Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Copyright (C) 2017 Imagination Technologies
  4 * Author: Paul Burton <paul.burton@mips.com>
  5 */
  6
  7#ifndef __MIPS_ASM_MIPS_CPS_H__
  8#define __MIPS_ASM_MIPS_CPS_H__
  9
 
 
 10#include <linux/io.h>
 11#include <linux/types.h>
 12
 13extern unsigned long __cps_access_bad_size(void)
 14	__compiletime_error("Bad size for CPS accessor");
 15
 16#define CPS_ACCESSOR_A(unit, off, name)					\
 17static inline void *addr_##unit##_##name(void)				\
 18{									\
 19	return mips_##unit##_base + (off);				\
 20}
 21
 22#define CPS_ACCESSOR_R(unit, sz, name)					\
 23static inline uint##sz##_t read_##unit##_##name(void)			\
 24{									\
 25	uint64_t val64;							\
 26									\
 27	switch (sz) {							\
 28	case 32:							\
 29		return __raw_readl(addr_##unit##_##name());		\
 30									\
 31	case 64:							\
 32		if (mips_cm_is64)					\
 33			return __raw_readq(addr_##unit##_##name());	\
 34									\
 35		val64 = __raw_readl(addr_##unit##_##name() + 4);	\
 36		val64 <<= 32;						\
 37		val64 |= __raw_readl(addr_##unit##_##name());		\
 38		return val64;						\
 39									\
 40	default:							\
 41		return __cps_access_bad_size();				\
 42	}								\
 43}
 44
 45#define CPS_ACCESSOR_W(unit, sz, name)					\
 46static inline void write_##unit##_##name(uint##sz##_t val)		\
 47{									\
 48	switch (sz) {							\
 49	case 32:							\
 50		__raw_writel(val, addr_##unit##_##name());		\
 51		break;							\
 52									\
 53	case 64:							\
 54		if (mips_cm_is64) {					\
 55			__raw_writeq(val, addr_##unit##_##name());	\
 56			break;						\
 57		}							\
 58									\
 59		__raw_writel((uint64_t)val >> 32,			\
 60			     addr_##unit##_##name() + 4);		\
 61		__raw_writel(val, addr_##unit##_##name());		\
 62		break;							\
 63									\
 64	default:							\
 65		__cps_access_bad_size();				\
 66		break;							\
 67	}								\
 68}
 69
 70#define CPS_ACCESSOR_M(unit, sz, name)					\
 71static inline void change_##unit##_##name(uint##sz##_t mask,		\
 72					  uint##sz##_t val)		\
 73{									\
 74	uint##sz##_t reg_val = read_##unit##_##name();			\
 75	reg_val &= ~mask;						\
 76	reg_val |= val;							\
 77	write_##unit##_##name(reg_val);					\
 78}									\
 79									\
 80static inline void set_##unit##_##name(uint##sz##_t val)		\
 81{									\
 82	change_##unit##_##name(val, val);				\
 83}									\
 84									\
 85static inline void clear_##unit##_##name(uint##sz##_t val)		\
 86{									\
 87	change_##unit##_##name(val, 0);					\
 88}
 89
 90#define CPS_ACCESSOR_RO(unit, sz, off, name)				\
 91	CPS_ACCESSOR_A(unit, off, name)					\
 92	CPS_ACCESSOR_R(unit, sz, name)
 93
 94#define CPS_ACCESSOR_WO(unit, sz, off, name)				\
 95	CPS_ACCESSOR_A(unit, off, name)					\
 96	CPS_ACCESSOR_W(unit, sz, name)
 97
 98#define CPS_ACCESSOR_RW(unit, sz, off, name)				\
 99	CPS_ACCESSOR_A(unit, off, name)					\
100	CPS_ACCESSOR_R(unit, sz, name)					\
101	CPS_ACCESSOR_W(unit, sz, name)					\
102	CPS_ACCESSOR_M(unit, sz, name)
103
104#include <asm/mips-cm.h>
105#include <asm/mips-cpc.h>
106#include <asm/mips-gic.h>
107
108/**
109 * mips_cps_numclusters - return the number of clusters present in the system
110 *
111 * Returns the number of clusters in the system.
112 */
113static inline unsigned int mips_cps_numclusters(void)
114{
115	unsigned int num_clusters;
116
117	if (mips_cm_revision() < CM_REV_CM3_5)
118		return 1;
119
120	num_clusters = read_gcr_config() & CM_GCR_CONFIG_NUM_CLUSTERS;
121	num_clusters >>= __ffs(CM_GCR_CONFIG_NUM_CLUSTERS);
122	return num_clusters;
123}
124
125/**
126 * mips_cps_cluster_config - return (GCR|CPC)_CONFIG from a cluster
127 * @cluster: the ID of the cluster whose config we want
128 *
129 * Read the value of GCR_CONFIG (or its CPC_CONFIG mirror) from a @cluster.
130 *
131 * Returns the value of GCR_CONFIG.
132 */
133static inline uint64_t mips_cps_cluster_config(unsigned int cluster)
134{
135	uint64_t config;
136
137	if (mips_cm_revision() < CM_REV_CM3_5) {
138		/*
139		 * Prior to CM 3.5 we don't have the notion of multiple
140		 * clusters so we can trivially read the GCR_CONFIG register
141		 * within this cluster.
142		 */
143		WARN_ON(cluster != 0);
144		config = read_gcr_config();
145	} else {
146		/*
147		 * From CM 3.5 onwards we read the CPC_CONFIG mirror of
148		 * GCR_CONFIG via the redirect region, since the CPC is always
149		 * powered up allowing us not to need to power up the CM.
150		 */
151		mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
152		config = read_cpc_redir_config();
153		mips_cm_unlock_other();
154	}
155
156	return config;
157}
158
159/**
160 * mips_cps_numcores - return the number of cores present in a cluster
161 * @cluster: the ID of the cluster whose core count we want
162 *
163 * Returns the value of the PCORES field of the GCR_CONFIG register plus 1, or
164 * zero if no Coherence Manager is present.
165 */
166static inline unsigned int mips_cps_numcores(unsigned int cluster)
167{
168	if (!mips_cm_present())
169		return 0;
170
171	/* Add one before masking to handle 0xff indicating no cores */
172	return (mips_cps_cluster_config(cluster) + 1) & CM_GCR_CONFIG_PCORES;
 
173}
174
175/**
176 * mips_cps_numiocu - return the number of IOCUs present in a cluster
177 * @cluster: the ID of the cluster whose IOCU count we want
178 *
179 * Returns the value of the NUMIOCU field of the GCR_CONFIG register, or zero
180 * if no Coherence Manager is present.
181 */
182static inline unsigned int mips_cps_numiocu(unsigned int cluster)
183{
184	unsigned int num_iocu;
185
186	if (!mips_cm_present())
187		return 0;
188
189	num_iocu = mips_cps_cluster_config(cluster) & CM_GCR_CONFIG_NUMIOCU;
190	num_iocu >>= __ffs(CM_GCR_CONFIG_NUMIOCU);
191	return num_iocu;
192}
193
194/**
195 * mips_cps_numvps - return the number of VPs (threads) supported by a core
196 * @cluster: the ID of the cluster containing the core we want to examine
197 * @core: the ID of the core whose VP count we want
198 *
199 * Returns the number of Virtual Processors (VPs, ie. hardware threads) that
200 * are supported by the given @core in the given @cluster. If the core or the
201 * kernel do not support hardware mutlti-threading this returns 1.
202 */
203static inline unsigned int mips_cps_numvps(unsigned int cluster, unsigned int core)
204{
205	unsigned int cfg;
206
207	if (!mips_cm_present())
208		return 1;
209
210	if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
211		&& (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
212		return 1;
213
214	mips_cm_lock_other(cluster, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
215
216	if (mips_cm_revision() < CM_REV_CM3_5) {
217		/*
218		 * Prior to CM 3.5 we can only have one cluster & don't have
219		 * CPC_Cx_CONFIG, so we read GCR_Cx_CONFIG.
220		 */
221		cfg = read_gcr_co_config();
222	} else {
223		/*
224		 * From CM 3.5 onwards we read CPC_Cx_CONFIG because the CPC is
225		 * always powered, which allows us to not worry about powering
226		 * up the cluster's CM here.
227		 */
228		cfg = read_cpc_co_config();
229	}
230
231	mips_cm_unlock_other();
232
233	return (cfg + 1) & CM_GCR_Cx_CONFIG_PVPE;
234}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
236#endif /* __MIPS_ASM_MIPS_CPS_H__ */
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Copyright (C) 2017 Imagination Technologies
  4 * Author: Paul Burton <paul.burton@mips.com>
  5 */
  6
  7#ifndef __MIPS_ASM_MIPS_CPS_H__
  8#define __MIPS_ASM_MIPS_CPS_H__
  9
 10#include <linux/bitfield.h>
 11#include <linux/cpumask.h>
 12#include <linux/io.h>
 13#include <linux/types.h>
 14
 15extern unsigned long __cps_access_bad_size(void)
 16	__compiletime_error("Bad size for CPS accessor");
 17
 18#define CPS_ACCESSOR_A(unit, off, name)					\
 19static inline void *addr_##unit##_##name(void)				\
 20{									\
 21	return mips_##unit##_base + (off);				\
 22}
 23
 24#define CPS_ACCESSOR_R(unit, sz, name)					\
 25static inline uint##sz##_t read_##unit##_##name(void)			\
 26{									\
 27	uint64_t val64;							\
 28									\
 29	switch (sz) {							\
 30	case 32:							\
 31		return __raw_readl(addr_##unit##_##name());		\
 32									\
 33	case 64:							\
 34		if (mips_cm_is64)					\
 35			return __raw_readq(addr_##unit##_##name());	\
 36									\
 37		val64 = __raw_readl(addr_##unit##_##name() + 4);	\
 38		val64 <<= 32;						\
 39		val64 |= __raw_readl(addr_##unit##_##name());		\
 40		return val64;						\
 41									\
 42	default:							\
 43		return __cps_access_bad_size();				\
 44	}								\
 45}
 46
 47#define CPS_ACCESSOR_W(unit, sz, name)					\
 48static inline void write_##unit##_##name(uint##sz##_t val)		\
 49{									\
 50	switch (sz) {							\
 51	case 32:							\
 52		__raw_writel(val, addr_##unit##_##name());		\
 53		break;							\
 54									\
 55	case 64:							\
 56		if (mips_cm_is64) {					\
 57			__raw_writeq(val, addr_##unit##_##name());	\
 58			break;						\
 59		}							\
 60									\
 61		__raw_writel((uint64_t)val >> 32,			\
 62			     addr_##unit##_##name() + 4);		\
 63		__raw_writel(val, addr_##unit##_##name());		\
 64		break;							\
 65									\
 66	default:							\
 67		__cps_access_bad_size();				\
 68		break;							\
 69	}								\
 70}
 71
 72#define CPS_ACCESSOR_M(unit, sz, name)					\
 73static inline void change_##unit##_##name(uint##sz##_t mask,		\
 74					  uint##sz##_t val)		\
 75{									\
 76	uint##sz##_t reg_val = read_##unit##_##name();			\
 77	reg_val &= ~mask;						\
 78	reg_val |= val;							\
 79	write_##unit##_##name(reg_val);					\
 80}									\
 81									\
 82static inline void set_##unit##_##name(uint##sz##_t val)		\
 83{									\
 84	change_##unit##_##name(val, val);				\
 85}									\
 86									\
 87static inline void clear_##unit##_##name(uint##sz##_t val)		\
 88{									\
 89	change_##unit##_##name(val, 0);					\
 90}
 91
 92#define CPS_ACCESSOR_RO(unit, sz, off, name)				\
 93	CPS_ACCESSOR_A(unit, off, name)					\
 94	CPS_ACCESSOR_R(unit, sz, name)
 95
 96#define CPS_ACCESSOR_WO(unit, sz, off, name)				\
 97	CPS_ACCESSOR_A(unit, off, name)					\
 98	CPS_ACCESSOR_W(unit, sz, name)
 99
100#define CPS_ACCESSOR_RW(unit, sz, off, name)				\
101	CPS_ACCESSOR_A(unit, off, name)					\
102	CPS_ACCESSOR_R(unit, sz, name)					\
103	CPS_ACCESSOR_W(unit, sz, name)					\
104	CPS_ACCESSOR_M(unit, sz, name)
105
106#include <asm/mips-cm.h>
107#include <asm/mips-cpc.h>
108#include <asm/mips-gic.h>
109
110/**
111 * mips_cps_numclusters - return the number of clusters present in the system
112 *
113 * Returns the number of clusters in the system.
114 */
115static inline unsigned int mips_cps_numclusters(void)
116{
 
 
117	if (mips_cm_revision() < CM_REV_CM3_5)
118		return 1;
119
120	return FIELD_GET(CM_GCR_CONFIG_NUM_CLUSTERS, read_gcr_config());
 
 
121}
122
123/**
124 * mips_cps_cluster_config - return (GCR|CPC)_CONFIG from a cluster
125 * @cluster: the ID of the cluster whose config we want
126 *
127 * Read the value of GCR_CONFIG (or its CPC_CONFIG mirror) from a @cluster.
128 *
129 * Returns the value of GCR_CONFIG.
130 */
131static inline uint64_t mips_cps_cluster_config(unsigned int cluster)
132{
133	uint64_t config;
134
135	if (mips_cm_revision() < CM_REV_CM3_5) {
136		/*
137		 * Prior to CM 3.5 we don't have the notion of multiple
138		 * clusters so we can trivially read the GCR_CONFIG register
139		 * within this cluster.
140		 */
141		WARN_ON(cluster != 0);
142		config = read_gcr_config();
143	} else {
144		/*
145		 * From CM 3.5 onwards we read the CPC_CONFIG mirror of
146		 * GCR_CONFIG via the redirect region, since the CPC is always
147		 * powered up allowing us not to need to power up the CM.
148		 */
149		mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
150		config = read_cpc_redir_config();
151		mips_cm_unlock_other();
152	}
153
154	return config;
155}
156
157/**
158 * mips_cps_numcores - return the number of cores present in a cluster
159 * @cluster: the ID of the cluster whose core count we want
160 *
161 * Returns the value of the PCORES field of the GCR_CONFIG register plus 1, or
162 * zero if no Coherence Manager is present.
163 */
164static inline unsigned int mips_cps_numcores(unsigned int cluster)
165{
166	if (!mips_cm_present())
167		return 0;
168
169	/* Add one before masking to handle 0xff indicating no cores */
170	return FIELD_GET(CM_GCR_CONFIG_PCORES,
171			 mips_cps_cluster_config(cluster) + 1);
172}
173
174/**
175 * mips_cps_numiocu - return the number of IOCUs present in a cluster
176 * @cluster: the ID of the cluster whose IOCU count we want
177 *
178 * Returns the value of the NUMIOCU field of the GCR_CONFIG register, or zero
179 * if no Coherence Manager is present.
180 */
181static inline unsigned int mips_cps_numiocu(unsigned int cluster)
182{
 
 
183	if (!mips_cm_present())
184		return 0;
185
186	return FIELD_GET(CM_GCR_CONFIG_NUMIOCU,
187			 mips_cps_cluster_config(cluster));
 
188}
189
190/**
191 * mips_cps_numvps - return the number of VPs (threads) supported by a core
192 * @cluster: the ID of the cluster containing the core we want to examine
193 * @core: the ID of the core whose VP count we want
194 *
195 * Returns the number of Virtual Processors (VPs, ie. hardware threads) that
196 * are supported by the given @core in the given @cluster. If the core or the
197 * kernel do not support hardware mutlti-threading this returns 1.
198 */
199static inline unsigned int mips_cps_numvps(unsigned int cluster, unsigned int core)
200{
201	unsigned int cfg;
202
203	if (!mips_cm_present())
204		return 1;
205
206	if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
207		&& (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
208		return 1;
209
210	mips_cm_lock_other(cluster, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
211
212	if (mips_cm_revision() < CM_REV_CM3_5) {
213		/*
214		 * Prior to CM 3.5 we can only have one cluster & don't have
215		 * CPC_Cx_CONFIG, so we read GCR_Cx_CONFIG.
216		 */
217		cfg = read_gcr_co_config();
218	} else {
219		/*
220		 * From CM 3.5 onwards we read CPC_Cx_CONFIG because the CPC is
221		 * always powered, which allows us to not worry about powering
222		 * up the cluster's CM here.
223		 */
224		cfg = read_cpc_co_config();
225	}
226
227	mips_cm_unlock_other();
228
229	return FIELD_GET(CM_GCR_Cx_CONFIG_PVPE, cfg + 1);
230}
231
232/**
233 * mips_cps_multicluster_cpus() - Detect whether CPUs are in multiple clusters
234 *
235 * Determine whether the system includes CPUs in multiple clusters - ie.
236 * whether we can treat the system as single or multi-cluster as far as CPUs
237 * are concerned. Note that this is slightly different to simply checking
238 * whether multiple clusters are present - it is possible for there to be
239 * clusters which contain no CPUs, which this function will effectively ignore.
240 *
241 * Returns true if CPUs are spread across multiple clusters, else false.
242 */
243static inline bool mips_cps_multicluster_cpus(void)
244{
245	unsigned int first_cl, last_cl;
246
247	/*
248	 * CPUs are numbered sequentially by cluster - ie. CPUs 0..X will be in
249	 * cluster 0, CPUs X+1..Y in cluster 1, CPUs Y+1..Z in cluster 2 etc.
250	 *
251	 * Thus we can detect multiple clusters trivially by checking whether
252	 * the first & last CPUs belong to the same cluster.
253	 */
254	first_cl = cpu_cluster(&boot_cpu_data);
255	last_cl = cpu_cluster(&cpu_data[nr_cpu_ids - 1]);
256	return first_cl != last_cl;
257}
258
259/**
260 * mips_cps_first_online_in_cluster() - Detect if CPU is first online in cluster
261 *
262 * Determine whether the local CPU is the first to be brought online in its
263 * cluster - that is, whether there are any other online CPUs in the local
264 * cluster.
265 *
266 * Returns true if this CPU is first online, else false.
267 */
268extern unsigned int mips_cps_first_online_in_cluster(void);
269
270#endif /* __MIPS_ASM_MIPS_CPS_H__ */