Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/ksm.h>
43#include <linux/rmap.h>
44#include <linux/export.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/suspend.h>
50#include <linux/slab.h>
51#include <linux/swapops.h>
52#include <linux/hugetlb.h>
53#include <linux/memory_hotplug.h>
54#include <linux/mm_inline.h>
55#include <linux/memremap.h>
56#include <linux/kfifo.h>
57#include <linux/ratelimit.h>
58#include <linux/page-isolation.h>
59#include "internal.h"
60#include "ras/ras_event.h"
61
62int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64int sysctl_memory_failure_recovery __read_mostly = 1;
65
66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
68#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69
70u32 hwpoison_filter_enable = 0;
71u32 hwpoison_filter_dev_major = ~0U;
72u32 hwpoison_filter_dev_minor = ~0U;
73u64 hwpoison_filter_flags_mask;
74u64 hwpoison_filter_flags_value;
75EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80
81static int hwpoison_filter_dev(struct page *p)
82{
83 struct address_space *mapping;
84 dev_t dev;
85
86 if (hwpoison_filter_dev_major == ~0U &&
87 hwpoison_filter_dev_minor == ~0U)
88 return 0;
89
90 /*
91 * page_mapping() does not accept slab pages.
92 */
93 if (PageSlab(p))
94 return -EINVAL;
95
96 mapping = page_mapping(p);
97 if (mapping == NULL || mapping->host == NULL)
98 return -EINVAL;
99
100 dev = mapping->host->i_sb->s_dev;
101 if (hwpoison_filter_dev_major != ~0U &&
102 hwpoison_filter_dev_major != MAJOR(dev))
103 return -EINVAL;
104 if (hwpoison_filter_dev_minor != ~0U &&
105 hwpoison_filter_dev_minor != MINOR(dev))
106 return -EINVAL;
107
108 return 0;
109}
110
111static int hwpoison_filter_flags(struct page *p)
112{
113 if (!hwpoison_filter_flags_mask)
114 return 0;
115
116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 hwpoison_filter_flags_value)
118 return 0;
119 else
120 return -EINVAL;
121}
122
123/*
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
131 * a freed page.
132 */
133#ifdef CONFIG_MEMCG
134u64 hwpoison_filter_memcg;
135EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136static int hwpoison_filter_task(struct page *p)
137{
138 if (!hwpoison_filter_memcg)
139 return 0;
140
141 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 return -EINVAL;
143
144 return 0;
145}
146#else
147static int hwpoison_filter_task(struct page *p) { return 0; }
148#endif
149
150int hwpoison_filter(struct page *p)
151{
152 if (!hwpoison_filter_enable)
153 return 0;
154
155 if (hwpoison_filter_dev(p))
156 return -EINVAL;
157
158 if (hwpoison_filter_flags(p))
159 return -EINVAL;
160
161 if (hwpoison_filter_task(p))
162 return -EINVAL;
163
164 return 0;
165}
166#else
167int hwpoison_filter(struct page *p)
168{
169 return 0;
170}
171#endif
172
173EXPORT_SYMBOL_GPL(hwpoison_filter);
174
175/*
176 * Kill all processes that have a poisoned page mapped and then isolate
177 * the page.
178 *
179 * General strategy:
180 * Find all processes having the page mapped and kill them.
181 * But we keep a page reference around so that the page is not
182 * actually freed yet.
183 * Then stash the page away
184 *
185 * There's no convenient way to get back to mapped processes
186 * from the VMAs. So do a brute-force search over all
187 * running processes.
188 *
189 * Remember that machine checks are not common (or rather
190 * if they are common you have other problems), so this shouldn't
191 * be a performance issue.
192 *
193 * Also there are some races possible while we get from the
194 * error detection to actually handle it.
195 */
196
197struct to_kill {
198 struct list_head nd;
199 struct task_struct *tsk;
200 unsigned long addr;
201 short size_shift;
202};
203
204/*
205 * Send all the processes who have the page mapped a signal.
206 * ``action optional'' if they are not immediately affected by the error
207 * ``action required'' if error happened in current execution context
208 */
209static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210{
211 struct task_struct *t = tk->tsk;
212 short addr_lsb = tk->size_shift;
213 int ret;
214
215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 pfn, t->comm, t->pid);
217
218 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
219 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
220 addr_lsb);
221 } else {
222 /*
223 * Don't use force here, it's convenient if the signal
224 * can be temporarily blocked.
225 * This could cause a loop when the user sets SIGBUS
226 * to SIG_IGN, but hopefully no one will do that?
227 */
228 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
229 addr_lsb, t); /* synchronous? */
230 }
231 if (ret < 0)
232 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
233 t->comm, t->pid, ret);
234 return ret;
235}
236
237/*
238 * When a unknown page type is encountered drain as many buffers as possible
239 * in the hope to turn the page into a LRU or free page, which we can handle.
240 */
241void shake_page(struct page *p, int access)
242{
243 if (PageHuge(p))
244 return;
245
246 if (!PageSlab(p)) {
247 lru_add_drain_all();
248 if (PageLRU(p))
249 return;
250 drain_all_pages(page_zone(p));
251 if (PageLRU(p) || is_free_buddy_page(p))
252 return;
253 }
254
255 /*
256 * Only call shrink_node_slabs here (which would also shrink
257 * other caches) if access is not potentially fatal.
258 */
259 if (access)
260 drop_slab_node(page_to_nid(p));
261}
262EXPORT_SYMBOL_GPL(shake_page);
263
264static unsigned long dev_pagemap_mapping_shift(struct page *page,
265 struct vm_area_struct *vma)
266{
267 unsigned long address = vma_address(page, vma);
268 pgd_t *pgd;
269 p4d_t *p4d;
270 pud_t *pud;
271 pmd_t *pmd;
272 pte_t *pte;
273
274 pgd = pgd_offset(vma->vm_mm, address);
275 if (!pgd_present(*pgd))
276 return 0;
277 p4d = p4d_offset(pgd, address);
278 if (!p4d_present(*p4d))
279 return 0;
280 pud = pud_offset(p4d, address);
281 if (!pud_present(*pud))
282 return 0;
283 if (pud_devmap(*pud))
284 return PUD_SHIFT;
285 pmd = pmd_offset(pud, address);
286 if (!pmd_present(*pmd))
287 return 0;
288 if (pmd_devmap(*pmd))
289 return PMD_SHIFT;
290 pte = pte_offset_map(pmd, address);
291 if (!pte_present(*pte))
292 return 0;
293 if (pte_devmap(*pte))
294 return PAGE_SHIFT;
295 return 0;
296}
297
298/*
299 * Failure handling: if we can't find or can't kill a process there's
300 * not much we can do. We just print a message and ignore otherwise.
301 */
302
303/*
304 * Schedule a process for later kill.
305 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
306 * TBD would GFP_NOIO be enough?
307 */
308static void add_to_kill(struct task_struct *tsk, struct page *p,
309 struct vm_area_struct *vma,
310 struct list_head *to_kill,
311 struct to_kill **tkc)
312{
313 struct to_kill *tk;
314
315 if (*tkc) {
316 tk = *tkc;
317 *tkc = NULL;
318 } else {
319 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
320 if (!tk) {
321 pr_err("Memory failure: Out of memory while machine check handling\n");
322 return;
323 }
324 }
325 tk->addr = page_address_in_vma(p, vma);
326 if (is_zone_device_page(p))
327 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
328 else
329 tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
330
331 /*
332 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
333 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
334 * so "tk->size_shift == 0" effectively checks no mapping on
335 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
336 * to a process' address space, it's possible not all N VMAs
337 * contain mappings for the page, but at least one VMA does.
338 * Only deliver SIGBUS with payload derived from the VMA that
339 * has a mapping for the page.
340 */
341 if (tk->addr == -EFAULT) {
342 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
343 page_to_pfn(p), tsk->comm);
344 } else if (tk->size_shift == 0) {
345 kfree(tk);
346 return;
347 }
348 get_task_struct(tsk);
349 tk->tsk = tsk;
350 list_add_tail(&tk->nd, to_kill);
351}
352
353/*
354 * Kill the processes that have been collected earlier.
355 *
356 * Only do anything when DOIT is set, otherwise just free the list
357 * (this is used for clean pages which do not need killing)
358 * Also when FAIL is set do a force kill because something went
359 * wrong earlier.
360 */
361static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
362 unsigned long pfn, int flags)
363{
364 struct to_kill *tk, *next;
365
366 list_for_each_entry_safe (tk, next, to_kill, nd) {
367 if (forcekill) {
368 /*
369 * In case something went wrong with munmapping
370 * make sure the process doesn't catch the
371 * signal and then access the memory. Just kill it.
372 */
373 if (fail || tk->addr == -EFAULT) {
374 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
375 pfn, tk->tsk->comm, tk->tsk->pid);
376 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
377 tk->tsk, PIDTYPE_PID);
378 }
379
380 /*
381 * In theory the process could have mapped
382 * something else on the address in-between. We could
383 * check for that, but we need to tell the
384 * process anyways.
385 */
386 else if (kill_proc(tk, pfn, flags) < 0)
387 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
388 pfn, tk->tsk->comm, tk->tsk->pid);
389 }
390 put_task_struct(tk->tsk);
391 kfree(tk);
392 }
393}
394
395/*
396 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
397 * on behalf of the thread group. Return task_struct of the (first found)
398 * dedicated thread if found, and return NULL otherwise.
399 *
400 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
401 * have to call rcu_read_lock/unlock() in this function.
402 */
403static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
404{
405 struct task_struct *t;
406
407 for_each_thread(tsk, t)
408 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
409 return t;
410 return NULL;
411}
412
413/*
414 * Determine whether a given process is "early kill" process which expects
415 * to be signaled when some page under the process is hwpoisoned.
416 * Return task_struct of the dedicated thread (main thread unless explicitly
417 * specified) if the process is "early kill," and otherwise returns NULL.
418 */
419static struct task_struct *task_early_kill(struct task_struct *tsk,
420 int force_early)
421{
422 struct task_struct *t;
423 if (!tsk->mm)
424 return NULL;
425 if (force_early)
426 return tsk;
427 t = find_early_kill_thread(tsk);
428 if (t)
429 return t;
430 if (sysctl_memory_failure_early_kill)
431 return tsk;
432 return NULL;
433}
434
435/*
436 * Collect processes when the error hit an anonymous page.
437 */
438static void collect_procs_anon(struct page *page, struct list_head *to_kill,
439 struct to_kill **tkc, int force_early)
440{
441 struct vm_area_struct *vma;
442 struct task_struct *tsk;
443 struct anon_vma *av;
444 pgoff_t pgoff;
445
446 av = page_lock_anon_vma_read(page);
447 if (av == NULL) /* Not actually mapped anymore */
448 return;
449
450 pgoff = page_to_pgoff(page);
451 read_lock(&tasklist_lock);
452 for_each_process (tsk) {
453 struct anon_vma_chain *vmac;
454 struct task_struct *t = task_early_kill(tsk, force_early);
455
456 if (!t)
457 continue;
458 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
459 pgoff, pgoff) {
460 vma = vmac->vma;
461 if (!page_mapped_in_vma(page, vma))
462 continue;
463 if (vma->vm_mm == t->mm)
464 add_to_kill(t, page, vma, to_kill, tkc);
465 }
466 }
467 read_unlock(&tasklist_lock);
468 page_unlock_anon_vma_read(av);
469}
470
471/*
472 * Collect processes when the error hit a file mapped page.
473 */
474static void collect_procs_file(struct page *page, struct list_head *to_kill,
475 struct to_kill **tkc, int force_early)
476{
477 struct vm_area_struct *vma;
478 struct task_struct *tsk;
479 struct address_space *mapping = page->mapping;
480
481 i_mmap_lock_read(mapping);
482 read_lock(&tasklist_lock);
483 for_each_process(tsk) {
484 pgoff_t pgoff = page_to_pgoff(page);
485 struct task_struct *t = task_early_kill(tsk, force_early);
486
487 if (!t)
488 continue;
489 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
490 pgoff) {
491 /*
492 * Send early kill signal to tasks where a vma covers
493 * the page but the corrupted page is not necessarily
494 * mapped it in its pte.
495 * Assume applications who requested early kill want
496 * to be informed of all such data corruptions.
497 */
498 if (vma->vm_mm == t->mm)
499 add_to_kill(t, page, vma, to_kill, tkc);
500 }
501 }
502 read_unlock(&tasklist_lock);
503 i_mmap_unlock_read(mapping);
504}
505
506/*
507 * Collect the processes who have the corrupted page mapped to kill.
508 * This is done in two steps for locking reasons.
509 * First preallocate one tokill structure outside the spin locks,
510 * so that we can kill at least one process reasonably reliable.
511 */
512static void collect_procs(struct page *page, struct list_head *tokill,
513 int force_early)
514{
515 struct to_kill *tk;
516
517 if (!page->mapping)
518 return;
519
520 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
521 if (!tk)
522 return;
523 if (PageAnon(page))
524 collect_procs_anon(page, tokill, &tk, force_early);
525 else
526 collect_procs_file(page, tokill, &tk, force_early);
527 kfree(tk);
528}
529
530static const char *action_name[] = {
531 [MF_IGNORED] = "Ignored",
532 [MF_FAILED] = "Failed",
533 [MF_DELAYED] = "Delayed",
534 [MF_RECOVERED] = "Recovered",
535};
536
537static const char * const action_page_types[] = {
538 [MF_MSG_KERNEL] = "reserved kernel page",
539 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
540 [MF_MSG_SLAB] = "kernel slab page",
541 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
542 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
543 [MF_MSG_HUGE] = "huge page",
544 [MF_MSG_FREE_HUGE] = "free huge page",
545 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
546 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
547 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
548 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
549 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
550 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
551 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
552 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
553 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
554 [MF_MSG_CLEAN_LRU] = "clean LRU page",
555 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
556 [MF_MSG_BUDDY] = "free buddy page",
557 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
558 [MF_MSG_DAX] = "dax page",
559 [MF_MSG_UNKNOWN] = "unknown page",
560};
561
562/*
563 * XXX: It is possible that a page is isolated from LRU cache,
564 * and then kept in swap cache or failed to remove from page cache.
565 * The page count will stop it from being freed by unpoison.
566 * Stress tests should be aware of this memory leak problem.
567 */
568static int delete_from_lru_cache(struct page *p)
569{
570 if (!isolate_lru_page(p)) {
571 /*
572 * Clear sensible page flags, so that the buddy system won't
573 * complain when the page is unpoison-and-freed.
574 */
575 ClearPageActive(p);
576 ClearPageUnevictable(p);
577
578 /*
579 * Poisoned page might never drop its ref count to 0 so we have
580 * to uncharge it manually from its memcg.
581 */
582 mem_cgroup_uncharge(p);
583
584 /*
585 * drop the page count elevated by isolate_lru_page()
586 */
587 put_page(p);
588 return 0;
589 }
590 return -EIO;
591}
592
593static int truncate_error_page(struct page *p, unsigned long pfn,
594 struct address_space *mapping)
595{
596 int ret = MF_FAILED;
597
598 if (mapping->a_ops->error_remove_page) {
599 int err = mapping->a_ops->error_remove_page(mapping, p);
600
601 if (err != 0) {
602 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
603 pfn, err);
604 } else if (page_has_private(p) &&
605 !try_to_release_page(p, GFP_NOIO)) {
606 pr_info("Memory failure: %#lx: failed to release buffers\n",
607 pfn);
608 } else {
609 ret = MF_RECOVERED;
610 }
611 } else {
612 /*
613 * If the file system doesn't support it just invalidate
614 * This fails on dirty or anything with private pages
615 */
616 if (invalidate_inode_page(p))
617 ret = MF_RECOVERED;
618 else
619 pr_info("Memory failure: %#lx: Failed to invalidate\n",
620 pfn);
621 }
622
623 return ret;
624}
625
626/*
627 * Error hit kernel page.
628 * Do nothing, try to be lucky and not touch this instead. For a few cases we
629 * could be more sophisticated.
630 */
631static int me_kernel(struct page *p, unsigned long pfn)
632{
633 return MF_IGNORED;
634}
635
636/*
637 * Page in unknown state. Do nothing.
638 */
639static int me_unknown(struct page *p, unsigned long pfn)
640{
641 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
642 return MF_FAILED;
643}
644
645/*
646 * Clean (or cleaned) page cache page.
647 */
648static int me_pagecache_clean(struct page *p, unsigned long pfn)
649{
650 struct address_space *mapping;
651
652 delete_from_lru_cache(p);
653
654 /*
655 * For anonymous pages we're done the only reference left
656 * should be the one m_f() holds.
657 */
658 if (PageAnon(p))
659 return MF_RECOVERED;
660
661 /*
662 * Now truncate the page in the page cache. This is really
663 * more like a "temporary hole punch"
664 * Don't do this for block devices when someone else
665 * has a reference, because it could be file system metadata
666 * and that's not safe to truncate.
667 */
668 mapping = page_mapping(p);
669 if (!mapping) {
670 /*
671 * Page has been teared down in the meanwhile
672 */
673 return MF_FAILED;
674 }
675
676 /*
677 * Truncation is a bit tricky. Enable it per file system for now.
678 *
679 * Open: to take i_mutex or not for this? Right now we don't.
680 */
681 return truncate_error_page(p, pfn, mapping);
682}
683
684/*
685 * Dirty pagecache page
686 * Issues: when the error hit a hole page the error is not properly
687 * propagated.
688 */
689static int me_pagecache_dirty(struct page *p, unsigned long pfn)
690{
691 struct address_space *mapping = page_mapping(p);
692
693 SetPageError(p);
694 /* TBD: print more information about the file. */
695 if (mapping) {
696 /*
697 * IO error will be reported by write(), fsync(), etc.
698 * who check the mapping.
699 * This way the application knows that something went
700 * wrong with its dirty file data.
701 *
702 * There's one open issue:
703 *
704 * The EIO will be only reported on the next IO
705 * operation and then cleared through the IO map.
706 * Normally Linux has two mechanisms to pass IO error
707 * first through the AS_EIO flag in the address space
708 * and then through the PageError flag in the page.
709 * Since we drop pages on memory failure handling the
710 * only mechanism open to use is through AS_AIO.
711 *
712 * This has the disadvantage that it gets cleared on
713 * the first operation that returns an error, while
714 * the PageError bit is more sticky and only cleared
715 * when the page is reread or dropped. If an
716 * application assumes it will always get error on
717 * fsync, but does other operations on the fd before
718 * and the page is dropped between then the error
719 * will not be properly reported.
720 *
721 * This can already happen even without hwpoisoned
722 * pages: first on metadata IO errors (which only
723 * report through AS_EIO) or when the page is dropped
724 * at the wrong time.
725 *
726 * So right now we assume that the application DTRT on
727 * the first EIO, but we're not worse than other parts
728 * of the kernel.
729 */
730 mapping_set_error(mapping, -EIO);
731 }
732
733 return me_pagecache_clean(p, pfn);
734}
735
736/*
737 * Clean and dirty swap cache.
738 *
739 * Dirty swap cache page is tricky to handle. The page could live both in page
740 * cache and swap cache(ie. page is freshly swapped in). So it could be
741 * referenced concurrently by 2 types of PTEs:
742 * normal PTEs and swap PTEs. We try to handle them consistently by calling
743 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
744 * and then
745 * - clear dirty bit to prevent IO
746 * - remove from LRU
747 * - but keep in the swap cache, so that when we return to it on
748 * a later page fault, we know the application is accessing
749 * corrupted data and shall be killed (we installed simple
750 * interception code in do_swap_page to catch it).
751 *
752 * Clean swap cache pages can be directly isolated. A later page fault will
753 * bring in the known good data from disk.
754 */
755static int me_swapcache_dirty(struct page *p, unsigned long pfn)
756{
757 ClearPageDirty(p);
758 /* Trigger EIO in shmem: */
759 ClearPageUptodate(p);
760
761 if (!delete_from_lru_cache(p))
762 return MF_DELAYED;
763 else
764 return MF_FAILED;
765}
766
767static int me_swapcache_clean(struct page *p, unsigned long pfn)
768{
769 delete_from_swap_cache(p);
770
771 if (!delete_from_lru_cache(p))
772 return MF_RECOVERED;
773 else
774 return MF_FAILED;
775}
776
777/*
778 * Huge pages. Needs work.
779 * Issues:
780 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
781 * To narrow down kill region to one page, we need to break up pmd.
782 */
783static int me_huge_page(struct page *p, unsigned long pfn)
784{
785 int res = 0;
786 struct page *hpage = compound_head(p);
787 struct address_space *mapping;
788
789 if (!PageHuge(hpage))
790 return MF_DELAYED;
791
792 mapping = page_mapping(hpage);
793 if (mapping) {
794 res = truncate_error_page(hpage, pfn, mapping);
795 } else {
796 unlock_page(hpage);
797 /*
798 * migration entry prevents later access on error anonymous
799 * hugepage, so we can free and dissolve it into buddy to
800 * save healthy subpages.
801 */
802 if (PageAnon(hpage))
803 put_page(hpage);
804 dissolve_free_huge_page(p);
805 res = MF_RECOVERED;
806 lock_page(hpage);
807 }
808
809 return res;
810}
811
812/*
813 * Various page states we can handle.
814 *
815 * A page state is defined by its current page->flags bits.
816 * The table matches them in order and calls the right handler.
817 *
818 * This is quite tricky because we can access page at any time
819 * in its live cycle, so all accesses have to be extremely careful.
820 *
821 * This is not complete. More states could be added.
822 * For any missing state don't attempt recovery.
823 */
824
825#define dirty (1UL << PG_dirty)
826#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
827#define unevict (1UL << PG_unevictable)
828#define mlock (1UL << PG_mlocked)
829#define writeback (1UL << PG_writeback)
830#define lru (1UL << PG_lru)
831#define head (1UL << PG_head)
832#define slab (1UL << PG_slab)
833#define reserved (1UL << PG_reserved)
834
835static struct page_state {
836 unsigned long mask;
837 unsigned long res;
838 enum mf_action_page_type type;
839 int (*action)(struct page *p, unsigned long pfn);
840} error_states[] = {
841 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
842 /*
843 * free pages are specially detected outside this table:
844 * PG_buddy pages only make a small fraction of all free pages.
845 */
846
847 /*
848 * Could in theory check if slab page is free or if we can drop
849 * currently unused objects without touching them. But just
850 * treat it as standard kernel for now.
851 */
852 { slab, slab, MF_MSG_SLAB, me_kernel },
853
854 { head, head, MF_MSG_HUGE, me_huge_page },
855
856 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
857 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
858
859 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
860 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
861
862 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
863 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
864
865 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
866 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
867
868 /*
869 * Catchall entry: must be at end.
870 */
871 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
872};
873
874#undef dirty
875#undef sc
876#undef unevict
877#undef mlock
878#undef writeback
879#undef lru
880#undef head
881#undef slab
882#undef reserved
883
884/*
885 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
886 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
887 */
888static void action_result(unsigned long pfn, enum mf_action_page_type type,
889 enum mf_result result)
890{
891 trace_memory_failure_event(pfn, type, result);
892
893 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
894 pfn, action_page_types[type], action_name[result]);
895}
896
897static int page_action(struct page_state *ps, struct page *p,
898 unsigned long pfn)
899{
900 int result;
901 int count;
902
903 result = ps->action(p, pfn);
904
905 count = page_count(p) - 1;
906 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
907 count--;
908 if (count > 0) {
909 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
910 pfn, action_page_types[ps->type], count);
911 result = MF_FAILED;
912 }
913 action_result(pfn, ps->type, result);
914
915 /* Could do more checks here if page looks ok */
916 /*
917 * Could adjust zone counters here to correct for the missing page.
918 */
919
920 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
921}
922
923/**
924 * get_hwpoison_page() - Get refcount for memory error handling:
925 * @page: raw error page (hit by memory error)
926 *
927 * Return: return 0 if failed to grab the refcount, otherwise true (some
928 * non-zero value.)
929 */
930int get_hwpoison_page(struct page *page)
931{
932 struct page *head = compound_head(page);
933
934 if (!PageHuge(head) && PageTransHuge(head)) {
935 /*
936 * Non anonymous thp exists only in allocation/free time. We
937 * can't handle such a case correctly, so let's give it up.
938 * This should be better than triggering BUG_ON when kernel
939 * tries to touch the "partially handled" page.
940 */
941 if (!PageAnon(head)) {
942 pr_err("Memory failure: %#lx: non anonymous thp\n",
943 page_to_pfn(page));
944 return 0;
945 }
946 }
947
948 if (get_page_unless_zero(head)) {
949 if (head == compound_head(page))
950 return 1;
951
952 pr_info("Memory failure: %#lx cannot catch tail\n",
953 page_to_pfn(page));
954 put_page(head);
955 }
956
957 return 0;
958}
959EXPORT_SYMBOL_GPL(get_hwpoison_page);
960
961/*
962 * Do all that is necessary to remove user space mappings. Unmap
963 * the pages and send SIGBUS to the processes if the data was dirty.
964 */
965static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
966 int flags, struct page **hpagep)
967{
968 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
969 struct address_space *mapping;
970 LIST_HEAD(tokill);
971 bool unmap_success;
972 int kill = 1, forcekill;
973 struct page *hpage = *hpagep;
974 bool mlocked = PageMlocked(hpage);
975
976 /*
977 * Here we are interested only in user-mapped pages, so skip any
978 * other types of pages.
979 */
980 if (PageReserved(p) || PageSlab(p))
981 return true;
982 if (!(PageLRU(hpage) || PageHuge(p)))
983 return true;
984
985 /*
986 * This check implies we don't kill processes if their pages
987 * are in the swap cache early. Those are always late kills.
988 */
989 if (!page_mapped(hpage))
990 return true;
991
992 if (PageKsm(p)) {
993 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
994 return false;
995 }
996
997 if (PageSwapCache(p)) {
998 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
999 pfn);
1000 ttu |= TTU_IGNORE_HWPOISON;
1001 }
1002
1003 /*
1004 * Propagate the dirty bit from PTEs to struct page first, because we
1005 * need this to decide if we should kill or just drop the page.
1006 * XXX: the dirty test could be racy: set_page_dirty() may not always
1007 * be called inside page lock (it's recommended but not enforced).
1008 */
1009 mapping = page_mapping(hpage);
1010 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1011 mapping_cap_writeback_dirty(mapping)) {
1012 if (page_mkclean(hpage)) {
1013 SetPageDirty(hpage);
1014 } else {
1015 kill = 0;
1016 ttu |= TTU_IGNORE_HWPOISON;
1017 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1018 pfn);
1019 }
1020 }
1021
1022 /*
1023 * First collect all the processes that have the page
1024 * mapped in dirty form. This has to be done before try_to_unmap,
1025 * because ttu takes the rmap data structures down.
1026 *
1027 * Error handling: We ignore errors here because
1028 * there's nothing that can be done.
1029 */
1030 if (kill)
1031 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1032
1033 unmap_success = try_to_unmap(hpage, ttu);
1034 if (!unmap_success)
1035 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1036 pfn, page_mapcount(hpage));
1037
1038 /*
1039 * try_to_unmap() might put mlocked page in lru cache, so call
1040 * shake_page() again to ensure that it's flushed.
1041 */
1042 if (mlocked)
1043 shake_page(hpage, 0);
1044
1045 /*
1046 * Now that the dirty bit has been propagated to the
1047 * struct page and all unmaps done we can decide if
1048 * killing is needed or not. Only kill when the page
1049 * was dirty or the process is not restartable,
1050 * otherwise the tokill list is merely
1051 * freed. When there was a problem unmapping earlier
1052 * use a more force-full uncatchable kill to prevent
1053 * any accesses to the poisoned memory.
1054 */
1055 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1056 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1057
1058 return unmap_success;
1059}
1060
1061static int identify_page_state(unsigned long pfn, struct page *p,
1062 unsigned long page_flags)
1063{
1064 struct page_state *ps;
1065
1066 /*
1067 * The first check uses the current page flags which may not have any
1068 * relevant information. The second check with the saved page flags is
1069 * carried out only if the first check can't determine the page status.
1070 */
1071 for (ps = error_states;; ps++)
1072 if ((p->flags & ps->mask) == ps->res)
1073 break;
1074
1075 page_flags |= (p->flags & (1UL << PG_dirty));
1076
1077 if (!ps->mask)
1078 for (ps = error_states;; ps++)
1079 if ((page_flags & ps->mask) == ps->res)
1080 break;
1081 return page_action(ps, p, pfn);
1082}
1083
1084static int memory_failure_hugetlb(unsigned long pfn, int flags)
1085{
1086 struct page *p = pfn_to_page(pfn);
1087 struct page *head = compound_head(p);
1088 int res;
1089 unsigned long page_flags;
1090
1091 if (TestSetPageHWPoison(head)) {
1092 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1093 pfn);
1094 return 0;
1095 }
1096
1097 num_poisoned_pages_inc();
1098
1099 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1100 /*
1101 * Check "filter hit" and "race with other subpage."
1102 */
1103 lock_page(head);
1104 if (PageHWPoison(head)) {
1105 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1106 || (p != head && TestSetPageHWPoison(head))) {
1107 num_poisoned_pages_dec();
1108 unlock_page(head);
1109 return 0;
1110 }
1111 }
1112 unlock_page(head);
1113 dissolve_free_huge_page(p);
1114 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1115 return 0;
1116 }
1117
1118 lock_page(head);
1119 page_flags = head->flags;
1120
1121 if (!PageHWPoison(head)) {
1122 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1123 num_poisoned_pages_dec();
1124 unlock_page(head);
1125 put_hwpoison_page(head);
1126 return 0;
1127 }
1128
1129 /*
1130 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1131 * simply disable it. In order to make it work properly, we need
1132 * make sure that:
1133 * - conversion of a pud that maps an error hugetlb into hwpoison
1134 * entry properly works, and
1135 * - other mm code walking over page table is aware of pud-aligned
1136 * hwpoison entries.
1137 */
1138 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1139 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1140 res = -EBUSY;
1141 goto out;
1142 }
1143
1144 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1145 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1146 res = -EBUSY;
1147 goto out;
1148 }
1149
1150 res = identify_page_state(pfn, p, page_flags);
1151out:
1152 unlock_page(head);
1153 return res;
1154}
1155
1156static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1157 struct dev_pagemap *pgmap)
1158{
1159 struct page *page = pfn_to_page(pfn);
1160 const bool unmap_success = true;
1161 unsigned long size = 0;
1162 struct to_kill *tk;
1163 LIST_HEAD(tokill);
1164 int rc = -EBUSY;
1165 loff_t start;
1166 dax_entry_t cookie;
1167
1168 /*
1169 * Prevent the inode from being freed while we are interrogating
1170 * the address_space, typically this would be handled by
1171 * lock_page(), but dax pages do not use the page lock. This
1172 * also prevents changes to the mapping of this pfn until
1173 * poison signaling is complete.
1174 */
1175 cookie = dax_lock_page(page);
1176 if (!cookie)
1177 goto out;
1178
1179 if (hwpoison_filter(page)) {
1180 rc = 0;
1181 goto unlock;
1182 }
1183
1184 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1185 /*
1186 * TODO: Handle HMM pages which may need coordination
1187 * with device-side memory.
1188 */
1189 goto unlock;
1190 }
1191
1192 /*
1193 * Use this flag as an indication that the dax page has been
1194 * remapped UC to prevent speculative consumption of poison.
1195 */
1196 SetPageHWPoison(page);
1197
1198 /*
1199 * Unlike System-RAM there is no possibility to swap in a
1200 * different physical page at a given virtual address, so all
1201 * userspace consumption of ZONE_DEVICE memory necessitates
1202 * SIGBUS (i.e. MF_MUST_KILL)
1203 */
1204 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1205 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1206
1207 list_for_each_entry(tk, &tokill, nd)
1208 if (tk->size_shift)
1209 size = max(size, 1UL << tk->size_shift);
1210 if (size) {
1211 /*
1212 * Unmap the largest mapping to avoid breaking up
1213 * device-dax mappings which are constant size. The
1214 * actual size of the mapping being torn down is
1215 * communicated in siginfo, see kill_proc()
1216 */
1217 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1218 unmap_mapping_range(page->mapping, start, start + size, 0);
1219 }
1220 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1221 rc = 0;
1222unlock:
1223 dax_unlock_page(page, cookie);
1224out:
1225 /* drop pgmap ref acquired in caller */
1226 put_dev_pagemap(pgmap);
1227 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1228 return rc;
1229}
1230
1231/**
1232 * memory_failure - Handle memory failure of a page.
1233 * @pfn: Page Number of the corrupted page
1234 * @flags: fine tune action taken
1235 *
1236 * This function is called by the low level machine check code
1237 * of an architecture when it detects hardware memory corruption
1238 * of a page. It tries its best to recover, which includes
1239 * dropping pages, killing processes etc.
1240 *
1241 * The function is primarily of use for corruptions that
1242 * happen outside the current execution context (e.g. when
1243 * detected by a background scrubber)
1244 *
1245 * Must run in process context (e.g. a work queue) with interrupts
1246 * enabled and no spinlocks hold.
1247 */
1248int memory_failure(unsigned long pfn, int flags)
1249{
1250 struct page *p;
1251 struct page *hpage;
1252 struct page *orig_head;
1253 struct dev_pagemap *pgmap;
1254 int res;
1255 unsigned long page_flags;
1256
1257 if (!sysctl_memory_failure_recovery)
1258 panic("Memory failure on page %lx", pfn);
1259
1260 p = pfn_to_online_page(pfn);
1261 if (!p) {
1262 if (pfn_valid(pfn)) {
1263 pgmap = get_dev_pagemap(pfn, NULL);
1264 if (pgmap)
1265 return memory_failure_dev_pagemap(pfn, flags,
1266 pgmap);
1267 }
1268 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1269 pfn);
1270 return -ENXIO;
1271 }
1272
1273 if (PageHuge(p))
1274 return memory_failure_hugetlb(pfn, flags);
1275 if (TestSetPageHWPoison(p)) {
1276 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1277 pfn);
1278 return 0;
1279 }
1280
1281 orig_head = hpage = compound_head(p);
1282 num_poisoned_pages_inc();
1283
1284 /*
1285 * We need/can do nothing about count=0 pages.
1286 * 1) it's a free page, and therefore in safe hand:
1287 * prep_new_page() will be the gate keeper.
1288 * 2) it's part of a non-compound high order page.
1289 * Implies some kernel user: cannot stop them from
1290 * R/W the page; let's pray that the page has been
1291 * used and will be freed some time later.
1292 * In fact it's dangerous to directly bump up page count from 0,
1293 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1294 */
1295 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1296 if (is_free_buddy_page(p)) {
1297 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1298 return 0;
1299 } else {
1300 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1301 return -EBUSY;
1302 }
1303 }
1304
1305 if (PageTransHuge(hpage)) {
1306 lock_page(p);
1307 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1308 unlock_page(p);
1309 if (!PageAnon(p))
1310 pr_err("Memory failure: %#lx: non anonymous thp\n",
1311 pfn);
1312 else
1313 pr_err("Memory failure: %#lx: thp split failed\n",
1314 pfn);
1315 if (TestClearPageHWPoison(p))
1316 num_poisoned_pages_dec();
1317 put_hwpoison_page(p);
1318 return -EBUSY;
1319 }
1320 unlock_page(p);
1321 VM_BUG_ON_PAGE(!page_count(p), p);
1322 hpage = compound_head(p);
1323 }
1324
1325 /*
1326 * We ignore non-LRU pages for good reasons.
1327 * - PG_locked is only well defined for LRU pages and a few others
1328 * - to avoid races with __SetPageLocked()
1329 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1330 * The check (unnecessarily) ignores LRU pages being isolated and
1331 * walked by the page reclaim code, however that's not a big loss.
1332 */
1333 shake_page(p, 0);
1334 /* shake_page could have turned it free. */
1335 if (!PageLRU(p) && is_free_buddy_page(p)) {
1336 if (flags & MF_COUNT_INCREASED)
1337 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1338 else
1339 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1340 return 0;
1341 }
1342
1343 lock_page(p);
1344
1345 /*
1346 * The page could have changed compound pages during the locking.
1347 * If this happens just bail out.
1348 */
1349 if (PageCompound(p) && compound_head(p) != orig_head) {
1350 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1351 res = -EBUSY;
1352 goto out;
1353 }
1354
1355 /*
1356 * We use page flags to determine what action should be taken, but
1357 * the flags can be modified by the error containment action. One
1358 * example is an mlocked page, where PG_mlocked is cleared by
1359 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1360 * correctly, we save a copy of the page flags at this time.
1361 */
1362 if (PageHuge(p))
1363 page_flags = hpage->flags;
1364 else
1365 page_flags = p->flags;
1366
1367 /*
1368 * unpoison always clear PG_hwpoison inside page lock
1369 */
1370 if (!PageHWPoison(p)) {
1371 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1372 num_poisoned_pages_dec();
1373 unlock_page(p);
1374 put_hwpoison_page(p);
1375 return 0;
1376 }
1377 if (hwpoison_filter(p)) {
1378 if (TestClearPageHWPoison(p))
1379 num_poisoned_pages_dec();
1380 unlock_page(p);
1381 put_hwpoison_page(p);
1382 return 0;
1383 }
1384
1385 if (!PageTransTail(p) && !PageLRU(p))
1386 goto identify_page_state;
1387
1388 /*
1389 * It's very difficult to mess with pages currently under IO
1390 * and in many cases impossible, so we just avoid it here.
1391 */
1392 wait_on_page_writeback(p);
1393
1394 /*
1395 * Now take care of user space mappings.
1396 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1397 *
1398 * When the raw error page is thp tail page, hpage points to the raw
1399 * page after thp split.
1400 */
1401 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1402 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1403 res = -EBUSY;
1404 goto out;
1405 }
1406
1407 /*
1408 * Torn down by someone else?
1409 */
1410 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1411 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1412 res = -EBUSY;
1413 goto out;
1414 }
1415
1416identify_page_state:
1417 res = identify_page_state(pfn, p, page_flags);
1418out:
1419 unlock_page(p);
1420 return res;
1421}
1422EXPORT_SYMBOL_GPL(memory_failure);
1423
1424#define MEMORY_FAILURE_FIFO_ORDER 4
1425#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1426
1427struct memory_failure_entry {
1428 unsigned long pfn;
1429 int flags;
1430};
1431
1432struct memory_failure_cpu {
1433 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1434 MEMORY_FAILURE_FIFO_SIZE);
1435 spinlock_t lock;
1436 struct work_struct work;
1437};
1438
1439static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1440
1441/**
1442 * memory_failure_queue - Schedule handling memory failure of a page.
1443 * @pfn: Page Number of the corrupted page
1444 * @flags: Flags for memory failure handling
1445 *
1446 * This function is called by the low level hardware error handler
1447 * when it detects hardware memory corruption of a page. It schedules
1448 * the recovering of error page, including dropping pages, killing
1449 * processes etc.
1450 *
1451 * The function is primarily of use for corruptions that
1452 * happen outside the current execution context (e.g. when
1453 * detected by a background scrubber)
1454 *
1455 * Can run in IRQ context.
1456 */
1457void memory_failure_queue(unsigned long pfn, int flags)
1458{
1459 struct memory_failure_cpu *mf_cpu;
1460 unsigned long proc_flags;
1461 struct memory_failure_entry entry = {
1462 .pfn = pfn,
1463 .flags = flags,
1464 };
1465
1466 mf_cpu = &get_cpu_var(memory_failure_cpu);
1467 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1468 if (kfifo_put(&mf_cpu->fifo, entry))
1469 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1470 else
1471 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1472 pfn);
1473 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1474 put_cpu_var(memory_failure_cpu);
1475}
1476EXPORT_SYMBOL_GPL(memory_failure_queue);
1477
1478static void memory_failure_work_func(struct work_struct *work)
1479{
1480 struct memory_failure_cpu *mf_cpu;
1481 struct memory_failure_entry entry = { 0, };
1482 unsigned long proc_flags;
1483 int gotten;
1484
1485 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1486 for (;;) {
1487 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1488 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1489 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1490 if (!gotten)
1491 break;
1492 if (entry.flags & MF_SOFT_OFFLINE)
1493 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1494 else
1495 memory_failure(entry.pfn, entry.flags);
1496 }
1497}
1498
1499static int __init memory_failure_init(void)
1500{
1501 struct memory_failure_cpu *mf_cpu;
1502 int cpu;
1503
1504 for_each_possible_cpu(cpu) {
1505 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1506 spin_lock_init(&mf_cpu->lock);
1507 INIT_KFIFO(mf_cpu->fifo);
1508 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1509 }
1510
1511 return 0;
1512}
1513core_initcall(memory_failure_init);
1514
1515#define unpoison_pr_info(fmt, pfn, rs) \
1516({ \
1517 if (__ratelimit(rs)) \
1518 pr_info(fmt, pfn); \
1519})
1520
1521/**
1522 * unpoison_memory - Unpoison a previously poisoned page
1523 * @pfn: Page number of the to be unpoisoned page
1524 *
1525 * Software-unpoison a page that has been poisoned by
1526 * memory_failure() earlier.
1527 *
1528 * This is only done on the software-level, so it only works
1529 * for linux injected failures, not real hardware failures
1530 *
1531 * Returns 0 for success, otherwise -errno.
1532 */
1533int unpoison_memory(unsigned long pfn)
1534{
1535 struct page *page;
1536 struct page *p;
1537 int freeit = 0;
1538 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1539 DEFAULT_RATELIMIT_BURST);
1540
1541 if (!pfn_valid(pfn))
1542 return -ENXIO;
1543
1544 p = pfn_to_page(pfn);
1545 page = compound_head(p);
1546
1547 if (!PageHWPoison(p)) {
1548 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1549 pfn, &unpoison_rs);
1550 return 0;
1551 }
1552
1553 if (page_count(page) > 1) {
1554 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1555 pfn, &unpoison_rs);
1556 return 0;
1557 }
1558
1559 if (page_mapped(page)) {
1560 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1561 pfn, &unpoison_rs);
1562 return 0;
1563 }
1564
1565 if (page_mapping(page)) {
1566 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1567 pfn, &unpoison_rs);
1568 return 0;
1569 }
1570
1571 /*
1572 * unpoison_memory() can encounter thp only when the thp is being
1573 * worked by memory_failure() and the page lock is not held yet.
1574 * In such case, we yield to memory_failure() and make unpoison fail.
1575 */
1576 if (!PageHuge(page) && PageTransHuge(page)) {
1577 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1578 pfn, &unpoison_rs);
1579 return 0;
1580 }
1581
1582 if (!get_hwpoison_page(p)) {
1583 if (TestClearPageHWPoison(p))
1584 num_poisoned_pages_dec();
1585 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1586 pfn, &unpoison_rs);
1587 return 0;
1588 }
1589
1590 lock_page(page);
1591 /*
1592 * This test is racy because PG_hwpoison is set outside of page lock.
1593 * That's acceptable because that won't trigger kernel panic. Instead,
1594 * the PG_hwpoison page will be caught and isolated on the entrance to
1595 * the free buddy page pool.
1596 */
1597 if (TestClearPageHWPoison(page)) {
1598 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1599 pfn, &unpoison_rs);
1600 num_poisoned_pages_dec();
1601 freeit = 1;
1602 }
1603 unlock_page(page);
1604
1605 put_hwpoison_page(page);
1606 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1607 put_hwpoison_page(page);
1608
1609 return 0;
1610}
1611EXPORT_SYMBOL(unpoison_memory);
1612
1613static struct page *new_page(struct page *p, unsigned long private)
1614{
1615 int nid = page_to_nid(p);
1616
1617 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1618}
1619
1620/*
1621 * Safely get reference count of an arbitrary page.
1622 * Returns 0 for a free page, -EIO for a zero refcount page
1623 * that is not free, and 1 for any other page type.
1624 * For 1 the page is returned with increased page count, otherwise not.
1625 */
1626static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1627{
1628 int ret;
1629
1630 if (flags & MF_COUNT_INCREASED)
1631 return 1;
1632
1633 /*
1634 * When the target page is a free hugepage, just remove it
1635 * from free hugepage list.
1636 */
1637 if (!get_hwpoison_page(p)) {
1638 if (PageHuge(p)) {
1639 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1640 ret = 0;
1641 } else if (is_free_buddy_page(p)) {
1642 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1643 ret = 0;
1644 } else {
1645 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1646 __func__, pfn, p->flags);
1647 ret = -EIO;
1648 }
1649 } else {
1650 /* Not a free page */
1651 ret = 1;
1652 }
1653 return ret;
1654}
1655
1656static int get_any_page(struct page *page, unsigned long pfn, int flags)
1657{
1658 int ret = __get_any_page(page, pfn, flags);
1659
1660 if (ret == 1 && !PageHuge(page) &&
1661 !PageLRU(page) && !__PageMovable(page)) {
1662 /*
1663 * Try to free it.
1664 */
1665 put_hwpoison_page(page);
1666 shake_page(page, 1);
1667
1668 /*
1669 * Did it turn free?
1670 */
1671 ret = __get_any_page(page, pfn, 0);
1672 if (ret == 1 && !PageLRU(page)) {
1673 /* Drop page reference which is from __get_any_page() */
1674 put_hwpoison_page(page);
1675 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1676 pfn, page->flags, &page->flags);
1677 return -EIO;
1678 }
1679 }
1680 return ret;
1681}
1682
1683static int soft_offline_huge_page(struct page *page, int flags)
1684{
1685 int ret;
1686 unsigned long pfn = page_to_pfn(page);
1687 struct page *hpage = compound_head(page);
1688 LIST_HEAD(pagelist);
1689
1690 /*
1691 * This double-check of PageHWPoison is to avoid the race with
1692 * memory_failure(). See also comment in __soft_offline_page().
1693 */
1694 lock_page(hpage);
1695 if (PageHWPoison(hpage)) {
1696 unlock_page(hpage);
1697 put_hwpoison_page(hpage);
1698 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1699 return -EBUSY;
1700 }
1701 unlock_page(hpage);
1702
1703 ret = isolate_huge_page(hpage, &pagelist);
1704 /*
1705 * get_any_page() and isolate_huge_page() takes a refcount each,
1706 * so need to drop one here.
1707 */
1708 put_hwpoison_page(hpage);
1709 if (!ret) {
1710 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1711 return -EBUSY;
1712 }
1713
1714 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1715 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1716 if (ret) {
1717 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1718 pfn, ret, page->flags, &page->flags);
1719 if (!list_empty(&pagelist))
1720 putback_movable_pages(&pagelist);
1721 if (ret > 0)
1722 ret = -EIO;
1723 } else {
1724 /*
1725 * We set PG_hwpoison only when the migration source hugepage
1726 * was successfully dissolved, because otherwise hwpoisoned
1727 * hugepage remains on free hugepage list, then userspace will
1728 * find it as SIGBUS by allocation failure. That's not expected
1729 * in soft-offlining.
1730 */
1731 ret = dissolve_free_huge_page(page);
1732 if (!ret) {
1733 if (set_hwpoison_free_buddy_page(page))
1734 num_poisoned_pages_inc();
1735 else
1736 ret = -EBUSY;
1737 }
1738 }
1739 return ret;
1740}
1741
1742static int __soft_offline_page(struct page *page, int flags)
1743{
1744 int ret;
1745 unsigned long pfn = page_to_pfn(page);
1746
1747 /*
1748 * Check PageHWPoison again inside page lock because PageHWPoison
1749 * is set by memory_failure() outside page lock. Note that
1750 * memory_failure() also double-checks PageHWPoison inside page lock,
1751 * so there's no race between soft_offline_page() and memory_failure().
1752 */
1753 lock_page(page);
1754 wait_on_page_writeback(page);
1755 if (PageHWPoison(page)) {
1756 unlock_page(page);
1757 put_hwpoison_page(page);
1758 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1759 return -EBUSY;
1760 }
1761 /*
1762 * Try to invalidate first. This should work for
1763 * non dirty unmapped page cache pages.
1764 */
1765 ret = invalidate_inode_page(page);
1766 unlock_page(page);
1767 /*
1768 * RED-PEN would be better to keep it isolated here, but we
1769 * would need to fix isolation locking first.
1770 */
1771 if (ret == 1) {
1772 put_hwpoison_page(page);
1773 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1774 SetPageHWPoison(page);
1775 num_poisoned_pages_inc();
1776 return 0;
1777 }
1778
1779 /*
1780 * Simple invalidation didn't work.
1781 * Try to migrate to a new page instead. migrate.c
1782 * handles a large number of cases for us.
1783 */
1784 if (PageLRU(page))
1785 ret = isolate_lru_page(page);
1786 else
1787 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1788 /*
1789 * Drop page reference which is came from get_any_page()
1790 * successful isolate_lru_page() already took another one.
1791 */
1792 put_hwpoison_page(page);
1793 if (!ret) {
1794 LIST_HEAD(pagelist);
1795 /*
1796 * After isolated lru page, the PageLRU will be cleared,
1797 * so use !__PageMovable instead for LRU page's mapping
1798 * cannot have PAGE_MAPPING_MOVABLE.
1799 */
1800 if (!__PageMovable(page))
1801 inc_node_page_state(page, NR_ISOLATED_ANON +
1802 page_is_file_cache(page));
1803 list_add(&page->lru, &pagelist);
1804 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1805 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1806 if (ret) {
1807 if (!list_empty(&pagelist))
1808 putback_movable_pages(&pagelist);
1809
1810 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1811 pfn, ret, page->flags, &page->flags);
1812 if (ret > 0)
1813 ret = -EIO;
1814 }
1815 } else {
1816 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1817 pfn, ret, page_count(page), page->flags, &page->flags);
1818 }
1819 return ret;
1820}
1821
1822static int soft_offline_in_use_page(struct page *page, int flags)
1823{
1824 int ret;
1825 int mt;
1826 struct page *hpage = compound_head(page);
1827
1828 if (!PageHuge(page) && PageTransHuge(hpage)) {
1829 lock_page(page);
1830 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1831 unlock_page(page);
1832 if (!PageAnon(page))
1833 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1834 else
1835 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1836 put_hwpoison_page(page);
1837 return -EBUSY;
1838 }
1839 unlock_page(page);
1840 }
1841
1842 /*
1843 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1844 * to free list immediately (not via pcplist) when released after
1845 * successful page migration. Otherwise we can't guarantee that the
1846 * page is really free after put_page() returns, so
1847 * set_hwpoison_free_buddy_page() highly likely fails.
1848 */
1849 mt = get_pageblock_migratetype(page);
1850 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1851 if (PageHuge(page))
1852 ret = soft_offline_huge_page(page, flags);
1853 else
1854 ret = __soft_offline_page(page, flags);
1855 set_pageblock_migratetype(page, mt);
1856 return ret;
1857}
1858
1859static int soft_offline_free_page(struct page *page)
1860{
1861 int rc = dissolve_free_huge_page(page);
1862
1863 if (!rc) {
1864 if (set_hwpoison_free_buddy_page(page))
1865 num_poisoned_pages_inc();
1866 else
1867 rc = -EBUSY;
1868 }
1869 return rc;
1870}
1871
1872/**
1873 * soft_offline_page - Soft offline a page.
1874 * @page: page to offline
1875 * @flags: flags. Same as memory_failure().
1876 *
1877 * Returns 0 on success, otherwise negated errno.
1878 *
1879 * Soft offline a page, by migration or invalidation,
1880 * without killing anything. This is for the case when
1881 * a page is not corrupted yet (so it's still valid to access),
1882 * but has had a number of corrected errors and is better taken
1883 * out.
1884 *
1885 * The actual policy on when to do that is maintained by
1886 * user space.
1887 *
1888 * This should never impact any application or cause data loss,
1889 * however it might take some time.
1890 *
1891 * This is not a 100% solution for all memory, but tries to be
1892 * ``good enough'' for the majority of memory.
1893 */
1894int soft_offline_page(struct page *page, int flags)
1895{
1896 int ret;
1897 unsigned long pfn = page_to_pfn(page);
1898
1899 if (is_zone_device_page(page)) {
1900 pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1901 pfn);
1902 if (flags & MF_COUNT_INCREASED)
1903 put_page(page);
1904 return -EIO;
1905 }
1906
1907 if (PageHWPoison(page)) {
1908 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1909 if (flags & MF_COUNT_INCREASED)
1910 put_hwpoison_page(page);
1911 return -EBUSY;
1912 }
1913
1914 get_online_mems();
1915 ret = get_any_page(page, pfn, flags);
1916 put_online_mems();
1917
1918 if (ret > 0)
1919 ret = soft_offline_in_use_page(page, flags);
1920 else if (ret == 0)
1921 ret = soft_offline_free_page(page);
1922
1923 return ret;
1924}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
42#include <linux/sched/signal.h>
43#include <linux/sched/task.h>
44#include <linux/dax.h>
45#include <linux/ksm.h>
46#include <linux/rmap.h>
47#include <linux/export.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
51#include <linux/migrate.h>
52#include <linux/slab.h>
53#include <linux/swapops.h>
54#include <linux/hugetlb.h>
55#include <linux/memory_hotplug.h>
56#include <linux/mm_inline.h>
57#include <linux/memremap.h>
58#include <linux/kfifo.h>
59#include <linux/ratelimit.h>
60#include <linux/pagewalk.h>
61#include <linux/shmem_fs.h>
62#include <linux/sysctl.h>
63#include "swap.h"
64#include "internal.h"
65#include "ras/ras_event.h"
66
67static int sysctl_memory_failure_early_kill __read_mostly;
68
69static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71static int sysctl_enable_soft_offline __read_mostly = 1;
72
73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75static bool hw_memory_failure __read_mostly = false;
76
77static DEFINE_MUTEX(mf_mutex);
78
79void num_poisoned_pages_inc(unsigned long pfn)
80{
81 atomic_long_inc(&num_poisoned_pages);
82 memblk_nr_poison_inc(pfn);
83}
84
85void num_poisoned_pages_sub(unsigned long pfn, long i)
86{
87 atomic_long_sub(i, &num_poisoned_pages);
88 if (pfn != -1UL)
89 memblk_nr_poison_sub(pfn, i);
90}
91
92/**
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
95 */
96#define MF_ATTR_RO(_name) \
97static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
99 char *buf) \
100{ \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \
104} \
105static DEVICE_ATTR_RO(_name)
106
107MF_ATTR_RO(total);
108MF_ATTR_RO(ignored);
109MF_ATTR_RO(failed);
110MF_ATTR_RO(delayed);
111MF_ATTR_RO(recovered);
112
113static struct attribute *memory_failure_attr[] = {
114 &dev_attr_total.attr,
115 &dev_attr_ignored.attr,
116 &dev_attr_failed.attr,
117 &dev_attr_delayed.attr,
118 &dev_attr_recovered.attr,
119 NULL,
120};
121
122const struct attribute_group memory_failure_attr_group = {
123 .name = "memory_failure",
124 .attrs = memory_failure_attr,
125};
126
127static struct ctl_table memory_failure_table[] = {
128 {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
132 .mode = 0644,
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
136 },
137 {
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
141 .mode = 0644,
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
145 },
146 {
147 .procname = "enable_soft_offline",
148 .data = &sysctl_enable_soft_offline,
149 .maxlen = sizeof(sysctl_enable_soft_offline),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 .extra2 = SYSCTL_ONE,
154 }
155};
156
157/*
158 * Return values:
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
162 */
163static int __page_handle_poison(struct page *page)
164{
165 int ret;
166
167 /*
168 * zone_pcp_disable() can't be used here. It will
169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
178 */
179 ret = dissolve_free_hugetlb_folio(page_folio(page));
180 if (!ret) {
181 drain_all_pages(page_zone(page));
182 ret = take_page_off_buddy(page);
183 }
184
185 return ret;
186}
187
188static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189{
190 if (hugepage_or_freepage) {
191 /*
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 */
195 if (__page_handle_poison(page) <= 0)
196 /*
197 * We could fail to take off the target page from buddy
198 * for example due to racy page allocation, but that's
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
201 * take it.
202 */
203 return false;
204 }
205
206 SetPageHWPoison(page);
207 if (release)
208 put_page(page);
209 page_ref_inc(page);
210 num_poisoned_pages_inc(page_to_pfn(page));
211
212 return true;
213}
214
215#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216
217u32 hwpoison_filter_enable = 0;
218u32 hwpoison_filter_dev_major = ~0U;
219u32 hwpoison_filter_dev_minor = ~0U;
220u64 hwpoison_filter_flags_mask;
221u64 hwpoison_filter_flags_value;
222EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227
228static int hwpoison_filter_dev(struct page *p)
229{
230 struct folio *folio = page_folio(p);
231 struct address_space *mapping;
232 dev_t dev;
233
234 if (hwpoison_filter_dev_major == ~0U &&
235 hwpoison_filter_dev_minor == ~0U)
236 return 0;
237
238 mapping = folio_mapping(folio);
239 if (mapping == NULL || mapping->host == NULL)
240 return -EINVAL;
241
242 dev = mapping->host->i_sb->s_dev;
243 if (hwpoison_filter_dev_major != ~0U &&
244 hwpoison_filter_dev_major != MAJOR(dev))
245 return -EINVAL;
246 if (hwpoison_filter_dev_minor != ~0U &&
247 hwpoison_filter_dev_minor != MINOR(dev))
248 return -EINVAL;
249
250 return 0;
251}
252
253static int hwpoison_filter_flags(struct page *p)
254{
255 if (!hwpoison_filter_flags_mask)
256 return 0;
257
258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 hwpoison_filter_flags_value)
260 return 0;
261 else
262 return -EINVAL;
263}
264
265/*
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
273 * a freed page.
274 */
275#ifdef CONFIG_MEMCG
276u64 hwpoison_filter_memcg;
277EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278static int hwpoison_filter_task(struct page *p)
279{
280 if (!hwpoison_filter_memcg)
281 return 0;
282
283 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 return -EINVAL;
285
286 return 0;
287}
288#else
289static int hwpoison_filter_task(struct page *p) { return 0; }
290#endif
291
292int hwpoison_filter(struct page *p)
293{
294 if (!hwpoison_filter_enable)
295 return 0;
296
297 if (hwpoison_filter_dev(p))
298 return -EINVAL;
299
300 if (hwpoison_filter_flags(p))
301 return -EINVAL;
302
303 if (hwpoison_filter_task(p))
304 return -EINVAL;
305
306 return 0;
307}
308EXPORT_SYMBOL_GPL(hwpoison_filter);
309#else
310int hwpoison_filter(struct page *p)
311{
312 return 0;
313}
314#endif
315
316/*
317 * Kill all processes that have a poisoned page mapped and then isolate
318 * the page.
319 *
320 * General strategy:
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
325 *
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
328 * running processes.
329 *
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
333 *
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
336 */
337
338struct to_kill {
339 struct list_head nd;
340 struct task_struct *tsk;
341 unsigned long addr;
342 short size_shift;
343};
344
345/*
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
349 */
350static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351{
352 struct task_struct *t = tk->tsk;
353 short addr_lsb = tk->size_shift;
354 int ret = 0;
355
356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 pfn, t->comm, task_pid_nr(t));
358
359 if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 ret = force_sig_mceerr(BUS_MCEERR_AR,
361 (void __user *)tk->addr, addr_lsb);
362 else
363 /*
364 * Signal other processes sharing the page if they have
365 * PF_MCE_EARLY set.
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
368 */
369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 addr_lsb, t);
371 if (ret < 0)
372 pr_info("Error sending signal to %s:%d: %d\n",
373 t->comm, task_pid_nr(t), ret);
374 return ret;
375}
376
377/*
378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
379 * lru_add_drain_all.
380 */
381void shake_folio(struct folio *folio)
382{
383 if (folio_test_hugetlb(folio))
384 return;
385 /*
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
388 */
389 if (folio_test_slab(folio))
390 return;
391
392 lru_add_drain_all();
393}
394EXPORT_SYMBOL_GPL(shake_folio);
395
396static void shake_page(struct page *page)
397{
398 shake_folio(page_folio(page));
399}
400
401static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 unsigned long address)
403{
404 unsigned long ret = 0;
405 pgd_t *pgd;
406 p4d_t *p4d;
407 pud_t *pud;
408 pmd_t *pmd;
409 pte_t *pte;
410 pte_t ptent;
411
412 VM_BUG_ON_VMA(address == -EFAULT, vma);
413 pgd = pgd_offset(vma->vm_mm, address);
414 if (!pgd_present(*pgd))
415 return 0;
416 p4d = p4d_offset(pgd, address);
417 if (!p4d_present(*p4d))
418 return 0;
419 pud = pud_offset(p4d, address);
420 if (!pud_present(*pud))
421 return 0;
422 if (pud_devmap(*pud))
423 return PUD_SHIFT;
424 pmd = pmd_offset(pud, address);
425 if (!pmd_present(*pmd))
426 return 0;
427 if (pmd_devmap(*pmd))
428 return PMD_SHIFT;
429 pte = pte_offset_map(pmd, address);
430 if (!pte)
431 return 0;
432 ptent = ptep_get(pte);
433 if (pte_present(ptent) && pte_devmap(ptent))
434 ret = PAGE_SHIFT;
435 pte_unmap(pte);
436 return ret;
437}
438
439/*
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
442 */
443
444/*
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447 */
448static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 struct vm_area_struct *vma, struct list_head *to_kill,
450 unsigned long addr)
451{
452 struct to_kill *tk;
453
454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 if (!tk) {
456 pr_err("Out of memory while machine check handling\n");
457 return;
458 }
459
460 tk->addr = addr;
461 if (is_zone_device_page(p))
462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 else
464 tk->size_shift = folio_shift(page_folio(p));
465
466 /*
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
475 */
476 if (tk->addr == -EFAULT) {
477 pr_info("Unable to find user space address %lx in %s\n",
478 page_to_pfn(p), tsk->comm);
479 } else if (tk->size_shift == 0) {
480 kfree(tk);
481 return;
482 }
483
484 get_task_struct(tsk);
485 tk->tsk = tsk;
486 list_add_tail(&tk->nd, to_kill);
487}
488
489static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 struct vm_area_struct *vma, struct list_head *to_kill,
491 unsigned long addr)
492{
493 if (addr == -EFAULT)
494 return;
495 __add_to_kill(tsk, p, vma, to_kill, addr);
496}
497
498#ifdef CONFIG_KSM
499static bool task_in_to_kill_list(struct list_head *to_kill,
500 struct task_struct *tsk)
501{
502 struct to_kill *tk, *next;
503
504 list_for_each_entry_safe(tk, next, to_kill, nd) {
505 if (tk->tsk == tsk)
506 return true;
507 }
508
509 return false;
510}
511
512void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 struct vm_area_struct *vma, struct list_head *to_kill,
514 unsigned long addr)
515{
516 if (!task_in_to_kill_list(to_kill, tsk))
517 __add_to_kill(tsk, p, vma, to_kill, addr);
518}
519#endif
520/*
521 * Kill the processes that have been collected earlier.
522 *
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
525 */
526static void kill_procs(struct list_head *to_kill, int forcekill,
527 unsigned long pfn, int flags)
528{
529 struct to_kill *tk, *next;
530
531 list_for_each_entry_safe(tk, next, to_kill, nd) {
532 if (forcekill) {
533 if (tk->addr == -EFAULT) {
534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 tk->tsk, PIDTYPE_PID);
538 }
539
540 /*
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
544 * process anyways.
545 */
546 else if (kill_proc(tk, pfn, flags) < 0)
547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 }
550 list_del(&tk->nd);
551 put_task_struct(tk->tsk);
552 kfree(tk);
553 }
554}
555
556/*
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
560 *
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
563 */
564static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565{
566 struct task_struct *t;
567
568 for_each_thread(tsk, t) {
569 if (t->flags & PF_MCE_PROCESS) {
570 if (t->flags & PF_MCE_EARLY)
571 return t;
572 } else {
573 if (sysctl_memory_failure_early_kill)
574 return t;
575 }
576 }
577 return NULL;
578}
579
580/*
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
584 * specified) if the process is "early kill" and otherwise returns NULL.
585 *
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
591 */
592struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593{
594 if (!tsk->mm)
595 return NULL;
596 /*
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
599 */
600 if (force_early && tsk->mm == current->mm)
601 return current;
602
603 return find_early_kill_thread(tsk);
604}
605
606/*
607 * Collect processes when the error hit an anonymous page.
608 */
609static void collect_procs_anon(const struct folio *folio,
610 const struct page *page, struct list_head *to_kill,
611 int force_early)
612{
613 struct task_struct *tsk;
614 struct anon_vma *av;
615 pgoff_t pgoff;
616
617 av = folio_lock_anon_vma_read(folio, NULL);
618 if (av == NULL) /* Not actually mapped anymore */
619 return;
620
621 pgoff = page_pgoff(folio, page);
622 rcu_read_lock();
623 for_each_process(tsk) {
624 struct vm_area_struct *vma;
625 struct anon_vma_chain *vmac;
626 struct task_struct *t = task_early_kill(tsk, force_early);
627 unsigned long addr;
628
629 if (!t)
630 continue;
631 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 pgoff, pgoff) {
633 vma = vmac->vma;
634 if (vma->vm_mm != t->mm)
635 continue;
636 addr = page_mapped_in_vma(page, vma);
637 add_to_kill_anon_file(t, page, vma, to_kill, addr);
638 }
639 }
640 rcu_read_unlock();
641 anon_vma_unlock_read(av);
642}
643
644/*
645 * Collect processes when the error hit a file mapped page.
646 */
647static void collect_procs_file(const struct folio *folio,
648 const struct page *page, struct list_head *to_kill,
649 int force_early)
650{
651 struct vm_area_struct *vma;
652 struct task_struct *tsk;
653 struct address_space *mapping = folio->mapping;
654 pgoff_t pgoff;
655
656 i_mmap_lock_read(mapping);
657 rcu_read_lock();
658 pgoff = page_pgoff(folio, page);
659 for_each_process(tsk) {
660 struct task_struct *t = task_early_kill(tsk, force_early);
661 unsigned long addr;
662
663 if (!t)
664 continue;
665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 pgoff) {
667 /*
668 * Send early kill signal to tasks where a vma covers
669 * the page but the corrupted page is not necessarily
670 * mapped in its pte.
671 * Assume applications who requested early kill want
672 * to be informed of all such data corruptions.
673 */
674 if (vma->vm_mm != t->mm)
675 continue;
676 addr = page_address_in_vma(folio, page, vma);
677 add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 }
679 }
680 rcu_read_unlock();
681 i_mmap_unlock_read(mapping);
682}
683
684#ifdef CONFIG_FS_DAX
685static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 struct vm_area_struct *vma,
687 struct list_head *to_kill, pgoff_t pgoff)
688{
689 unsigned long addr = vma_address(vma, pgoff, 1);
690 __add_to_kill(tsk, p, vma, to_kill, addr);
691}
692
693/*
694 * Collect processes when the error hit a fsdax page.
695 */
696static void collect_procs_fsdax(const struct page *page,
697 struct address_space *mapping, pgoff_t pgoff,
698 struct list_head *to_kill, bool pre_remove)
699{
700 struct vm_area_struct *vma;
701 struct task_struct *tsk;
702
703 i_mmap_lock_read(mapping);
704 rcu_read_lock();
705 for_each_process(tsk) {
706 struct task_struct *t = tsk;
707
708 /*
709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 * the current may not be the one accessing the fsdax page.
711 * Otherwise, search for the current task.
712 */
713 if (!pre_remove)
714 t = task_early_kill(tsk, true);
715 if (!t)
716 continue;
717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 if (vma->vm_mm == t->mm)
719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 }
721 }
722 rcu_read_unlock();
723 i_mmap_unlock_read(mapping);
724}
725#endif /* CONFIG_FS_DAX */
726
727/*
728 * Collect the processes who have the corrupted page mapped to kill.
729 */
730static void collect_procs(const struct folio *folio, const struct page *page,
731 struct list_head *tokill, int force_early)
732{
733 if (!folio->mapping)
734 return;
735 if (unlikely(folio_test_ksm(folio)))
736 collect_procs_ksm(folio, page, tokill, force_early);
737 else if (folio_test_anon(folio))
738 collect_procs_anon(folio, page, tokill, force_early);
739 else
740 collect_procs_file(folio, page, tokill, force_early);
741}
742
743struct hwpoison_walk {
744 struct to_kill tk;
745 unsigned long pfn;
746 int flags;
747};
748
749static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750{
751 tk->addr = addr;
752 tk->size_shift = shift;
753}
754
755static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 unsigned long poisoned_pfn, struct to_kill *tk)
757{
758 unsigned long pfn = 0;
759
760 if (pte_present(pte)) {
761 pfn = pte_pfn(pte);
762 } else {
763 swp_entry_t swp = pte_to_swp_entry(pte);
764
765 if (is_hwpoison_entry(swp))
766 pfn = swp_offset_pfn(swp);
767 }
768
769 if (!pfn || pfn != poisoned_pfn)
770 return 0;
771
772 set_to_kill(tk, addr, shift);
773 return 1;
774}
775
776#ifdef CONFIG_TRANSPARENT_HUGEPAGE
777static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 struct hwpoison_walk *hwp)
779{
780 pmd_t pmd = *pmdp;
781 unsigned long pfn;
782 unsigned long hwpoison_vaddr;
783
784 if (!pmd_present(pmd))
785 return 0;
786 pfn = pmd_pfn(pmd);
787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 return 1;
791 }
792 return 0;
793}
794#else
795static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 struct hwpoison_walk *hwp)
797{
798 return 0;
799}
800#endif
801
802static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 unsigned long end, struct mm_walk *walk)
804{
805 struct hwpoison_walk *hwp = walk->private;
806 int ret = 0;
807 pte_t *ptep, *mapped_pte;
808 spinlock_t *ptl;
809
810 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 if (ptl) {
812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 spin_unlock(ptl);
814 goto out;
815 }
816
817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 addr, &ptl);
819 if (!ptep)
820 goto out;
821
822 for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 hwp->pfn, &hwp->tk);
825 if (ret == 1)
826 break;
827 }
828 pte_unmap_unlock(mapped_pte, ptl);
829out:
830 cond_resched();
831 return ret;
832}
833
834#ifdef CONFIG_HUGETLB_PAGE
835static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 unsigned long addr, unsigned long end,
837 struct mm_walk *walk)
838{
839 struct hwpoison_walk *hwp = walk->private;
840 pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
841 struct hstate *h = hstate_vma(walk->vma);
842
843 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
844 hwp->pfn, &hwp->tk);
845}
846#else
847#define hwpoison_hugetlb_range NULL
848#endif
849
850static const struct mm_walk_ops hwpoison_walk_ops = {
851 .pmd_entry = hwpoison_pte_range,
852 .hugetlb_entry = hwpoison_hugetlb_range,
853 .walk_lock = PGWALK_RDLOCK,
854};
855
856/*
857 * Sends SIGBUS to the current process with error info.
858 *
859 * This function is intended to handle "Action Required" MCEs on already
860 * hardware poisoned pages. They could happen, for example, when
861 * memory_failure() failed to unmap the error page at the first call, or
862 * when multiple local machine checks happened on different CPUs.
863 *
864 * MCE handler currently has no easy access to the error virtual address,
865 * so this function walks page table to find it. The returned virtual address
866 * is proper in most cases, but it could be wrong when the application
867 * process has multiple entries mapping the error page.
868 */
869static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
870 int flags)
871{
872 int ret;
873 struct hwpoison_walk priv = {
874 .pfn = pfn,
875 };
876 priv.tk.tsk = p;
877
878 if (!p->mm)
879 return -EFAULT;
880
881 mmap_read_lock(p->mm);
882 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
883 (void *)&priv);
884 if (ret == 1 && priv.tk.addr)
885 kill_proc(&priv.tk, pfn, flags);
886 else
887 ret = 0;
888 mmap_read_unlock(p->mm);
889 return ret > 0 ? -EHWPOISON : -EFAULT;
890}
891
892/*
893 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
894 * But it could not do more to isolate the page from being accessed again,
895 * nor does it kill the process. This is extremely rare and one of the
896 * potential causes is that the page state has been changed due to
897 * underlying race condition. This is the most severe outcomes.
898 *
899 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
900 * It should have killed the process, but it can't isolate the page,
901 * due to conditions such as extra pin, unmap failure, etc. Accessing
902 * the page again may trigger another MCE and the process will be killed
903 * by the m-f() handler immediately.
904 *
905 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
906 * The page is unmapped, and is removed from the LRU or file mapping.
907 * An attempt to access the page again will trigger page fault and the
908 * PF handler will kill the process.
909 *
910 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911 * The page has been completely isolated, that is, unmapped, taken out of
912 * the buddy system, or hole-punnched out of the file mapping.
913 */
914static const char *action_name[] = {
915 [MF_IGNORED] = "Ignored",
916 [MF_FAILED] = "Failed",
917 [MF_DELAYED] = "Delayed",
918 [MF_RECOVERED] = "Recovered",
919};
920
921static const char * const action_page_types[] = {
922 [MF_MSG_KERNEL] = "reserved kernel page",
923 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
924 [MF_MSG_HUGE] = "huge page",
925 [MF_MSG_FREE_HUGE] = "free huge page",
926 [MF_MSG_GET_HWPOISON] = "get hwpoison page",
927 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
928 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
929 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
930 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
931 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
932 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
933 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
934 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
935 [MF_MSG_CLEAN_LRU] = "clean LRU page",
936 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
937 [MF_MSG_BUDDY] = "free buddy page",
938 [MF_MSG_DAX] = "dax page",
939 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
940 [MF_MSG_ALREADY_POISONED] = "already poisoned",
941 [MF_MSG_UNKNOWN] = "unknown page",
942};
943
944/*
945 * XXX: It is possible that a page is isolated from LRU cache,
946 * and then kept in swap cache or failed to remove from page cache.
947 * The page count will stop it from being freed by unpoison.
948 * Stress tests should be aware of this memory leak problem.
949 */
950static int delete_from_lru_cache(struct folio *folio)
951{
952 if (folio_isolate_lru(folio)) {
953 /*
954 * Clear sensible page flags, so that the buddy system won't
955 * complain when the folio is unpoison-and-freed.
956 */
957 folio_clear_active(folio);
958 folio_clear_unevictable(folio);
959
960 /*
961 * Poisoned page might never drop its ref count to 0 so we have
962 * to uncharge it manually from its memcg.
963 */
964 mem_cgroup_uncharge(folio);
965
966 /*
967 * drop the refcount elevated by folio_isolate_lru()
968 */
969 folio_put(folio);
970 return 0;
971 }
972 return -EIO;
973}
974
975static int truncate_error_folio(struct folio *folio, unsigned long pfn,
976 struct address_space *mapping)
977{
978 int ret = MF_FAILED;
979
980 if (mapping->a_ops->error_remove_folio) {
981 int err = mapping->a_ops->error_remove_folio(mapping, folio);
982
983 if (err != 0)
984 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
985 else if (!filemap_release_folio(folio, GFP_NOIO))
986 pr_info("%#lx: failed to release buffers\n", pfn);
987 else
988 ret = MF_RECOVERED;
989 } else {
990 /*
991 * If the file system doesn't support it just invalidate
992 * This fails on dirty or anything with private pages
993 */
994 if (mapping_evict_folio(mapping, folio))
995 ret = MF_RECOVERED;
996 else
997 pr_info("%#lx: Failed to invalidate\n", pfn);
998 }
999
1000 return ret;
1001}
1002
1003struct page_state {
1004 unsigned long mask;
1005 unsigned long res;
1006 enum mf_action_page_type type;
1007
1008 /* Callback ->action() has to unlock the relevant page inside it. */
1009 int (*action)(struct page_state *ps, struct page *p);
1010};
1011
1012/*
1013 * Return true if page is still referenced by others, otherwise return
1014 * false.
1015 *
1016 * The extra_pins is true when one extra refcount is expected.
1017 */
1018static bool has_extra_refcount(struct page_state *ps, struct page *p,
1019 bool extra_pins)
1020{
1021 int count = page_count(p) - 1;
1022
1023 if (extra_pins)
1024 count -= folio_nr_pages(page_folio(p));
1025
1026 if (count > 0) {
1027 pr_err("%#lx: %s still referenced by %d users\n",
1028 page_to_pfn(p), action_page_types[ps->type], count);
1029 return true;
1030 }
1031
1032 return false;
1033}
1034
1035/*
1036 * Error hit kernel page.
1037 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1038 * could be more sophisticated.
1039 */
1040static int me_kernel(struct page_state *ps, struct page *p)
1041{
1042 unlock_page(p);
1043 return MF_IGNORED;
1044}
1045
1046/*
1047 * Page in unknown state. Do nothing.
1048 * This is a catch-all in case we fail to make sense of the page state.
1049 */
1050static int me_unknown(struct page_state *ps, struct page *p)
1051{
1052 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1053 unlock_page(p);
1054 return MF_IGNORED;
1055}
1056
1057/*
1058 * Clean (or cleaned) page cache page.
1059 */
1060static int me_pagecache_clean(struct page_state *ps, struct page *p)
1061{
1062 struct folio *folio = page_folio(p);
1063 int ret;
1064 struct address_space *mapping;
1065 bool extra_pins;
1066
1067 delete_from_lru_cache(folio);
1068
1069 /*
1070 * For anonymous folios the only reference left
1071 * should be the one m_f() holds.
1072 */
1073 if (folio_test_anon(folio)) {
1074 ret = MF_RECOVERED;
1075 goto out;
1076 }
1077
1078 /*
1079 * Now truncate the page in the page cache. This is really
1080 * more like a "temporary hole punch"
1081 * Don't do this for block devices when someone else
1082 * has a reference, because it could be file system metadata
1083 * and that's not safe to truncate.
1084 */
1085 mapping = folio_mapping(folio);
1086 if (!mapping) {
1087 /* Folio has been torn down in the meantime */
1088 ret = MF_FAILED;
1089 goto out;
1090 }
1091
1092 /*
1093 * The shmem page is kept in page cache instead of truncating
1094 * so is expected to have an extra refcount after error-handling.
1095 */
1096 extra_pins = shmem_mapping(mapping);
1097
1098 /*
1099 * Truncation is a bit tricky. Enable it per file system for now.
1100 *
1101 * Open: to take i_rwsem or not for this? Right now we don't.
1102 */
1103 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1104 if (has_extra_refcount(ps, p, extra_pins))
1105 ret = MF_FAILED;
1106
1107out:
1108 folio_unlock(folio);
1109
1110 return ret;
1111}
1112
1113/*
1114 * Dirty pagecache page
1115 * Issues: when the error hit a hole page the error is not properly
1116 * propagated.
1117 */
1118static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1119{
1120 struct folio *folio = page_folio(p);
1121 struct address_space *mapping = folio_mapping(folio);
1122
1123 /* TBD: print more information about the file. */
1124 if (mapping) {
1125 /*
1126 * IO error will be reported by write(), fsync(), etc.
1127 * who check the mapping.
1128 * This way the application knows that something went
1129 * wrong with its dirty file data.
1130 */
1131 mapping_set_error(mapping, -EIO);
1132 }
1133
1134 return me_pagecache_clean(ps, p);
1135}
1136
1137/*
1138 * Clean and dirty swap cache.
1139 *
1140 * Dirty swap cache page is tricky to handle. The page could live both in page
1141 * table and swap cache(ie. page is freshly swapped in). So it could be
1142 * referenced concurrently by 2 types of PTEs:
1143 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1145 * and then
1146 * - clear dirty bit to prevent IO
1147 * - remove from LRU
1148 * - but keep in the swap cache, so that when we return to it on
1149 * a later page fault, we know the application is accessing
1150 * corrupted data and shall be killed (we installed simple
1151 * interception code in do_swap_page to catch it).
1152 *
1153 * Clean swap cache pages can be directly isolated. A later page fault will
1154 * bring in the known good data from disk.
1155 */
1156static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1157{
1158 struct folio *folio = page_folio(p);
1159 int ret;
1160 bool extra_pins = false;
1161
1162 folio_clear_dirty(folio);
1163 /* Trigger EIO in shmem: */
1164 folio_clear_uptodate(folio);
1165
1166 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1167 folio_unlock(folio);
1168
1169 if (ret == MF_DELAYED)
1170 extra_pins = true;
1171
1172 if (has_extra_refcount(ps, p, extra_pins))
1173 ret = MF_FAILED;
1174
1175 return ret;
1176}
1177
1178static int me_swapcache_clean(struct page_state *ps, struct page *p)
1179{
1180 struct folio *folio = page_folio(p);
1181 int ret;
1182
1183 delete_from_swap_cache(folio);
1184
1185 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1186 folio_unlock(folio);
1187
1188 if (has_extra_refcount(ps, p, false))
1189 ret = MF_FAILED;
1190
1191 return ret;
1192}
1193
1194/*
1195 * Huge pages. Needs work.
1196 * Issues:
1197 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1198 * To narrow down kill region to one page, we need to break up pmd.
1199 */
1200static int me_huge_page(struct page_state *ps, struct page *p)
1201{
1202 struct folio *folio = page_folio(p);
1203 int res;
1204 struct address_space *mapping;
1205 bool extra_pins = false;
1206
1207 mapping = folio_mapping(folio);
1208 if (mapping) {
1209 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1210 /* The page is kept in page cache. */
1211 extra_pins = true;
1212 folio_unlock(folio);
1213 } else {
1214 folio_unlock(folio);
1215 /*
1216 * migration entry prevents later access on error hugepage,
1217 * so we can free and dissolve it into buddy to save healthy
1218 * subpages.
1219 */
1220 folio_put(folio);
1221 if (__page_handle_poison(p) > 0) {
1222 page_ref_inc(p);
1223 res = MF_RECOVERED;
1224 } else {
1225 res = MF_FAILED;
1226 }
1227 }
1228
1229 if (has_extra_refcount(ps, p, extra_pins))
1230 res = MF_FAILED;
1231
1232 return res;
1233}
1234
1235/*
1236 * Various page states we can handle.
1237 *
1238 * A page state is defined by its current page->flags bits.
1239 * The table matches them in order and calls the right handler.
1240 *
1241 * This is quite tricky because we can access page at any time
1242 * in its live cycle, so all accesses have to be extremely careful.
1243 *
1244 * This is not complete. More states could be added.
1245 * For any missing state don't attempt recovery.
1246 */
1247
1248#define dirty (1UL << PG_dirty)
1249#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1250#define unevict (1UL << PG_unevictable)
1251#define mlock (1UL << PG_mlocked)
1252#define lru (1UL << PG_lru)
1253#define head (1UL << PG_head)
1254#define reserved (1UL << PG_reserved)
1255
1256static struct page_state error_states[] = {
1257 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1258 /*
1259 * free pages are specially detected outside this table:
1260 * PG_buddy pages only make a small fraction of all free pages.
1261 */
1262
1263 { head, head, MF_MSG_HUGE, me_huge_page },
1264
1265 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1266 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1267
1268 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1269 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1270
1271 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1272 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1273
1274 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1275 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1276
1277 /*
1278 * Catchall entry: must be at end.
1279 */
1280 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1281};
1282
1283#undef dirty
1284#undef sc
1285#undef unevict
1286#undef mlock
1287#undef lru
1288#undef head
1289#undef reserved
1290
1291static void update_per_node_mf_stats(unsigned long pfn,
1292 enum mf_result result)
1293{
1294 int nid = MAX_NUMNODES;
1295 struct memory_failure_stats *mf_stats = NULL;
1296
1297 nid = pfn_to_nid(pfn);
1298 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1299 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1300 return;
1301 }
1302
1303 mf_stats = &NODE_DATA(nid)->mf_stats;
1304 switch (result) {
1305 case MF_IGNORED:
1306 ++mf_stats->ignored;
1307 break;
1308 case MF_FAILED:
1309 ++mf_stats->failed;
1310 break;
1311 case MF_DELAYED:
1312 ++mf_stats->delayed;
1313 break;
1314 case MF_RECOVERED:
1315 ++mf_stats->recovered;
1316 break;
1317 default:
1318 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1319 break;
1320 }
1321 ++mf_stats->total;
1322}
1323
1324/*
1325 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1326 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1327 */
1328static int action_result(unsigned long pfn, enum mf_action_page_type type,
1329 enum mf_result result)
1330{
1331 trace_memory_failure_event(pfn, type, result);
1332
1333 num_poisoned_pages_inc(pfn);
1334
1335 update_per_node_mf_stats(pfn, result);
1336
1337 pr_err("%#lx: recovery action for %s: %s\n",
1338 pfn, action_page_types[type], action_name[result]);
1339
1340 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1341}
1342
1343static int page_action(struct page_state *ps, struct page *p,
1344 unsigned long pfn)
1345{
1346 int result;
1347
1348 /* page p should be unlocked after returning from ps->action(). */
1349 result = ps->action(ps, p);
1350
1351 /* Could do more checks here if page looks ok */
1352 /*
1353 * Could adjust zone counters here to correct for the missing page.
1354 */
1355
1356 return action_result(pfn, ps->type, result);
1357}
1358
1359static inline bool PageHWPoisonTakenOff(struct page *page)
1360{
1361 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1362}
1363
1364void SetPageHWPoisonTakenOff(struct page *page)
1365{
1366 set_page_private(page, MAGIC_HWPOISON);
1367}
1368
1369void ClearPageHWPoisonTakenOff(struct page *page)
1370{
1371 if (PageHWPoison(page))
1372 set_page_private(page, 0);
1373}
1374
1375/*
1376 * Return true if a page type of a given page is supported by hwpoison
1377 * mechanism (while handling could fail), otherwise false. This function
1378 * does not return true for hugetlb or device memory pages, so it's assumed
1379 * to be called only in the context where we never have such pages.
1380 */
1381static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1382{
1383 if (PageSlab(page))
1384 return false;
1385
1386 /* Soft offline could migrate non-LRU movable pages */
1387 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1388 return true;
1389
1390 return PageLRU(page) || is_free_buddy_page(page);
1391}
1392
1393static int __get_hwpoison_page(struct page *page, unsigned long flags)
1394{
1395 struct folio *folio = page_folio(page);
1396 int ret = 0;
1397 bool hugetlb = false;
1398
1399 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1400 if (hugetlb) {
1401 /* Make sure hugetlb demotion did not happen from under us. */
1402 if (folio == page_folio(page))
1403 return ret;
1404 if (ret > 0) {
1405 folio_put(folio);
1406 folio = page_folio(page);
1407 }
1408 }
1409
1410 /*
1411 * This check prevents from calling folio_try_get() for any
1412 * unsupported type of folio in order to reduce the risk of unexpected
1413 * races caused by taking a folio refcount.
1414 */
1415 if (!HWPoisonHandlable(&folio->page, flags))
1416 return -EBUSY;
1417
1418 if (folio_try_get(folio)) {
1419 if (folio == page_folio(page))
1420 return 1;
1421
1422 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1423 folio_put(folio);
1424 }
1425
1426 return 0;
1427}
1428
1429#define GET_PAGE_MAX_RETRY_NUM 3
1430
1431static int get_any_page(struct page *p, unsigned long flags)
1432{
1433 int ret = 0, pass = 0;
1434 bool count_increased = false;
1435
1436 if (flags & MF_COUNT_INCREASED)
1437 count_increased = true;
1438
1439try_again:
1440 if (!count_increased) {
1441 ret = __get_hwpoison_page(p, flags);
1442 if (!ret) {
1443 if (page_count(p)) {
1444 /* We raced with an allocation, retry. */
1445 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1446 goto try_again;
1447 ret = -EBUSY;
1448 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1449 /* We raced with put_page, retry. */
1450 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1451 goto try_again;
1452 ret = -EIO;
1453 }
1454 goto out;
1455 } else if (ret == -EBUSY) {
1456 /*
1457 * We raced with (possibly temporary) unhandlable
1458 * page, retry.
1459 */
1460 if (pass++ < 3) {
1461 shake_page(p);
1462 goto try_again;
1463 }
1464 ret = -EIO;
1465 goto out;
1466 }
1467 }
1468
1469 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1470 ret = 1;
1471 } else {
1472 /*
1473 * A page we cannot handle. Check whether we can turn
1474 * it into something we can handle.
1475 */
1476 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1477 put_page(p);
1478 shake_page(p);
1479 count_increased = false;
1480 goto try_again;
1481 }
1482 put_page(p);
1483 ret = -EIO;
1484 }
1485out:
1486 if (ret == -EIO)
1487 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1488
1489 return ret;
1490}
1491
1492static int __get_unpoison_page(struct page *page)
1493{
1494 struct folio *folio = page_folio(page);
1495 int ret = 0;
1496 bool hugetlb = false;
1497
1498 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1499 if (hugetlb) {
1500 /* Make sure hugetlb demotion did not happen from under us. */
1501 if (folio == page_folio(page))
1502 return ret;
1503 if (ret > 0)
1504 folio_put(folio);
1505 }
1506
1507 /*
1508 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1509 * but also isolated from buddy freelist, so need to identify the
1510 * state and have to cancel both operations to unpoison.
1511 */
1512 if (PageHWPoisonTakenOff(page))
1513 return -EHWPOISON;
1514
1515 return get_page_unless_zero(page) ? 1 : 0;
1516}
1517
1518/**
1519 * get_hwpoison_page() - Get refcount for memory error handling
1520 * @p: Raw error page (hit by memory error)
1521 * @flags: Flags controlling behavior of error handling
1522 *
1523 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1524 * error on it, after checking that the error page is in a well-defined state
1525 * (defined as a page-type we can successfully handle the memory error on it,
1526 * such as LRU page and hugetlb page).
1527 *
1528 * Memory error handling could be triggered at any time on any type of page,
1529 * so it's prone to race with typical memory management lifecycle (like
1530 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1531 * extra care for the error page's state (as done in __get_hwpoison_page()),
1532 * and has some retry logic in get_any_page().
1533 *
1534 * When called from unpoison_memory(), the caller should already ensure that
1535 * the given page has PG_hwpoison. So it's never reused for other page
1536 * allocations, and __get_unpoison_page() never races with them.
1537 *
1538 * Return: 0 on failure or free buddy (hugetlb) page,
1539 * 1 on success for in-use pages in a well-defined state,
1540 * -EIO for pages on which we can not handle memory errors,
1541 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1542 * operations like allocation and free,
1543 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1544 */
1545static int get_hwpoison_page(struct page *p, unsigned long flags)
1546{
1547 int ret;
1548
1549 zone_pcp_disable(page_zone(p));
1550 if (flags & MF_UNPOISON)
1551 ret = __get_unpoison_page(p);
1552 else
1553 ret = get_any_page(p, flags);
1554 zone_pcp_enable(page_zone(p));
1555
1556 return ret;
1557}
1558
1559int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1560{
1561 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1562 struct address_space *mapping;
1563
1564 if (folio_test_swapcache(folio)) {
1565 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1566 ttu &= ~TTU_HWPOISON;
1567 }
1568
1569 /*
1570 * Propagate the dirty bit from PTEs to struct page first, because we
1571 * need this to decide if we should kill or just drop the page.
1572 * XXX: the dirty test could be racy: set_page_dirty() may not always
1573 * be called inside page lock (it's recommended but not enforced).
1574 */
1575 mapping = folio_mapping(folio);
1576 if (!must_kill && !folio_test_dirty(folio) && mapping &&
1577 mapping_can_writeback(mapping)) {
1578 if (folio_mkclean(folio)) {
1579 folio_set_dirty(folio);
1580 } else {
1581 ttu &= ~TTU_HWPOISON;
1582 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1583 pfn);
1584 }
1585 }
1586
1587 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1588 /*
1589 * For hugetlb folios in shared mappings, try_to_unmap
1590 * could potentially call huge_pmd_unshare. Because of
1591 * this, take semaphore in write mode here and set
1592 * TTU_RMAP_LOCKED to indicate we have taken the lock
1593 * at this higher level.
1594 */
1595 mapping = hugetlb_folio_mapping_lock_write(folio);
1596 if (!mapping) {
1597 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1598 folio_pfn(folio));
1599 return -EBUSY;
1600 }
1601
1602 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1603 i_mmap_unlock_write(mapping);
1604 } else {
1605 try_to_unmap(folio, ttu);
1606 }
1607
1608 return folio_mapped(folio) ? -EBUSY : 0;
1609}
1610
1611/*
1612 * Do all that is necessary to remove user space mappings. Unmap
1613 * the pages and send SIGBUS to the processes if the data was dirty.
1614 */
1615static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1616 unsigned long pfn, int flags)
1617{
1618 LIST_HEAD(tokill);
1619 bool unmap_success;
1620 int forcekill;
1621 bool mlocked = folio_test_mlocked(folio);
1622
1623 /*
1624 * Here we are interested only in user-mapped pages, so skip any
1625 * other types of pages.
1626 */
1627 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1628 folio_test_pgtable(folio) || folio_test_offline(folio))
1629 return true;
1630 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1631 return true;
1632
1633 /*
1634 * This check implies we don't kill processes if their pages
1635 * are in the swap cache early. Those are always late kills.
1636 */
1637 if (!folio_mapped(folio))
1638 return true;
1639
1640 /*
1641 * First collect all the processes that have the page
1642 * mapped in dirty form. This has to be done before try_to_unmap,
1643 * because ttu takes the rmap data structures down.
1644 */
1645 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1646
1647 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1648 if (!unmap_success)
1649 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1650 pfn, folio_mapcount(folio));
1651
1652 /*
1653 * try_to_unmap() might put mlocked page in lru cache, so call
1654 * shake_page() again to ensure that it's flushed.
1655 */
1656 if (mlocked)
1657 shake_folio(folio);
1658
1659 /*
1660 * Now that the dirty bit has been propagated to the
1661 * struct page and all unmaps done we can decide if
1662 * killing is needed or not. Only kill when the page
1663 * was dirty or the process is not restartable,
1664 * otherwise the tokill list is merely
1665 * freed. When there was a problem unmapping earlier
1666 * use a more force-full uncatchable kill to prevent
1667 * any accesses to the poisoned memory.
1668 */
1669 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1670 !unmap_success;
1671 kill_procs(&tokill, forcekill, pfn, flags);
1672
1673 return unmap_success;
1674}
1675
1676static int identify_page_state(unsigned long pfn, struct page *p,
1677 unsigned long page_flags)
1678{
1679 struct page_state *ps;
1680
1681 /*
1682 * The first check uses the current page flags which may not have any
1683 * relevant information. The second check with the saved page flags is
1684 * carried out only if the first check can't determine the page status.
1685 */
1686 for (ps = error_states;; ps++)
1687 if ((p->flags & ps->mask) == ps->res)
1688 break;
1689
1690 page_flags |= (p->flags & (1UL << PG_dirty));
1691
1692 if (!ps->mask)
1693 for (ps = error_states;; ps++)
1694 if ((page_flags & ps->mask) == ps->res)
1695 break;
1696 return page_action(ps, p, pfn);
1697}
1698
1699/*
1700 * When 'release' is 'false', it means that if thp split has failed,
1701 * there is still more to do, hence the page refcount we took earlier
1702 * is still needed.
1703 */
1704static int try_to_split_thp_page(struct page *page, bool release)
1705{
1706 int ret;
1707
1708 lock_page(page);
1709 ret = split_huge_page(page);
1710 unlock_page(page);
1711
1712 if (ret && release)
1713 put_page(page);
1714
1715 return ret;
1716}
1717
1718static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1719 struct address_space *mapping, pgoff_t index, int flags)
1720{
1721 struct to_kill *tk;
1722 unsigned long size = 0;
1723
1724 list_for_each_entry(tk, to_kill, nd)
1725 if (tk->size_shift)
1726 size = max(size, 1UL << tk->size_shift);
1727
1728 if (size) {
1729 /*
1730 * Unmap the largest mapping to avoid breaking up device-dax
1731 * mappings which are constant size. The actual size of the
1732 * mapping being torn down is communicated in siginfo, see
1733 * kill_proc()
1734 */
1735 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1736
1737 unmap_mapping_range(mapping, start, size, 0);
1738 }
1739
1740 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1741}
1742
1743/*
1744 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1745 * either do not claim or fails to claim a hwpoison event, or devdax.
1746 * The fsdax pages are initialized per base page, and the devdax pages
1747 * could be initialized either as base pages, or as compound pages with
1748 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1749 * hwpoison, such that, if a subpage of a compound page is poisoned,
1750 * simply mark the compound head page is by far sufficient.
1751 */
1752static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1753 struct dev_pagemap *pgmap)
1754{
1755 struct folio *folio = pfn_folio(pfn);
1756 LIST_HEAD(to_kill);
1757 dax_entry_t cookie;
1758 int rc = 0;
1759
1760 /*
1761 * Prevent the inode from being freed while we are interrogating
1762 * the address_space, typically this would be handled by
1763 * lock_page(), but dax pages do not use the page lock. This
1764 * also prevents changes to the mapping of this pfn until
1765 * poison signaling is complete.
1766 */
1767 cookie = dax_lock_folio(folio);
1768 if (!cookie)
1769 return -EBUSY;
1770
1771 if (hwpoison_filter(&folio->page)) {
1772 rc = -EOPNOTSUPP;
1773 goto unlock;
1774 }
1775
1776 switch (pgmap->type) {
1777 case MEMORY_DEVICE_PRIVATE:
1778 case MEMORY_DEVICE_COHERENT:
1779 /*
1780 * TODO: Handle device pages which may need coordination
1781 * with device-side memory.
1782 */
1783 rc = -ENXIO;
1784 goto unlock;
1785 default:
1786 break;
1787 }
1788
1789 /*
1790 * Use this flag as an indication that the dax page has been
1791 * remapped UC to prevent speculative consumption of poison.
1792 */
1793 SetPageHWPoison(&folio->page);
1794
1795 /*
1796 * Unlike System-RAM there is no possibility to swap in a
1797 * different physical page at a given virtual address, so all
1798 * userspace consumption of ZONE_DEVICE memory necessitates
1799 * SIGBUS (i.e. MF_MUST_KILL)
1800 */
1801 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1802 collect_procs(folio, &folio->page, &to_kill, true);
1803
1804 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1805unlock:
1806 dax_unlock_folio(folio, cookie);
1807 return rc;
1808}
1809
1810#ifdef CONFIG_FS_DAX
1811/**
1812 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1813 * @mapping: address_space of the file in use
1814 * @index: start pgoff of the range within the file
1815 * @count: length of the range, in unit of PAGE_SIZE
1816 * @mf_flags: memory failure flags
1817 */
1818int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1819 unsigned long count, int mf_flags)
1820{
1821 LIST_HEAD(to_kill);
1822 dax_entry_t cookie;
1823 struct page *page;
1824 size_t end = index + count;
1825 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1826
1827 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1828
1829 for (; index < end; index++) {
1830 page = NULL;
1831 cookie = dax_lock_mapping_entry(mapping, index, &page);
1832 if (!cookie)
1833 return -EBUSY;
1834 if (!page)
1835 goto unlock;
1836
1837 if (!pre_remove)
1838 SetPageHWPoison(page);
1839
1840 /*
1841 * The pre_remove case is revoking access, the memory is still
1842 * good and could theoretically be put back into service.
1843 */
1844 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1845 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1846 index, mf_flags);
1847unlock:
1848 dax_unlock_mapping_entry(mapping, index, cookie);
1849 }
1850 return 0;
1851}
1852EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1853#endif /* CONFIG_FS_DAX */
1854
1855#ifdef CONFIG_HUGETLB_PAGE
1856
1857/*
1858 * Struct raw_hwp_page represents information about "raw error page",
1859 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1860 */
1861struct raw_hwp_page {
1862 struct llist_node node;
1863 struct page *page;
1864};
1865
1866static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1867{
1868 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1869}
1870
1871bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1872{
1873 struct llist_head *raw_hwp_head;
1874 struct raw_hwp_page *p;
1875 struct folio *folio = page_folio(page);
1876 bool ret = false;
1877
1878 if (!folio_test_hwpoison(folio))
1879 return false;
1880
1881 if (!folio_test_hugetlb(folio))
1882 return PageHWPoison(page);
1883
1884 /*
1885 * When RawHwpUnreliable is set, kernel lost track of which subpages
1886 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1887 */
1888 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1889 return true;
1890
1891 mutex_lock(&mf_mutex);
1892
1893 raw_hwp_head = raw_hwp_list_head(folio);
1894 llist_for_each_entry(p, raw_hwp_head->first, node) {
1895 if (page == p->page) {
1896 ret = true;
1897 break;
1898 }
1899 }
1900
1901 mutex_unlock(&mf_mutex);
1902
1903 return ret;
1904}
1905
1906static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1907{
1908 struct llist_node *head;
1909 struct raw_hwp_page *p, *next;
1910 unsigned long count = 0;
1911
1912 head = llist_del_all(raw_hwp_list_head(folio));
1913 llist_for_each_entry_safe(p, next, head, node) {
1914 if (move_flag)
1915 SetPageHWPoison(p->page);
1916 else
1917 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1918 kfree(p);
1919 count++;
1920 }
1921 return count;
1922}
1923
1924static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1925{
1926 struct llist_head *head;
1927 struct raw_hwp_page *raw_hwp;
1928 struct raw_hwp_page *p;
1929 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1930
1931 /*
1932 * Once the hwpoison hugepage has lost reliable raw error info,
1933 * there is little meaning to keep additional error info precisely,
1934 * so skip to add additional raw error info.
1935 */
1936 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1937 return -EHWPOISON;
1938 head = raw_hwp_list_head(folio);
1939 llist_for_each_entry(p, head->first, node) {
1940 if (p->page == page)
1941 return -EHWPOISON;
1942 }
1943
1944 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1945 if (raw_hwp) {
1946 raw_hwp->page = page;
1947 llist_add(&raw_hwp->node, head);
1948 /* the first error event will be counted in action_result(). */
1949 if (ret)
1950 num_poisoned_pages_inc(page_to_pfn(page));
1951 } else {
1952 /*
1953 * Failed to save raw error info. We no longer trace all
1954 * hwpoisoned subpages, and we need refuse to free/dissolve
1955 * this hwpoisoned hugepage.
1956 */
1957 folio_set_hugetlb_raw_hwp_unreliable(folio);
1958 /*
1959 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1960 * used any more, so free it.
1961 */
1962 __folio_free_raw_hwp(folio, false);
1963 }
1964 return ret;
1965}
1966
1967static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1968{
1969 /*
1970 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1971 * pages for tail pages are required but they don't exist.
1972 */
1973 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1974 return 0;
1975
1976 /*
1977 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1978 * definition.
1979 */
1980 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1981 return 0;
1982
1983 return __folio_free_raw_hwp(folio, move_flag);
1984}
1985
1986void folio_clear_hugetlb_hwpoison(struct folio *folio)
1987{
1988 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1989 return;
1990 if (folio_test_hugetlb_vmemmap_optimized(folio))
1991 return;
1992 folio_clear_hwpoison(folio);
1993 folio_free_raw_hwp(folio, true);
1994}
1995
1996/*
1997 * Called from hugetlb code with hugetlb_lock held.
1998 *
1999 * Return values:
2000 * 0 - free hugepage
2001 * 1 - in-use hugepage
2002 * 2 - not a hugepage
2003 * -EBUSY - the hugepage is busy (try to retry)
2004 * -EHWPOISON - the hugepage is already hwpoisoned
2005 */
2006int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2007 bool *migratable_cleared)
2008{
2009 struct page *page = pfn_to_page(pfn);
2010 struct folio *folio = page_folio(page);
2011 int ret = 2; /* fallback to normal page handling */
2012 bool count_increased = false;
2013
2014 if (!folio_test_hugetlb(folio))
2015 goto out;
2016
2017 if (flags & MF_COUNT_INCREASED) {
2018 ret = 1;
2019 count_increased = true;
2020 } else if (folio_test_hugetlb_freed(folio)) {
2021 ret = 0;
2022 } else if (folio_test_hugetlb_migratable(folio)) {
2023 ret = folio_try_get(folio);
2024 if (ret)
2025 count_increased = true;
2026 } else {
2027 ret = -EBUSY;
2028 if (!(flags & MF_NO_RETRY))
2029 goto out;
2030 }
2031
2032 if (folio_set_hugetlb_hwpoison(folio, page)) {
2033 ret = -EHWPOISON;
2034 goto out;
2035 }
2036
2037 /*
2038 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2039 * from being migrated by memory hotremove.
2040 */
2041 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2042 folio_clear_hugetlb_migratable(folio);
2043 *migratable_cleared = true;
2044 }
2045
2046 return ret;
2047out:
2048 if (count_increased)
2049 folio_put(folio);
2050 return ret;
2051}
2052
2053/*
2054 * Taking refcount of hugetlb pages needs extra care about race conditions
2055 * with basic operations like hugepage allocation/free/demotion.
2056 * So some of prechecks for hwpoison (pinning, and testing/setting
2057 * PageHWPoison) should be done in single hugetlb_lock range.
2058 */
2059static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2060{
2061 int res;
2062 struct page *p = pfn_to_page(pfn);
2063 struct folio *folio;
2064 unsigned long page_flags;
2065 bool migratable_cleared = false;
2066
2067 *hugetlb = 1;
2068retry:
2069 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2070 if (res == 2) { /* fallback to normal page handling */
2071 *hugetlb = 0;
2072 return 0;
2073 } else if (res == -EHWPOISON) {
2074 pr_err("%#lx: already hardware poisoned\n", pfn);
2075 if (flags & MF_ACTION_REQUIRED) {
2076 folio = page_folio(p);
2077 res = kill_accessing_process(current, folio_pfn(folio), flags);
2078 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2079 }
2080 return res;
2081 } else if (res == -EBUSY) {
2082 if (!(flags & MF_NO_RETRY)) {
2083 flags |= MF_NO_RETRY;
2084 goto retry;
2085 }
2086 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2087 }
2088
2089 folio = page_folio(p);
2090 folio_lock(folio);
2091
2092 if (hwpoison_filter(p)) {
2093 folio_clear_hugetlb_hwpoison(folio);
2094 if (migratable_cleared)
2095 folio_set_hugetlb_migratable(folio);
2096 folio_unlock(folio);
2097 if (res == 1)
2098 folio_put(folio);
2099 return -EOPNOTSUPP;
2100 }
2101
2102 /*
2103 * Handling free hugepage. The possible race with hugepage allocation
2104 * or demotion can be prevented by PageHWPoison flag.
2105 */
2106 if (res == 0) {
2107 folio_unlock(folio);
2108 if (__page_handle_poison(p) > 0) {
2109 page_ref_inc(p);
2110 res = MF_RECOVERED;
2111 } else {
2112 res = MF_FAILED;
2113 }
2114 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2115 }
2116
2117 page_flags = folio->flags;
2118
2119 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2120 folio_unlock(folio);
2121 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2122 }
2123
2124 return identify_page_state(pfn, p, page_flags);
2125}
2126
2127#else
2128static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2129{
2130 return 0;
2131}
2132
2133static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2134{
2135 return 0;
2136}
2137#endif /* CONFIG_HUGETLB_PAGE */
2138
2139/* Drop the extra refcount in case we come from madvise() */
2140static void put_ref_page(unsigned long pfn, int flags)
2141{
2142 if (!(flags & MF_COUNT_INCREASED))
2143 return;
2144
2145 put_page(pfn_to_page(pfn));
2146}
2147
2148static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2149 struct dev_pagemap *pgmap)
2150{
2151 int rc = -ENXIO;
2152
2153 /* device metadata space is not recoverable */
2154 if (!pgmap_pfn_valid(pgmap, pfn))
2155 goto out;
2156
2157 /*
2158 * Call driver's implementation to handle the memory failure, otherwise
2159 * fall back to generic handler.
2160 */
2161 if (pgmap_has_memory_failure(pgmap)) {
2162 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2163 /*
2164 * Fall back to generic handler too if operation is not
2165 * supported inside the driver/device/filesystem.
2166 */
2167 if (rc != -EOPNOTSUPP)
2168 goto out;
2169 }
2170
2171 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2172out:
2173 /* drop pgmap ref acquired in caller */
2174 put_dev_pagemap(pgmap);
2175 if (rc != -EOPNOTSUPP)
2176 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2177 return rc;
2178}
2179
2180/*
2181 * The calling condition is as such: thp split failed, page might have
2182 * been RDMA pinned, not much can be done for recovery.
2183 * But a SIGBUS should be delivered with vaddr provided so that the user
2184 * application has a chance to recover. Also, application processes'
2185 * election for MCE early killed will be honored.
2186 */
2187static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2188 struct folio *folio)
2189{
2190 LIST_HEAD(tokill);
2191
2192 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2193 kill_procs(&tokill, true, pfn, flags);
2194}
2195
2196/**
2197 * memory_failure - Handle memory failure of a page.
2198 * @pfn: Page Number of the corrupted page
2199 * @flags: fine tune action taken
2200 *
2201 * This function is called by the low level machine check code
2202 * of an architecture when it detects hardware memory corruption
2203 * of a page. It tries its best to recover, which includes
2204 * dropping pages, killing processes etc.
2205 *
2206 * The function is primarily of use for corruptions that
2207 * happen outside the current execution context (e.g. when
2208 * detected by a background scrubber)
2209 *
2210 * Must run in process context (e.g. a work queue) with interrupts
2211 * enabled and no spinlocks held.
2212 *
2213 * Return: 0 for successfully handled the memory error,
2214 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2215 * < 0(except -EOPNOTSUPP) on failure.
2216 */
2217int memory_failure(unsigned long pfn, int flags)
2218{
2219 struct page *p;
2220 struct folio *folio;
2221 struct dev_pagemap *pgmap;
2222 int res = 0;
2223 unsigned long page_flags;
2224 bool retry = true;
2225 int hugetlb = 0;
2226
2227 if (!sysctl_memory_failure_recovery)
2228 panic("Memory failure on page %lx", pfn);
2229
2230 mutex_lock(&mf_mutex);
2231
2232 if (!(flags & MF_SW_SIMULATED))
2233 hw_memory_failure = true;
2234
2235 p = pfn_to_online_page(pfn);
2236 if (!p) {
2237 res = arch_memory_failure(pfn, flags);
2238 if (res == 0)
2239 goto unlock_mutex;
2240
2241 if (pfn_valid(pfn)) {
2242 pgmap = get_dev_pagemap(pfn, NULL);
2243 put_ref_page(pfn, flags);
2244 if (pgmap) {
2245 res = memory_failure_dev_pagemap(pfn, flags,
2246 pgmap);
2247 goto unlock_mutex;
2248 }
2249 }
2250 pr_err("%#lx: memory outside kernel control\n", pfn);
2251 res = -ENXIO;
2252 goto unlock_mutex;
2253 }
2254
2255try_again:
2256 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2257 if (hugetlb)
2258 goto unlock_mutex;
2259
2260 if (TestSetPageHWPoison(p)) {
2261 pr_err("%#lx: already hardware poisoned\n", pfn);
2262 res = -EHWPOISON;
2263 if (flags & MF_ACTION_REQUIRED)
2264 res = kill_accessing_process(current, pfn, flags);
2265 if (flags & MF_COUNT_INCREASED)
2266 put_page(p);
2267 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2268 goto unlock_mutex;
2269 }
2270
2271 /*
2272 * We need/can do nothing about count=0 pages.
2273 * 1) it's a free page, and therefore in safe hand:
2274 * check_new_page() will be the gate keeper.
2275 * 2) it's part of a non-compound high order page.
2276 * Implies some kernel user: cannot stop them from
2277 * R/W the page; let's pray that the page has been
2278 * used and will be freed some time later.
2279 * In fact it's dangerous to directly bump up page count from 0,
2280 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2281 */
2282 if (!(flags & MF_COUNT_INCREASED)) {
2283 res = get_hwpoison_page(p, flags);
2284 if (!res) {
2285 if (is_free_buddy_page(p)) {
2286 if (take_page_off_buddy(p)) {
2287 page_ref_inc(p);
2288 res = MF_RECOVERED;
2289 } else {
2290 /* We lost the race, try again */
2291 if (retry) {
2292 ClearPageHWPoison(p);
2293 retry = false;
2294 goto try_again;
2295 }
2296 res = MF_FAILED;
2297 }
2298 res = action_result(pfn, MF_MSG_BUDDY, res);
2299 } else {
2300 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2301 }
2302 goto unlock_mutex;
2303 } else if (res < 0) {
2304 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2305 goto unlock_mutex;
2306 }
2307 }
2308
2309 folio = page_folio(p);
2310
2311 /* filter pages that are protected from hwpoison test by users */
2312 folio_lock(folio);
2313 if (hwpoison_filter(p)) {
2314 ClearPageHWPoison(p);
2315 folio_unlock(folio);
2316 folio_put(folio);
2317 res = -EOPNOTSUPP;
2318 goto unlock_mutex;
2319 }
2320 folio_unlock(folio);
2321
2322 if (folio_test_large(folio)) {
2323 /*
2324 * The flag must be set after the refcount is bumped
2325 * otherwise it may race with THP split.
2326 * And the flag can't be set in get_hwpoison_page() since
2327 * it is called by soft offline too and it is just called
2328 * for !MF_COUNT_INCREASED. So here seems to be the best
2329 * place.
2330 *
2331 * Don't need care about the above error handling paths for
2332 * get_hwpoison_page() since they handle either free page
2333 * or unhandlable page. The refcount is bumped iff the
2334 * page is a valid handlable page.
2335 */
2336 folio_set_has_hwpoisoned(folio);
2337 if (try_to_split_thp_page(p, false) < 0) {
2338 res = -EHWPOISON;
2339 kill_procs_now(p, pfn, flags, folio);
2340 put_page(p);
2341 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2342 goto unlock_mutex;
2343 }
2344 VM_BUG_ON_PAGE(!page_count(p), p);
2345 folio = page_folio(p);
2346 }
2347
2348 /*
2349 * We ignore non-LRU pages for good reasons.
2350 * - PG_locked is only well defined for LRU pages and a few others
2351 * - to avoid races with __SetPageLocked()
2352 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2353 * The check (unnecessarily) ignores LRU pages being isolated and
2354 * walked by the page reclaim code, however that's not a big loss.
2355 */
2356 shake_folio(folio);
2357
2358 folio_lock(folio);
2359
2360 /*
2361 * We're only intended to deal with the non-Compound page here.
2362 * The page cannot become compound pages again as folio has been
2363 * splited and extra refcnt is held.
2364 */
2365 WARN_ON(folio_test_large(folio));
2366
2367 /*
2368 * We use page flags to determine what action should be taken, but
2369 * the flags can be modified by the error containment action. One
2370 * example is an mlocked page, where PG_mlocked is cleared by
2371 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2372 * status correctly, we save a copy of the page flags at this time.
2373 */
2374 page_flags = folio->flags;
2375
2376 /*
2377 * __munlock_folio() may clear a writeback folio's LRU flag without
2378 * the folio lock. We need to wait for writeback completion for this
2379 * folio or it may trigger a vfs BUG while evicting inode.
2380 */
2381 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2382 goto identify_page_state;
2383
2384 /*
2385 * It's very difficult to mess with pages currently under IO
2386 * and in many cases impossible, so we just avoid it here.
2387 */
2388 folio_wait_writeback(folio);
2389
2390 /*
2391 * Now take care of user space mappings.
2392 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2393 */
2394 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2395 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2396 goto unlock_page;
2397 }
2398
2399 /*
2400 * Torn down by someone else?
2401 */
2402 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2403 folio->mapping == NULL) {
2404 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2405 goto unlock_page;
2406 }
2407
2408identify_page_state:
2409 res = identify_page_state(pfn, p, page_flags);
2410 mutex_unlock(&mf_mutex);
2411 return res;
2412unlock_page:
2413 folio_unlock(folio);
2414unlock_mutex:
2415 mutex_unlock(&mf_mutex);
2416 return res;
2417}
2418EXPORT_SYMBOL_GPL(memory_failure);
2419
2420#define MEMORY_FAILURE_FIFO_ORDER 4
2421#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2422
2423struct memory_failure_entry {
2424 unsigned long pfn;
2425 int flags;
2426};
2427
2428struct memory_failure_cpu {
2429 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2430 MEMORY_FAILURE_FIFO_SIZE);
2431 raw_spinlock_t lock;
2432 struct work_struct work;
2433};
2434
2435static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2436
2437/**
2438 * memory_failure_queue - Schedule handling memory failure of a page.
2439 * @pfn: Page Number of the corrupted page
2440 * @flags: Flags for memory failure handling
2441 *
2442 * This function is called by the low level hardware error handler
2443 * when it detects hardware memory corruption of a page. It schedules
2444 * the recovering of error page, including dropping pages, killing
2445 * processes etc.
2446 *
2447 * The function is primarily of use for corruptions that
2448 * happen outside the current execution context (e.g. when
2449 * detected by a background scrubber)
2450 *
2451 * Can run in IRQ context.
2452 */
2453void memory_failure_queue(unsigned long pfn, int flags)
2454{
2455 struct memory_failure_cpu *mf_cpu;
2456 unsigned long proc_flags;
2457 bool buffer_overflow;
2458 struct memory_failure_entry entry = {
2459 .pfn = pfn,
2460 .flags = flags,
2461 };
2462
2463 mf_cpu = &get_cpu_var(memory_failure_cpu);
2464 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2465 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2466 if (!buffer_overflow)
2467 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2468 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2469 put_cpu_var(memory_failure_cpu);
2470 if (buffer_overflow)
2471 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2472 pfn);
2473}
2474EXPORT_SYMBOL_GPL(memory_failure_queue);
2475
2476static void memory_failure_work_func(struct work_struct *work)
2477{
2478 struct memory_failure_cpu *mf_cpu;
2479 struct memory_failure_entry entry = { 0, };
2480 unsigned long proc_flags;
2481 int gotten;
2482
2483 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2484 for (;;) {
2485 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2486 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2487 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2488 if (!gotten)
2489 break;
2490 if (entry.flags & MF_SOFT_OFFLINE)
2491 soft_offline_page(entry.pfn, entry.flags);
2492 else
2493 memory_failure(entry.pfn, entry.flags);
2494 }
2495}
2496
2497/*
2498 * Process memory_failure work queued on the specified CPU.
2499 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2500 */
2501void memory_failure_queue_kick(int cpu)
2502{
2503 struct memory_failure_cpu *mf_cpu;
2504
2505 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2506 cancel_work_sync(&mf_cpu->work);
2507 memory_failure_work_func(&mf_cpu->work);
2508}
2509
2510static int __init memory_failure_init(void)
2511{
2512 struct memory_failure_cpu *mf_cpu;
2513 int cpu;
2514
2515 for_each_possible_cpu(cpu) {
2516 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2517 raw_spin_lock_init(&mf_cpu->lock);
2518 INIT_KFIFO(mf_cpu->fifo);
2519 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2520 }
2521
2522 register_sysctl_init("vm", memory_failure_table);
2523
2524 return 0;
2525}
2526core_initcall(memory_failure_init);
2527
2528#undef pr_fmt
2529#define pr_fmt(fmt) "Unpoison: " fmt
2530#define unpoison_pr_info(fmt, pfn, rs) \
2531({ \
2532 if (__ratelimit(rs)) \
2533 pr_info(fmt, pfn); \
2534})
2535
2536/**
2537 * unpoison_memory - Unpoison a previously poisoned page
2538 * @pfn: Page number of the to be unpoisoned page
2539 *
2540 * Software-unpoison a page that has been poisoned by
2541 * memory_failure() earlier.
2542 *
2543 * This is only done on the software-level, so it only works
2544 * for linux injected failures, not real hardware failures
2545 *
2546 * Returns 0 for success, otherwise -errno.
2547 */
2548int unpoison_memory(unsigned long pfn)
2549{
2550 struct folio *folio;
2551 struct page *p;
2552 int ret = -EBUSY, ghp;
2553 unsigned long count;
2554 bool huge = false;
2555 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2556 DEFAULT_RATELIMIT_BURST);
2557
2558 if (!pfn_valid(pfn))
2559 return -ENXIO;
2560
2561 p = pfn_to_page(pfn);
2562 folio = page_folio(p);
2563
2564 mutex_lock(&mf_mutex);
2565
2566 if (hw_memory_failure) {
2567 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2568 pfn, &unpoison_rs);
2569 ret = -EOPNOTSUPP;
2570 goto unlock_mutex;
2571 }
2572
2573 if (is_huge_zero_folio(folio)) {
2574 unpoison_pr_info("%#lx: huge zero page is not supported\n",
2575 pfn, &unpoison_rs);
2576 ret = -EOPNOTSUPP;
2577 goto unlock_mutex;
2578 }
2579
2580 if (!PageHWPoison(p)) {
2581 unpoison_pr_info("%#lx: page was already unpoisoned\n",
2582 pfn, &unpoison_rs);
2583 goto unlock_mutex;
2584 }
2585
2586 if (folio_ref_count(folio) > 1) {
2587 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2588 pfn, &unpoison_rs);
2589 goto unlock_mutex;
2590 }
2591
2592 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2593 folio_test_reserved(folio) || folio_test_offline(folio))
2594 goto unlock_mutex;
2595
2596 if (folio_mapped(folio)) {
2597 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2598 pfn, &unpoison_rs);
2599 goto unlock_mutex;
2600 }
2601
2602 if (folio_mapping(folio)) {
2603 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2604 pfn, &unpoison_rs);
2605 goto unlock_mutex;
2606 }
2607
2608 ghp = get_hwpoison_page(p, MF_UNPOISON);
2609 if (!ghp) {
2610 if (folio_test_hugetlb(folio)) {
2611 huge = true;
2612 count = folio_free_raw_hwp(folio, false);
2613 if (count == 0)
2614 goto unlock_mutex;
2615 }
2616 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2617 } else if (ghp < 0) {
2618 if (ghp == -EHWPOISON) {
2619 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2620 } else {
2621 ret = ghp;
2622 unpoison_pr_info("%#lx: failed to grab page\n",
2623 pfn, &unpoison_rs);
2624 }
2625 } else {
2626 if (folio_test_hugetlb(folio)) {
2627 huge = true;
2628 count = folio_free_raw_hwp(folio, false);
2629 if (count == 0) {
2630 folio_put(folio);
2631 goto unlock_mutex;
2632 }
2633 }
2634
2635 folio_put(folio);
2636 if (TestClearPageHWPoison(p)) {
2637 folio_put(folio);
2638 ret = 0;
2639 }
2640 }
2641
2642unlock_mutex:
2643 mutex_unlock(&mf_mutex);
2644 if (!ret) {
2645 if (!huge)
2646 num_poisoned_pages_sub(pfn, 1);
2647 unpoison_pr_info("%#lx: software-unpoisoned page\n",
2648 page_to_pfn(p), &unpoison_rs);
2649 }
2650 return ret;
2651}
2652EXPORT_SYMBOL(unpoison_memory);
2653
2654#undef pr_fmt
2655#define pr_fmt(fmt) "Soft offline: " fmt
2656
2657/*
2658 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2659 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2660 * If the page is mapped, it migrates the contents over.
2661 */
2662static int soft_offline_in_use_page(struct page *page)
2663{
2664 long ret = 0;
2665 unsigned long pfn = page_to_pfn(page);
2666 struct folio *folio = page_folio(page);
2667 char const *msg_page[] = {"page", "hugepage"};
2668 bool huge = folio_test_hugetlb(folio);
2669 bool isolated;
2670 LIST_HEAD(pagelist);
2671 struct migration_target_control mtc = {
2672 .nid = NUMA_NO_NODE,
2673 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2674 .reason = MR_MEMORY_FAILURE,
2675 };
2676
2677 if (!huge && folio_test_large(folio)) {
2678 if (try_to_split_thp_page(page, true)) {
2679 pr_info("%#lx: thp split failed\n", pfn);
2680 return -EBUSY;
2681 }
2682 folio = page_folio(page);
2683 }
2684
2685 folio_lock(folio);
2686 if (!huge)
2687 folio_wait_writeback(folio);
2688 if (PageHWPoison(page)) {
2689 folio_unlock(folio);
2690 folio_put(folio);
2691 pr_info("%#lx: page already poisoned\n", pfn);
2692 return 0;
2693 }
2694
2695 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2696 /*
2697 * Try to invalidate first. This should work for
2698 * non dirty unmapped page cache pages.
2699 */
2700 ret = mapping_evict_folio(folio_mapping(folio), folio);
2701 folio_unlock(folio);
2702
2703 if (ret) {
2704 pr_info("%#lx: invalidated\n", pfn);
2705 page_handle_poison(page, false, true);
2706 return 0;
2707 }
2708
2709 isolated = isolate_folio_to_list(folio, &pagelist);
2710
2711 /*
2712 * If we succeed to isolate the folio, we grabbed another refcount on
2713 * the folio, so we can safely drop the one we got from get_any_page().
2714 * If we failed to isolate the folio, it means that we cannot go further
2715 * and we will return an error, so drop the reference we got from
2716 * get_any_page() as well.
2717 */
2718 folio_put(folio);
2719
2720 if (isolated) {
2721 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2722 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2723 if (!ret) {
2724 bool release = !huge;
2725
2726 if (!page_handle_poison(page, huge, release))
2727 ret = -EBUSY;
2728 } else {
2729 if (!list_empty(&pagelist))
2730 putback_movable_pages(&pagelist);
2731
2732 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2733 pfn, msg_page[huge], ret, &page->flags);
2734 if (ret > 0)
2735 ret = -EBUSY;
2736 }
2737 } else {
2738 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2739 pfn, msg_page[huge], page_count(page), &page->flags);
2740 ret = -EBUSY;
2741 }
2742 return ret;
2743}
2744
2745/**
2746 * soft_offline_page - Soft offline a page.
2747 * @pfn: pfn to soft-offline
2748 * @flags: flags. Same as memory_failure().
2749 *
2750 * Returns 0 on success,
2751 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2752 * disabled by /proc/sys/vm/enable_soft_offline,
2753 * < 0 otherwise negated errno.
2754 *
2755 * Soft offline a page, by migration or invalidation,
2756 * without killing anything. This is for the case when
2757 * a page is not corrupted yet (so it's still valid to access),
2758 * but has had a number of corrected errors and is better taken
2759 * out.
2760 *
2761 * The actual policy on when to do that is maintained by
2762 * user space.
2763 *
2764 * This should never impact any application or cause data loss,
2765 * however it might take some time.
2766 *
2767 * This is not a 100% solution for all memory, but tries to be
2768 * ``good enough'' for the majority of memory.
2769 */
2770int soft_offline_page(unsigned long pfn, int flags)
2771{
2772 int ret;
2773 bool try_again = true;
2774 struct page *page;
2775
2776 if (!pfn_valid(pfn)) {
2777 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2778 return -ENXIO;
2779 }
2780
2781 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2782 page = pfn_to_online_page(pfn);
2783 if (!page) {
2784 put_ref_page(pfn, flags);
2785 return -EIO;
2786 }
2787
2788 if (!sysctl_enable_soft_offline) {
2789 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2790 put_ref_page(pfn, flags);
2791 return -EOPNOTSUPP;
2792 }
2793
2794 mutex_lock(&mf_mutex);
2795
2796 if (PageHWPoison(page)) {
2797 pr_info("%#lx: page already poisoned\n", pfn);
2798 put_ref_page(pfn, flags);
2799 mutex_unlock(&mf_mutex);
2800 return 0;
2801 }
2802
2803retry:
2804 get_online_mems();
2805 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2806 put_online_mems();
2807
2808 if (hwpoison_filter(page)) {
2809 if (ret > 0)
2810 put_page(page);
2811
2812 mutex_unlock(&mf_mutex);
2813 return -EOPNOTSUPP;
2814 }
2815
2816 if (ret > 0) {
2817 ret = soft_offline_in_use_page(page);
2818 } else if (ret == 0) {
2819 if (!page_handle_poison(page, true, false)) {
2820 if (try_again) {
2821 try_again = false;
2822 flags &= ~MF_COUNT_INCREASED;
2823 goto retry;
2824 }
2825 ret = -EBUSY;
2826 }
2827 }
2828
2829 mutex_unlock(&mf_mutex);
2830
2831 return ret;
2832}