Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25#include <linux/cpu.h>
26#include <linux/export.h>
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
32#include <linux/tick.h>
33#include <linux/err.h>
34#include <linux/debugobjects.h>
35#include <linux/sched/signal.h>
36#include <linux/sched/sysctl.h>
37#include <linux/sched/rt.h>
38#include <linux/sched/deadline.h>
39#include <linux/sched/nohz.h>
40#include <linux/sched/debug.h>
41#include <linux/timer.h>
42#include <linux/freezer.h>
43#include <linux/compat.h>
44
45#include <linux/uaccess.h>
46
47#include <trace/events/timer.h>
48
49#include "tick-internal.h"
50
51/*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
60/*
61 * The timer bases:
62 *
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
67 */
68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69{
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
113 }
114};
115
116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
124};
125
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139};
140
141#define migration_base migration_cpu_base.clock_base[0]
142
143static inline bool is_migration_base(struct hrtimer_clock_base *base)
144{
145 return base == &migration_base;
146}
147
148/*
149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
150 * means that all timers which are tied to this base via timer->base are
151 * locked, and the base itself is locked too.
152 *
153 * So __run_timers/migrate_timers can safely modify all timers which could
154 * be found on the lists/queues.
155 *
156 * When the timer's base is locked, and the timer removed from list, it is
157 * possible to set timer->base = &migration_base and drop the lock: the timer
158 * remains locked.
159 */
160static
161struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
162 unsigned long *flags)
163{
164 struct hrtimer_clock_base *base;
165
166 for (;;) {
167 base = READ_ONCE(timer->base);
168 if (likely(base != &migration_base)) {
169 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
170 if (likely(base == timer->base))
171 return base;
172 /* The timer has migrated to another CPU: */
173 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
174 }
175 cpu_relax();
176 }
177}
178
179/*
180 * We do not migrate the timer when it is expiring before the next
181 * event on the target cpu. When high resolution is enabled, we cannot
182 * reprogram the target cpu hardware and we would cause it to fire
183 * late. To keep it simple, we handle the high resolution enabled and
184 * disabled case similar.
185 *
186 * Called with cpu_base->lock of target cpu held.
187 */
188static int
189hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
190{
191 ktime_t expires;
192
193 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
194 return expires < new_base->cpu_base->expires_next;
195}
196
197static inline
198struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
199 int pinned)
200{
201#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
202 if (static_branch_likely(&timers_migration_enabled) && !pinned)
203 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
204#endif
205 return base;
206}
207
208/*
209 * We switch the timer base to a power-optimized selected CPU target,
210 * if:
211 * - NO_HZ_COMMON is enabled
212 * - timer migration is enabled
213 * - the timer callback is not running
214 * - the timer is not the first expiring timer on the new target
215 *
216 * If one of the above requirements is not fulfilled we move the timer
217 * to the current CPU or leave it on the previously assigned CPU if
218 * the timer callback is currently running.
219 */
220static inline struct hrtimer_clock_base *
221switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
222 int pinned)
223{
224 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
225 struct hrtimer_clock_base *new_base;
226 int basenum = base->index;
227
228 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
229 new_cpu_base = get_target_base(this_cpu_base, pinned);
230again:
231 new_base = &new_cpu_base->clock_base[basenum];
232
233 if (base != new_base) {
234 /*
235 * We are trying to move timer to new_base.
236 * However we can't change timer's base while it is running,
237 * so we keep it on the same CPU. No hassle vs. reprogramming
238 * the event source in the high resolution case. The softirq
239 * code will take care of this when the timer function has
240 * completed. There is no conflict as we hold the lock until
241 * the timer is enqueued.
242 */
243 if (unlikely(hrtimer_callback_running(timer)))
244 return base;
245
246 /* See the comment in lock_hrtimer_base() */
247 WRITE_ONCE(timer->base, &migration_base);
248 raw_spin_unlock(&base->cpu_base->lock);
249 raw_spin_lock(&new_base->cpu_base->lock);
250
251 if (new_cpu_base != this_cpu_base &&
252 hrtimer_check_target(timer, new_base)) {
253 raw_spin_unlock(&new_base->cpu_base->lock);
254 raw_spin_lock(&base->cpu_base->lock);
255 new_cpu_base = this_cpu_base;
256 WRITE_ONCE(timer->base, base);
257 goto again;
258 }
259 WRITE_ONCE(timer->base, new_base);
260 } else {
261 if (new_cpu_base != this_cpu_base &&
262 hrtimer_check_target(timer, new_base)) {
263 new_cpu_base = this_cpu_base;
264 goto again;
265 }
266 }
267 return new_base;
268}
269
270#else /* CONFIG_SMP */
271
272static inline bool is_migration_base(struct hrtimer_clock_base *base)
273{
274 return false;
275}
276
277static inline struct hrtimer_clock_base *
278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279{
280 struct hrtimer_clock_base *base = timer->base;
281
282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283
284 return base;
285}
286
287# define switch_hrtimer_base(t, b, p) (b)
288
289#endif /* !CONFIG_SMP */
290
291/*
292 * Functions for the union type storage format of ktime_t which are
293 * too large for inlining:
294 */
295#if BITS_PER_LONG < 64
296/*
297 * Divide a ktime value by a nanosecond value
298 */
299s64 __ktime_divns(const ktime_t kt, s64 div)
300{
301 int sft = 0;
302 s64 dclc;
303 u64 tmp;
304
305 dclc = ktime_to_ns(kt);
306 tmp = dclc < 0 ? -dclc : dclc;
307
308 /* Make sure the divisor is less than 2^32: */
309 while (div >> 32) {
310 sft++;
311 div >>= 1;
312 }
313 tmp >>= sft;
314 do_div(tmp, (unsigned long) div);
315 return dclc < 0 ? -tmp : tmp;
316}
317EXPORT_SYMBOL_GPL(__ktime_divns);
318#endif /* BITS_PER_LONG >= 64 */
319
320/*
321 * Add two ktime values and do a safety check for overflow:
322 */
323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324{
325 ktime_t res = ktime_add_unsafe(lhs, rhs);
326
327 /*
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
330 */
331 if (res < 0 || res < lhs || res < rhs)
332 res = ktime_set(KTIME_SEC_MAX, 0);
333
334 return res;
335}
336
337EXPORT_SYMBOL_GPL(ktime_add_safe);
338
339#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340
341static struct debug_obj_descr hrtimer_debug_descr;
342
343static void *hrtimer_debug_hint(void *addr)
344{
345 return ((struct hrtimer *) addr)->function;
346}
347
348/*
349 * fixup_init is called when:
350 * - an active object is initialized
351 */
352static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353{
354 struct hrtimer *timer = addr;
355
356 switch (state) {
357 case ODEBUG_STATE_ACTIVE:
358 hrtimer_cancel(timer);
359 debug_object_init(timer, &hrtimer_debug_descr);
360 return true;
361 default:
362 return false;
363 }
364}
365
366/*
367 * fixup_activate is called when:
368 * - an active object is activated
369 * - an unknown non-static object is activated
370 */
371static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372{
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 WARN_ON(1);
376 /* fall through */
377 default:
378 return false;
379 }
380}
381
382/*
383 * fixup_free is called when:
384 * - an active object is freed
385 */
386static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387{
388 struct hrtimer *timer = addr;
389
390 switch (state) {
391 case ODEBUG_STATE_ACTIVE:
392 hrtimer_cancel(timer);
393 debug_object_free(timer, &hrtimer_debug_descr);
394 return true;
395 default:
396 return false;
397 }
398}
399
400static struct debug_obj_descr hrtimer_debug_descr = {
401 .name = "hrtimer",
402 .debug_hint = hrtimer_debug_hint,
403 .fixup_init = hrtimer_fixup_init,
404 .fixup_activate = hrtimer_fixup_activate,
405 .fixup_free = hrtimer_fixup_free,
406};
407
408static inline void debug_hrtimer_init(struct hrtimer *timer)
409{
410 debug_object_init(timer, &hrtimer_debug_descr);
411}
412
413static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 enum hrtimer_mode mode)
415{
416 debug_object_activate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420{
421 debug_object_deactivate(timer, &hrtimer_debug_descr);
422}
423
424static inline void debug_hrtimer_free(struct hrtimer *timer)
425{
426 debug_object_free(timer, &hrtimer_debug_descr);
427}
428
429static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 enum hrtimer_mode mode);
431
432void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 enum hrtimer_mode mode)
434{
435 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 __hrtimer_init(timer, clock_id, mode);
437}
438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439
440static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
441 clockid_t clock_id, enum hrtimer_mode mode);
442
443void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
444 clockid_t clock_id, enum hrtimer_mode mode)
445{
446 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
447 __hrtimer_init_sleeper(sl, clock_id, mode);
448}
449EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
450
451void destroy_hrtimer_on_stack(struct hrtimer *timer)
452{
453 debug_object_free(timer, &hrtimer_debug_descr);
454}
455EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
456
457#else
458
459static inline void debug_hrtimer_init(struct hrtimer *timer) { }
460static inline void debug_hrtimer_activate(struct hrtimer *timer,
461 enum hrtimer_mode mode) { }
462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463#endif
464
465static inline void
466debug_init(struct hrtimer *timer, clockid_t clockid,
467 enum hrtimer_mode mode)
468{
469 debug_hrtimer_init(timer);
470 trace_hrtimer_init(timer, clockid, mode);
471}
472
473static inline void debug_activate(struct hrtimer *timer,
474 enum hrtimer_mode mode)
475{
476 debug_hrtimer_activate(timer, mode);
477 trace_hrtimer_start(timer, mode);
478}
479
480static inline void debug_deactivate(struct hrtimer *timer)
481{
482 debug_hrtimer_deactivate(timer);
483 trace_hrtimer_cancel(timer);
484}
485
486static struct hrtimer_clock_base *
487__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
488{
489 unsigned int idx;
490
491 if (!*active)
492 return NULL;
493
494 idx = __ffs(*active);
495 *active &= ~(1U << idx);
496
497 return &cpu_base->clock_base[idx];
498}
499
500#define for_each_active_base(base, cpu_base, active) \
501 while ((base = __next_base((cpu_base), &(active))))
502
503static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
504 const struct hrtimer *exclude,
505 unsigned int active,
506 ktime_t expires_next)
507{
508 struct hrtimer_clock_base *base;
509 ktime_t expires;
510
511 for_each_active_base(base, cpu_base, active) {
512 struct timerqueue_node *next;
513 struct hrtimer *timer;
514
515 next = timerqueue_getnext(&base->active);
516 timer = container_of(next, struct hrtimer, node);
517 if (timer == exclude) {
518 /* Get to the next timer in the queue. */
519 next = timerqueue_iterate_next(next);
520 if (!next)
521 continue;
522
523 timer = container_of(next, struct hrtimer, node);
524 }
525 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
526 if (expires < expires_next) {
527 expires_next = expires;
528
529 /* Skip cpu_base update if a timer is being excluded. */
530 if (exclude)
531 continue;
532
533 if (timer->is_soft)
534 cpu_base->softirq_next_timer = timer;
535 else
536 cpu_base->next_timer = timer;
537 }
538 }
539 /*
540 * clock_was_set() might have changed base->offset of any of
541 * the clock bases so the result might be negative. Fix it up
542 * to prevent a false positive in clockevents_program_event().
543 */
544 if (expires_next < 0)
545 expires_next = 0;
546 return expires_next;
547}
548
549/*
550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
551 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
552 *
553 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
554 * those timers will get run whenever the softirq gets handled, at the end of
555 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
556 *
557 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
558 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
559 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
560 *
561 * @active_mask must be one of:
562 * - HRTIMER_ACTIVE_ALL,
563 * - HRTIMER_ACTIVE_SOFT, or
564 * - HRTIMER_ACTIVE_HARD.
565 */
566static ktime_t
567__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
568{
569 unsigned int active;
570 struct hrtimer *next_timer = NULL;
571 ktime_t expires_next = KTIME_MAX;
572
573 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
574 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
575 cpu_base->softirq_next_timer = NULL;
576 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
577 active, KTIME_MAX);
578
579 next_timer = cpu_base->softirq_next_timer;
580 }
581
582 if (active_mask & HRTIMER_ACTIVE_HARD) {
583 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
584 cpu_base->next_timer = next_timer;
585 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
586 expires_next);
587 }
588
589 return expires_next;
590}
591
592static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
593{
594 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
595 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
596 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
597
598 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
599 offs_real, offs_boot, offs_tai);
600
601 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
602 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
603 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
604
605 return now;
606}
607
608/*
609 * Is the high resolution mode active ?
610 */
611static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
612{
613 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
614 cpu_base->hres_active : 0;
615}
616
617static inline int hrtimer_hres_active(void)
618{
619 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
620}
621
622/*
623 * Reprogram the event source with checking both queues for the
624 * next event
625 * Called with interrupts disabled and base->lock held
626 */
627static void
628hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
629{
630 ktime_t expires_next;
631
632 /*
633 * Find the current next expiration time.
634 */
635 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
636
637 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
638 /*
639 * When the softirq is activated, hrtimer has to be
640 * programmed with the first hard hrtimer because soft
641 * timer interrupt could occur too late.
642 */
643 if (cpu_base->softirq_activated)
644 expires_next = __hrtimer_get_next_event(cpu_base,
645 HRTIMER_ACTIVE_HARD);
646 else
647 cpu_base->softirq_expires_next = expires_next;
648 }
649
650 if (skip_equal && expires_next == cpu_base->expires_next)
651 return;
652
653 cpu_base->expires_next = expires_next;
654
655 /*
656 * If hres is not active, hardware does not have to be
657 * reprogrammed yet.
658 *
659 * If a hang was detected in the last timer interrupt then we
660 * leave the hang delay active in the hardware. We want the
661 * system to make progress. That also prevents the following
662 * scenario:
663 * T1 expires 50ms from now
664 * T2 expires 5s from now
665 *
666 * T1 is removed, so this code is called and would reprogram
667 * the hardware to 5s from now. Any hrtimer_start after that
668 * will not reprogram the hardware due to hang_detected being
669 * set. So we'd effectivly block all timers until the T2 event
670 * fires.
671 */
672 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
673 return;
674
675 tick_program_event(cpu_base->expires_next, 1);
676}
677
678/* High resolution timer related functions */
679#ifdef CONFIG_HIGH_RES_TIMERS
680
681/*
682 * High resolution timer enabled ?
683 */
684static bool hrtimer_hres_enabled __read_mostly = true;
685unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
686EXPORT_SYMBOL_GPL(hrtimer_resolution);
687
688/*
689 * Enable / Disable high resolution mode
690 */
691static int __init setup_hrtimer_hres(char *str)
692{
693 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
694}
695
696__setup("highres=", setup_hrtimer_hres);
697
698/*
699 * hrtimer_high_res_enabled - query, if the highres mode is enabled
700 */
701static inline int hrtimer_is_hres_enabled(void)
702{
703 return hrtimer_hres_enabled;
704}
705
706/*
707 * Retrigger next event is called after clock was set
708 *
709 * Called with interrupts disabled via on_each_cpu()
710 */
711static void retrigger_next_event(void *arg)
712{
713 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
714
715 if (!__hrtimer_hres_active(base))
716 return;
717
718 raw_spin_lock(&base->lock);
719 hrtimer_update_base(base);
720 hrtimer_force_reprogram(base, 0);
721 raw_spin_unlock(&base->lock);
722}
723
724/*
725 * Switch to high resolution mode
726 */
727static void hrtimer_switch_to_hres(void)
728{
729 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
730
731 if (tick_init_highres()) {
732 pr_warn("Could not switch to high resolution mode on CPU %u\n",
733 base->cpu);
734 return;
735 }
736 base->hres_active = 1;
737 hrtimer_resolution = HIGH_RES_NSEC;
738
739 tick_setup_sched_timer();
740 /* "Retrigger" the interrupt to get things going */
741 retrigger_next_event(NULL);
742}
743
744static void clock_was_set_work(struct work_struct *work)
745{
746 clock_was_set();
747}
748
749static DECLARE_WORK(hrtimer_work, clock_was_set_work);
750
751/*
752 * Called from timekeeping and resume code to reprogram the hrtimer
753 * interrupt device on all cpus.
754 */
755void clock_was_set_delayed(void)
756{
757 schedule_work(&hrtimer_work);
758}
759
760#else
761
762static inline int hrtimer_is_hres_enabled(void) { return 0; }
763static inline void hrtimer_switch_to_hres(void) { }
764static inline void retrigger_next_event(void *arg) { }
765
766#endif /* CONFIG_HIGH_RES_TIMERS */
767
768/*
769 * When a timer is enqueued and expires earlier than the already enqueued
770 * timers, we have to check, whether it expires earlier than the timer for
771 * which the clock event device was armed.
772 *
773 * Called with interrupts disabled and base->cpu_base.lock held
774 */
775static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
776{
777 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
778 struct hrtimer_clock_base *base = timer->base;
779 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
780
781 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
782
783 /*
784 * CLOCK_REALTIME timer might be requested with an absolute
785 * expiry time which is less than base->offset. Set it to 0.
786 */
787 if (expires < 0)
788 expires = 0;
789
790 if (timer->is_soft) {
791 /*
792 * soft hrtimer could be started on a remote CPU. In this
793 * case softirq_expires_next needs to be updated on the
794 * remote CPU. The soft hrtimer will not expire before the
795 * first hard hrtimer on the remote CPU -
796 * hrtimer_check_target() prevents this case.
797 */
798 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
799
800 if (timer_cpu_base->softirq_activated)
801 return;
802
803 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
804 return;
805
806 timer_cpu_base->softirq_next_timer = timer;
807 timer_cpu_base->softirq_expires_next = expires;
808
809 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
810 !reprogram)
811 return;
812 }
813
814 /*
815 * If the timer is not on the current cpu, we cannot reprogram
816 * the other cpus clock event device.
817 */
818 if (base->cpu_base != cpu_base)
819 return;
820
821 /*
822 * If the hrtimer interrupt is running, then it will
823 * reevaluate the clock bases and reprogram the clock event
824 * device. The callbacks are always executed in hard interrupt
825 * context so we don't need an extra check for a running
826 * callback.
827 */
828 if (cpu_base->in_hrtirq)
829 return;
830
831 if (expires >= cpu_base->expires_next)
832 return;
833
834 /* Update the pointer to the next expiring timer */
835 cpu_base->next_timer = timer;
836 cpu_base->expires_next = expires;
837
838 /*
839 * If hres is not active, hardware does not have to be
840 * programmed yet.
841 *
842 * If a hang was detected in the last timer interrupt then we
843 * do not schedule a timer which is earlier than the expiry
844 * which we enforced in the hang detection. We want the system
845 * to make progress.
846 */
847 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
848 return;
849
850 /*
851 * Program the timer hardware. We enforce the expiry for
852 * events which are already in the past.
853 */
854 tick_program_event(expires, 1);
855}
856
857/*
858 * Clock realtime was set
859 *
860 * Change the offset of the realtime clock vs. the monotonic
861 * clock.
862 *
863 * We might have to reprogram the high resolution timer interrupt. On
864 * SMP we call the architecture specific code to retrigger _all_ high
865 * resolution timer interrupts. On UP we just disable interrupts and
866 * call the high resolution interrupt code.
867 */
868void clock_was_set(void)
869{
870#ifdef CONFIG_HIGH_RES_TIMERS
871 /* Retrigger the CPU local events everywhere */
872 on_each_cpu(retrigger_next_event, NULL, 1);
873#endif
874 timerfd_clock_was_set();
875}
876
877/*
878 * During resume we might have to reprogram the high resolution timer
879 * interrupt on all online CPUs. However, all other CPUs will be
880 * stopped with IRQs interrupts disabled so the clock_was_set() call
881 * must be deferred.
882 */
883void hrtimers_resume(void)
884{
885 lockdep_assert_irqs_disabled();
886 /* Retrigger on the local CPU */
887 retrigger_next_event(NULL);
888 /* And schedule a retrigger for all others */
889 clock_was_set_delayed();
890}
891
892/*
893 * Counterpart to lock_hrtimer_base above:
894 */
895static inline
896void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
897{
898 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
899}
900
901/**
902 * hrtimer_forward - forward the timer expiry
903 * @timer: hrtimer to forward
904 * @now: forward past this time
905 * @interval: the interval to forward
906 *
907 * Forward the timer expiry so it will expire in the future.
908 * Returns the number of overruns.
909 *
910 * Can be safely called from the callback function of @timer. If
911 * called from other contexts @timer must neither be enqueued nor
912 * running the callback and the caller needs to take care of
913 * serialization.
914 *
915 * Note: This only updates the timer expiry value and does not requeue
916 * the timer.
917 */
918u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
919{
920 u64 orun = 1;
921 ktime_t delta;
922
923 delta = ktime_sub(now, hrtimer_get_expires(timer));
924
925 if (delta < 0)
926 return 0;
927
928 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
929 return 0;
930
931 if (interval < hrtimer_resolution)
932 interval = hrtimer_resolution;
933
934 if (unlikely(delta >= interval)) {
935 s64 incr = ktime_to_ns(interval);
936
937 orun = ktime_divns(delta, incr);
938 hrtimer_add_expires_ns(timer, incr * orun);
939 if (hrtimer_get_expires_tv64(timer) > now)
940 return orun;
941 /*
942 * This (and the ktime_add() below) is the
943 * correction for exact:
944 */
945 orun++;
946 }
947 hrtimer_add_expires(timer, interval);
948
949 return orun;
950}
951EXPORT_SYMBOL_GPL(hrtimer_forward);
952
953/*
954 * enqueue_hrtimer - internal function to (re)start a timer
955 *
956 * The timer is inserted in expiry order. Insertion into the
957 * red black tree is O(log(n)). Must hold the base lock.
958 *
959 * Returns 1 when the new timer is the leftmost timer in the tree.
960 */
961static int enqueue_hrtimer(struct hrtimer *timer,
962 struct hrtimer_clock_base *base,
963 enum hrtimer_mode mode)
964{
965 debug_activate(timer, mode);
966
967 base->cpu_base->active_bases |= 1 << base->index;
968
969 timer->state = HRTIMER_STATE_ENQUEUED;
970
971 return timerqueue_add(&base->active, &timer->node);
972}
973
974/*
975 * __remove_hrtimer - internal function to remove a timer
976 *
977 * Caller must hold the base lock.
978 *
979 * High resolution timer mode reprograms the clock event device when the
980 * timer is the one which expires next. The caller can disable this by setting
981 * reprogram to zero. This is useful, when the context does a reprogramming
982 * anyway (e.g. timer interrupt)
983 */
984static void __remove_hrtimer(struct hrtimer *timer,
985 struct hrtimer_clock_base *base,
986 u8 newstate, int reprogram)
987{
988 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
989 u8 state = timer->state;
990
991 timer->state = newstate;
992 if (!(state & HRTIMER_STATE_ENQUEUED))
993 return;
994
995 if (!timerqueue_del(&base->active, &timer->node))
996 cpu_base->active_bases &= ~(1 << base->index);
997
998 /*
999 * Note: If reprogram is false we do not update
1000 * cpu_base->next_timer. This happens when we remove the first
1001 * timer on a remote cpu. No harm as we never dereference
1002 * cpu_base->next_timer. So the worst thing what can happen is
1003 * an superflous call to hrtimer_force_reprogram() on the
1004 * remote cpu later on if the same timer gets enqueued again.
1005 */
1006 if (reprogram && timer == cpu_base->next_timer)
1007 hrtimer_force_reprogram(cpu_base, 1);
1008}
1009
1010/*
1011 * remove hrtimer, called with base lock held
1012 */
1013static inline int
1014remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1015{
1016 if (hrtimer_is_queued(timer)) {
1017 u8 state = timer->state;
1018 int reprogram;
1019
1020 /*
1021 * Remove the timer and force reprogramming when high
1022 * resolution mode is active and the timer is on the current
1023 * CPU. If we remove a timer on another CPU, reprogramming is
1024 * skipped. The interrupt event on this CPU is fired and
1025 * reprogramming happens in the interrupt handler. This is a
1026 * rare case and less expensive than a smp call.
1027 */
1028 debug_deactivate(timer);
1029 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1030
1031 if (!restart)
1032 state = HRTIMER_STATE_INACTIVE;
1033
1034 __remove_hrtimer(timer, base, state, reprogram);
1035 return 1;
1036 }
1037 return 0;
1038}
1039
1040static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1041 const enum hrtimer_mode mode)
1042{
1043#ifdef CONFIG_TIME_LOW_RES
1044 /*
1045 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1046 * granular time values. For relative timers we add hrtimer_resolution
1047 * (i.e. one jiffie) to prevent short timeouts.
1048 */
1049 timer->is_rel = mode & HRTIMER_MODE_REL;
1050 if (timer->is_rel)
1051 tim = ktime_add_safe(tim, hrtimer_resolution);
1052#endif
1053 return tim;
1054}
1055
1056static void
1057hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1058{
1059 ktime_t expires;
1060
1061 /*
1062 * Find the next SOFT expiration.
1063 */
1064 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1065
1066 /*
1067 * reprogramming needs to be triggered, even if the next soft
1068 * hrtimer expires at the same time than the next hard
1069 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1070 */
1071 if (expires == KTIME_MAX)
1072 return;
1073
1074 /*
1075 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1076 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1077 */
1078 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1079}
1080
1081static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1082 u64 delta_ns, const enum hrtimer_mode mode,
1083 struct hrtimer_clock_base *base)
1084{
1085 struct hrtimer_clock_base *new_base;
1086
1087 /* Remove an active timer from the queue: */
1088 remove_hrtimer(timer, base, true);
1089
1090 if (mode & HRTIMER_MODE_REL)
1091 tim = ktime_add_safe(tim, base->get_time());
1092
1093 tim = hrtimer_update_lowres(timer, tim, mode);
1094
1095 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1096
1097 /* Switch the timer base, if necessary: */
1098 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1099
1100 return enqueue_hrtimer(timer, new_base, mode);
1101}
1102
1103/**
1104 * hrtimer_start_range_ns - (re)start an hrtimer
1105 * @timer: the timer to be added
1106 * @tim: expiry time
1107 * @delta_ns: "slack" range for the timer
1108 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1109 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1110 * softirq based mode is considered for debug purpose only!
1111 */
1112void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1113 u64 delta_ns, const enum hrtimer_mode mode)
1114{
1115 struct hrtimer_clock_base *base;
1116 unsigned long flags;
1117
1118 /*
1119 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1120 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1121 * expiry mode because unmarked timers are moved to softirq expiry.
1122 */
1123 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1124 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1125 else
1126 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1127
1128 base = lock_hrtimer_base(timer, &flags);
1129
1130 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1131 hrtimer_reprogram(timer, true);
1132
1133 unlock_hrtimer_base(timer, &flags);
1134}
1135EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1136
1137/**
1138 * hrtimer_try_to_cancel - try to deactivate a timer
1139 * @timer: hrtimer to stop
1140 *
1141 * Returns:
1142 *
1143 * * 0 when the timer was not active
1144 * * 1 when the timer was active
1145 * * -1 when the timer is currently executing the callback function and
1146 * cannot be stopped
1147 */
1148int hrtimer_try_to_cancel(struct hrtimer *timer)
1149{
1150 struct hrtimer_clock_base *base;
1151 unsigned long flags;
1152 int ret = -1;
1153
1154 /*
1155 * Check lockless first. If the timer is not active (neither
1156 * enqueued nor running the callback, nothing to do here. The
1157 * base lock does not serialize against a concurrent enqueue,
1158 * so we can avoid taking it.
1159 */
1160 if (!hrtimer_active(timer))
1161 return 0;
1162
1163 base = lock_hrtimer_base(timer, &flags);
1164
1165 if (!hrtimer_callback_running(timer))
1166 ret = remove_hrtimer(timer, base, false);
1167
1168 unlock_hrtimer_base(timer, &flags);
1169
1170 return ret;
1171
1172}
1173EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1174
1175#ifdef CONFIG_PREEMPT_RT
1176static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1177{
1178 spin_lock_init(&base->softirq_expiry_lock);
1179}
1180
1181static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1182{
1183 spin_lock(&base->softirq_expiry_lock);
1184}
1185
1186static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1187{
1188 spin_unlock(&base->softirq_expiry_lock);
1189}
1190
1191/*
1192 * The counterpart to hrtimer_cancel_wait_running().
1193 *
1194 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1195 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1196 * allows the waiter to acquire the lock and make progress.
1197 */
1198static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1199 unsigned long flags)
1200{
1201 if (atomic_read(&cpu_base->timer_waiters)) {
1202 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203 spin_unlock(&cpu_base->softirq_expiry_lock);
1204 spin_lock(&cpu_base->softirq_expiry_lock);
1205 raw_spin_lock_irq(&cpu_base->lock);
1206 }
1207}
1208
1209/*
1210 * This function is called on PREEMPT_RT kernels when the fast path
1211 * deletion of a timer failed because the timer callback function was
1212 * running.
1213 *
1214 * This prevents priority inversion: if the soft irq thread is preempted
1215 * in the middle of a timer callback, then calling del_timer_sync() can
1216 * lead to two issues:
1217 *
1218 * - If the caller is on a remote CPU then it has to spin wait for the timer
1219 * handler to complete. This can result in unbound priority inversion.
1220 *
1221 * - If the caller originates from the task which preempted the timer
1222 * handler on the same CPU, then spin waiting for the timer handler to
1223 * complete is never going to end.
1224 */
1225void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1226{
1227 /* Lockless read. Prevent the compiler from reloading it below */
1228 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1229
1230 /*
1231 * Just relax if the timer expires in hard interrupt context or if
1232 * it is currently on the migration base.
1233 */
1234 if (!timer->is_soft || is_migration_base(base)) {
1235 cpu_relax();
1236 return;
1237 }
1238
1239 /*
1240 * Mark the base as contended and grab the expiry lock, which is
1241 * held by the softirq across the timer callback. Drop the lock
1242 * immediately so the softirq can expire the next timer. In theory
1243 * the timer could already be running again, but that's more than
1244 * unlikely and just causes another wait loop.
1245 */
1246 atomic_inc(&base->cpu_base->timer_waiters);
1247 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1248 atomic_dec(&base->cpu_base->timer_waiters);
1249 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1250}
1251#else
1252static inline void
1253hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1254static inline void
1255hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1256static inline void
1257hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1258static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1259 unsigned long flags) { }
1260#endif
1261
1262/**
1263 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1264 * @timer: the timer to be cancelled
1265 *
1266 * Returns:
1267 * 0 when the timer was not active
1268 * 1 when the timer was active
1269 */
1270int hrtimer_cancel(struct hrtimer *timer)
1271{
1272 int ret;
1273
1274 do {
1275 ret = hrtimer_try_to_cancel(timer);
1276
1277 if (ret < 0)
1278 hrtimer_cancel_wait_running(timer);
1279 } while (ret < 0);
1280 return ret;
1281}
1282EXPORT_SYMBOL_GPL(hrtimer_cancel);
1283
1284/**
1285 * hrtimer_get_remaining - get remaining time for the timer
1286 * @timer: the timer to read
1287 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1288 */
1289ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1290{
1291 unsigned long flags;
1292 ktime_t rem;
1293
1294 lock_hrtimer_base(timer, &flags);
1295 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1296 rem = hrtimer_expires_remaining_adjusted(timer);
1297 else
1298 rem = hrtimer_expires_remaining(timer);
1299 unlock_hrtimer_base(timer, &flags);
1300
1301 return rem;
1302}
1303EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1304
1305#ifdef CONFIG_NO_HZ_COMMON
1306/**
1307 * hrtimer_get_next_event - get the time until next expiry event
1308 *
1309 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1310 */
1311u64 hrtimer_get_next_event(void)
1312{
1313 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1314 u64 expires = KTIME_MAX;
1315 unsigned long flags;
1316
1317 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1318
1319 if (!__hrtimer_hres_active(cpu_base))
1320 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1321
1322 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1323
1324 return expires;
1325}
1326
1327/**
1328 * hrtimer_next_event_without - time until next expiry event w/o one timer
1329 * @exclude: timer to exclude
1330 *
1331 * Returns the next expiry time over all timers except for the @exclude one or
1332 * KTIME_MAX if none of them is pending.
1333 */
1334u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1335{
1336 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1337 u64 expires = KTIME_MAX;
1338 unsigned long flags;
1339
1340 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1341
1342 if (__hrtimer_hres_active(cpu_base)) {
1343 unsigned int active;
1344
1345 if (!cpu_base->softirq_activated) {
1346 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1347 expires = __hrtimer_next_event_base(cpu_base, exclude,
1348 active, KTIME_MAX);
1349 }
1350 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1351 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1352 expires);
1353 }
1354
1355 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1356
1357 return expires;
1358}
1359#endif
1360
1361static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1362{
1363 if (likely(clock_id < MAX_CLOCKS)) {
1364 int base = hrtimer_clock_to_base_table[clock_id];
1365
1366 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1367 return base;
1368 }
1369 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1370 return HRTIMER_BASE_MONOTONIC;
1371}
1372
1373static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1374 enum hrtimer_mode mode)
1375{
1376 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1377 struct hrtimer_cpu_base *cpu_base;
1378 int base;
1379
1380 /*
1381 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1382 * marked for hard interrupt expiry mode are moved into soft
1383 * interrupt context for latency reasons and because the callbacks
1384 * can invoke functions which might sleep on RT, e.g. spin_lock().
1385 */
1386 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1387 softtimer = true;
1388
1389 memset(timer, 0, sizeof(struct hrtimer));
1390
1391 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1392
1393 /*
1394 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1395 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1396 * ensure POSIX compliance.
1397 */
1398 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1399 clock_id = CLOCK_MONOTONIC;
1400
1401 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1402 base += hrtimer_clockid_to_base(clock_id);
1403 timer->is_soft = softtimer;
1404 timer->is_hard = !softtimer;
1405 timer->base = &cpu_base->clock_base[base];
1406 timerqueue_init(&timer->node);
1407}
1408
1409/**
1410 * hrtimer_init - initialize a timer to the given clock
1411 * @timer: the timer to be initialized
1412 * @clock_id: the clock to be used
1413 * @mode: The modes which are relevant for intitialization:
1414 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1415 * HRTIMER_MODE_REL_SOFT
1416 *
1417 * The PINNED variants of the above can be handed in,
1418 * but the PINNED bit is ignored as pinning happens
1419 * when the hrtimer is started
1420 */
1421void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1422 enum hrtimer_mode mode)
1423{
1424 debug_init(timer, clock_id, mode);
1425 __hrtimer_init(timer, clock_id, mode);
1426}
1427EXPORT_SYMBOL_GPL(hrtimer_init);
1428
1429/*
1430 * A timer is active, when it is enqueued into the rbtree or the
1431 * callback function is running or it's in the state of being migrated
1432 * to another cpu.
1433 *
1434 * It is important for this function to not return a false negative.
1435 */
1436bool hrtimer_active(const struct hrtimer *timer)
1437{
1438 struct hrtimer_clock_base *base;
1439 unsigned int seq;
1440
1441 do {
1442 base = READ_ONCE(timer->base);
1443 seq = raw_read_seqcount_begin(&base->seq);
1444
1445 if (timer->state != HRTIMER_STATE_INACTIVE ||
1446 base->running == timer)
1447 return true;
1448
1449 } while (read_seqcount_retry(&base->seq, seq) ||
1450 base != READ_ONCE(timer->base));
1451
1452 return false;
1453}
1454EXPORT_SYMBOL_GPL(hrtimer_active);
1455
1456/*
1457 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1458 * distinct sections:
1459 *
1460 * - queued: the timer is queued
1461 * - callback: the timer is being ran
1462 * - post: the timer is inactive or (re)queued
1463 *
1464 * On the read side we ensure we observe timer->state and cpu_base->running
1465 * from the same section, if anything changed while we looked at it, we retry.
1466 * This includes timer->base changing because sequence numbers alone are
1467 * insufficient for that.
1468 *
1469 * The sequence numbers are required because otherwise we could still observe
1470 * a false negative if the read side got smeared over multiple consequtive
1471 * __run_hrtimer() invocations.
1472 */
1473
1474static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1475 struct hrtimer_clock_base *base,
1476 struct hrtimer *timer, ktime_t *now,
1477 unsigned long flags)
1478{
1479 enum hrtimer_restart (*fn)(struct hrtimer *);
1480 int restart;
1481
1482 lockdep_assert_held(&cpu_base->lock);
1483
1484 debug_deactivate(timer);
1485 base->running = timer;
1486
1487 /*
1488 * Separate the ->running assignment from the ->state assignment.
1489 *
1490 * As with a regular write barrier, this ensures the read side in
1491 * hrtimer_active() cannot observe base->running == NULL &&
1492 * timer->state == INACTIVE.
1493 */
1494 raw_write_seqcount_barrier(&base->seq);
1495
1496 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1497 fn = timer->function;
1498
1499 /*
1500 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1501 * timer is restarted with a period then it becomes an absolute
1502 * timer. If its not restarted it does not matter.
1503 */
1504 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1505 timer->is_rel = false;
1506
1507 /*
1508 * The timer is marked as running in the CPU base, so it is
1509 * protected against migration to a different CPU even if the lock
1510 * is dropped.
1511 */
1512 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1513 trace_hrtimer_expire_entry(timer, now);
1514 restart = fn(timer);
1515 trace_hrtimer_expire_exit(timer);
1516 raw_spin_lock_irq(&cpu_base->lock);
1517
1518 /*
1519 * Note: We clear the running state after enqueue_hrtimer and
1520 * we do not reprogram the event hardware. Happens either in
1521 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1522 *
1523 * Note: Because we dropped the cpu_base->lock above,
1524 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1525 * for us already.
1526 */
1527 if (restart != HRTIMER_NORESTART &&
1528 !(timer->state & HRTIMER_STATE_ENQUEUED))
1529 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1530
1531 /*
1532 * Separate the ->running assignment from the ->state assignment.
1533 *
1534 * As with a regular write barrier, this ensures the read side in
1535 * hrtimer_active() cannot observe base->running.timer == NULL &&
1536 * timer->state == INACTIVE.
1537 */
1538 raw_write_seqcount_barrier(&base->seq);
1539
1540 WARN_ON_ONCE(base->running != timer);
1541 base->running = NULL;
1542}
1543
1544static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1545 unsigned long flags, unsigned int active_mask)
1546{
1547 struct hrtimer_clock_base *base;
1548 unsigned int active = cpu_base->active_bases & active_mask;
1549
1550 for_each_active_base(base, cpu_base, active) {
1551 struct timerqueue_node *node;
1552 ktime_t basenow;
1553
1554 basenow = ktime_add(now, base->offset);
1555
1556 while ((node = timerqueue_getnext(&base->active))) {
1557 struct hrtimer *timer;
1558
1559 timer = container_of(node, struct hrtimer, node);
1560
1561 /*
1562 * The immediate goal for using the softexpires is
1563 * minimizing wakeups, not running timers at the
1564 * earliest interrupt after their soft expiration.
1565 * This allows us to avoid using a Priority Search
1566 * Tree, which can answer a stabbing querry for
1567 * overlapping intervals and instead use the simple
1568 * BST we already have.
1569 * We don't add extra wakeups by delaying timers that
1570 * are right-of a not yet expired timer, because that
1571 * timer will have to trigger a wakeup anyway.
1572 */
1573 if (basenow < hrtimer_get_softexpires_tv64(timer))
1574 break;
1575
1576 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1577 if (active_mask == HRTIMER_ACTIVE_SOFT)
1578 hrtimer_sync_wait_running(cpu_base, flags);
1579 }
1580 }
1581}
1582
1583static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1584{
1585 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1586 unsigned long flags;
1587 ktime_t now;
1588
1589 hrtimer_cpu_base_lock_expiry(cpu_base);
1590 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1591
1592 now = hrtimer_update_base(cpu_base);
1593 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1594
1595 cpu_base->softirq_activated = 0;
1596 hrtimer_update_softirq_timer(cpu_base, true);
1597
1598 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1599 hrtimer_cpu_base_unlock_expiry(cpu_base);
1600}
1601
1602#ifdef CONFIG_HIGH_RES_TIMERS
1603
1604/*
1605 * High resolution timer interrupt
1606 * Called with interrupts disabled
1607 */
1608void hrtimer_interrupt(struct clock_event_device *dev)
1609{
1610 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1611 ktime_t expires_next, now, entry_time, delta;
1612 unsigned long flags;
1613 int retries = 0;
1614
1615 BUG_ON(!cpu_base->hres_active);
1616 cpu_base->nr_events++;
1617 dev->next_event = KTIME_MAX;
1618
1619 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1620 entry_time = now = hrtimer_update_base(cpu_base);
1621retry:
1622 cpu_base->in_hrtirq = 1;
1623 /*
1624 * We set expires_next to KTIME_MAX here with cpu_base->lock
1625 * held to prevent that a timer is enqueued in our queue via
1626 * the migration code. This does not affect enqueueing of
1627 * timers which run their callback and need to be requeued on
1628 * this CPU.
1629 */
1630 cpu_base->expires_next = KTIME_MAX;
1631
1632 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1633 cpu_base->softirq_expires_next = KTIME_MAX;
1634 cpu_base->softirq_activated = 1;
1635 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1636 }
1637
1638 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1639
1640 /* Reevaluate the clock bases for the next expiry */
1641 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1642 /*
1643 * Store the new expiry value so the migration code can verify
1644 * against it.
1645 */
1646 cpu_base->expires_next = expires_next;
1647 cpu_base->in_hrtirq = 0;
1648 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1649
1650 /* Reprogramming necessary ? */
1651 if (!tick_program_event(expires_next, 0)) {
1652 cpu_base->hang_detected = 0;
1653 return;
1654 }
1655
1656 /*
1657 * The next timer was already expired due to:
1658 * - tracing
1659 * - long lasting callbacks
1660 * - being scheduled away when running in a VM
1661 *
1662 * We need to prevent that we loop forever in the hrtimer
1663 * interrupt routine. We give it 3 attempts to avoid
1664 * overreacting on some spurious event.
1665 *
1666 * Acquire base lock for updating the offsets and retrieving
1667 * the current time.
1668 */
1669 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1670 now = hrtimer_update_base(cpu_base);
1671 cpu_base->nr_retries++;
1672 if (++retries < 3)
1673 goto retry;
1674 /*
1675 * Give the system a chance to do something else than looping
1676 * here. We stored the entry time, so we know exactly how long
1677 * we spent here. We schedule the next event this amount of
1678 * time away.
1679 */
1680 cpu_base->nr_hangs++;
1681 cpu_base->hang_detected = 1;
1682 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1683
1684 delta = ktime_sub(now, entry_time);
1685 if ((unsigned int)delta > cpu_base->max_hang_time)
1686 cpu_base->max_hang_time = (unsigned int) delta;
1687 /*
1688 * Limit it to a sensible value as we enforce a longer
1689 * delay. Give the CPU at least 100ms to catch up.
1690 */
1691 if (delta > 100 * NSEC_PER_MSEC)
1692 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1693 else
1694 expires_next = ktime_add(now, delta);
1695 tick_program_event(expires_next, 1);
1696 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1697}
1698
1699/* called with interrupts disabled */
1700static inline void __hrtimer_peek_ahead_timers(void)
1701{
1702 struct tick_device *td;
1703
1704 if (!hrtimer_hres_active())
1705 return;
1706
1707 td = this_cpu_ptr(&tick_cpu_device);
1708 if (td && td->evtdev)
1709 hrtimer_interrupt(td->evtdev);
1710}
1711
1712#else /* CONFIG_HIGH_RES_TIMERS */
1713
1714static inline void __hrtimer_peek_ahead_timers(void) { }
1715
1716#endif /* !CONFIG_HIGH_RES_TIMERS */
1717
1718/*
1719 * Called from run_local_timers in hardirq context every jiffy
1720 */
1721void hrtimer_run_queues(void)
1722{
1723 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1724 unsigned long flags;
1725 ktime_t now;
1726
1727 if (__hrtimer_hres_active(cpu_base))
1728 return;
1729
1730 /*
1731 * This _is_ ugly: We have to check periodically, whether we
1732 * can switch to highres and / or nohz mode. The clocksource
1733 * switch happens with xtime_lock held. Notification from
1734 * there only sets the check bit in the tick_oneshot code,
1735 * otherwise we might deadlock vs. xtime_lock.
1736 */
1737 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1738 hrtimer_switch_to_hres();
1739 return;
1740 }
1741
1742 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1743 now = hrtimer_update_base(cpu_base);
1744
1745 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1746 cpu_base->softirq_expires_next = KTIME_MAX;
1747 cpu_base->softirq_activated = 1;
1748 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1749 }
1750
1751 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1752 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1753}
1754
1755/*
1756 * Sleep related functions:
1757 */
1758static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1759{
1760 struct hrtimer_sleeper *t =
1761 container_of(timer, struct hrtimer_sleeper, timer);
1762 struct task_struct *task = t->task;
1763
1764 t->task = NULL;
1765 if (task)
1766 wake_up_process(task);
1767
1768 return HRTIMER_NORESTART;
1769}
1770
1771/**
1772 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1773 * @sl: sleeper to be started
1774 * @mode: timer mode abs/rel
1775 *
1776 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1777 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1778 */
1779void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1780 enum hrtimer_mode mode)
1781{
1782 /*
1783 * Make the enqueue delivery mode check work on RT. If the sleeper
1784 * was initialized for hard interrupt delivery, force the mode bit.
1785 * This is a special case for hrtimer_sleepers because
1786 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1787 * fiddling with this decision is avoided at the call sites.
1788 */
1789 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1790 mode |= HRTIMER_MODE_HARD;
1791
1792 hrtimer_start_expires(&sl->timer, mode);
1793}
1794EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1795
1796static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1797 clockid_t clock_id, enum hrtimer_mode mode)
1798{
1799 /*
1800 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1801 * marked for hard interrupt expiry mode are moved into soft
1802 * interrupt context either for latency reasons or because the
1803 * hrtimer callback takes regular spinlocks or invokes other
1804 * functions which are not suitable for hard interrupt context on
1805 * PREEMPT_RT.
1806 *
1807 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1808 * context, but there is a latency concern: Untrusted userspace can
1809 * spawn many threads which arm timers for the same expiry time on
1810 * the same CPU. That causes a latency spike due to the wakeup of
1811 * a gazillion threads.
1812 *
1813 * OTOH, priviledged real-time user space applications rely on the
1814 * low latency of hard interrupt wakeups. If the current task is in
1815 * a real-time scheduling class, mark the mode for hard interrupt
1816 * expiry.
1817 */
1818 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1819 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1820 mode |= HRTIMER_MODE_HARD;
1821 }
1822
1823 __hrtimer_init(&sl->timer, clock_id, mode);
1824 sl->timer.function = hrtimer_wakeup;
1825 sl->task = current;
1826}
1827
1828/**
1829 * hrtimer_init_sleeper - initialize sleeper to the given clock
1830 * @sl: sleeper to be initialized
1831 * @clock_id: the clock to be used
1832 * @mode: timer mode abs/rel
1833 */
1834void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1835 enum hrtimer_mode mode)
1836{
1837 debug_init(&sl->timer, clock_id, mode);
1838 __hrtimer_init_sleeper(sl, clock_id, mode);
1839
1840}
1841EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1842
1843int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1844{
1845 switch(restart->nanosleep.type) {
1846#ifdef CONFIG_COMPAT_32BIT_TIME
1847 case TT_COMPAT:
1848 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1849 return -EFAULT;
1850 break;
1851#endif
1852 case TT_NATIVE:
1853 if (put_timespec64(ts, restart->nanosleep.rmtp))
1854 return -EFAULT;
1855 break;
1856 default:
1857 BUG();
1858 }
1859 return -ERESTART_RESTARTBLOCK;
1860}
1861
1862static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1863{
1864 struct restart_block *restart;
1865
1866 do {
1867 set_current_state(TASK_INTERRUPTIBLE);
1868 hrtimer_sleeper_start_expires(t, mode);
1869
1870 if (likely(t->task))
1871 freezable_schedule();
1872
1873 hrtimer_cancel(&t->timer);
1874 mode = HRTIMER_MODE_ABS;
1875
1876 } while (t->task && !signal_pending(current));
1877
1878 __set_current_state(TASK_RUNNING);
1879
1880 if (!t->task)
1881 return 0;
1882
1883 restart = ¤t->restart_block;
1884 if (restart->nanosleep.type != TT_NONE) {
1885 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1886 struct timespec64 rmt;
1887
1888 if (rem <= 0)
1889 return 0;
1890 rmt = ktime_to_timespec64(rem);
1891
1892 return nanosleep_copyout(restart, &rmt);
1893 }
1894 return -ERESTART_RESTARTBLOCK;
1895}
1896
1897static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1898{
1899 struct hrtimer_sleeper t;
1900 int ret;
1901
1902 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1903 HRTIMER_MODE_ABS);
1904 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1905 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1906 destroy_hrtimer_on_stack(&t.timer);
1907 return ret;
1908}
1909
1910long hrtimer_nanosleep(const struct timespec64 *rqtp,
1911 const enum hrtimer_mode mode, const clockid_t clockid)
1912{
1913 struct restart_block *restart;
1914 struct hrtimer_sleeper t;
1915 int ret = 0;
1916 u64 slack;
1917
1918 slack = current->timer_slack_ns;
1919 if (dl_task(current) || rt_task(current))
1920 slack = 0;
1921
1922 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1923 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1924 ret = do_nanosleep(&t, mode);
1925 if (ret != -ERESTART_RESTARTBLOCK)
1926 goto out;
1927
1928 /* Absolute timers do not update the rmtp value and restart: */
1929 if (mode == HRTIMER_MODE_ABS) {
1930 ret = -ERESTARTNOHAND;
1931 goto out;
1932 }
1933
1934 restart = ¤t->restart_block;
1935 restart->fn = hrtimer_nanosleep_restart;
1936 restart->nanosleep.clockid = t.timer.base->clockid;
1937 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1938out:
1939 destroy_hrtimer_on_stack(&t.timer);
1940 return ret;
1941}
1942
1943#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1944
1945SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1946 struct __kernel_timespec __user *, rmtp)
1947{
1948 struct timespec64 tu;
1949
1950 if (get_timespec64(&tu, rqtp))
1951 return -EFAULT;
1952
1953 if (!timespec64_valid(&tu))
1954 return -EINVAL;
1955
1956 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1957 current->restart_block.nanosleep.rmtp = rmtp;
1958 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1959}
1960
1961#endif
1962
1963#ifdef CONFIG_COMPAT_32BIT_TIME
1964
1965SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1966 struct old_timespec32 __user *, rmtp)
1967{
1968 struct timespec64 tu;
1969
1970 if (get_old_timespec32(&tu, rqtp))
1971 return -EFAULT;
1972
1973 if (!timespec64_valid(&tu))
1974 return -EINVAL;
1975
1976 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1977 current->restart_block.nanosleep.compat_rmtp = rmtp;
1978 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1979}
1980#endif
1981
1982/*
1983 * Functions related to boot-time initialization:
1984 */
1985int hrtimers_prepare_cpu(unsigned int cpu)
1986{
1987 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1988 int i;
1989
1990 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1991 cpu_base->clock_base[i].cpu_base = cpu_base;
1992 timerqueue_init_head(&cpu_base->clock_base[i].active);
1993 }
1994
1995 cpu_base->cpu = cpu;
1996 cpu_base->active_bases = 0;
1997 cpu_base->hres_active = 0;
1998 cpu_base->hang_detected = 0;
1999 cpu_base->next_timer = NULL;
2000 cpu_base->softirq_next_timer = NULL;
2001 cpu_base->expires_next = KTIME_MAX;
2002 cpu_base->softirq_expires_next = KTIME_MAX;
2003 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2004 return 0;
2005}
2006
2007#ifdef CONFIG_HOTPLUG_CPU
2008
2009static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2010 struct hrtimer_clock_base *new_base)
2011{
2012 struct hrtimer *timer;
2013 struct timerqueue_node *node;
2014
2015 while ((node = timerqueue_getnext(&old_base->active))) {
2016 timer = container_of(node, struct hrtimer, node);
2017 BUG_ON(hrtimer_callback_running(timer));
2018 debug_deactivate(timer);
2019
2020 /*
2021 * Mark it as ENQUEUED not INACTIVE otherwise the
2022 * timer could be seen as !active and just vanish away
2023 * under us on another CPU
2024 */
2025 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2026 timer->base = new_base;
2027 /*
2028 * Enqueue the timers on the new cpu. This does not
2029 * reprogram the event device in case the timer
2030 * expires before the earliest on this CPU, but we run
2031 * hrtimer_interrupt after we migrated everything to
2032 * sort out already expired timers and reprogram the
2033 * event device.
2034 */
2035 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2036 }
2037}
2038
2039int hrtimers_dead_cpu(unsigned int scpu)
2040{
2041 struct hrtimer_cpu_base *old_base, *new_base;
2042 int i;
2043
2044 BUG_ON(cpu_online(scpu));
2045 tick_cancel_sched_timer(scpu);
2046
2047 /*
2048 * this BH disable ensures that raise_softirq_irqoff() does
2049 * not wakeup ksoftirqd (and acquire the pi-lock) while
2050 * holding the cpu_base lock
2051 */
2052 local_bh_disable();
2053 local_irq_disable();
2054 old_base = &per_cpu(hrtimer_bases, scpu);
2055 new_base = this_cpu_ptr(&hrtimer_bases);
2056 /*
2057 * The caller is globally serialized and nobody else
2058 * takes two locks at once, deadlock is not possible.
2059 */
2060 raw_spin_lock(&new_base->lock);
2061 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2062
2063 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2064 migrate_hrtimer_list(&old_base->clock_base[i],
2065 &new_base->clock_base[i]);
2066 }
2067
2068 /*
2069 * The migration might have changed the first expiring softirq
2070 * timer on this CPU. Update it.
2071 */
2072 hrtimer_update_softirq_timer(new_base, false);
2073
2074 raw_spin_unlock(&old_base->lock);
2075 raw_spin_unlock(&new_base->lock);
2076
2077 /* Check, if we got expired work to do */
2078 __hrtimer_peek_ahead_timers();
2079 local_irq_enable();
2080 local_bh_enable();
2081 return 0;
2082}
2083
2084#endif /* CONFIG_HOTPLUG_CPU */
2085
2086void __init hrtimers_init(void)
2087{
2088 hrtimers_prepare_cpu(smp_processor_id());
2089 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2090}
2091
2092/**
2093 * schedule_hrtimeout_range_clock - sleep until timeout
2094 * @expires: timeout value (ktime_t)
2095 * @delta: slack in expires timeout (ktime_t)
2096 * @mode: timer mode
2097 * @clock_id: timer clock to be used
2098 */
2099int __sched
2100schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2101 const enum hrtimer_mode mode, clockid_t clock_id)
2102{
2103 struct hrtimer_sleeper t;
2104
2105 /*
2106 * Optimize when a zero timeout value is given. It does not
2107 * matter whether this is an absolute or a relative time.
2108 */
2109 if (expires && *expires == 0) {
2110 __set_current_state(TASK_RUNNING);
2111 return 0;
2112 }
2113
2114 /*
2115 * A NULL parameter means "infinite"
2116 */
2117 if (!expires) {
2118 schedule();
2119 return -EINTR;
2120 }
2121
2122 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2123 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2124 hrtimer_sleeper_start_expires(&t, mode);
2125
2126 if (likely(t.task))
2127 schedule();
2128
2129 hrtimer_cancel(&t.timer);
2130 destroy_hrtimer_on_stack(&t.timer);
2131
2132 __set_current_state(TASK_RUNNING);
2133
2134 return !t.task ? 0 : -EINTR;
2135}
2136
2137/**
2138 * schedule_hrtimeout_range - sleep until timeout
2139 * @expires: timeout value (ktime_t)
2140 * @delta: slack in expires timeout (ktime_t)
2141 * @mode: timer mode
2142 *
2143 * Make the current task sleep until the given expiry time has
2144 * elapsed. The routine will return immediately unless
2145 * the current task state has been set (see set_current_state()).
2146 *
2147 * The @delta argument gives the kernel the freedom to schedule the
2148 * actual wakeup to a time that is both power and performance friendly.
2149 * The kernel give the normal best effort behavior for "@expires+@delta",
2150 * but may decide to fire the timer earlier, but no earlier than @expires.
2151 *
2152 * You can set the task state as follows -
2153 *
2154 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2155 * pass before the routine returns unless the current task is explicitly
2156 * woken up, (e.g. by wake_up_process()).
2157 *
2158 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2159 * delivered to the current task or the current task is explicitly woken
2160 * up.
2161 *
2162 * The current task state is guaranteed to be TASK_RUNNING when this
2163 * routine returns.
2164 *
2165 * Returns 0 when the timer has expired. If the task was woken before the
2166 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2167 * by an explicit wakeup, it returns -EINTR.
2168 */
2169int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2170 const enum hrtimer_mode mode)
2171{
2172 return schedule_hrtimeout_range_clock(expires, delta, mode,
2173 CLOCK_MONOTONIC);
2174}
2175EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2176
2177/**
2178 * schedule_hrtimeout - sleep until timeout
2179 * @expires: timeout value (ktime_t)
2180 * @mode: timer mode
2181 *
2182 * Make the current task sleep until the given expiry time has
2183 * elapsed. The routine will return immediately unless
2184 * the current task state has been set (see set_current_state()).
2185 *
2186 * You can set the task state as follows -
2187 *
2188 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2189 * pass before the routine returns unless the current task is explicitly
2190 * woken up, (e.g. by wake_up_process()).
2191 *
2192 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2193 * delivered to the current task or the current task is explicitly woken
2194 * up.
2195 *
2196 * The current task state is guaranteed to be TASK_RUNNING when this
2197 * routine returns.
2198 *
2199 * Returns 0 when the timer has expired. If the task was woken before the
2200 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2201 * by an explicit wakeup, it returns -EINTR.
2202 */
2203int __sched schedule_hrtimeout(ktime_t *expires,
2204 const enum hrtimer_mode mode)
2205{
2206 return schedule_hrtimeout_range(expires, 0, mode);
2207}
2208EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25#include <linux/cpu.h>
26#include <linux/export.h>
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
32#include <linux/tick.h>
33#include <linux/err.h>
34#include <linux/debugobjects.h>
35#include <linux/sched/signal.h>
36#include <linux/sched/sysctl.h>
37#include <linux/sched/rt.h>
38#include <linux/sched/deadline.h>
39#include <linux/sched/nohz.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/isolation.h>
42#include <linux/timer.h>
43#include <linux/freezer.h>
44#include <linux/compat.h>
45
46#include <linux/uaccess.h>
47
48#include <trace/events/timer.h>
49
50#include "tick-internal.h"
51
52/*
53 * Masks for selecting the soft and hard context timers from
54 * cpu_base->active
55 */
56#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
57#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
58#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60
61static void retrigger_next_event(void *arg);
62
63/*
64 * The timer bases:
65 *
66 * There are more clockids than hrtimer bases. Thus, we index
67 * into the timer bases by the hrtimer_base_type enum. When trying
68 * to reach a base using a clockid, hrtimer_clockid_to_base()
69 * is used to convert from clockid to the proper hrtimer_base_type.
70 */
71DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
72{
73 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
74 .clock_base =
75 {
76 {
77 .index = HRTIMER_BASE_MONOTONIC,
78 .clockid = CLOCK_MONOTONIC,
79 .get_time = &ktime_get,
80 },
81 {
82 .index = HRTIMER_BASE_REALTIME,
83 .clockid = CLOCK_REALTIME,
84 .get_time = &ktime_get_real,
85 },
86 {
87 .index = HRTIMER_BASE_BOOTTIME,
88 .clockid = CLOCK_BOOTTIME,
89 .get_time = &ktime_get_boottime,
90 },
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 },
96 {
97 .index = HRTIMER_BASE_MONOTONIC_SOFT,
98 .clockid = CLOCK_MONOTONIC,
99 .get_time = &ktime_get,
100 },
101 {
102 .index = HRTIMER_BASE_REALTIME_SOFT,
103 .clockid = CLOCK_REALTIME,
104 .get_time = &ktime_get_real,
105 },
106 {
107 .index = HRTIMER_BASE_BOOTTIME_SOFT,
108 .clockid = CLOCK_BOOTTIME,
109 .get_time = &ktime_get_boottime,
110 },
111 {
112 .index = HRTIMER_BASE_TAI_SOFT,
113 .clockid = CLOCK_TAI,
114 .get_time = &ktime_get_clocktai,
115 },
116 },
117 .csd = CSD_INIT(retrigger_next_event, NULL)
118};
119
120static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
121 /* Make sure we catch unsupported clockids */
122 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
123
124 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
125 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
126 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
127 [CLOCK_TAI] = HRTIMER_BASE_TAI,
128};
129
130static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base)
131{
132 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
133 return true;
134 else
135 return likely(base->online);
136}
137
138/*
139 * Functions and macros which are different for UP/SMP systems are kept in a
140 * single place
141 */
142#ifdef CONFIG_SMP
143
144/*
145 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
146 * such that hrtimer_callback_running() can unconditionally dereference
147 * timer->base->cpu_base
148 */
149static struct hrtimer_cpu_base migration_cpu_base = {
150 .clock_base = { {
151 .cpu_base = &migration_cpu_base,
152 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
153 &migration_cpu_base.lock),
154 }, },
155};
156
157#define migration_base migration_cpu_base.clock_base[0]
158
159static inline bool is_migration_base(struct hrtimer_clock_base *base)
160{
161 return base == &migration_base;
162}
163
164/*
165 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
166 * means that all timers which are tied to this base via timer->base are
167 * locked, and the base itself is locked too.
168 *
169 * So __run_timers/migrate_timers can safely modify all timers which could
170 * be found on the lists/queues.
171 *
172 * When the timer's base is locked, and the timer removed from list, it is
173 * possible to set timer->base = &migration_base and drop the lock: the timer
174 * remains locked.
175 */
176static
177struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
178 unsigned long *flags)
179 __acquires(&timer->base->lock)
180{
181 struct hrtimer_clock_base *base;
182
183 for (;;) {
184 base = READ_ONCE(timer->base);
185 if (likely(base != &migration_base)) {
186 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
187 if (likely(base == timer->base))
188 return base;
189 /* The timer has migrated to another CPU: */
190 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
191 }
192 cpu_relax();
193 }
194}
195
196/*
197 * Check if the elected target is suitable considering its next
198 * event and the hotplug state of the current CPU.
199 *
200 * If the elected target is remote and its next event is after the timer
201 * to queue, then a remote reprogram is necessary. However there is no
202 * guarantee the IPI handling the operation would arrive in time to meet
203 * the high resolution deadline. In this case the local CPU becomes a
204 * preferred target, unless it is offline.
205 *
206 * High and low resolution modes are handled the same way for simplicity.
207 *
208 * Called with cpu_base->lock of target cpu held.
209 */
210static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base,
211 struct hrtimer_cpu_base *new_cpu_base,
212 struct hrtimer_cpu_base *this_cpu_base)
213{
214 ktime_t expires;
215
216 /*
217 * The local CPU clockevent can be reprogrammed. Also get_target_base()
218 * guarantees it is online.
219 */
220 if (new_cpu_base == this_cpu_base)
221 return true;
222
223 /*
224 * The offline local CPU can't be the default target if the
225 * next remote target event is after this timer. Keep the
226 * elected new base. An IPI will we issued to reprogram
227 * it as a last resort.
228 */
229 if (!hrtimer_base_is_online(this_cpu_base))
230 return true;
231
232 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
233
234 return expires >= new_base->cpu_base->expires_next;
235}
236
237static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned)
238{
239 if (!hrtimer_base_is_online(base)) {
240 int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER));
241
242 return &per_cpu(hrtimer_bases, cpu);
243 }
244
245#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
246 if (static_branch_likely(&timers_migration_enabled) && !pinned)
247 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
248#endif
249 return base;
250}
251
252/*
253 * We switch the timer base to a power-optimized selected CPU target,
254 * if:
255 * - NO_HZ_COMMON is enabled
256 * - timer migration is enabled
257 * - the timer callback is not running
258 * - the timer is not the first expiring timer on the new target
259 *
260 * If one of the above requirements is not fulfilled we move the timer
261 * to the current CPU or leave it on the previously assigned CPU if
262 * the timer callback is currently running.
263 */
264static inline struct hrtimer_clock_base *
265switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
266 int pinned)
267{
268 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
269 struct hrtimer_clock_base *new_base;
270 int basenum = base->index;
271
272 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
273 new_cpu_base = get_target_base(this_cpu_base, pinned);
274again:
275 new_base = &new_cpu_base->clock_base[basenum];
276
277 if (base != new_base) {
278 /*
279 * We are trying to move timer to new_base.
280 * However we can't change timer's base while it is running,
281 * so we keep it on the same CPU. No hassle vs. reprogramming
282 * the event source in the high resolution case. The softirq
283 * code will take care of this when the timer function has
284 * completed. There is no conflict as we hold the lock until
285 * the timer is enqueued.
286 */
287 if (unlikely(hrtimer_callback_running(timer)))
288 return base;
289
290 /* See the comment in lock_hrtimer_base() */
291 WRITE_ONCE(timer->base, &migration_base);
292 raw_spin_unlock(&base->cpu_base->lock);
293 raw_spin_lock(&new_base->cpu_base->lock);
294
295 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base,
296 this_cpu_base)) {
297 raw_spin_unlock(&new_base->cpu_base->lock);
298 raw_spin_lock(&base->cpu_base->lock);
299 new_cpu_base = this_cpu_base;
300 WRITE_ONCE(timer->base, base);
301 goto again;
302 }
303 WRITE_ONCE(timer->base, new_base);
304 } else {
305 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, this_cpu_base)) {
306 new_cpu_base = this_cpu_base;
307 goto again;
308 }
309 }
310 return new_base;
311}
312
313#else /* CONFIG_SMP */
314
315static inline bool is_migration_base(struct hrtimer_clock_base *base)
316{
317 return false;
318}
319
320static inline struct hrtimer_clock_base *
321lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
322 __acquires(&timer->base->cpu_base->lock)
323{
324 struct hrtimer_clock_base *base = timer->base;
325
326 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
327
328 return base;
329}
330
331# define switch_hrtimer_base(t, b, p) (b)
332
333#endif /* !CONFIG_SMP */
334
335/*
336 * Functions for the union type storage format of ktime_t which are
337 * too large for inlining:
338 */
339#if BITS_PER_LONG < 64
340/*
341 * Divide a ktime value by a nanosecond value
342 */
343s64 __ktime_divns(const ktime_t kt, s64 div)
344{
345 int sft = 0;
346 s64 dclc;
347 u64 tmp;
348
349 dclc = ktime_to_ns(kt);
350 tmp = dclc < 0 ? -dclc : dclc;
351
352 /* Make sure the divisor is less than 2^32: */
353 while (div >> 32) {
354 sft++;
355 div >>= 1;
356 }
357 tmp >>= sft;
358 do_div(tmp, (u32) div);
359 return dclc < 0 ? -tmp : tmp;
360}
361EXPORT_SYMBOL_GPL(__ktime_divns);
362#endif /* BITS_PER_LONG >= 64 */
363
364/*
365 * Add two ktime values and do a safety check for overflow:
366 */
367ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
368{
369 ktime_t res = ktime_add_unsafe(lhs, rhs);
370
371 /*
372 * We use KTIME_SEC_MAX here, the maximum timeout which we can
373 * return to user space in a timespec:
374 */
375 if (res < 0 || res < lhs || res < rhs)
376 res = ktime_set(KTIME_SEC_MAX, 0);
377
378 return res;
379}
380
381EXPORT_SYMBOL_GPL(ktime_add_safe);
382
383#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
384
385static const struct debug_obj_descr hrtimer_debug_descr;
386
387static void *hrtimer_debug_hint(void *addr)
388{
389 return ((struct hrtimer *) addr)->function;
390}
391
392/*
393 * fixup_init is called when:
394 * - an active object is initialized
395 */
396static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
397{
398 struct hrtimer *timer = addr;
399
400 switch (state) {
401 case ODEBUG_STATE_ACTIVE:
402 hrtimer_cancel(timer);
403 debug_object_init(timer, &hrtimer_debug_descr);
404 return true;
405 default:
406 return false;
407 }
408}
409
410/*
411 * fixup_activate is called when:
412 * - an active object is activated
413 * - an unknown non-static object is activated
414 */
415static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
416{
417 switch (state) {
418 case ODEBUG_STATE_ACTIVE:
419 WARN_ON(1);
420 fallthrough;
421 default:
422 return false;
423 }
424}
425
426/*
427 * fixup_free is called when:
428 * - an active object is freed
429 */
430static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
431{
432 struct hrtimer *timer = addr;
433
434 switch (state) {
435 case ODEBUG_STATE_ACTIVE:
436 hrtimer_cancel(timer);
437 debug_object_free(timer, &hrtimer_debug_descr);
438 return true;
439 default:
440 return false;
441 }
442}
443
444static const struct debug_obj_descr hrtimer_debug_descr = {
445 .name = "hrtimer",
446 .debug_hint = hrtimer_debug_hint,
447 .fixup_init = hrtimer_fixup_init,
448 .fixup_activate = hrtimer_fixup_activate,
449 .fixup_free = hrtimer_fixup_free,
450};
451
452static inline void debug_hrtimer_init(struct hrtimer *timer)
453{
454 debug_object_init(timer, &hrtimer_debug_descr);
455}
456
457static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer)
458{
459 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
460}
461
462static inline void debug_hrtimer_activate(struct hrtimer *timer,
463 enum hrtimer_mode mode)
464{
465 debug_object_activate(timer, &hrtimer_debug_descr);
466}
467
468static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
469{
470 debug_object_deactivate(timer, &hrtimer_debug_descr);
471}
472
473void destroy_hrtimer_on_stack(struct hrtimer *timer)
474{
475 debug_object_free(timer, &hrtimer_debug_descr);
476}
477EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
478
479#else
480
481static inline void debug_hrtimer_init(struct hrtimer *timer) { }
482static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { }
483static inline void debug_hrtimer_activate(struct hrtimer *timer,
484 enum hrtimer_mode mode) { }
485static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
486#endif
487
488static inline void
489debug_init(struct hrtimer *timer, clockid_t clockid,
490 enum hrtimer_mode mode)
491{
492 debug_hrtimer_init(timer);
493 trace_hrtimer_init(timer, clockid, mode);
494}
495
496static inline void debug_init_on_stack(struct hrtimer *timer, clockid_t clockid,
497 enum hrtimer_mode mode)
498{
499 debug_hrtimer_init_on_stack(timer);
500 trace_hrtimer_init(timer, clockid, mode);
501}
502
503static inline void debug_activate(struct hrtimer *timer,
504 enum hrtimer_mode mode)
505{
506 debug_hrtimer_activate(timer, mode);
507 trace_hrtimer_start(timer, mode);
508}
509
510static inline void debug_deactivate(struct hrtimer *timer)
511{
512 debug_hrtimer_deactivate(timer);
513 trace_hrtimer_cancel(timer);
514}
515
516static struct hrtimer_clock_base *
517__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
518{
519 unsigned int idx;
520
521 if (!*active)
522 return NULL;
523
524 idx = __ffs(*active);
525 *active &= ~(1U << idx);
526
527 return &cpu_base->clock_base[idx];
528}
529
530#define for_each_active_base(base, cpu_base, active) \
531 while ((base = __next_base((cpu_base), &(active))))
532
533static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
534 const struct hrtimer *exclude,
535 unsigned int active,
536 ktime_t expires_next)
537{
538 struct hrtimer_clock_base *base;
539 ktime_t expires;
540
541 for_each_active_base(base, cpu_base, active) {
542 struct timerqueue_node *next;
543 struct hrtimer *timer;
544
545 next = timerqueue_getnext(&base->active);
546 timer = container_of(next, struct hrtimer, node);
547 if (timer == exclude) {
548 /* Get to the next timer in the queue. */
549 next = timerqueue_iterate_next(next);
550 if (!next)
551 continue;
552
553 timer = container_of(next, struct hrtimer, node);
554 }
555 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
556 if (expires < expires_next) {
557 expires_next = expires;
558
559 /* Skip cpu_base update if a timer is being excluded. */
560 if (exclude)
561 continue;
562
563 if (timer->is_soft)
564 cpu_base->softirq_next_timer = timer;
565 else
566 cpu_base->next_timer = timer;
567 }
568 }
569 /*
570 * clock_was_set() might have changed base->offset of any of
571 * the clock bases so the result might be negative. Fix it up
572 * to prevent a false positive in clockevents_program_event().
573 */
574 if (expires_next < 0)
575 expires_next = 0;
576 return expires_next;
577}
578
579/*
580 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
581 * but does not set cpu_base::*expires_next, that is done by
582 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
583 * cpu_base::*expires_next right away, reprogramming logic would no longer
584 * work.
585 *
586 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
587 * those timers will get run whenever the softirq gets handled, at the end of
588 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
589 *
590 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
591 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
592 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
593 *
594 * @active_mask must be one of:
595 * - HRTIMER_ACTIVE_ALL,
596 * - HRTIMER_ACTIVE_SOFT, or
597 * - HRTIMER_ACTIVE_HARD.
598 */
599static ktime_t
600__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
601{
602 unsigned int active;
603 struct hrtimer *next_timer = NULL;
604 ktime_t expires_next = KTIME_MAX;
605
606 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
607 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
608 cpu_base->softirq_next_timer = NULL;
609 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
610 active, KTIME_MAX);
611
612 next_timer = cpu_base->softirq_next_timer;
613 }
614
615 if (active_mask & HRTIMER_ACTIVE_HARD) {
616 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
617 cpu_base->next_timer = next_timer;
618 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
619 expires_next);
620 }
621
622 return expires_next;
623}
624
625static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
626{
627 ktime_t expires_next, soft = KTIME_MAX;
628
629 /*
630 * If the soft interrupt has already been activated, ignore the
631 * soft bases. They will be handled in the already raised soft
632 * interrupt.
633 */
634 if (!cpu_base->softirq_activated) {
635 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
636 /*
637 * Update the soft expiry time. clock_settime() might have
638 * affected it.
639 */
640 cpu_base->softirq_expires_next = soft;
641 }
642
643 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
644 /*
645 * If a softirq timer is expiring first, update cpu_base->next_timer
646 * and program the hardware with the soft expiry time.
647 */
648 if (expires_next > soft) {
649 cpu_base->next_timer = cpu_base->softirq_next_timer;
650 expires_next = soft;
651 }
652
653 return expires_next;
654}
655
656static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
657{
658 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
659 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
660 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
661
662 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
663 offs_real, offs_boot, offs_tai);
664
665 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
666 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
667 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
668
669 return now;
670}
671
672/*
673 * Is the high resolution mode active ?
674 */
675static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
676{
677 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
678 cpu_base->hres_active : 0;
679}
680
681static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
682 struct hrtimer *next_timer,
683 ktime_t expires_next)
684{
685 cpu_base->expires_next = expires_next;
686
687 /*
688 * If hres is not active, hardware does not have to be
689 * reprogrammed yet.
690 *
691 * If a hang was detected in the last timer interrupt then we
692 * leave the hang delay active in the hardware. We want the
693 * system to make progress. That also prevents the following
694 * scenario:
695 * T1 expires 50ms from now
696 * T2 expires 5s from now
697 *
698 * T1 is removed, so this code is called and would reprogram
699 * the hardware to 5s from now. Any hrtimer_start after that
700 * will not reprogram the hardware due to hang_detected being
701 * set. So we'd effectively block all timers until the T2 event
702 * fires.
703 */
704 if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
705 return;
706
707 tick_program_event(expires_next, 1);
708}
709
710/*
711 * Reprogram the event source with checking both queues for the
712 * next event
713 * Called with interrupts disabled and base->lock held
714 */
715static void
716hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
717{
718 ktime_t expires_next;
719
720 expires_next = hrtimer_update_next_event(cpu_base);
721
722 if (skip_equal && expires_next == cpu_base->expires_next)
723 return;
724
725 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
726}
727
728/* High resolution timer related functions */
729#ifdef CONFIG_HIGH_RES_TIMERS
730
731/*
732 * High resolution timer enabled ?
733 */
734static bool hrtimer_hres_enabled __read_mostly = true;
735unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
736EXPORT_SYMBOL_GPL(hrtimer_resolution);
737
738/*
739 * Enable / Disable high resolution mode
740 */
741static int __init setup_hrtimer_hres(char *str)
742{
743 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
744}
745
746__setup("highres=", setup_hrtimer_hres);
747
748/*
749 * hrtimer_high_res_enabled - query, if the highres mode is enabled
750 */
751static inline int hrtimer_is_hres_enabled(void)
752{
753 return hrtimer_hres_enabled;
754}
755
756/*
757 * Switch to high resolution mode
758 */
759static void hrtimer_switch_to_hres(void)
760{
761 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
762
763 if (tick_init_highres()) {
764 pr_warn("Could not switch to high resolution mode on CPU %u\n",
765 base->cpu);
766 return;
767 }
768 base->hres_active = 1;
769 hrtimer_resolution = HIGH_RES_NSEC;
770
771 tick_setup_sched_timer(true);
772 /* "Retrigger" the interrupt to get things going */
773 retrigger_next_event(NULL);
774}
775
776#else
777
778static inline int hrtimer_is_hres_enabled(void) { return 0; }
779static inline void hrtimer_switch_to_hres(void) { }
780
781#endif /* CONFIG_HIGH_RES_TIMERS */
782/*
783 * Retrigger next event is called after clock was set with interrupts
784 * disabled through an SMP function call or directly from low level
785 * resume code.
786 *
787 * This is only invoked when:
788 * - CONFIG_HIGH_RES_TIMERS is enabled.
789 * - CONFIG_NOHZ_COMMON is enabled
790 *
791 * For the other cases this function is empty and because the call sites
792 * are optimized out it vanishes as well, i.e. no need for lots of
793 * #ifdeffery.
794 */
795static void retrigger_next_event(void *arg)
796{
797 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
798
799 /*
800 * When high resolution mode or nohz is active, then the offsets of
801 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
802 * next tick will take care of that.
803 *
804 * If high resolution mode is active then the next expiring timer
805 * must be reevaluated and the clock event device reprogrammed if
806 * necessary.
807 *
808 * In the NOHZ case the update of the offset and the reevaluation
809 * of the next expiring timer is enough. The return from the SMP
810 * function call will take care of the reprogramming in case the
811 * CPU was in a NOHZ idle sleep.
812 */
813 if (!hrtimer_hres_active(base) && !tick_nohz_active)
814 return;
815
816 raw_spin_lock(&base->lock);
817 hrtimer_update_base(base);
818 if (hrtimer_hres_active(base))
819 hrtimer_force_reprogram(base, 0);
820 else
821 hrtimer_update_next_event(base);
822 raw_spin_unlock(&base->lock);
823}
824
825/*
826 * When a timer is enqueued and expires earlier than the already enqueued
827 * timers, we have to check, whether it expires earlier than the timer for
828 * which the clock event device was armed.
829 *
830 * Called with interrupts disabled and base->cpu_base.lock held
831 */
832static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
833{
834 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
835 struct hrtimer_clock_base *base = timer->base;
836 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
837
838 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
839
840 /*
841 * CLOCK_REALTIME timer might be requested with an absolute
842 * expiry time which is less than base->offset. Set it to 0.
843 */
844 if (expires < 0)
845 expires = 0;
846
847 if (timer->is_soft) {
848 /*
849 * soft hrtimer could be started on a remote CPU. In this
850 * case softirq_expires_next needs to be updated on the
851 * remote CPU. The soft hrtimer will not expire before the
852 * first hard hrtimer on the remote CPU -
853 * hrtimer_check_target() prevents this case.
854 */
855 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
856
857 if (timer_cpu_base->softirq_activated)
858 return;
859
860 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
861 return;
862
863 timer_cpu_base->softirq_next_timer = timer;
864 timer_cpu_base->softirq_expires_next = expires;
865
866 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
867 !reprogram)
868 return;
869 }
870
871 /*
872 * If the timer is not on the current cpu, we cannot reprogram
873 * the other cpus clock event device.
874 */
875 if (base->cpu_base != cpu_base)
876 return;
877
878 if (expires >= cpu_base->expires_next)
879 return;
880
881 /*
882 * If the hrtimer interrupt is running, then it will reevaluate the
883 * clock bases and reprogram the clock event device.
884 */
885 if (cpu_base->in_hrtirq)
886 return;
887
888 cpu_base->next_timer = timer;
889
890 __hrtimer_reprogram(cpu_base, timer, expires);
891}
892
893static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
894 unsigned int active)
895{
896 struct hrtimer_clock_base *base;
897 unsigned int seq;
898 ktime_t expires;
899
900 /*
901 * Update the base offsets unconditionally so the following
902 * checks whether the SMP function call is required works.
903 *
904 * The update is safe even when the remote CPU is in the hrtimer
905 * interrupt or the hrtimer soft interrupt and expiring affected
906 * bases. Either it will see the update before handling a base or
907 * it will see it when it finishes the processing and reevaluates
908 * the next expiring timer.
909 */
910 seq = cpu_base->clock_was_set_seq;
911 hrtimer_update_base(cpu_base);
912
913 /*
914 * If the sequence did not change over the update then the
915 * remote CPU already handled it.
916 */
917 if (seq == cpu_base->clock_was_set_seq)
918 return false;
919
920 /*
921 * If the remote CPU is currently handling an hrtimer interrupt, it
922 * will reevaluate the first expiring timer of all clock bases
923 * before reprogramming. Nothing to do here.
924 */
925 if (cpu_base->in_hrtirq)
926 return false;
927
928 /*
929 * Walk the affected clock bases and check whether the first expiring
930 * timer in a clock base is moving ahead of the first expiring timer of
931 * @cpu_base. If so, the IPI must be invoked because per CPU clock
932 * event devices cannot be remotely reprogrammed.
933 */
934 active &= cpu_base->active_bases;
935
936 for_each_active_base(base, cpu_base, active) {
937 struct timerqueue_node *next;
938
939 next = timerqueue_getnext(&base->active);
940 expires = ktime_sub(next->expires, base->offset);
941 if (expires < cpu_base->expires_next)
942 return true;
943
944 /* Extra check for softirq clock bases */
945 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
946 continue;
947 if (cpu_base->softirq_activated)
948 continue;
949 if (expires < cpu_base->softirq_expires_next)
950 return true;
951 }
952 return false;
953}
954
955/*
956 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
957 * CLOCK_BOOTTIME (for late sleep time injection).
958 *
959 * This requires to update the offsets for these clocks
960 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
961 * also requires to eventually reprogram the per CPU clock event devices
962 * when the change moves an affected timer ahead of the first expiring
963 * timer on that CPU. Obviously remote per CPU clock event devices cannot
964 * be reprogrammed. The other reason why an IPI has to be sent is when the
965 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
966 * in the tick, which obviously might be stopped, so this has to bring out
967 * the remote CPU which might sleep in idle to get this sorted.
968 */
969void clock_was_set(unsigned int bases)
970{
971 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
972 cpumask_var_t mask;
973 int cpu;
974
975 if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
976 goto out_timerfd;
977
978 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
979 on_each_cpu(retrigger_next_event, NULL, 1);
980 goto out_timerfd;
981 }
982
983 /* Avoid interrupting CPUs if possible */
984 cpus_read_lock();
985 for_each_online_cpu(cpu) {
986 unsigned long flags;
987
988 cpu_base = &per_cpu(hrtimer_bases, cpu);
989 raw_spin_lock_irqsave(&cpu_base->lock, flags);
990
991 if (update_needs_ipi(cpu_base, bases))
992 cpumask_set_cpu(cpu, mask);
993
994 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
995 }
996
997 preempt_disable();
998 smp_call_function_many(mask, retrigger_next_event, NULL, 1);
999 preempt_enable();
1000 cpus_read_unlock();
1001 free_cpumask_var(mask);
1002
1003out_timerfd:
1004 timerfd_clock_was_set();
1005}
1006
1007static void clock_was_set_work(struct work_struct *work)
1008{
1009 clock_was_set(CLOCK_SET_WALL);
1010}
1011
1012static DECLARE_WORK(hrtimer_work, clock_was_set_work);
1013
1014/*
1015 * Called from timekeeping code to reprogram the hrtimer interrupt device
1016 * on all cpus and to notify timerfd.
1017 */
1018void clock_was_set_delayed(void)
1019{
1020 schedule_work(&hrtimer_work);
1021}
1022
1023/*
1024 * Called during resume either directly from via timekeeping_resume()
1025 * or in the case of s2idle from tick_unfreeze() to ensure that the
1026 * hrtimers are up to date.
1027 */
1028void hrtimers_resume_local(void)
1029{
1030 lockdep_assert_irqs_disabled();
1031 /* Retrigger on the local CPU */
1032 retrigger_next_event(NULL);
1033}
1034
1035/*
1036 * Counterpart to lock_hrtimer_base above:
1037 */
1038static inline
1039void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1040 __releases(&timer->base->cpu_base->lock)
1041{
1042 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1043}
1044
1045/**
1046 * hrtimer_forward() - forward the timer expiry
1047 * @timer: hrtimer to forward
1048 * @now: forward past this time
1049 * @interval: the interval to forward
1050 *
1051 * Forward the timer expiry so it will expire in the future.
1052 *
1053 * .. note::
1054 * This only updates the timer expiry value and does not requeue the timer.
1055 *
1056 * There is also a variant of the function hrtimer_forward_now().
1057 *
1058 * Context: Can be safely called from the callback function of @timer. If called
1059 * from other contexts @timer must neither be enqueued nor running the
1060 * callback and the caller needs to take care of serialization.
1061 *
1062 * Return: The number of overruns are returned.
1063 */
1064u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1065{
1066 u64 orun = 1;
1067 ktime_t delta;
1068
1069 delta = ktime_sub(now, hrtimer_get_expires(timer));
1070
1071 if (delta < 0)
1072 return 0;
1073
1074 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1075 return 0;
1076
1077 if (interval < hrtimer_resolution)
1078 interval = hrtimer_resolution;
1079
1080 if (unlikely(delta >= interval)) {
1081 s64 incr = ktime_to_ns(interval);
1082
1083 orun = ktime_divns(delta, incr);
1084 hrtimer_add_expires_ns(timer, incr * orun);
1085 if (hrtimer_get_expires_tv64(timer) > now)
1086 return orun;
1087 /*
1088 * This (and the ktime_add() below) is the
1089 * correction for exact:
1090 */
1091 orun++;
1092 }
1093 hrtimer_add_expires(timer, interval);
1094
1095 return orun;
1096}
1097EXPORT_SYMBOL_GPL(hrtimer_forward);
1098
1099/*
1100 * enqueue_hrtimer - internal function to (re)start a timer
1101 *
1102 * The timer is inserted in expiry order. Insertion into the
1103 * red black tree is O(log(n)). Must hold the base lock.
1104 *
1105 * Returns 1 when the new timer is the leftmost timer in the tree.
1106 */
1107static int enqueue_hrtimer(struct hrtimer *timer,
1108 struct hrtimer_clock_base *base,
1109 enum hrtimer_mode mode)
1110{
1111 debug_activate(timer, mode);
1112 WARN_ON_ONCE(!base->cpu_base->online);
1113
1114 base->cpu_base->active_bases |= 1 << base->index;
1115
1116 /* Pairs with the lockless read in hrtimer_is_queued() */
1117 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1118
1119 return timerqueue_add(&base->active, &timer->node);
1120}
1121
1122/*
1123 * __remove_hrtimer - internal function to remove a timer
1124 *
1125 * Caller must hold the base lock.
1126 *
1127 * High resolution timer mode reprograms the clock event device when the
1128 * timer is the one which expires next. The caller can disable this by setting
1129 * reprogram to zero. This is useful, when the context does a reprogramming
1130 * anyway (e.g. timer interrupt)
1131 */
1132static void __remove_hrtimer(struct hrtimer *timer,
1133 struct hrtimer_clock_base *base,
1134 u8 newstate, int reprogram)
1135{
1136 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1137 u8 state = timer->state;
1138
1139 /* Pairs with the lockless read in hrtimer_is_queued() */
1140 WRITE_ONCE(timer->state, newstate);
1141 if (!(state & HRTIMER_STATE_ENQUEUED))
1142 return;
1143
1144 if (!timerqueue_del(&base->active, &timer->node))
1145 cpu_base->active_bases &= ~(1 << base->index);
1146
1147 /*
1148 * Note: If reprogram is false we do not update
1149 * cpu_base->next_timer. This happens when we remove the first
1150 * timer on a remote cpu. No harm as we never dereference
1151 * cpu_base->next_timer. So the worst thing what can happen is
1152 * an superfluous call to hrtimer_force_reprogram() on the
1153 * remote cpu later on if the same timer gets enqueued again.
1154 */
1155 if (reprogram && timer == cpu_base->next_timer)
1156 hrtimer_force_reprogram(cpu_base, 1);
1157}
1158
1159/*
1160 * remove hrtimer, called with base lock held
1161 */
1162static inline int
1163remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1164 bool restart, bool keep_local)
1165{
1166 u8 state = timer->state;
1167
1168 if (state & HRTIMER_STATE_ENQUEUED) {
1169 bool reprogram;
1170
1171 /*
1172 * Remove the timer and force reprogramming when high
1173 * resolution mode is active and the timer is on the current
1174 * CPU. If we remove a timer on another CPU, reprogramming is
1175 * skipped. The interrupt event on this CPU is fired and
1176 * reprogramming happens in the interrupt handler. This is a
1177 * rare case and less expensive than a smp call.
1178 */
1179 debug_deactivate(timer);
1180 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1181
1182 /*
1183 * If the timer is not restarted then reprogramming is
1184 * required if the timer is local. If it is local and about
1185 * to be restarted, avoid programming it twice (on removal
1186 * and a moment later when it's requeued).
1187 */
1188 if (!restart)
1189 state = HRTIMER_STATE_INACTIVE;
1190 else
1191 reprogram &= !keep_local;
1192
1193 __remove_hrtimer(timer, base, state, reprogram);
1194 return 1;
1195 }
1196 return 0;
1197}
1198
1199static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1200 const enum hrtimer_mode mode)
1201{
1202#ifdef CONFIG_TIME_LOW_RES
1203 /*
1204 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1205 * granular time values. For relative timers we add hrtimer_resolution
1206 * (i.e. one jiffy) to prevent short timeouts.
1207 */
1208 timer->is_rel = mode & HRTIMER_MODE_REL;
1209 if (timer->is_rel)
1210 tim = ktime_add_safe(tim, hrtimer_resolution);
1211#endif
1212 return tim;
1213}
1214
1215static void
1216hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1217{
1218 ktime_t expires;
1219
1220 /*
1221 * Find the next SOFT expiration.
1222 */
1223 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1224
1225 /*
1226 * reprogramming needs to be triggered, even if the next soft
1227 * hrtimer expires at the same time than the next hard
1228 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1229 */
1230 if (expires == KTIME_MAX)
1231 return;
1232
1233 /*
1234 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1235 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1236 */
1237 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1238}
1239
1240static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1241 u64 delta_ns, const enum hrtimer_mode mode,
1242 struct hrtimer_clock_base *base)
1243{
1244 struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases);
1245 struct hrtimer_clock_base *new_base;
1246 bool force_local, first;
1247
1248 /*
1249 * If the timer is on the local cpu base and is the first expiring
1250 * timer then this might end up reprogramming the hardware twice
1251 * (on removal and on enqueue). To avoid that by prevent the
1252 * reprogram on removal, keep the timer local to the current CPU
1253 * and enforce reprogramming after it is queued no matter whether
1254 * it is the new first expiring timer again or not.
1255 */
1256 force_local = base->cpu_base == this_cpu_base;
1257 force_local &= base->cpu_base->next_timer == timer;
1258
1259 /*
1260 * Don't force local queuing if this enqueue happens on a unplugged
1261 * CPU after hrtimer_cpu_dying() has been invoked.
1262 */
1263 force_local &= this_cpu_base->online;
1264
1265 /*
1266 * Remove an active timer from the queue. In case it is not queued
1267 * on the current CPU, make sure that remove_hrtimer() updates the
1268 * remote data correctly.
1269 *
1270 * If it's on the current CPU and the first expiring timer, then
1271 * skip reprogramming, keep the timer local and enforce
1272 * reprogramming later if it was the first expiring timer. This
1273 * avoids programming the underlying clock event twice (once at
1274 * removal and once after enqueue).
1275 */
1276 remove_hrtimer(timer, base, true, force_local);
1277
1278 if (mode & HRTIMER_MODE_REL)
1279 tim = ktime_add_safe(tim, base->get_time());
1280
1281 tim = hrtimer_update_lowres(timer, tim, mode);
1282
1283 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1284
1285 /* Switch the timer base, if necessary: */
1286 if (!force_local) {
1287 new_base = switch_hrtimer_base(timer, base,
1288 mode & HRTIMER_MODE_PINNED);
1289 } else {
1290 new_base = base;
1291 }
1292
1293 first = enqueue_hrtimer(timer, new_base, mode);
1294 if (!force_local) {
1295 /*
1296 * If the current CPU base is online, then the timer is
1297 * never queued on a remote CPU if it would be the first
1298 * expiring timer there.
1299 */
1300 if (hrtimer_base_is_online(this_cpu_base))
1301 return first;
1302
1303 /*
1304 * Timer was enqueued remote because the current base is
1305 * already offline. If the timer is the first to expire,
1306 * kick the remote CPU to reprogram the clock event.
1307 */
1308 if (first) {
1309 struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base;
1310
1311 smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd);
1312 }
1313 return 0;
1314 }
1315
1316 /*
1317 * Timer was forced to stay on the current CPU to avoid
1318 * reprogramming on removal and enqueue. Force reprogram the
1319 * hardware by evaluating the new first expiring timer.
1320 */
1321 hrtimer_force_reprogram(new_base->cpu_base, 1);
1322 return 0;
1323}
1324
1325/**
1326 * hrtimer_start_range_ns - (re)start an hrtimer
1327 * @timer: the timer to be added
1328 * @tim: expiry time
1329 * @delta_ns: "slack" range for the timer
1330 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1331 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1332 * softirq based mode is considered for debug purpose only!
1333 */
1334void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1335 u64 delta_ns, const enum hrtimer_mode mode)
1336{
1337 struct hrtimer_clock_base *base;
1338 unsigned long flags;
1339
1340 if (WARN_ON_ONCE(!timer->function))
1341 return;
1342 /*
1343 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1344 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1345 * expiry mode because unmarked timers are moved to softirq expiry.
1346 */
1347 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1348 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1349 else
1350 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1351
1352 base = lock_hrtimer_base(timer, &flags);
1353
1354 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1355 hrtimer_reprogram(timer, true);
1356
1357 unlock_hrtimer_base(timer, &flags);
1358}
1359EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1360
1361/**
1362 * hrtimer_try_to_cancel - try to deactivate a timer
1363 * @timer: hrtimer to stop
1364 *
1365 * Returns:
1366 *
1367 * * 0 when the timer was not active
1368 * * 1 when the timer was active
1369 * * -1 when the timer is currently executing the callback function and
1370 * cannot be stopped
1371 */
1372int hrtimer_try_to_cancel(struct hrtimer *timer)
1373{
1374 struct hrtimer_clock_base *base;
1375 unsigned long flags;
1376 int ret = -1;
1377
1378 /*
1379 * Check lockless first. If the timer is not active (neither
1380 * enqueued nor running the callback, nothing to do here. The
1381 * base lock does not serialize against a concurrent enqueue,
1382 * so we can avoid taking it.
1383 */
1384 if (!hrtimer_active(timer))
1385 return 0;
1386
1387 base = lock_hrtimer_base(timer, &flags);
1388
1389 if (!hrtimer_callback_running(timer))
1390 ret = remove_hrtimer(timer, base, false, false);
1391
1392 unlock_hrtimer_base(timer, &flags);
1393
1394 return ret;
1395
1396}
1397EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1398
1399#ifdef CONFIG_PREEMPT_RT
1400static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1401{
1402 spin_lock_init(&base->softirq_expiry_lock);
1403}
1404
1405static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1406 __acquires(&base->softirq_expiry_lock)
1407{
1408 spin_lock(&base->softirq_expiry_lock);
1409}
1410
1411static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1412 __releases(&base->softirq_expiry_lock)
1413{
1414 spin_unlock(&base->softirq_expiry_lock);
1415}
1416
1417/*
1418 * The counterpart to hrtimer_cancel_wait_running().
1419 *
1420 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1421 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1422 * allows the waiter to acquire the lock and make progress.
1423 */
1424static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1425 unsigned long flags)
1426{
1427 if (atomic_read(&cpu_base->timer_waiters)) {
1428 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1429 spin_unlock(&cpu_base->softirq_expiry_lock);
1430 spin_lock(&cpu_base->softirq_expiry_lock);
1431 raw_spin_lock_irq(&cpu_base->lock);
1432 }
1433}
1434
1435/*
1436 * This function is called on PREEMPT_RT kernels when the fast path
1437 * deletion of a timer failed because the timer callback function was
1438 * running.
1439 *
1440 * This prevents priority inversion: if the soft irq thread is preempted
1441 * in the middle of a timer callback, then calling del_timer_sync() can
1442 * lead to two issues:
1443 *
1444 * - If the caller is on a remote CPU then it has to spin wait for the timer
1445 * handler to complete. This can result in unbound priority inversion.
1446 *
1447 * - If the caller originates from the task which preempted the timer
1448 * handler on the same CPU, then spin waiting for the timer handler to
1449 * complete is never going to end.
1450 */
1451void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1452{
1453 /* Lockless read. Prevent the compiler from reloading it below */
1454 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1455
1456 /*
1457 * Just relax if the timer expires in hard interrupt context or if
1458 * it is currently on the migration base.
1459 */
1460 if (!timer->is_soft || is_migration_base(base)) {
1461 cpu_relax();
1462 return;
1463 }
1464
1465 /*
1466 * Mark the base as contended and grab the expiry lock, which is
1467 * held by the softirq across the timer callback. Drop the lock
1468 * immediately so the softirq can expire the next timer. In theory
1469 * the timer could already be running again, but that's more than
1470 * unlikely and just causes another wait loop.
1471 */
1472 atomic_inc(&base->cpu_base->timer_waiters);
1473 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1474 atomic_dec(&base->cpu_base->timer_waiters);
1475 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1476}
1477#else
1478static inline void
1479hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1480static inline void
1481hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1482static inline void
1483hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1484static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1485 unsigned long flags) { }
1486#endif
1487
1488/**
1489 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1490 * @timer: the timer to be cancelled
1491 *
1492 * Returns:
1493 * 0 when the timer was not active
1494 * 1 when the timer was active
1495 */
1496int hrtimer_cancel(struct hrtimer *timer)
1497{
1498 int ret;
1499
1500 do {
1501 ret = hrtimer_try_to_cancel(timer);
1502
1503 if (ret < 0)
1504 hrtimer_cancel_wait_running(timer);
1505 } while (ret < 0);
1506 return ret;
1507}
1508EXPORT_SYMBOL_GPL(hrtimer_cancel);
1509
1510/**
1511 * __hrtimer_get_remaining - get remaining time for the timer
1512 * @timer: the timer to read
1513 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1514 */
1515ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1516{
1517 unsigned long flags;
1518 ktime_t rem;
1519
1520 lock_hrtimer_base(timer, &flags);
1521 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1522 rem = hrtimer_expires_remaining_adjusted(timer);
1523 else
1524 rem = hrtimer_expires_remaining(timer);
1525 unlock_hrtimer_base(timer, &flags);
1526
1527 return rem;
1528}
1529EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1530
1531#ifdef CONFIG_NO_HZ_COMMON
1532/**
1533 * hrtimer_get_next_event - get the time until next expiry event
1534 *
1535 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1536 */
1537u64 hrtimer_get_next_event(void)
1538{
1539 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1540 u64 expires = KTIME_MAX;
1541 unsigned long flags;
1542
1543 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1544
1545 if (!hrtimer_hres_active(cpu_base))
1546 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1547
1548 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1549
1550 return expires;
1551}
1552
1553/**
1554 * hrtimer_next_event_without - time until next expiry event w/o one timer
1555 * @exclude: timer to exclude
1556 *
1557 * Returns the next expiry time over all timers except for the @exclude one or
1558 * KTIME_MAX if none of them is pending.
1559 */
1560u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1561{
1562 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1563 u64 expires = KTIME_MAX;
1564 unsigned long flags;
1565
1566 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1567
1568 if (hrtimer_hres_active(cpu_base)) {
1569 unsigned int active;
1570
1571 if (!cpu_base->softirq_activated) {
1572 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1573 expires = __hrtimer_next_event_base(cpu_base, exclude,
1574 active, KTIME_MAX);
1575 }
1576 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1577 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1578 expires);
1579 }
1580
1581 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1582
1583 return expires;
1584}
1585#endif
1586
1587static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1588{
1589 if (likely(clock_id < MAX_CLOCKS)) {
1590 int base = hrtimer_clock_to_base_table[clock_id];
1591
1592 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1593 return base;
1594 }
1595 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1596 return HRTIMER_BASE_MONOTONIC;
1597}
1598
1599static enum hrtimer_restart hrtimer_dummy_timeout(struct hrtimer *unused)
1600{
1601 return HRTIMER_NORESTART;
1602}
1603
1604static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1605 enum hrtimer_mode mode)
1606{
1607 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1608 struct hrtimer_cpu_base *cpu_base;
1609 int base;
1610
1611 /*
1612 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1613 * marked for hard interrupt expiry mode are moved into soft
1614 * interrupt context for latency reasons and because the callbacks
1615 * can invoke functions which might sleep on RT, e.g. spin_lock().
1616 */
1617 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1618 softtimer = true;
1619
1620 memset(timer, 0, sizeof(struct hrtimer));
1621
1622 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1623
1624 /*
1625 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1626 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1627 * ensure POSIX compliance.
1628 */
1629 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1630 clock_id = CLOCK_MONOTONIC;
1631
1632 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1633 base += hrtimer_clockid_to_base(clock_id);
1634 timer->is_soft = softtimer;
1635 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1636 timer->base = &cpu_base->clock_base[base];
1637 timerqueue_init(&timer->node);
1638}
1639
1640static void __hrtimer_setup(struct hrtimer *timer,
1641 enum hrtimer_restart (*function)(struct hrtimer *),
1642 clockid_t clock_id, enum hrtimer_mode mode)
1643{
1644 __hrtimer_init(timer, clock_id, mode);
1645
1646 if (WARN_ON_ONCE(!function))
1647 timer->function = hrtimer_dummy_timeout;
1648 else
1649 timer->function = function;
1650}
1651
1652/**
1653 * hrtimer_init - initialize a timer to the given clock
1654 * @timer: the timer to be initialized
1655 * @clock_id: the clock to be used
1656 * @mode: The modes which are relevant for initialization:
1657 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1658 * HRTIMER_MODE_REL_SOFT
1659 *
1660 * The PINNED variants of the above can be handed in,
1661 * but the PINNED bit is ignored as pinning happens
1662 * when the hrtimer is started
1663 */
1664void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1665 enum hrtimer_mode mode)
1666{
1667 debug_init(timer, clock_id, mode);
1668 __hrtimer_init(timer, clock_id, mode);
1669}
1670EXPORT_SYMBOL_GPL(hrtimer_init);
1671
1672/**
1673 * hrtimer_setup - initialize a timer to the given clock
1674 * @timer: the timer to be initialized
1675 * @function: the callback function
1676 * @clock_id: the clock to be used
1677 * @mode: The modes which are relevant for initialization:
1678 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1679 * HRTIMER_MODE_REL_SOFT
1680 *
1681 * The PINNED variants of the above can be handed in,
1682 * but the PINNED bit is ignored as pinning happens
1683 * when the hrtimer is started
1684 */
1685void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *),
1686 clockid_t clock_id, enum hrtimer_mode mode)
1687{
1688 debug_init(timer, clock_id, mode);
1689 __hrtimer_setup(timer, function, clock_id, mode);
1690}
1691EXPORT_SYMBOL_GPL(hrtimer_setup);
1692
1693/**
1694 * hrtimer_setup_on_stack - initialize a timer on stack memory
1695 * @timer: The timer to be initialized
1696 * @function: the callback function
1697 * @clock_id: The clock to be used
1698 * @mode: The timer mode
1699 *
1700 * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
1701 * memory.
1702 */
1703void hrtimer_setup_on_stack(struct hrtimer *timer,
1704 enum hrtimer_restart (*function)(struct hrtimer *),
1705 clockid_t clock_id, enum hrtimer_mode mode)
1706{
1707 debug_init_on_stack(timer, clock_id, mode);
1708 __hrtimer_setup(timer, function, clock_id, mode);
1709}
1710EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack);
1711
1712/*
1713 * A timer is active, when it is enqueued into the rbtree or the
1714 * callback function is running or it's in the state of being migrated
1715 * to another cpu.
1716 *
1717 * It is important for this function to not return a false negative.
1718 */
1719bool hrtimer_active(const struct hrtimer *timer)
1720{
1721 struct hrtimer_clock_base *base;
1722 unsigned int seq;
1723
1724 do {
1725 base = READ_ONCE(timer->base);
1726 seq = raw_read_seqcount_begin(&base->seq);
1727
1728 if (timer->state != HRTIMER_STATE_INACTIVE ||
1729 base->running == timer)
1730 return true;
1731
1732 } while (read_seqcount_retry(&base->seq, seq) ||
1733 base != READ_ONCE(timer->base));
1734
1735 return false;
1736}
1737EXPORT_SYMBOL_GPL(hrtimer_active);
1738
1739/*
1740 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1741 * distinct sections:
1742 *
1743 * - queued: the timer is queued
1744 * - callback: the timer is being ran
1745 * - post: the timer is inactive or (re)queued
1746 *
1747 * On the read side we ensure we observe timer->state and cpu_base->running
1748 * from the same section, if anything changed while we looked at it, we retry.
1749 * This includes timer->base changing because sequence numbers alone are
1750 * insufficient for that.
1751 *
1752 * The sequence numbers are required because otherwise we could still observe
1753 * a false negative if the read side got smeared over multiple consecutive
1754 * __run_hrtimer() invocations.
1755 */
1756
1757static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1758 struct hrtimer_clock_base *base,
1759 struct hrtimer *timer, ktime_t *now,
1760 unsigned long flags) __must_hold(&cpu_base->lock)
1761{
1762 enum hrtimer_restart (*fn)(struct hrtimer *);
1763 bool expires_in_hardirq;
1764 int restart;
1765
1766 lockdep_assert_held(&cpu_base->lock);
1767
1768 debug_deactivate(timer);
1769 base->running = timer;
1770
1771 /*
1772 * Separate the ->running assignment from the ->state assignment.
1773 *
1774 * As with a regular write barrier, this ensures the read side in
1775 * hrtimer_active() cannot observe base->running == NULL &&
1776 * timer->state == INACTIVE.
1777 */
1778 raw_write_seqcount_barrier(&base->seq);
1779
1780 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1781 fn = timer->function;
1782
1783 /*
1784 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1785 * timer is restarted with a period then it becomes an absolute
1786 * timer. If its not restarted it does not matter.
1787 */
1788 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1789 timer->is_rel = false;
1790
1791 /*
1792 * The timer is marked as running in the CPU base, so it is
1793 * protected against migration to a different CPU even if the lock
1794 * is dropped.
1795 */
1796 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1797 trace_hrtimer_expire_entry(timer, now);
1798 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1799
1800 restart = fn(timer);
1801
1802 lockdep_hrtimer_exit(expires_in_hardirq);
1803 trace_hrtimer_expire_exit(timer);
1804 raw_spin_lock_irq(&cpu_base->lock);
1805
1806 /*
1807 * Note: We clear the running state after enqueue_hrtimer and
1808 * we do not reprogram the event hardware. Happens either in
1809 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1810 *
1811 * Note: Because we dropped the cpu_base->lock above,
1812 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1813 * for us already.
1814 */
1815 if (restart != HRTIMER_NORESTART &&
1816 !(timer->state & HRTIMER_STATE_ENQUEUED))
1817 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1818
1819 /*
1820 * Separate the ->running assignment from the ->state assignment.
1821 *
1822 * As with a regular write barrier, this ensures the read side in
1823 * hrtimer_active() cannot observe base->running.timer == NULL &&
1824 * timer->state == INACTIVE.
1825 */
1826 raw_write_seqcount_barrier(&base->seq);
1827
1828 WARN_ON_ONCE(base->running != timer);
1829 base->running = NULL;
1830}
1831
1832static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1833 unsigned long flags, unsigned int active_mask)
1834{
1835 struct hrtimer_clock_base *base;
1836 unsigned int active = cpu_base->active_bases & active_mask;
1837
1838 for_each_active_base(base, cpu_base, active) {
1839 struct timerqueue_node *node;
1840 ktime_t basenow;
1841
1842 basenow = ktime_add(now, base->offset);
1843
1844 while ((node = timerqueue_getnext(&base->active))) {
1845 struct hrtimer *timer;
1846
1847 timer = container_of(node, struct hrtimer, node);
1848
1849 /*
1850 * The immediate goal for using the softexpires is
1851 * minimizing wakeups, not running timers at the
1852 * earliest interrupt after their soft expiration.
1853 * This allows us to avoid using a Priority Search
1854 * Tree, which can answer a stabbing query for
1855 * overlapping intervals and instead use the simple
1856 * BST we already have.
1857 * We don't add extra wakeups by delaying timers that
1858 * are right-of a not yet expired timer, because that
1859 * timer will have to trigger a wakeup anyway.
1860 */
1861 if (basenow < hrtimer_get_softexpires_tv64(timer))
1862 break;
1863
1864 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1865 if (active_mask == HRTIMER_ACTIVE_SOFT)
1866 hrtimer_sync_wait_running(cpu_base, flags);
1867 }
1868 }
1869}
1870
1871static __latent_entropy void hrtimer_run_softirq(void)
1872{
1873 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1874 unsigned long flags;
1875 ktime_t now;
1876
1877 hrtimer_cpu_base_lock_expiry(cpu_base);
1878 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1879
1880 now = hrtimer_update_base(cpu_base);
1881 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1882
1883 cpu_base->softirq_activated = 0;
1884 hrtimer_update_softirq_timer(cpu_base, true);
1885
1886 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1887 hrtimer_cpu_base_unlock_expiry(cpu_base);
1888}
1889
1890#ifdef CONFIG_HIGH_RES_TIMERS
1891
1892/*
1893 * High resolution timer interrupt
1894 * Called with interrupts disabled
1895 */
1896void hrtimer_interrupt(struct clock_event_device *dev)
1897{
1898 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1899 ktime_t expires_next, now, entry_time, delta;
1900 unsigned long flags;
1901 int retries = 0;
1902
1903 BUG_ON(!cpu_base->hres_active);
1904 cpu_base->nr_events++;
1905 dev->next_event = KTIME_MAX;
1906
1907 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1908 entry_time = now = hrtimer_update_base(cpu_base);
1909retry:
1910 cpu_base->in_hrtirq = 1;
1911 /*
1912 * We set expires_next to KTIME_MAX here with cpu_base->lock
1913 * held to prevent that a timer is enqueued in our queue via
1914 * the migration code. This does not affect enqueueing of
1915 * timers which run their callback and need to be requeued on
1916 * this CPU.
1917 */
1918 cpu_base->expires_next = KTIME_MAX;
1919
1920 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1921 cpu_base->softirq_expires_next = KTIME_MAX;
1922 cpu_base->softirq_activated = 1;
1923 raise_timer_softirq(HRTIMER_SOFTIRQ);
1924 }
1925
1926 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1927
1928 /* Reevaluate the clock bases for the [soft] next expiry */
1929 expires_next = hrtimer_update_next_event(cpu_base);
1930 /*
1931 * Store the new expiry value so the migration code can verify
1932 * against it.
1933 */
1934 cpu_base->expires_next = expires_next;
1935 cpu_base->in_hrtirq = 0;
1936 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1937
1938 /* Reprogramming necessary ? */
1939 if (!tick_program_event(expires_next, 0)) {
1940 cpu_base->hang_detected = 0;
1941 return;
1942 }
1943
1944 /*
1945 * The next timer was already expired due to:
1946 * - tracing
1947 * - long lasting callbacks
1948 * - being scheduled away when running in a VM
1949 *
1950 * We need to prevent that we loop forever in the hrtimer
1951 * interrupt routine. We give it 3 attempts to avoid
1952 * overreacting on some spurious event.
1953 *
1954 * Acquire base lock for updating the offsets and retrieving
1955 * the current time.
1956 */
1957 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1958 now = hrtimer_update_base(cpu_base);
1959 cpu_base->nr_retries++;
1960 if (++retries < 3)
1961 goto retry;
1962 /*
1963 * Give the system a chance to do something else than looping
1964 * here. We stored the entry time, so we know exactly how long
1965 * we spent here. We schedule the next event this amount of
1966 * time away.
1967 */
1968 cpu_base->nr_hangs++;
1969 cpu_base->hang_detected = 1;
1970 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1971
1972 delta = ktime_sub(now, entry_time);
1973 if ((unsigned int)delta > cpu_base->max_hang_time)
1974 cpu_base->max_hang_time = (unsigned int) delta;
1975 /*
1976 * Limit it to a sensible value as we enforce a longer
1977 * delay. Give the CPU at least 100ms to catch up.
1978 */
1979 if (delta > 100 * NSEC_PER_MSEC)
1980 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1981 else
1982 expires_next = ktime_add(now, delta);
1983 tick_program_event(expires_next, 1);
1984 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1985}
1986#endif /* !CONFIG_HIGH_RES_TIMERS */
1987
1988/*
1989 * Called from run_local_timers in hardirq context every jiffy
1990 */
1991void hrtimer_run_queues(void)
1992{
1993 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1994 unsigned long flags;
1995 ktime_t now;
1996
1997 if (hrtimer_hres_active(cpu_base))
1998 return;
1999
2000 /*
2001 * This _is_ ugly: We have to check periodically, whether we
2002 * can switch to highres and / or nohz mode. The clocksource
2003 * switch happens with xtime_lock held. Notification from
2004 * there only sets the check bit in the tick_oneshot code,
2005 * otherwise we might deadlock vs. xtime_lock.
2006 */
2007 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
2008 hrtimer_switch_to_hres();
2009 return;
2010 }
2011
2012 raw_spin_lock_irqsave(&cpu_base->lock, flags);
2013 now = hrtimer_update_base(cpu_base);
2014
2015 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
2016 cpu_base->softirq_expires_next = KTIME_MAX;
2017 cpu_base->softirq_activated = 1;
2018 raise_timer_softirq(HRTIMER_SOFTIRQ);
2019 }
2020
2021 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
2022 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
2023}
2024
2025/*
2026 * Sleep related functions:
2027 */
2028static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
2029{
2030 struct hrtimer_sleeper *t =
2031 container_of(timer, struct hrtimer_sleeper, timer);
2032 struct task_struct *task = t->task;
2033
2034 t->task = NULL;
2035 if (task)
2036 wake_up_process(task);
2037
2038 return HRTIMER_NORESTART;
2039}
2040
2041/**
2042 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
2043 * @sl: sleeper to be started
2044 * @mode: timer mode abs/rel
2045 *
2046 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
2047 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
2048 */
2049void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
2050 enum hrtimer_mode mode)
2051{
2052 /*
2053 * Make the enqueue delivery mode check work on RT. If the sleeper
2054 * was initialized for hard interrupt delivery, force the mode bit.
2055 * This is a special case for hrtimer_sleepers because
2056 * __hrtimer_init_sleeper() determines the delivery mode on RT so the
2057 * fiddling with this decision is avoided at the call sites.
2058 */
2059 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
2060 mode |= HRTIMER_MODE_HARD;
2061
2062 hrtimer_start_expires(&sl->timer, mode);
2063}
2064EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
2065
2066static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
2067 clockid_t clock_id, enum hrtimer_mode mode)
2068{
2069 /*
2070 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2071 * marked for hard interrupt expiry mode are moved into soft
2072 * interrupt context either for latency reasons or because the
2073 * hrtimer callback takes regular spinlocks or invokes other
2074 * functions which are not suitable for hard interrupt context on
2075 * PREEMPT_RT.
2076 *
2077 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2078 * context, but there is a latency concern: Untrusted userspace can
2079 * spawn many threads which arm timers for the same expiry time on
2080 * the same CPU. That causes a latency spike due to the wakeup of
2081 * a gazillion threads.
2082 *
2083 * OTOH, privileged real-time user space applications rely on the
2084 * low latency of hard interrupt wakeups. If the current task is in
2085 * a real-time scheduling class, mark the mode for hard interrupt
2086 * expiry.
2087 */
2088 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2089 if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
2090 mode |= HRTIMER_MODE_HARD;
2091 }
2092
2093 __hrtimer_init(&sl->timer, clock_id, mode);
2094 sl->timer.function = hrtimer_wakeup;
2095 sl->task = current;
2096}
2097
2098/**
2099 * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
2100 * @sl: sleeper to be initialized
2101 * @clock_id: the clock to be used
2102 * @mode: timer mode abs/rel
2103 */
2104void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl,
2105 clockid_t clock_id, enum hrtimer_mode mode)
2106{
2107 debug_init_on_stack(&sl->timer, clock_id, mode);
2108 __hrtimer_init_sleeper(sl, clock_id, mode);
2109}
2110EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack);
2111
2112int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2113{
2114 switch(restart->nanosleep.type) {
2115#ifdef CONFIG_COMPAT_32BIT_TIME
2116 case TT_COMPAT:
2117 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2118 return -EFAULT;
2119 break;
2120#endif
2121 case TT_NATIVE:
2122 if (put_timespec64(ts, restart->nanosleep.rmtp))
2123 return -EFAULT;
2124 break;
2125 default:
2126 BUG();
2127 }
2128 return -ERESTART_RESTARTBLOCK;
2129}
2130
2131static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2132{
2133 struct restart_block *restart;
2134
2135 do {
2136 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2137 hrtimer_sleeper_start_expires(t, mode);
2138
2139 if (likely(t->task))
2140 schedule();
2141
2142 hrtimer_cancel(&t->timer);
2143 mode = HRTIMER_MODE_ABS;
2144
2145 } while (t->task && !signal_pending(current));
2146
2147 __set_current_state(TASK_RUNNING);
2148
2149 if (!t->task)
2150 return 0;
2151
2152 restart = ¤t->restart_block;
2153 if (restart->nanosleep.type != TT_NONE) {
2154 ktime_t rem = hrtimer_expires_remaining(&t->timer);
2155 struct timespec64 rmt;
2156
2157 if (rem <= 0)
2158 return 0;
2159 rmt = ktime_to_timespec64(rem);
2160
2161 return nanosleep_copyout(restart, &rmt);
2162 }
2163 return -ERESTART_RESTARTBLOCK;
2164}
2165
2166static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2167{
2168 struct hrtimer_sleeper t;
2169 int ret;
2170
2171 hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS);
2172 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2173 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2174 destroy_hrtimer_on_stack(&t.timer);
2175 return ret;
2176}
2177
2178long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2179 const clockid_t clockid)
2180{
2181 struct restart_block *restart;
2182 struct hrtimer_sleeper t;
2183 int ret = 0;
2184
2185 hrtimer_setup_sleeper_on_stack(&t, clockid, mode);
2186 hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2187 ret = do_nanosleep(&t, mode);
2188 if (ret != -ERESTART_RESTARTBLOCK)
2189 goto out;
2190
2191 /* Absolute timers do not update the rmtp value and restart: */
2192 if (mode == HRTIMER_MODE_ABS) {
2193 ret = -ERESTARTNOHAND;
2194 goto out;
2195 }
2196
2197 restart = ¤t->restart_block;
2198 restart->nanosleep.clockid = t.timer.base->clockid;
2199 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2200 set_restart_fn(restart, hrtimer_nanosleep_restart);
2201out:
2202 destroy_hrtimer_on_stack(&t.timer);
2203 return ret;
2204}
2205
2206#ifdef CONFIG_64BIT
2207
2208SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2209 struct __kernel_timespec __user *, rmtp)
2210{
2211 struct timespec64 tu;
2212
2213 if (get_timespec64(&tu, rqtp))
2214 return -EFAULT;
2215
2216 if (!timespec64_valid(&tu))
2217 return -EINVAL;
2218
2219 current->restart_block.fn = do_no_restart_syscall;
2220 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2221 current->restart_block.nanosleep.rmtp = rmtp;
2222 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2223 CLOCK_MONOTONIC);
2224}
2225
2226#endif
2227
2228#ifdef CONFIG_COMPAT_32BIT_TIME
2229
2230SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2231 struct old_timespec32 __user *, rmtp)
2232{
2233 struct timespec64 tu;
2234
2235 if (get_old_timespec32(&tu, rqtp))
2236 return -EFAULT;
2237
2238 if (!timespec64_valid(&tu))
2239 return -EINVAL;
2240
2241 current->restart_block.fn = do_no_restart_syscall;
2242 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2243 current->restart_block.nanosleep.compat_rmtp = rmtp;
2244 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2245 CLOCK_MONOTONIC);
2246}
2247#endif
2248
2249/*
2250 * Functions related to boot-time initialization:
2251 */
2252int hrtimers_prepare_cpu(unsigned int cpu)
2253{
2254 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2255 int i;
2256
2257 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2258 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2259
2260 clock_b->cpu_base = cpu_base;
2261 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2262 timerqueue_init_head(&clock_b->active);
2263 }
2264
2265 cpu_base->cpu = cpu;
2266 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2267 return 0;
2268}
2269
2270int hrtimers_cpu_starting(unsigned int cpu)
2271{
2272 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2273
2274 /* Clear out any left over state from a CPU down operation */
2275 cpu_base->active_bases = 0;
2276 cpu_base->hres_active = 0;
2277 cpu_base->hang_detected = 0;
2278 cpu_base->next_timer = NULL;
2279 cpu_base->softirq_next_timer = NULL;
2280 cpu_base->expires_next = KTIME_MAX;
2281 cpu_base->softirq_expires_next = KTIME_MAX;
2282 cpu_base->online = 1;
2283 return 0;
2284}
2285
2286#ifdef CONFIG_HOTPLUG_CPU
2287
2288static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2289 struct hrtimer_clock_base *new_base)
2290{
2291 struct hrtimer *timer;
2292 struct timerqueue_node *node;
2293
2294 while ((node = timerqueue_getnext(&old_base->active))) {
2295 timer = container_of(node, struct hrtimer, node);
2296 BUG_ON(hrtimer_callback_running(timer));
2297 debug_deactivate(timer);
2298
2299 /*
2300 * Mark it as ENQUEUED not INACTIVE otherwise the
2301 * timer could be seen as !active and just vanish away
2302 * under us on another CPU
2303 */
2304 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2305 timer->base = new_base;
2306 /*
2307 * Enqueue the timers on the new cpu. This does not
2308 * reprogram the event device in case the timer
2309 * expires before the earliest on this CPU, but we run
2310 * hrtimer_interrupt after we migrated everything to
2311 * sort out already expired timers and reprogram the
2312 * event device.
2313 */
2314 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2315 }
2316}
2317
2318int hrtimers_cpu_dying(unsigned int dying_cpu)
2319{
2320 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2321 struct hrtimer_cpu_base *old_base, *new_base;
2322
2323 old_base = this_cpu_ptr(&hrtimer_bases);
2324 new_base = &per_cpu(hrtimer_bases, ncpu);
2325
2326 /*
2327 * The caller is globally serialized and nobody else
2328 * takes two locks at once, deadlock is not possible.
2329 */
2330 raw_spin_lock(&old_base->lock);
2331 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2332
2333 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2334 migrate_hrtimer_list(&old_base->clock_base[i],
2335 &new_base->clock_base[i]);
2336 }
2337
2338 /*
2339 * The migration might have changed the first expiring softirq
2340 * timer on this CPU. Update it.
2341 */
2342 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2343 /* Tell the other CPU to retrigger the next event */
2344 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2345
2346 raw_spin_unlock(&new_base->lock);
2347 old_base->online = 0;
2348 raw_spin_unlock(&old_base->lock);
2349
2350 return 0;
2351}
2352
2353#endif /* CONFIG_HOTPLUG_CPU */
2354
2355void __init hrtimers_init(void)
2356{
2357 hrtimers_prepare_cpu(smp_processor_id());
2358 hrtimers_cpu_starting(smp_processor_id());
2359 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2360}