Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0+ */
  2/*
  3 * Read-Copy Update definitions shared among RCU implementations.
  4 *
  5 * Copyright IBM Corporation, 2011
  6 *
  7 * Author: Paul E. McKenney <paulmck@linux.ibm.com>
  8 */
  9
 10#ifndef __LINUX_RCU_H
 11#define __LINUX_RCU_H
 12
 
 13#include <trace/events/rcu.h>
 14
 15/* Offset to allow distinguishing irq vs. task-based idle entry/exit. */
 16#define DYNTICK_IRQ_NONIDLE	((LONG_MAX / 2) + 1)
 17
 18
 19/*
 20 * Grace-period counter management.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21 */
 22
 23#define RCU_SEQ_CTR_SHIFT	2
 24#define RCU_SEQ_STATE_MASK	((1 << RCU_SEQ_CTR_SHIFT) - 1)
 
 
 25
 26/*
 27 * Return the counter portion of a sequence number previously returned
 28 * by rcu_seq_snap() or rcu_seq_current().
 29 */
 30static inline unsigned long rcu_seq_ctr(unsigned long s)
 31{
 32	return s >> RCU_SEQ_CTR_SHIFT;
 33}
 34
 35/*
 36 * Return the state portion of a sequence number previously returned
 37 * by rcu_seq_snap() or rcu_seq_current().
 38 */
 39static inline int rcu_seq_state(unsigned long s)
 40{
 41	return s & RCU_SEQ_STATE_MASK;
 42}
 43
 44/*
 45 * Set the state portion of the pointed-to sequence number.
 46 * The caller is responsible for preventing conflicting updates.
 47 */
 48static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
 49{
 50	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
 51	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
 52}
 53
 54/* Adjust sequence number for start of update-side operation. */
 55static inline void rcu_seq_start(unsigned long *sp)
 56{
 57	WRITE_ONCE(*sp, *sp + 1);
 58	smp_mb(); /* Ensure update-side operation after counter increment. */
 59	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
 60}
 61
 62/* Compute the end-of-grace-period value for the specified sequence number. */
 63static inline unsigned long rcu_seq_endval(unsigned long *sp)
 64{
 65	return (*sp | RCU_SEQ_STATE_MASK) + 1;
 66}
 67
 68/* Adjust sequence number for end of update-side operation. */
 69static inline void rcu_seq_end(unsigned long *sp)
 70{
 71	smp_mb(); /* Ensure update-side operation before counter increment. */
 72	WARN_ON_ONCE(!rcu_seq_state(*sp));
 73	WRITE_ONCE(*sp, rcu_seq_endval(sp));
 74}
 75
 76/*
 77 * rcu_seq_snap - Take a snapshot of the update side's sequence number.
 78 *
 79 * This function returns the earliest value of the grace-period sequence number
 80 * that will indicate that a full grace period has elapsed since the current
 81 * time.  Once the grace-period sequence number has reached this value, it will
 82 * be safe to invoke all callbacks that have been registered prior to the
 83 * current time. This value is the current grace-period number plus two to the
 84 * power of the number of low-order bits reserved for state, then rounded up to
 85 * the next value in which the state bits are all zero.
 86 */
 87static inline unsigned long rcu_seq_snap(unsigned long *sp)
 88{
 89	unsigned long s;
 90
 91	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
 92	smp_mb(); /* Above access must not bleed into critical section. */
 93	return s;
 94}
 95
 96/* Return the current value the update side's sequence number, no ordering. */
 97static inline unsigned long rcu_seq_current(unsigned long *sp)
 98{
 99	return READ_ONCE(*sp);
100}
101
102/*
103 * Given a snapshot from rcu_seq_snap(), determine whether or not the
104 * corresponding update-side operation has started.
105 */
106static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
107{
108	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
109}
110
111/*
112 * Given a snapshot from rcu_seq_snap(), determine whether or not a
113 * full update-side operation has occurred.
114 */
115static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
116{
117	return ULONG_CMP_GE(READ_ONCE(*sp), s);
118}
119
120/*
 
 
 
 
 
 
 
 
 
 
 
 
121 * Has a grace period completed since the time the old gp_seq was collected?
122 */
123static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
124{
125	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
126}
127
128/*
129 * Has a grace period started since the time the old gp_seq was collected?
130 */
131static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
132{
133	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
134			    new);
135}
136
137/*
138 * Roughly how many full grace periods have elapsed between the collection
139 * of the two specified grace periods?
140 */
141static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
142{
143	unsigned long rnd_diff;
144
145	if (old == new)
146		return 0;
147	/*
148	 * Compute the number of grace periods (still shifted up), plus
149	 * one if either of new and old is not an exact grace period.
150	 */
151	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
152		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
153		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
154	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
155		return 1; /* Definitely no grace period has elapsed. */
156	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
157}
158
159/*
160 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
161 * by call_rcu() and rcu callback execution, and are therefore not part
162 * of the RCU API. These are in rcupdate.h because they are used by all
163 * RCU implementations.
164 */
165
166#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
167# define STATE_RCU_HEAD_READY	0
168# define STATE_RCU_HEAD_QUEUED	1
169
170extern struct debug_obj_descr rcuhead_debug_descr;
171
172static inline int debug_rcu_head_queue(struct rcu_head *head)
173{
174	int r1;
175
176	r1 = debug_object_activate(head, &rcuhead_debug_descr);
177	debug_object_active_state(head, &rcuhead_debug_descr,
178				  STATE_RCU_HEAD_READY,
179				  STATE_RCU_HEAD_QUEUED);
180	return r1;
181}
182
183static inline void debug_rcu_head_unqueue(struct rcu_head *head)
184{
185	debug_object_active_state(head, &rcuhead_debug_descr,
186				  STATE_RCU_HEAD_QUEUED,
187				  STATE_RCU_HEAD_READY);
188	debug_object_deactivate(head, &rcuhead_debug_descr);
189}
190#else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
191static inline int debug_rcu_head_queue(struct rcu_head *head)
192{
193	return 0;
194}
195
196static inline void debug_rcu_head_unqueue(struct rcu_head *head)
197{
198}
199#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
200
201void kfree(const void *);
 
 
 
 
202
203/*
204 * Reclaim the specified callback, either by invoking it (non-lazy case)
205 * or freeing it directly (lazy case).  Return true if lazy, false otherwise.
206 */
207static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
208{
209	rcu_callback_t f;
210	unsigned long offset = (unsigned long)head->func;
211
212	rcu_lock_acquire(&rcu_callback_map);
213	if (__is_kfree_rcu_offset(offset)) {
214		trace_rcu_invoke_kfree_callback(rn, head, offset);
215		kfree((void *)head - offset);
216		rcu_lock_release(&rcu_callback_map);
217		return true;
218	} else {
219		trace_rcu_invoke_callback(rn, head);
220		f = head->func;
221		WRITE_ONCE(head->func, (rcu_callback_t)0L);
222		f(head);
223		rcu_lock_release(&rcu_callback_map);
224		return false;
225	}
226}
227
 
 
228#ifdef CONFIG_RCU_STALL_COMMON
229
230extern int rcu_cpu_stall_ftrace_dump;
231extern int rcu_cpu_stall_suppress;
232extern int rcu_cpu_stall_timeout;
 
 
 
233int rcu_jiffies_till_stall_check(void);
 
 
 
 
 
 
234
235#define rcu_ftrace_dump_stall_suppress() \
236do { \
237	if (!rcu_cpu_stall_suppress) \
238		rcu_cpu_stall_suppress = 3; \
239} while (0)
240
241#define rcu_ftrace_dump_stall_unsuppress() \
242do { \
243	if (rcu_cpu_stall_suppress == 3) \
244		rcu_cpu_stall_suppress = 0; \
245} while (0)
246
247#else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
 
 
 
 
 
248#define rcu_ftrace_dump_stall_suppress()
249#define rcu_ftrace_dump_stall_unsuppress()
250#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
251
252/*
253 * Strings used in tracepoints need to be exported via the
254 * tracing system such that tools like perf and trace-cmd can
255 * translate the string address pointers to actual text.
256 */
257#define TPS(x)  tracepoint_string(x)
258
259/*
260 * Dump the ftrace buffer, but only one time per callsite per boot.
261 */
262#define rcu_ftrace_dump(oops_dump_mode) \
263do { \
264	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
265	\
266	if (!atomic_read(&___rfd_beenhere) && \
267	    !atomic_xchg(&___rfd_beenhere, 1)) { \
268		tracing_off(); \
269		rcu_ftrace_dump_stall_suppress(); \
270		ftrace_dump(oops_dump_mode); \
271		rcu_ftrace_dump_stall_unsuppress(); \
272	} \
273} while (0)
274
275void rcu_early_boot_tests(void);
276void rcu_test_sync_prims(void);
277
278/*
279 * This function really isn't for public consumption, but RCU is special in
280 * that context switches can allow the state machine to make progress.
281 */
282extern void resched_cpu(int cpu);
283
284#if defined(SRCU) || !defined(TINY_RCU)
285
286#include <linux/rcu_node_tree.h>
287
288extern int rcu_num_lvls;
289extern int num_rcu_lvl[];
290extern int rcu_num_nodes;
291static bool rcu_fanout_exact;
292static int rcu_fanout_leaf;
293
294/*
295 * Compute the per-level fanout, either using the exact fanout specified
296 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
297 */
298static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
299{
300	int i;
301
 
 
302	if (rcu_fanout_exact) {
303		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
304		for (i = rcu_num_lvls - 2; i >= 0; i--)
305			levelspread[i] = RCU_FANOUT;
306	} else {
307		int ccur;
308		int cprv;
309
310		cprv = nr_cpu_ids;
311		for (i = rcu_num_lvls - 1; i >= 0; i--) {
312			ccur = levelcnt[i];
313			levelspread[i] = (cprv + ccur - 1) / ccur;
314			cprv = ccur;
315		}
316	}
317}
318
 
 
319/* Returns a pointer to the first leaf rcu_node structure. */
320#define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
321
322/* Is this rcu_node a leaf? */
323#define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
324
325/* Is this rcu_node the last leaf? */
326#define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
327
328/*
329 * Do a full breadth-first scan of the {s,}rcu_node structures for the
330 * specified state structure (for SRCU) or the only rcu_state structure
331 * (for RCU).
332 */
333#define srcu_for_each_node_breadth_first(sp, rnp) \
334	for ((rnp) = &(sp)->node[0]; \
335	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
336#define rcu_for_each_node_breadth_first(rnp) \
337	srcu_for_each_node_breadth_first(&rcu_state, rnp)
 
 
338
339/*
340 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
341 * Note that if there is a singleton rcu_node tree with but one rcu_node
342 * structure, this loop -will- visit the rcu_node structure.  It is still
343 * a leaf node, even if it is also the root node.
344 */
345#define rcu_for_each_leaf_node(rnp) \
346	for ((rnp) = rcu_first_leaf_node(); \
347	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
348
349/*
350 * Iterate over all possible CPUs in a leaf RCU node.
351 */
352#define for_each_leaf_node_possible_cpu(rnp, cpu) \
353	for ((cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
 
354	     (cpu) <= rnp->grphi; \
355	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
356
357/*
358 * Iterate over all CPUs in a leaf RCU node's specified mask.
359 */
360#define rcu_find_next_bit(rnp, cpu, mask) \
361	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
362#define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
363	for ((cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
 
364	     (cpu) <= rnp->grphi; \
365	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
366
 
 
 
 
367/*
368 * Wrappers for the rcu_node::lock acquire and release.
369 *
370 * Because the rcu_nodes form a tree, the tree traversal locking will observe
371 * different lock values, this in turn means that an UNLOCK of one level
372 * followed by a LOCK of another level does not imply a full memory barrier;
373 * and most importantly transitivity is lost.
374 *
375 * In order to restore full ordering between tree levels, augment the regular
376 * lock acquire functions with smp_mb__after_unlock_lock().
377 *
378 * As ->lock of struct rcu_node is a __private field, therefore one should use
379 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
380 */
381#define raw_spin_lock_rcu_node(p)					\
382do {									\
383	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
384	smp_mb__after_unlock_lock();					\
385} while (0)
386
387#define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
 
 
 
 
388
389#define raw_spin_lock_irq_rcu_node(p)					\
390do {									\
391	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
392	smp_mb__after_unlock_lock();					\
393} while (0)
394
395#define raw_spin_unlock_irq_rcu_node(p)					\
396	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
 
 
 
397
398#define raw_spin_lock_irqsave_rcu_node(p, flags)			\
399do {									\
400	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
401	smp_mb__after_unlock_lock();					\
402} while (0)
403
404#define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
405	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)
 
 
 
406
407#define raw_spin_trylock_rcu_node(p)					\
408({									\
409	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
410									\
411	if (___locked)							\
412		smp_mb__after_unlock_lock();				\
413	___locked;							\
414})
415
416#define raw_lockdep_assert_held_rcu_node(p)				\
417	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
418
419#endif /* #if defined(SRCU) || !defined(TINY_RCU) */
420
421#ifdef CONFIG_SRCU
422void srcu_init(void);
423#else /* #ifdef CONFIG_SRCU */
424static inline void srcu_init(void) { }
425#endif /* #else #ifdef CONFIG_SRCU */
426
427#ifdef CONFIG_TINY_RCU
428/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
429static inline bool rcu_gp_is_normal(void) { return true; }
430static inline bool rcu_gp_is_expedited(void) { return false; }
 
431static inline void rcu_expedite_gp(void) { }
432static inline void rcu_unexpedite_gp(void) { }
433static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
 
 
434#else /* #ifdef CONFIG_TINY_RCU */
435bool rcu_gp_is_normal(void);     /* Internal RCU use. */
436bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
 
437void rcu_expedite_gp(void);
438void rcu_unexpedite_gp(void);
 
 
439void rcupdate_announce_bootup_oddness(void);
440void rcu_request_urgent_qs_task(struct task_struct *t);
 
 
 
 
 
441#endif /* #else #ifdef CONFIG_TINY_RCU */
442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443#define RCU_SCHEDULER_INACTIVE	0
444#define RCU_SCHEDULER_INIT	1
445#define RCU_SCHEDULER_RUNNING	2
446
447enum rcutorture_type {
448	RCU_FLAVOR,
449	RCU_TASKS_FLAVOR,
 
 
450	RCU_TRIVIAL_FLAVOR,
451	SRCU_FLAVOR,
452	INVALID_RCU_FLAVOR
453};
454
455#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
456void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
457			    unsigned long *gp_seq);
458void rcutorture_record_progress(unsigned long vernum);
 
 
 
 
 
 
459void do_trace_rcu_torture_read(const char *rcutorturename,
460			       struct rcu_head *rhp,
461			       unsigned long secs,
462			       unsigned long c_old,
463			       unsigned long c);
 
464#else
465static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
466					  int *flags, unsigned long *gp_seq)
467{
468	*flags = 0;
469	*gp_seq = 0;
470}
471static inline void rcutorture_record_progress(unsigned long vernum) { }
472#ifdef CONFIG_RCU_TRACE
473void do_trace_rcu_torture_read(const char *rcutorturename,
474			       struct rcu_head *rhp,
475			       unsigned long secs,
476			       unsigned long c_old,
477			       unsigned long c);
478#else
479#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
480	do { } while (0)
481#endif
482#endif
483
484#if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
485long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask);
486#endif
487
488#ifdef CONFIG_TINY_SRCU
489
490static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
491					   struct srcu_struct *sp, int *flags,
492					   unsigned long *gp_seq)
493{
494	if (test_type != SRCU_FLAVOR)
495		return;
496	*flags = 0;
497	*gp_seq = sp->srcu_idx;
498}
499
500#elif defined(CONFIG_TREE_SRCU)
501
502void srcutorture_get_gp_data(enum rcutorture_type test_type,
503			     struct srcu_struct *sp, int *flags,
504			     unsigned long *gp_seq);
505
506#endif
507
508#ifdef CONFIG_TINY_RCU
 
509static inline unsigned long rcu_get_gp_seq(void) { return 0; }
510static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
511static inline unsigned long
512srcu_batches_completed(struct srcu_struct *sp) { return 0; }
513static inline void rcu_force_quiescent_state(void) { }
 
514static inline void show_rcu_gp_kthreads(void) { }
515static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
516static inline void rcu_fwd_progress_check(unsigned long j) { }
 
 
517#else /* #ifdef CONFIG_TINY_RCU */
 
518unsigned long rcu_get_gp_seq(void);
519unsigned long rcu_exp_batches_completed(void);
520unsigned long srcu_batches_completed(struct srcu_struct *sp);
 
521void show_rcu_gp_kthreads(void);
522int rcu_get_gp_kthreads_prio(void);
523void rcu_fwd_progress_check(unsigned long j);
524void rcu_force_quiescent_state(void);
525extern struct workqueue_struct *rcu_gp_wq;
526extern struct workqueue_struct *rcu_par_gp_wq;
 
 
527#endif /* #else #ifdef CONFIG_TINY_RCU */
528
529#ifdef CONFIG_RCU_NOCB_CPU
530bool rcu_is_nocb_cpu(int cpu);
531void rcu_bind_current_to_nocb(void);
532#else
533static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
534static inline void rcu_bind_current_to_nocb(void) { }
535#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536
537#endif /* __LINUX_RCU_H */
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0+ */
  2/*
  3 * Read-Copy Update definitions shared among RCU implementations.
  4 *
  5 * Copyright IBM Corporation, 2011
  6 *
  7 * Author: Paul E. McKenney <paulmck@linux.ibm.com>
  8 */
  9
 10#ifndef __LINUX_RCU_H
 11#define __LINUX_RCU_H
 12
 13#include <linux/slab.h>
 14#include <trace/events/rcu.h>
 15
 
 
 
 
 16/*
 17 * Grace-period counter management.
 18 *
 19 * The two least significant bits contain the control flags.
 20 * The most significant bits contain the grace-period sequence counter.
 21 *
 22 * When both control flags are zero, no grace period is in progress.
 23 * When either bit is non-zero, a grace period has started and is in
 24 * progress. When the grace period completes, the control flags are reset
 25 * to 0 and the grace-period sequence counter is incremented.
 26 *
 27 * However some specific RCU usages make use of custom values.
 28 *
 29 * SRCU special control values:
 30 *
 31 *	SRCU_SNP_INIT_SEQ	:	Invalid/init value set when SRCU node
 32 *					is initialized.
 33 *
 34 *	SRCU_STATE_IDLE		:	No SRCU gp is in progress
 35 *
 36 *	SRCU_STATE_SCAN1	:	State set by rcu_seq_start(). Indicates
 37 *					we are scanning the readers on the slot
 38 *					defined as inactive (there might well
 39 *					be pending readers that will use that
 40 *					index, but their number is bounded).
 41 *
 42 *	SRCU_STATE_SCAN2	:	State set manually via rcu_seq_set_state()
 43 *					Indicates we are flipping the readers
 44 *					index and then scanning the readers on the
 45 *					slot newly designated as inactive (again,
 46 *					the number of pending readers that will use
 47 *					this inactive index is bounded).
 48 *
 49 * RCU polled GP special control value:
 50 *
 51 *	RCU_GET_STATE_COMPLETED :	State value indicating an already-completed
 52 *					polled GP has completed.  This value covers
 53 *					both the state and the counter of the
 54 *					grace-period sequence number.
 55 */
 56
 57/* Low-order bit definition for polled grace-period APIs. */
 58#define RCU_GET_STATE_COMPLETED	0x1
 59
 60extern int sysctl_sched_rt_runtime;
 61
 62/*
 63 * Return the counter portion of a sequence number previously returned
 64 * by rcu_seq_snap() or rcu_seq_current().
 65 */
 66static inline unsigned long rcu_seq_ctr(unsigned long s)
 67{
 68	return s >> RCU_SEQ_CTR_SHIFT;
 69}
 70
 71/*
 72 * Return the state portion of a sequence number previously returned
 73 * by rcu_seq_snap() or rcu_seq_current().
 74 */
 75static inline int rcu_seq_state(unsigned long s)
 76{
 77	return s & RCU_SEQ_STATE_MASK;
 78}
 79
 80/*
 81 * Set the state portion of the pointed-to sequence number.
 82 * The caller is responsible for preventing conflicting updates.
 83 */
 84static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
 85{
 86	WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
 87	WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
 88}
 89
 90/* Adjust sequence number for start of update-side operation. */
 91static inline void rcu_seq_start(unsigned long *sp)
 92{
 93	WRITE_ONCE(*sp, *sp + 1);
 94	smp_mb(); /* Ensure update-side operation after counter increment. */
 95	WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
 96}
 97
 98/* Compute the end-of-grace-period value for the specified sequence number. */
 99static inline unsigned long rcu_seq_endval(unsigned long *sp)
100{
101	return (*sp | RCU_SEQ_STATE_MASK) + 1;
102}
103
104/* Adjust sequence number for end of update-side operation. */
105static inline void rcu_seq_end(unsigned long *sp)
106{
107	smp_mb(); /* Ensure update-side operation before counter increment. */
108	WARN_ON_ONCE(!rcu_seq_state(*sp));
109	WRITE_ONCE(*sp, rcu_seq_endval(sp));
110}
111
112/*
113 * rcu_seq_snap - Take a snapshot of the update side's sequence number.
114 *
115 * This function returns the earliest value of the grace-period sequence number
116 * that will indicate that a full grace period has elapsed since the current
117 * time.  Once the grace-period sequence number has reached this value, it will
118 * be safe to invoke all callbacks that have been registered prior to the
119 * current time. This value is the current grace-period number plus two to the
120 * power of the number of low-order bits reserved for state, then rounded up to
121 * the next value in which the state bits are all zero.
122 */
123static inline unsigned long rcu_seq_snap(unsigned long *sp)
124{
125	unsigned long s;
126
127	s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
128	smp_mb(); /* Above access must not bleed into critical section. */
129	return s;
130}
131
132/* Return the current value the update side's sequence number, no ordering. */
133static inline unsigned long rcu_seq_current(unsigned long *sp)
134{
135	return READ_ONCE(*sp);
136}
137
138/*
139 * Given a snapshot from rcu_seq_snap(), determine whether or not the
140 * corresponding update-side operation has started.
141 */
142static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
143{
144	return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
145}
146
147/*
148 * Given a snapshot from rcu_seq_snap(), determine whether or not a
149 * full update-side operation has occurred.
150 */
151static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
152{
153	return ULONG_CMP_GE(READ_ONCE(*sp), s);
154}
155
156/*
157 * Given a snapshot from rcu_seq_snap(), determine whether or not a
158 * full update-side operation has occurred, but do not allow the
159 * (ULONG_MAX / 2) safety-factor/guard-band.
160 */
161static inline bool rcu_seq_done_exact(unsigned long *sp, unsigned long s)
162{
163	unsigned long cur_s = READ_ONCE(*sp);
164
165	return ULONG_CMP_GE(cur_s, s) || ULONG_CMP_LT(cur_s, s - (2 * RCU_SEQ_STATE_MASK + 1));
166}
167
168/*
169 * Has a grace period completed since the time the old gp_seq was collected?
170 */
171static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
172{
173	return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
174}
175
176/*
177 * Has a grace period started since the time the old gp_seq was collected?
178 */
179static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
180{
181	return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
182			    new);
183}
184
185/*
186 * Roughly how many full grace periods have elapsed between the collection
187 * of the two specified grace periods?
188 */
189static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
190{
191	unsigned long rnd_diff;
192
193	if (old == new)
194		return 0;
195	/*
196	 * Compute the number of grace periods (still shifted up), plus
197	 * one if either of new and old is not an exact grace period.
198	 */
199	rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
200		   ((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
201		   ((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
202	if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
203		return 1; /* Definitely no grace period has elapsed. */
204	return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
205}
206
207/*
208 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
209 * by call_rcu() and rcu callback execution, and are therefore not part
210 * of the RCU API. These are in rcupdate.h because they are used by all
211 * RCU implementations.
212 */
213
214#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
215# define STATE_RCU_HEAD_READY	0
216# define STATE_RCU_HEAD_QUEUED	1
217
218extern const struct debug_obj_descr rcuhead_debug_descr;
219
220static inline int debug_rcu_head_queue(struct rcu_head *head)
221{
222	int r1;
223
224	r1 = debug_object_activate(head, &rcuhead_debug_descr);
225	debug_object_active_state(head, &rcuhead_debug_descr,
226				  STATE_RCU_HEAD_READY,
227				  STATE_RCU_HEAD_QUEUED);
228	return r1;
229}
230
231static inline void debug_rcu_head_unqueue(struct rcu_head *head)
232{
233	debug_object_active_state(head, &rcuhead_debug_descr,
234				  STATE_RCU_HEAD_QUEUED,
235				  STATE_RCU_HEAD_READY);
236	debug_object_deactivate(head, &rcuhead_debug_descr);
237}
238#else	/* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
239static inline int debug_rcu_head_queue(struct rcu_head *head)
240{
241	return 0;
242}
243
244static inline void debug_rcu_head_unqueue(struct rcu_head *head)
245{
246}
247#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
248
249static inline void debug_rcu_head_callback(struct rcu_head *rhp)
250{
251	if (unlikely(!rhp->func))
252		kmem_dump_obj(rhp);
253}
254
255static inline bool rcu_barrier_cb_is_done(struct rcu_head *rhp)
 
 
 
 
256{
257	return rhp->next == rhp;
258}
259
260extern int rcu_cpu_stall_suppress_at_boot;
261
262static inline bool rcu_stall_is_suppressed_at_boot(void)
263{
264	return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
 
 
 
 
 
 
 
 
 
265}
266
267extern int rcu_cpu_stall_notifiers;
268
269#ifdef CONFIG_RCU_STALL_COMMON
270
271extern int rcu_cpu_stall_ftrace_dump;
272extern int rcu_cpu_stall_suppress;
273extern int rcu_cpu_stall_timeout;
274extern int rcu_exp_cpu_stall_timeout;
275extern int rcu_cpu_stall_cputime;
276extern bool rcu_exp_stall_task_details __read_mostly;
277int rcu_jiffies_till_stall_check(void);
278int rcu_exp_jiffies_till_stall_check(void);
279
280static inline bool rcu_stall_is_suppressed(void)
281{
282	return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
283}
284
285#define rcu_ftrace_dump_stall_suppress() \
286do { \
287	if (!rcu_cpu_stall_suppress) \
288		rcu_cpu_stall_suppress = 3; \
289} while (0)
290
291#define rcu_ftrace_dump_stall_unsuppress() \
292do { \
293	if (rcu_cpu_stall_suppress == 3) \
294		rcu_cpu_stall_suppress = 0; \
295} while (0)
296
297#else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
298
299static inline bool rcu_stall_is_suppressed(void)
300{
301	return rcu_stall_is_suppressed_at_boot();
302}
303#define rcu_ftrace_dump_stall_suppress()
304#define rcu_ftrace_dump_stall_unsuppress()
305#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
306
307/*
308 * Strings used in tracepoints need to be exported via the
309 * tracing system such that tools like perf and trace-cmd can
310 * translate the string address pointers to actual text.
311 */
312#define TPS(x)  tracepoint_string(x)
313
314/*
315 * Dump the ftrace buffer, but only one time per callsite per boot.
316 */
317#define rcu_ftrace_dump(oops_dump_mode) \
318do { \
319	static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
320	\
321	if (!atomic_read(&___rfd_beenhere) && \
322	    !atomic_xchg(&___rfd_beenhere, 1)) { \
323		tracing_off(); \
324		rcu_ftrace_dump_stall_suppress(); \
325		ftrace_dump(oops_dump_mode); \
326		rcu_ftrace_dump_stall_unsuppress(); \
327	} \
328} while (0)
329
330void rcu_early_boot_tests(void);
331void rcu_test_sync_prims(void);
332
333/*
334 * This function really isn't for public consumption, but RCU is special in
335 * that context switches can allow the state machine to make progress.
336 */
337extern void resched_cpu(int cpu);
338
339#if !defined(CONFIG_TINY_RCU)
340
341#include <linux/rcu_node_tree.h>
342
343extern int rcu_num_lvls;
344extern int num_rcu_lvl[];
345extern int rcu_num_nodes;
346static bool rcu_fanout_exact;
347static int rcu_fanout_leaf;
348
349/*
350 * Compute the per-level fanout, either using the exact fanout specified
351 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
352 */
353static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
354{
355	int i;
356
357	for (i = 0; i < RCU_NUM_LVLS; i++)
358		levelspread[i] = INT_MIN;
359	if (rcu_fanout_exact) {
360		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
361		for (i = rcu_num_lvls - 2; i >= 0; i--)
362			levelspread[i] = RCU_FANOUT;
363	} else {
364		int ccur;
365		int cprv;
366
367		cprv = nr_cpu_ids;
368		for (i = rcu_num_lvls - 1; i >= 0; i--) {
369			ccur = levelcnt[i];
370			levelspread[i] = (cprv + ccur - 1) / ccur;
371			cprv = ccur;
372		}
373	}
374}
375
376extern void rcu_init_geometry(void);
377
378/* Returns a pointer to the first leaf rcu_node structure. */
379#define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
380
381/* Is this rcu_node a leaf? */
382#define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
383
384/* Is this rcu_node the last leaf? */
385#define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
386
387/*
388 * Do a full breadth-first scan of the {s,}rcu_node structures for the
389 * specified state structure (for SRCU) or the only rcu_state structure
390 * (for RCU).
391 */
392#define _rcu_for_each_node_breadth_first(sp, rnp) \
393	for ((rnp) = &(sp)->node[0]; \
394	     (rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
395#define rcu_for_each_node_breadth_first(rnp) \
396	_rcu_for_each_node_breadth_first(&rcu_state, rnp)
397#define srcu_for_each_node_breadth_first(ssp, rnp) \
398	_rcu_for_each_node_breadth_first(ssp->srcu_sup, rnp)
399
400/*
401 * Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
402 * Note that if there is a singleton rcu_node tree with but one rcu_node
403 * structure, this loop -will- visit the rcu_node structure.  It is still
404 * a leaf node, even if it is also the root node.
405 */
406#define rcu_for_each_leaf_node(rnp) \
407	for ((rnp) = rcu_first_leaf_node(); \
408	     (rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
409
410/*
411 * Iterate over all possible CPUs in a leaf RCU node.
412 */
413#define for_each_leaf_node_possible_cpu(rnp, cpu) \
414	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
415	     (cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
416	     (cpu) <= rnp->grphi; \
417	     (cpu) = cpumask_next((cpu), cpu_possible_mask))
418
419/*
420 * Iterate over all CPUs in a leaf RCU node's specified mask.
421 */
422#define rcu_find_next_bit(rnp, cpu, mask) \
423	((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
424#define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
425	for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
426	     (cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
427	     (cpu) <= rnp->grphi; \
428	     (cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
429
430#endif /* !defined(CONFIG_TINY_RCU) */
431
432#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
433
434/*
435 * Wrappers for the rcu_node::lock acquire and release.
436 *
437 * Because the rcu_nodes form a tree, the tree traversal locking will observe
438 * different lock values, this in turn means that an UNLOCK of one level
439 * followed by a LOCK of another level does not imply a full memory barrier;
440 * and most importantly transitivity is lost.
441 *
442 * In order to restore full ordering between tree levels, augment the regular
443 * lock acquire functions with smp_mb__after_unlock_lock().
444 *
445 * As ->lock of struct rcu_node is a __private field, therefore one should use
446 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
447 */
448#define raw_spin_lock_rcu_node(p)					\
449do {									\
450	raw_spin_lock(&ACCESS_PRIVATE(p, lock));			\
451	smp_mb__after_unlock_lock();					\
452} while (0)
453
454#define raw_spin_unlock_rcu_node(p)					\
455do {									\
456	lockdep_assert_irqs_disabled();					\
457	raw_spin_unlock(&ACCESS_PRIVATE(p, lock));			\
458} while (0)
459
460#define raw_spin_lock_irq_rcu_node(p)					\
461do {									\
462	raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
463	smp_mb__after_unlock_lock();					\
464} while (0)
465
466#define raw_spin_unlock_irq_rcu_node(p)					\
467do {									\
468	lockdep_assert_irqs_disabled();					\
469	raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock));			\
470} while (0)
471
472#define raw_spin_lock_irqsave_rcu_node(p, flags)			\
473do {									\
474	raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
475	smp_mb__after_unlock_lock();					\
476} while (0)
477
478#define raw_spin_unlock_irqrestore_rcu_node(p, flags)			\
479do {									\
480	lockdep_assert_irqs_disabled();					\
481	raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags);	\
482} while (0)
483
484#define raw_spin_trylock_rcu_node(p)					\
485({									\
486	bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock));	\
487									\
488	if (___locked)							\
489		smp_mb__after_unlock_lock();				\
490	___locked;							\
491})
492
493#define raw_lockdep_assert_held_rcu_node(p)				\
494	lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
495
496#endif // #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
 
 
 
 
 
 
497
498#ifdef CONFIG_TINY_RCU
499/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
500static inline bool rcu_gp_is_normal(void) { return true; }
501static inline bool rcu_gp_is_expedited(void) { return false; }
502static inline bool rcu_async_should_hurry(void) { return false; }
503static inline void rcu_expedite_gp(void) { }
504static inline void rcu_unexpedite_gp(void) { }
505static inline void rcu_async_hurry(void) { }
506static inline void rcu_async_relax(void) { }
507static inline bool rcu_cpu_online(int cpu) { return true; }
508#else /* #ifdef CONFIG_TINY_RCU */
509bool rcu_gp_is_normal(void);     /* Internal RCU use. */
510bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
511bool rcu_async_should_hurry(void);  /* Internal RCU use. */
512void rcu_expedite_gp(void);
513void rcu_unexpedite_gp(void);
514void rcu_async_hurry(void);
515void rcu_async_relax(void);
516void rcupdate_announce_bootup_oddness(void);
517bool rcu_cpu_online(int cpu);
518#ifdef CONFIG_TASKS_RCU_GENERIC
519void show_rcu_tasks_gp_kthreads(void);
520#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
521static inline void show_rcu_tasks_gp_kthreads(void) {}
522#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
523#endif /* #else #ifdef CONFIG_TINY_RCU */
524
525#ifdef CONFIG_TASKS_RCU
526struct task_struct *get_rcu_tasks_gp_kthread(void);
527void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq);
528#endif // # ifdef CONFIG_TASKS_RCU
529
530#ifdef CONFIG_TASKS_RUDE_RCU
531struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
532void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq);
533#endif // # ifdef CONFIG_TASKS_RUDE_RCU
534
535#ifdef CONFIG_TASKS_TRACE_RCU
536void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq);
537#endif
538
539#ifdef CONFIG_TASKS_RCU_GENERIC
540void tasks_cblist_init_generic(void);
541#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
542static inline void tasks_cblist_init_generic(void) { }
543#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
544
545#define RCU_SCHEDULER_INACTIVE	0
546#define RCU_SCHEDULER_INIT	1
547#define RCU_SCHEDULER_RUNNING	2
548
549enum rcutorture_type {
550	RCU_FLAVOR,
551	RCU_TASKS_FLAVOR,
552	RCU_TASKS_RUDE_FLAVOR,
553	RCU_TASKS_TRACING_FLAVOR,
554	RCU_TRIVIAL_FLAVOR,
555	SRCU_FLAVOR,
556	INVALID_RCU_FLAVOR
557};
558
559#if defined(CONFIG_RCU_LAZY)
560unsigned long rcu_get_jiffies_lazy_flush(void);
561void rcu_set_jiffies_lazy_flush(unsigned long j);
562#else
563static inline unsigned long rcu_get_jiffies_lazy_flush(void) { return 0; }
564static inline void rcu_set_jiffies_lazy_flush(unsigned long j) { }
565#endif
566
567#if defined(CONFIG_TREE_RCU)
568void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq);
569void do_trace_rcu_torture_read(const char *rcutorturename,
570			       struct rcu_head *rhp,
571			       unsigned long secs,
572			       unsigned long c_old,
573			       unsigned long c);
574void rcu_gp_set_torture_wait(int duration);
575#else
576static inline void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
 
577{
578	*flags = 0;
579	*gp_seq = 0;
580}
 
581#ifdef CONFIG_RCU_TRACE
582void do_trace_rcu_torture_read(const char *rcutorturename,
583			       struct rcu_head *rhp,
584			       unsigned long secs,
585			       unsigned long c_old,
586			       unsigned long c);
587#else
588#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
589	do { } while (0)
590#endif
591static inline void rcu_gp_set_torture_wait(int duration) { }
 
 
 
592#endif
593
594#ifdef CONFIG_TINY_SRCU
595
596static inline void srcutorture_get_gp_data(struct srcu_struct *sp, int *flags,
 
597					   unsigned long *gp_seq)
598{
 
 
599	*flags = 0;
600	*gp_seq = sp->srcu_idx;
601}
602
603#elif defined(CONFIG_TREE_SRCU)
604
605void srcutorture_get_gp_data(struct srcu_struct *sp, int *flags,
 
606			     unsigned long *gp_seq);
607
608#endif
609
610#ifdef CONFIG_TINY_RCU
611static inline bool rcu_watching_zero_in_eqs(int cpu, int *vp) { return false; }
612static inline unsigned long rcu_get_gp_seq(void) { return 0; }
613static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
614static inline unsigned long
615srcu_batches_completed(struct srcu_struct *sp) { return 0; }
616static inline void rcu_force_quiescent_state(void) { }
617static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
618static inline void show_rcu_gp_kthreads(void) { }
619static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
620static inline void rcu_fwd_progress_check(unsigned long j) { }
621static inline void rcu_gp_slow_register(atomic_t *rgssp) { }
622static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { }
623#else /* #ifdef CONFIG_TINY_RCU */
624bool rcu_watching_zero_in_eqs(int cpu, int *vp);
625unsigned long rcu_get_gp_seq(void);
626unsigned long rcu_exp_batches_completed(void);
627unsigned long srcu_batches_completed(struct srcu_struct *sp);
628bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
629void show_rcu_gp_kthreads(void);
630int rcu_get_gp_kthreads_prio(void);
631void rcu_fwd_progress_check(unsigned long j);
632void rcu_force_quiescent_state(void);
633extern struct workqueue_struct *rcu_gp_wq;
634extern struct kthread_worker *rcu_exp_gp_kworker;
635void rcu_gp_slow_register(atomic_t *rgssp);
636void rcu_gp_slow_unregister(atomic_t *rgssp);
637#endif /* #else #ifdef CONFIG_TINY_RCU */
638
639#ifdef CONFIG_RCU_NOCB_CPU
 
640void rcu_bind_current_to_nocb(void);
641#else
 
642static inline void rcu_bind_current_to_nocb(void) { }
643#endif
644
645#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
646void show_rcu_tasks_classic_gp_kthread(void);
647#else
648static inline void show_rcu_tasks_classic_gp_kthread(void) {}
649#endif
650#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
651void show_rcu_tasks_rude_gp_kthread(void);
652#else
653static inline void show_rcu_tasks_rude_gp_kthread(void) {}
654#endif
655#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
656void show_rcu_tasks_trace_gp_kthread(void);
657#else
658static inline void show_rcu_tasks_trace_gp_kthread(void) {}
659#endif
660
661#ifdef CONFIG_TINY_RCU
662static inline bool rcu_cpu_beenfullyonline(int cpu) { return true; }
663#else
664bool rcu_cpu_beenfullyonline(int cpu);
665#endif
666
667#if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
668int rcu_stall_notifier_call_chain(unsigned long val, void *v);
669#else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
670static inline int rcu_stall_notifier_call_chain(unsigned long val, void *v) { return NOTIFY_DONE; }
671#endif // #else // #if defined(CONFIG_RCU_STALL_COMMON) && defined(CONFIG_RCU_CPU_STALL_NOTIFIER)
672
673#endif /* __LINUX_RCU_H */