_irqrestore(&pdc_lock, flags);
 319
 320	return retval;
 321}
 322
 323/**
 324 * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
 
 325 */
 326int __pdc_cpu_rendezvous(void)
 327{
 328	if (is_pdc_pat())
 329		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 330	else
 331		return mem_pdc_call(PDC_PROC, 1, 0);
 332}
 333
 334/**
 335 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
 336 */
 337void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock)
 338{
 339	spin_lock(&pdc_lock);
 340}
 341
 342/**
 343 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
 344 */
 345void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock)
 346{
 347	spin_unlock(&pdc_lock);
 348}
 349
 350/**
 351 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
 352 * @pdc_entry: pointer to where the PDC entry point should be stored
 353 */
 354int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
 355{
 356	int retval = 0;
 357	unsigned long flags;
 358
 359	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
 360		*pdc_entry = MEM_PDC;
 361		return 0;
 362	}
 363
 364	spin_lock_irqsave(&pdc_lock, flags);
 365	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
 366			__pa(pdc_result));
 367	*pdc_entry = pdc_result[0];
 368	spin_unlock_irqrestore(&pdc_lock, flags);
 369
 370	return retval;
 371}
 372/**
 373 * pdc_chassis_warn - Fetches chassis warnings
 374 * @warn: The warning value to be shown
 375 */
 376int pdc_chassis_warn(unsigned long *warn)
 377{
 378	int retval = 0;
 379	unsigned long flags;
 380
 381	spin_lock_irqsave(&pdc_lock, flags);
 382	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 383	*warn = pdc_result[0];
 384	spin_unlock_irqrestore(&pdc_lock, flags);
 385
 386	return retval;
 387}
 388
 389int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 390{
 391	int ret;
 392
 393	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 394	convert_to_wide(pdc_result);
 395	pdc_coproc_info->ccr_functional = pdc_result[0];
 396	pdc_coproc_info->ccr_present = pdc_result[1];
 397	pdc_coproc_info->revision = pdc_result[17];
 398	pdc_coproc_info->model = pdc_result[18];
 399
 400	return ret;
 401}
 402
 403/**
 404 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 405 * @pdc_coproc_info: Return buffer address.
 406 *
 407 * This PDC call returns the presence and status of all the coprocessors
 408 * attached to the processor.
 409 */
 410int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 411{
 412	int ret;
 413	unsigned long flags;
 414
 415	spin_lock_irqsave(&pdc_lock, flags);
 416	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 417	spin_unlock_irqrestore(&pdc_lock, flags);
 418
 419	return ret;
 420}
 421
 422/**
 423 * pdc_iodc_read - Read data from the modules IODC.
 424 * @actcnt: The actual number of bytes.
 425 * @hpa: The HPA of the module for the iodc read.
 426 * @index: The iodc entry point.
 427 * @iodc_data: A buffer memory for the iodc options.
 428 * @iodc_data_size: Size of the memory buffer.
 429 *
 430 * This PDC call reads from the IODC of the module specified by the hpa
 431 * argument.
 432 */
 433int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 434		  void *iodc_data, unsigned int iodc_data_size)
 435{
 436	int retval;
 437	unsigned long flags;
 438
 439	spin_lock_irqsave(&pdc_lock, flags);
 440	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 441			      index, __pa(pdc_result2), iodc_data_size);
 442	convert_to_wide(pdc_result);
 443	*actcnt = pdc_result[0];
 444	memcpy(iodc_data, pdc_result2, iodc_data_size);
 445	spin_unlock_irqrestore(&pdc_lock, flags);
 446
 447	return retval;
 448}
 449EXPORT_SYMBOL(pdc_iodc_read);
 450
 451/**
 452 * pdc_system_map_find_mods - Locate unarchitected modules.
 453 * @pdc_mod_info: Return buffer address.
 454 * @mod_path: pointer to dev path structure.
 455 * @mod_index: fixed address module index.
 456 *
 457 * To locate and identify modules which reside at fixed I/O addresses, which
 458 * do not self-identify via architected bus walks.
 459 */
 460int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 461			     struct pdc_module_path *mod_path, long mod_index)
 462{
 463	int retval;
 464	unsigned long flags;
 465
 466	spin_lock_irqsave(&pdc_lock, flags);
 467	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 468			      __pa(pdc_result2), mod_index);
 469	convert_to_wide(pdc_result);
 470	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 471	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 472	spin_unlock_irqrestore(&pdc_lock, flags);
 473
 474	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 475	return retval;
 476}
 477
 478/**
 479 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 480 * @pdc_addr_info: Return buffer address.
 481 * @mod_index: Fixed address module index.
 482 * @addr_index: Address range index.
 483 * 
 484 * Retrieve additional information about subsequent address ranges for modules
 485 * with multiple address ranges.  
 486 */
 487int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 488			      long mod_index, long addr_index)
 489{
 490	int retval;
 491	unsigned long flags;
 492
 493	spin_lock_irqsave(&pdc_lock, flags);
 494	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 495			      mod_index, addr_index);
 496	convert_to_wide(pdc_result);
 497	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 498	spin_unlock_irqrestore(&pdc_lock, flags);
 499
 500	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 501	return retval;
 502}
 503
 504/**
 505 * pdc_model_info - Return model information about the processor.
 506 * @model: The return buffer.
 507 *
 508 * Returns the version numbers, identifiers, and capabilities from the processor module.
 509 */
 510int pdc_model_info(struct pdc_model *model) 
 511{
 512	int retval;
 513	unsigned long flags;
 514
 515	spin_lock_irqsave(&pdc_lock, flags);
 516	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 517	convert_to_wide(pdc_result);
 518	memcpy(model, pdc_result, sizeof(*model));
 519	spin_unlock_irqrestore(&pdc_lock, flags);
 520
 521	return retval;
 522}
 523
 524/**
 525 * pdc_model_sysmodel - Get the system model name.
 526 * @os_id: The operating system ID asked for (an OS_ID_* value)
 527 * @name: A char array of at least 81 characters.
 528 *
 529 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 530 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 531 * on HP/UX.
 532 */
 533int pdc_model_sysmodel(unsigned int os_id, char *name)
 534{
 535        int retval;
 536	unsigned long flags;
 537
 538        spin_lock_irqsave(&pdc_lock, flags);
 539        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 540                              os_id, __pa(name));
 541        convert_to_wide(pdc_result);
 542
 543        if (retval == PDC_OK) {
 544                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 545        } else {
 546                name[0] = 0;
 547        }
 548        spin_unlock_irqrestore(&pdc_lock, flags);
 549
 550        return retval;
 551}
 552
 553/**
 554 * pdc_model_versions - Identify the version number of each processor.
 555 * @versions: The return buffer.
 556 * @id: The id of the processor to check.
 557 *
 558 * Returns the version number for each processor component.
 559 *
 560 * This comment was here before, but I do not know what it means :( -RB
 561 * id: 0 = cpu revision, 1 = boot-rom-version
 562 */
 563int pdc_model_versions(unsigned long *versions, int id)
 564{
 565        int retval;
 566	unsigned long flags;
 567
 568        spin_lock_irqsave(&pdc_lock, flags);
 569        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 570        convert_to_wide(pdc_result);
 571        *versions = pdc_result[0];
 572        spin_unlock_irqrestore(&pdc_lock, flags);
 573
 574        return retval;
 575}
 576
 577/**
 578 * pdc_model_cpuid - Returns the CPU_ID.
 579 * @cpu_id: The return buffer.
 580 *
 581 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 582 * the processor module.
 583 */
 584int pdc_model_cpuid(unsigned long *cpu_id)
 585{
 586        int retval;
 587	unsigned long flags;
 588
 589        spin_lock_irqsave(&pdc_lock, flags);
 590        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 591        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 592        convert_to_wide(pdc_result);
 593        *cpu_id = pdc_result[0];
 594        spin_unlock_irqrestore(&pdc_lock, flags);
 595
 596        return retval;
 597}
 598
 599/**
 600 * pdc_model_capabilities - Returns the platform capabilities.
 601 * @capabilities: The return buffer.
 602 *
 603 * Returns information about platform support for 32- and/or 64-bit
 604 * OSes, IO-PDIR coherency, and virtual aliasing.
 605 */
 606int pdc_model_capabilities(unsigned long *capabilities)
 607{
 608        int retval;
 609	unsigned long flags;
 610
 611        spin_lock_irqsave(&pdc_lock, flags);
 612        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 613        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 614        convert_to_wide(pdc_result);
 615        if (retval == PDC_OK) {
 616                *capabilities = pdc_result[0];
 617        } else {
 618                *capabilities = PDC_MODEL_OS32;
 619        }
 620        spin_unlock_irqrestore(&pdc_lock, flags);
 621
 622        return retval;
 623}
 624
 625/**
 626 * pdc_model_platform_info - Returns machine product and serial number.
 627 * @orig_prod_num: Return buffer for original product number.
 628 * @current_prod_num: Return buffer for current product number.
 629 * @serial_no: Return buffer for serial number.
 630 *
 631 * Returns strings containing the original and current product numbers and the
 632 * serial number of the system.
 633 */
 634int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 635		char *serial_no)
 636{
 637	int retval;
 638	unsigned long flags;
 639
 640	spin_lock_irqsave(&pdc_lock, flags);
 641	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 642		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 643	convert_to_wide(pdc_result);
 644	spin_unlock_irqrestore(&pdc_lock, flags);
 645
 646	return retval;
 647}
 648
 649/**
 650 * pdc_cache_info - Return cache and TLB information.
 651 * @cache_info: The return buffer.
 652 *
 653 * Returns information about the processor's cache and TLB.
 654 */
 655int pdc_cache_info(struct pdc_cache_info *cache_info)
 656{
 657        int retval;
 658	unsigned long flags;
 659
 660        spin_lock_irqsave(&pdc_lock, flags);
 661        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 662        convert_to_wide(pdc_result);
 663        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 664        spin_unlock_irqrestore(&pdc_lock, flags);
 665
 666        return retval;
 667}
 668
 669/**
 670 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 671 * @space_bits: Should be 0, if not, bad mojo!
 672 *
 673 * Returns information about Space ID hashing.
 674 */
 675int pdc_spaceid_bits(unsigned long *space_bits)
 676{
 677	int retval;
 678	unsigned long flags;
 679
 680	spin_lock_irqsave(&pdc_lock, flags);
 681	pdc_result[0] = 0;
 682	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 683	convert_to_wide(pdc_result);
 684	*space_bits = pdc_result[0];
 685	spin_unlock_irqrestore(&pdc_lock, flags);
 686
 687	return retval;
 688}
 689
 
 690/**
 691 * pdc_btlb_info - Return block TLB information.
 692 * @btlb: The return buffer.
 693 *
 694 * Returns information about the hardware Block TLB.
 695 */
 696int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 697{
 698	int retval;
 699	unsigned long flags;
 700
 701	if (IS_ENABLED(CONFIG_PA20))
 702		return PDC_BAD_PROC;
 
 
 703
 704	spin_lock_irqsave(&pdc_lock, flags);
 705	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 706	memcpy(btlb, pdc_result, sizeof(*btlb));
 707	spin_unlock_irqrestore(&pdc_lock, flags);
 708
 709	if(retval < 0) {
 710		btlb->max_size = 0;
 711	}
 712	return retval;
 713}
 714
 715int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len,
 716		    unsigned long entry_info, unsigned long slot)
 717{
 718	int retval;
 719	unsigned long flags;
 720
 721	if (IS_ENABLED(CONFIG_PA20))
 722		return PDC_BAD_PROC;
 723
 724	spin_lock_irqsave(&pdc_lock, flags);
 725	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32),
 726			      (unsigned long) vpage, physpage, len, entry_info, slot);
 727	spin_unlock_irqrestore(&pdc_lock, flags);
 728	return retval;
 729}
 730
 731int pdc_btlb_purge_all(void)
 732{
 733	int retval;
 734	unsigned long flags;
 735
 736	if (IS_ENABLED(CONFIG_PA20))
 737		return PDC_BAD_PROC;
 738
 739	spin_lock_irqsave(&pdc_lock, flags);
 740	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL);
 741	spin_unlock_irqrestore(&pdc_lock, flags);
 742	return retval;
 743}
 744
 745/**
 746 * pdc_mem_map_hpa - Find fixed module information.  
 747 * @address: The return buffer
 748 * @mod_path: pointer to dev path structure.
 749 *
 750 * This call was developed for S700 workstations to allow the kernel to find
 751 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 752 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 753 * call.
 754 *
 755 * This call is supported by all existing S700 workstations (up to  Gecko).
 756 */
 757int pdc_mem_map_hpa(struct pdc_memory_map *address,
 758		struct pdc_module_path *mod_path)
 759{
 760        int retval;
 761	unsigned long flags;
 762
 763	if (IS_ENABLED(CONFIG_PA20))
 764		return PDC_BAD_PROC;
 765
 766        spin_lock_irqsave(&pdc_lock, flags);
 767        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 768        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 769				__pa(pdc_result2));
 770        memcpy(address, pdc_result, sizeof(*address));
 771        spin_unlock_irqrestore(&pdc_lock, flags);
 772
 773        return retval;
 774}
 
 775
 776/**
 777 * pdc_lan_station_id - Get the LAN address.
 778 * @lan_addr: The return buffer.
 779 * @hpa: The network device HPA.
 780 *
 781 * Get the LAN station address when it is not directly available from the LAN hardware.
 782 */
 783int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 784{
 785	int retval;
 786	unsigned long flags;
 787
 788	spin_lock_irqsave(&pdc_lock, flags);
 789	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 790			__pa(pdc_result), hpa);
 791	if (retval < 0) {
 792		/* FIXME: else read MAC from NVRAM */
 793		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 794	} else {
 795		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 796	}
 797	spin_unlock_irqrestore(&pdc_lock, flags);
 798
 799	return retval;
 800}
 801EXPORT_SYMBOL(pdc_lan_station_id);
 802
 803/**
 804 * pdc_stable_read - Read data from Stable Storage.
 805 * @staddr: Stable Storage address to access.
 806 * @memaddr: The memory address where Stable Storage data shall be copied.
 807 * @count: number of bytes to transfer. count is multiple of 4.
 808 *
 809 * This PDC call reads from the Stable Storage address supplied in staddr
 810 * and copies count bytes to the memory address memaddr.
 811 * The call will fail if staddr+count > PDC_STABLE size.
 812 */
 813int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 814{
 815       int retval;
 816	unsigned long flags;
 817
 818       spin_lock_irqsave(&pdc_lock, flags);
 819       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 820               __pa(pdc_result), count);
 821       convert_to_wide(pdc_result);
 822       memcpy(memaddr, pdc_result, count);
 823       spin_unlock_irqrestore(&pdc_lock, flags);
 824
 825       return retval;
 826}
 827EXPORT_SYMBOL(pdc_stable_read);
 828
 829/**
 830 * pdc_stable_write - Write data to Stable Storage.
 831 * @staddr: Stable Storage address to access.
 832 * @memaddr: The memory address where Stable Storage data shall be read from.
 833 * @count: number of bytes to transfer. count is multiple of 4.
 834 *
 835 * This PDC call reads count bytes from the supplied memaddr address,
 836 * and copies count bytes to the Stable Storage address staddr.
 837 * The call will fail if staddr+count > PDC_STABLE size.
 838 */
 839int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 840{
 841       int retval;
 842	unsigned long flags;
 843
 844       spin_lock_irqsave(&pdc_lock, flags);
 845       memcpy(pdc_result, memaddr, count);
 846       convert_to_wide(pdc_result);
 847       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 848               __pa(pdc_result), count);
 849       spin_unlock_irqrestore(&pdc_lock, flags);
 850
 851       return retval;
 852}
 853EXPORT_SYMBOL(pdc_stable_write);
 854
 855/**
 856 * pdc_stable_get_size - Get Stable Storage size in bytes.
 857 * @size: pointer where the size will be stored.
 858 *
 859 * This PDC call returns the number of bytes in the processor's Stable
 860 * Storage, which is the number of contiguous bytes implemented in Stable
 861 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 862 * which is a multiple of four.
 863 */
 864int pdc_stable_get_size(unsigned long *size)
 865{
 866       int retval;
 867	unsigned long flags;
 868
 869       spin_lock_irqsave(&pdc_lock, flags);
 870       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 871       *size = pdc_result[0];
 872       spin_unlock_irqrestore(&pdc_lock, flags);
 873
 874       return retval;
 875}
 876EXPORT_SYMBOL(pdc_stable_get_size);
 877
 878/**
 879 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 880 *
 881 * This PDC call is meant to be used to check the integrity of the current
 882 * contents of Stable Storage.
 883 */
 884int pdc_stable_verify_contents(void)
 885{
 886       int retval;
 887	unsigned long flags;
 888
 889       spin_lock_irqsave(&pdc_lock, flags);
 890       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 891       spin_unlock_irqrestore(&pdc_lock, flags);
 892
 893       return retval;
 894}
 895EXPORT_SYMBOL(pdc_stable_verify_contents);
 896
 897/**
 898 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 899 * the validity indicator.
 900 *
 901 * This PDC call will erase all contents of Stable Storage. Use with care!
 902 */
 903int pdc_stable_initialize(void)
 904{
 905       int retval;
 906	unsigned long flags;
 907
 908       spin_lock_irqsave(&pdc_lock, flags);
 909       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 910       spin_unlock_irqrestore(&pdc_lock, flags);
 911
 912       return retval;
 913}
 914EXPORT_SYMBOL(pdc_stable_initialize);
 915
 916/**
 917 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 918 * @hwpath: fully bc.mod style path to the device.
 919 * @initiator: the array to return the result into
 920 *
 921 * Get the SCSI operational parameters from PDC.
 922 * Needed since HPUX never used BIOS or symbios card NVRAM.
 923 * Most ncr/sym cards won't have an entry and just use whatever
 924 * capabilities of the card are (eg Ultra, LVD). But there are
 925 * several cases where it's useful:
 926 *    o set SCSI id for Multi-initiator clusters,
 927 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 928 *    o bus width exported is less than what the interface chip supports.
 929 */
 930int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 931{
 932	int retval;
 933	unsigned long flags;
 934
 935	spin_lock_irqsave(&pdc_lock, flags);
 936
 937/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 938#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 939	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 940
 941	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 942			      __pa(pdc_result), __pa(hwpath));
 943	if (retval < PDC_OK)
 944		goto out;
 945
 946	if (pdc_result[0] < 16) {
 947		initiator->host_id = pdc_result[0];
 948	} else {
 949		initiator->host_id = -1;
 950	}
 951
 952	/*
 953	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 954	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 955	 */
 956	switch (pdc_result[1]) {
 957		case  1: initiator->factor = 50; break;
 958		case  2: initiator->factor = 25; break;
 959		case  5: initiator->factor = 12; break;
 960		case 25: initiator->factor = 10; break;
 961		case 20: initiator->factor = 12; break;
 962		case 40: initiator->factor = 10; break;
 963		default: initiator->factor = -1; break;
 964	}
 965
 966	if (IS_SPROCKETS()) {
 967		initiator->width = pdc_result[4];
 968		initiator->mode = pdc_result[5];
 969	} else {
 970		initiator->width = -1;
 971		initiator->mode = -1;
 972	}
 973
 974 out:
 975	spin_unlock_irqrestore(&pdc_lock, flags);
 976
 977	return (retval >= PDC_OK);
 978}
 979EXPORT_SYMBOL(pdc_get_initiator);
 980
 981
 982/**
 983 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 984 * @num_entries: The return value.
 985 * @hpa: The HPA for the device.
 986 *
 987 * This PDC function returns the number of entries in the specified cell's
 988 * interrupt table.
 989 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 990 */ 
 991int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 992{
 993	int retval;
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&pdc_lock, flags);
 997	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 998			      __pa(pdc_result), hpa);
 999	convert_to_wide(pdc_result);
1000	*num_entries = pdc_result[0];
1001	spin_unlock_irqrestore(&pdc_lock, flags);
1002
1003	return retval;
1004}
1005
1006/** 
1007 * pdc_pci_irt - Get the PCI interrupt routing table.
1008 * @num_entries: The number of entries in the table.
1009 * @hpa: The Hard Physical Address of the device.
1010 * @tbl: 
1011 *
1012 * Get the PCI interrupt routing table for the device at the given HPA.
1013 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
1014 */
1015int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
1016{
1017	int retval;
1018	unsigned long flags;
1019
1020	BUG_ON((unsigned long)tbl & 0x7);
1021
1022	spin_lock_irqsave(&pdc_lock, flags);
1023	pdc_result[0] = num_entries;
1024	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
1025			      __pa(pdc_result), hpa, __pa(tbl));
1026	spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028	return retval;
1029}
1030
1031
1032#if 0	/* UNTEST CODE - left here in case someone needs it */
1033
1034/** 
1035 * pdc_pci_config_read - read PCI config space.
1036 * @hpa: Token from PDC to indicate which PCI device
1037 * @cfg_addr: Configuration space address to read from
1038 *
1039 * Read PCI Configuration space *before* linux PCI subsystem is running.
1040 */
1041unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1042{
1043	int retval;
1044	unsigned long flags;
1045
1046	spin_lock_irqsave(&pdc_lock, flags);
1047	pdc_result[0] = 0;
1048	pdc_result[1] = 0;
1049	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
1050			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1051	spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053	return retval ? ~0 : (unsigned int) pdc_result[0];
1054}
1055
1056
1057/** 
1058 * pdc_pci_config_write - read PCI config space.
1059 * @hpa: Token from PDC to indicate which PCI device
1060 * @cfg_addr: Configuration space address to write
1061 * @val: Value we want in the 32-bit register
1062 *
1063 * Write PCI Configuration space *before* linux PCI subsystem is running.
1064 */
1065void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1066{
1067	int retval;
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&pdc_lock, flags);
1071	pdc_result[0] = 0;
1072	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
1073			      __pa(pdc_result), hpa,
1074			      cfg_addr&~3UL, 4UL, (unsigned long) val);
1075	spin_unlock_irqrestore(&pdc_lock, flags);
1076
1077	return retval;
1078}
1079#endif /* UNTESTED CODE */
1080
1081/**
1082 * pdc_tod_read - Read the Time-Of-Day clock.
1083 * @tod: The return buffer:
1084 *
1085 * Read the Time-Of-Day clock
1086 */
1087int pdc_tod_read(struct pdc_tod *tod)
1088{
1089        int retval;
1090	unsigned long flags;
1091
1092        spin_lock_irqsave(&pdc_lock, flags);
1093        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1094        convert_to_wide(pdc_result);
1095        memcpy(tod, pdc_result, sizeof(*tod));
1096        spin_unlock_irqrestore(&pdc_lock, flags);
1097
1098        return retval;
1099}
1100EXPORT_SYMBOL(pdc_tod_read);
1101
1102int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1103{
1104	int retval;
1105	unsigned long flags;
1106
1107	spin_lock_irqsave(&pdc_lock, flags);
1108	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1109	convert_to_wide(pdc_result);
1110	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1111	spin_unlock_irqrestore(&pdc_lock, flags);
1112
1113	return retval;
1114}
1115
1116int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1117		unsigned long *pdt_entries_ptr)
1118{
1119	int retval;
1120	unsigned long flags;
1121
1122	spin_lock_irqsave(&pdc_lock, flags);
1123	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1124			__pa(pdt_entries_ptr));
1125	if (retval == PDC_OK) {
1126		convert_to_wide(pdc_result);
1127		memcpy(pret, pdc_result, sizeof(*pret));
1128	}
1129	spin_unlock_irqrestore(&pdc_lock, flags);
1130
1131#ifdef CONFIG_64BIT
1132	/*
1133	 * 64-bit kernels should not call this PDT function in narrow mode.
1134	 * The pdt_entries_ptr array above will now contain 32-bit values
1135	 */
1136	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1137		return PDC_ERROR;
1138#endif
1139
1140	return retval;
1141}
1142
1143/**
1144 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1145 * @ret: pointer to return buffer
1146 */
1147int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1148{
1149	int retval;
1150	unsigned long flags;
1151
1152	spin_lock_irqsave(&pdc_lock, flags);
1153	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1154			      __pa(ret), sizeof(*ret));
1155	spin_unlock_irqrestore(&pdc_lock, flags);
1156	return retval;
1157}
1158
1159/**
1160 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1161 * @ret: pointer to return buffer
1162 */
1163int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1164{
1165	int retval;
1166	unsigned long flags;
1167
1168	spin_lock_irqsave(&pdc_lock, flags);
1169	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1170			      __pa(ret), sizeof(*ret));
1171	spin_unlock_irqrestore(&pdc_lock, flags);
1172	return retval;
1173}
1174
1175/**
1176 * pdc_tod_set - Set the Time-Of-Day clock.
1177 * @sec: The number of seconds since epoch.
1178 * @usec: The number of micro seconds.
1179 *
1180 * Set the Time-Of-Day clock.
1181 */ 
1182int pdc_tod_set(unsigned long sec, unsigned long usec)
1183{
1184        int retval;
1185	unsigned long flags;
1186
1187        spin_lock_irqsave(&pdc_lock, flags);
1188        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1189        spin_unlock_irqrestore(&pdc_lock, flags);
1190
1191        return retval;
1192}
1193EXPORT_SYMBOL(pdc_tod_set);
1194
1195#ifdef CONFIG_64BIT
1196int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1197		struct pdc_memory_table *tbl, unsigned long entries)
1198{
1199	int retval;
1200	unsigned long flags;
1201
1202	spin_lock_irqsave(&pdc_lock, flags);
1203	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1204	convert_to_wide(pdc_result);
1205	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1206	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1207	spin_unlock_irqrestore(&pdc_lock, flags);
1208
1209	return retval;
1210}
1211#endif /* CONFIG_64BIT */
1212
1213/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1214 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1215 * it later. :)
1216 */
1217int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1218{
1219        int retval;
1220	unsigned long flags;
1221
1222        spin_lock_irqsave(&pdc_lock, flags);
1223        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1224                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1225        spin_unlock_irqrestore(&pdc_lock, flags);
1226
1227        return retval;
1228}
1229
1230/*
1231 * pdc_do_reset - Reset the system.
1232 *
1233 * Reset the system.
1234 */
1235int pdc_do_reset(void)
1236{
1237        int retval;
1238	unsigned long flags;
1239
1240        spin_lock_irqsave(&pdc_lock, flags);
1241        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1242        spin_unlock_irqrestore(&pdc_lock, flags);
1243
1244        return retval;
1245}
1246
1247/*
1248 * pdc_soft_power_info - Enable soft power switch.
1249 * @power_reg: address of soft power register
1250 *
1251 * Return the absolute address of the soft power switch register
1252 */
1253int __init pdc_soft_power_info(unsigned long *power_reg)
1254{
1255	int retval;
1256	unsigned long flags;
1257
1258	*power_reg = (unsigned long) (-1);
1259	
1260	spin_lock_irqsave(&pdc_lock, flags);
1261	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1262	if (retval == PDC_OK) {
1263                convert_to_wide(pdc_result);
1264                *power_reg = f_extend(pdc_result[0]);
1265	}
1266	spin_unlock_irqrestore(&pdc_lock, flags);
1267
1268	return retval;
1269}
1270
1271/*
1272 * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1273 * @sw_control: 0 for hardware control, 1 for software control
1274 *
1275 *
1276 * This PDC function places the soft power button under software or
1277 * hardware control.
1278 * Under software control the OS may control to when to allow to shut
1279 * down the system. Under hardware control pressing the power button
1280 * powers off the system immediately.
1281 *
1282 * The _panic version relies on spin_trylock to prevent deadlock
1283 * on panic path.
1284 */
1285int pdc_soft_power_button(int sw_control)
1286{
1287	int retval;
1288	unsigned long flags;
1289
1290	spin_lock_irqsave(&pdc_lock, flags);
1291	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1292	spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294	return retval;
1295}
1296
1297int pdc_soft_power_button_panic(int sw_control)
1298{
1299	int retval;
1300	unsigned long flags;
1301
1302	if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1303		pr_emerg("Couldn't enable soft power button\n");
1304		return -EBUSY; /* ignored by the panic notifier */
1305	}
1306
1307	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1308	spin_unlock_irqrestore(&pdc_lock, flags);
1309
1310	return retval;
1311}
1312
1313/*
1314 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1315 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1316 * who knows what other platform firmware might do with this OS "hook".
1317 */
1318void pdc_io_reset(void)
1319{
1320	unsigned long flags;
1321
1322	spin_lock_irqsave(&pdc_lock, flags);
1323	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1324	spin_unlock_irqrestore(&pdc_lock, flags);
1325}
1326
1327/*
1328 * pdc_io_reset_devices - Hack to Stop USB controller
1329 *
1330 * If PDC used the usb controller, the usb controller
1331 * is still running and will crash the machines during iommu 
1332 * setup, because of still running DMA. This PDC call
1333 * stops the USB controller.
1334 * Normally called after calling pdc_io_reset().
1335 */
1336void pdc_io_reset_devices(void)
1337{
1338	unsigned long flags;
1339
1340	spin_lock_irqsave(&pdc_lock, flags);
1341	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1342	spin_unlock_irqrestore(&pdc_lock, flags);
1343}
1344
1345#endif /* defined(BOOTLOADER) */
1346
1347/* locked by pdc_lock */
1348static char iodc_dbuf[4096] __page_aligned_bss;
 
1349
1350/**
1351 * pdc_iodc_print - Console print using IODC.
1352 * @str: the string to output.
1353 * @count: length of str
1354 *
1355 * Note that only these special chars are architected for console IODC io:
1356 * BEL, BS, CR, and LF. Others are passed through.
1357 * Since the HP console requires CR+LF to perform a 'newline', we translate
1358 * "\n" to "\r\n".
1359 */
1360int pdc_iodc_print(const unsigned char *str, unsigned count)
1361{
1362	unsigned int i, found = 0;
1363	unsigned long flags;
1364
1365	count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1366
1367	spin_lock_irqsave(&pdc_lock, flags);
1368	for (i = 0; i < count;) {
1369		switch(str[i]) {
1370		case '\n':
1371			iodc_dbuf[i+0] = '\r';
1372			iodc_dbuf[i+1] = '\n';
1373			i += 2;
1374			found = 1;
1375			goto print;
1376		default:
1377			iodc_dbuf[i] = str[i];
1378			i++;
1379			break;
1380		}
1381	}
1382
1383print:
1384	real32_call(PAGE0->mem_cons.iodc_io,
1385		(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1386		PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1387		__pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1388	spin_unlock_irqrestore(&pdc_lock, flags);
 
1389
1390	return i - found;
1391}
1392
1393#if !defined(BOOTLOADER)
1394/**
1395 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1396 *
1397 * Read a character (non-blocking) from the PDC console, returns -1 if
1398 * key is not present.
1399 */
1400int pdc_iodc_getc(void)
1401{
1402	int ch;
1403	int status;
1404	unsigned long flags;
1405
1406	/* Bail if no console input device. */
1407	if (!PAGE0->mem_kbd.iodc_io)
1408		return 0;
1409	
1410	/* wait for a keyboard (rs232)-input */
1411	spin_lock_irqsave(&pdc_lock, flags);
1412	real32_call(PAGE0->mem_kbd.iodc_io,
1413		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1414		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1415		    __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1416
1417	ch = *iodc_dbuf;
1418	/* like convert_to_wide() but for first return value only: */
1419	status = *(int *)&pdc_result;
1420	spin_unlock_irqrestore(&pdc_lock, flags);
1421
1422	if (status == 0)
1423	    return -1;
1424	
1425	return ch;
1426}
1427
1428int pdc_sti_call(unsigned long func, unsigned long flags,
1429		unsigned long inptr, unsigned long outputr,
1430		unsigned long glob_cfg, int do_call64)
1431{
1432	int retval = 0;
1433	unsigned long irqflags;
1434
1435	spin_lock_irqsave(&pdc_lock, irqflags);
1436	if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1437#ifdef CONFIG_64BIT
1438		retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1439#else
1440		WARN_ON(1);
1441#endif
1442	} else {
1443		retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1444	}
1445	spin_unlock_irqrestore(&pdc_lock, irqflags);
1446
1447	return retval;
1448}
1449EXPORT_SYMBOL(pdc_sti_call);
1450
1451#ifdef CONFIG_64BIT
1452/**
1453 * pdc_pat_cell_get_number - Returns the cell number.
1454 * @cell_info: The return buffer.
1455 *
1456 * This PDC call returns the cell number of the cell from which the call
1457 * is made.
1458 */
1459int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1460{
1461	int retval;
1462	unsigned long flags;
1463
1464	spin_lock_irqsave(&pdc_lock, flags);
1465	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1466	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1467	spin_unlock_irqrestore(&pdc_lock, flags);
1468
1469	return retval;
1470}
1471
1472/**
1473 * pdc_pat_cell_module - Retrieve the cell's module information.
1474 * @actcnt: The number of bytes written to mem_addr.
1475 * @ploc: The physical location.
1476 * @mod: The module index.
1477 * @view_type: The view of the address type.
1478 * @mem_addr: The return buffer.
1479 *
1480 * This PDC call returns information about each module attached to the cell
1481 * at the specified location.
1482 */
1483int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1484			unsigned long view_type, void *mem_addr)
1485{
1486	int retval;
1487	unsigned long flags;
1488	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1489
1490	spin_lock_irqsave(&pdc_lock, flags);
1491	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1492			      ploc, mod, view_type, __pa(&result));
1493	if(!retval) {
1494		*actcnt = pdc_result[0];
1495		memcpy(mem_addr, &result, *actcnt);
1496	}
1497	spin_unlock_irqrestore(&pdc_lock, flags);
1498
1499	return retval;
1500}
1501
1502/**
1503 * pdc_pat_cell_info - Retrieve the cell's information.
1504 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1505 * @actcnt: The number of bytes which should be written to info.
1506 * @offset: offset of the structure.
1507 * @cell_number: The cell number which should be asked, or -1 for current cell.
1508 *
1509 * This PDC call returns information about the given cell (or all cells).
1510 */
1511int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1512		unsigned long *actcnt, unsigned long offset,
1513		unsigned long cell_number)
1514{
1515	int retval;
1516	unsigned long flags;
1517	struct pdc_pat_cell_info_rtn_block result;
1518
1519	spin_lock_irqsave(&pdc_lock, flags);
1520	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1521			__pa(pdc_result), __pa(&result), *actcnt,
1522			offset, cell_number);
1523	if (!retval) {
1524		*actcnt = pdc_result[0];
1525		memcpy(info, &result, *actcnt);
1526	}
1527	spin_unlock_irqrestore(&pdc_lock, flags);
1528
1529	return retval;
1530}
1531
1532/**
1533 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1534 * @cpu_info: The return buffer.
1535 * @hpa: The Hard Physical Address of the CPU.
1536 *
1537 * Retrieve the cpu number for the cpu at the specified HPA.
1538 */
1539int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1540{
1541	int retval;
1542	unsigned long flags;
1543
1544	spin_lock_irqsave(&pdc_lock, flags);
1545	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1546			      __pa(&pdc_result), hpa);
1547	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1548	spin_unlock_irqrestore(&pdc_lock, flags);
1549
1550	return retval;
1551}
1552
1553/**
1554 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1555 * @num_entries: The return value.
1556 * @cell_num: The target cell.
1557 *
1558 * This PDC function returns the number of entries in the specified cell's
1559 * interrupt table.
1560 */
1561int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1562{
1563	int retval;
1564	unsigned long flags;
1565
1566	spin_lock_irqsave(&pdc_lock, flags);
1567	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1568			      __pa(pdc_result), cell_num);
1569	*num_entries = pdc_result[0];
1570	spin_unlock_irqrestore(&pdc_lock, flags);
1571
1572	return retval;
1573}
1574
1575/**
1576 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1577 * @r_addr: The return buffer.
1578 * @cell_num: The target cell.
1579 *
1580 * This PDC function returns the actual interrupt table for the specified cell.
1581 */
1582int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1583{
1584	int retval;
1585	unsigned long flags;
1586
1587	spin_lock_irqsave(&pdc_lock, flags);
1588	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1589			      __pa(r_addr), cell_num);
1590	spin_unlock_irqrestore(&pdc_lock, flags);
1591
1592	return retval;
1593}
1594
1595/**
1596 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1597 * @actual_len: The return buffer.
1598 * @mem_addr: Pointer to the memory buffer.
1599 * @count: The number of bytes to read from the buffer.
1600 * @offset: The offset with respect to the beginning of the buffer.
1601 *
1602 */
1603int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1604			    unsigned long count, unsigned long offset)
1605{
1606	int retval;
1607	unsigned long flags;
1608
1609	spin_lock_irqsave(&pdc_lock, flags);
1610	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1611			      __pa(pdc_result2), count, offset);
1612	*actual_len = pdc_result[0];
1613	memcpy(mem_addr, pdc_result2, *actual_len);
1614	spin_unlock_irqrestore(&pdc_lock, flags);
1615
1616	return retval;
1617}
1618
1619/**
1620 * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1621 * @legacy_rev: The legacy revision.
1622 * @pat_rev: The PAT revision.
1623 * @pdc_cap: The PDC capabilities.
1624 *
1625 */
1626int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1627		unsigned long *pat_rev, unsigned long *pdc_cap)
1628{
1629	int retval;
1630	unsigned long flags;
1631
1632	spin_lock_irqsave(&pdc_lock, flags);
1633	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1634				__pa(pdc_result));
1635	if (retval == PDC_OK) {
1636		*legacy_rev = pdc_result[0];
1637		*pat_rev = pdc_result[1];
1638		*pdc_cap = pdc_result[2];
1639	}
1640	spin_unlock_irqrestore(&pdc_lock, flags);
1641
1642	return retval;
1643}
1644
1645
1646/**
1647 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1648 * @pci_addr: PCI configuration space address for which the read request is being made.
1649 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1650 * @mem_addr: Pointer to return memory buffer.
1651 *
1652 */
1653int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1654{
1655	int retval;
1656	unsigned long flags;
1657
1658	spin_lock_irqsave(&pdc_lock, flags);
1659	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1660					__pa(pdc_result), pci_addr, pci_size);
1661	switch(pci_size) {
1662		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1663		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1664		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1665	}
1666	spin_unlock_irqrestore(&pdc_lock, flags);
1667
1668	return retval;
1669}
1670
1671/**
1672 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1673 * @pci_addr: PCI configuration space address for which the write  request is being made.
1674 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1675 * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1676 *         written to PCI Config space.
1677 *
1678 */
1679int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1680{
1681	int retval;
1682	unsigned long flags;
1683
1684	spin_lock_irqsave(&pdc_lock, flags);
1685	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1686				pci_addr, pci_size, val);
1687	spin_unlock_irqrestore(&pdc_lock, flags);
1688
1689	return retval;
1690}
1691
1692/**
1693 * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1694 * @rinfo: memory pdt information
1695 *
1696 */
1697int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1698{
1699	int retval;
1700	unsigned long flags;
1701
1702	spin_lock_irqsave(&pdc_lock, flags);
1703	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1704			__pa(&pdc_result));
1705	if (retval == PDC_OK)
1706		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1707	spin_unlock_irqrestore(&pdc_lock, flags);
1708
1709	return retval;
1710}
1711
1712/**
1713 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1714 *				table of a cell
1715 * @rinfo: memory pdt information
1716 * @cell: cell number
1717 *
1718 */
1719int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1720		unsigned long cell)
1721{
1722	int retval;
1723	unsigned long flags;
1724
1725	spin_lock_irqsave(&pdc_lock, flags);
1726	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1727			__pa(&pdc_result), cell);
1728	if (retval == PDC_OK)
1729		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1730	spin_unlock_irqrestore(&pdc_lock, flags);
1731
1732	return retval;
1733}
1734
1735/**
1736 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1737 * @pret: array of PDT entries
1738 * @pdt_entries_ptr: ptr to hold number of PDT entries
1739 * @max_entries: maximum number of entries to be read
1740 *
1741 */
1742int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1743		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1744{
1745	int retval;
1746	unsigned long flags, entries;
1747
1748	spin_lock_irqsave(&pdc_lock, flags);
1749	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1750	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1751			__pa(&pdc_result), parisc_cell_num,
1752			__pa(pdt_entries_ptr));
1753
1754	if (retval == PDC_OK) {
1755		/* build up return value as for PDC_PAT_MEM_PD_READ */
1756		entries = min(pdc_result[0], max_entries);
1757		pret->pdt_entries = entries;
1758		pret->actual_count_bytes = entries * sizeof(unsigned long);
1759	}
1760
1761	spin_unlock_irqrestore(&pdc_lock, flags);
1762	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1763
1764	return retval;
1765}
1766/**
1767 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1768 * @pret: array of PDT entries
1769 * @pdt_entries_ptr: ptr to hold number of PDT entries
1770 * @count: number of bytes to read
1771 * @offset: offset to start (in bytes)
1772 *
1773 */
1774int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1775		unsigned long *pdt_entries_ptr, unsigned long count,
1776		unsigned long offset)
1777{
1778	int retval;
1779	unsigned long flags, entries;
1780
1781	spin_lock_irqsave(&pdc_lock, flags);
1782	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1783		__pa(&pdc_result), __pa(pdt_entries_ptr),
1784		count, offset);
1785
1786	if (retval == PDC_OK) {
1787		entries = min(pdc_result[0], count);
1788		pret->actual_count_bytes = entries;
1789		pret->pdt_entries = entries / sizeof(unsigned long);
1790	}
1791
1792	spin_unlock_irqrestore(&pdc_lock, flags);
1793
1794	return retval;
1795}
1796
1797/**
1798 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1799 * @pret: ptr to hold returned information
1800 * @phys_addr: physical address to examine
1801 *
1802 */
1803int pdc_pat_mem_get_dimm_phys_location(
1804		struct pdc_pat_mem_phys_mem_location *pret,
1805		unsigned long phys_addr)
1806{
1807	int retval;
1808	unsigned long flags;
1809
1810	spin_lock_irqsave(&pdc_lock, flags);
1811	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1812		__pa(&pdc_result), phys_addr);
1813
1814	if (retval == PDC_OK)
1815		memcpy(pret, &pdc_result, sizeof(*pret));
1816
1817	spin_unlock_irqrestore(&pdc_lock, flags);
1818
1819	return retval;
1820}
1821#endif /* CONFIG_64BIT */
1822#endif /* defined(BOOTLOADER) */
1823
1824
1825/***************** 32-bit real-mode calls ***********/
1826/* The struct below is used
1827 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1828 * real32_call_asm() then uses this stack in narrow real mode
1829 */
1830
1831struct narrow_stack {
1832	/* use int, not long which is 64 bits */
1833	unsigned int arg13;
1834	unsigned int arg12;
1835	unsigned int arg11;
1836	unsigned int arg10;
1837	unsigned int arg9;
1838	unsigned int arg8;
1839	unsigned int arg7;
1840	unsigned int arg6;
1841	unsigned int arg5;
1842	unsigned int arg4;
1843	unsigned int arg3;
1844	unsigned int arg2;
1845	unsigned int arg1;
1846	unsigned int arg0;
1847	unsigned int frame_marker[8];
1848	unsigned int sp;
1849	/* in reality, there's nearly 8k of stack after this */
1850};
1851
1852long real32_call(unsigned long fn, ...)
1853{
1854	va_list args;
1855	extern struct narrow_stack real_stack;
1856	extern unsigned long real32_call_asm(unsigned int *,
1857					     unsigned int *, 
1858					     unsigned int);
1859	
1860	va_start(args, fn);
1861	real_stack.arg0 = va_arg(args, unsigned int);
1862	real_stack.arg1 = va_arg(args, unsigned int);
1863	real_stack.arg2 = va_arg(args, unsigned int);
1864	real_stack.arg3 = va_arg(args, unsigned int);
1865	real_stack.arg4 = va_arg(args, unsigned int);
1866	real_stack.arg5 = va_arg(args, unsigned int);
1867	real_stack.arg6 = va_arg(args, unsigned int);
1868	real_stack.arg7 = va_arg(args, unsigned int);
1869	real_stack.arg8 = va_arg(args, unsigned int);
1870	real_stack.arg9 = va_arg(args, unsigned int);
1871	real_stack.arg10 = va_arg(args, unsigned int);
1872	real_stack.arg11 = va_arg(args, unsigned int);
1873	real_stack.arg12 = va_arg(args, unsigned int);
1874	real_stack.arg13 = va_arg(args, unsigned int);
1875	va_end(args);
1876	
1877	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1878}
1879
1880#ifdef CONFIG_64BIT
1881/***************** 64-bit real-mode calls ***********/
1882
1883struct wide_stack {
1884	unsigned long arg0;
1885	unsigned long arg1;
1886	unsigned long arg2;
1887	unsigned long arg3;
1888	unsigned long arg4;
1889	unsigned long arg5;
1890	unsigned long arg6;
1891	unsigned long arg7;
1892	unsigned long arg8;
1893	unsigned long arg9;
1894	unsigned long arg10;
1895	unsigned long arg11;
1896	unsigned long arg12;
1897	unsigned long arg13;
1898	unsigned long frame_marker[2];	/* rp, previous sp */
1899	unsigned long sp;
1900	/* in reality, there's nearly 8k of stack after this */
1901};
1902
1903long real64_call(unsigned long fn, ...)
1904{
1905	va_list args;
1906	extern struct wide_stack real64_stack;
1907	extern unsigned long real64_call_asm(unsigned long *,
1908					     unsigned long *, 
1909					     unsigned long);
1910    
1911	va_start(args, fn);
1912	real64_stack.arg0 = va_arg(args, unsigned long);
1913	real64_stack.arg1 = va_arg(args, unsigned long);
1914	real64_stack.arg2 = va_arg(args, unsigned long);
1915	real64_stack.arg3 = va_arg(args, unsigned long);
1916	real64_stack.arg4 = va_arg(args, unsigned long);
1917	real64_stack.arg5 = va_arg(args, unsigned long);
1918	real64_stack.arg6 = va_arg(args, unsigned long);
1919	real64_stack.arg7 = va_arg(args, unsigned long);
1920	real64_stack.arg8 = va_arg(args, unsigned long);
1921	real64_stack.arg9 = va_arg(args, unsigned long);
1922	real64_stack.arg10 = va_arg(args, unsigned long);
1923	real64_stack.arg11 = va_arg(args, unsigned long);
1924	real64_stack.arg12 = va_arg(args, unsigned long);
1925	real64_stack.arg13 = va_arg(args, unsigned long);
1926	va_end(args);
1927	
1928	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1929}
1930
1931#endif /* CONFIG_64BIT */