Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Longest prefix match list implementation
  4 *
  5 * Copyright (c) 2016,2017 Daniel Mack
  6 * Copyright (c) 2016 David Herrmann
  7 */
  8
  9#include <linux/bpf.h>
 10#include <linux/btf.h>
 11#include <linux/err.h>
 12#include <linux/slab.h>
 13#include <linux/spinlock.h>
 14#include <linux/vmalloc.h>
 15#include <net/ipv6.h>
 16#include <uapi/linux/btf.h>
 
 
 17
 18/* Intermediate node */
 19#define LPM_TREE_NODE_FLAG_IM BIT(0)
 20
 21struct lpm_trie_node;
 22
 23struct lpm_trie_node {
 24	struct rcu_head rcu;
 25	struct lpm_trie_node __rcu	*child[2];
 26	u32				prefixlen;
 27	u32				flags;
 28	u8				data[0];
 29};
 30
 31struct lpm_trie {
 32	struct bpf_map			map;
 33	struct lpm_trie_node __rcu	*root;
 
 34	size_t				n_entries;
 35	size_t				max_prefixlen;
 36	size_t				data_size;
 37	raw_spinlock_t			lock;
 38};
 39
 40/* This trie implements a longest prefix match algorithm that can be used to
 41 * match IP addresses to a stored set of ranges.
 42 *
 43 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
 44 * interpreted as big endian, so data[0] stores the most significant byte.
 45 *
 46 * Match ranges are internally stored in instances of struct lpm_trie_node
 47 * which each contain their prefix length as well as two pointers that may
 48 * lead to more nodes containing more specific matches. Each node also stores
 49 * a value that is defined by and returned to userspace via the update_elem
 50 * and lookup functions.
 51 *
 52 * For instance, let's start with a trie that was created with a prefix length
 53 * of 32, so it can be used for IPv4 addresses, and one single element that
 54 * matches 192.168.0.0/16. The data array would hence contain
 55 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
 56 * stick to IP-address notation for readability though.
 57 *
 58 * As the trie is empty initially, the new node (1) will be places as root
 59 * node, denoted as (R) in the example below. As there are no other node, both
 60 * child pointers are %NULL.
 61 *
 62 *              +----------------+
 63 *              |       (1)  (R) |
 64 *              | 192.168.0.0/16 |
 65 *              |    value: 1    |
 66 *              |   [0]    [1]   |
 67 *              +----------------+
 68 *
 69 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
 70 * a node with the same data and a smaller prefix (ie, a less specific one),
 71 * node (2) will become a child of (1). In child index depends on the next bit
 72 * that is outside of what (1) matches, and that bit is 0, so (2) will be
 73 * child[0] of (1):
 74 *
 75 *              +----------------+
 76 *              |       (1)  (R) |
 77 *              | 192.168.0.0/16 |
 78 *              |    value: 1    |
 79 *              |   [0]    [1]   |
 80 *              +----------------+
 81 *                   |
 82 *    +----------------+
 83 *    |       (2)      |
 84 *    | 192.168.0.0/24 |
 85 *    |    value: 2    |
 86 *    |   [0]    [1]   |
 87 *    +----------------+
 88 *
 89 * The child[1] slot of (1) could be filled with another node which has bit #17
 90 * (the next bit after the ones that (1) matches on) set to 1. For instance,
 91 * 192.168.128.0/24:
 92 *
 93 *              +----------------+
 94 *              |       (1)  (R) |
 95 *              | 192.168.0.0/16 |
 96 *              |    value: 1    |
 97 *              |   [0]    [1]   |
 98 *              +----------------+
 99 *                   |      |
100 *    +----------------+  +------------------+
101 *    |       (2)      |  |        (3)       |
102 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
103 *    |    value: 2    |  |     value: 3     |
104 *    |   [0]    [1]   |  |    [0]    [1]    |
105 *    +----------------+  +------------------+
106 *
107 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
108 * it, node (1) is looked at first, and because (4) of the semantics laid out
109 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
110 * However, that slot is already allocated, so a new node is needed in between.
111 * That node does not have a value attached to it and it will never be
112 * returned to users as result of a lookup. It is only there to differentiate
113 * the traversal further. It will get a prefix as wide as necessary to
114 * distinguish its two children:
115 *
116 *                      +----------------+
117 *                      |       (1)  (R) |
118 *                      | 192.168.0.0/16 |
119 *                      |    value: 1    |
120 *                      |   [0]    [1]   |
121 *                      +----------------+
122 *                           |      |
123 *            +----------------+  +------------------+
124 *            |       (4)  (I) |  |        (3)       |
125 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
126 *            |    value: ---  |  |     value: 3     |
127 *            |   [0]    [1]   |  |    [0]    [1]    |
128 *            +----------------+  +------------------+
129 *                 |      |
130 *  +----------------+  +----------------+
131 *  |       (2)      |  |       (5)      |
132 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
133 *  |    value: 2    |  |     value: 5   |
134 *  |   [0]    [1]   |  |   [0]    [1]   |
135 *  +----------------+  +----------------+
136 *
137 * 192.168.1.1/32 would be a child of (5) etc.
138 *
139 * An intermediate node will be turned into a 'real' node on demand. In the
140 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
141 *
142 * A fully populated trie would have a height of 32 nodes, as the trie was
143 * created with a prefix length of 32.
144 *
145 * The lookup starts at the root node. If the current node matches and if there
146 * is a child that can be used to become more specific, the trie is traversed
147 * downwards. The last node in the traversal that is a non-intermediate one is
148 * returned.
149 */
150
151static inline int extract_bit(const u8 *data, size_t index)
152{
153	return !!(data[index / 8] & (1 << (7 - (index % 8))));
154}
155
156/**
157 * longest_prefix_match() - determine the longest prefix
158 * @trie:	The trie to get internal sizes from
159 * @node:	The node to operate on
160 * @key:	The key to compare to @node
161 *
162 * Determine the longest prefix of @node that matches the bits in @key.
163 */
164static size_t longest_prefix_match(const struct lpm_trie *trie,
165				   const struct lpm_trie_node *node,
166				   const struct bpf_lpm_trie_key *key)
 
167{
168	u32 limit = min(node->prefixlen, key->prefixlen);
169	u32 prefixlen = 0, i = 0;
170
171	BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
172	BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
173
174#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
175
176	/* data_size >= 16 has very small probability.
177	 * We do not use a loop for optimal code generation.
178	 */
179	if (trie->data_size >= 8) {
180		u64 diff = be64_to_cpu(*(__be64 *)node->data ^
181				       *(__be64 *)key->data);
182
183		prefixlen = 64 - fls64(diff);
184		if (prefixlen >= limit)
185			return limit;
186		if (diff)
187			return prefixlen;
188		i = 8;
189	}
190#endif
191
192	while (trie->data_size >= i + 4) {
193		u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
194				       *(__be32 *)&key->data[i]);
195
196		prefixlen += 32 - fls(diff);
197		if (prefixlen >= limit)
198			return limit;
199		if (diff)
200			return prefixlen;
201		i += 4;
202	}
203
204	if (trie->data_size >= i + 2) {
205		u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
206				       *(__be16 *)&key->data[i]);
207
208		prefixlen += 16 - fls(diff);
209		if (prefixlen >= limit)
210			return limit;
211		if (diff)
212			return prefixlen;
213		i += 2;
214	}
215
216	if (trie->data_size >= i + 1) {
217		prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
218
219		if (prefixlen >= limit)
220			return limit;
221	}
222
223	return prefixlen;
224}
225
 
 
 
 
 
 
 
226/* Called from syscall or from eBPF program */
227static void *trie_lookup_elem(struct bpf_map *map, void *_key)
228{
229	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
230	struct lpm_trie_node *node, *found = NULL;
231	struct bpf_lpm_trie_key *key = _key;
 
 
 
232
233	/* Start walking the trie from the root node ... */
234
235	for (node = rcu_dereference(trie->root); node;) {
 
236		unsigned int next_bit;
237		size_t matchlen;
238
239		/* Determine the longest prefix of @node that matches @key.
240		 * If it's the maximum possible prefix for this trie, we have
241		 * an exact match and can return it directly.
242		 */
243		matchlen = longest_prefix_match(trie, node, key);
244		if (matchlen == trie->max_prefixlen) {
245			found = node;
246			break;
247		}
248
249		/* If the number of bits that match is smaller than the prefix
250		 * length of @node, bail out and return the node we have seen
251		 * last in the traversal (ie, the parent).
252		 */
253		if (matchlen < node->prefixlen)
254			break;
255
256		/* Consider this node as return candidate unless it is an
257		 * artificially added intermediate one.
258		 */
259		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
260			found = node;
261
262		/* If the node match is fully satisfied, let's see if we can
263		 * become more specific. Determine the next bit in the key and
264		 * traverse down.
265		 */
266		next_bit = extract_bit(key->data, node->prefixlen);
267		node = rcu_dereference(node->child[next_bit]);
 
268	}
269
270	if (!found)
271		return NULL;
272
273	return found->data + trie->data_size;
274}
275
276static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
277						 const void *value)
 
278{
279	struct lpm_trie_node *node;
280	size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
281
282	if (value)
283		size += trie->map.value_size;
 
 
 
284
285	node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
286			    trie->map.numa_node);
287	if (!node)
288		return NULL;
289
290	node->flags = 0;
291
292	if (value)
293		memcpy(node->data + trie->data_size, value,
294		       trie->map.value_size);
295
296	return node;
297}
298
 
 
 
 
 
 
 
 
 
 
299/* Called from syscall or from eBPF program */
300static int trie_update_elem(struct bpf_map *map,
301			    void *_key, void *value, u64 flags)
302{
303	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
304	struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
 
305	struct lpm_trie_node __rcu **slot;
306	struct bpf_lpm_trie_key *key = _key;
307	unsigned long irq_flags;
308	unsigned int next_bit;
309	size_t matchlen = 0;
310	int ret = 0;
311
312	if (unlikely(flags > BPF_EXIST))
313		return -EINVAL;
314
315	if (key->prefixlen > trie->max_prefixlen)
316		return -EINVAL;
317
318	raw_spin_lock_irqsave(&trie->lock, irq_flags);
319
320	/* Allocate and fill a new node */
321
322	if (trie->n_entries == trie->map.max_entries) {
323		ret = -ENOSPC;
324		goto out;
325	}
326
327	new_node = lpm_trie_node_alloc(trie, value);
328	if (!new_node) {
329		ret = -ENOMEM;
330		goto out;
331	}
332
333	trie->n_entries++;
334
335	new_node->prefixlen = key->prefixlen;
336	RCU_INIT_POINTER(new_node->child[0], NULL);
337	RCU_INIT_POINTER(new_node->child[1], NULL);
338	memcpy(new_node->data, key->data, trie->data_size);
339
340	/* Now find a slot to attach the new node. To do that, walk the tree
341	 * from the root and match as many bits as possible for each node until
342	 * we either find an empty slot or a slot that needs to be replaced by
343	 * an intermediate node.
344	 */
345	slot = &trie->root;
346
347	while ((node = rcu_dereference_protected(*slot,
348					lockdep_is_held(&trie->lock)))) {
349		matchlen = longest_prefix_match(trie, node, key);
350
351		if (node->prefixlen != matchlen ||
352		    node->prefixlen == key->prefixlen ||
353		    node->prefixlen == trie->max_prefixlen)
354			break;
355
356		next_bit = extract_bit(key->data, node->prefixlen);
357		slot = &node->child[next_bit];
358	}
359
360	/* If the slot is empty (a free child pointer or an empty root),
361	 * simply assign the @new_node to that slot and be done.
362	 */
363	if (!node) {
 
 
 
 
364		rcu_assign_pointer(*slot, new_node);
365		goto out;
366	}
367
368	/* If the slot we picked already exists, replace it with @new_node
369	 * which already has the correct data array set.
370	 */
371	if (node->prefixlen == matchlen) {
 
 
 
 
 
 
 
 
 
 
 
372		new_node->child[0] = node->child[0];
373		new_node->child[1] = node->child[1];
374
375		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
376			trie->n_entries--;
377
378		rcu_assign_pointer(*slot, new_node);
379		kfree_rcu(node, rcu);
380
381		goto out;
382	}
383
 
 
 
 
384	/* If the new node matches the prefix completely, it must be inserted
385	 * as an ancestor. Simply insert it between @node and *@slot.
386	 */
387	if (matchlen == key->prefixlen) {
388		next_bit = extract_bit(node->data, matchlen);
389		rcu_assign_pointer(new_node->child[next_bit], node);
390		rcu_assign_pointer(*slot, new_node);
391		goto out;
392	}
393
394	im_node = lpm_trie_node_alloc(trie, NULL);
 
395	if (!im_node) {
 
396		ret = -ENOMEM;
397		goto out;
398	}
399
400	im_node->prefixlen = matchlen;
401	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
402	memcpy(im_node->data, node->data, trie->data_size);
403
404	/* Now determine which child to install in which slot */
405	if (extract_bit(key->data, matchlen)) {
406		rcu_assign_pointer(im_node->child[0], node);
407		rcu_assign_pointer(im_node->child[1], new_node);
408	} else {
409		rcu_assign_pointer(im_node->child[0], new_node);
410		rcu_assign_pointer(im_node->child[1], node);
411	}
412
413	/* Finally, assign the intermediate node to the determined spot */
414	rcu_assign_pointer(*slot, im_node);
415
416out:
417	if (ret) {
418		if (new_node)
419			trie->n_entries--;
420
421		kfree(new_node);
422		kfree(im_node);
423	}
424
425	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
426
 
 
 
 
 
 
427	return ret;
428}
429
430/* Called from syscall or from eBPF program */
431static int trie_delete_elem(struct bpf_map *map, void *_key)
432{
433	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
434	struct bpf_lpm_trie_key *key = _key;
 
435	struct lpm_trie_node __rcu **trim, **trim2;
436	struct lpm_trie_node *node, *parent;
437	unsigned long irq_flags;
438	unsigned int next_bit;
439	size_t matchlen = 0;
440	int ret = 0;
441
442	if (key->prefixlen > trie->max_prefixlen)
443		return -EINVAL;
444
445	raw_spin_lock_irqsave(&trie->lock, irq_flags);
446
447	/* Walk the tree looking for an exact key/length match and keeping
448	 * track of the path we traverse.  We will need to know the node
449	 * we wish to delete, and the slot that points to the node we want
450	 * to delete.  We may also need to know the nodes parent and the
451	 * slot that contains it.
452	 */
453	trim = &trie->root;
454	trim2 = trim;
455	parent = NULL;
456	while ((node = rcu_dereference_protected(
457		       *trim, lockdep_is_held(&trie->lock)))) {
458		matchlen = longest_prefix_match(trie, node, key);
459
460		if (node->prefixlen != matchlen ||
461		    node->prefixlen == key->prefixlen)
462			break;
463
464		parent = node;
465		trim2 = trim;
466		next_bit = extract_bit(key->data, node->prefixlen);
467		trim = &node->child[next_bit];
468	}
469
470	if (!node || node->prefixlen != key->prefixlen ||
471	    node->prefixlen != matchlen ||
472	    (node->flags & LPM_TREE_NODE_FLAG_IM)) {
473		ret = -ENOENT;
474		goto out;
475	}
476
477	trie->n_entries--;
478
479	/* If the node we are removing has two children, simply mark it
480	 * as intermediate and we are done.
481	 */
482	if (rcu_access_pointer(node->child[0]) &&
483	    rcu_access_pointer(node->child[1])) {
484		node->flags |= LPM_TREE_NODE_FLAG_IM;
485		goto out;
486	}
487
488	/* If the parent of the node we are about to delete is an intermediate
489	 * node, and the deleted node doesn't have any children, we can delete
490	 * the intermediate parent as well and promote its other child
491	 * up the tree.  Doing this maintains the invariant that all
492	 * intermediate nodes have exactly 2 children and that there are no
493	 * unnecessary intermediate nodes in the tree.
494	 */
495	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
496	    !node->child[0] && !node->child[1]) {
497		if (node == rcu_access_pointer(parent->child[0]))
498			rcu_assign_pointer(
499				*trim2, rcu_access_pointer(parent->child[1]));
500		else
501			rcu_assign_pointer(
502				*trim2, rcu_access_pointer(parent->child[0]));
503		kfree_rcu(parent, rcu);
504		kfree_rcu(node, rcu);
505		goto out;
506	}
507
508	/* The node we are removing has either zero or one child. If there
509	 * is a child, move it into the removed node's slot then delete
510	 * the node.  Otherwise just clear the slot and delete the node.
511	 */
512	if (node->child[0])
513		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
514	else if (node->child[1])
515		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
516	else
517		RCU_INIT_POINTER(*trim, NULL);
518	kfree_rcu(node, rcu);
519
520out:
521	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
522
 
 
 
 
 
523	return ret;
524}
525
526#define LPM_DATA_SIZE_MAX	256
527#define LPM_DATA_SIZE_MIN	1
528
529#define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
530				 sizeof(struct lpm_trie_node))
531#define LPM_VAL_SIZE_MIN	1
532
533#define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key) + (X))
534#define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
535#define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
536
537#define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\
538				 BPF_F_ACCESS_MASK)
539
540static struct bpf_map *trie_alloc(union bpf_attr *attr)
541{
542	struct lpm_trie *trie;
543	u64 cost = sizeof(*trie), cost_per_node;
544	int ret;
545
546	if (!capable(CAP_SYS_ADMIN))
547		return ERR_PTR(-EPERM);
548
549	/* check sanity of attributes */
550	if (attr->max_entries == 0 ||
551	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
552	    attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
553	    !bpf_map_flags_access_ok(attr->map_flags) ||
554	    attr->key_size < LPM_KEY_SIZE_MIN ||
555	    attr->key_size > LPM_KEY_SIZE_MAX ||
556	    attr->value_size < LPM_VAL_SIZE_MIN ||
557	    attr->value_size > LPM_VAL_SIZE_MAX)
558		return ERR_PTR(-EINVAL);
559
560	trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
561	if (!trie)
562		return ERR_PTR(-ENOMEM);
563
564	/* copy mandatory map attributes */
565	bpf_map_init_from_attr(&trie->map, attr);
566	trie->data_size = attr->key_size -
567			  offsetof(struct bpf_lpm_trie_key, data);
568	trie->max_prefixlen = trie->data_size * 8;
569
570	cost_per_node = sizeof(struct lpm_trie_node) +
571			attr->value_size + trie->data_size;
572	cost += (u64) attr->max_entries * cost_per_node;
573
574	ret = bpf_map_charge_init(&trie->map.memory, cost);
575	if (ret)
576		goto out_err;
577
578	raw_spin_lock_init(&trie->lock);
579
 
 
 
 
 
 
580	return &trie->map;
581out_err:
582	kfree(trie);
583	return ERR_PTR(ret);
 
584}
585
586static void trie_free(struct bpf_map *map)
587{
588	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
589	struct lpm_trie_node __rcu **slot;
590	struct lpm_trie_node *node;
591
592	/* Wait for outstanding programs to complete
593	 * update/lookup/delete/get_next_key and free the trie.
594	 */
595	synchronize_rcu();
596
597	/* Always start at the root and walk down to a node that has no
598	 * children. Then free that node, nullify its reference in the parent
599	 * and start over.
600	 */
601
602	for (;;) {
603		slot = &trie->root;
604
605		for (;;) {
606			node = rcu_dereference_protected(*slot, 1);
607			if (!node)
608				goto out;
609
610			if (rcu_access_pointer(node->child[0])) {
611				slot = &node->child[0];
612				continue;
613			}
614
615			if (rcu_access_pointer(node->child[1])) {
616				slot = &node->child[1];
617				continue;
618			}
619
620			kfree(node);
 
 
 
621			RCU_INIT_POINTER(*slot, NULL);
622			break;
623		}
624	}
625
626out:
627	kfree(trie);
 
628}
629
630static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
631{
632	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
633	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
634	struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
635	struct lpm_trie_node **node_stack = NULL;
636	int err = 0, stack_ptr = -1;
637	unsigned int next_bit;
638	size_t matchlen;
639
640	/* The get_next_key follows postorder. For the 4 node example in
641	 * the top of this file, the trie_get_next_key() returns the following
642	 * one after another:
643	 *   192.168.0.0/24
644	 *   192.168.1.0/24
645	 *   192.168.128.0/24
646	 *   192.168.0.0/16
647	 *
648	 * The idea is to return more specific keys before less specific ones.
649	 */
650
651	/* Empty trie */
652	search_root = rcu_dereference(trie->root);
653	if (!search_root)
654		return -ENOENT;
655
656	/* For invalid key, find the leftmost node in the trie */
657	if (!key || key->prefixlen > trie->max_prefixlen)
658		goto find_leftmost;
659
660	node_stack = kmalloc_array(trie->max_prefixlen,
661				   sizeof(struct lpm_trie_node *),
662				   GFP_ATOMIC | __GFP_NOWARN);
663	if (!node_stack)
664		return -ENOMEM;
665
666	/* Try to find the exact node for the given key */
667	for (node = search_root; node;) {
668		node_stack[++stack_ptr] = node;
669		matchlen = longest_prefix_match(trie, node, key);
670		if (node->prefixlen != matchlen ||
671		    node->prefixlen == key->prefixlen)
672			break;
673
674		next_bit = extract_bit(key->data, node->prefixlen);
675		node = rcu_dereference(node->child[next_bit]);
676	}
677	if (!node || node->prefixlen != key->prefixlen ||
678	    (node->flags & LPM_TREE_NODE_FLAG_IM))
679		goto find_leftmost;
680
681	/* The node with the exactly-matching key has been found,
682	 * find the first node in postorder after the matched node.
683	 */
684	node = node_stack[stack_ptr];
685	while (stack_ptr > 0) {
686		parent = node_stack[stack_ptr - 1];
687		if (rcu_dereference(parent->child[0]) == node) {
688			search_root = rcu_dereference(parent->child[1]);
689			if (search_root)
690				goto find_leftmost;
691		}
692		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
693			next_node = parent;
694			goto do_copy;
695		}
696
697		node = parent;
698		stack_ptr--;
699	}
700
701	/* did not find anything */
702	err = -ENOENT;
703	goto free_stack;
704
705find_leftmost:
706	/* Find the leftmost non-intermediate node, all intermediate nodes
707	 * have exact two children, so this function will never return NULL.
708	 */
709	for (node = search_root; node;) {
710		if (node->flags & LPM_TREE_NODE_FLAG_IM) {
711			node = rcu_dereference(node->child[0]);
712		} else {
713			next_node = node;
714			node = rcu_dereference(node->child[0]);
715			if (!node)
716				node = rcu_dereference(next_node->child[1]);
717		}
718	}
719do_copy:
720	next_key->prefixlen = next_node->prefixlen;
721	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
722	       next_node->data, trie->data_size);
723free_stack:
724	kfree(node_stack);
725	return err;
726}
727
728static int trie_check_btf(const struct bpf_map *map,
729			  const struct btf *btf,
730			  const struct btf_type *key_type,
731			  const struct btf_type *value_type)
732{
733	/* Keys must have struct bpf_lpm_trie_key embedded. */
734	return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
735	       -EINVAL : 0;
736}
737
 
 
 
 
 
 
 
 
 
 
 
738const struct bpf_map_ops trie_map_ops = {
 
739	.map_alloc = trie_alloc,
740	.map_free = trie_free,
741	.map_get_next_key = trie_get_next_key,
742	.map_lookup_elem = trie_lookup_elem,
743	.map_update_elem = trie_update_elem,
744	.map_delete_elem = trie_delete_elem,
 
 
 
745	.map_check_btf = trie_check_btf,
 
 
746};
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Longest prefix match list implementation
  4 *
  5 * Copyright (c) 2016,2017 Daniel Mack
  6 * Copyright (c) 2016 David Herrmann
  7 */
  8
  9#include <linux/bpf.h>
 10#include <linux/btf.h>
 11#include <linux/err.h>
 12#include <linux/slab.h>
 13#include <linux/spinlock.h>
 14#include <linux/vmalloc.h>
 15#include <net/ipv6.h>
 16#include <uapi/linux/btf.h>
 17#include <linux/btf_ids.h>
 18#include <linux/bpf_mem_alloc.h>
 19
 20/* Intermediate node */
 21#define LPM_TREE_NODE_FLAG_IM BIT(0)
 22
 23struct lpm_trie_node;
 24
 25struct lpm_trie_node {
 
 26	struct lpm_trie_node __rcu	*child[2];
 27	u32				prefixlen;
 28	u32				flags;
 29	u8				data[];
 30};
 31
 32struct lpm_trie {
 33	struct bpf_map			map;
 34	struct lpm_trie_node __rcu	*root;
 35	struct bpf_mem_alloc		ma;
 36	size_t				n_entries;
 37	size_t				max_prefixlen;
 38	size_t				data_size;
 39	raw_spinlock_t			lock;
 40};
 41
 42/* This trie implements a longest prefix match algorithm that can be used to
 43 * match IP addresses to a stored set of ranges.
 44 *
 45 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
 46 * interpreted as big endian, so data[0] stores the most significant byte.
 47 *
 48 * Match ranges are internally stored in instances of struct lpm_trie_node
 49 * which each contain their prefix length as well as two pointers that may
 50 * lead to more nodes containing more specific matches. Each node also stores
 51 * a value that is defined by and returned to userspace via the update_elem
 52 * and lookup functions.
 53 *
 54 * For instance, let's start with a trie that was created with a prefix length
 55 * of 32, so it can be used for IPv4 addresses, and one single element that
 56 * matches 192.168.0.0/16. The data array would hence contain
 57 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
 58 * stick to IP-address notation for readability though.
 59 *
 60 * As the trie is empty initially, the new node (1) will be places as root
 61 * node, denoted as (R) in the example below. As there are no other node, both
 62 * child pointers are %NULL.
 63 *
 64 *              +----------------+
 65 *              |       (1)  (R) |
 66 *              | 192.168.0.0/16 |
 67 *              |    value: 1    |
 68 *              |   [0]    [1]   |
 69 *              +----------------+
 70 *
 71 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
 72 * a node with the same data and a smaller prefix (ie, a less specific one),
 73 * node (2) will become a child of (1). In child index depends on the next bit
 74 * that is outside of what (1) matches, and that bit is 0, so (2) will be
 75 * child[0] of (1):
 76 *
 77 *              +----------------+
 78 *              |       (1)  (R) |
 79 *              | 192.168.0.0/16 |
 80 *              |    value: 1    |
 81 *              |   [0]    [1]   |
 82 *              +----------------+
 83 *                   |
 84 *    +----------------+
 85 *    |       (2)      |
 86 *    | 192.168.0.0/24 |
 87 *    |    value: 2    |
 88 *    |   [0]    [1]   |
 89 *    +----------------+
 90 *
 91 * The child[1] slot of (1) could be filled with another node which has bit #17
 92 * (the next bit after the ones that (1) matches on) set to 1. For instance,
 93 * 192.168.128.0/24:
 94 *
 95 *              +----------------+
 96 *              |       (1)  (R) |
 97 *              | 192.168.0.0/16 |
 98 *              |    value: 1    |
 99 *              |   [0]    [1]   |
100 *              +----------------+
101 *                   |      |
102 *    +----------------+  +------------------+
103 *    |       (2)      |  |        (3)       |
104 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
105 *    |    value: 2    |  |     value: 3     |
106 *    |   [0]    [1]   |  |    [0]    [1]    |
107 *    +----------------+  +------------------+
108 *
109 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
110 * it, node (1) is looked at first, and because (4) of the semantics laid out
111 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
112 * However, that slot is already allocated, so a new node is needed in between.
113 * That node does not have a value attached to it and it will never be
114 * returned to users as result of a lookup. It is only there to differentiate
115 * the traversal further. It will get a prefix as wide as necessary to
116 * distinguish its two children:
117 *
118 *                      +----------------+
119 *                      |       (1)  (R) |
120 *                      | 192.168.0.0/16 |
121 *                      |    value: 1    |
122 *                      |   [0]    [1]   |
123 *                      +----------------+
124 *                           |      |
125 *            +----------------+  +------------------+
126 *            |       (4)  (I) |  |        (3)       |
127 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
128 *            |    value: ---  |  |     value: 3     |
129 *            |   [0]    [1]   |  |    [0]    [1]    |
130 *            +----------------+  +------------------+
131 *                 |      |
132 *  +----------------+  +----------------+
133 *  |       (2)      |  |       (5)      |
134 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
135 *  |    value: 2    |  |     value: 5   |
136 *  |   [0]    [1]   |  |   [0]    [1]   |
137 *  +----------------+  +----------------+
138 *
139 * 192.168.1.1/32 would be a child of (5) etc.
140 *
141 * An intermediate node will be turned into a 'real' node on demand. In the
142 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
143 *
144 * A fully populated trie would have a height of 32 nodes, as the trie was
145 * created with a prefix length of 32.
146 *
147 * The lookup starts at the root node. If the current node matches and if there
148 * is a child that can be used to become more specific, the trie is traversed
149 * downwards. The last node in the traversal that is a non-intermediate one is
150 * returned.
151 */
152
153static inline int extract_bit(const u8 *data, size_t index)
154{
155	return !!(data[index / 8] & (1 << (7 - (index % 8))));
156}
157
158/**
159 * __longest_prefix_match() - determine the longest prefix
160 * @trie:	The trie to get internal sizes from
161 * @node:	The node to operate on
162 * @key:	The key to compare to @node
163 *
164 * Determine the longest prefix of @node that matches the bits in @key.
165 */
166static __always_inline
167size_t __longest_prefix_match(const struct lpm_trie *trie,
168			      const struct lpm_trie_node *node,
169			      const struct bpf_lpm_trie_key_u8 *key)
170{
171	u32 limit = min(node->prefixlen, key->prefixlen);
172	u32 prefixlen = 0, i = 0;
173
174	BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
175	BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key_u8, data) % sizeof(u32));
176
177#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
178
179	/* data_size >= 16 has very small probability.
180	 * We do not use a loop for optimal code generation.
181	 */
182	if (trie->data_size >= 8) {
183		u64 diff = be64_to_cpu(*(__be64 *)node->data ^
184				       *(__be64 *)key->data);
185
186		prefixlen = 64 - fls64(diff);
187		if (prefixlen >= limit)
188			return limit;
189		if (diff)
190			return prefixlen;
191		i = 8;
192	}
193#endif
194
195	while (trie->data_size >= i + 4) {
196		u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
197				       *(__be32 *)&key->data[i]);
198
199		prefixlen += 32 - fls(diff);
200		if (prefixlen >= limit)
201			return limit;
202		if (diff)
203			return prefixlen;
204		i += 4;
205	}
206
207	if (trie->data_size >= i + 2) {
208		u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
209				       *(__be16 *)&key->data[i]);
210
211		prefixlen += 16 - fls(diff);
212		if (prefixlen >= limit)
213			return limit;
214		if (diff)
215			return prefixlen;
216		i += 2;
217	}
218
219	if (trie->data_size >= i + 1) {
220		prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
221
222		if (prefixlen >= limit)
223			return limit;
224	}
225
226	return prefixlen;
227}
228
229static size_t longest_prefix_match(const struct lpm_trie *trie,
230				   const struct lpm_trie_node *node,
231				   const struct bpf_lpm_trie_key_u8 *key)
232{
233	return __longest_prefix_match(trie, node, key);
234}
235
236/* Called from syscall or from eBPF program */
237static void *trie_lookup_elem(struct bpf_map *map, void *_key)
238{
239	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
240	struct lpm_trie_node *node, *found = NULL;
241	struct bpf_lpm_trie_key_u8 *key = _key;
242
243	if (key->prefixlen > trie->max_prefixlen)
244		return NULL;
245
246	/* Start walking the trie from the root node ... */
247
248	for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
249	     node;) {
250		unsigned int next_bit;
251		size_t matchlen;
252
253		/* Determine the longest prefix of @node that matches @key.
254		 * If it's the maximum possible prefix for this trie, we have
255		 * an exact match and can return it directly.
256		 */
257		matchlen = __longest_prefix_match(trie, node, key);
258		if (matchlen == trie->max_prefixlen) {
259			found = node;
260			break;
261		}
262
263		/* If the number of bits that match is smaller than the prefix
264		 * length of @node, bail out and return the node we have seen
265		 * last in the traversal (ie, the parent).
266		 */
267		if (matchlen < node->prefixlen)
268			break;
269
270		/* Consider this node as return candidate unless it is an
271		 * artificially added intermediate one.
272		 */
273		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
274			found = node;
275
276		/* If the node match is fully satisfied, let's see if we can
277		 * become more specific. Determine the next bit in the key and
278		 * traverse down.
279		 */
280		next_bit = extract_bit(key->data, node->prefixlen);
281		node = rcu_dereference_check(node->child[next_bit],
282					     rcu_read_lock_bh_held());
283	}
284
285	if (!found)
286		return NULL;
287
288	return found->data + trie->data_size;
289}
290
291static struct lpm_trie_node *lpm_trie_node_alloc(struct lpm_trie *trie,
292						 const void *value,
293						 bool disable_migration)
294{
295	struct lpm_trie_node *node;
 
296
297	if (disable_migration)
298		migrate_disable();
299	node = bpf_mem_cache_alloc(&trie->ma);
300	if (disable_migration)
301		migrate_enable();
302
 
 
303	if (!node)
304		return NULL;
305
306	node->flags = 0;
307
308	if (value)
309		memcpy(node->data + trie->data_size, value,
310		       trie->map.value_size);
311
312	return node;
313}
314
315static int trie_check_add_elem(struct lpm_trie *trie, u64 flags)
316{
317	if (flags == BPF_EXIST)
318		return -ENOENT;
319	if (trie->n_entries == trie->map.max_entries)
320		return -ENOSPC;
321	trie->n_entries++;
322	return 0;
323}
324
325/* Called from syscall or from eBPF program */
326static long trie_update_elem(struct bpf_map *map,
327			     void *_key, void *value, u64 flags)
328{
329	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
330	struct lpm_trie_node *node, *im_node, *new_node;
331	struct lpm_trie_node *free_node = NULL;
332	struct lpm_trie_node __rcu **slot;
333	struct bpf_lpm_trie_key_u8 *key = _key;
334	unsigned long irq_flags;
335	unsigned int next_bit;
336	size_t matchlen = 0;
337	int ret = 0;
338
339	if (unlikely(flags > BPF_EXIST))
340		return -EINVAL;
341
342	if (key->prefixlen > trie->max_prefixlen)
343		return -EINVAL;
344
345	/* Allocate and fill a new node. Need to disable migration before
346	 * invoking bpf_mem_cache_alloc().
347	 */
348	new_node = lpm_trie_node_alloc(trie, value, true);
349	if (!new_node)
350		return -ENOMEM;
 
 
 
 
 
 
 
 
351
352	raw_spin_lock_irqsave(&trie->lock, irq_flags);
353
354	new_node->prefixlen = key->prefixlen;
355	RCU_INIT_POINTER(new_node->child[0], NULL);
356	RCU_INIT_POINTER(new_node->child[1], NULL);
357	memcpy(new_node->data, key->data, trie->data_size);
358
359	/* Now find a slot to attach the new node. To do that, walk the tree
360	 * from the root and match as many bits as possible for each node until
361	 * we either find an empty slot or a slot that needs to be replaced by
362	 * an intermediate node.
363	 */
364	slot = &trie->root;
365
366	while ((node = rcu_dereference_protected(*slot,
367					lockdep_is_held(&trie->lock)))) {
368		matchlen = longest_prefix_match(trie, node, key);
369
370		if (node->prefixlen != matchlen ||
371		    node->prefixlen == key->prefixlen)
 
372			break;
373
374		next_bit = extract_bit(key->data, node->prefixlen);
375		slot = &node->child[next_bit];
376	}
377
378	/* If the slot is empty (a free child pointer or an empty root),
379	 * simply assign the @new_node to that slot and be done.
380	 */
381	if (!node) {
382		ret = trie_check_add_elem(trie, flags);
383		if (ret)
384			goto out;
385
386		rcu_assign_pointer(*slot, new_node);
387		goto out;
388	}
389
390	/* If the slot we picked already exists, replace it with @new_node
391	 * which already has the correct data array set.
392	 */
393	if (node->prefixlen == matchlen) {
394		if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) {
395			if (flags == BPF_NOEXIST) {
396				ret = -EEXIST;
397				goto out;
398			}
399		} else {
400			ret = trie_check_add_elem(trie, flags);
401			if (ret)
402				goto out;
403		}
404
405		new_node->child[0] = node->child[0];
406		new_node->child[1] = node->child[1];
407
 
 
 
408		rcu_assign_pointer(*slot, new_node);
409		free_node = node;
410
411		goto out;
412	}
413
414	ret = trie_check_add_elem(trie, flags);
415	if (ret)
416		goto out;
417
418	/* If the new node matches the prefix completely, it must be inserted
419	 * as an ancestor. Simply insert it between @node and *@slot.
420	 */
421	if (matchlen == key->prefixlen) {
422		next_bit = extract_bit(node->data, matchlen);
423		rcu_assign_pointer(new_node->child[next_bit], node);
424		rcu_assign_pointer(*slot, new_node);
425		goto out;
426	}
427
428	/* migration is disabled within the locked scope */
429	im_node = lpm_trie_node_alloc(trie, NULL, false);
430	if (!im_node) {
431		trie->n_entries--;
432		ret = -ENOMEM;
433		goto out;
434	}
435
436	im_node->prefixlen = matchlen;
437	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
438	memcpy(im_node->data, node->data, trie->data_size);
439
440	/* Now determine which child to install in which slot */
441	if (extract_bit(key->data, matchlen)) {
442		rcu_assign_pointer(im_node->child[0], node);
443		rcu_assign_pointer(im_node->child[1], new_node);
444	} else {
445		rcu_assign_pointer(im_node->child[0], new_node);
446		rcu_assign_pointer(im_node->child[1], node);
447	}
448
449	/* Finally, assign the intermediate node to the determined slot */
450	rcu_assign_pointer(*slot, im_node);
451
452out:
 
 
 
 
 
 
 
 
453	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
454
455	migrate_disable();
456	if (ret)
457		bpf_mem_cache_free(&trie->ma, new_node);
458	bpf_mem_cache_free_rcu(&trie->ma, free_node);
459	migrate_enable();
460
461	return ret;
462}
463
464/* Called from syscall or from eBPF program */
465static long trie_delete_elem(struct bpf_map *map, void *_key)
466{
467	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
468	struct lpm_trie_node *free_node = NULL, *free_parent = NULL;
469	struct bpf_lpm_trie_key_u8 *key = _key;
470	struct lpm_trie_node __rcu **trim, **trim2;
471	struct lpm_trie_node *node, *parent;
472	unsigned long irq_flags;
473	unsigned int next_bit;
474	size_t matchlen = 0;
475	int ret = 0;
476
477	if (key->prefixlen > trie->max_prefixlen)
478		return -EINVAL;
479
480	raw_spin_lock_irqsave(&trie->lock, irq_flags);
481
482	/* Walk the tree looking for an exact key/length match and keeping
483	 * track of the path we traverse.  We will need to know the node
484	 * we wish to delete, and the slot that points to the node we want
485	 * to delete.  We may also need to know the nodes parent and the
486	 * slot that contains it.
487	 */
488	trim = &trie->root;
489	trim2 = trim;
490	parent = NULL;
491	while ((node = rcu_dereference_protected(
492		       *trim, lockdep_is_held(&trie->lock)))) {
493		matchlen = longest_prefix_match(trie, node, key);
494
495		if (node->prefixlen != matchlen ||
496		    node->prefixlen == key->prefixlen)
497			break;
498
499		parent = node;
500		trim2 = trim;
501		next_bit = extract_bit(key->data, node->prefixlen);
502		trim = &node->child[next_bit];
503	}
504
505	if (!node || node->prefixlen != key->prefixlen ||
506	    node->prefixlen != matchlen ||
507	    (node->flags & LPM_TREE_NODE_FLAG_IM)) {
508		ret = -ENOENT;
509		goto out;
510	}
511
512	trie->n_entries--;
513
514	/* If the node we are removing has two children, simply mark it
515	 * as intermediate and we are done.
516	 */
517	if (rcu_access_pointer(node->child[0]) &&
518	    rcu_access_pointer(node->child[1])) {
519		node->flags |= LPM_TREE_NODE_FLAG_IM;
520		goto out;
521	}
522
523	/* If the parent of the node we are about to delete is an intermediate
524	 * node, and the deleted node doesn't have any children, we can delete
525	 * the intermediate parent as well and promote its other child
526	 * up the tree.  Doing this maintains the invariant that all
527	 * intermediate nodes have exactly 2 children and that there are no
528	 * unnecessary intermediate nodes in the tree.
529	 */
530	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
531	    !node->child[0] && !node->child[1]) {
532		if (node == rcu_access_pointer(parent->child[0]))
533			rcu_assign_pointer(
534				*trim2, rcu_access_pointer(parent->child[1]));
535		else
536			rcu_assign_pointer(
537				*trim2, rcu_access_pointer(parent->child[0]));
538		free_parent = parent;
539		free_node = node;
540		goto out;
541	}
542
543	/* The node we are removing has either zero or one child. If there
544	 * is a child, move it into the removed node's slot then delete
545	 * the node.  Otherwise just clear the slot and delete the node.
546	 */
547	if (node->child[0])
548		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
549	else if (node->child[1])
550		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
551	else
552		RCU_INIT_POINTER(*trim, NULL);
553	free_node = node;
554
555out:
556	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
557
558	migrate_disable();
559	bpf_mem_cache_free_rcu(&trie->ma, free_parent);
560	bpf_mem_cache_free_rcu(&trie->ma, free_node);
561	migrate_enable();
562
563	return ret;
564}
565
566#define LPM_DATA_SIZE_MAX	256
567#define LPM_DATA_SIZE_MIN	1
568
569#define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
570				 sizeof(struct lpm_trie_node))
571#define LPM_VAL_SIZE_MIN	1
572
573#define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key_u8) + (X))
574#define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
575#define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
576
577#define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\
578				 BPF_F_ACCESS_MASK)
579
580static struct bpf_map *trie_alloc(union bpf_attr *attr)
581{
582	struct lpm_trie *trie;
583	size_t leaf_size;
584	int err;
 
 
 
585
586	/* check sanity of attributes */
587	if (attr->max_entries == 0 ||
588	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
589	    attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
590	    !bpf_map_flags_access_ok(attr->map_flags) ||
591	    attr->key_size < LPM_KEY_SIZE_MIN ||
592	    attr->key_size > LPM_KEY_SIZE_MAX ||
593	    attr->value_size < LPM_VAL_SIZE_MIN ||
594	    attr->value_size > LPM_VAL_SIZE_MAX)
595		return ERR_PTR(-EINVAL);
596
597	trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
598	if (!trie)
599		return ERR_PTR(-ENOMEM);
600
601	/* copy mandatory map attributes */
602	bpf_map_init_from_attr(&trie->map, attr);
603	trie->data_size = attr->key_size -
604			  offsetof(struct bpf_lpm_trie_key_u8, data);
605	trie->max_prefixlen = trie->data_size * 8;
606
 
 
 
 
 
 
 
 
607	raw_spin_lock_init(&trie->lock);
608
609	/* Allocate intermediate and leaf nodes from the same allocator */
610	leaf_size = sizeof(struct lpm_trie_node) + trie->data_size +
611		    trie->map.value_size;
612	err = bpf_mem_alloc_init(&trie->ma, leaf_size, false);
613	if (err)
614		goto free_out;
615	return &trie->map;
616
617free_out:
618	bpf_map_area_free(trie);
619	return ERR_PTR(err);
620}
621
622static void trie_free(struct bpf_map *map)
623{
624	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
625	struct lpm_trie_node __rcu **slot;
626	struct lpm_trie_node *node;
627
 
 
 
 
 
628	/* Always start at the root and walk down to a node that has no
629	 * children. Then free that node, nullify its reference in the parent
630	 * and start over.
631	 */
632
633	for (;;) {
634		slot = &trie->root;
635
636		for (;;) {
637			node = rcu_dereference_protected(*slot, 1);
638			if (!node)
639				goto out;
640
641			if (rcu_access_pointer(node->child[0])) {
642				slot = &node->child[0];
643				continue;
644			}
645
646			if (rcu_access_pointer(node->child[1])) {
647				slot = &node->child[1];
648				continue;
649			}
650
651			/* No bpf program may access the map, so freeing the
652			 * node without waiting for the extra RCU GP.
653			 */
654			bpf_mem_cache_raw_free(node);
655			RCU_INIT_POINTER(*slot, NULL);
656			break;
657		}
658	}
659
660out:
661	bpf_mem_alloc_destroy(&trie->ma);
662	bpf_map_area_free(trie);
663}
664
665static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
666{
667	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
668	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
669	struct bpf_lpm_trie_key_u8 *key = _key, *next_key = _next_key;
670	struct lpm_trie_node **node_stack = NULL;
671	int err = 0, stack_ptr = -1;
672	unsigned int next_bit;
673	size_t matchlen = 0;
674
675	/* The get_next_key follows postorder. For the 4 node example in
676	 * the top of this file, the trie_get_next_key() returns the following
677	 * one after another:
678	 *   192.168.0.0/24
679	 *   192.168.1.0/24
680	 *   192.168.128.0/24
681	 *   192.168.0.0/16
682	 *
683	 * The idea is to return more specific keys before less specific ones.
684	 */
685
686	/* Empty trie */
687	search_root = rcu_dereference(trie->root);
688	if (!search_root)
689		return -ENOENT;
690
691	/* For invalid key, find the leftmost node in the trie */
692	if (!key || key->prefixlen > trie->max_prefixlen)
693		goto find_leftmost;
694
695	node_stack = kmalloc_array(trie->max_prefixlen + 1,
696				   sizeof(struct lpm_trie_node *),
697				   GFP_ATOMIC | __GFP_NOWARN);
698	if (!node_stack)
699		return -ENOMEM;
700
701	/* Try to find the exact node for the given key */
702	for (node = search_root; node;) {
703		node_stack[++stack_ptr] = node;
704		matchlen = longest_prefix_match(trie, node, key);
705		if (node->prefixlen != matchlen ||
706		    node->prefixlen == key->prefixlen)
707			break;
708
709		next_bit = extract_bit(key->data, node->prefixlen);
710		node = rcu_dereference(node->child[next_bit]);
711	}
712	if (!node || node->prefixlen != matchlen ||
713	    (node->flags & LPM_TREE_NODE_FLAG_IM))
714		goto find_leftmost;
715
716	/* The node with the exactly-matching key has been found,
717	 * find the first node in postorder after the matched node.
718	 */
719	node = node_stack[stack_ptr];
720	while (stack_ptr > 0) {
721		parent = node_stack[stack_ptr - 1];
722		if (rcu_dereference(parent->child[0]) == node) {
723			search_root = rcu_dereference(parent->child[1]);
724			if (search_root)
725				goto find_leftmost;
726		}
727		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
728			next_node = parent;
729			goto do_copy;
730		}
731
732		node = parent;
733		stack_ptr--;
734	}
735
736	/* did not find anything */
737	err = -ENOENT;
738	goto free_stack;
739
740find_leftmost:
741	/* Find the leftmost non-intermediate node, all intermediate nodes
742	 * have exact two children, so this function will never return NULL.
743	 */
744	for (node = search_root; node;) {
745		if (node->flags & LPM_TREE_NODE_FLAG_IM) {
746			node = rcu_dereference(node->child[0]);
747		} else {
748			next_node = node;
749			node = rcu_dereference(node->child[0]);
750			if (!node)
751				node = rcu_dereference(next_node->child[1]);
752		}
753	}
754do_copy:
755	next_key->prefixlen = next_node->prefixlen;
756	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key_u8, data),
757	       next_node->data, trie->data_size);
758free_stack:
759	kfree(node_stack);
760	return err;
761}
762
763static int trie_check_btf(const struct bpf_map *map,
764			  const struct btf *btf,
765			  const struct btf_type *key_type,
766			  const struct btf_type *value_type)
767{
768	/* Keys must have struct bpf_lpm_trie_key_u8 embedded. */
769	return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
770	       -EINVAL : 0;
771}
772
773static u64 trie_mem_usage(const struct bpf_map *map)
774{
775	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
776	u64 elem_size;
777
778	elem_size = sizeof(struct lpm_trie_node) + trie->data_size +
779			    trie->map.value_size;
780	return elem_size * READ_ONCE(trie->n_entries);
781}
782
783BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
784const struct bpf_map_ops trie_map_ops = {
785	.map_meta_equal = bpf_map_meta_equal,
786	.map_alloc = trie_alloc,
787	.map_free = trie_free,
788	.map_get_next_key = trie_get_next_key,
789	.map_lookup_elem = trie_lookup_elem,
790	.map_update_elem = trie_update_elem,
791	.map_delete_elem = trie_delete_elem,
792	.map_lookup_batch = generic_map_lookup_batch,
793	.map_update_batch = generic_map_update_batch,
794	.map_delete_batch = generic_map_delete_batch,
795	.map_check_btf = trie_check_btf,
796	.map_mem_usage = trie_mem_usage,
797	.map_btf_id = &trie_map_btf_ids[0],
798};