Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  High-resolution kernel timers
   8 *
   9 *  In contrast to the low-resolution timeout API, aka timer wheel,
  10 *  hrtimers provide finer resolution and accuracy depending on system
  11 *  configuration and capabilities.
  12 *
  13 *  Started by: Thomas Gleixner and Ingo Molnar
  14 *
  15 *  Credits:
  16 *	Based on the original timer wheel code
  17 *
  18 *	Help, testing, suggestions, bugfixes, improvements were
  19 *	provided by:
  20 *
  21 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  22 *	et. al.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/export.h>
  27#include <linux/percpu.h>
  28#include <linux/hrtimer.h>
  29#include <linux/notifier.h>
  30#include <linux/syscalls.h>
  31#include <linux/interrupt.h>
  32#include <linux/tick.h>
  33#include <linux/err.h>
  34#include <linux/debugobjects.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/deadline.h>
  39#include <linux/sched/nohz.h>
  40#include <linux/sched/debug.h>
 
  41#include <linux/timer.h>
  42#include <linux/freezer.h>
  43#include <linux/compat.h>
  44
  45#include <linux/uaccess.h>
  46
  47#include <trace/events/timer.h>
  48
  49#include "tick-internal.h"
  50
  51/*
  52 * Masks for selecting the soft and hard context timers from
  53 * cpu_base->active
  54 */
  55#define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
  56#define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
  57#define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
  58#define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
  59
 
 
  60/*
  61 * The timer bases:
  62 *
  63 * There are more clockids than hrtimer bases. Thus, we index
  64 * into the timer bases by the hrtimer_base_type enum. When trying
  65 * to reach a base using a clockid, hrtimer_clockid_to_base()
  66 * is used to convert from clockid to the proper hrtimer_base_type.
  67 */
  68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  69{
  70	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  71	.clock_base =
  72	{
  73		{
  74			.index = HRTIMER_BASE_MONOTONIC,
  75			.clockid = CLOCK_MONOTONIC,
  76			.get_time = &ktime_get,
  77		},
  78		{
  79			.index = HRTIMER_BASE_REALTIME,
  80			.clockid = CLOCK_REALTIME,
  81			.get_time = &ktime_get_real,
  82		},
  83		{
  84			.index = HRTIMER_BASE_BOOTTIME,
  85			.clockid = CLOCK_BOOTTIME,
  86			.get_time = &ktime_get_boottime,
  87		},
  88		{
  89			.index = HRTIMER_BASE_TAI,
  90			.clockid = CLOCK_TAI,
  91			.get_time = &ktime_get_clocktai,
  92		},
  93		{
  94			.index = HRTIMER_BASE_MONOTONIC_SOFT,
  95			.clockid = CLOCK_MONOTONIC,
  96			.get_time = &ktime_get,
  97		},
  98		{
  99			.index = HRTIMER_BASE_REALTIME_SOFT,
 100			.clockid = CLOCK_REALTIME,
 101			.get_time = &ktime_get_real,
 102		},
 103		{
 104			.index = HRTIMER_BASE_BOOTTIME_SOFT,
 105			.clockid = CLOCK_BOOTTIME,
 106			.get_time = &ktime_get_boottime,
 107		},
 108		{
 109			.index = HRTIMER_BASE_TAI_SOFT,
 110			.clockid = CLOCK_TAI,
 111			.get_time = &ktime_get_clocktai,
 112		},
 113	}
 
 114};
 115
 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 117	/* Make sure we catch unsupported clockids */
 118	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
 119
 120	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
 121	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
 122	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
 123	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
 124};
 125
 
 
 
 
 
 
 
 
 126/*
 127 * Functions and macros which are different for UP/SMP systems are kept in a
 128 * single place
 129 */
 130#ifdef CONFIG_SMP
 131
 132/*
 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 134 * such that hrtimer_callback_running() can unconditionally dereference
 135 * timer->base->cpu_base
 136 */
 137static struct hrtimer_cpu_base migration_cpu_base = {
 138	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
 
 
 
 
 139};
 140
 141#define migration_base	migration_cpu_base.clock_base[0]
 142
 143static inline bool is_migration_base(struct hrtimer_clock_base *base)
 144{
 145	return base == &migration_base;
 146}
 147
 148/*
 149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 150 * means that all timers which are tied to this base via timer->base are
 151 * locked, and the base itself is locked too.
 152 *
 153 * So __run_timers/migrate_timers can safely modify all timers which could
 154 * be found on the lists/queues.
 155 *
 156 * When the timer's base is locked, and the timer removed from list, it is
 157 * possible to set timer->base = &migration_base and drop the lock: the timer
 158 * remains locked.
 159 */
 160static
 161struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 162					     unsigned long *flags)
 
 163{
 164	struct hrtimer_clock_base *base;
 165
 166	for (;;) {
 167		base = READ_ONCE(timer->base);
 168		if (likely(base != &migration_base)) {
 169			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 170			if (likely(base == timer->base))
 171				return base;
 172			/* The timer has migrated to another CPU: */
 173			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 174		}
 175		cpu_relax();
 176	}
 177}
 178
 179/*
 180 * We do not migrate the timer when it is expiring before the next
 181 * event on the target cpu. When high resolution is enabled, we cannot
 182 * reprogram the target cpu hardware and we would cause it to fire
 183 * late. To keep it simple, we handle the high resolution enabled and
 184 * disabled case similar.
 
 
 
 
 
 185 *
 186 * Called with cpu_base->lock of target cpu held.
 187 */
 188static int
 189hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 
 190{
 191	ktime_t expires;
 192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 194	return expires < new_base->cpu_base->expires_next;
 
 195}
 196
 197static inline
 198struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 199					 int pinned)
 200{
 
 
 
 
 
 
 201#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 202	if (static_branch_likely(&timers_migration_enabled) && !pinned)
 203		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 204#endif
 205	return base;
 206}
 207
 208/*
 209 * We switch the timer base to a power-optimized selected CPU target,
 210 * if:
 211 *	- NO_HZ_COMMON is enabled
 212 *	- timer migration is enabled
 213 *	- the timer callback is not running
 214 *	- the timer is not the first expiring timer on the new target
 215 *
 216 * If one of the above requirements is not fulfilled we move the timer
 217 * to the current CPU or leave it on the previously assigned CPU if
 218 * the timer callback is currently running.
 219 */
 220static inline struct hrtimer_clock_base *
 221switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 222		    int pinned)
 223{
 224	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 225	struct hrtimer_clock_base *new_base;
 226	int basenum = base->index;
 227
 228	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 229	new_cpu_base = get_target_base(this_cpu_base, pinned);
 230again:
 231	new_base = &new_cpu_base->clock_base[basenum];
 232
 233	if (base != new_base) {
 234		/*
 235		 * We are trying to move timer to new_base.
 236		 * However we can't change timer's base while it is running,
 237		 * so we keep it on the same CPU. No hassle vs. reprogramming
 238		 * the event source in the high resolution case. The softirq
 239		 * code will take care of this when the timer function has
 240		 * completed. There is no conflict as we hold the lock until
 241		 * the timer is enqueued.
 242		 */
 243		if (unlikely(hrtimer_callback_running(timer)))
 244			return base;
 245
 246		/* See the comment in lock_hrtimer_base() */
 247		WRITE_ONCE(timer->base, &migration_base);
 248		raw_spin_unlock(&base->cpu_base->lock);
 249		raw_spin_lock(&new_base->cpu_base->lock);
 250
 251		if (new_cpu_base != this_cpu_base &&
 252		    hrtimer_check_target(timer, new_base)) {
 253			raw_spin_unlock(&new_base->cpu_base->lock);
 254			raw_spin_lock(&base->cpu_base->lock);
 255			new_cpu_base = this_cpu_base;
 256			WRITE_ONCE(timer->base, base);
 257			goto again;
 258		}
 259		WRITE_ONCE(timer->base, new_base);
 260	} else {
 261		if (new_cpu_base != this_cpu_base &&
 262		    hrtimer_check_target(timer, new_base)) {
 263			new_cpu_base = this_cpu_base;
 264			goto again;
 265		}
 266	}
 267	return new_base;
 268}
 269
 270#else /* CONFIG_SMP */
 271
 272static inline bool is_migration_base(struct hrtimer_clock_base *base)
 273{
 274	return false;
 275}
 276
 277static inline struct hrtimer_clock_base *
 278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 
 279{
 280	struct hrtimer_clock_base *base = timer->base;
 281
 282	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 283
 284	return base;
 285}
 286
 287# define switch_hrtimer_base(t, b, p)	(b)
 288
 289#endif	/* !CONFIG_SMP */
 290
 291/*
 292 * Functions for the union type storage format of ktime_t which are
 293 * too large for inlining:
 294 */
 295#if BITS_PER_LONG < 64
 296/*
 297 * Divide a ktime value by a nanosecond value
 298 */
 299s64 __ktime_divns(const ktime_t kt, s64 div)
 300{
 301	int sft = 0;
 302	s64 dclc;
 303	u64 tmp;
 304
 305	dclc = ktime_to_ns(kt);
 306	tmp = dclc < 0 ? -dclc : dclc;
 307
 308	/* Make sure the divisor is less than 2^32: */
 309	while (div >> 32) {
 310		sft++;
 311		div >>= 1;
 312	}
 313	tmp >>= sft;
 314	do_div(tmp, (unsigned long) div);
 315	return dclc < 0 ? -tmp : tmp;
 316}
 317EXPORT_SYMBOL_GPL(__ktime_divns);
 318#endif /* BITS_PER_LONG >= 64 */
 319
 320/*
 321 * Add two ktime values and do a safety check for overflow:
 322 */
 323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 324{
 325	ktime_t res = ktime_add_unsafe(lhs, rhs);
 326
 327	/*
 328	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 329	 * return to user space in a timespec:
 330	 */
 331	if (res < 0 || res < lhs || res < rhs)
 332		res = ktime_set(KTIME_SEC_MAX, 0);
 333
 334	return res;
 335}
 336
 337EXPORT_SYMBOL_GPL(ktime_add_safe);
 338
 339#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 340
 341static struct debug_obj_descr hrtimer_debug_descr;
 342
 343static void *hrtimer_debug_hint(void *addr)
 344{
 345	return ((struct hrtimer *) addr)->function;
 346}
 347
 348/*
 349 * fixup_init is called when:
 350 * - an active object is initialized
 351 */
 352static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 353{
 354	struct hrtimer *timer = addr;
 355
 356	switch (state) {
 357	case ODEBUG_STATE_ACTIVE:
 358		hrtimer_cancel(timer);
 359		debug_object_init(timer, &hrtimer_debug_descr);
 360		return true;
 361	default:
 362		return false;
 363	}
 364}
 365
 366/*
 367 * fixup_activate is called when:
 368 * - an active object is activated
 369 * - an unknown non-static object is activated
 370 */
 371static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 372{
 373	switch (state) {
 374	case ODEBUG_STATE_ACTIVE:
 375		WARN_ON(1);
 376		/* fall through */
 377	default:
 378		return false;
 379	}
 380}
 381
 382/*
 383 * fixup_free is called when:
 384 * - an active object is freed
 385 */
 386static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 387{
 388	struct hrtimer *timer = addr;
 389
 390	switch (state) {
 391	case ODEBUG_STATE_ACTIVE:
 392		hrtimer_cancel(timer);
 393		debug_object_free(timer, &hrtimer_debug_descr);
 394		return true;
 395	default:
 396		return false;
 397	}
 398}
 399
 400static struct debug_obj_descr hrtimer_debug_descr = {
 401	.name		= "hrtimer",
 402	.debug_hint	= hrtimer_debug_hint,
 403	.fixup_init	= hrtimer_fixup_init,
 404	.fixup_activate	= hrtimer_fixup_activate,
 405	.fixup_free	= hrtimer_fixup_free,
 406};
 407
 408static inline void debug_hrtimer_init(struct hrtimer *timer)
 409{
 410	debug_object_init(timer, &hrtimer_debug_descr);
 411}
 412
 
 
 
 
 
 413static inline void debug_hrtimer_activate(struct hrtimer *timer,
 414					  enum hrtimer_mode mode)
 415{
 416	debug_object_activate(timer, &hrtimer_debug_descr);
 417}
 418
 419static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 420{
 421	debug_object_deactivate(timer, &hrtimer_debug_descr);
 422}
 423
 424static inline void debug_hrtimer_free(struct hrtimer *timer)
 425{
 426	debug_object_free(timer, &hrtimer_debug_descr);
 427}
 428
 429static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 430			   enum hrtimer_mode mode);
 431
 432void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 433			   enum hrtimer_mode mode)
 434{
 435	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 436	__hrtimer_init(timer, clock_id, mode);
 437}
 438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 439
 440static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
 441				   clockid_t clock_id, enum hrtimer_mode mode);
 442
 443void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
 444				   clockid_t clock_id, enum hrtimer_mode mode)
 445{
 446	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
 447	__hrtimer_init_sleeper(sl, clock_id, mode);
 448}
 449EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
 450
 451void destroy_hrtimer_on_stack(struct hrtimer *timer)
 452{
 453	debug_object_free(timer, &hrtimer_debug_descr);
 454}
 455EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 456
 457#else
 458
 459static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 
 460static inline void debug_hrtimer_activate(struct hrtimer *timer,
 461					  enum hrtimer_mode mode) { }
 462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 463#endif
 464
 465static inline void
 466debug_init(struct hrtimer *timer, clockid_t clockid,
 467	   enum hrtimer_mode mode)
 468{
 469	debug_hrtimer_init(timer);
 470	trace_hrtimer_init(timer, clockid, mode);
 471}
 472
 
 
 
 
 
 
 
 473static inline void debug_activate(struct hrtimer *timer,
 474				  enum hrtimer_mode mode)
 475{
 476	debug_hrtimer_activate(timer, mode);
 477	trace_hrtimer_start(timer, mode);
 478}
 479
 480static inline void debug_deactivate(struct hrtimer *timer)
 481{
 482	debug_hrtimer_deactivate(timer);
 483	trace_hrtimer_cancel(timer);
 484}
 485
 486static struct hrtimer_clock_base *
 487__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
 488{
 489	unsigned int idx;
 490
 491	if (!*active)
 492		return NULL;
 493
 494	idx = __ffs(*active);
 495	*active &= ~(1U << idx);
 496
 497	return &cpu_base->clock_base[idx];
 498}
 499
 500#define for_each_active_base(base, cpu_base, active)	\
 501	while ((base = __next_base((cpu_base), &(active))))
 502
 503static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
 504					 const struct hrtimer *exclude,
 505					 unsigned int active,
 506					 ktime_t expires_next)
 507{
 508	struct hrtimer_clock_base *base;
 509	ktime_t expires;
 510
 511	for_each_active_base(base, cpu_base, active) {
 512		struct timerqueue_node *next;
 513		struct hrtimer *timer;
 514
 515		next = timerqueue_getnext(&base->active);
 516		timer = container_of(next, struct hrtimer, node);
 517		if (timer == exclude) {
 518			/* Get to the next timer in the queue. */
 519			next = timerqueue_iterate_next(next);
 520			if (!next)
 521				continue;
 522
 523			timer = container_of(next, struct hrtimer, node);
 524		}
 525		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 526		if (expires < expires_next) {
 527			expires_next = expires;
 528
 529			/* Skip cpu_base update if a timer is being excluded. */
 530			if (exclude)
 531				continue;
 532
 533			if (timer->is_soft)
 534				cpu_base->softirq_next_timer = timer;
 535			else
 536				cpu_base->next_timer = timer;
 537		}
 538	}
 539	/*
 540	 * clock_was_set() might have changed base->offset of any of
 541	 * the clock bases so the result might be negative. Fix it up
 542	 * to prevent a false positive in clockevents_program_event().
 543	 */
 544	if (expires_next < 0)
 545		expires_next = 0;
 546	return expires_next;
 547}
 548
 549/*
 550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
 551 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
 
 
 
 552 *
 553 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 554 * those timers will get run whenever the softirq gets handled, at the end of
 555 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 556 *
 557 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 558 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 559 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 560 *
 561 * @active_mask must be one of:
 562 *  - HRTIMER_ACTIVE_ALL,
 563 *  - HRTIMER_ACTIVE_SOFT, or
 564 *  - HRTIMER_ACTIVE_HARD.
 565 */
 566static ktime_t
 567__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
 568{
 569	unsigned int active;
 570	struct hrtimer *next_timer = NULL;
 571	ktime_t expires_next = KTIME_MAX;
 572
 573	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
 574		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
 575		cpu_base->softirq_next_timer = NULL;
 576		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
 577							 active, KTIME_MAX);
 578
 579		next_timer = cpu_base->softirq_next_timer;
 580	}
 581
 582	if (active_mask & HRTIMER_ACTIVE_HARD) {
 583		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
 584		cpu_base->next_timer = next_timer;
 585		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
 586							 expires_next);
 587	}
 588
 589	return expires_next;
 590}
 591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 593{
 594	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 595	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 596	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 597
 598	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
 599					    offs_real, offs_boot, offs_tai);
 600
 601	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
 602	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
 603	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
 604
 605	return now;
 606}
 607
 608/*
 609 * Is the high resolution mode active ?
 610 */
 611static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 612{
 613	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
 614		cpu_base->hres_active : 0;
 615}
 616
 617static inline int hrtimer_hres_active(void)
 618{
 619	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 620}
 621
 622/*
 623 * Reprogram the event source with checking both queues for the
 624 * next event
 625 * Called with interrupts disabled and base->lock held
 626 */
 627static void
 628hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 629{
 630	ktime_t expires_next;
 631
 632	/*
 633	 * Find the current next expiration time.
 634	 */
 635	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
 636
 637	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
 638		/*
 639		 * When the softirq is activated, hrtimer has to be
 640		 * programmed with the first hard hrtimer because soft
 641		 * timer interrupt could occur too late.
 642		 */
 643		if (cpu_base->softirq_activated)
 644			expires_next = __hrtimer_get_next_event(cpu_base,
 645								HRTIMER_ACTIVE_HARD);
 646		else
 647			cpu_base->softirq_expires_next = expires_next;
 648	}
 649
 650	if (skip_equal && expires_next == cpu_base->expires_next)
 651		return;
 652
 653	cpu_base->expires_next = expires_next;
 654
 655	/*
 656	 * If hres is not active, hardware does not have to be
 657	 * reprogrammed yet.
 658	 *
 659	 * If a hang was detected in the last timer interrupt then we
 660	 * leave the hang delay active in the hardware. We want the
 661	 * system to make progress. That also prevents the following
 662	 * scenario:
 663	 * T1 expires 50ms from now
 664	 * T2 expires 5s from now
 665	 *
 666	 * T1 is removed, so this code is called and would reprogram
 667	 * the hardware to 5s from now. Any hrtimer_start after that
 668	 * will not reprogram the hardware due to hang_detected being
 669	 * set. So we'd effectivly block all timers until the T2 event
 670	 * fires.
 671	 */
 672	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673		return;
 674
 675	tick_program_event(cpu_base->expires_next, 1);
 676}
 677
 678/* High resolution timer related functions */
 679#ifdef CONFIG_HIGH_RES_TIMERS
 680
 681/*
 682 * High resolution timer enabled ?
 683 */
 684static bool hrtimer_hres_enabled __read_mostly  = true;
 685unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 686EXPORT_SYMBOL_GPL(hrtimer_resolution);
 687
 688/*
 689 * Enable / Disable high resolution mode
 690 */
 691static int __init setup_hrtimer_hres(char *str)
 692{
 693	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 694}
 695
 696__setup("highres=", setup_hrtimer_hres);
 697
 698/*
 699 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 700 */
 701static inline int hrtimer_is_hres_enabled(void)
 702{
 703	return hrtimer_hres_enabled;
 704}
 705
 706/*
 707 * Retrigger next event is called after clock was set
 708 *
 709 * Called with interrupts disabled via on_each_cpu()
 710 */
 711static void retrigger_next_event(void *arg)
 712{
 713	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 714
 715	if (!__hrtimer_hres_active(base))
 716		return;
 717
 718	raw_spin_lock(&base->lock);
 719	hrtimer_update_base(base);
 720	hrtimer_force_reprogram(base, 0);
 721	raw_spin_unlock(&base->lock);
 722}
 723
 724/*
 725 * Switch to high resolution mode
 726 */
 727static void hrtimer_switch_to_hres(void)
 728{
 729	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 730
 731	if (tick_init_highres()) {
 732		pr_warn("Could not switch to high resolution mode on CPU %u\n",
 733			base->cpu);
 734		return;
 735	}
 736	base->hres_active = 1;
 737	hrtimer_resolution = HIGH_RES_NSEC;
 738
 739	tick_setup_sched_timer();
 740	/* "Retrigger" the interrupt to get things going */
 741	retrigger_next_event(NULL);
 742}
 743
 744static void clock_was_set_work(struct work_struct *work)
 745{
 746	clock_was_set();
 747}
 748
 749static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 
 750
 
 751/*
 752 * Called from timekeeping and resume code to reprogram the hrtimer
 753 * interrupt device on all cpus.
 
 
 
 
 
 
 
 
 
 754 */
 755void clock_was_set_delayed(void)
 756{
 757	schedule_work(&hrtimer_work);
 758}
 759
 760#else
 761
 762static inline int hrtimer_is_hres_enabled(void) { return 0; }
 763static inline void hrtimer_switch_to_hres(void) { }
 764static inline void retrigger_next_event(void *arg) { }
 
 
 
 
 
 
 
 
 
 
 
 
 
 765
 766#endif /* CONFIG_HIGH_RES_TIMERS */
 
 
 
 
 
 
 
 767
 768/*
 769 * When a timer is enqueued and expires earlier than the already enqueued
 770 * timers, we have to check, whether it expires earlier than the timer for
 771 * which the clock event device was armed.
 772 *
 773 * Called with interrupts disabled and base->cpu_base.lock held
 774 */
 775static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
 776{
 777	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 778	struct hrtimer_clock_base *base = timer->base;
 779	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 780
 781	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 782
 783	/*
 784	 * CLOCK_REALTIME timer might be requested with an absolute
 785	 * expiry time which is less than base->offset. Set it to 0.
 786	 */
 787	if (expires < 0)
 788		expires = 0;
 789
 790	if (timer->is_soft) {
 791		/*
 792		 * soft hrtimer could be started on a remote CPU. In this
 793		 * case softirq_expires_next needs to be updated on the
 794		 * remote CPU. The soft hrtimer will not expire before the
 795		 * first hard hrtimer on the remote CPU -
 796		 * hrtimer_check_target() prevents this case.
 797		 */
 798		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
 799
 800		if (timer_cpu_base->softirq_activated)
 801			return;
 802
 803		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
 804			return;
 805
 806		timer_cpu_base->softirq_next_timer = timer;
 807		timer_cpu_base->softirq_expires_next = expires;
 808
 809		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
 810		    !reprogram)
 811			return;
 812	}
 813
 814	/*
 815	 * If the timer is not on the current cpu, we cannot reprogram
 816	 * the other cpus clock event device.
 817	 */
 818	if (base->cpu_base != cpu_base)
 819		return;
 820
 
 
 
 821	/*
 822	 * If the hrtimer interrupt is running, then it will
 823	 * reevaluate the clock bases and reprogram the clock event
 824	 * device. The callbacks are always executed in hard interrupt
 825	 * context so we don't need an extra check for a running
 826	 * callback.
 827	 */
 828	if (cpu_base->in_hrtirq)
 829		return;
 830
 831	if (expires >= cpu_base->expires_next)
 832		return;
 833
 834	/* Update the pointer to the next expiring timer */
 835	cpu_base->next_timer = timer;
 836	cpu_base->expires_next = expires;
 
 
 
 
 
 
 
 
 
 837
 838	/*
 839	 * If hres is not active, hardware does not have to be
 840	 * programmed yet.
 841	 *
 842	 * If a hang was detected in the last timer interrupt then we
 843	 * do not schedule a timer which is earlier than the expiry
 844	 * which we enforced in the hang detection. We want the system
 845	 * to make progress.
 
 846	 */
 847	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 848		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849
 850	/*
 851	 * Program the timer hardware. We enforce the expiry for
 852	 * events which are already in the past.
 
 
 853	 */
 854	tick_program_event(expires, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855}
 856
 857/*
 858 * Clock realtime was set
 859 *
 860 * Change the offset of the realtime clock vs. the monotonic
 861 * clock.
 862 *
 863 * We might have to reprogram the high resolution timer interrupt. On
 864 * SMP we call the architecture specific code to retrigger _all_ high
 865 * resolution timer interrupts. On UP we just disable interrupts and
 866 * call the high resolution interrupt code.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867 */
 868void clock_was_set(void)
 869{
 870#ifdef CONFIG_HIGH_RES_TIMERS
 871	/* Retrigger the CPU local events everywhere */
 872	on_each_cpu(retrigger_next_event, NULL, 1);
 873#endif
 874	timerfd_clock_was_set();
 875}
 876
 877/*
 878 * During resume we might have to reprogram the high resolution timer
 879 * interrupt on all online CPUs.  However, all other CPUs will be
 880 * stopped with IRQs interrupts disabled so the clock_was_set() call
 881 * must be deferred.
 882 */
 883void hrtimers_resume(void)
 884{
 885	lockdep_assert_irqs_disabled();
 886	/* Retrigger on the local CPU */
 887	retrigger_next_event(NULL);
 888	/* And schedule a retrigger for all others */
 889	clock_was_set_delayed();
 890}
 891
 892/*
 893 * Counterpart to lock_hrtimer_base above:
 894 */
 895static inline
 896void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 
 897{
 898	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 899}
 900
 901/**
 902 * hrtimer_forward - forward the timer expiry
 903 * @timer:	hrtimer to forward
 904 * @now:	forward past this time
 905 * @interval:	the interval to forward
 906 *
 907 * Forward the timer expiry so it will expire in the future.
 908 * Returns the number of overruns.
 909 *
 910 * Can be safely called from the callback function of @timer. If
 911 * called from other contexts @timer must neither be enqueued nor
 912 * running the callback and the caller needs to take care of
 913 * serialization.
 
 
 
 
 914 *
 915 * Note: This only updates the timer expiry value and does not requeue
 916 * the timer.
 917 */
 918u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 919{
 920	u64 orun = 1;
 921	ktime_t delta;
 922
 923	delta = ktime_sub(now, hrtimer_get_expires(timer));
 924
 925	if (delta < 0)
 926		return 0;
 927
 928	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 929		return 0;
 930
 931	if (interval < hrtimer_resolution)
 932		interval = hrtimer_resolution;
 933
 934	if (unlikely(delta >= interval)) {
 935		s64 incr = ktime_to_ns(interval);
 936
 937		orun = ktime_divns(delta, incr);
 938		hrtimer_add_expires_ns(timer, incr * orun);
 939		if (hrtimer_get_expires_tv64(timer) > now)
 940			return orun;
 941		/*
 942		 * This (and the ktime_add() below) is the
 943		 * correction for exact:
 944		 */
 945		orun++;
 946	}
 947	hrtimer_add_expires(timer, interval);
 948
 949	return orun;
 950}
 951EXPORT_SYMBOL_GPL(hrtimer_forward);
 952
 953/*
 954 * enqueue_hrtimer - internal function to (re)start a timer
 955 *
 956 * The timer is inserted in expiry order. Insertion into the
 957 * red black tree is O(log(n)). Must hold the base lock.
 958 *
 959 * Returns 1 when the new timer is the leftmost timer in the tree.
 960 */
 961static int enqueue_hrtimer(struct hrtimer *timer,
 962			   struct hrtimer_clock_base *base,
 963			   enum hrtimer_mode mode)
 964{
 965	debug_activate(timer, mode);
 
 966
 967	base->cpu_base->active_bases |= 1 << base->index;
 968
 969	timer->state = HRTIMER_STATE_ENQUEUED;
 
 970
 971	return timerqueue_add(&base->active, &timer->node);
 972}
 973
 974/*
 975 * __remove_hrtimer - internal function to remove a timer
 976 *
 977 * Caller must hold the base lock.
 978 *
 979 * High resolution timer mode reprograms the clock event device when the
 980 * timer is the one which expires next. The caller can disable this by setting
 981 * reprogram to zero. This is useful, when the context does a reprogramming
 982 * anyway (e.g. timer interrupt)
 983 */
 984static void __remove_hrtimer(struct hrtimer *timer,
 985			     struct hrtimer_clock_base *base,
 986			     u8 newstate, int reprogram)
 987{
 988	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 989	u8 state = timer->state;
 990
 991	timer->state = newstate;
 
 992	if (!(state & HRTIMER_STATE_ENQUEUED))
 993		return;
 994
 995	if (!timerqueue_del(&base->active, &timer->node))
 996		cpu_base->active_bases &= ~(1 << base->index);
 997
 998	/*
 999	 * Note: If reprogram is false we do not update
1000	 * cpu_base->next_timer. This happens when we remove the first
1001	 * timer on a remote cpu. No harm as we never dereference
1002	 * cpu_base->next_timer. So the worst thing what can happen is
1003	 * an superflous call to hrtimer_force_reprogram() on the
1004	 * remote cpu later on if the same timer gets enqueued again.
1005	 */
1006	if (reprogram && timer == cpu_base->next_timer)
1007		hrtimer_force_reprogram(cpu_base, 1);
1008}
1009
1010/*
1011 * remove hrtimer, called with base lock held
1012 */
1013static inline int
1014remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
 
1015{
1016	if (hrtimer_is_queued(timer)) {
1017		u8 state = timer->state;
1018		int reprogram;
 
1019
1020		/*
1021		 * Remove the timer and force reprogramming when high
1022		 * resolution mode is active and the timer is on the current
1023		 * CPU. If we remove a timer on another CPU, reprogramming is
1024		 * skipped. The interrupt event on this CPU is fired and
1025		 * reprogramming happens in the interrupt handler. This is a
1026		 * rare case and less expensive than a smp call.
1027		 */
1028		debug_deactivate(timer);
1029		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1030
 
 
 
 
 
 
1031		if (!restart)
1032			state = HRTIMER_STATE_INACTIVE;
 
 
1033
1034		__remove_hrtimer(timer, base, state, reprogram);
1035		return 1;
1036	}
1037	return 0;
1038}
1039
1040static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1041					    const enum hrtimer_mode mode)
1042{
1043#ifdef CONFIG_TIME_LOW_RES
1044	/*
1045	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1046	 * granular time values. For relative timers we add hrtimer_resolution
1047	 * (i.e. one jiffie) to prevent short timeouts.
1048	 */
1049	timer->is_rel = mode & HRTIMER_MODE_REL;
1050	if (timer->is_rel)
1051		tim = ktime_add_safe(tim, hrtimer_resolution);
1052#endif
1053	return tim;
1054}
1055
1056static void
1057hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1058{
1059	ktime_t expires;
1060
1061	/*
1062	 * Find the next SOFT expiration.
1063	 */
1064	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1065
1066	/*
1067	 * reprogramming needs to be triggered, even if the next soft
1068	 * hrtimer expires at the same time than the next hard
1069	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1070	 */
1071	if (expires == KTIME_MAX)
1072		return;
1073
1074	/*
1075	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1076	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1077	 */
1078	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1079}
1080
1081static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1082				    u64 delta_ns, const enum hrtimer_mode mode,
1083				    struct hrtimer_clock_base *base)
1084{
 
1085	struct hrtimer_clock_base *new_base;
 
1086
1087	/* Remove an active timer from the queue: */
1088	remove_hrtimer(timer, base, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089
1090	if (mode & HRTIMER_MODE_REL)
1091		tim = ktime_add_safe(tim, base->get_time());
1092
1093	tim = hrtimer_update_lowres(timer, tim, mode);
1094
1095	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1096
1097	/* Switch the timer base, if necessary: */
1098	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099
1100	return enqueue_hrtimer(timer, new_base, mode);
 
 
 
 
 
 
1101}
1102
1103/**
1104 * hrtimer_start_range_ns - (re)start an hrtimer
1105 * @timer:	the timer to be added
1106 * @tim:	expiry time
1107 * @delta_ns:	"slack" range for the timer
1108 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1109 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1110 *		softirq based mode is considered for debug purpose only!
1111 */
1112void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1113			    u64 delta_ns, const enum hrtimer_mode mode)
1114{
1115	struct hrtimer_clock_base *base;
1116	unsigned long flags;
1117
 
 
1118	/*
1119	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1120	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1121	 * expiry mode because unmarked timers are moved to softirq expiry.
1122	 */
1123	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1124		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1125	else
1126		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1127
1128	base = lock_hrtimer_base(timer, &flags);
1129
1130	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1131		hrtimer_reprogram(timer, true);
1132
1133	unlock_hrtimer_base(timer, &flags);
1134}
1135EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1136
1137/**
1138 * hrtimer_try_to_cancel - try to deactivate a timer
1139 * @timer:	hrtimer to stop
1140 *
1141 * Returns:
1142 *
1143 *  *  0 when the timer was not active
1144 *  *  1 when the timer was active
1145 *  * -1 when the timer is currently executing the callback function and
1146 *    cannot be stopped
1147 */
1148int hrtimer_try_to_cancel(struct hrtimer *timer)
1149{
1150	struct hrtimer_clock_base *base;
1151	unsigned long flags;
1152	int ret = -1;
1153
1154	/*
1155	 * Check lockless first. If the timer is not active (neither
1156	 * enqueued nor running the callback, nothing to do here.  The
1157	 * base lock does not serialize against a concurrent enqueue,
1158	 * so we can avoid taking it.
1159	 */
1160	if (!hrtimer_active(timer))
1161		return 0;
1162
1163	base = lock_hrtimer_base(timer, &flags);
1164
1165	if (!hrtimer_callback_running(timer))
1166		ret = remove_hrtimer(timer, base, false);
1167
1168	unlock_hrtimer_base(timer, &flags);
1169
1170	return ret;
1171
1172}
1173EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1174
1175#ifdef CONFIG_PREEMPT_RT
1176static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1177{
1178	spin_lock_init(&base->softirq_expiry_lock);
1179}
1180
1181static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
 
1182{
1183	spin_lock(&base->softirq_expiry_lock);
1184}
1185
1186static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
 
1187{
1188	spin_unlock(&base->softirq_expiry_lock);
1189}
1190
1191/*
1192 * The counterpart to hrtimer_cancel_wait_running().
1193 *
1194 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1195 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1196 * allows the waiter to acquire the lock and make progress.
1197 */
1198static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1199				      unsigned long flags)
1200{
1201	if (atomic_read(&cpu_base->timer_waiters)) {
1202		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203		spin_unlock(&cpu_base->softirq_expiry_lock);
1204		spin_lock(&cpu_base->softirq_expiry_lock);
1205		raw_spin_lock_irq(&cpu_base->lock);
1206	}
1207}
1208
1209/*
1210 * This function is called on PREEMPT_RT kernels when the fast path
1211 * deletion of a timer failed because the timer callback function was
1212 * running.
1213 *
1214 * This prevents priority inversion: if the soft irq thread is preempted
1215 * in the middle of a timer callback, then calling del_timer_sync() can
1216 * lead to two issues:
1217 *
1218 *  - If the caller is on a remote CPU then it has to spin wait for the timer
1219 *    handler to complete. This can result in unbound priority inversion.
1220 *
1221 *  - If the caller originates from the task which preempted the timer
1222 *    handler on the same CPU, then spin waiting for the timer handler to
1223 *    complete is never going to end.
1224 */
1225void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1226{
1227	/* Lockless read. Prevent the compiler from reloading it below */
1228	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1229
1230	/*
1231	 * Just relax if the timer expires in hard interrupt context or if
1232	 * it is currently on the migration base.
1233	 */
1234	if (!timer->is_soft || is_migration_base(base)) {
1235		cpu_relax();
1236		return;
1237	}
1238
1239	/*
1240	 * Mark the base as contended and grab the expiry lock, which is
1241	 * held by the softirq across the timer callback. Drop the lock
1242	 * immediately so the softirq can expire the next timer. In theory
1243	 * the timer could already be running again, but that's more than
1244	 * unlikely and just causes another wait loop.
1245	 */
1246	atomic_inc(&base->cpu_base->timer_waiters);
1247	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1248	atomic_dec(&base->cpu_base->timer_waiters);
1249	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1250}
1251#else
1252static inline void
1253hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1254static inline void
1255hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1256static inline void
1257hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1258static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1259					     unsigned long flags) { }
1260#endif
1261
1262/**
1263 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1264 * @timer:	the timer to be cancelled
1265 *
1266 * Returns:
1267 *  0 when the timer was not active
1268 *  1 when the timer was active
1269 */
1270int hrtimer_cancel(struct hrtimer *timer)
1271{
1272	int ret;
1273
1274	do {
1275		ret = hrtimer_try_to_cancel(timer);
1276
1277		if (ret < 0)
1278			hrtimer_cancel_wait_running(timer);
1279	} while (ret < 0);
1280	return ret;
1281}
1282EXPORT_SYMBOL_GPL(hrtimer_cancel);
1283
1284/**
1285 * hrtimer_get_remaining - get remaining time for the timer
1286 * @timer:	the timer to read
1287 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1288 */
1289ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1290{
1291	unsigned long flags;
1292	ktime_t rem;
1293
1294	lock_hrtimer_base(timer, &flags);
1295	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1296		rem = hrtimer_expires_remaining_adjusted(timer);
1297	else
1298		rem = hrtimer_expires_remaining(timer);
1299	unlock_hrtimer_base(timer, &flags);
1300
1301	return rem;
1302}
1303EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1304
1305#ifdef CONFIG_NO_HZ_COMMON
1306/**
1307 * hrtimer_get_next_event - get the time until next expiry event
1308 *
1309 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1310 */
1311u64 hrtimer_get_next_event(void)
1312{
1313	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1314	u64 expires = KTIME_MAX;
1315	unsigned long flags;
1316
1317	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1318
1319	if (!__hrtimer_hres_active(cpu_base))
1320		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1321
1322	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1323
1324	return expires;
1325}
1326
1327/**
1328 * hrtimer_next_event_without - time until next expiry event w/o one timer
1329 * @exclude:	timer to exclude
1330 *
1331 * Returns the next expiry time over all timers except for the @exclude one or
1332 * KTIME_MAX if none of them is pending.
1333 */
1334u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1335{
1336	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1337	u64 expires = KTIME_MAX;
1338	unsigned long flags;
1339
1340	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1341
1342	if (__hrtimer_hres_active(cpu_base)) {
1343		unsigned int active;
1344
1345		if (!cpu_base->softirq_activated) {
1346			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1347			expires = __hrtimer_next_event_base(cpu_base, exclude,
1348							    active, KTIME_MAX);
1349		}
1350		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1351		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1352						    expires);
1353	}
1354
1355	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1356
1357	return expires;
1358}
1359#endif
1360
1361static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1362{
1363	if (likely(clock_id < MAX_CLOCKS)) {
1364		int base = hrtimer_clock_to_base_table[clock_id];
1365
1366		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1367			return base;
1368	}
1369	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1370	return HRTIMER_BASE_MONOTONIC;
1371}
1372
 
 
 
 
 
1373static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1374			   enum hrtimer_mode mode)
1375{
1376	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1377	struct hrtimer_cpu_base *cpu_base;
1378	int base;
1379
1380	/*
1381	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1382	 * marked for hard interrupt expiry mode are moved into soft
1383	 * interrupt context for latency reasons and because the callbacks
1384	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1385	 */
1386	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1387		softtimer = true;
1388
1389	memset(timer, 0, sizeof(struct hrtimer));
1390
1391	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1392
1393	/*
1394	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1395	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1396	 * ensure POSIX compliance.
1397	 */
1398	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1399		clock_id = CLOCK_MONOTONIC;
1400
1401	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1402	base += hrtimer_clockid_to_base(clock_id);
1403	timer->is_soft = softtimer;
1404	timer->is_hard = !softtimer;
1405	timer->base = &cpu_base->clock_base[base];
1406	timerqueue_init(&timer->node);
1407}
1408
 
 
 
 
 
 
 
 
 
 
 
 
1409/**
1410 * hrtimer_init - initialize a timer to the given clock
1411 * @timer:	the timer to be initialized
1412 * @clock_id:	the clock to be used
1413 * @mode:       The modes which are relevant for intitialization:
1414 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1415 *              HRTIMER_MODE_REL_SOFT
1416 *
1417 *              The PINNED variants of the above can be handed in,
1418 *              but the PINNED bit is ignored as pinning happens
1419 *              when the hrtimer is started
1420 */
1421void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1422		  enum hrtimer_mode mode)
1423{
1424	debug_init(timer, clock_id, mode);
1425	__hrtimer_init(timer, clock_id, mode);
1426}
1427EXPORT_SYMBOL_GPL(hrtimer_init);
1428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429/*
1430 * A timer is active, when it is enqueued into the rbtree or the
1431 * callback function is running or it's in the state of being migrated
1432 * to another cpu.
1433 *
1434 * It is important for this function to not return a false negative.
1435 */
1436bool hrtimer_active(const struct hrtimer *timer)
1437{
1438	struct hrtimer_clock_base *base;
1439	unsigned int seq;
1440
1441	do {
1442		base = READ_ONCE(timer->base);
1443		seq = raw_read_seqcount_begin(&base->seq);
1444
1445		if (timer->state != HRTIMER_STATE_INACTIVE ||
1446		    base->running == timer)
1447			return true;
1448
1449	} while (read_seqcount_retry(&base->seq, seq) ||
1450		 base != READ_ONCE(timer->base));
1451
1452	return false;
1453}
1454EXPORT_SYMBOL_GPL(hrtimer_active);
1455
1456/*
1457 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1458 * distinct sections:
1459 *
1460 *  - queued:	the timer is queued
1461 *  - callback:	the timer is being ran
1462 *  - post:	the timer is inactive or (re)queued
1463 *
1464 * On the read side we ensure we observe timer->state and cpu_base->running
1465 * from the same section, if anything changed while we looked at it, we retry.
1466 * This includes timer->base changing because sequence numbers alone are
1467 * insufficient for that.
1468 *
1469 * The sequence numbers are required because otherwise we could still observe
1470 * a false negative if the read side got smeared over multiple consequtive
1471 * __run_hrtimer() invocations.
1472 */
1473
1474static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1475			  struct hrtimer_clock_base *base,
1476			  struct hrtimer *timer, ktime_t *now,
1477			  unsigned long flags)
1478{
1479	enum hrtimer_restart (*fn)(struct hrtimer *);
 
1480	int restart;
1481
1482	lockdep_assert_held(&cpu_base->lock);
1483
1484	debug_deactivate(timer);
1485	base->running = timer;
1486
1487	/*
1488	 * Separate the ->running assignment from the ->state assignment.
1489	 *
1490	 * As with a regular write barrier, this ensures the read side in
1491	 * hrtimer_active() cannot observe base->running == NULL &&
1492	 * timer->state == INACTIVE.
1493	 */
1494	raw_write_seqcount_barrier(&base->seq);
1495
1496	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1497	fn = timer->function;
1498
1499	/*
1500	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1501	 * timer is restarted with a period then it becomes an absolute
1502	 * timer. If its not restarted it does not matter.
1503	 */
1504	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1505		timer->is_rel = false;
1506
1507	/*
1508	 * The timer is marked as running in the CPU base, so it is
1509	 * protected against migration to a different CPU even if the lock
1510	 * is dropped.
1511	 */
1512	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1513	trace_hrtimer_expire_entry(timer, now);
 
 
1514	restart = fn(timer);
 
 
1515	trace_hrtimer_expire_exit(timer);
1516	raw_spin_lock_irq(&cpu_base->lock);
1517
1518	/*
1519	 * Note: We clear the running state after enqueue_hrtimer and
1520	 * we do not reprogram the event hardware. Happens either in
1521	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1522	 *
1523	 * Note: Because we dropped the cpu_base->lock above,
1524	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1525	 * for us already.
1526	 */
1527	if (restart != HRTIMER_NORESTART &&
1528	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1529		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1530
1531	/*
1532	 * Separate the ->running assignment from the ->state assignment.
1533	 *
1534	 * As with a regular write barrier, this ensures the read side in
1535	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1536	 * timer->state == INACTIVE.
1537	 */
1538	raw_write_seqcount_barrier(&base->seq);
1539
1540	WARN_ON_ONCE(base->running != timer);
1541	base->running = NULL;
1542}
1543
1544static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1545				 unsigned long flags, unsigned int active_mask)
1546{
1547	struct hrtimer_clock_base *base;
1548	unsigned int active = cpu_base->active_bases & active_mask;
1549
1550	for_each_active_base(base, cpu_base, active) {
1551		struct timerqueue_node *node;
1552		ktime_t basenow;
1553
1554		basenow = ktime_add(now, base->offset);
1555
1556		while ((node = timerqueue_getnext(&base->active))) {
1557			struct hrtimer *timer;
1558
1559			timer = container_of(node, struct hrtimer, node);
1560
1561			/*
1562			 * The immediate goal for using the softexpires is
1563			 * minimizing wakeups, not running timers at the
1564			 * earliest interrupt after their soft expiration.
1565			 * This allows us to avoid using a Priority Search
1566			 * Tree, which can answer a stabbing querry for
1567			 * overlapping intervals and instead use the simple
1568			 * BST we already have.
1569			 * We don't add extra wakeups by delaying timers that
1570			 * are right-of a not yet expired timer, because that
1571			 * timer will have to trigger a wakeup anyway.
1572			 */
1573			if (basenow < hrtimer_get_softexpires_tv64(timer))
1574				break;
1575
1576			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1577			if (active_mask == HRTIMER_ACTIVE_SOFT)
1578				hrtimer_sync_wait_running(cpu_base, flags);
1579		}
1580	}
1581}
1582
1583static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1584{
1585	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1586	unsigned long flags;
1587	ktime_t now;
1588
1589	hrtimer_cpu_base_lock_expiry(cpu_base);
1590	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1591
1592	now = hrtimer_update_base(cpu_base);
1593	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1594
1595	cpu_base->softirq_activated = 0;
1596	hrtimer_update_softirq_timer(cpu_base, true);
1597
1598	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1599	hrtimer_cpu_base_unlock_expiry(cpu_base);
1600}
1601
1602#ifdef CONFIG_HIGH_RES_TIMERS
1603
1604/*
1605 * High resolution timer interrupt
1606 * Called with interrupts disabled
1607 */
1608void hrtimer_interrupt(struct clock_event_device *dev)
1609{
1610	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1611	ktime_t expires_next, now, entry_time, delta;
1612	unsigned long flags;
1613	int retries = 0;
1614
1615	BUG_ON(!cpu_base->hres_active);
1616	cpu_base->nr_events++;
1617	dev->next_event = KTIME_MAX;
1618
1619	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1620	entry_time = now = hrtimer_update_base(cpu_base);
1621retry:
1622	cpu_base->in_hrtirq = 1;
1623	/*
1624	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1625	 * held to prevent that a timer is enqueued in our queue via
1626	 * the migration code. This does not affect enqueueing of
1627	 * timers which run their callback and need to be requeued on
1628	 * this CPU.
1629	 */
1630	cpu_base->expires_next = KTIME_MAX;
1631
1632	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1633		cpu_base->softirq_expires_next = KTIME_MAX;
1634		cpu_base->softirq_activated = 1;
1635		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1636	}
1637
1638	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1639
1640	/* Reevaluate the clock bases for the next expiry */
1641	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1642	/*
1643	 * Store the new expiry value so the migration code can verify
1644	 * against it.
1645	 */
1646	cpu_base->expires_next = expires_next;
1647	cpu_base->in_hrtirq = 0;
1648	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1649
1650	/* Reprogramming necessary ? */
1651	if (!tick_program_event(expires_next, 0)) {
1652		cpu_base->hang_detected = 0;
1653		return;
1654	}
1655
1656	/*
1657	 * The next timer was already expired due to:
1658	 * - tracing
1659	 * - long lasting callbacks
1660	 * - being scheduled away when running in a VM
1661	 *
1662	 * We need to prevent that we loop forever in the hrtimer
1663	 * interrupt routine. We give it 3 attempts to avoid
1664	 * overreacting on some spurious event.
1665	 *
1666	 * Acquire base lock for updating the offsets and retrieving
1667	 * the current time.
1668	 */
1669	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1670	now = hrtimer_update_base(cpu_base);
1671	cpu_base->nr_retries++;
1672	if (++retries < 3)
1673		goto retry;
1674	/*
1675	 * Give the system a chance to do something else than looping
1676	 * here. We stored the entry time, so we know exactly how long
1677	 * we spent here. We schedule the next event this amount of
1678	 * time away.
1679	 */
1680	cpu_base->nr_hangs++;
1681	cpu_base->hang_detected = 1;
1682	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1683
1684	delta = ktime_sub(now, entry_time);
1685	if ((unsigned int)delta > cpu_base->max_hang_time)
1686		cpu_base->max_hang_time = (unsigned int) delta;
1687	/*
1688	 * Limit it to a sensible value as we enforce a longer
1689	 * delay. Give the CPU at least 100ms to catch up.
1690	 */
1691	if (delta > 100 * NSEC_PER_MSEC)
1692		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1693	else
1694		expires_next = ktime_add(now, delta);
1695	tick_program_event(expires_next, 1);
1696	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1697}
1698
1699/* called with interrupts disabled */
1700static inline void __hrtimer_peek_ahead_timers(void)
1701{
1702	struct tick_device *td;
1703
1704	if (!hrtimer_hres_active())
1705		return;
1706
1707	td = this_cpu_ptr(&tick_cpu_device);
1708	if (td && td->evtdev)
1709		hrtimer_interrupt(td->evtdev);
1710}
1711
1712#else /* CONFIG_HIGH_RES_TIMERS */
1713
1714static inline void __hrtimer_peek_ahead_timers(void) { }
1715
1716#endif	/* !CONFIG_HIGH_RES_TIMERS */
1717
1718/*
1719 * Called from run_local_timers in hardirq context every jiffy
1720 */
1721void hrtimer_run_queues(void)
1722{
1723	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1724	unsigned long flags;
1725	ktime_t now;
1726
1727	if (__hrtimer_hres_active(cpu_base))
1728		return;
1729
1730	/*
1731	 * This _is_ ugly: We have to check periodically, whether we
1732	 * can switch to highres and / or nohz mode. The clocksource
1733	 * switch happens with xtime_lock held. Notification from
1734	 * there only sets the check bit in the tick_oneshot code,
1735	 * otherwise we might deadlock vs. xtime_lock.
1736	 */
1737	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1738		hrtimer_switch_to_hres();
1739		return;
1740	}
1741
1742	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1743	now = hrtimer_update_base(cpu_base);
1744
1745	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1746		cpu_base->softirq_expires_next = KTIME_MAX;
1747		cpu_base->softirq_activated = 1;
1748		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1749	}
1750
1751	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1752	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1753}
1754
1755/*
1756 * Sleep related functions:
1757 */
1758static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1759{
1760	struct hrtimer_sleeper *t =
1761		container_of(timer, struct hrtimer_sleeper, timer);
1762	struct task_struct *task = t->task;
1763
1764	t->task = NULL;
1765	if (task)
1766		wake_up_process(task);
1767
1768	return HRTIMER_NORESTART;
1769}
1770
1771/**
1772 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1773 * @sl:		sleeper to be started
1774 * @mode:	timer mode abs/rel
1775 *
1776 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1777 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1778 */
1779void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1780				   enum hrtimer_mode mode)
1781{
1782	/*
1783	 * Make the enqueue delivery mode check work on RT. If the sleeper
1784	 * was initialized for hard interrupt delivery, force the mode bit.
1785	 * This is a special case for hrtimer_sleepers because
1786	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1787	 * fiddling with this decision is avoided at the call sites.
1788	 */
1789	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1790		mode |= HRTIMER_MODE_HARD;
1791
1792	hrtimer_start_expires(&sl->timer, mode);
1793}
1794EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1795
1796static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1797				   clockid_t clock_id, enum hrtimer_mode mode)
1798{
1799	/*
1800	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1801	 * marked for hard interrupt expiry mode are moved into soft
1802	 * interrupt context either for latency reasons or because the
1803	 * hrtimer callback takes regular spinlocks or invokes other
1804	 * functions which are not suitable for hard interrupt context on
1805	 * PREEMPT_RT.
1806	 *
1807	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1808	 * context, but there is a latency concern: Untrusted userspace can
1809	 * spawn many threads which arm timers for the same expiry time on
1810	 * the same CPU. That causes a latency spike due to the wakeup of
1811	 * a gazillion threads.
1812	 *
1813	 * OTOH, priviledged real-time user space applications rely on the
1814	 * low latency of hard interrupt wakeups. If the current task is in
1815	 * a real-time scheduling class, mark the mode for hard interrupt
1816	 * expiry.
1817	 */
1818	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1819		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1820			mode |= HRTIMER_MODE_HARD;
1821	}
1822
1823	__hrtimer_init(&sl->timer, clock_id, mode);
1824	sl->timer.function = hrtimer_wakeup;
1825	sl->task = current;
1826}
1827
1828/**
1829 * hrtimer_init_sleeper - initialize sleeper to the given clock
1830 * @sl:		sleeper to be initialized
1831 * @clock_id:	the clock to be used
1832 * @mode:	timer mode abs/rel
1833 */
1834void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1835			  enum hrtimer_mode mode)
1836{
1837	debug_init(&sl->timer, clock_id, mode);
1838	__hrtimer_init_sleeper(sl, clock_id, mode);
1839
1840}
1841EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1842
1843int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1844{
1845	switch(restart->nanosleep.type) {
1846#ifdef CONFIG_COMPAT_32BIT_TIME
1847	case TT_COMPAT:
1848		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1849			return -EFAULT;
1850		break;
1851#endif
1852	case TT_NATIVE:
1853		if (put_timespec64(ts, restart->nanosleep.rmtp))
1854			return -EFAULT;
1855		break;
1856	default:
1857		BUG();
1858	}
1859	return -ERESTART_RESTARTBLOCK;
1860}
1861
1862static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1863{
1864	struct restart_block *restart;
1865
1866	do {
1867		set_current_state(TASK_INTERRUPTIBLE);
1868		hrtimer_sleeper_start_expires(t, mode);
1869
1870		if (likely(t->task))
1871			freezable_schedule();
1872
1873		hrtimer_cancel(&t->timer);
1874		mode = HRTIMER_MODE_ABS;
1875
1876	} while (t->task && !signal_pending(current));
1877
1878	__set_current_state(TASK_RUNNING);
1879
1880	if (!t->task)
1881		return 0;
1882
1883	restart = &current->restart_block;
1884	if (restart->nanosleep.type != TT_NONE) {
1885		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1886		struct timespec64 rmt;
1887
1888		if (rem <= 0)
1889			return 0;
1890		rmt = ktime_to_timespec64(rem);
1891
1892		return nanosleep_copyout(restart, &rmt);
1893	}
1894	return -ERESTART_RESTARTBLOCK;
1895}
1896
1897static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1898{
1899	struct hrtimer_sleeper t;
1900	int ret;
1901
1902	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1903				      HRTIMER_MODE_ABS);
1904	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1905	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1906	destroy_hrtimer_on_stack(&t.timer);
1907	return ret;
1908}
1909
1910long hrtimer_nanosleep(const struct timespec64 *rqtp,
1911		       const enum hrtimer_mode mode, const clockid_t clockid)
1912{
1913	struct restart_block *restart;
1914	struct hrtimer_sleeper t;
1915	int ret = 0;
1916	u64 slack;
1917
1918	slack = current->timer_slack_ns;
1919	if (dl_task(current) || rt_task(current))
1920		slack = 0;
1921
1922	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1923	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1924	ret = do_nanosleep(&t, mode);
1925	if (ret != -ERESTART_RESTARTBLOCK)
1926		goto out;
1927
1928	/* Absolute timers do not update the rmtp value and restart: */
1929	if (mode == HRTIMER_MODE_ABS) {
1930		ret = -ERESTARTNOHAND;
1931		goto out;
1932	}
1933
1934	restart = &current->restart_block;
1935	restart->fn = hrtimer_nanosleep_restart;
1936	restart->nanosleep.clockid = t.timer.base->clockid;
1937	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
 
1938out:
1939	destroy_hrtimer_on_stack(&t.timer);
1940	return ret;
1941}
1942
1943#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1944
1945SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1946		struct __kernel_timespec __user *, rmtp)
1947{
1948	struct timespec64 tu;
1949
1950	if (get_timespec64(&tu, rqtp))
1951		return -EFAULT;
1952
1953	if (!timespec64_valid(&tu))
1954		return -EINVAL;
1955
 
1956	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1957	current->restart_block.nanosleep.rmtp = rmtp;
1958	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
 
1959}
1960
1961#endif
1962
1963#ifdef CONFIG_COMPAT_32BIT_TIME
1964
1965SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1966		       struct old_timespec32 __user *, rmtp)
1967{
1968	struct timespec64 tu;
1969
1970	if (get_old_timespec32(&tu, rqtp))
1971		return -EFAULT;
1972
1973	if (!timespec64_valid(&tu))
1974		return -EINVAL;
1975
 
1976	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1977	current->restart_block.nanosleep.compat_rmtp = rmtp;
1978	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
 
1979}
1980#endif
1981
1982/*
1983 * Functions related to boot-time initialization:
1984 */
1985int hrtimers_prepare_cpu(unsigned int cpu)
1986{
1987	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1988	int i;
1989
1990	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1991		cpu_base->clock_base[i].cpu_base = cpu_base;
1992		timerqueue_init_head(&cpu_base->clock_base[i].active);
 
 
 
1993	}
1994
1995	cpu_base->cpu = cpu;
 
 
 
 
 
 
 
 
 
1996	cpu_base->active_bases = 0;
1997	cpu_base->hres_active = 0;
1998	cpu_base->hang_detected = 0;
1999	cpu_base->next_timer = NULL;
2000	cpu_base->softirq_next_timer = NULL;
2001	cpu_base->expires_next = KTIME_MAX;
2002	cpu_base->softirq_expires_next = KTIME_MAX;
2003	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2004	return 0;
2005}
2006
2007#ifdef CONFIG_HOTPLUG_CPU
2008
2009static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2010				struct hrtimer_clock_base *new_base)
2011{
2012	struct hrtimer *timer;
2013	struct timerqueue_node *node;
2014
2015	while ((node = timerqueue_getnext(&old_base->active))) {
2016		timer = container_of(node, struct hrtimer, node);
2017		BUG_ON(hrtimer_callback_running(timer));
2018		debug_deactivate(timer);
2019
2020		/*
2021		 * Mark it as ENQUEUED not INACTIVE otherwise the
2022		 * timer could be seen as !active and just vanish away
2023		 * under us on another CPU
2024		 */
2025		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2026		timer->base = new_base;
2027		/*
2028		 * Enqueue the timers on the new cpu. This does not
2029		 * reprogram the event device in case the timer
2030		 * expires before the earliest on this CPU, but we run
2031		 * hrtimer_interrupt after we migrated everything to
2032		 * sort out already expired timers and reprogram the
2033		 * event device.
2034		 */
2035		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2036	}
2037}
2038
2039int hrtimers_dead_cpu(unsigned int scpu)
2040{
 
2041	struct hrtimer_cpu_base *old_base, *new_base;
2042	int i;
2043
2044	BUG_ON(cpu_online(scpu));
2045	tick_cancel_sched_timer(scpu);
2046
2047	/*
2048	 * this BH disable ensures that raise_softirq_irqoff() does
2049	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2050	 * holding the cpu_base lock
2051	 */
2052	local_bh_disable();
2053	local_irq_disable();
2054	old_base = &per_cpu(hrtimer_bases, scpu);
2055	new_base = this_cpu_ptr(&hrtimer_bases);
2056	/*
2057	 * The caller is globally serialized and nobody else
2058	 * takes two locks at once, deadlock is not possible.
2059	 */
2060	raw_spin_lock(&new_base->lock);
2061	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2062
2063	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2064		migrate_hrtimer_list(&old_base->clock_base[i],
2065				     &new_base->clock_base[i]);
2066	}
2067
2068	/*
2069	 * The migration might have changed the first expiring softirq
2070	 * timer on this CPU. Update it.
2071	 */
2072	hrtimer_update_softirq_timer(new_base, false);
 
 
2073
2074	raw_spin_unlock(&old_base->lock);
2075	raw_spin_unlock(&new_base->lock);
 
 
2076
2077	/* Check, if we got expired work to do */
2078	__hrtimer_peek_ahead_timers();
2079	local_irq_enable();
2080	local_bh_enable();
2081	return 0;
2082}
2083
2084#endif /* CONFIG_HOTPLUG_CPU */
2085
2086void __init hrtimers_init(void)
2087{
2088	hrtimers_prepare_cpu(smp_processor_id());
 
2089	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2090}
2091
2092/**
2093 * schedule_hrtimeout_range_clock - sleep until timeout
2094 * @expires:	timeout value (ktime_t)
2095 * @delta:	slack in expires timeout (ktime_t)
2096 * @mode:	timer mode
2097 * @clock_id:	timer clock to be used
2098 */
2099int __sched
2100schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2101			       const enum hrtimer_mode mode, clockid_t clock_id)
2102{
2103	struct hrtimer_sleeper t;
2104
2105	/*
2106	 * Optimize when a zero timeout value is given. It does not
2107	 * matter whether this is an absolute or a relative time.
2108	 */
2109	if (expires && *expires == 0) {
2110		__set_current_state(TASK_RUNNING);
2111		return 0;
2112	}
2113
2114	/*
2115	 * A NULL parameter means "infinite"
2116	 */
2117	if (!expires) {
2118		schedule();
2119		return -EINTR;
2120	}
2121
2122	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2123	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2124	hrtimer_sleeper_start_expires(&t, mode);
2125
2126	if (likely(t.task))
2127		schedule();
2128
2129	hrtimer_cancel(&t.timer);
2130	destroy_hrtimer_on_stack(&t.timer);
2131
2132	__set_current_state(TASK_RUNNING);
2133
2134	return !t.task ? 0 : -EINTR;
2135}
2136
2137/**
2138 * schedule_hrtimeout_range - sleep until timeout
2139 * @expires:	timeout value (ktime_t)
2140 * @delta:	slack in expires timeout (ktime_t)
2141 * @mode:	timer mode
2142 *
2143 * Make the current task sleep until the given expiry time has
2144 * elapsed. The routine will return immediately unless
2145 * the current task state has been set (see set_current_state()).
2146 *
2147 * The @delta argument gives the kernel the freedom to schedule the
2148 * actual wakeup to a time that is both power and performance friendly.
2149 * The kernel give the normal best effort behavior for "@expires+@delta",
2150 * but may decide to fire the timer earlier, but no earlier than @expires.
2151 *
2152 * You can set the task state as follows -
2153 *
2154 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2155 * pass before the routine returns unless the current task is explicitly
2156 * woken up, (e.g. by wake_up_process()).
2157 *
2158 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2159 * delivered to the current task or the current task is explicitly woken
2160 * up.
2161 *
2162 * The current task state is guaranteed to be TASK_RUNNING when this
2163 * routine returns.
2164 *
2165 * Returns 0 when the timer has expired. If the task was woken before the
2166 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2167 * by an explicit wakeup, it returns -EINTR.
2168 */
2169int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2170				     const enum hrtimer_mode mode)
2171{
2172	return schedule_hrtimeout_range_clock(expires, delta, mode,
2173					      CLOCK_MONOTONIC);
2174}
2175EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2176
2177/**
2178 * schedule_hrtimeout - sleep until timeout
2179 * @expires:	timeout value (ktime_t)
2180 * @mode:	timer mode
2181 *
2182 * Make the current task sleep until the given expiry time has
2183 * elapsed. The routine will return immediately unless
2184 * the current task state has been set (see set_current_state()).
2185 *
2186 * You can set the task state as follows -
2187 *
2188 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2189 * pass before the routine returns unless the current task is explicitly
2190 * woken up, (e.g. by wake_up_process()).
2191 *
2192 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2193 * delivered to the current task or the current task is explicitly woken
2194 * up.
2195 *
2196 * The current task state is guaranteed to be TASK_RUNNING when this
2197 * routine returns.
2198 *
2199 * Returns 0 when the timer has expired. If the task was woken before the
2200 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2201 * by an explicit wakeup, it returns -EINTR.
2202 */
2203int __sched schedule_hrtimeout(ktime_t *expires,
2204			       const enum hrtimer_mode mode)
2205{
2206	return schedule_hrtimeout_range(expires, 0, mode);
2207}
2208EXPORT_SYMBOL_GPL(schedule_hrtimeout);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  High-resolution kernel timers
   8 *
   9 *  In contrast to the low-resolution timeout API, aka timer wheel,
  10 *  hrtimers provide finer resolution and accuracy depending on system
  11 *  configuration and capabilities.
  12 *
  13 *  Started by: Thomas Gleixner and Ingo Molnar
  14 *
  15 *  Credits:
  16 *	Based on the original timer wheel code
  17 *
  18 *	Help, testing, suggestions, bugfixes, improvements were
  19 *	provided by:
  20 *
  21 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  22 *	et. al.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/export.h>
  27#include <linux/percpu.h>
  28#include <linux/hrtimer.h>
  29#include <linux/notifier.h>
  30#include <linux/syscalls.h>
  31#include <linux/interrupt.h>
  32#include <linux/tick.h>
  33#include <linux/err.h>
  34#include <linux/debugobjects.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/deadline.h>
  39#include <linux/sched/nohz.h>
  40#include <linux/sched/debug.h>
  41#include <linux/sched/isolation.h>
  42#include <linux/timer.h>
  43#include <linux/freezer.h>
  44#include <linux/compat.h>
  45
  46#include <linux/uaccess.h>
  47
  48#include <trace/events/timer.h>
  49
  50#include "tick-internal.h"
  51
  52/*
  53 * Masks for selecting the soft and hard context timers from
  54 * cpu_base->active
  55 */
  56#define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
  57#define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
  58#define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
  59#define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
  60
  61static void retrigger_next_event(void *arg);
  62
  63/*
  64 * The timer bases:
  65 *
  66 * There are more clockids than hrtimer bases. Thus, we index
  67 * into the timer bases by the hrtimer_base_type enum. When trying
  68 * to reach a base using a clockid, hrtimer_clockid_to_base()
  69 * is used to convert from clockid to the proper hrtimer_base_type.
  70 */
  71DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  72{
  73	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  74	.clock_base =
  75	{
  76		{
  77			.index = HRTIMER_BASE_MONOTONIC,
  78			.clockid = CLOCK_MONOTONIC,
  79			.get_time = &ktime_get,
  80		},
  81		{
  82			.index = HRTIMER_BASE_REALTIME,
  83			.clockid = CLOCK_REALTIME,
  84			.get_time = &ktime_get_real,
  85		},
  86		{
  87			.index = HRTIMER_BASE_BOOTTIME,
  88			.clockid = CLOCK_BOOTTIME,
  89			.get_time = &ktime_get_boottime,
  90		},
  91		{
  92			.index = HRTIMER_BASE_TAI,
  93			.clockid = CLOCK_TAI,
  94			.get_time = &ktime_get_clocktai,
  95		},
  96		{
  97			.index = HRTIMER_BASE_MONOTONIC_SOFT,
  98			.clockid = CLOCK_MONOTONIC,
  99			.get_time = &ktime_get,
 100		},
 101		{
 102			.index = HRTIMER_BASE_REALTIME_SOFT,
 103			.clockid = CLOCK_REALTIME,
 104			.get_time = &ktime_get_real,
 105		},
 106		{
 107			.index = HRTIMER_BASE_BOOTTIME_SOFT,
 108			.clockid = CLOCK_BOOTTIME,
 109			.get_time = &ktime_get_boottime,
 110		},
 111		{
 112			.index = HRTIMER_BASE_TAI_SOFT,
 113			.clockid = CLOCK_TAI,
 114			.get_time = &ktime_get_clocktai,
 115		},
 116	},
 117	.csd = CSD_INIT(retrigger_next_event, NULL)
 118};
 119
 120static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 121	/* Make sure we catch unsupported clockids */
 122	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
 123
 124	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
 125	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
 126	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
 127	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
 128};
 129
 130static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base)
 131{
 132	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
 133		return true;
 134	else
 135		return likely(base->online);
 136}
 137
 138/*
 139 * Functions and macros which are different for UP/SMP systems are kept in a
 140 * single place
 141 */
 142#ifdef CONFIG_SMP
 143
 144/*
 145 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 146 * such that hrtimer_callback_running() can unconditionally dereference
 147 * timer->base->cpu_base
 148 */
 149static struct hrtimer_cpu_base migration_cpu_base = {
 150	.clock_base = { {
 151		.cpu_base = &migration_cpu_base,
 152		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
 153						     &migration_cpu_base.lock),
 154	}, },
 155};
 156
 157#define migration_base	migration_cpu_base.clock_base[0]
 158
 159static inline bool is_migration_base(struct hrtimer_clock_base *base)
 160{
 161	return base == &migration_base;
 162}
 163
 164/*
 165 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 166 * means that all timers which are tied to this base via timer->base are
 167 * locked, and the base itself is locked too.
 168 *
 169 * So __run_timers/migrate_timers can safely modify all timers which could
 170 * be found on the lists/queues.
 171 *
 172 * When the timer's base is locked, and the timer removed from list, it is
 173 * possible to set timer->base = &migration_base and drop the lock: the timer
 174 * remains locked.
 175 */
 176static
 177struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 178					     unsigned long *flags)
 179	__acquires(&timer->base->lock)
 180{
 181	struct hrtimer_clock_base *base;
 182
 183	for (;;) {
 184		base = READ_ONCE(timer->base);
 185		if (likely(base != &migration_base)) {
 186			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 187			if (likely(base == timer->base))
 188				return base;
 189			/* The timer has migrated to another CPU: */
 190			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 191		}
 192		cpu_relax();
 193	}
 194}
 195
 196/*
 197 * Check if the elected target is suitable considering its next
 198 * event and the hotplug state of the current CPU.
 199 *
 200 * If the elected target is remote and its next event is after the timer
 201 * to queue, then a remote reprogram is necessary. However there is no
 202 * guarantee the IPI handling the operation would arrive in time to meet
 203 * the high resolution deadline. In this case the local CPU becomes a
 204 * preferred target, unless it is offline.
 205 *
 206 * High and low resolution modes are handled the same way for simplicity.
 207 *
 208 * Called with cpu_base->lock of target cpu held.
 209 */
 210static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base,
 211				    struct hrtimer_cpu_base *new_cpu_base,
 212				    struct hrtimer_cpu_base *this_cpu_base)
 213{
 214	ktime_t expires;
 215
 216	/*
 217	 * The local CPU clockevent can be reprogrammed. Also get_target_base()
 218	 * guarantees it is online.
 219	 */
 220	if (new_cpu_base == this_cpu_base)
 221		return true;
 222
 223	/*
 224	 * The offline local CPU can't be the default target if the
 225	 * next remote target event is after this timer. Keep the
 226	 * elected new base. An IPI will we issued to reprogram
 227	 * it as a last resort.
 228	 */
 229	if (!hrtimer_base_is_online(this_cpu_base))
 230		return true;
 231
 232	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 233
 234	return expires >= new_base->cpu_base->expires_next;
 235}
 236
 237static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned)
 
 
 238{
 239	if (!hrtimer_base_is_online(base)) {
 240		int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER));
 241
 242		return &per_cpu(hrtimer_bases, cpu);
 243	}
 244
 245#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 246	if (static_branch_likely(&timers_migration_enabled) && !pinned)
 247		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 248#endif
 249	return base;
 250}
 251
 252/*
 253 * We switch the timer base to a power-optimized selected CPU target,
 254 * if:
 255 *	- NO_HZ_COMMON is enabled
 256 *	- timer migration is enabled
 257 *	- the timer callback is not running
 258 *	- the timer is not the first expiring timer on the new target
 259 *
 260 * If one of the above requirements is not fulfilled we move the timer
 261 * to the current CPU or leave it on the previously assigned CPU if
 262 * the timer callback is currently running.
 263 */
 264static inline struct hrtimer_clock_base *
 265switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 266		    int pinned)
 267{
 268	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 269	struct hrtimer_clock_base *new_base;
 270	int basenum = base->index;
 271
 272	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 273	new_cpu_base = get_target_base(this_cpu_base, pinned);
 274again:
 275	new_base = &new_cpu_base->clock_base[basenum];
 276
 277	if (base != new_base) {
 278		/*
 279		 * We are trying to move timer to new_base.
 280		 * However we can't change timer's base while it is running,
 281		 * so we keep it on the same CPU. No hassle vs. reprogramming
 282		 * the event source in the high resolution case. The softirq
 283		 * code will take care of this when the timer function has
 284		 * completed. There is no conflict as we hold the lock until
 285		 * the timer is enqueued.
 286		 */
 287		if (unlikely(hrtimer_callback_running(timer)))
 288			return base;
 289
 290		/* See the comment in lock_hrtimer_base() */
 291		WRITE_ONCE(timer->base, &migration_base);
 292		raw_spin_unlock(&base->cpu_base->lock);
 293		raw_spin_lock(&new_base->cpu_base->lock);
 294
 295		if (!hrtimer_suitable_target(timer, new_base, new_cpu_base,
 296					     this_cpu_base)) {
 297			raw_spin_unlock(&new_base->cpu_base->lock);
 298			raw_spin_lock(&base->cpu_base->lock);
 299			new_cpu_base = this_cpu_base;
 300			WRITE_ONCE(timer->base, base);
 301			goto again;
 302		}
 303		WRITE_ONCE(timer->base, new_base);
 304	} else {
 305		if (!hrtimer_suitable_target(timer, new_base,  new_cpu_base, this_cpu_base)) {
 
 306			new_cpu_base = this_cpu_base;
 307			goto again;
 308		}
 309	}
 310	return new_base;
 311}
 312
 313#else /* CONFIG_SMP */
 314
 315static inline bool is_migration_base(struct hrtimer_clock_base *base)
 316{
 317	return false;
 318}
 319
 320static inline struct hrtimer_clock_base *
 321lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 322	__acquires(&timer->base->cpu_base->lock)
 323{
 324	struct hrtimer_clock_base *base = timer->base;
 325
 326	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 327
 328	return base;
 329}
 330
 331# define switch_hrtimer_base(t, b, p)	(b)
 332
 333#endif	/* !CONFIG_SMP */
 334
 335/*
 336 * Functions for the union type storage format of ktime_t which are
 337 * too large for inlining:
 338 */
 339#if BITS_PER_LONG < 64
 340/*
 341 * Divide a ktime value by a nanosecond value
 342 */
 343s64 __ktime_divns(const ktime_t kt, s64 div)
 344{
 345	int sft = 0;
 346	s64 dclc;
 347	u64 tmp;
 348
 349	dclc = ktime_to_ns(kt);
 350	tmp = dclc < 0 ? -dclc : dclc;
 351
 352	/* Make sure the divisor is less than 2^32: */
 353	while (div >> 32) {
 354		sft++;
 355		div >>= 1;
 356	}
 357	tmp >>= sft;
 358	do_div(tmp, (u32) div);
 359	return dclc < 0 ? -tmp : tmp;
 360}
 361EXPORT_SYMBOL_GPL(__ktime_divns);
 362#endif /* BITS_PER_LONG >= 64 */
 363
 364/*
 365 * Add two ktime values and do a safety check for overflow:
 366 */
 367ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 368{
 369	ktime_t res = ktime_add_unsafe(lhs, rhs);
 370
 371	/*
 372	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 373	 * return to user space in a timespec:
 374	 */
 375	if (res < 0 || res < lhs || res < rhs)
 376		res = ktime_set(KTIME_SEC_MAX, 0);
 377
 378	return res;
 379}
 380
 381EXPORT_SYMBOL_GPL(ktime_add_safe);
 382
 383#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 384
 385static const struct debug_obj_descr hrtimer_debug_descr;
 386
 387static void *hrtimer_debug_hint(void *addr)
 388{
 389	return ((struct hrtimer *) addr)->function;
 390}
 391
 392/*
 393 * fixup_init is called when:
 394 * - an active object is initialized
 395 */
 396static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 397{
 398	struct hrtimer *timer = addr;
 399
 400	switch (state) {
 401	case ODEBUG_STATE_ACTIVE:
 402		hrtimer_cancel(timer);
 403		debug_object_init(timer, &hrtimer_debug_descr);
 404		return true;
 405	default:
 406		return false;
 407	}
 408}
 409
 410/*
 411 * fixup_activate is called when:
 412 * - an active object is activated
 413 * - an unknown non-static object is activated
 414 */
 415static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 416{
 417	switch (state) {
 418	case ODEBUG_STATE_ACTIVE:
 419		WARN_ON(1);
 420		fallthrough;
 421	default:
 422		return false;
 423	}
 424}
 425
 426/*
 427 * fixup_free is called when:
 428 * - an active object is freed
 429 */
 430static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 431{
 432	struct hrtimer *timer = addr;
 433
 434	switch (state) {
 435	case ODEBUG_STATE_ACTIVE:
 436		hrtimer_cancel(timer);
 437		debug_object_free(timer, &hrtimer_debug_descr);
 438		return true;
 439	default:
 440		return false;
 441	}
 442}
 443
 444static const struct debug_obj_descr hrtimer_debug_descr = {
 445	.name		= "hrtimer",
 446	.debug_hint	= hrtimer_debug_hint,
 447	.fixup_init	= hrtimer_fixup_init,
 448	.fixup_activate	= hrtimer_fixup_activate,
 449	.fixup_free	= hrtimer_fixup_free,
 450};
 451
 452static inline void debug_hrtimer_init(struct hrtimer *timer)
 453{
 454	debug_object_init(timer, &hrtimer_debug_descr);
 455}
 456
 457static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer)
 458{
 459	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 460}
 461
 462static inline void debug_hrtimer_activate(struct hrtimer *timer,
 463					  enum hrtimer_mode mode)
 464{
 465	debug_object_activate(timer, &hrtimer_debug_descr);
 466}
 467
 468static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 469{
 470	debug_object_deactivate(timer, &hrtimer_debug_descr);
 471}
 472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473void destroy_hrtimer_on_stack(struct hrtimer *timer)
 474{
 475	debug_object_free(timer, &hrtimer_debug_descr);
 476}
 477EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 478
 479#else
 480
 481static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 482static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { }
 483static inline void debug_hrtimer_activate(struct hrtimer *timer,
 484					  enum hrtimer_mode mode) { }
 485static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 486#endif
 487
 488static inline void
 489debug_init(struct hrtimer *timer, clockid_t clockid,
 490	   enum hrtimer_mode mode)
 491{
 492	debug_hrtimer_init(timer);
 493	trace_hrtimer_init(timer, clockid, mode);
 494}
 495
 496static inline void debug_init_on_stack(struct hrtimer *timer, clockid_t clockid,
 497				       enum hrtimer_mode mode)
 498{
 499	debug_hrtimer_init_on_stack(timer);
 500	trace_hrtimer_init(timer, clockid, mode);
 501}
 502
 503static inline void debug_activate(struct hrtimer *timer,
 504				  enum hrtimer_mode mode)
 505{
 506	debug_hrtimer_activate(timer, mode);
 507	trace_hrtimer_start(timer, mode);
 508}
 509
 510static inline void debug_deactivate(struct hrtimer *timer)
 511{
 512	debug_hrtimer_deactivate(timer);
 513	trace_hrtimer_cancel(timer);
 514}
 515
 516static struct hrtimer_clock_base *
 517__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
 518{
 519	unsigned int idx;
 520
 521	if (!*active)
 522		return NULL;
 523
 524	idx = __ffs(*active);
 525	*active &= ~(1U << idx);
 526
 527	return &cpu_base->clock_base[idx];
 528}
 529
 530#define for_each_active_base(base, cpu_base, active)	\
 531	while ((base = __next_base((cpu_base), &(active))))
 532
 533static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
 534					 const struct hrtimer *exclude,
 535					 unsigned int active,
 536					 ktime_t expires_next)
 537{
 538	struct hrtimer_clock_base *base;
 539	ktime_t expires;
 540
 541	for_each_active_base(base, cpu_base, active) {
 542		struct timerqueue_node *next;
 543		struct hrtimer *timer;
 544
 545		next = timerqueue_getnext(&base->active);
 546		timer = container_of(next, struct hrtimer, node);
 547		if (timer == exclude) {
 548			/* Get to the next timer in the queue. */
 549			next = timerqueue_iterate_next(next);
 550			if (!next)
 551				continue;
 552
 553			timer = container_of(next, struct hrtimer, node);
 554		}
 555		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 556		if (expires < expires_next) {
 557			expires_next = expires;
 558
 559			/* Skip cpu_base update if a timer is being excluded. */
 560			if (exclude)
 561				continue;
 562
 563			if (timer->is_soft)
 564				cpu_base->softirq_next_timer = timer;
 565			else
 566				cpu_base->next_timer = timer;
 567		}
 568	}
 569	/*
 570	 * clock_was_set() might have changed base->offset of any of
 571	 * the clock bases so the result might be negative. Fix it up
 572	 * to prevent a false positive in clockevents_program_event().
 573	 */
 574	if (expires_next < 0)
 575		expires_next = 0;
 576	return expires_next;
 577}
 578
 579/*
 580 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
 581 * but does not set cpu_base::*expires_next, that is done by
 582 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
 583 * cpu_base::*expires_next right away, reprogramming logic would no longer
 584 * work.
 585 *
 586 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 587 * those timers will get run whenever the softirq gets handled, at the end of
 588 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 589 *
 590 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 591 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 592 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 593 *
 594 * @active_mask must be one of:
 595 *  - HRTIMER_ACTIVE_ALL,
 596 *  - HRTIMER_ACTIVE_SOFT, or
 597 *  - HRTIMER_ACTIVE_HARD.
 598 */
 599static ktime_t
 600__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
 601{
 602	unsigned int active;
 603	struct hrtimer *next_timer = NULL;
 604	ktime_t expires_next = KTIME_MAX;
 605
 606	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
 607		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
 608		cpu_base->softirq_next_timer = NULL;
 609		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
 610							 active, KTIME_MAX);
 611
 612		next_timer = cpu_base->softirq_next_timer;
 613	}
 614
 615	if (active_mask & HRTIMER_ACTIVE_HARD) {
 616		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
 617		cpu_base->next_timer = next_timer;
 618		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
 619							 expires_next);
 620	}
 621
 622	return expires_next;
 623}
 624
 625static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
 626{
 627	ktime_t expires_next, soft = KTIME_MAX;
 628
 629	/*
 630	 * If the soft interrupt has already been activated, ignore the
 631	 * soft bases. They will be handled in the already raised soft
 632	 * interrupt.
 633	 */
 634	if (!cpu_base->softirq_activated) {
 635		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
 636		/*
 637		 * Update the soft expiry time. clock_settime() might have
 638		 * affected it.
 639		 */
 640		cpu_base->softirq_expires_next = soft;
 641	}
 642
 643	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
 644	/*
 645	 * If a softirq timer is expiring first, update cpu_base->next_timer
 646	 * and program the hardware with the soft expiry time.
 647	 */
 648	if (expires_next > soft) {
 649		cpu_base->next_timer = cpu_base->softirq_next_timer;
 650		expires_next = soft;
 651	}
 652
 653	return expires_next;
 654}
 655
 656static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 657{
 658	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 659	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 660	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 661
 662	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
 663					    offs_real, offs_boot, offs_tai);
 664
 665	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
 666	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
 667	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
 668
 669	return now;
 670}
 671
 672/*
 673 * Is the high resolution mode active ?
 674 */
 675static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 676{
 677	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
 678		cpu_base->hres_active : 0;
 679}
 680
 681static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
 682				struct hrtimer *next_timer,
 683				ktime_t expires_next)
 
 
 
 
 
 
 
 
 
 684{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 685	cpu_base->expires_next = expires_next;
 686
 687	/*
 688	 * If hres is not active, hardware does not have to be
 689	 * reprogrammed yet.
 690	 *
 691	 * If a hang was detected in the last timer interrupt then we
 692	 * leave the hang delay active in the hardware. We want the
 693	 * system to make progress. That also prevents the following
 694	 * scenario:
 695	 * T1 expires 50ms from now
 696	 * T2 expires 5s from now
 697	 *
 698	 * T1 is removed, so this code is called and would reprogram
 699	 * the hardware to 5s from now. Any hrtimer_start after that
 700	 * will not reprogram the hardware due to hang_detected being
 701	 * set. So we'd effectively block all timers until the T2 event
 702	 * fires.
 703	 */
 704	if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 705		return;
 706
 707	tick_program_event(expires_next, 1);
 708}
 709
 710/*
 711 * Reprogram the event source with checking both queues for the
 712 * next event
 713 * Called with interrupts disabled and base->lock held
 714 */
 715static void
 716hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 717{
 718	ktime_t expires_next;
 719
 720	expires_next = hrtimer_update_next_event(cpu_base);
 721
 722	if (skip_equal && expires_next == cpu_base->expires_next)
 723		return;
 724
 725	__hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
 726}
 727
 728/* High resolution timer related functions */
 729#ifdef CONFIG_HIGH_RES_TIMERS
 730
 731/*
 732 * High resolution timer enabled ?
 733 */
 734static bool hrtimer_hres_enabled __read_mostly  = true;
 735unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 736EXPORT_SYMBOL_GPL(hrtimer_resolution);
 737
 738/*
 739 * Enable / Disable high resolution mode
 740 */
 741static int __init setup_hrtimer_hres(char *str)
 742{
 743	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 744}
 745
 746__setup("highres=", setup_hrtimer_hres);
 747
 748/*
 749 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 750 */
 751static inline int hrtimer_is_hres_enabled(void)
 752{
 753	return hrtimer_hres_enabled;
 754}
 755
 756/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757 * Switch to high resolution mode
 758 */
 759static void hrtimer_switch_to_hres(void)
 760{
 761	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 762
 763	if (tick_init_highres()) {
 764		pr_warn("Could not switch to high resolution mode on CPU %u\n",
 765			base->cpu);
 766		return;
 767	}
 768	base->hres_active = 1;
 769	hrtimer_resolution = HIGH_RES_NSEC;
 770
 771	tick_setup_sched_timer(true);
 772	/* "Retrigger" the interrupt to get things going */
 773	retrigger_next_event(NULL);
 774}
 775
 776#else
 
 
 
 777
 778static inline int hrtimer_is_hres_enabled(void) { return 0; }
 779static inline void hrtimer_switch_to_hres(void) { }
 780
 781#endif /* CONFIG_HIGH_RES_TIMERS */
 782/*
 783 * Retrigger next event is called after clock was set with interrupts
 784 * disabled through an SMP function call or directly from low level
 785 * resume code.
 786 *
 787 * This is only invoked when:
 788 *	- CONFIG_HIGH_RES_TIMERS is enabled.
 789 *	- CONFIG_NOHZ_COMMON is enabled
 790 *
 791 * For the other cases this function is empty and because the call sites
 792 * are optimized out it vanishes as well, i.e. no need for lots of
 793 * #ifdeffery.
 794 */
 795static void retrigger_next_event(void *arg)
 796{
 797	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 
 
 
 798
 799	/*
 800	 * When high resolution mode or nohz is active, then the offsets of
 801	 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
 802	 * next tick will take care of that.
 803	 *
 804	 * If high resolution mode is active then the next expiring timer
 805	 * must be reevaluated and the clock event device reprogrammed if
 806	 * necessary.
 807	 *
 808	 * In the NOHZ case the update of the offset and the reevaluation
 809	 * of the next expiring timer is enough. The return from the SMP
 810	 * function call will take care of the reprogramming in case the
 811	 * CPU was in a NOHZ idle sleep.
 812	 */
 813	if (!hrtimer_hres_active(base) && !tick_nohz_active)
 814		return;
 815
 816	raw_spin_lock(&base->lock);
 817	hrtimer_update_base(base);
 818	if (hrtimer_hres_active(base))
 819		hrtimer_force_reprogram(base, 0);
 820	else
 821		hrtimer_update_next_event(base);
 822	raw_spin_unlock(&base->lock);
 823}
 824
 825/*
 826 * When a timer is enqueued and expires earlier than the already enqueued
 827 * timers, we have to check, whether it expires earlier than the timer for
 828 * which the clock event device was armed.
 829 *
 830 * Called with interrupts disabled and base->cpu_base.lock held
 831 */
 832static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
 833{
 834	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 835	struct hrtimer_clock_base *base = timer->base;
 836	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 837
 838	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 839
 840	/*
 841	 * CLOCK_REALTIME timer might be requested with an absolute
 842	 * expiry time which is less than base->offset. Set it to 0.
 843	 */
 844	if (expires < 0)
 845		expires = 0;
 846
 847	if (timer->is_soft) {
 848		/*
 849		 * soft hrtimer could be started on a remote CPU. In this
 850		 * case softirq_expires_next needs to be updated on the
 851		 * remote CPU. The soft hrtimer will not expire before the
 852		 * first hard hrtimer on the remote CPU -
 853		 * hrtimer_check_target() prevents this case.
 854		 */
 855		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
 856
 857		if (timer_cpu_base->softirq_activated)
 858			return;
 859
 860		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
 861			return;
 862
 863		timer_cpu_base->softirq_next_timer = timer;
 864		timer_cpu_base->softirq_expires_next = expires;
 865
 866		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
 867		    !reprogram)
 868			return;
 869	}
 870
 871	/*
 872	 * If the timer is not on the current cpu, we cannot reprogram
 873	 * the other cpus clock event device.
 874	 */
 875	if (base->cpu_base != cpu_base)
 876		return;
 877
 878	if (expires >= cpu_base->expires_next)
 879		return;
 880
 881	/*
 882	 * If the hrtimer interrupt is running, then it will reevaluate the
 883	 * clock bases and reprogram the clock event device.
 
 
 
 884	 */
 885	if (cpu_base->in_hrtirq)
 886		return;
 887
 
 
 
 
 888	cpu_base->next_timer = timer;
 889
 890	__hrtimer_reprogram(cpu_base, timer, expires);
 891}
 892
 893static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
 894			     unsigned int active)
 895{
 896	struct hrtimer_clock_base *base;
 897	unsigned int seq;
 898	ktime_t expires;
 899
 900	/*
 901	 * Update the base offsets unconditionally so the following
 902	 * checks whether the SMP function call is required works.
 903	 *
 904	 * The update is safe even when the remote CPU is in the hrtimer
 905	 * interrupt or the hrtimer soft interrupt and expiring affected
 906	 * bases. Either it will see the update before handling a base or
 907	 * it will see it when it finishes the processing and reevaluates
 908	 * the next expiring timer.
 909	 */
 910	seq = cpu_base->clock_was_set_seq;
 911	hrtimer_update_base(cpu_base);
 912
 913	/*
 914	 * If the sequence did not change over the update then the
 915	 * remote CPU already handled it.
 916	 */
 917	if (seq == cpu_base->clock_was_set_seq)
 918		return false;
 919
 920	/*
 921	 * If the remote CPU is currently handling an hrtimer interrupt, it
 922	 * will reevaluate the first expiring timer of all clock bases
 923	 * before reprogramming. Nothing to do here.
 924	 */
 925	if (cpu_base->in_hrtirq)
 926		return false;
 927
 928	/*
 929	 * Walk the affected clock bases and check whether the first expiring
 930	 * timer in a clock base is moving ahead of the first expiring timer of
 931	 * @cpu_base. If so, the IPI must be invoked because per CPU clock
 932	 * event devices cannot be remotely reprogrammed.
 933	 */
 934	active &= cpu_base->active_bases;
 935
 936	for_each_active_base(base, cpu_base, active) {
 937		struct timerqueue_node *next;
 938
 939		next = timerqueue_getnext(&base->active);
 940		expires = ktime_sub(next->expires, base->offset);
 941		if (expires < cpu_base->expires_next)
 942			return true;
 943
 944		/* Extra check for softirq clock bases */
 945		if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
 946			continue;
 947		if (cpu_base->softirq_activated)
 948			continue;
 949		if (expires < cpu_base->softirq_expires_next)
 950			return true;
 951	}
 952	return false;
 953}
 954
 955/*
 956 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
 957 * CLOCK_BOOTTIME (for late sleep time injection).
 
 
 958 *
 959 * This requires to update the offsets for these clocks
 960 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
 961 * also requires to eventually reprogram the per CPU clock event devices
 962 * when the change moves an affected timer ahead of the first expiring
 963 * timer on that CPU. Obviously remote per CPU clock event devices cannot
 964 * be reprogrammed. The other reason why an IPI has to be sent is when the
 965 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
 966 * in the tick, which obviously might be stopped, so this has to bring out
 967 * the remote CPU which might sleep in idle to get this sorted.
 968 */
 969void clock_was_set(unsigned int bases)
 970{
 971	struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
 972	cpumask_var_t mask;
 973	int cpu;
 974
 975	if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
 976		goto out_timerfd;
 977
 978	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
 979		on_each_cpu(retrigger_next_event, NULL, 1);
 980		goto out_timerfd;
 981	}
 982
 983	/* Avoid interrupting CPUs if possible */
 984	cpus_read_lock();
 985	for_each_online_cpu(cpu) {
 986		unsigned long flags;
 987
 988		cpu_base = &per_cpu(hrtimer_bases, cpu);
 989		raw_spin_lock_irqsave(&cpu_base->lock, flags);
 990
 991		if (update_needs_ipi(cpu_base, bases))
 992			cpumask_set_cpu(cpu, mask);
 993
 994		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
 995	}
 996
 997	preempt_disable();
 998	smp_call_function_many(mask, retrigger_next_event, NULL, 1);
 999	preempt_enable();
1000	cpus_read_unlock();
1001	free_cpumask_var(mask);
1002
1003out_timerfd:
1004	timerfd_clock_was_set();
1005}
1006
1007static void clock_was_set_work(struct work_struct *work)
1008{
1009	clock_was_set(CLOCK_SET_WALL);
1010}
1011
1012static DECLARE_WORK(hrtimer_work, clock_was_set_work);
1013
1014/*
1015 * Called from timekeeping code to reprogram the hrtimer interrupt device
1016 * on all cpus and to notify timerfd.
1017 */
1018void clock_was_set_delayed(void)
1019{
1020	schedule_work(&hrtimer_work);
 
 
 
 
1021}
1022
1023/*
1024 * Called during resume either directly from via timekeeping_resume()
1025 * or in the case of s2idle from tick_unfreeze() to ensure that the
1026 * hrtimers are up to date.
 
1027 */
1028void hrtimers_resume_local(void)
1029{
1030	lockdep_assert_irqs_disabled();
1031	/* Retrigger on the local CPU */
1032	retrigger_next_event(NULL);
 
 
1033}
1034
1035/*
1036 * Counterpart to lock_hrtimer_base above:
1037 */
1038static inline
1039void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1040	__releases(&timer->base->cpu_base->lock)
1041{
1042	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1043}
1044
1045/**
1046 * hrtimer_forward() - forward the timer expiry
1047 * @timer:	hrtimer to forward
1048 * @now:	forward past this time
1049 * @interval:	the interval to forward
1050 *
1051 * Forward the timer expiry so it will expire in the future.
 
1052 *
1053 * .. note::
1054 *  This only updates the timer expiry value and does not requeue the timer.
1055 *
1056 * There is also a variant of the function hrtimer_forward_now().
1057 *
1058 * Context: Can be safely called from the callback function of @timer. If called
1059 *          from other contexts @timer must neither be enqueued nor running the
1060 *          callback and the caller needs to take care of serialization.
1061 *
1062 * Return: The number of overruns are returned.
 
1063 */
1064u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1065{
1066	u64 orun = 1;
1067	ktime_t delta;
1068
1069	delta = ktime_sub(now, hrtimer_get_expires(timer));
1070
1071	if (delta < 0)
1072		return 0;
1073
1074	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1075		return 0;
1076
1077	if (interval < hrtimer_resolution)
1078		interval = hrtimer_resolution;
1079
1080	if (unlikely(delta >= interval)) {
1081		s64 incr = ktime_to_ns(interval);
1082
1083		orun = ktime_divns(delta, incr);
1084		hrtimer_add_expires_ns(timer, incr * orun);
1085		if (hrtimer_get_expires_tv64(timer) > now)
1086			return orun;
1087		/*
1088		 * This (and the ktime_add() below) is the
1089		 * correction for exact:
1090		 */
1091		orun++;
1092	}
1093	hrtimer_add_expires(timer, interval);
1094
1095	return orun;
1096}
1097EXPORT_SYMBOL_GPL(hrtimer_forward);
1098
1099/*
1100 * enqueue_hrtimer - internal function to (re)start a timer
1101 *
1102 * The timer is inserted in expiry order. Insertion into the
1103 * red black tree is O(log(n)). Must hold the base lock.
1104 *
1105 * Returns 1 when the new timer is the leftmost timer in the tree.
1106 */
1107static int enqueue_hrtimer(struct hrtimer *timer,
1108			   struct hrtimer_clock_base *base,
1109			   enum hrtimer_mode mode)
1110{
1111	debug_activate(timer, mode);
1112	WARN_ON_ONCE(!base->cpu_base->online);
1113
1114	base->cpu_base->active_bases |= 1 << base->index;
1115
1116	/* Pairs with the lockless read in hrtimer_is_queued() */
1117	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1118
1119	return timerqueue_add(&base->active, &timer->node);
1120}
1121
1122/*
1123 * __remove_hrtimer - internal function to remove a timer
1124 *
1125 * Caller must hold the base lock.
1126 *
1127 * High resolution timer mode reprograms the clock event device when the
1128 * timer is the one which expires next. The caller can disable this by setting
1129 * reprogram to zero. This is useful, when the context does a reprogramming
1130 * anyway (e.g. timer interrupt)
1131 */
1132static void __remove_hrtimer(struct hrtimer *timer,
1133			     struct hrtimer_clock_base *base,
1134			     u8 newstate, int reprogram)
1135{
1136	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1137	u8 state = timer->state;
1138
1139	/* Pairs with the lockless read in hrtimer_is_queued() */
1140	WRITE_ONCE(timer->state, newstate);
1141	if (!(state & HRTIMER_STATE_ENQUEUED))
1142		return;
1143
1144	if (!timerqueue_del(&base->active, &timer->node))
1145		cpu_base->active_bases &= ~(1 << base->index);
1146
1147	/*
1148	 * Note: If reprogram is false we do not update
1149	 * cpu_base->next_timer. This happens when we remove the first
1150	 * timer on a remote cpu. No harm as we never dereference
1151	 * cpu_base->next_timer. So the worst thing what can happen is
1152	 * an superfluous call to hrtimer_force_reprogram() on the
1153	 * remote cpu later on if the same timer gets enqueued again.
1154	 */
1155	if (reprogram && timer == cpu_base->next_timer)
1156		hrtimer_force_reprogram(cpu_base, 1);
1157}
1158
1159/*
1160 * remove hrtimer, called with base lock held
1161 */
1162static inline int
1163remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1164	       bool restart, bool keep_local)
1165{
1166	u8 state = timer->state;
1167
1168	if (state & HRTIMER_STATE_ENQUEUED) {
1169		bool reprogram;
1170
1171		/*
1172		 * Remove the timer and force reprogramming when high
1173		 * resolution mode is active and the timer is on the current
1174		 * CPU. If we remove a timer on another CPU, reprogramming is
1175		 * skipped. The interrupt event on this CPU is fired and
1176		 * reprogramming happens in the interrupt handler. This is a
1177		 * rare case and less expensive than a smp call.
1178		 */
1179		debug_deactivate(timer);
1180		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1181
1182		/*
1183		 * If the timer is not restarted then reprogramming is
1184		 * required if the timer is local. If it is local and about
1185		 * to be restarted, avoid programming it twice (on removal
1186		 * and a moment later when it's requeued).
1187		 */
1188		if (!restart)
1189			state = HRTIMER_STATE_INACTIVE;
1190		else
1191			reprogram &= !keep_local;
1192
1193		__remove_hrtimer(timer, base, state, reprogram);
1194		return 1;
1195	}
1196	return 0;
1197}
1198
1199static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1200					    const enum hrtimer_mode mode)
1201{
1202#ifdef CONFIG_TIME_LOW_RES
1203	/*
1204	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1205	 * granular time values. For relative timers we add hrtimer_resolution
1206	 * (i.e. one jiffy) to prevent short timeouts.
1207	 */
1208	timer->is_rel = mode & HRTIMER_MODE_REL;
1209	if (timer->is_rel)
1210		tim = ktime_add_safe(tim, hrtimer_resolution);
1211#endif
1212	return tim;
1213}
1214
1215static void
1216hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1217{
1218	ktime_t expires;
1219
1220	/*
1221	 * Find the next SOFT expiration.
1222	 */
1223	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1224
1225	/*
1226	 * reprogramming needs to be triggered, even if the next soft
1227	 * hrtimer expires at the same time than the next hard
1228	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1229	 */
1230	if (expires == KTIME_MAX)
1231		return;
1232
1233	/*
1234	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1235	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1236	 */
1237	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1238}
1239
1240static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1241				    u64 delta_ns, const enum hrtimer_mode mode,
1242				    struct hrtimer_clock_base *base)
1243{
1244	struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases);
1245	struct hrtimer_clock_base *new_base;
1246	bool force_local, first;
1247
1248	/*
1249	 * If the timer is on the local cpu base and is the first expiring
1250	 * timer then this might end up reprogramming the hardware twice
1251	 * (on removal and on enqueue). To avoid that by prevent the
1252	 * reprogram on removal, keep the timer local to the current CPU
1253	 * and enforce reprogramming after it is queued no matter whether
1254	 * it is the new first expiring timer again or not.
1255	 */
1256	force_local = base->cpu_base == this_cpu_base;
1257	force_local &= base->cpu_base->next_timer == timer;
1258
1259	/*
1260	 * Don't force local queuing if this enqueue happens on a unplugged
1261	 * CPU after hrtimer_cpu_dying() has been invoked.
1262	 */
1263	force_local &= this_cpu_base->online;
1264
1265	/*
1266	 * Remove an active timer from the queue. In case it is not queued
1267	 * on the current CPU, make sure that remove_hrtimer() updates the
1268	 * remote data correctly.
1269	 *
1270	 * If it's on the current CPU and the first expiring timer, then
1271	 * skip reprogramming, keep the timer local and enforce
1272	 * reprogramming later if it was the first expiring timer.  This
1273	 * avoids programming the underlying clock event twice (once at
1274	 * removal and once after enqueue).
1275	 */
1276	remove_hrtimer(timer, base, true, force_local);
1277
1278	if (mode & HRTIMER_MODE_REL)
1279		tim = ktime_add_safe(tim, base->get_time());
1280
1281	tim = hrtimer_update_lowres(timer, tim, mode);
1282
1283	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1284
1285	/* Switch the timer base, if necessary: */
1286	if (!force_local) {
1287		new_base = switch_hrtimer_base(timer, base,
1288					       mode & HRTIMER_MODE_PINNED);
1289	} else {
1290		new_base = base;
1291	}
1292
1293	first = enqueue_hrtimer(timer, new_base, mode);
1294	if (!force_local) {
1295		/*
1296		 * If the current CPU base is online, then the timer is
1297		 * never queued on a remote CPU if it would be the first
1298		 * expiring timer there.
1299		 */
1300		if (hrtimer_base_is_online(this_cpu_base))
1301			return first;
1302
1303		/*
1304		 * Timer was enqueued remote because the current base is
1305		 * already offline. If the timer is the first to expire,
1306		 * kick the remote CPU to reprogram the clock event.
1307		 */
1308		if (first) {
1309			struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base;
1310
1311			smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd);
1312		}
1313		return 0;
1314	}
1315
1316	/*
1317	 * Timer was forced to stay on the current CPU to avoid
1318	 * reprogramming on removal and enqueue. Force reprogram the
1319	 * hardware by evaluating the new first expiring timer.
1320	 */
1321	hrtimer_force_reprogram(new_base->cpu_base, 1);
1322	return 0;
1323}
1324
1325/**
1326 * hrtimer_start_range_ns - (re)start an hrtimer
1327 * @timer:	the timer to be added
1328 * @tim:	expiry time
1329 * @delta_ns:	"slack" range for the timer
1330 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1331 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1332 *		softirq based mode is considered for debug purpose only!
1333 */
1334void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1335			    u64 delta_ns, const enum hrtimer_mode mode)
1336{
1337	struct hrtimer_clock_base *base;
1338	unsigned long flags;
1339
1340	if (WARN_ON_ONCE(!timer->function))
1341		return;
1342	/*
1343	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1344	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1345	 * expiry mode because unmarked timers are moved to softirq expiry.
1346	 */
1347	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1348		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1349	else
1350		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1351
1352	base = lock_hrtimer_base(timer, &flags);
1353
1354	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1355		hrtimer_reprogram(timer, true);
1356
1357	unlock_hrtimer_base(timer, &flags);
1358}
1359EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1360
1361/**
1362 * hrtimer_try_to_cancel - try to deactivate a timer
1363 * @timer:	hrtimer to stop
1364 *
1365 * Returns:
1366 *
1367 *  *  0 when the timer was not active
1368 *  *  1 when the timer was active
1369 *  * -1 when the timer is currently executing the callback function and
1370 *    cannot be stopped
1371 */
1372int hrtimer_try_to_cancel(struct hrtimer *timer)
1373{
1374	struct hrtimer_clock_base *base;
1375	unsigned long flags;
1376	int ret = -1;
1377
1378	/*
1379	 * Check lockless first. If the timer is not active (neither
1380	 * enqueued nor running the callback, nothing to do here.  The
1381	 * base lock does not serialize against a concurrent enqueue,
1382	 * so we can avoid taking it.
1383	 */
1384	if (!hrtimer_active(timer))
1385		return 0;
1386
1387	base = lock_hrtimer_base(timer, &flags);
1388
1389	if (!hrtimer_callback_running(timer))
1390		ret = remove_hrtimer(timer, base, false, false);
1391
1392	unlock_hrtimer_base(timer, &flags);
1393
1394	return ret;
1395
1396}
1397EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1398
1399#ifdef CONFIG_PREEMPT_RT
1400static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1401{
1402	spin_lock_init(&base->softirq_expiry_lock);
1403}
1404
1405static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1406	__acquires(&base->softirq_expiry_lock)
1407{
1408	spin_lock(&base->softirq_expiry_lock);
1409}
1410
1411static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1412	__releases(&base->softirq_expiry_lock)
1413{
1414	spin_unlock(&base->softirq_expiry_lock);
1415}
1416
1417/*
1418 * The counterpart to hrtimer_cancel_wait_running().
1419 *
1420 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1421 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1422 * allows the waiter to acquire the lock and make progress.
1423 */
1424static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1425				      unsigned long flags)
1426{
1427	if (atomic_read(&cpu_base->timer_waiters)) {
1428		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1429		spin_unlock(&cpu_base->softirq_expiry_lock);
1430		spin_lock(&cpu_base->softirq_expiry_lock);
1431		raw_spin_lock_irq(&cpu_base->lock);
1432	}
1433}
1434
1435/*
1436 * This function is called on PREEMPT_RT kernels when the fast path
1437 * deletion of a timer failed because the timer callback function was
1438 * running.
1439 *
1440 * This prevents priority inversion: if the soft irq thread is preempted
1441 * in the middle of a timer callback, then calling del_timer_sync() can
1442 * lead to two issues:
1443 *
1444 *  - If the caller is on a remote CPU then it has to spin wait for the timer
1445 *    handler to complete. This can result in unbound priority inversion.
1446 *
1447 *  - If the caller originates from the task which preempted the timer
1448 *    handler on the same CPU, then spin waiting for the timer handler to
1449 *    complete is never going to end.
1450 */
1451void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1452{
1453	/* Lockless read. Prevent the compiler from reloading it below */
1454	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1455
1456	/*
1457	 * Just relax if the timer expires in hard interrupt context or if
1458	 * it is currently on the migration base.
1459	 */
1460	if (!timer->is_soft || is_migration_base(base)) {
1461		cpu_relax();
1462		return;
1463	}
1464
1465	/*
1466	 * Mark the base as contended and grab the expiry lock, which is
1467	 * held by the softirq across the timer callback. Drop the lock
1468	 * immediately so the softirq can expire the next timer. In theory
1469	 * the timer could already be running again, but that's more than
1470	 * unlikely and just causes another wait loop.
1471	 */
1472	atomic_inc(&base->cpu_base->timer_waiters);
1473	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1474	atomic_dec(&base->cpu_base->timer_waiters);
1475	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1476}
1477#else
1478static inline void
1479hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1480static inline void
1481hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1482static inline void
1483hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1484static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1485					     unsigned long flags) { }
1486#endif
1487
1488/**
1489 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1490 * @timer:	the timer to be cancelled
1491 *
1492 * Returns:
1493 *  0 when the timer was not active
1494 *  1 when the timer was active
1495 */
1496int hrtimer_cancel(struct hrtimer *timer)
1497{
1498	int ret;
1499
1500	do {
1501		ret = hrtimer_try_to_cancel(timer);
1502
1503		if (ret < 0)
1504			hrtimer_cancel_wait_running(timer);
1505	} while (ret < 0);
1506	return ret;
1507}
1508EXPORT_SYMBOL_GPL(hrtimer_cancel);
1509
1510/**
1511 * __hrtimer_get_remaining - get remaining time for the timer
1512 * @timer:	the timer to read
1513 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1514 */
1515ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1516{
1517	unsigned long flags;
1518	ktime_t rem;
1519
1520	lock_hrtimer_base(timer, &flags);
1521	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1522		rem = hrtimer_expires_remaining_adjusted(timer);
1523	else
1524		rem = hrtimer_expires_remaining(timer);
1525	unlock_hrtimer_base(timer, &flags);
1526
1527	return rem;
1528}
1529EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1530
1531#ifdef CONFIG_NO_HZ_COMMON
1532/**
1533 * hrtimer_get_next_event - get the time until next expiry event
1534 *
1535 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1536 */
1537u64 hrtimer_get_next_event(void)
1538{
1539	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1540	u64 expires = KTIME_MAX;
1541	unsigned long flags;
1542
1543	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1544
1545	if (!hrtimer_hres_active(cpu_base))
1546		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1547
1548	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1549
1550	return expires;
1551}
1552
1553/**
1554 * hrtimer_next_event_without - time until next expiry event w/o one timer
1555 * @exclude:	timer to exclude
1556 *
1557 * Returns the next expiry time over all timers except for the @exclude one or
1558 * KTIME_MAX if none of them is pending.
1559 */
1560u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1561{
1562	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1563	u64 expires = KTIME_MAX;
1564	unsigned long flags;
1565
1566	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1567
1568	if (hrtimer_hres_active(cpu_base)) {
1569		unsigned int active;
1570
1571		if (!cpu_base->softirq_activated) {
1572			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1573			expires = __hrtimer_next_event_base(cpu_base, exclude,
1574							    active, KTIME_MAX);
1575		}
1576		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1577		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1578						    expires);
1579	}
1580
1581	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1582
1583	return expires;
1584}
1585#endif
1586
1587static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1588{
1589	if (likely(clock_id < MAX_CLOCKS)) {
1590		int base = hrtimer_clock_to_base_table[clock_id];
1591
1592		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1593			return base;
1594	}
1595	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1596	return HRTIMER_BASE_MONOTONIC;
1597}
1598
1599static enum hrtimer_restart hrtimer_dummy_timeout(struct hrtimer *unused)
1600{
1601	return HRTIMER_NORESTART;
1602}
1603
1604static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1605			   enum hrtimer_mode mode)
1606{
1607	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1608	struct hrtimer_cpu_base *cpu_base;
1609	int base;
1610
1611	/*
1612	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1613	 * marked for hard interrupt expiry mode are moved into soft
1614	 * interrupt context for latency reasons and because the callbacks
1615	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1616	 */
1617	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1618		softtimer = true;
1619
1620	memset(timer, 0, sizeof(struct hrtimer));
1621
1622	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1623
1624	/*
1625	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1626	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1627	 * ensure POSIX compliance.
1628	 */
1629	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1630		clock_id = CLOCK_MONOTONIC;
1631
1632	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1633	base += hrtimer_clockid_to_base(clock_id);
1634	timer->is_soft = softtimer;
1635	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1636	timer->base = &cpu_base->clock_base[base];
1637	timerqueue_init(&timer->node);
1638}
1639
1640static void __hrtimer_setup(struct hrtimer *timer,
1641			    enum hrtimer_restart (*function)(struct hrtimer *),
1642			    clockid_t clock_id, enum hrtimer_mode mode)
1643{
1644	__hrtimer_init(timer, clock_id, mode);
1645
1646	if (WARN_ON_ONCE(!function))
1647		timer->function = hrtimer_dummy_timeout;
1648	else
1649		timer->function = function;
1650}
1651
1652/**
1653 * hrtimer_init - initialize a timer to the given clock
1654 * @timer:	the timer to be initialized
1655 * @clock_id:	the clock to be used
1656 * @mode:       The modes which are relevant for initialization:
1657 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1658 *              HRTIMER_MODE_REL_SOFT
1659 *
1660 *              The PINNED variants of the above can be handed in,
1661 *              but the PINNED bit is ignored as pinning happens
1662 *              when the hrtimer is started
1663 */
1664void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1665		  enum hrtimer_mode mode)
1666{
1667	debug_init(timer, clock_id, mode);
1668	__hrtimer_init(timer, clock_id, mode);
1669}
1670EXPORT_SYMBOL_GPL(hrtimer_init);
1671
1672/**
1673 * hrtimer_setup - initialize a timer to the given clock
1674 * @timer:	the timer to be initialized
1675 * @function:	the callback function
1676 * @clock_id:	the clock to be used
1677 * @mode:       The modes which are relevant for initialization:
1678 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1679 *              HRTIMER_MODE_REL_SOFT
1680 *
1681 *              The PINNED variants of the above can be handed in,
1682 *              but the PINNED bit is ignored as pinning happens
1683 *              when the hrtimer is started
1684 */
1685void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *),
1686		   clockid_t clock_id, enum hrtimer_mode mode)
1687{
1688	debug_init(timer, clock_id, mode);
1689	__hrtimer_setup(timer, function, clock_id, mode);
1690}
1691EXPORT_SYMBOL_GPL(hrtimer_setup);
1692
1693/**
1694 * hrtimer_setup_on_stack - initialize a timer on stack memory
1695 * @timer:	The timer to be initialized
1696 * @function:	the callback function
1697 * @clock_id:	The clock to be used
1698 * @mode:       The timer mode
1699 *
1700 * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
1701 * memory.
1702 */
1703void hrtimer_setup_on_stack(struct hrtimer *timer,
1704			    enum hrtimer_restart (*function)(struct hrtimer *),
1705			    clockid_t clock_id, enum hrtimer_mode mode)
1706{
1707	debug_init_on_stack(timer, clock_id, mode);
1708	__hrtimer_setup(timer, function, clock_id, mode);
1709}
1710EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack);
1711
1712/*
1713 * A timer is active, when it is enqueued into the rbtree or the
1714 * callback function is running or it's in the state of being migrated
1715 * to another cpu.
1716 *
1717 * It is important for this function to not return a false negative.
1718 */
1719bool hrtimer_active(const struct hrtimer *timer)
1720{
1721	struct hrtimer_clock_base *base;
1722	unsigned int seq;
1723
1724	do {
1725		base = READ_ONCE(timer->base);
1726		seq = raw_read_seqcount_begin(&base->seq);
1727
1728		if (timer->state != HRTIMER_STATE_INACTIVE ||
1729		    base->running == timer)
1730			return true;
1731
1732	} while (read_seqcount_retry(&base->seq, seq) ||
1733		 base != READ_ONCE(timer->base));
1734
1735	return false;
1736}
1737EXPORT_SYMBOL_GPL(hrtimer_active);
1738
1739/*
1740 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1741 * distinct sections:
1742 *
1743 *  - queued:	the timer is queued
1744 *  - callback:	the timer is being ran
1745 *  - post:	the timer is inactive or (re)queued
1746 *
1747 * On the read side we ensure we observe timer->state and cpu_base->running
1748 * from the same section, if anything changed while we looked at it, we retry.
1749 * This includes timer->base changing because sequence numbers alone are
1750 * insufficient for that.
1751 *
1752 * The sequence numbers are required because otherwise we could still observe
1753 * a false negative if the read side got smeared over multiple consecutive
1754 * __run_hrtimer() invocations.
1755 */
1756
1757static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1758			  struct hrtimer_clock_base *base,
1759			  struct hrtimer *timer, ktime_t *now,
1760			  unsigned long flags) __must_hold(&cpu_base->lock)
1761{
1762	enum hrtimer_restart (*fn)(struct hrtimer *);
1763	bool expires_in_hardirq;
1764	int restart;
1765
1766	lockdep_assert_held(&cpu_base->lock);
1767
1768	debug_deactivate(timer);
1769	base->running = timer;
1770
1771	/*
1772	 * Separate the ->running assignment from the ->state assignment.
1773	 *
1774	 * As with a regular write barrier, this ensures the read side in
1775	 * hrtimer_active() cannot observe base->running == NULL &&
1776	 * timer->state == INACTIVE.
1777	 */
1778	raw_write_seqcount_barrier(&base->seq);
1779
1780	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1781	fn = timer->function;
1782
1783	/*
1784	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1785	 * timer is restarted with a period then it becomes an absolute
1786	 * timer. If its not restarted it does not matter.
1787	 */
1788	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1789		timer->is_rel = false;
1790
1791	/*
1792	 * The timer is marked as running in the CPU base, so it is
1793	 * protected against migration to a different CPU even if the lock
1794	 * is dropped.
1795	 */
1796	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1797	trace_hrtimer_expire_entry(timer, now);
1798	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1799
1800	restart = fn(timer);
1801
1802	lockdep_hrtimer_exit(expires_in_hardirq);
1803	trace_hrtimer_expire_exit(timer);
1804	raw_spin_lock_irq(&cpu_base->lock);
1805
1806	/*
1807	 * Note: We clear the running state after enqueue_hrtimer and
1808	 * we do not reprogram the event hardware. Happens either in
1809	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1810	 *
1811	 * Note: Because we dropped the cpu_base->lock above,
1812	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1813	 * for us already.
1814	 */
1815	if (restart != HRTIMER_NORESTART &&
1816	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1817		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1818
1819	/*
1820	 * Separate the ->running assignment from the ->state assignment.
1821	 *
1822	 * As with a regular write barrier, this ensures the read side in
1823	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1824	 * timer->state == INACTIVE.
1825	 */
1826	raw_write_seqcount_barrier(&base->seq);
1827
1828	WARN_ON_ONCE(base->running != timer);
1829	base->running = NULL;
1830}
1831
1832static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1833				 unsigned long flags, unsigned int active_mask)
1834{
1835	struct hrtimer_clock_base *base;
1836	unsigned int active = cpu_base->active_bases & active_mask;
1837
1838	for_each_active_base(base, cpu_base, active) {
1839		struct timerqueue_node *node;
1840		ktime_t basenow;
1841
1842		basenow = ktime_add(now, base->offset);
1843
1844		while ((node = timerqueue_getnext(&base->active))) {
1845			struct hrtimer *timer;
1846
1847			timer = container_of(node, struct hrtimer, node);
1848
1849			/*
1850			 * The immediate goal for using the softexpires is
1851			 * minimizing wakeups, not running timers at the
1852			 * earliest interrupt after their soft expiration.
1853			 * This allows us to avoid using a Priority Search
1854			 * Tree, which can answer a stabbing query for
1855			 * overlapping intervals and instead use the simple
1856			 * BST we already have.
1857			 * We don't add extra wakeups by delaying timers that
1858			 * are right-of a not yet expired timer, because that
1859			 * timer will have to trigger a wakeup anyway.
1860			 */
1861			if (basenow < hrtimer_get_softexpires_tv64(timer))
1862				break;
1863
1864			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1865			if (active_mask == HRTIMER_ACTIVE_SOFT)
1866				hrtimer_sync_wait_running(cpu_base, flags);
1867		}
1868	}
1869}
1870
1871static __latent_entropy void hrtimer_run_softirq(void)
1872{
1873	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1874	unsigned long flags;
1875	ktime_t now;
1876
1877	hrtimer_cpu_base_lock_expiry(cpu_base);
1878	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1879
1880	now = hrtimer_update_base(cpu_base);
1881	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1882
1883	cpu_base->softirq_activated = 0;
1884	hrtimer_update_softirq_timer(cpu_base, true);
1885
1886	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1887	hrtimer_cpu_base_unlock_expiry(cpu_base);
1888}
1889
1890#ifdef CONFIG_HIGH_RES_TIMERS
1891
1892/*
1893 * High resolution timer interrupt
1894 * Called with interrupts disabled
1895 */
1896void hrtimer_interrupt(struct clock_event_device *dev)
1897{
1898	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1899	ktime_t expires_next, now, entry_time, delta;
1900	unsigned long flags;
1901	int retries = 0;
1902
1903	BUG_ON(!cpu_base->hres_active);
1904	cpu_base->nr_events++;
1905	dev->next_event = KTIME_MAX;
1906
1907	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1908	entry_time = now = hrtimer_update_base(cpu_base);
1909retry:
1910	cpu_base->in_hrtirq = 1;
1911	/*
1912	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1913	 * held to prevent that a timer is enqueued in our queue via
1914	 * the migration code. This does not affect enqueueing of
1915	 * timers which run their callback and need to be requeued on
1916	 * this CPU.
1917	 */
1918	cpu_base->expires_next = KTIME_MAX;
1919
1920	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1921		cpu_base->softirq_expires_next = KTIME_MAX;
1922		cpu_base->softirq_activated = 1;
1923		raise_timer_softirq(HRTIMER_SOFTIRQ);
1924	}
1925
1926	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1927
1928	/* Reevaluate the clock bases for the [soft] next expiry */
1929	expires_next = hrtimer_update_next_event(cpu_base);
1930	/*
1931	 * Store the new expiry value so the migration code can verify
1932	 * against it.
1933	 */
1934	cpu_base->expires_next = expires_next;
1935	cpu_base->in_hrtirq = 0;
1936	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1937
1938	/* Reprogramming necessary ? */
1939	if (!tick_program_event(expires_next, 0)) {
1940		cpu_base->hang_detected = 0;
1941		return;
1942	}
1943
1944	/*
1945	 * The next timer was already expired due to:
1946	 * - tracing
1947	 * - long lasting callbacks
1948	 * - being scheduled away when running in a VM
1949	 *
1950	 * We need to prevent that we loop forever in the hrtimer
1951	 * interrupt routine. We give it 3 attempts to avoid
1952	 * overreacting on some spurious event.
1953	 *
1954	 * Acquire base lock for updating the offsets and retrieving
1955	 * the current time.
1956	 */
1957	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1958	now = hrtimer_update_base(cpu_base);
1959	cpu_base->nr_retries++;
1960	if (++retries < 3)
1961		goto retry;
1962	/*
1963	 * Give the system a chance to do something else than looping
1964	 * here. We stored the entry time, so we know exactly how long
1965	 * we spent here. We schedule the next event this amount of
1966	 * time away.
1967	 */
1968	cpu_base->nr_hangs++;
1969	cpu_base->hang_detected = 1;
1970	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1971
1972	delta = ktime_sub(now, entry_time);
1973	if ((unsigned int)delta > cpu_base->max_hang_time)
1974		cpu_base->max_hang_time = (unsigned int) delta;
1975	/*
1976	 * Limit it to a sensible value as we enforce a longer
1977	 * delay. Give the CPU at least 100ms to catch up.
1978	 */
1979	if (delta > 100 * NSEC_PER_MSEC)
1980		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1981	else
1982		expires_next = ktime_add(now, delta);
1983	tick_program_event(expires_next, 1);
1984	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1985}
1986#endif /* !CONFIG_HIGH_RES_TIMERS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987
1988/*
1989 * Called from run_local_timers in hardirq context every jiffy
1990 */
1991void hrtimer_run_queues(void)
1992{
1993	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1994	unsigned long flags;
1995	ktime_t now;
1996
1997	if (hrtimer_hres_active(cpu_base))
1998		return;
1999
2000	/*
2001	 * This _is_ ugly: We have to check periodically, whether we
2002	 * can switch to highres and / or nohz mode. The clocksource
2003	 * switch happens with xtime_lock held. Notification from
2004	 * there only sets the check bit in the tick_oneshot code,
2005	 * otherwise we might deadlock vs. xtime_lock.
2006	 */
2007	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
2008		hrtimer_switch_to_hres();
2009		return;
2010	}
2011
2012	raw_spin_lock_irqsave(&cpu_base->lock, flags);
2013	now = hrtimer_update_base(cpu_base);
2014
2015	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
2016		cpu_base->softirq_expires_next = KTIME_MAX;
2017		cpu_base->softirq_activated = 1;
2018		raise_timer_softirq(HRTIMER_SOFTIRQ);
2019	}
2020
2021	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
2022	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
2023}
2024
2025/*
2026 * Sleep related functions:
2027 */
2028static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
2029{
2030	struct hrtimer_sleeper *t =
2031		container_of(timer, struct hrtimer_sleeper, timer);
2032	struct task_struct *task = t->task;
2033
2034	t->task = NULL;
2035	if (task)
2036		wake_up_process(task);
2037
2038	return HRTIMER_NORESTART;
2039}
2040
2041/**
2042 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
2043 * @sl:		sleeper to be started
2044 * @mode:	timer mode abs/rel
2045 *
2046 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
2047 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
2048 */
2049void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
2050				   enum hrtimer_mode mode)
2051{
2052	/*
2053	 * Make the enqueue delivery mode check work on RT. If the sleeper
2054	 * was initialized for hard interrupt delivery, force the mode bit.
2055	 * This is a special case for hrtimer_sleepers because
2056	 * __hrtimer_init_sleeper() determines the delivery mode on RT so the
2057	 * fiddling with this decision is avoided at the call sites.
2058	 */
2059	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
2060		mode |= HRTIMER_MODE_HARD;
2061
2062	hrtimer_start_expires(&sl->timer, mode);
2063}
2064EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
2065
2066static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
2067				   clockid_t clock_id, enum hrtimer_mode mode)
2068{
2069	/*
2070	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2071	 * marked for hard interrupt expiry mode are moved into soft
2072	 * interrupt context either for latency reasons or because the
2073	 * hrtimer callback takes regular spinlocks or invokes other
2074	 * functions which are not suitable for hard interrupt context on
2075	 * PREEMPT_RT.
2076	 *
2077	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2078	 * context, but there is a latency concern: Untrusted userspace can
2079	 * spawn many threads which arm timers for the same expiry time on
2080	 * the same CPU. That causes a latency spike due to the wakeup of
2081	 * a gazillion threads.
2082	 *
2083	 * OTOH, privileged real-time user space applications rely on the
2084	 * low latency of hard interrupt wakeups. If the current task is in
2085	 * a real-time scheduling class, mark the mode for hard interrupt
2086	 * expiry.
2087	 */
2088	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2089		if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
2090			mode |= HRTIMER_MODE_HARD;
2091	}
2092
2093	__hrtimer_init(&sl->timer, clock_id, mode);
2094	sl->timer.function = hrtimer_wakeup;
2095	sl->task = current;
2096}
2097
2098/**
2099 * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
2100 * @sl:		sleeper to be initialized
2101 * @clock_id:	the clock to be used
2102 * @mode:	timer mode abs/rel
2103 */
2104void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl,
2105				    clockid_t clock_id, enum hrtimer_mode mode)
2106{
2107	debug_init_on_stack(&sl->timer, clock_id, mode);
2108	__hrtimer_init_sleeper(sl, clock_id, mode);
 
2109}
2110EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack);
2111
2112int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2113{
2114	switch(restart->nanosleep.type) {
2115#ifdef CONFIG_COMPAT_32BIT_TIME
2116	case TT_COMPAT:
2117		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2118			return -EFAULT;
2119		break;
2120#endif
2121	case TT_NATIVE:
2122		if (put_timespec64(ts, restart->nanosleep.rmtp))
2123			return -EFAULT;
2124		break;
2125	default:
2126		BUG();
2127	}
2128	return -ERESTART_RESTARTBLOCK;
2129}
2130
2131static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2132{
2133	struct restart_block *restart;
2134
2135	do {
2136		set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2137		hrtimer_sleeper_start_expires(t, mode);
2138
2139		if (likely(t->task))
2140			schedule();
2141
2142		hrtimer_cancel(&t->timer);
2143		mode = HRTIMER_MODE_ABS;
2144
2145	} while (t->task && !signal_pending(current));
2146
2147	__set_current_state(TASK_RUNNING);
2148
2149	if (!t->task)
2150		return 0;
2151
2152	restart = &current->restart_block;
2153	if (restart->nanosleep.type != TT_NONE) {
2154		ktime_t rem = hrtimer_expires_remaining(&t->timer);
2155		struct timespec64 rmt;
2156
2157		if (rem <= 0)
2158			return 0;
2159		rmt = ktime_to_timespec64(rem);
2160
2161		return nanosleep_copyout(restart, &rmt);
2162	}
2163	return -ERESTART_RESTARTBLOCK;
2164}
2165
2166static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2167{
2168	struct hrtimer_sleeper t;
2169	int ret;
2170
2171	hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS);
 
2172	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2173	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2174	destroy_hrtimer_on_stack(&t.timer);
2175	return ret;
2176}
2177
2178long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2179		       const clockid_t clockid)
2180{
2181	struct restart_block *restart;
2182	struct hrtimer_sleeper t;
2183	int ret = 0;
 
 
 
 
 
2184
2185	hrtimer_setup_sleeper_on_stack(&t, clockid, mode);
2186	hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2187	ret = do_nanosleep(&t, mode);
2188	if (ret != -ERESTART_RESTARTBLOCK)
2189		goto out;
2190
2191	/* Absolute timers do not update the rmtp value and restart: */
2192	if (mode == HRTIMER_MODE_ABS) {
2193		ret = -ERESTARTNOHAND;
2194		goto out;
2195	}
2196
2197	restart = &current->restart_block;
 
2198	restart->nanosleep.clockid = t.timer.base->clockid;
2199	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2200	set_restart_fn(restart, hrtimer_nanosleep_restart);
2201out:
2202	destroy_hrtimer_on_stack(&t.timer);
2203	return ret;
2204}
2205
2206#ifdef CONFIG_64BIT
2207
2208SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2209		struct __kernel_timespec __user *, rmtp)
2210{
2211	struct timespec64 tu;
2212
2213	if (get_timespec64(&tu, rqtp))
2214		return -EFAULT;
2215
2216	if (!timespec64_valid(&tu))
2217		return -EINVAL;
2218
2219	current->restart_block.fn = do_no_restart_syscall;
2220	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2221	current->restart_block.nanosleep.rmtp = rmtp;
2222	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2223				 CLOCK_MONOTONIC);
2224}
2225
2226#endif
2227
2228#ifdef CONFIG_COMPAT_32BIT_TIME
2229
2230SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2231		       struct old_timespec32 __user *, rmtp)
2232{
2233	struct timespec64 tu;
2234
2235	if (get_old_timespec32(&tu, rqtp))
2236		return -EFAULT;
2237
2238	if (!timespec64_valid(&tu))
2239		return -EINVAL;
2240
2241	current->restart_block.fn = do_no_restart_syscall;
2242	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2243	current->restart_block.nanosleep.compat_rmtp = rmtp;
2244	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2245				 CLOCK_MONOTONIC);
2246}
2247#endif
2248
2249/*
2250 * Functions related to boot-time initialization:
2251 */
2252int hrtimers_prepare_cpu(unsigned int cpu)
2253{
2254	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2255	int i;
2256
2257	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2258		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2259
2260		clock_b->cpu_base = cpu_base;
2261		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2262		timerqueue_init_head(&clock_b->active);
2263	}
2264
2265	cpu_base->cpu = cpu;
2266	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2267	return 0;
2268}
2269
2270int hrtimers_cpu_starting(unsigned int cpu)
2271{
2272	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2273
2274	/* Clear out any left over state from a CPU down operation */
2275	cpu_base->active_bases = 0;
2276	cpu_base->hres_active = 0;
2277	cpu_base->hang_detected = 0;
2278	cpu_base->next_timer = NULL;
2279	cpu_base->softirq_next_timer = NULL;
2280	cpu_base->expires_next = KTIME_MAX;
2281	cpu_base->softirq_expires_next = KTIME_MAX;
2282	cpu_base->online = 1;
2283	return 0;
2284}
2285
2286#ifdef CONFIG_HOTPLUG_CPU
2287
2288static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2289				struct hrtimer_clock_base *new_base)
2290{
2291	struct hrtimer *timer;
2292	struct timerqueue_node *node;
2293
2294	while ((node = timerqueue_getnext(&old_base->active))) {
2295		timer = container_of(node, struct hrtimer, node);
2296		BUG_ON(hrtimer_callback_running(timer));
2297		debug_deactivate(timer);
2298
2299		/*
2300		 * Mark it as ENQUEUED not INACTIVE otherwise the
2301		 * timer could be seen as !active and just vanish away
2302		 * under us on another CPU
2303		 */
2304		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2305		timer->base = new_base;
2306		/*
2307		 * Enqueue the timers on the new cpu. This does not
2308		 * reprogram the event device in case the timer
2309		 * expires before the earliest on this CPU, but we run
2310		 * hrtimer_interrupt after we migrated everything to
2311		 * sort out already expired timers and reprogram the
2312		 * event device.
2313		 */
2314		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2315	}
2316}
2317
2318int hrtimers_cpu_dying(unsigned int dying_cpu)
2319{
2320	int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2321	struct hrtimer_cpu_base *old_base, *new_base;
 
2322
2323	old_base = this_cpu_ptr(&hrtimer_bases);
2324	new_base = &per_cpu(hrtimer_bases, ncpu);
2325
2326	/*
 
 
 
 
 
 
 
 
 
2327	 * The caller is globally serialized and nobody else
2328	 * takes two locks at once, deadlock is not possible.
2329	 */
2330	raw_spin_lock(&old_base->lock);
2331	raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2332
2333	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2334		migrate_hrtimer_list(&old_base->clock_base[i],
2335				     &new_base->clock_base[i]);
2336	}
2337
2338	/*
2339	 * The migration might have changed the first expiring softirq
2340	 * timer on this CPU. Update it.
2341	 */
2342	__hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2343	/* Tell the other CPU to retrigger the next event */
2344	smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2345
 
2346	raw_spin_unlock(&new_base->lock);
2347	old_base->online = 0;
2348	raw_spin_unlock(&old_base->lock);
2349
 
 
 
 
2350	return 0;
2351}
2352
2353#endif /* CONFIG_HOTPLUG_CPU */
2354
2355void __init hrtimers_init(void)
2356{
2357	hrtimers_prepare_cpu(smp_processor_id());
2358	hrtimers_cpu_starting(smp_processor_id());
2359	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2360}