Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17#include <linux/init.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/ctype.h>
21#include <linux/kthread.h>
22#include <linux/parser.h>
23#include <linux/seq_file.h>
24#include <linux/mount.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include "ubifs.h"
28
29/*
30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31 * allocating too much.
32 */
33#define UBIFS_KMALLOC_OK (128*1024)
34
35/* Slab cache for UBIFS inodes */
36static struct kmem_cache *ubifs_inode_slab;
37
38/* UBIFS TNC shrinker description */
39static struct shrinker ubifs_shrinker_info = {
40 .scan_objects = ubifs_shrink_scan,
41 .count_objects = ubifs_shrink_count,
42 .seeks = DEFAULT_SEEKS,
43};
44
45/**
46 * validate_inode - validate inode.
47 * @c: UBIFS file-system description object
48 * @inode: the inode to validate
49 *
50 * This is a helper function for 'ubifs_iget()' which validates various fields
51 * of a newly built inode to make sure they contain sane values and prevent
52 * possible vulnerabilities. Returns zero if the inode is all right and
53 * a non-zero error code if not.
54 */
55static int validate_inode(struct ubifs_info *c, const struct inode *inode)
56{
57 int err;
58 const struct ubifs_inode *ui = ubifs_inode(inode);
59
60 if (inode->i_size > c->max_inode_sz) {
61 ubifs_err(c, "inode is too large (%lld)",
62 (long long)inode->i_size);
63 return 1;
64 }
65
66 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
67 ubifs_err(c, "unknown compression type %d", ui->compr_type);
68 return 2;
69 }
70
71 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
72 return 3;
73
74 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
75 return 4;
76
77 if (ui->xattr && !S_ISREG(inode->i_mode))
78 return 5;
79
80 if (!ubifs_compr_present(c, ui->compr_type)) {
81 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
82 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
83 }
84
85 err = dbg_check_dir(c, inode);
86 return err;
87}
88
89struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
90{
91 int err;
92 union ubifs_key key;
93 struct ubifs_ino_node *ino;
94 struct ubifs_info *c = sb->s_fs_info;
95 struct inode *inode;
96 struct ubifs_inode *ui;
97
98 dbg_gen("inode %lu", inum);
99
100 inode = iget_locked(sb, inum);
101 if (!inode)
102 return ERR_PTR(-ENOMEM);
103 if (!(inode->i_state & I_NEW))
104 return inode;
105 ui = ubifs_inode(inode);
106
107 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
108 if (!ino) {
109 err = -ENOMEM;
110 goto out;
111 }
112
113 ino_key_init(c, &key, inode->i_ino);
114
115 err = ubifs_tnc_lookup(c, &key, ino);
116 if (err)
117 goto out_ino;
118
119 inode->i_flags |= S_NOCMTIME;
120
121 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122 inode->i_flags |= S_NOATIME;
123
124 set_nlink(inode, le32_to_cpu(ino->nlink));
125 i_uid_write(inode, le32_to_cpu(ino->uid));
126 i_gid_write(inode, le32_to_cpu(ino->gid));
127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 inode->i_mode = le32_to_cpu(ino->mode);
134 inode->i_size = le64_to_cpu(ino->size);
135
136 ui->data_len = le32_to_cpu(ino->data_len);
137 ui->flags = le32_to_cpu(ino->flags);
138 ui->compr_type = le16_to_cpu(ino->compr_type);
139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
141 ui->xattr_size = le32_to_cpu(ino->xattr_size);
142 ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 ui->synced_i_size = ui->ui_size = inode->i_size;
144
145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146
147 err = validate_inode(c, inode);
148 if (err)
149 goto out_invalid;
150
151 switch (inode->i_mode & S_IFMT) {
152 case S_IFREG:
153 inode->i_mapping->a_ops = &ubifs_file_address_operations;
154 inode->i_op = &ubifs_file_inode_operations;
155 inode->i_fop = &ubifs_file_operations;
156 if (ui->xattr) {
157 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
158 if (!ui->data) {
159 err = -ENOMEM;
160 goto out_ino;
161 }
162 memcpy(ui->data, ino->data, ui->data_len);
163 ((char *)ui->data)[ui->data_len] = '\0';
164 } else if (ui->data_len != 0) {
165 err = 10;
166 goto out_invalid;
167 }
168 break;
169 case S_IFDIR:
170 inode->i_op = &ubifs_dir_inode_operations;
171 inode->i_fop = &ubifs_dir_operations;
172 if (ui->data_len != 0) {
173 err = 11;
174 goto out_invalid;
175 }
176 break;
177 case S_IFLNK:
178 inode->i_op = &ubifs_symlink_inode_operations;
179 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
180 err = 12;
181 goto out_invalid;
182 }
183 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
184 if (!ui->data) {
185 err = -ENOMEM;
186 goto out_ino;
187 }
188 memcpy(ui->data, ino->data, ui->data_len);
189 ((char *)ui->data)[ui->data_len] = '\0';
190 break;
191 case S_IFBLK:
192 case S_IFCHR:
193 {
194 dev_t rdev;
195 union ubifs_dev_desc *dev;
196
197 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
198 if (!ui->data) {
199 err = -ENOMEM;
200 goto out_ino;
201 }
202
203 dev = (union ubifs_dev_desc *)ino->data;
204 if (ui->data_len == sizeof(dev->new))
205 rdev = new_decode_dev(le32_to_cpu(dev->new));
206 else if (ui->data_len == sizeof(dev->huge))
207 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
208 else {
209 err = 13;
210 goto out_invalid;
211 }
212 memcpy(ui->data, ino->data, ui->data_len);
213 inode->i_op = &ubifs_file_inode_operations;
214 init_special_inode(inode, inode->i_mode, rdev);
215 break;
216 }
217 case S_IFSOCK:
218 case S_IFIFO:
219 inode->i_op = &ubifs_file_inode_operations;
220 init_special_inode(inode, inode->i_mode, 0);
221 if (ui->data_len != 0) {
222 err = 14;
223 goto out_invalid;
224 }
225 break;
226 default:
227 err = 15;
228 goto out_invalid;
229 }
230
231 kfree(ino);
232 ubifs_set_inode_flags(inode);
233 unlock_new_inode(inode);
234 return inode;
235
236out_invalid:
237 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238 ubifs_dump_node(c, ino);
239 ubifs_dump_inode(c, inode);
240 err = -EINVAL;
241out_ino:
242 kfree(ino);
243out:
244 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
245 iget_failed(inode);
246 return ERR_PTR(err);
247}
248
249static struct inode *ubifs_alloc_inode(struct super_block *sb)
250{
251 struct ubifs_inode *ui;
252
253 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
254 if (!ui)
255 return NULL;
256
257 memset((void *)ui + sizeof(struct inode), 0,
258 sizeof(struct ubifs_inode) - sizeof(struct inode));
259 mutex_init(&ui->ui_mutex);
260 spin_lock_init(&ui->ui_lock);
261 return &ui->vfs_inode;
262};
263
264static void ubifs_free_inode(struct inode *inode)
265{
266 struct ubifs_inode *ui = ubifs_inode(inode);
267
268 kfree(ui->data);
269 fscrypt_free_inode(inode);
270
271 kmem_cache_free(ubifs_inode_slab, ui);
272}
273
274/*
275 * Note, Linux write-back code calls this without 'i_mutex'.
276 */
277static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
278{
279 int err = 0;
280 struct ubifs_info *c = inode->i_sb->s_fs_info;
281 struct ubifs_inode *ui = ubifs_inode(inode);
282
283 ubifs_assert(c, !ui->xattr);
284 if (is_bad_inode(inode))
285 return 0;
286
287 mutex_lock(&ui->ui_mutex);
288 /*
289 * Due to races between write-back forced by budgeting
290 * (see 'sync_some_inodes()') and background write-back, the inode may
291 * have already been synchronized, do not do this again. This might
292 * also happen if it was synchronized in an VFS operation, e.g.
293 * 'ubifs_link()'.
294 */
295 if (!ui->dirty) {
296 mutex_unlock(&ui->ui_mutex);
297 return 0;
298 }
299
300 /*
301 * As an optimization, do not write orphan inodes to the media just
302 * because this is not needed.
303 */
304 dbg_gen("inode %lu, mode %#x, nlink %u",
305 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
306 if (inode->i_nlink) {
307 err = ubifs_jnl_write_inode(c, inode);
308 if (err)
309 ubifs_err(c, "can't write inode %lu, error %d",
310 inode->i_ino, err);
311 else
312 err = dbg_check_inode_size(c, inode, ui->ui_size);
313 }
314
315 ui->dirty = 0;
316 mutex_unlock(&ui->ui_mutex);
317 ubifs_release_dirty_inode_budget(c, ui);
318 return err;
319}
320
321static int ubifs_drop_inode(struct inode *inode)
322{
323 int drop = generic_drop_inode(inode);
324
325 if (!drop)
326 drop = fscrypt_drop_inode(inode);
327
328 return drop;
329}
330
331static void ubifs_evict_inode(struct inode *inode)
332{
333 int err;
334 struct ubifs_info *c = inode->i_sb->s_fs_info;
335 struct ubifs_inode *ui = ubifs_inode(inode);
336
337 if (ui->xattr)
338 /*
339 * Extended attribute inode deletions are fully handled in
340 * 'ubifs_removexattr()'. These inodes are special and have
341 * limited usage, so there is nothing to do here.
342 */
343 goto out;
344
345 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
346 ubifs_assert(c, !atomic_read(&inode->i_count));
347
348 truncate_inode_pages_final(&inode->i_data);
349
350 if (inode->i_nlink)
351 goto done;
352
353 if (is_bad_inode(inode))
354 goto out;
355
356 ui->ui_size = inode->i_size = 0;
357 err = ubifs_jnl_delete_inode(c, inode);
358 if (err)
359 /*
360 * Worst case we have a lost orphan inode wasting space, so a
361 * simple error message is OK here.
362 */
363 ubifs_err(c, "can't delete inode %lu, error %d",
364 inode->i_ino, err);
365
366out:
367 if (ui->dirty)
368 ubifs_release_dirty_inode_budget(c, ui);
369 else {
370 /* We've deleted something - clean the "no space" flags */
371 c->bi.nospace = c->bi.nospace_rp = 0;
372 smp_wmb();
373 }
374done:
375 clear_inode(inode);
376 fscrypt_put_encryption_info(inode);
377}
378
379static void ubifs_dirty_inode(struct inode *inode, int flags)
380{
381 struct ubifs_info *c = inode->i_sb->s_fs_info;
382 struct ubifs_inode *ui = ubifs_inode(inode);
383
384 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
385 if (!ui->dirty) {
386 ui->dirty = 1;
387 dbg_gen("inode %lu", inode->i_ino);
388 }
389}
390
391static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
392{
393 struct ubifs_info *c = dentry->d_sb->s_fs_info;
394 unsigned long long free;
395 __le32 *uuid = (__le32 *)c->uuid;
396
397 free = ubifs_get_free_space(c);
398 dbg_gen("free space %lld bytes (%lld blocks)",
399 free, free >> UBIFS_BLOCK_SHIFT);
400
401 buf->f_type = UBIFS_SUPER_MAGIC;
402 buf->f_bsize = UBIFS_BLOCK_SIZE;
403 buf->f_blocks = c->block_cnt;
404 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
405 if (free > c->report_rp_size)
406 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
407 else
408 buf->f_bavail = 0;
409 buf->f_files = 0;
410 buf->f_ffree = 0;
411 buf->f_namelen = UBIFS_MAX_NLEN;
412 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
413 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
414 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
415 return 0;
416}
417
418static int ubifs_show_options(struct seq_file *s, struct dentry *root)
419{
420 struct ubifs_info *c = root->d_sb->s_fs_info;
421
422 if (c->mount_opts.unmount_mode == 2)
423 seq_puts(s, ",fast_unmount");
424 else if (c->mount_opts.unmount_mode == 1)
425 seq_puts(s, ",norm_unmount");
426
427 if (c->mount_opts.bulk_read == 2)
428 seq_puts(s, ",bulk_read");
429 else if (c->mount_opts.bulk_read == 1)
430 seq_puts(s, ",no_bulk_read");
431
432 if (c->mount_opts.chk_data_crc == 2)
433 seq_puts(s, ",chk_data_crc");
434 else if (c->mount_opts.chk_data_crc == 1)
435 seq_puts(s, ",no_chk_data_crc");
436
437 if (c->mount_opts.override_compr) {
438 seq_printf(s, ",compr=%s",
439 ubifs_compr_name(c, c->mount_opts.compr_type));
440 }
441
442 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
443 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
444
445 return 0;
446}
447
448static int ubifs_sync_fs(struct super_block *sb, int wait)
449{
450 int i, err;
451 struct ubifs_info *c = sb->s_fs_info;
452
453 /*
454 * Zero @wait is just an advisory thing to help the file system shove
455 * lots of data into the queues, and there will be the second
456 * '->sync_fs()' call, with non-zero @wait.
457 */
458 if (!wait)
459 return 0;
460
461 /*
462 * Synchronize write buffers, because 'ubifs_run_commit()' does not
463 * do this if it waits for an already running commit.
464 */
465 for (i = 0; i < c->jhead_cnt; i++) {
466 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
467 if (err)
468 return err;
469 }
470
471 /*
472 * Strictly speaking, it is not necessary to commit the journal here,
473 * synchronizing write-buffers would be enough. But committing makes
474 * UBIFS free space predictions much more accurate, so we want to let
475 * the user be able to get more accurate results of 'statfs()' after
476 * they synchronize the file system.
477 */
478 err = ubifs_run_commit(c);
479 if (err)
480 return err;
481
482 return ubi_sync(c->vi.ubi_num);
483}
484
485/**
486 * init_constants_early - initialize UBIFS constants.
487 * @c: UBIFS file-system description object
488 *
489 * This function initialize UBIFS constants which do not need the superblock to
490 * be read. It also checks that the UBI volume satisfies basic UBIFS
491 * requirements. Returns zero in case of success and a negative error code in
492 * case of failure.
493 */
494static int init_constants_early(struct ubifs_info *c)
495{
496 if (c->vi.corrupted) {
497 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
498 c->ro_media = 1;
499 }
500
501 if (c->di.ro_mode) {
502 ubifs_msg(c, "read-only UBI device");
503 c->ro_media = 1;
504 }
505
506 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
507 ubifs_msg(c, "static UBI volume - read-only mode");
508 c->ro_media = 1;
509 }
510
511 c->leb_cnt = c->vi.size;
512 c->leb_size = c->vi.usable_leb_size;
513 c->leb_start = c->di.leb_start;
514 c->half_leb_size = c->leb_size / 2;
515 c->min_io_size = c->di.min_io_size;
516 c->min_io_shift = fls(c->min_io_size) - 1;
517 c->max_write_size = c->di.max_write_size;
518 c->max_write_shift = fls(c->max_write_size) - 1;
519
520 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
521 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
522 c->leb_size, UBIFS_MIN_LEB_SZ);
523 return -EINVAL;
524 }
525
526 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
527 ubifs_errc(c, "too few LEBs (%d), min. is %d",
528 c->leb_cnt, UBIFS_MIN_LEB_CNT);
529 return -EINVAL;
530 }
531
532 if (!is_power_of_2(c->min_io_size)) {
533 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
534 return -EINVAL;
535 }
536
537 /*
538 * Maximum write size has to be greater or equivalent to min. I/O
539 * size, and be multiple of min. I/O size.
540 */
541 if (c->max_write_size < c->min_io_size ||
542 c->max_write_size % c->min_io_size ||
543 !is_power_of_2(c->max_write_size)) {
544 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
545 c->max_write_size, c->min_io_size);
546 return -EINVAL;
547 }
548
549 /*
550 * UBIFS aligns all node to 8-byte boundary, so to make function in
551 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
552 * less than 8.
553 */
554 if (c->min_io_size < 8) {
555 c->min_io_size = 8;
556 c->min_io_shift = 3;
557 if (c->max_write_size < c->min_io_size) {
558 c->max_write_size = c->min_io_size;
559 c->max_write_shift = c->min_io_shift;
560 }
561 }
562
563 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
564 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
565
566 /*
567 * Initialize node length ranges which are mostly needed for node
568 * length validation.
569 */
570 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
571 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
572 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
573 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
574 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
575 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
576 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
577 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
578 UBIFS_MAX_HMAC_LEN;
579 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
580 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
581
582 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
583 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
584 c->ranges[UBIFS_ORPH_NODE].min_len =
585 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
586 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
587 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
588 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
589 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
590 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
591 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
592 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
593 /*
594 * Minimum indexing node size is amended later when superblock is
595 * read and the key length is known.
596 */
597 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
598 /*
599 * Maximum indexing node size is amended later when superblock is
600 * read and the fanout is known.
601 */
602 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
603
604 /*
605 * Initialize dead and dark LEB space watermarks. See gc.c for comments
606 * about these values.
607 */
608 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
609 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
610
611 /*
612 * Calculate how many bytes would be wasted at the end of LEB if it was
613 * fully filled with data nodes of maximum size. This is used in
614 * calculations when reporting free space.
615 */
616 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
617
618 /* Buffer size for bulk-reads */
619 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
620 if (c->max_bu_buf_len > c->leb_size)
621 c->max_bu_buf_len = c->leb_size;
622
623 /* Log is ready, preserve one LEB for commits. */
624 c->min_log_bytes = c->leb_size;
625
626 return 0;
627}
628
629/**
630 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
631 * @c: UBIFS file-system description object
632 * @lnum: LEB the write-buffer was synchronized to
633 * @free: how many free bytes left in this LEB
634 * @pad: how many bytes were padded
635 *
636 * This is a callback function which is called by the I/O unit when the
637 * write-buffer is synchronized. We need this to correctly maintain space
638 * accounting in bud logical eraseblocks. This function returns zero in case of
639 * success and a negative error code in case of failure.
640 *
641 * This function actually belongs to the journal, but we keep it here because
642 * we want to keep it static.
643 */
644static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
645{
646 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
647}
648
649/*
650 * init_constants_sb - initialize UBIFS constants.
651 * @c: UBIFS file-system description object
652 *
653 * This is a helper function which initializes various UBIFS constants after
654 * the superblock has been read. It also checks various UBIFS parameters and
655 * makes sure they are all right. Returns zero in case of success and a
656 * negative error code in case of failure.
657 */
658static int init_constants_sb(struct ubifs_info *c)
659{
660 int tmp, err;
661 long long tmp64;
662
663 c->main_bytes = (long long)c->main_lebs * c->leb_size;
664 c->max_znode_sz = sizeof(struct ubifs_znode) +
665 c->fanout * sizeof(struct ubifs_zbranch);
666
667 tmp = ubifs_idx_node_sz(c, 1);
668 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
669 c->min_idx_node_sz = ALIGN(tmp, 8);
670
671 tmp = ubifs_idx_node_sz(c, c->fanout);
672 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
673 c->max_idx_node_sz = ALIGN(tmp, 8);
674
675 /* Make sure LEB size is large enough to fit full commit */
676 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
677 tmp = ALIGN(tmp, c->min_io_size);
678 if (tmp > c->leb_size) {
679 ubifs_err(c, "too small LEB size %d, at least %d needed",
680 c->leb_size, tmp);
681 return -EINVAL;
682 }
683
684 /*
685 * Make sure that the log is large enough to fit reference nodes for
686 * all buds plus one reserved LEB.
687 */
688 tmp64 = c->max_bud_bytes + c->leb_size - 1;
689 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
690 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
691 tmp /= c->leb_size;
692 tmp += 1;
693 if (c->log_lebs < tmp) {
694 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
695 c->log_lebs, tmp);
696 return -EINVAL;
697 }
698
699 /*
700 * When budgeting we assume worst-case scenarios when the pages are not
701 * be compressed and direntries are of the maximum size.
702 *
703 * Note, data, which may be stored in inodes is budgeted separately, so
704 * it is not included into 'c->bi.inode_budget'.
705 */
706 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
707 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
708 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
709
710 /*
711 * When the amount of flash space used by buds becomes
712 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
713 * The writers are unblocked when the commit is finished. To avoid
714 * writers to be blocked UBIFS initiates background commit in advance,
715 * when number of bud bytes becomes above the limit defined below.
716 */
717 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
718
719 /*
720 * Ensure minimum journal size. All the bytes in the journal heads are
721 * considered to be used, when calculating the current journal usage.
722 * Consequently, if the journal is too small, UBIFS will treat it as
723 * always full.
724 */
725 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
726 if (c->bg_bud_bytes < tmp64)
727 c->bg_bud_bytes = tmp64;
728 if (c->max_bud_bytes < tmp64 + c->leb_size)
729 c->max_bud_bytes = tmp64 + c->leb_size;
730
731 err = ubifs_calc_lpt_geom(c);
732 if (err)
733 return err;
734
735 /* Initialize effective LEB size used in budgeting calculations */
736 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
737 return 0;
738}
739
740/*
741 * init_constants_master - initialize UBIFS constants.
742 * @c: UBIFS file-system description object
743 *
744 * This is a helper function which initializes various UBIFS constants after
745 * the master node has been read. It also checks various UBIFS parameters and
746 * makes sure they are all right.
747 */
748static void init_constants_master(struct ubifs_info *c)
749{
750 long long tmp64;
751
752 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
753 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
754
755 /*
756 * Calculate total amount of FS blocks. This number is not used
757 * internally because it does not make much sense for UBIFS, but it is
758 * necessary to report something for the 'statfs()' call.
759 *
760 * Subtract the LEB reserved for GC, the LEB which is reserved for
761 * deletions, minimum LEBs for the index, and assume only one journal
762 * head is available.
763 */
764 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
765 tmp64 *= (long long)c->leb_size - c->leb_overhead;
766 tmp64 = ubifs_reported_space(c, tmp64);
767 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
768}
769
770/**
771 * take_gc_lnum - reserve GC LEB.
772 * @c: UBIFS file-system description object
773 *
774 * This function ensures that the LEB reserved for garbage collection is marked
775 * as "taken" in lprops. We also have to set free space to LEB size and dirty
776 * space to zero, because lprops may contain out-of-date information if the
777 * file-system was un-mounted before it has been committed. This function
778 * returns zero in case of success and a negative error code in case of
779 * failure.
780 */
781static int take_gc_lnum(struct ubifs_info *c)
782{
783 int err;
784
785 if (c->gc_lnum == -1) {
786 ubifs_err(c, "no LEB for GC");
787 return -EINVAL;
788 }
789
790 /* And we have to tell lprops that this LEB is taken */
791 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
792 LPROPS_TAKEN, 0, 0);
793 return err;
794}
795
796/**
797 * alloc_wbufs - allocate write-buffers.
798 * @c: UBIFS file-system description object
799 *
800 * This helper function allocates and initializes UBIFS write-buffers. Returns
801 * zero in case of success and %-ENOMEM in case of failure.
802 */
803static int alloc_wbufs(struct ubifs_info *c)
804{
805 int i, err;
806
807 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
808 GFP_KERNEL);
809 if (!c->jheads)
810 return -ENOMEM;
811
812 /* Initialize journal heads */
813 for (i = 0; i < c->jhead_cnt; i++) {
814 INIT_LIST_HEAD(&c->jheads[i].buds_list);
815 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
816 if (err)
817 return err;
818
819 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
820 c->jheads[i].wbuf.jhead = i;
821 c->jheads[i].grouped = 1;
822 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
823 if (IS_ERR(c->jheads[i].log_hash))
824 goto out;
825 }
826
827 /*
828 * Garbage Collector head does not need to be synchronized by timer.
829 * Also GC head nodes are not grouped.
830 */
831 c->jheads[GCHD].wbuf.no_timer = 1;
832 c->jheads[GCHD].grouped = 0;
833
834 return 0;
835
836out:
837 while (i--)
838 kfree(c->jheads[i].log_hash);
839
840 return err;
841}
842
843/**
844 * free_wbufs - free write-buffers.
845 * @c: UBIFS file-system description object
846 */
847static void free_wbufs(struct ubifs_info *c)
848{
849 int i;
850
851 if (c->jheads) {
852 for (i = 0; i < c->jhead_cnt; i++) {
853 kfree(c->jheads[i].wbuf.buf);
854 kfree(c->jheads[i].wbuf.inodes);
855 kfree(c->jheads[i].log_hash);
856 }
857 kfree(c->jheads);
858 c->jheads = NULL;
859 }
860}
861
862/**
863 * free_orphans - free orphans.
864 * @c: UBIFS file-system description object
865 */
866static void free_orphans(struct ubifs_info *c)
867{
868 struct ubifs_orphan *orph;
869
870 while (c->orph_dnext) {
871 orph = c->orph_dnext;
872 c->orph_dnext = orph->dnext;
873 list_del(&orph->list);
874 kfree(orph);
875 }
876
877 while (!list_empty(&c->orph_list)) {
878 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
879 list_del(&orph->list);
880 kfree(orph);
881 ubifs_err(c, "orphan list not empty at unmount");
882 }
883
884 vfree(c->orph_buf);
885 c->orph_buf = NULL;
886}
887
888/**
889 * free_buds - free per-bud objects.
890 * @c: UBIFS file-system description object
891 */
892static void free_buds(struct ubifs_info *c)
893{
894 struct ubifs_bud *bud, *n;
895
896 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
897 kfree(bud);
898}
899
900/**
901 * check_volume_empty - check if the UBI volume is empty.
902 * @c: UBIFS file-system description object
903 *
904 * This function checks if the UBIFS volume is empty by looking if its LEBs are
905 * mapped or not. The result of checking is stored in the @c->empty variable.
906 * Returns zero in case of success and a negative error code in case of
907 * failure.
908 */
909static int check_volume_empty(struct ubifs_info *c)
910{
911 int lnum, err;
912
913 c->empty = 1;
914 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
915 err = ubifs_is_mapped(c, lnum);
916 if (unlikely(err < 0))
917 return err;
918 if (err == 1) {
919 c->empty = 0;
920 break;
921 }
922
923 cond_resched();
924 }
925
926 return 0;
927}
928
929/*
930 * UBIFS mount options.
931 *
932 * Opt_fast_unmount: do not run a journal commit before un-mounting
933 * Opt_norm_unmount: run a journal commit before un-mounting
934 * Opt_bulk_read: enable bulk-reads
935 * Opt_no_bulk_read: disable bulk-reads
936 * Opt_chk_data_crc: check CRCs when reading data nodes
937 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
938 * Opt_override_compr: override default compressor
939 * Opt_assert: set ubifs_assert() action
940 * Opt_auth_key: The key name used for authentication
941 * Opt_auth_hash_name: The hash type used for authentication
942 * Opt_err: just end of array marker
943 */
944enum {
945 Opt_fast_unmount,
946 Opt_norm_unmount,
947 Opt_bulk_read,
948 Opt_no_bulk_read,
949 Opt_chk_data_crc,
950 Opt_no_chk_data_crc,
951 Opt_override_compr,
952 Opt_assert,
953 Opt_auth_key,
954 Opt_auth_hash_name,
955 Opt_ignore,
956 Opt_err,
957};
958
959static const match_table_t tokens = {
960 {Opt_fast_unmount, "fast_unmount"},
961 {Opt_norm_unmount, "norm_unmount"},
962 {Opt_bulk_read, "bulk_read"},
963 {Opt_no_bulk_read, "no_bulk_read"},
964 {Opt_chk_data_crc, "chk_data_crc"},
965 {Opt_no_chk_data_crc, "no_chk_data_crc"},
966 {Opt_override_compr, "compr=%s"},
967 {Opt_auth_key, "auth_key=%s"},
968 {Opt_auth_hash_name, "auth_hash_name=%s"},
969 {Opt_ignore, "ubi=%s"},
970 {Opt_ignore, "vol=%s"},
971 {Opt_assert, "assert=%s"},
972 {Opt_err, NULL},
973};
974
975/**
976 * parse_standard_option - parse a standard mount option.
977 * @option: the option to parse
978 *
979 * Normally, standard mount options like "sync" are passed to file-systems as
980 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
981 * be present in the options string. This function tries to deal with this
982 * situation and parse standard options. Returns 0 if the option was not
983 * recognized, and the corresponding integer flag if it was.
984 *
985 * UBIFS is only interested in the "sync" option, so do not check for anything
986 * else.
987 */
988static int parse_standard_option(const char *option)
989{
990
991 pr_notice("UBIFS: parse %s\n", option);
992 if (!strcmp(option, "sync"))
993 return SB_SYNCHRONOUS;
994 return 0;
995}
996
997/**
998 * ubifs_parse_options - parse mount parameters.
999 * @c: UBIFS file-system description object
1000 * @options: parameters to parse
1001 * @is_remount: non-zero if this is FS re-mount
1002 *
1003 * This function parses UBIFS mount options and returns zero in case success
1004 * and a negative error code in case of failure.
1005 */
1006static int ubifs_parse_options(struct ubifs_info *c, char *options,
1007 int is_remount)
1008{
1009 char *p;
1010 substring_t args[MAX_OPT_ARGS];
1011
1012 if (!options)
1013 return 0;
1014
1015 while ((p = strsep(&options, ","))) {
1016 int token;
1017
1018 if (!*p)
1019 continue;
1020
1021 token = match_token(p, tokens, args);
1022 switch (token) {
1023 /*
1024 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1025 * We accept them in order to be backward-compatible. But this
1026 * should be removed at some point.
1027 */
1028 case Opt_fast_unmount:
1029 c->mount_opts.unmount_mode = 2;
1030 break;
1031 case Opt_norm_unmount:
1032 c->mount_opts.unmount_mode = 1;
1033 break;
1034 case Opt_bulk_read:
1035 c->mount_opts.bulk_read = 2;
1036 c->bulk_read = 1;
1037 break;
1038 case Opt_no_bulk_read:
1039 c->mount_opts.bulk_read = 1;
1040 c->bulk_read = 0;
1041 break;
1042 case Opt_chk_data_crc:
1043 c->mount_opts.chk_data_crc = 2;
1044 c->no_chk_data_crc = 0;
1045 break;
1046 case Opt_no_chk_data_crc:
1047 c->mount_opts.chk_data_crc = 1;
1048 c->no_chk_data_crc = 1;
1049 break;
1050 case Opt_override_compr:
1051 {
1052 char *name = match_strdup(&args[0]);
1053
1054 if (!name)
1055 return -ENOMEM;
1056 if (!strcmp(name, "none"))
1057 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1058 else if (!strcmp(name, "lzo"))
1059 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1060 else if (!strcmp(name, "zlib"))
1061 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1062 else if (!strcmp(name, "zstd"))
1063 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1064 else {
1065 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1066 kfree(name);
1067 return -EINVAL;
1068 }
1069 kfree(name);
1070 c->mount_opts.override_compr = 1;
1071 c->default_compr = c->mount_opts.compr_type;
1072 break;
1073 }
1074 case Opt_assert:
1075 {
1076 char *act = match_strdup(&args[0]);
1077
1078 if (!act)
1079 return -ENOMEM;
1080 if (!strcmp(act, "report"))
1081 c->assert_action = ASSACT_REPORT;
1082 else if (!strcmp(act, "read-only"))
1083 c->assert_action = ASSACT_RO;
1084 else if (!strcmp(act, "panic"))
1085 c->assert_action = ASSACT_PANIC;
1086 else {
1087 ubifs_err(c, "unknown assert action \"%s\"", act);
1088 kfree(act);
1089 return -EINVAL;
1090 }
1091 kfree(act);
1092 break;
1093 }
1094 case Opt_auth_key:
1095 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1096 if (!c->auth_key_name)
1097 return -ENOMEM;
1098 break;
1099 case Opt_auth_hash_name:
1100 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1101 if (!c->auth_hash_name)
1102 return -ENOMEM;
1103 break;
1104 case Opt_ignore:
1105 break;
1106 default:
1107 {
1108 unsigned long flag;
1109 struct super_block *sb = c->vfs_sb;
1110
1111 flag = parse_standard_option(p);
1112 if (!flag) {
1113 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1114 p);
1115 return -EINVAL;
1116 }
1117 sb->s_flags |= flag;
1118 break;
1119 }
1120 }
1121 }
1122
1123 return 0;
1124}
1125
1126/**
1127 * destroy_journal - destroy journal data structures.
1128 * @c: UBIFS file-system description object
1129 *
1130 * This function destroys journal data structures including those that may have
1131 * been created by recovery functions.
1132 */
1133static void destroy_journal(struct ubifs_info *c)
1134{
1135 while (!list_empty(&c->unclean_leb_list)) {
1136 struct ubifs_unclean_leb *ucleb;
1137
1138 ucleb = list_entry(c->unclean_leb_list.next,
1139 struct ubifs_unclean_leb, list);
1140 list_del(&ucleb->list);
1141 kfree(ucleb);
1142 }
1143 while (!list_empty(&c->old_buds)) {
1144 struct ubifs_bud *bud;
1145
1146 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1147 list_del(&bud->list);
1148 kfree(bud);
1149 }
1150 ubifs_destroy_idx_gc(c);
1151 ubifs_destroy_size_tree(c);
1152 ubifs_tnc_close(c);
1153 free_buds(c);
1154}
1155
1156/**
1157 * bu_init - initialize bulk-read information.
1158 * @c: UBIFS file-system description object
1159 */
1160static void bu_init(struct ubifs_info *c)
1161{
1162 ubifs_assert(c, c->bulk_read == 1);
1163
1164 if (c->bu.buf)
1165 return; /* Already initialized */
1166
1167again:
1168 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1169 if (!c->bu.buf) {
1170 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1171 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1172 goto again;
1173 }
1174
1175 /* Just disable bulk-read */
1176 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1177 c->max_bu_buf_len);
1178 c->mount_opts.bulk_read = 1;
1179 c->bulk_read = 0;
1180 return;
1181 }
1182}
1183
1184/**
1185 * check_free_space - check if there is enough free space to mount.
1186 * @c: UBIFS file-system description object
1187 *
1188 * This function makes sure UBIFS has enough free space to be mounted in
1189 * read/write mode. UBIFS must always have some free space to allow deletions.
1190 */
1191static int check_free_space(struct ubifs_info *c)
1192{
1193 ubifs_assert(c, c->dark_wm > 0);
1194 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1195 ubifs_err(c, "insufficient free space to mount in R/W mode");
1196 ubifs_dump_budg(c, &c->bi);
1197 ubifs_dump_lprops(c);
1198 return -ENOSPC;
1199 }
1200 return 0;
1201}
1202
1203/**
1204 * mount_ubifs - mount UBIFS file-system.
1205 * @c: UBIFS file-system description object
1206 *
1207 * This function mounts UBIFS file system. Returns zero in case of success and
1208 * a negative error code in case of failure.
1209 */
1210static int mount_ubifs(struct ubifs_info *c)
1211{
1212 int err;
1213 long long x, y;
1214 size_t sz;
1215
1216 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1217 /* Suppress error messages while probing if SB_SILENT is set */
1218 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1219
1220 err = init_constants_early(c);
1221 if (err)
1222 return err;
1223
1224 err = ubifs_debugging_init(c);
1225 if (err)
1226 return err;
1227
1228 err = check_volume_empty(c);
1229 if (err)
1230 goto out_free;
1231
1232 if (c->empty && (c->ro_mount || c->ro_media)) {
1233 /*
1234 * This UBI volume is empty, and read-only, or the file system
1235 * is mounted read-only - we cannot format it.
1236 */
1237 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1238 c->ro_media ? "UBI volume" : "mount");
1239 err = -EROFS;
1240 goto out_free;
1241 }
1242
1243 if (c->ro_media && !c->ro_mount) {
1244 ubifs_err(c, "cannot mount read-write - read-only media");
1245 err = -EROFS;
1246 goto out_free;
1247 }
1248
1249 /*
1250 * The requirement for the buffer is that it should fit indexing B-tree
1251 * height amount of integers. We assume the height if the TNC tree will
1252 * never exceed 64.
1253 */
1254 err = -ENOMEM;
1255 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1256 GFP_KERNEL);
1257 if (!c->bottom_up_buf)
1258 goto out_free;
1259
1260 c->sbuf = vmalloc(c->leb_size);
1261 if (!c->sbuf)
1262 goto out_free;
1263
1264 if (!c->ro_mount) {
1265 c->ileb_buf = vmalloc(c->leb_size);
1266 if (!c->ileb_buf)
1267 goto out_free;
1268 }
1269
1270 if (c->bulk_read == 1)
1271 bu_init(c);
1272
1273 if (!c->ro_mount) {
1274 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1275 UBIFS_CIPHER_BLOCK_SIZE,
1276 GFP_KERNEL);
1277 if (!c->write_reserve_buf)
1278 goto out_free;
1279 }
1280
1281 c->mounting = 1;
1282
1283 if (c->auth_key_name) {
1284 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1285 err = ubifs_init_authentication(c);
1286 if (err)
1287 goto out_free;
1288 } else {
1289 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1290 " authentication support");
1291 err = -EINVAL;
1292 goto out_free;
1293 }
1294 }
1295
1296 err = ubifs_read_superblock(c);
1297 if (err)
1298 goto out_free;
1299
1300 c->probing = 0;
1301
1302 /*
1303 * Make sure the compressor which is set as default in the superblock
1304 * or overridden by mount options is actually compiled in.
1305 */
1306 if (!ubifs_compr_present(c, c->default_compr)) {
1307 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1308 ubifs_compr_name(c, c->default_compr));
1309 err = -ENOTSUPP;
1310 goto out_free;
1311 }
1312
1313 err = init_constants_sb(c);
1314 if (err)
1315 goto out_free;
1316
1317 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1318 c->cbuf = kmalloc(sz, GFP_NOFS);
1319 if (!c->cbuf) {
1320 err = -ENOMEM;
1321 goto out_free;
1322 }
1323
1324 err = alloc_wbufs(c);
1325 if (err)
1326 goto out_cbuf;
1327
1328 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1329 if (!c->ro_mount) {
1330 /* Create background thread */
1331 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1332 if (IS_ERR(c->bgt)) {
1333 err = PTR_ERR(c->bgt);
1334 c->bgt = NULL;
1335 ubifs_err(c, "cannot spawn \"%s\", error %d",
1336 c->bgt_name, err);
1337 goto out_wbufs;
1338 }
1339 wake_up_process(c->bgt);
1340 }
1341
1342 err = ubifs_read_master(c);
1343 if (err)
1344 goto out_master;
1345
1346 init_constants_master(c);
1347
1348 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1349 ubifs_msg(c, "recovery needed");
1350 c->need_recovery = 1;
1351 }
1352
1353 if (c->need_recovery && !c->ro_mount) {
1354 err = ubifs_recover_inl_heads(c, c->sbuf);
1355 if (err)
1356 goto out_master;
1357 }
1358
1359 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1360 if (err)
1361 goto out_master;
1362
1363 if (!c->ro_mount && c->space_fixup) {
1364 err = ubifs_fixup_free_space(c);
1365 if (err)
1366 goto out_lpt;
1367 }
1368
1369 if (!c->ro_mount && !c->need_recovery) {
1370 /*
1371 * Set the "dirty" flag so that if we reboot uncleanly we
1372 * will notice this immediately on the next mount.
1373 */
1374 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1375 err = ubifs_write_master(c);
1376 if (err)
1377 goto out_lpt;
1378 }
1379
1380 /*
1381 * Handle offline signed images: Now that the master node is
1382 * written and its validation no longer depends on the hash
1383 * in the superblock, we can update the offline signed
1384 * superblock with a HMAC version,
1385 */
1386 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1387 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1388 if (err)
1389 goto out_lpt;
1390 c->superblock_need_write = 1;
1391 }
1392
1393 if (!c->ro_mount && c->superblock_need_write) {
1394 err = ubifs_write_sb_node(c, c->sup_node);
1395 if (err)
1396 goto out_lpt;
1397 c->superblock_need_write = 0;
1398 }
1399
1400 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1401 if (err)
1402 goto out_lpt;
1403
1404 err = ubifs_replay_journal(c);
1405 if (err)
1406 goto out_journal;
1407
1408 /* Calculate 'min_idx_lebs' after journal replay */
1409 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1410
1411 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1412 if (err)
1413 goto out_orphans;
1414
1415 if (!c->ro_mount) {
1416 int lnum;
1417
1418 err = check_free_space(c);
1419 if (err)
1420 goto out_orphans;
1421
1422 /* Check for enough log space */
1423 lnum = c->lhead_lnum + 1;
1424 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1425 lnum = UBIFS_LOG_LNUM;
1426 if (lnum == c->ltail_lnum) {
1427 err = ubifs_consolidate_log(c);
1428 if (err)
1429 goto out_orphans;
1430 }
1431
1432 if (c->need_recovery) {
1433 if (!ubifs_authenticated(c)) {
1434 err = ubifs_recover_size(c, true);
1435 if (err)
1436 goto out_orphans;
1437 }
1438
1439 err = ubifs_rcvry_gc_commit(c);
1440 if (err)
1441 goto out_orphans;
1442
1443 if (ubifs_authenticated(c)) {
1444 err = ubifs_recover_size(c, false);
1445 if (err)
1446 goto out_orphans;
1447 }
1448 } else {
1449 err = take_gc_lnum(c);
1450 if (err)
1451 goto out_orphans;
1452
1453 /*
1454 * GC LEB may contain garbage if there was an unclean
1455 * reboot, and it should be un-mapped.
1456 */
1457 err = ubifs_leb_unmap(c, c->gc_lnum);
1458 if (err)
1459 goto out_orphans;
1460 }
1461
1462 err = dbg_check_lprops(c);
1463 if (err)
1464 goto out_orphans;
1465 } else if (c->need_recovery) {
1466 err = ubifs_recover_size(c, false);
1467 if (err)
1468 goto out_orphans;
1469 } else {
1470 /*
1471 * Even if we mount read-only, we have to set space in GC LEB
1472 * to proper value because this affects UBIFS free space
1473 * reporting. We do not want to have a situation when
1474 * re-mounting from R/O to R/W changes amount of free space.
1475 */
1476 err = take_gc_lnum(c);
1477 if (err)
1478 goto out_orphans;
1479 }
1480
1481 spin_lock(&ubifs_infos_lock);
1482 list_add_tail(&c->infos_list, &ubifs_infos);
1483 spin_unlock(&ubifs_infos_lock);
1484
1485 if (c->need_recovery) {
1486 if (c->ro_mount)
1487 ubifs_msg(c, "recovery deferred");
1488 else {
1489 c->need_recovery = 0;
1490 ubifs_msg(c, "recovery completed");
1491 /*
1492 * GC LEB has to be empty and taken at this point. But
1493 * the journal head LEBs may also be accounted as
1494 * "empty taken" if they are empty.
1495 */
1496 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1497 }
1498 } else
1499 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1500
1501 err = dbg_check_filesystem(c);
1502 if (err)
1503 goto out_infos;
1504
1505 dbg_debugfs_init_fs(c);
1506
1507 c->mounting = 0;
1508
1509 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1510 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1511 c->ro_mount ? ", R/O mode" : "");
1512 x = (long long)c->main_lebs * c->leb_size;
1513 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1514 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1515 c->leb_size, c->leb_size >> 10, c->min_io_size,
1516 c->max_write_size);
1517 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1518 x, x >> 20, c->main_lebs,
1519 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1520 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1521 c->report_rp_size, c->report_rp_size >> 10);
1522 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1523 c->fmt_version, c->ro_compat_version,
1524 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1525 c->big_lpt ? ", big LPT model" : ", small LPT model");
1526
1527 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1528 dbg_gen("data journal heads: %d",
1529 c->jhead_cnt - NONDATA_JHEADS_CNT);
1530 dbg_gen("log LEBs: %d (%d - %d)",
1531 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1532 dbg_gen("LPT area LEBs: %d (%d - %d)",
1533 c->lpt_lebs, c->lpt_first, c->lpt_last);
1534 dbg_gen("orphan area LEBs: %d (%d - %d)",
1535 c->orph_lebs, c->orph_first, c->orph_last);
1536 dbg_gen("main area LEBs: %d (%d - %d)",
1537 c->main_lebs, c->main_first, c->leb_cnt - 1);
1538 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1539 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1540 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1541 c->bi.old_idx_sz >> 20);
1542 dbg_gen("key hash type: %d", c->key_hash_type);
1543 dbg_gen("tree fanout: %d", c->fanout);
1544 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1545 dbg_gen("max. znode size %d", c->max_znode_sz);
1546 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1547 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1548 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1549 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1550 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1551 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1552 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1553 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1554 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1555 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1556 dbg_gen("dead watermark: %d", c->dead_wm);
1557 dbg_gen("dark watermark: %d", c->dark_wm);
1558 dbg_gen("LEB overhead: %d", c->leb_overhead);
1559 x = (long long)c->main_lebs * c->dark_wm;
1560 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1561 x, x >> 10, x >> 20);
1562 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1563 c->max_bud_bytes, c->max_bud_bytes >> 10,
1564 c->max_bud_bytes >> 20);
1565 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1566 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1567 c->bg_bud_bytes >> 20);
1568 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1569 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1570 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1571 dbg_gen("commit number: %llu", c->cmt_no);
1572 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1573 dbg_gen("max orphans: %d", c->max_orphans);
1574
1575 return 0;
1576
1577out_infos:
1578 spin_lock(&ubifs_infos_lock);
1579 list_del(&c->infos_list);
1580 spin_unlock(&ubifs_infos_lock);
1581out_orphans:
1582 free_orphans(c);
1583out_journal:
1584 destroy_journal(c);
1585out_lpt:
1586 ubifs_lpt_free(c, 0);
1587out_master:
1588 kfree(c->mst_node);
1589 kfree(c->rcvrd_mst_node);
1590 if (c->bgt)
1591 kthread_stop(c->bgt);
1592out_wbufs:
1593 free_wbufs(c);
1594out_cbuf:
1595 kfree(c->cbuf);
1596out_free:
1597 kfree(c->write_reserve_buf);
1598 kfree(c->bu.buf);
1599 vfree(c->ileb_buf);
1600 vfree(c->sbuf);
1601 kfree(c->bottom_up_buf);
1602 ubifs_debugging_exit(c);
1603 return err;
1604}
1605
1606/**
1607 * ubifs_umount - un-mount UBIFS file-system.
1608 * @c: UBIFS file-system description object
1609 *
1610 * Note, this function is called to free allocated resourced when un-mounting,
1611 * as well as free resources when an error occurred while we were half way
1612 * through mounting (error path cleanup function). So it has to make sure the
1613 * resource was actually allocated before freeing it.
1614 */
1615static void ubifs_umount(struct ubifs_info *c)
1616{
1617 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1618 c->vi.vol_id);
1619
1620 dbg_debugfs_exit_fs(c);
1621 spin_lock(&ubifs_infos_lock);
1622 list_del(&c->infos_list);
1623 spin_unlock(&ubifs_infos_lock);
1624
1625 if (c->bgt)
1626 kthread_stop(c->bgt);
1627
1628 destroy_journal(c);
1629 free_wbufs(c);
1630 free_orphans(c);
1631 ubifs_lpt_free(c, 0);
1632 ubifs_exit_authentication(c);
1633
1634 kfree(c->auth_key_name);
1635 kfree(c->auth_hash_name);
1636 kfree(c->cbuf);
1637 kfree(c->rcvrd_mst_node);
1638 kfree(c->mst_node);
1639 kfree(c->write_reserve_buf);
1640 kfree(c->bu.buf);
1641 vfree(c->ileb_buf);
1642 vfree(c->sbuf);
1643 kfree(c->bottom_up_buf);
1644 ubifs_debugging_exit(c);
1645}
1646
1647/**
1648 * ubifs_remount_rw - re-mount in read-write mode.
1649 * @c: UBIFS file-system description object
1650 *
1651 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1652 * mode. This function allocates the needed resources and re-mounts UBIFS in
1653 * read-write mode.
1654 */
1655static int ubifs_remount_rw(struct ubifs_info *c)
1656{
1657 int err, lnum;
1658
1659 if (c->rw_incompat) {
1660 ubifs_err(c, "the file-system is not R/W-compatible");
1661 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1662 c->fmt_version, c->ro_compat_version,
1663 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1664 return -EROFS;
1665 }
1666
1667 mutex_lock(&c->umount_mutex);
1668 dbg_save_space_info(c);
1669 c->remounting_rw = 1;
1670 c->ro_mount = 0;
1671
1672 if (c->space_fixup) {
1673 err = ubifs_fixup_free_space(c);
1674 if (err)
1675 goto out;
1676 }
1677
1678 err = check_free_space(c);
1679 if (err)
1680 goto out;
1681
1682 if (c->need_recovery) {
1683 ubifs_msg(c, "completing deferred recovery");
1684 err = ubifs_write_rcvrd_mst_node(c);
1685 if (err)
1686 goto out;
1687 if (!ubifs_authenticated(c)) {
1688 err = ubifs_recover_size(c, true);
1689 if (err)
1690 goto out;
1691 }
1692 err = ubifs_clean_lebs(c, c->sbuf);
1693 if (err)
1694 goto out;
1695 err = ubifs_recover_inl_heads(c, c->sbuf);
1696 if (err)
1697 goto out;
1698 } else {
1699 /* A readonly mount is not allowed to have orphans */
1700 ubifs_assert(c, c->tot_orphans == 0);
1701 err = ubifs_clear_orphans(c);
1702 if (err)
1703 goto out;
1704 }
1705
1706 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1707 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1708 err = ubifs_write_master(c);
1709 if (err)
1710 goto out;
1711 }
1712
1713 if (c->superblock_need_write) {
1714 struct ubifs_sb_node *sup = c->sup_node;
1715
1716 err = ubifs_write_sb_node(c, sup);
1717 if (err)
1718 goto out;
1719
1720 c->superblock_need_write = 0;
1721 }
1722
1723 c->ileb_buf = vmalloc(c->leb_size);
1724 if (!c->ileb_buf) {
1725 err = -ENOMEM;
1726 goto out;
1727 }
1728
1729 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1730 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1731 if (!c->write_reserve_buf) {
1732 err = -ENOMEM;
1733 goto out;
1734 }
1735
1736 err = ubifs_lpt_init(c, 0, 1);
1737 if (err)
1738 goto out;
1739
1740 /* Create background thread */
1741 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1742 if (IS_ERR(c->bgt)) {
1743 err = PTR_ERR(c->bgt);
1744 c->bgt = NULL;
1745 ubifs_err(c, "cannot spawn \"%s\", error %d",
1746 c->bgt_name, err);
1747 goto out;
1748 }
1749 wake_up_process(c->bgt);
1750
1751 c->orph_buf = vmalloc(c->leb_size);
1752 if (!c->orph_buf) {
1753 err = -ENOMEM;
1754 goto out;
1755 }
1756
1757 /* Check for enough log space */
1758 lnum = c->lhead_lnum + 1;
1759 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1760 lnum = UBIFS_LOG_LNUM;
1761 if (lnum == c->ltail_lnum) {
1762 err = ubifs_consolidate_log(c);
1763 if (err)
1764 goto out;
1765 }
1766
1767 if (c->need_recovery) {
1768 err = ubifs_rcvry_gc_commit(c);
1769 if (err)
1770 goto out;
1771
1772 if (ubifs_authenticated(c)) {
1773 err = ubifs_recover_size(c, false);
1774 if (err)
1775 goto out;
1776 }
1777 } else {
1778 err = ubifs_leb_unmap(c, c->gc_lnum);
1779 }
1780 if (err)
1781 goto out;
1782
1783 dbg_gen("re-mounted read-write");
1784 c->remounting_rw = 0;
1785
1786 if (c->need_recovery) {
1787 c->need_recovery = 0;
1788 ubifs_msg(c, "deferred recovery completed");
1789 } else {
1790 /*
1791 * Do not run the debugging space check if the were doing
1792 * recovery, because when we saved the information we had the
1793 * file-system in a state where the TNC and lprops has been
1794 * modified in memory, but all the I/O operations (including a
1795 * commit) were deferred. So the file-system was in
1796 * "non-committed" state. Now the file-system is in committed
1797 * state, and of course the amount of free space will change
1798 * because, for example, the old index size was imprecise.
1799 */
1800 err = dbg_check_space_info(c);
1801 }
1802
1803 mutex_unlock(&c->umount_mutex);
1804 return err;
1805
1806out:
1807 c->ro_mount = 1;
1808 vfree(c->orph_buf);
1809 c->orph_buf = NULL;
1810 if (c->bgt) {
1811 kthread_stop(c->bgt);
1812 c->bgt = NULL;
1813 }
1814 free_wbufs(c);
1815 kfree(c->write_reserve_buf);
1816 c->write_reserve_buf = NULL;
1817 vfree(c->ileb_buf);
1818 c->ileb_buf = NULL;
1819 ubifs_lpt_free(c, 1);
1820 c->remounting_rw = 0;
1821 mutex_unlock(&c->umount_mutex);
1822 return err;
1823}
1824
1825/**
1826 * ubifs_remount_ro - re-mount in read-only mode.
1827 * @c: UBIFS file-system description object
1828 *
1829 * We assume VFS has stopped writing. Possibly the background thread could be
1830 * running a commit, however kthread_stop will wait in that case.
1831 */
1832static void ubifs_remount_ro(struct ubifs_info *c)
1833{
1834 int i, err;
1835
1836 ubifs_assert(c, !c->need_recovery);
1837 ubifs_assert(c, !c->ro_mount);
1838
1839 mutex_lock(&c->umount_mutex);
1840 if (c->bgt) {
1841 kthread_stop(c->bgt);
1842 c->bgt = NULL;
1843 }
1844
1845 dbg_save_space_info(c);
1846
1847 for (i = 0; i < c->jhead_cnt; i++) {
1848 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1849 if (err)
1850 ubifs_ro_mode(c, err);
1851 }
1852
1853 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1854 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1855 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1856 err = ubifs_write_master(c);
1857 if (err)
1858 ubifs_ro_mode(c, err);
1859
1860 vfree(c->orph_buf);
1861 c->orph_buf = NULL;
1862 kfree(c->write_reserve_buf);
1863 c->write_reserve_buf = NULL;
1864 vfree(c->ileb_buf);
1865 c->ileb_buf = NULL;
1866 ubifs_lpt_free(c, 1);
1867 c->ro_mount = 1;
1868 err = dbg_check_space_info(c);
1869 if (err)
1870 ubifs_ro_mode(c, err);
1871 mutex_unlock(&c->umount_mutex);
1872}
1873
1874static void ubifs_put_super(struct super_block *sb)
1875{
1876 int i;
1877 struct ubifs_info *c = sb->s_fs_info;
1878
1879 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1880
1881 /*
1882 * The following asserts are only valid if there has not been a failure
1883 * of the media. For example, there will be dirty inodes if we failed
1884 * to write them back because of I/O errors.
1885 */
1886 if (!c->ro_error) {
1887 ubifs_assert(c, c->bi.idx_growth == 0);
1888 ubifs_assert(c, c->bi.dd_growth == 0);
1889 ubifs_assert(c, c->bi.data_growth == 0);
1890 }
1891
1892 /*
1893 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1894 * and file system un-mount. Namely, it prevents the shrinker from
1895 * picking this superblock for shrinking - it will be just skipped if
1896 * the mutex is locked.
1897 */
1898 mutex_lock(&c->umount_mutex);
1899 if (!c->ro_mount) {
1900 /*
1901 * First of all kill the background thread to make sure it does
1902 * not interfere with un-mounting and freeing resources.
1903 */
1904 if (c->bgt) {
1905 kthread_stop(c->bgt);
1906 c->bgt = NULL;
1907 }
1908
1909 /*
1910 * On fatal errors c->ro_error is set to 1, in which case we do
1911 * not write the master node.
1912 */
1913 if (!c->ro_error) {
1914 int err;
1915
1916 /* Synchronize write-buffers */
1917 for (i = 0; i < c->jhead_cnt; i++) {
1918 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1919 if (err)
1920 ubifs_ro_mode(c, err);
1921 }
1922
1923 /*
1924 * We are being cleanly unmounted which means the
1925 * orphans were killed - indicate this in the master
1926 * node. Also save the reserved GC LEB number.
1927 */
1928 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1929 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1930 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1931 err = ubifs_write_master(c);
1932 if (err)
1933 /*
1934 * Recovery will attempt to fix the master area
1935 * next mount, so we just print a message and
1936 * continue to unmount normally.
1937 */
1938 ubifs_err(c, "failed to write master node, error %d",
1939 err);
1940 } else {
1941 for (i = 0; i < c->jhead_cnt; i++)
1942 /* Make sure write-buffer timers are canceled */
1943 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1944 }
1945 }
1946
1947 ubifs_umount(c);
1948 ubi_close_volume(c->ubi);
1949 mutex_unlock(&c->umount_mutex);
1950}
1951
1952static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1953{
1954 int err;
1955 struct ubifs_info *c = sb->s_fs_info;
1956
1957 sync_filesystem(sb);
1958 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1959
1960 err = ubifs_parse_options(c, data, 1);
1961 if (err) {
1962 ubifs_err(c, "invalid or unknown remount parameter");
1963 return err;
1964 }
1965
1966 if (c->ro_mount && !(*flags & SB_RDONLY)) {
1967 if (c->ro_error) {
1968 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1969 return -EROFS;
1970 }
1971 if (c->ro_media) {
1972 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1973 return -EROFS;
1974 }
1975 err = ubifs_remount_rw(c);
1976 if (err)
1977 return err;
1978 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1979 if (c->ro_error) {
1980 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1981 return -EROFS;
1982 }
1983 ubifs_remount_ro(c);
1984 }
1985
1986 if (c->bulk_read == 1)
1987 bu_init(c);
1988 else {
1989 dbg_gen("disable bulk-read");
1990 mutex_lock(&c->bu_mutex);
1991 kfree(c->bu.buf);
1992 c->bu.buf = NULL;
1993 mutex_unlock(&c->bu_mutex);
1994 }
1995
1996 if (!c->need_recovery)
1997 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1998
1999 return 0;
2000}
2001
2002const struct super_operations ubifs_super_operations = {
2003 .alloc_inode = ubifs_alloc_inode,
2004 .free_inode = ubifs_free_inode,
2005 .put_super = ubifs_put_super,
2006 .write_inode = ubifs_write_inode,
2007 .drop_inode = ubifs_drop_inode,
2008 .evict_inode = ubifs_evict_inode,
2009 .statfs = ubifs_statfs,
2010 .dirty_inode = ubifs_dirty_inode,
2011 .remount_fs = ubifs_remount_fs,
2012 .show_options = ubifs_show_options,
2013 .sync_fs = ubifs_sync_fs,
2014};
2015
2016/**
2017 * open_ubi - parse UBI device name string and open the UBI device.
2018 * @name: UBI volume name
2019 * @mode: UBI volume open mode
2020 *
2021 * The primary method of mounting UBIFS is by specifying the UBI volume
2022 * character device node path. However, UBIFS may also be mounted withoug any
2023 * character device node using one of the following methods:
2024 *
2025 * o ubiX_Y - mount UBI device number X, volume Y;
2026 * o ubiY - mount UBI device number 0, volume Y;
2027 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2028 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2029 *
2030 * Alternative '!' separator may be used instead of ':' (because some shells
2031 * like busybox may interpret ':' as an NFS host name separator). This function
2032 * returns UBI volume description object in case of success and a negative
2033 * error code in case of failure.
2034 */
2035static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2036{
2037 struct ubi_volume_desc *ubi;
2038 int dev, vol;
2039 char *endptr;
2040
2041 if (!name || !*name)
2042 return ERR_PTR(-EINVAL);
2043
2044 /* First, try to open using the device node path method */
2045 ubi = ubi_open_volume_path(name, mode);
2046 if (!IS_ERR(ubi))
2047 return ubi;
2048
2049 /* Try the "nodev" method */
2050 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2051 return ERR_PTR(-EINVAL);
2052
2053 /* ubi:NAME method */
2054 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2055 return ubi_open_volume_nm(0, name + 4, mode);
2056
2057 if (!isdigit(name[3]))
2058 return ERR_PTR(-EINVAL);
2059
2060 dev = simple_strtoul(name + 3, &endptr, 0);
2061
2062 /* ubiY method */
2063 if (*endptr == '\0')
2064 return ubi_open_volume(0, dev, mode);
2065
2066 /* ubiX_Y method */
2067 if (*endptr == '_' && isdigit(endptr[1])) {
2068 vol = simple_strtoul(endptr + 1, &endptr, 0);
2069 if (*endptr != '\0')
2070 return ERR_PTR(-EINVAL);
2071 return ubi_open_volume(dev, vol, mode);
2072 }
2073
2074 /* ubiX:NAME method */
2075 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2076 return ubi_open_volume_nm(dev, ++endptr, mode);
2077
2078 return ERR_PTR(-EINVAL);
2079}
2080
2081static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2082{
2083 struct ubifs_info *c;
2084
2085 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2086 if (c) {
2087 spin_lock_init(&c->cnt_lock);
2088 spin_lock_init(&c->cs_lock);
2089 spin_lock_init(&c->buds_lock);
2090 spin_lock_init(&c->space_lock);
2091 spin_lock_init(&c->orphan_lock);
2092 init_rwsem(&c->commit_sem);
2093 mutex_init(&c->lp_mutex);
2094 mutex_init(&c->tnc_mutex);
2095 mutex_init(&c->log_mutex);
2096 mutex_init(&c->umount_mutex);
2097 mutex_init(&c->bu_mutex);
2098 mutex_init(&c->write_reserve_mutex);
2099 init_waitqueue_head(&c->cmt_wq);
2100 c->buds = RB_ROOT;
2101 c->old_idx = RB_ROOT;
2102 c->size_tree = RB_ROOT;
2103 c->orph_tree = RB_ROOT;
2104 INIT_LIST_HEAD(&c->infos_list);
2105 INIT_LIST_HEAD(&c->idx_gc);
2106 INIT_LIST_HEAD(&c->replay_list);
2107 INIT_LIST_HEAD(&c->replay_buds);
2108 INIT_LIST_HEAD(&c->uncat_list);
2109 INIT_LIST_HEAD(&c->empty_list);
2110 INIT_LIST_HEAD(&c->freeable_list);
2111 INIT_LIST_HEAD(&c->frdi_idx_list);
2112 INIT_LIST_HEAD(&c->unclean_leb_list);
2113 INIT_LIST_HEAD(&c->old_buds);
2114 INIT_LIST_HEAD(&c->orph_list);
2115 INIT_LIST_HEAD(&c->orph_new);
2116 c->no_chk_data_crc = 1;
2117 c->assert_action = ASSACT_RO;
2118
2119 c->highest_inum = UBIFS_FIRST_INO;
2120 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2121
2122 ubi_get_volume_info(ubi, &c->vi);
2123 ubi_get_device_info(c->vi.ubi_num, &c->di);
2124 }
2125 return c;
2126}
2127
2128static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2129{
2130 struct ubifs_info *c = sb->s_fs_info;
2131 struct inode *root;
2132 int err;
2133
2134 c->vfs_sb = sb;
2135 /* Re-open the UBI device in read-write mode */
2136 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2137 if (IS_ERR(c->ubi)) {
2138 err = PTR_ERR(c->ubi);
2139 goto out;
2140 }
2141
2142 err = ubifs_parse_options(c, data, 0);
2143 if (err)
2144 goto out_close;
2145
2146 /*
2147 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2148 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2149 * which means the user would have to wait not just for their own I/O
2150 * but the read-ahead I/O as well i.e. completely pointless.
2151 *
2152 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2153 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2154 * writeback happening.
2155 */
2156 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2157 c->vi.vol_id);
2158 if (err)
2159 goto out_close;
2160
2161 sb->s_fs_info = c;
2162 sb->s_magic = UBIFS_SUPER_MAGIC;
2163 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2164 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2165 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2166 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2167 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2168 sb->s_op = &ubifs_super_operations;
2169#ifdef CONFIG_UBIFS_FS_XATTR
2170 sb->s_xattr = ubifs_xattr_handlers;
2171#endif
2172 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2173
2174 mutex_lock(&c->umount_mutex);
2175 err = mount_ubifs(c);
2176 if (err) {
2177 ubifs_assert(c, err < 0);
2178 goto out_unlock;
2179 }
2180
2181 /* Read the root inode */
2182 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2183 if (IS_ERR(root)) {
2184 err = PTR_ERR(root);
2185 goto out_umount;
2186 }
2187
2188 sb->s_root = d_make_root(root);
2189 if (!sb->s_root) {
2190 err = -ENOMEM;
2191 goto out_umount;
2192 }
2193
2194 mutex_unlock(&c->umount_mutex);
2195 return 0;
2196
2197out_umount:
2198 ubifs_umount(c);
2199out_unlock:
2200 mutex_unlock(&c->umount_mutex);
2201out_close:
2202 ubi_close_volume(c->ubi);
2203out:
2204 return err;
2205}
2206
2207static int sb_test(struct super_block *sb, void *data)
2208{
2209 struct ubifs_info *c1 = data;
2210 struct ubifs_info *c = sb->s_fs_info;
2211
2212 return c->vi.cdev == c1->vi.cdev;
2213}
2214
2215static int sb_set(struct super_block *sb, void *data)
2216{
2217 sb->s_fs_info = data;
2218 return set_anon_super(sb, NULL);
2219}
2220
2221static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2222 const char *name, void *data)
2223{
2224 struct ubi_volume_desc *ubi;
2225 struct ubifs_info *c;
2226 struct super_block *sb;
2227 int err;
2228
2229 dbg_gen("name %s, flags %#x", name, flags);
2230
2231 /*
2232 * Get UBI device number and volume ID. Mount it read-only so far
2233 * because this might be a new mount point, and UBI allows only one
2234 * read-write user at a time.
2235 */
2236 ubi = open_ubi(name, UBI_READONLY);
2237 if (IS_ERR(ubi)) {
2238 if (!(flags & SB_SILENT))
2239 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2240 current->pid, name, (int)PTR_ERR(ubi));
2241 return ERR_CAST(ubi);
2242 }
2243
2244 c = alloc_ubifs_info(ubi);
2245 if (!c) {
2246 err = -ENOMEM;
2247 goto out_close;
2248 }
2249
2250 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2251
2252 sb = sget(fs_type, sb_test, sb_set, flags, c);
2253 if (IS_ERR(sb)) {
2254 err = PTR_ERR(sb);
2255 kfree(c);
2256 goto out_close;
2257 }
2258
2259 if (sb->s_root) {
2260 struct ubifs_info *c1 = sb->s_fs_info;
2261 kfree(c);
2262 /* A new mount point for already mounted UBIFS */
2263 dbg_gen("this ubi volume is already mounted");
2264 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2265 err = -EBUSY;
2266 goto out_deact;
2267 }
2268 } else {
2269 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2270 if (err) {
2271 kfree(c);
2272 goto out_deact;
2273 }
2274 /* We do not support atime */
2275 sb->s_flags |= SB_ACTIVE;
2276 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2277 ubifs_msg(c, "full atime support is enabled.");
2278 else
2279 sb->s_flags |= SB_NOATIME;
2280 }
2281
2282 /* 'fill_super()' opens ubi again so we must close it here */
2283 ubi_close_volume(ubi);
2284
2285 return dget(sb->s_root);
2286
2287out_deact:
2288 deactivate_locked_super(sb);
2289out_close:
2290 ubi_close_volume(ubi);
2291 return ERR_PTR(err);
2292}
2293
2294static void kill_ubifs_super(struct super_block *s)
2295{
2296 struct ubifs_info *c = s->s_fs_info;
2297 kill_anon_super(s);
2298 kfree(c);
2299}
2300
2301static struct file_system_type ubifs_fs_type = {
2302 .name = "ubifs",
2303 .owner = THIS_MODULE,
2304 .mount = ubifs_mount,
2305 .kill_sb = kill_ubifs_super,
2306};
2307MODULE_ALIAS_FS("ubifs");
2308
2309/*
2310 * Inode slab cache constructor.
2311 */
2312static void inode_slab_ctor(void *obj)
2313{
2314 struct ubifs_inode *ui = obj;
2315 inode_init_once(&ui->vfs_inode);
2316}
2317
2318static int __init ubifs_init(void)
2319{
2320 int err;
2321
2322 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2323
2324 /* Make sure node sizes are 8-byte aligned */
2325 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2326 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2327 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2328 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2329 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2330 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2331 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2332 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2333 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2334 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2335 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2336
2337 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2338 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2339 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2340 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2341 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2342 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2343
2344 /* Check min. node size */
2345 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2346 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2347 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2348 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2349
2350 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2351 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2352 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2353 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2354
2355 /* Defined node sizes */
2356 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2357 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2358 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2359 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2360
2361 /*
2362 * We use 2 bit wide bit-fields to store compression type, which should
2363 * be amended if more compressors are added. The bit-fields are:
2364 * @compr_type in 'struct ubifs_inode', @default_compr in
2365 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2366 */
2367 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2368
2369 /*
2370 * We require that PAGE_SIZE is greater-than-or-equal-to
2371 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2372 */
2373 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2374 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2375 current->pid, (unsigned int)PAGE_SIZE);
2376 return -EINVAL;
2377 }
2378
2379 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2380 sizeof(struct ubifs_inode), 0,
2381 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2382 SLAB_ACCOUNT, &inode_slab_ctor);
2383 if (!ubifs_inode_slab)
2384 return -ENOMEM;
2385
2386 err = register_shrinker(&ubifs_shrinker_info);
2387 if (err)
2388 goto out_slab;
2389
2390 err = ubifs_compressors_init();
2391 if (err)
2392 goto out_shrinker;
2393
2394 dbg_debugfs_init();
2395
2396 err = register_filesystem(&ubifs_fs_type);
2397 if (err) {
2398 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2399 current->pid, err);
2400 goto out_dbg;
2401 }
2402 return 0;
2403
2404out_dbg:
2405 dbg_debugfs_exit();
2406 ubifs_compressors_exit();
2407out_shrinker:
2408 unregister_shrinker(&ubifs_shrinker_info);
2409out_slab:
2410 kmem_cache_destroy(ubifs_inode_slab);
2411 return err;
2412}
2413/* late_initcall to let compressors initialize first */
2414late_initcall(ubifs_init);
2415
2416static void __exit ubifs_exit(void)
2417{
2418 WARN_ON(!list_empty(&ubifs_infos));
2419 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2420
2421 dbg_debugfs_exit();
2422 ubifs_compressors_exit();
2423 unregister_shrinker(&ubifs_shrinker_info);
2424
2425 /*
2426 * Make sure all delayed rcu free inodes are flushed before we
2427 * destroy cache.
2428 */
2429 rcu_barrier();
2430 kmem_cache_destroy(ubifs_inode_slab);
2431 unregister_filesystem(&ubifs_fs_type);
2432}
2433module_exit(ubifs_exit);
2434
2435MODULE_LICENSE("GPL");
2436MODULE_VERSION(__stringify(UBIFS_VERSION));
2437MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2438MODULE_DESCRIPTION("UBIFS - UBI File System");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17#include <linux/init.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/ctype.h>
21#include <linux/kthread.h>
22#include <linux/fs_context.h>
23#include <linux/fs_parser.h>
24#include <linux/seq_file.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include "ubifs.h"
28
29static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30{
31 int n = 0, ret;
32
33 ret = kstrtoint(val, 10, &n);
34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 return -EINVAL;
36 return param_set_int(val, kp);
37}
38
39static const struct kernel_param_ops ubifs_default_version_ops = {
40 .set = ubifs_default_version_set,
41 .get = param_get_int,
42};
43
44int ubifs_default_version = UBIFS_FORMAT_VERSION;
45module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46
47/*
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
50 */
51#define UBIFS_KMALLOC_OK (128*1024)
52
53/* Slab cache for UBIFS inodes */
54static struct kmem_cache *ubifs_inode_slab;
55
56/* UBIFS TNC shrinker description */
57static struct shrinker *ubifs_shrinker_info;
58
59/**
60 * validate_inode - validate inode.
61 * @c: UBIFS file-system description object
62 * @inode: the inode to validate
63 *
64 * This is a helper function for 'ubifs_iget()' which validates various fields
65 * of a newly built inode to make sure they contain sane values and prevent
66 * possible vulnerabilities. Returns zero if the inode is all right and
67 * a non-zero error code if not.
68 */
69static int validate_inode(struct ubifs_info *c, const struct inode *inode)
70{
71 int err;
72 const struct ubifs_inode *ui = ubifs_inode(inode);
73
74 if (inode->i_size > c->max_inode_sz) {
75 ubifs_err(c, "inode is too large (%lld)",
76 (long long)inode->i_size);
77 return 1;
78 }
79
80 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
81 ubifs_err(c, "unknown compression type %d", ui->compr_type);
82 return 2;
83 }
84
85 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
86 return 3;
87
88 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
89 return 4;
90
91 if (ui->xattr && !S_ISREG(inode->i_mode))
92 return 5;
93
94 if (!ubifs_compr_present(c, ui->compr_type)) {
95 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
96 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
97 }
98
99 err = dbg_check_dir(c, inode);
100 return err;
101}
102
103struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
104{
105 int err;
106 union ubifs_key key;
107 struct ubifs_ino_node *ino;
108 struct ubifs_info *c = sb->s_fs_info;
109 struct inode *inode;
110 struct ubifs_inode *ui;
111
112 dbg_gen("inode %lu", inum);
113
114 inode = iget_locked(sb, inum);
115 if (!inode)
116 return ERR_PTR(-ENOMEM);
117 if (!(inode->i_state & I_NEW))
118 return inode;
119 ui = ubifs_inode(inode);
120
121 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
122 if (!ino) {
123 err = -ENOMEM;
124 goto out;
125 }
126
127 ino_key_init(c, &key, inode->i_ino);
128
129 err = ubifs_tnc_lookup(c, &key, ino);
130 if (err)
131 goto out_ino;
132
133 inode->i_flags |= S_NOCMTIME;
134
135 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
136 inode->i_flags |= S_NOATIME;
137
138 set_nlink(inode, le32_to_cpu(ino->nlink));
139 i_uid_write(inode, le32_to_cpu(ino->uid));
140 i_gid_write(inode, le32_to_cpu(ino->gid));
141 inode_set_atime(inode, (int64_t)le64_to_cpu(ino->atime_sec),
142 le32_to_cpu(ino->atime_nsec));
143 inode_set_mtime(inode, (int64_t)le64_to_cpu(ino->mtime_sec),
144 le32_to_cpu(ino->mtime_nsec));
145 inode_set_ctime(inode, (int64_t)le64_to_cpu(ino->ctime_sec),
146 le32_to_cpu(ino->ctime_nsec));
147 inode->i_mode = le32_to_cpu(ino->mode);
148 inode->i_size = le64_to_cpu(ino->size);
149
150 ui->data_len = le32_to_cpu(ino->data_len);
151 ui->flags = le32_to_cpu(ino->flags);
152 ui->compr_type = le16_to_cpu(ino->compr_type);
153 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
154 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
155 ui->xattr_size = le32_to_cpu(ino->xattr_size);
156 ui->xattr_names = le32_to_cpu(ino->xattr_names);
157 ui->synced_i_size = ui->ui_size = inode->i_size;
158
159 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
160
161 err = validate_inode(c, inode);
162 if (err)
163 goto out_invalid;
164
165 switch (inode->i_mode & S_IFMT) {
166 case S_IFREG:
167 inode->i_mapping->a_ops = &ubifs_file_address_operations;
168 inode->i_op = &ubifs_file_inode_operations;
169 inode->i_fop = &ubifs_file_operations;
170 if (ui->xattr) {
171 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
172 if (!ui->data) {
173 err = -ENOMEM;
174 goto out_ino;
175 }
176 memcpy(ui->data, ino->data, ui->data_len);
177 ((char *)ui->data)[ui->data_len] = '\0';
178 } else if (ui->data_len != 0) {
179 err = 10;
180 goto out_invalid;
181 }
182 break;
183 case S_IFDIR:
184 inode->i_op = &ubifs_dir_inode_operations;
185 inode->i_fop = &ubifs_dir_operations;
186 if (ui->data_len != 0) {
187 err = 11;
188 goto out_invalid;
189 }
190 break;
191 case S_IFLNK:
192 inode->i_op = &ubifs_symlink_inode_operations;
193 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
194 err = 12;
195 goto out_invalid;
196 }
197 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
198 if (!ui->data) {
199 err = -ENOMEM;
200 goto out_ino;
201 }
202 memcpy(ui->data, ino->data, ui->data_len);
203 ((char *)ui->data)[ui->data_len] = '\0';
204 break;
205 case S_IFBLK:
206 case S_IFCHR:
207 {
208 dev_t rdev;
209 union ubifs_dev_desc *dev;
210
211 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
212 if (!ui->data) {
213 err = -ENOMEM;
214 goto out_ino;
215 }
216
217 dev = (union ubifs_dev_desc *)ino->data;
218 if (ui->data_len == sizeof(dev->new))
219 rdev = new_decode_dev(le32_to_cpu(dev->new));
220 else if (ui->data_len == sizeof(dev->huge))
221 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
222 else {
223 err = 13;
224 goto out_invalid;
225 }
226 memcpy(ui->data, ino->data, ui->data_len);
227 inode->i_op = &ubifs_file_inode_operations;
228 init_special_inode(inode, inode->i_mode, rdev);
229 break;
230 }
231 case S_IFSOCK:
232 case S_IFIFO:
233 inode->i_op = &ubifs_file_inode_operations;
234 init_special_inode(inode, inode->i_mode, 0);
235 if (ui->data_len != 0) {
236 err = 14;
237 goto out_invalid;
238 }
239 break;
240 default:
241 err = 15;
242 goto out_invalid;
243 }
244
245 kfree(ino);
246 ubifs_set_inode_flags(inode);
247 unlock_new_inode(inode);
248 return inode;
249
250out_invalid:
251 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
252 ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
253 ubifs_dump_inode(c, inode);
254 err = -EINVAL;
255out_ino:
256 kfree(ino);
257out:
258 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
259 iget_failed(inode);
260 return ERR_PTR(err);
261}
262
263static struct inode *ubifs_alloc_inode(struct super_block *sb)
264{
265 struct ubifs_inode *ui;
266
267 ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
268 if (!ui)
269 return NULL;
270
271 memset((void *)ui + sizeof(struct inode), 0,
272 sizeof(struct ubifs_inode) - sizeof(struct inode));
273 mutex_init(&ui->ui_mutex);
274 init_rwsem(&ui->xattr_sem);
275 spin_lock_init(&ui->ui_lock);
276 return &ui->vfs_inode;
277};
278
279static void ubifs_free_inode(struct inode *inode)
280{
281 struct ubifs_inode *ui = ubifs_inode(inode);
282
283 kfree(ui->data);
284 fscrypt_free_inode(inode);
285
286 kmem_cache_free(ubifs_inode_slab, ui);
287}
288
289/*
290 * Note, Linux write-back code calls this without 'i_mutex'.
291 */
292static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
293{
294 int err = 0;
295 struct ubifs_info *c = inode->i_sb->s_fs_info;
296 struct ubifs_inode *ui = ubifs_inode(inode);
297
298 ubifs_assert(c, !ui->xattr);
299 if (is_bad_inode(inode))
300 return 0;
301
302 mutex_lock(&ui->ui_mutex);
303 /*
304 * Due to races between write-back forced by budgeting
305 * (see 'sync_some_inodes()') and background write-back, the inode may
306 * have already been synchronized, do not do this again. This might
307 * also happen if it was synchronized in an VFS operation, e.g.
308 * 'ubifs_link()'.
309 */
310 if (!ui->dirty) {
311 mutex_unlock(&ui->ui_mutex);
312 return 0;
313 }
314
315 /*
316 * As an optimization, do not write orphan inodes to the media just
317 * because this is not needed.
318 */
319 dbg_gen("inode %lu, mode %#x, nlink %u",
320 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
321 if (inode->i_nlink) {
322 err = ubifs_jnl_write_inode(c, inode);
323 if (err)
324 ubifs_err(c, "can't write inode %lu, error %d",
325 inode->i_ino, err);
326 else
327 err = dbg_check_inode_size(c, inode, ui->ui_size);
328 }
329
330 ui->dirty = 0;
331 mutex_unlock(&ui->ui_mutex);
332 ubifs_release_dirty_inode_budget(c, ui);
333 return err;
334}
335
336static int ubifs_drop_inode(struct inode *inode)
337{
338 int drop = generic_drop_inode(inode);
339
340 if (!drop)
341 drop = fscrypt_drop_inode(inode);
342
343 return drop;
344}
345
346static void ubifs_evict_inode(struct inode *inode)
347{
348 int err;
349 struct ubifs_info *c = inode->i_sb->s_fs_info;
350 struct ubifs_inode *ui = ubifs_inode(inode);
351
352 if (ui->xattr)
353 /*
354 * Extended attribute inode deletions are fully handled in
355 * 'ubifs_removexattr()'. These inodes are special and have
356 * limited usage, so there is nothing to do here.
357 */
358 goto out;
359
360 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
361 ubifs_assert(c, !atomic_read(&inode->i_count));
362
363 truncate_inode_pages_final(&inode->i_data);
364
365 if (inode->i_nlink)
366 goto done;
367
368 if (is_bad_inode(inode))
369 goto out;
370
371 ui->ui_size = inode->i_size = 0;
372 err = ubifs_jnl_delete_inode(c, inode);
373 if (err)
374 /*
375 * Worst case we have a lost orphan inode wasting space, so a
376 * simple error message is OK here.
377 */
378 ubifs_err(c, "can't delete inode %lu, error %d",
379 inode->i_ino, err);
380
381out:
382 if (ui->dirty)
383 ubifs_release_dirty_inode_budget(c, ui);
384 else {
385 /* We've deleted something - clean the "no space" flags */
386 c->bi.nospace = c->bi.nospace_rp = 0;
387 smp_wmb();
388 }
389done:
390 clear_inode(inode);
391 fscrypt_put_encryption_info(inode);
392}
393
394static void ubifs_dirty_inode(struct inode *inode, int flags)
395{
396 struct ubifs_info *c = inode->i_sb->s_fs_info;
397 struct ubifs_inode *ui = ubifs_inode(inode);
398
399 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
400 if (!ui->dirty) {
401 ui->dirty = 1;
402 dbg_gen("inode %lu", inode->i_ino);
403 }
404}
405
406static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
407{
408 struct ubifs_info *c = dentry->d_sb->s_fs_info;
409 unsigned long long free;
410 __le32 *uuid = (__le32 *)c->uuid;
411
412 free = ubifs_get_free_space(c);
413 dbg_gen("free space %lld bytes (%lld blocks)",
414 free, free >> UBIFS_BLOCK_SHIFT);
415
416 buf->f_type = UBIFS_SUPER_MAGIC;
417 buf->f_bsize = UBIFS_BLOCK_SIZE;
418 buf->f_blocks = c->block_cnt;
419 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
420 if (free > c->report_rp_size)
421 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
422 else
423 buf->f_bavail = 0;
424 buf->f_files = 0;
425 buf->f_ffree = 0;
426 buf->f_namelen = UBIFS_MAX_NLEN;
427 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
428 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
429 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
430 return 0;
431}
432
433static int ubifs_show_options(struct seq_file *s, struct dentry *root)
434{
435 struct ubifs_info *c = root->d_sb->s_fs_info;
436
437 if (c->mount_opts.unmount_mode == 2)
438 seq_puts(s, ",fast_unmount");
439 else if (c->mount_opts.unmount_mode == 1)
440 seq_puts(s, ",norm_unmount");
441
442 if (c->mount_opts.bulk_read == 2)
443 seq_puts(s, ",bulk_read");
444 else if (c->mount_opts.bulk_read == 1)
445 seq_puts(s, ",no_bulk_read");
446
447 if (c->mount_opts.chk_data_crc == 2)
448 seq_puts(s, ",chk_data_crc");
449 else if (c->mount_opts.chk_data_crc == 1)
450 seq_puts(s, ",no_chk_data_crc");
451
452 if (c->mount_opts.override_compr) {
453 seq_printf(s, ",compr=%s",
454 ubifs_compr_name(c, c->mount_opts.compr_type));
455 }
456
457 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
458 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
459
460 return 0;
461}
462
463static int ubifs_sync_fs(struct super_block *sb, int wait)
464{
465 int i, err;
466 struct ubifs_info *c = sb->s_fs_info;
467
468 /*
469 * Zero @wait is just an advisory thing to help the file system shove
470 * lots of data into the queues, and there will be the second
471 * '->sync_fs()' call, with non-zero @wait.
472 */
473 if (!wait)
474 return 0;
475
476 /*
477 * Synchronize write buffers, because 'ubifs_run_commit()' does not
478 * do this if it waits for an already running commit.
479 */
480 for (i = 0; i < c->jhead_cnt; i++) {
481 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
482 if (err)
483 return err;
484 }
485
486 /*
487 * Strictly speaking, it is not necessary to commit the journal here,
488 * synchronizing write-buffers would be enough. But committing makes
489 * UBIFS free space predictions much more accurate, so we want to let
490 * the user be able to get more accurate results of 'statfs()' after
491 * they synchronize the file system.
492 */
493 err = ubifs_run_commit(c);
494 if (err)
495 return err;
496
497 return ubi_sync(c->vi.ubi_num);
498}
499
500/**
501 * init_constants_early - initialize UBIFS constants.
502 * @c: UBIFS file-system description object
503 *
504 * This function initialize UBIFS constants which do not need the superblock to
505 * be read. It also checks that the UBI volume satisfies basic UBIFS
506 * requirements. Returns zero in case of success and a negative error code in
507 * case of failure.
508 */
509static int init_constants_early(struct ubifs_info *c)
510{
511 if (c->vi.corrupted) {
512 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
513 c->ro_media = 1;
514 }
515
516 if (c->di.ro_mode) {
517 ubifs_msg(c, "read-only UBI device");
518 c->ro_media = 1;
519 }
520
521 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
522 ubifs_msg(c, "static UBI volume - read-only mode");
523 c->ro_media = 1;
524 }
525
526 c->leb_cnt = c->vi.size;
527 c->leb_size = c->vi.usable_leb_size;
528 c->leb_start = c->di.leb_start;
529 c->half_leb_size = c->leb_size / 2;
530 c->min_io_size = c->di.min_io_size;
531 c->min_io_shift = fls(c->min_io_size) - 1;
532 c->max_write_size = c->di.max_write_size;
533 c->max_write_shift = fls(c->max_write_size) - 1;
534
535 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
536 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
537 c->leb_size, UBIFS_MIN_LEB_SZ);
538 return -EINVAL;
539 }
540
541 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
542 ubifs_errc(c, "too few LEBs (%d), min. is %d",
543 c->leb_cnt, UBIFS_MIN_LEB_CNT);
544 return -EINVAL;
545 }
546
547 if (!is_power_of_2(c->min_io_size)) {
548 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
549 return -EINVAL;
550 }
551
552 /*
553 * Maximum write size has to be greater or equivalent to min. I/O
554 * size, and be multiple of min. I/O size.
555 */
556 if (c->max_write_size < c->min_io_size ||
557 c->max_write_size % c->min_io_size ||
558 !is_power_of_2(c->max_write_size)) {
559 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
560 c->max_write_size, c->min_io_size);
561 return -EINVAL;
562 }
563
564 /*
565 * UBIFS aligns all node to 8-byte boundary, so to make function in
566 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
567 * less than 8.
568 */
569 if (c->min_io_size < 8) {
570 c->min_io_size = 8;
571 c->min_io_shift = 3;
572 if (c->max_write_size < c->min_io_size) {
573 c->max_write_size = c->min_io_size;
574 c->max_write_shift = c->min_io_shift;
575 }
576 }
577
578 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
579 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
580
581 /*
582 * Initialize node length ranges which are mostly needed for node
583 * length validation.
584 */
585 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
586 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
587 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
588 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
589 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
590 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
591 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
592 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
593 UBIFS_MAX_HMAC_LEN;
594 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
595 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
596
597 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
598 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
599 c->ranges[UBIFS_ORPH_NODE].min_len =
600 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
601 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
602 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
603 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
604 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
605 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
606 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
607 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
608 /*
609 * Minimum indexing node size is amended later when superblock is
610 * read and the key length is known.
611 */
612 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
613 /*
614 * Maximum indexing node size is amended later when superblock is
615 * read and the fanout is known.
616 */
617 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
618
619 /*
620 * Initialize dead and dark LEB space watermarks. See gc.c for comments
621 * about these values.
622 */
623 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
624 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
625
626 /*
627 * Calculate how many bytes would be wasted at the end of LEB if it was
628 * fully filled with data nodes of maximum size. This is used in
629 * calculations when reporting free space.
630 */
631 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
632
633 /* Buffer size for bulk-reads */
634 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
635 if (c->max_bu_buf_len > c->leb_size)
636 c->max_bu_buf_len = c->leb_size;
637
638 /* Log is ready, preserve one LEB for commits. */
639 c->min_log_bytes = c->leb_size;
640
641 return 0;
642}
643
644/**
645 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
646 * @c: UBIFS file-system description object
647 * @lnum: LEB the write-buffer was synchronized to
648 * @free: how many free bytes left in this LEB
649 * @pad: how many bytes were padded
650 *
651 * This is a callback function which is called by the I/O unit when the
652 * write-buffer is synchronized. We need this to correctly maintain space
653 * accounting in bud logical eraseblocks. This function returns zero in case of
654 * success and a negative error code in case of failure.
655 *
656 * This function actually belongs to the journal, but we keep it here because
657 * we want to keep it static.
658 */
659static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
660{
661 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
662}
663
664/*
665 * init_constants_sb - initialize UBIFS constants.
666 * @c: UBIFS file-system description object
667 *
668 * This is a helper function which initializes various UBIFS constants after
669 * the superblock has been read. It also checks various UBIFS parameters and
670 * makes sure they are all right. Returns zero in case of success and a
671 * negative error code in case of failure.
672 */
673static int init_constants_sb(struct ubifs_info *c)
674{
675 int tmp, err;
676 long long tmp64;
677
678 c->main_bytes = (long long)c->main_lebs * c->leb_size;
679 c->max_znode_sz = sizeof(struct ubifs_znode) +
680 c->fanout * sizeof(struct ubifs_zbranch);
681
682 tmp = ubifs_idx_node_sz(c, 1);
683 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
684 c->min_idx_node_sz = ALIGN(tmp, 8);
685
686 tmp = ubifs_idx_node_sz(c, c->fanout);
687 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
688 c->max_idx_node_sz = ALIGN(tmp, 8);
689
690 /* Make sure LEB size is large enough to fit full commit */
691 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
692 tmp = ALIGN(tmp, c->min_io_size);
693 if (tmp > c->leb_size) {
694 ubifs_err(c, "too small LEB size %d, at least %d needed",
695 c->leb_size, tmp);
696 return -EINVAL;
697 }
698
699 /*
700 * Make sure that the log is large enough to fit reference nodes for
701 * all buds plus one reserved LEB.
702 */
703 tmp64 = c->max_bud_bytes + c->leb_size - 1;
704 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
705 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
706 tmp /= c->leb_size;
707 tmp += 1;
708 if (c->log_lebs < tmp) {
709 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
710 c->log_lebs, tmp);
711 return -EINVAL;
712 }
713
714 /*
715 * When budgeting we assume worst-case scenarios when the pages are not
716 * be compressed and direntries are of the maximum size.
717 *
718 * Note, data, which may be stored in inodes is budgeted separately, so
719 * it is not included into 'c->bi.inode_budget'.
720 */
721 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
722 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
723 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
724
725 /*
726 * When the amount of flash space used by buds becomes
727 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
728 * The writers are unblocked when the commit is finished. To avoid
729 * writers to be blocked UBIFS initiates background commit in advance,
730 * when number of bud bytes becomes above the limit defined below.
731 */
732 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
733
734 /*
735 * Ensure minimum journal size. All the bytes in the journal heads are
736 * considered to be used, when calculating the current journal usage.
737 * Consequently, if the journal is too small, UBIFS will treat it as
738 * always full.
739 */
740 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
741 if (c->bg_bud_bytes < tmp64)
742 c->bg_bud_bytes = tmp64;
743 if (c->max_bud_bytes < tmp64 + c->leb_size)
744 c->max_bud_bytes = tmp64 + c->leb_size;
745
746 err = ubifs_calc_lpt_geom(c);
747 if (err)
748 return err;
749
750 /* Initialize effective LEB size used in budgeting calculations */
751 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
752 return 0;
753}
754
755/*
756 * init_constants_master - initialize UBIFS constants.
757 * @c: UBIFS file-system description object
758 *
759 * This is a helper function which initializes various UBIFS constants after
760 * the master node has been read. It also checks various UBIFS parameters and
761 * makes sure they are all right.
762 */
763static void init_constants_master(struct ubifs_info *c)
764{
765 long long tmp64;
766
767 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
768 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
769
770 /*
771 * Calculate total amount of FS blocks. This number is not used
772 * internally because it does not make much sense for UBIFS, but it is
773 * necessary to report something for the 'statfs()' call.
774 *
775 * Subtract the LEB reserved for GC, the LEB which is reserved for
776 * deletions, minimum LEBs for the index, the LEBs which are reserved
777 * for each journal head.
778 */
779 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt;
780 tmp64 *= (long long)c->leb_size - c->leb_overhead;
781 tmp64 = ubifs_reported_space(c, tmp64);
782 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
783}
784
785/**
786 * take_gc_lnum - reserve GC LEB.
787 * @c: UBIFS file-system description object
788 *
789 * This function ensures that the LEB reserved for garbage collection is marked
790 * as "taken" in lprops. We also have to set free space to LEB size and dirty
791 * space to zero, because lprops may contain out-of-date information if the
792 * file-system was un-mounted before it has been committed. This function
793 * returns zero in case of success and a negative error code in case of
794 * failure.
795 */
796static int take_gc_lnum(struct ubifs_info *c)
797{
798 int err;
799
800 if (c->gc_lnum == -1) {
801 ubifs_err(c, "no LEB for GC");
802 return -EINVAL;
803 }
804
805 /* And we have to tell lprops that this LEB is taken */
806 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
807 LPROPS_TAKEN, 0, 0);
808 return err;
809}
810
811/**
812 * alloc_wbufs - allocate write-buffers.
813 * @c: UBIFS file-system description object
814 *
815 * This helper function allocates and initializes UBIFS write-buffers. Returns
816 * zero in case of success and %-ENOMEM in case of failure.
817 */
818static int alloc_wbufs(struct ubifs_info *c)
819{
820 int i, err;
821
822 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
823 GFP_KERNEL);
824 if (!c->jheads)
825 return -ENOMEM;
826
827 /* Initialize journal heads */
828 for (i = 0; i < c->jhead_cnt; i++) {
829 INIT_LIST_HEAD(&c->jheads[i].buds_list);
830 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
831 if (err)
832 goto out_wbuf;
833
834 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
835 c->jheads[i].wbuf.jhead = i;
836 c->jheads[i].grouped = 1;
837 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
838 if (IS_ERR(c->jheads[i].log_hash)) {
839 err = PTR_ERR(c->jheads[i].log_hash);
840 goto out_log_hash;
841 }
842 }
843
844 /*
845 * Garbage Collector head does not need to be synchronized by timer.
846 * Also GC head nodes are not grouped.
847 */
848 c->jheads[GCHD].wbuf.no_timer = 1;
849 c->jheads[GCHD].grouped = 0;
850
851 return 0;
852
853out_log_hash:
854 kfree(c->jheads[i].wbuf.buf);
855 kfree(c->jheads[i].wbuf.inodes);
856
857out_wbuf:
858 while (i--) {
859 kfree(c->jheads[i].wbuf.buf);
860 kfree(c->jheads[i].wbuf.inodes);
861 kfree(c->jheads[i].log_hash);
862 }
863 kfree(c->jheads);
864 c->jheads = NULL;
865
866 return err;
867}
868
869/**
870 * free_wbufs - free write-buffers.
871 * @c: UBIFS file-system description object
872 */
873static void free_wbufs(struct ubifs_info *c)
874{
875 int i;
876
877 if (c->jheads) {
878 for (i = 0; i < c->jhead_cnt; i++) {
879 kfree(c->jheads[i].wbuf.buf);
880 kfree(c->jheads[i].wbuf.inodes);
881 kfree(c->jheads[i].log_hash);
882 }
883 kfree(c->jheads);
884 c->jheads = NULL;
885 }
886}
887
888/**
889 * free_orphans - free orphans.
890 * @c: UBIFS file-system description object
891 */
892static void free_orphans(struct ubifs_info *c)
893{
894 struct ubifs_orphan *orph;
895
896 while (c->orph_dnext) {
897 orph = c->orph_dnext;
898 c->orph_dnext = orph->dnext;
899 list_del(&orph->list);
900 kfree(orph);
901 }
902
903 while (!list_empty(&c->orph_list)) {
904 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
905 list_del(&orph->list);
906 kfree(orph);
907 ubifs_err(c, "orphan list not empty at unmount");
908 }
909
910 vfree(c->orph_buf);
911 c->orph_buf = NULL;
912}
913
914/**
915 * free_buds - free per-bud objects.
916 * @c: UBIFS file-system description object
917 */
918static void free_buds(struct ubifs_info *c)
919{
920 struct ubifs_bud *bud, *n;
921
922 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) {
923 kfree(bud->log_hash);
924 kfree(bud);
925 }
926}
927
928/**
929 * check_volume_empty - check if the UBI volume is empty.
930 * @c: UBIFS file-system description object
931 *
932 * This function checks if the UBIFS volume is empty by looking if its LEBs are
933 * mapped or not. The result of checking is stored in the @c->empty variable.
934 * Returns zero in case of success and a negative error code in case of
935 * failure.
936 */
937static int check_volume_empty(struct ubifs_info *c)
938{
939 int lnum, err;
940
941 c->empty = 1;
942 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
943 err = ubifs_is_mapped(c, lnum);
944 if (unlikely(err < 0))
945 return err;
946 if (err == 1) {
947 c->empty = 0;
948 break;
949 }
950
951 cond_resched();
952 }
953
954 return 0;
955}
956
957/*
958 * UBIFS mount options.
959 *
960 * Opt_fast_unmount: do not run a journal commit before un-mounting
961 * Opt_norm_unmount: run a journal commit before un-mounting
962 * Opt_bulk_read: enable bulk-reads
963 * Opt_no_bulk_read: disable bulk-reads
964 * Opt_chk_data_crc: check CRCs when reading data nodes
965 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
966 * Opt_override_compr: override default compressor
967 * Opt_assert: set ubifs_assert() action
968 * Opt_auth_key: The key name used for authentication
969 * Opt_auth_hash_name: The hash type used for authentication
970 * Opt_err: just end of array marker
971 */
972enum {
973 Opt_fast_unmount,
974 Opt_norm_unmount,
975 Opt_bulk_read,
976 Opt_no_bulk_read,
977 Opt_chk_data_crc,
978 Opt_no_chk_data_crc,
979 Opt_override_compr,
980 Opt_assert,
981 Opt_auth_key,
982 Opt_auth_hash_name,
983 Opt_ignore,
984};
985
986static const struct constant_table ubifs_param_compr[] = {
987 { "none", UBIFS_COMPR_NONE },
988 { "lzo", UBIFS_COMPR_LZO },
989 { "zlib", UBIFS_COMPR_ZLIB },
990 { "zstd", UBIFS_COMPR_ZSTD },
991 {}
992};
993
994static const struct constant_table ubifs_param_assert[] = {
995 { "report", ASSACT_REPORT },
996 { "read-only", ASSACT_RO },
997 { "panic", ASSACT_PANIC },
998 {}
999};
1000
1001static const struct fs_parameter_spec ubifs_fs_param_spec[] = {
1002 fsparam_flag ("fast_unmount", Opt_fast_unmount),
1003 fsparam_flag ("norm_unmount", Opt_norm_unmount),
1004 fsparam_flag ("bulk_read", Opt_bulk_read),
1005 fsparam_flag ("no_bulk_read", Opt_no_bulk_read),
1006 fsparam_flag ("chk_data_crc", Opt_chk_data_crc),
1007 fsparam_flag ("no_chk_data_crc", Opt_no_chk_data_crc),
1008 fsparam_enum ("compr", Opt_override_compr, ubifs_param_compr),
1009 fsparam_enum ("assert", Opt_assert, ubifs_param_assert),
1010 fsparam_string ("auth_key", Opt_auth_key),
1011 fsparam_string ("auth_hash_name", Opt_auth_hash_name),
1012 fsparam_string ("ubi", Opt_ignore),
1013 fsparam_string ("vol", Opt_ignore),
1014 {}
1015};
1016
1017struct ubifs_fs_context {
1018 struct ubifs_mount_opts mount_opts;
1019 char *auth_key_name;
1020 char *auth_hash_name;
1021 unsigned int no_chk_data_crc:1;
1022 unsigned int bulk_read:1;
1023 unsigned int default_compr:2;
1024 unsigned int assert_action:2;
1025};
1026
1027/**
1028 * ubifs_parse_param - parse a parameter.
1029 * @fc: the filesystem context
1030 * @param: the parameter to parse
1031 *
1032 * This function parses UBIFS mount options and returns zero in case success
1033 * and a negative error code in case of failure.
1034 */
1035static int ubifs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1036{
1037 struct ubifs_fs_context *ctx = fc->fs_private;
1038 struct fs_parse_result result;
1039 bool is_remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE);
1040 int opt;
1041
1042 opt = fs_parse(fc, ubifs_fs_param_spec, param, &result);
1043 if (opt < 0)
1044 return opt;
1045
1046 switch (opt) {
1047 /*
1048 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1049 * We accept them in order to be backward-compatible. But this
1050 * should be removed at some point.
1051 */
1052 case Opt_fast_unmount:
1053 ctx->mount_opts.unmount_mode = 2;
1054 break;
1055 case Opt_norm_unmount:
1056 ctx->mount_opts.unmount_mode = 1;
1057 break;
1058 case Opt_bulk_read:
1059 ctx->mount_opts.bulk_read = 2;
1060 ctx->bulk_read = 1;
1061 break;
1062 case Opt_no_bulk_read:
1063 ctx->mount_opts.bulk_read = 1;
1064 ctx->bulk_read = 0;
1065 break;
1066 case Opt_chk_data_crc:
1067 ctx->mount_opts.chk_data_crc = 2;
1068 ctx->no_chk_data_crc = 0;
1069 break;
1070 case Opt_no_chk_data_crc:
1071 ctx->mount_opts.chk_data_crc = 1;
1072 ctx->no_chk_data_crc = 1;
1073 break;
1074 case Opt_override_compr:
1075 ctx->mount_opts.compr_type = result.uint_32;
1076 ctx->mount_opts.override_compr = 1;
1077 ctx->default_compr = ctx->mount_opts.compr_type;
1078 break;
1079 case Opt_assert:
1080 ctx->assert_action = result.uint_32;
1081 break;
1082 case Opt_auth_key:
1083 if (!is_remount) {
1084 kfree(ctx->auth_key_name);
1085 ctx->auth_key_name = param->string;
1086 param->string = NULL;
1087 }
1088 break;
1089 case Opt_auth_hash_name:
1090 if (!is_remount) {
1091 kfree(ctx->auth_hash_name);
1092 ctx->auth_hash_name = param->string;
1093 param->string = NULL;
1094 }
1095 break;
1096 case Opt_ignore:
1097 break;
1098 }
1099
1100 return 0;
1101}
1102
1103/*
1104 * ubifs_release_options - release mount parameters which have been dumped.
1105 * @c: UBIFS file-system description object
1106 */
1107static void ubifs_release_options(struct ubifs_info *c)
1108{
1109 kfree(c->auth_key_name);
1110 c->auth_key_name = NULL;
1111 kfree(c->auth_hash_name);
1112 c->auth_hash_name = NULL;
1113}
1114
1115/**
1116 * destroy_journal - destroy journal data structures.
1117 * @c: UBIFS file-system description object
1118 *
1119 * This function destroys journal data structures including those that may have
1120 * been created by recovery functions.
1121 */
1122static void destroy_journal(struct ubifs_info *c)
1123{
1124 while (!list_empty(&c->unclean_leb_list)) {
1125 struct ubifs_unclean_leb *ucleb;
1126
1127 ucleb = list_entry(c->unclean_leb_list.next,
1128 struct ubifs_unclean_leb, list);
1129 list_del(&ucleb->list);
1130 kfree(ucleb);
1131 }
1132 while (!list_empty(&c->old_buds)) {
1133 struct ubifs_bud *bud;
1134
1135 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1136 list_del(&bud->list);
1137 kfree(bud->log_hash);
1138 kfree(bud);
1139 }
1140 ubifs_destroy_idx_gc(c);
1141 ubifs_destroy_size_tree(c);
1142 ubifs_tnc_close(c);
1143 free_buds(c);
1144}
1145
1146/**
1147 * bu_init - initialize bulk-read information.
1148 * @c: UBIFS file-system description object
1149 */
1150static void bu_init(struct ubifs_info *c)
1151{
1152 ubifs_assert(c, c->bulk_read == 1);
1153
1154 if (c->bu.buf)
1155 return; /* Already initialized */
1156
1157again:
1158 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1159 if (!c->bu.buf) {
1160 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1161 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1162 goto again;
1163 }
1164
1165 /* Just disable bulk-read */
1166 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1167 c->max_bu_buf_len);
1168 c->mount_opts.bulk_read = 1;
1169 c->bulk_read = 0;
1170 return;
1171 }
1172}
1173
1174/**
1175 * check_free_space - check if there is enough free space to mount.
1176 * @c: UBIFS file-system description object
1177 *
1178 * This function makes sure UBIFS has enough free space to be mounted in
1179 * read/write mode. UBIFS must always have some free space to allow deletions.
1180 */
1181static int check_free_space(struct ubifs_info *c)
1182{
1183 ubifs_assert(c, c->dark_wm > 0);
1184 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1185 ubifs_err(c, "insufficient free space to mount in R/W mode");
1186 ubifs_dump_budg(c, &c->bi);
1187 ubifs_dump_lprops(c);
1188 return -ENOSPC;
1189 }
1190 return 0;
1191}
1192
1193/**
1194 * mount_ubifs - mount UBIFS file-system.
1195 * @c: UBIFS file-system description object
1196 *
1197 * This function mounts UBIFS file system. Returns zero in case of success and
1198 * a negative error code in case of failure.
1199 */
1200static int mount_ubifs(struct ubifs_info *c)
1201{
1202 int err;
1203 long long x, y;
1204 size_t sz;
1205
1206 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1207 /* Suppress error messages while probing if SB_SILENT is set */
1208 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1209
1210 err = init_constants_early(c);
1211 if (err)
1212 return err;
1213
1214 err = ubifs_debugging_init(c);
1215 if (err)
1216 return err;
1217
1218 err = ubifs_sysfs_register(c);
1219 if (err)
1220 goto out_debugging;
1221
1222 err = check_volume_empty(c);
1223 if (err)
1224 goto out_free;
1225
1226 if (c->empty && (c->ro_mount || c->ro_media)) {
1227 /*
1228 * This UBI volume is empty, and read-only, or the file system
1229 * is mounted read-only - we cannot format it.
1230 */
1231 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1232 c->ro_media ? "UBI volume" : "mount");
1233 err = -EROFS;
1234 goto out_free;
1235 }
1236
1237 if (c->ro_media && !c->ro_mount) {
1238 ubifs_err(c, "cannot mount read-write - read-only media");
1239 err = -EROFS;
1240 goto out_free;
1241 }
1242
1243 /*
1244 * The requirement for the buffer is that it should fit indexing B-tree
1245 * height amount of integers. We assume the height if the TNC tree will
1246 * never exceed 64.
1247 */
1248 err = -ENOMEM;
1249 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1250 GFP_KERNEL);
1251 if (!c->bottom_up_buf)
1252 goto out_free;
1253
1254 c->sbuf = vmalloc(c->leb_size);
1255 if (!c->sbuf)
1256 goto out_free;
1257
1258 if (!c->ro_mount) {
1259 c->ileb_buf = vmalloc(c->leb_size);
1260 if (!c->ileb_buf)
1261 goto out_free;
1262 }
1263
1264 if (c->bulk_read == 1)
1265 bu_init(c);
1266
1267 if (!c->ro_mount) {
1268 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1269 UBIFS_CIPHER_BLOCK_SIZE,
1270 GFP_KERNEL);
1271 if (!c->write_reserve_buf)
1272 goto out_free;
1273 }
1274
1275 c->mounting = 1;
1276
1277 if (c->auth_key_name) {
1278 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1279 err = ubifs_init_authentication(c);
1280 if (err)
1281 goto out_free;
1282 } else {
1283 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1284 " authentication support");
1285 err = -EINVAL;
1286 goto out_free;
1287 }
1288 }
1289
1290 err = ubifs_read_superblock(c);
1291 if (err)
1292 goto out_auth;
1293
1294 c->probing = 0;
1295
1296 /*
1297 * Make sure the compressor which is set as default in the superblock
1298 * or overridden by mount options is actually compiled in.
1299 */
1300 if (!ubifs_compr_present(c, c->default_compr)) {
1301 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1302 ubifs_compr_name(c, c->default_compr));
1303 err = -ENOTSUPP;
1304 goto out_auth;
1305 }
1306
1307 err = init_constants_sb(c);
1308 if (err)
1309 goto out_auth;
1310
1311 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1312 c->cbuf = kmalloc(sz, GFP_NOFS);
1313 if (!c->cbuf) {
1314 err = -ENOMEM;
1315 goto out_auth;
1316 }
1317
1318 err = alloc_wbufs(c);
1319 if (err)
1320 goto out_cbuf;
1321
1322 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1323 if (!c->ro_mount) {
1324 /* Create background thread */
1325 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1326 if (IS_ERR(c->bgt)) {
1327 err = PTR_ERR(c->bgt);
1328 c->bgt = NULL;
1329 ubifs_err(c, "cannot spawn \"%s\", error %d",
1330 c->bgt_name, err);
1331 goto out_wbufs;
1332 }
1333 }
1334
1335 err = ubifs_read_master(c);
1336 if (err)
1337 goto out_master;
1338
1339 init_constants_master(c);
1340
1341 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1342 ubifs_msg(c, "recovery needed");
1343 c->need_recovery = 1;
1344 }
1345
1346 if (c->need_recovery && !c->ro_mount) {
1347 err = ubifs_recover_inl_heads(c, c->sbuf);
1348 if (err)
1349 goto out_master;
1350 }
1351
1352 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1353 if (err)
1354 goto out_master;
1355
1356 if (!c->ro_mount && c->space_fixup) {
1357 err = ubifs_fixup_free_space(c);
1358 if (err)
1359 goto out_lpt;
1360 }
1361
1362 if (!c->ro_mount && !c->need_recovery) {
1363 /*
1364 * Set the "dirty" flag so that if we reboot uncleanly we
1365 * will notice this immediately on the next mount.
1366 */
1367 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1368 err = ubifs_write_master(c);
1369 if (err)
1370 goto out_lpt;
1371 }
1372
1373 /*
1374 * Handle offline signed images: Now that the master node is
1375 * written and its validation no longer depends on the hash
1376 * in the superblock, we can update the offline signed
1377 * superblock with a HMAC version,
1378 */
1379 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1380 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1381 if (err)
1382 goto out_lpt;
1383 c->superblock_need_write = 1;
1384 }
1385
1386 if (!c->ro_mount && c->superblock_need_write) {
1387 err = ubifs_write_sb_node(c, c->sup_node);
1388 if (err)
1389 goto out_lpt;
1390 c->superblock_need_write = 0;
1391 }
1392
1393 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1394 if (err)
1395 goto out_lpt;
1396
1397 err = ubifs_replay_journal(c);
1398 if (err)
1399 goto out_journal;
1400
1401 /* Calculate 'min_idx_lebs' after journal replay */
1402 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1403
1404 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1405 if (err)
1406 goto out_orphans;
1407
1408 if (!c->ro_mount) {
1409 int lnum;
1410
1411 err = check_free_space(c);
1412 if (err)
1413 goto out_orphans;
1414
1415 /* Check for enough log space */
1416 lnum = c->lhead_lnum + 1;
1417 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1418 lnum = UBIFS_LOG_LNUM;
1419 if (lnum == c->ltail_lnum) {
1420 err = ubifs_consolidate_log(c);
1421 if (err)
1422 goto out_orphans;
1423 }
1424
1425 if (c->need_recovery) {
1426 if (!ubifs_authenticated(c)) {
1427 err = ubifs_recover_size(c, true);
1428 if (err)
1429 goto out_orphans;
1430 }
1431
1432 err = ubifs_rcvry_gc_commit(c);
1433 if (err)
1434 goto out_orphans;
1435
1436 if (ubifs_authenticated(c)) {
1437 err = ubifs_recover_size(c, false);
1438 if (err)
1439 goto out_orphans;
1440 }
1441 } else {
1442 err = take_gc_lnum(c);
1443 if (err)
1444 goto out_orphans;
1445
1446 /*
1447 * GC LEB may contain garbage if there was an unclean
1448 * reboot, and it should be un-mapped.
1449 */
1450 err = ubifs_leb_unmap(c, c->gc_lnum);
1451 if (err)
1452 goto out_orphans;
1453 }
1454
1455 err = dbg_check_lprops(c);
1456 if (err)
1457 goto out_orphans;
1458 } else if (c->need_recovery) {
1459 err = ubifs_recover_size(c, false);
1460 if (err)
1461 goto out_orphans;
1462 } else {
1463 /*
1464 * Even if we mount read-only, we have to set space in GC LEB
1465 * to proper value because this affects UBIFS free space
1466 * reporting. We do not want to have a situation when
1467 * re-mounting from R/O to R/W changes amount of free space.
1468 */
1469 err = take_gc_lnum(c);
1470 if (err)
1471 goto out_orphans;
1472 }
1473
1474 spin_lock(&ubifs_infos_lock);
1475 list_add_tail(&c->infos_list, &ubifs_infos);
1476 spin_unlock(&ubifs_infos_lock);
1477
1478 if (c->need_recovery) {
1479 if (c->ro_mount)
1480 ubifs_msg(c, "recovery deferred");
1481 else {
1482 c->need_recovery = 0;
1483 ubifs_msg(c, "recovery completed");
1484 /*
1485 * GC LEB has to be empty and taken at this point. But
1486 * the journal head LEBs may also be accounted as
1487 * "empty taken" if they are empty.
1488 */
1489 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1490 }
1491 } else
1492 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1493
1494 err = dbg_check_filesystem(c);
1495 if (err)
1496 goto out_infos;
1497
1498 dbg_debugfs_init_fs(c);
1499
1500 c->mounting = 0;
1501
1502 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1503 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1504 c->ro_mount ? ", R/O mode" : "");
1505 x = (long long)c->main_lebs * c->leb_size;
1506 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1507 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1508 c->leb_size, c->leb_size >> 10, c->min_io_size,
1509 c->max_write_size);
1510 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1511 x, x >> 20, c->main_lebs, c->max_leb_cnt,
1512 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1513 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1514 c->report_rp_size, c->report_rp_size >> 10);
1515 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1516 c->fmt_version, c->ro_compat_version,
1517 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1518 c->big_lpt ? ", big LPT model" : ", small LPT model");
1519
1520 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1521 dbg_gen("data journal heads: %d",
1522 c->jhead_cnt - NONDATA_JHEADS_CNT);
1523 dbg_gen("log LEBs: %d (%d - %d)",
1524 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1525 dbg_gen("LPT area LEBs: %d (%d - %d)",
1526 c->lpt_lebs, c->lpt_first, c->lpt_last);
1527 dbg_gen("orphan area LEBs: %d (%d - %d)",
1528 c->orph_lebs, c->orph_first, c->orph_last);
1529 dbg_gen("main area LEBs: %d (%d - %d)",
1530 c->main_lebs, c->main_first, c->leb_cnt - 1);
1531 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1532 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)",
1533 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1534 c->bi.old_idx_sz >> 20);
1535 dbg_gen("key hash type: %d", c->key_hash_type);
1536 dbg_gen("tree fanout: %d", c->fanout);
1537 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1538 dbg_gen("max. znode size %d", c->max_znode_sz);
1539 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1540 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1541 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1542 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1543 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1544 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1545 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1546 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1547 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1548 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1549 dbg_gen("dead watermark: %d", c->dead_wm);
1550 dbg_gen("dark watermark: %d", c->dark_wm);
1551 dbg_gen("LEB overhead: %d", c->leb_overhead);
1552 x = (long long)c->main_lebs * c->dark_wm;
1553 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1554 x, x >> 10, x >> 20);
1555 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1556 c->max_bud_bytes, c->max_bud_bytes >> 10,
1557 c->max_bud_bytes >> 20);
1558 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1559 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1560 c->bg_bud_bytes >> 20);
1561 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1562 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1563 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1564 dbg_gen("commit number: %llu", c->cmt_no);
1565 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1566 dbg_gen("max orphans: %d", c->max_orphans);
1567
1568 return 0;
1569
1570out_infos:
1571 spin_lock(&ubifs_infos_lock);
1572 list_del(&c->infos_list);
1573 spin_unlock(&ubifs_infos_lock);
1574out_orphans:
1575 free_orphans(c);
1576out_journal:
1577 destroy_journal(c);
1578out_lpt:
1579 ubifs_lpt_free(c, 0);
1580out_master:
1581 kfree(c->mst_node);
1582 kfree(c->rcvrd_mst_node);
1583 if (c->bgt)
1584 kthread_stop(c->bgt);
1585out_wbufs:
1586 free_wbufs(c);
1587out_cbuf:
1588 kfree(c->cbuf);
1589out_auth:
1590 ubifs_exit_authentication(c);
1591out_free:
1592 kfree(c->write_reserve_buf);
1593 kfree(c->bu.buf);
1594 vfree(c->ileb_buf);
1595 vfree(c->sbuf);
1596 kfree(c->bottom_up_buf);
1597 kfree(c->sup_node);
1598 ubifs_sysfs_unregister(c);
1599out_debugging:
1600 ubifs_debugging_exit(c);
1601 return err;
1602}
1603
1604/**
1605 * ubifs_umount - un-mount UBIFS file-system.
1606 * @c: UBIFS file-system description object
1607 *
1608 * Note, this function is called to free allocated resourced when un-mounting,
1609 * as well as free resources when an error occurred while we were half way
1610 * through mounting (error path cleanup function). So it has to make sure the
1611 * resource was actually allocated before freeing it.
1612 */
1613static void ubifs_umount(struct ubifs_info *c)
1614{
1615 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1616 c->vi.vol_id);
1617
1618 dbg_debugfs_exit_fs(c);
1619 spin_lock(&ubifs_infos_lock);
1620 list_del(&c->infos_list);
1621 spin_unlock(&ubifs_infos_lock);
1622
1623 if (c->bgt)
1624 kthread_stop(c->bgt);
1625
1626 destroy_journal(c);
1627 free_wbufs(c);
1628 free_orphans(c);
1629 ubifs_lpt_free(c, 0);
1630 ubifs_exit_authentication(c);
1631
1632 ubifs_release_options(c);
1633 kfree(c->cbuf);
1634 kfree(c->rcvrd_mst_node);
1635 kfree(c->mst_node);
1636 kfree(c->write_reserve_buf);
1637 kfree(c->bu.buf);
1638 vfree(c->ileb_buf);
1639 vfree(c->sbuf);
1640 kfree(c->bottom_up_buf);
1641 kfree(c->sup_node);
1642 ubifs_debugging_exit(c);
1643 ubifs_sysfs_unregister(c);
1644}
1645
1646/**
1647 * ubifs_remount_rw - re-mount in read-write mode.
1648 * @c: UBIFS file-system description object
1649 *
1650 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1651 * mode. This function allocates the needed resources and re-mounts UBIFS in
1652 * read-write mode.
1653 */
1654static int ubifs_remount_rw(struct ubifs_info *c)
1655{
1656 int err, lnum;
1657
1658 if (c->rw_incompat) {
1659 ubifs_err(c, "the file-system is not R/W-compatible");
1660 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1661 c->fmt_version, c->ro_compat_version,
1662 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1663 return -EROFS;
1664 }
1665
1666 mutex_lock(&c->umount_mutex);
1667 dbg_save_space_info(c);
1668 c->remounting_rw = 1;
1669 c->ro_mount = 0;
1670
1671 if (c->space_fixup) {
1672 err = ubifs_fixup_free_space(c);
1673 if (err)
1674 goto out;
1675 }
1676
1677 err = check_free_space(c);
1678 if (err)
1679 goto out;
1680
1681 if (c->need_recovery) {
1682 ubifs_msg(c, "completing deferred recovery");
1683 err = ubifs_write_rcvrd_mst_node(c);
1684 if (err)
1685 goto out;
1686 if (!ubifs_authenticated(c)) {
1687 err = ubifs_recover_size(c, true);
1688 if (err)
1689 goto out;
1690 }
1691 err = ubifs_clean_lebs(c, c->sbuf);
1692 if (err)
1693 goto out;
1694 err = ubifs_recover_inl_heads(c, c->sbuf);
1695 if (err)
1696 goto out;
1697 } else {
1698 /* A readonly mount is not allowed to have orphans */
1699 ubifs_assert(c, c->tot_orphans == 0);
1700 err = ubifs_clear_orphans(c);
1701 if (err)
1702 goto out;
1703 }
1704
1705 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1706 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1707 err = ubifs_write_master(c);
1708 if (err)
1709 goto out;
1710 }
1711
1712 if (c->superblock_need_write) {
1713 struct ubifs_sb_node *sup = c->sup_node;
1714
1715 err = ubifs_write_sb_node(c, sup);
1716 if (err)
1717 goto out;
1718
1719 c->superblock_need_write = 0;
1720 }
1721
1722 c->ileb_buf = vmalloc(c->leb_size);
1723 if (!c->ileb_buf) {
1724 err = -ENOMEM;
1725 goto out;
1726 }
1727
1728 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1729 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1730 if (!c->write_reserve_buf) {
1731 err = -ENOMEM;
1732 goto out;
1733 }
1734
1735 err = ubifs_lpt_init(c, 0, 1);
1736 if (err)
1737 goto out;
1738
1739 /* Create background thread */
1740 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1741 if (IS_ERR(c->bgt)) {
1742 err = PTR_ERR(c->bgt);
1743 c->bgt = NULL;
1744 ubifs_err(c, "cannot spawn \"%s\", error %d",
1745 c->bgt_name, err);
1746 goto out;
1747 }
1748
1749 c->orph_buf = vmalloc(c->leb_size);
1750 if (!c->orph_buf) {
1751 err = -ENOMEM;
1752 goto out;
1753 }
1754
1755 /* Check for enough log space */
1756 lnum = c->lhead_lnum + 1;
1757 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1758 lnum = UBIFS_LOG_LNUM;
1759 if (lnum == c->ltail_lnum) {
1760 err = ubifs_consolidate_log(c);
1761 if (err)
1762 goto out;
1763 }
1764
1765 if (c->need_recovery) {
1766 err = ubifs_rcvry_gc_commit(c);
1767 if (err)
1768 goto out;
1769
1770 if (ubifs_authenticated(c)) {
1771 err = ubifs_recover_size(c, false);
1772 if (err)
1773 goto out;
1774 }
1775 } else {
1776 err = ubifs_leb_unmap(c, c->gc_lnum);
1777 }
1778 if (err)
1779 goto out;
1780
1781 dbg_gen("re-mounted read-write");
1782 c->remounting_rw = 0;
1783
1784 if (c->need_recovery) {
1785 c->need_recovery = 0;
1786 ubifs_msg(c, "deferred recovery completed");
1787 } else {
1788 /*
1789 * Do not run the debugging space check if the were doing
1790 * recovery, because when we saved the information we had the
1791 * file-system in a state where the TNC and lprops has been
1792 * modified in memory, but all the I/O operations (including a
1793 * commit) were deferred. So the file-system was in
1794 * "non-committed" state. Now the file-system is in committed
1795 * state, and of course the amount of free space will change
1796 * because, for example, the old index size was imprecise.
1797 */
1798 err = dbg_check_space_info(c);
1799 }
1800
1801 mutex_unlock(&c->umount_mutex);
1802 return err;
1803
1804out:
1805 c->ro_mount = 1;
1806 vfree(c->orph_buf);
1807 c->orph_buf = NULL;
1808 if (c->bgt) {
1809 kthread_stop(c->bgt);
1810 c->bgt = NULL;
1811 }
1812 kfree(c->write_reserve_buf);
1813 c->write_reserve_buf = NULL;
1814 vfree(c->ileb_buf);
1815 c->ileb_buf = NULL;
1816 ubifs_lpt_free(c, 1);
1817 c->remounting_rw = 0;
1818 mutex_unlock(&c->umount_mutex);
1819 return err;
1820}
1821
1822/**
1823 * ubifs_remount_ro - re-mount in read-only mode.
1824 * @c: UBIFS file-system description object
1825 *
1826 * We assume VFS has stopped writing. Possibly the background thread could be
1827 * running a commit, however kthread_stop will wait in that case.
1828 */
1829static void ubifs_remount_ro(struct ubifs_info *c)
1830{
1831 int i, err;
1832
1833 ubifs_assert(c, !c->need_recovery);
1834 ubifs_assert(c, !c->ro_mount);
1835
1836 mutex_lock(&c->umount_mutex);
1837 if (c->bgt) {
1838 kthread_stop(c->bgt);
1839 c->bgt = NULL;
1840 }
1841
1842 dbg_save_space_info(c);
1843
1844 for (i = 0; i < c->jhead_cnt; i++) {
1845 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1846 if (err)
1847 ubifs_ro_mode(c, err);
1848 }
1849
1850 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1851 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1852 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1853 err = ubifs_write_master(c);
1854 if (err)
1855 ubifs_ro_mode(c, err);
1856
1857 vfree(c->orph_buf);
1858 c->orph_buf = NULL;
1859 kfree(c->write_reserve_buf);
1860 c->write_reserve_buf = NULL;
1861 vfree(c->ileb_buf);
1862 c->ileb_buf = NULL;
1863 ubifs_lpt_free(c, 1);
1864 c->ro_mount = 1;
1865 err = dbg_check_space_info(c);
1866 if (err)
1867 ubifs_ro_mode(c, err);
1868 mutex_unlock(&c->umount_mutex);
1869}
1870
1871static void ubifs_put_super(struct super_block *sb)
1872{
1873 int i;
1874 struct ubifs_info *c = sb->s_fs_info;
1875
1876 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1877
1878 /*
1879 * The following asserts are only valid if there has not been a failure
1880 * of the media. For example, there will be dirty inodes if we failed
1881 * to write them back because of I/O errors.
1882 */
1883 if (!c->ro_error) {
1884 ubifs_assert(c, c->bi.idx_growth == 0);
1885 ubifs_assert(c, c->bi.dd_growth == 0);
1886 ubifs_assert(c, c->bi.data_growth == 0);
1887 }
1888
1889 /*
1890 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1891 * and file system un-mount. Namely, it prevents the shrinker from
1892 * picking this superblock for shrinking - it will be just skipped if
1893 * the mutex is locked.
1894 */
1895 mutex_lock(&c->umount_mutex);
1896 if (!c->ro_mount) {
1897 /*
1898 * First of all kill the background thread to make sure it does
1899 * not interfere with un-mounting and freeing resources.
1900 */
1901 if (c->bgt) {
1902 kthread_stop(c->bgt);
1903 c->bgt = NULL;
1904 }
1905
1906 /*
1907 * On fatal errors c->ro_error is set to 1, in which case we do
1908 * not write the master node.
1909 */
1910 if (!c->ro_error) {
1911 int err;
1912
1913 /* Synchronize write-buffers */
1914 for (i = 0; i < c->jhead_cnt; i++) {
1915 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1916 if (err)
1917 ubifs_ro_mode(c, err);
1918 }
1919
1920 /*
1921 * We are being cleanly unmounted which means the
1922 * orphans were killed - indicate this in the master
1923 * node. Also save the reserved GC LEB number.
1924 */
1925 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1926 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1927 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1928 err = ubifs_write_master(c);
1929 if (err)
1930 /*
1931 * Recovery will attempt to fix the master area
1932 * next mount, so we just print a message and
1933 * continue to unmount normally.
1934 */
1935 ubifs_err(c, "failed to write master node, error %d",
1936 err);
1937 } else {
1938 for (i = 0; i < c->jhead_cnt; i++)
1939 /* Make sure write-buffer timers are canceled */
1940 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1941 }
1942 }
1943
1944 ubifs_umount(c);
1945 ubi_close_volume(c->ubi);
1946 mutex_unlock(&c->umount_mutex);
1947}
1948
1949static int ubifs_reconfigure(struct fs_context *fc)
1950{
1951 struct ubifs_fs_context *ctx = fc->fs_private;
1952 struct super_block *sb = fc->root->d_sb;
1953 int err;
1954 struct ubifs_info *c = sb->s_fs_info;
1955
1956 sync_filesystem(sb);
1957 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, fc->sb_flags);
1958
1959 /*
1960 * Apply the mount option changes.
1961 * auth_key_name and auth_hash_name are ignored on remount.
1962 */
1963 c->mount_opts = ctx->mount_opts;
1964 c->bulk_read = ctx->bulk_read;
1965 c->no_chk_data_crc = ctx->no_chk_data_crc;
1966 c->default_compr = ctx->default_compr;
1967 c->assert_action = ctx->assert_action;
1968
1969 if (c->ro_mount && !(fc->sb_flags & SB_RDONLY)) {
1970 if (c->ro_error) {
1971 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1972 return -EROFS;
1973 }
1974 if (c->ro_media) {
1975 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1976 return -EROFS;
1977 }
1978 err = ubifs_remount_rw(c);
1979 if (err)
1980 return err;
1981 } else if (!c->ro_mount && (fc->sb_flags & SB_RDONLY)) {
1982 if (c->ro_error) {
1983 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1984 return -EROFS;
1985 }
1986 ubifs_remount_ro(c);
1987 }
1988
1989 if (c->bulk_read == 1)
1990 bu_init(c);
1991 else {
1992 dbg_gen("disable bulk-read");
1993 mutex_lock(&c->bu_mutex);
1994 kfree(c->bu.buf);
1995 c->bu.buf = NULL;
1996 mutex_unlock(&c->bu_mutex);
1997 }
1998
1999 if (!c->need_recovery)
2000 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2001
2002 return 0;
2003}
2004
2005const struct super_operations ubifs_super_operations = {
2006 .alloc_inode = ubifs_alloc_inode,
2007 .free_inode = ubifs_free_inode,
2008 .put_super = ubifs_put_super,
2009 .write_inode = ubifs_write_inode,
2010 .drop_inode = ubifs_drop_inode,
2011 .evict_inode = ubifs_evict_inode,
2012 .statfs = ubifs_statfs,
2013 .dirty_inode = ubifs_dirty_inode,
2014 .show_options = ubifs_show_options,
2015 .sync_fs = ubifs_sync_fs,
2016};
2017
2018/**
2019 * open_ubi - parse UBI device name string and open the UBI device.
2020 * @fc: The filesystem context
2021 * @mode: UBI volume open mode
2022 *
2023 * The primary method of mounting UBIFS is by specifying the UBI volume
2024 * character device node path. However, UBIFS may also be mounted without any
2025 * character device node using one of the following methods:
2026 *
2027 * o ubiX_Y - mount UBI device number X, volume Y;
2028 * o ubiY - mount UBI device number 0, volume Y;
2029 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2030 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2031 *
2032 * Alternative '!' separator may be used instead of ':' (because some shells
2033 * like busybox may interpret ':' as an NFS host name separator). This function
2034 * returns UBI volume description object in case of success and a negative
2035 * error code in case of failure.
2036 */
2037static struct ubi_volume_desc *open_ubi(struct fs_context *fc, int mode)
2038{
2039 struct ubi_volume_desc *ubi;
2040 const char *name = fc->source;
2041 int dev, vol;
2042 char *endptr;
2043
2044 /* First, try to open using the device node path method */
2045 ubi = ubi_open_volume_path(name, mode);
2046 if (!IS_ERR(ubi))
2047 return ubi;
2048
2049 /* Try the "nodev" method */
2050 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2051 goto invalid_source;
2052
2053 /* ubi:NAME method */
2054 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2055 return ubi_open_volume_nm(0, name + 4, mode);
2056
2057 if (!isdigit(name[3]))
2058 goto invalid_source;
2059
2060 dev = simple_strtoul(name + 3, &endptr, 0);
2061
2062 /* ubiY method */
2063 if (*endptr == '\0')
2064 return ubi_open_volume(0, dev, mode);
2065
2066 /* ubiX_Y method */
2067 if (*endptr == '_' && isdigit(endptr[1])) {
2068 vol = simple_strtoul(endptr + 1, &endptr, 0);
2069 if (*endptr != '\0')
2070 goto invalid_source;
2071 return ubi_open_volume(dev, vol, mode);
2072 }
2073
2074 /* ubiX:NAME method */
2075 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2076 return ubi_open_volume_nm(dev, ++endptr, mode);
2077
2078invalid_source:
2079 return ERR_PTR(invalf(fc, "Invalid source name"));
2080}
2081
2082static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2083{
2084 struct ubifs_info *c;
2085
2086 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2087 if (c) {
2088 spin_lock_init(&c->cnt_lock);
2089 spin_lock_init(&c->cs_lock);
2090 spin_lock_init(&c->buds_lock);
2091 spin_lock_init(&c->space_lock);
2092 spin_lock_init(&c->orphan_lock);
2093 init_rwsem(&c->commit_sem);
2094 mutex_init(&c->lp_mutex);
2095 mutex_init(&c->tnc_mutex);
2096 mutex_init(&c->log_mutex);
2097 mutex_init(&c->umount_mutex);
2098 mutex_init(&c->bu_mutex);
2099 mutex_init(&c->write_reserve_mutex);
2100 init_waitqueue_head(&c->cmt_wq);
2101 init_waitqueue_head(&c->reserve_space_wq);
2102 atomic_set(&c->need_wait_space, 0);
2103 c->buds = RB_ROOT;
2104 c->old_idx = RB_ROOT;
2105 c->size_tree = RB_ROOT;
2106 c->orph_tree = RB_ROOT;
2107 INIT_LIST_HEAD(&c->infos_list);
2108 INIT_LIST_HEAD(&c->idx_gc);
2109 INIT_LIST_HEAD(&c->replay_list);
2110 INIT_LIST_HEAD(&c->replay_buds);
2111 INIT_LIST_HEAD(&c->uncat_list);
2112 INIT_LIST_HEAD(&c->empty_list);
2113 INIT_LIST_HEAD(&c->freeable_list);
2114 INIT_LIST_HEAD(&c->frdi_idx_list);
2115 INIT_LIST_HEAD(&c->unclean_leb_list);
2116 INIT_LIST_HEAD(&c->old_buds);
2117 INIT_LIST_HEAD(&c->orph_list);
2118 INIT_LIST_HEAD(&c->orph_new);
2119 c->no_chk_data_crc = 1;
2120 c->assert_action = ASSACT_RO;
2121
2122 c->highest_inum = UBIFS_FIRST_INO;
2123 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2124
2125 ubi_get_volume_info(ubi, &c->vi);
2126 ubi_get_device_info(c->vi.ubi_num, &c->di);
2127 }
2128 return c;
2129}
2130
2131static int ubifs_fill_super(struct super_block *sb, struct fs_context *fc)
2132{
2133 struct ubifs_info *c = sb->s_fs_info;
2134 struct ubifs_fs_context *ctx = fc->fs_private;
2135 struct inode *root;
2136 int err;
2137
2138 c->vfs_sb = sb;
2139 /* Re-open the UBI device in read-write mode */
2140 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2141 if (IS_ERR(c->ubi)) {
2142 err = PTR_ERR(c->ubi);
2143 goto out;
2144 }
2145
2146 /* Copy in parsed mount options */
2147 c->mount_opts = ctx->mount_opts;
2148 c->auth_key_name = ctx->auth_key_name;
2149 c->auth_hash_name = ctx->auth_hash_name;
2150 c->no_chk_data_crc = ctx->no_chk_data_crc;
2151 c->bulk_read = ctx->bulk_read;
2152 c->default_compr = ctx->default_compr;
2153 c->assert_action = ctx->assert_action;
2154
2155 /* ubifs_info owns auth strings now */
2156 ctx->auth_key_name = NULL;
2157 ctx->auth_hash_name = NULL;
2158
2159 /*
2160 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2161 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2162 * which means the user would have to wait not just for their own I/O
2163 * but the read-ahead I/O as well i.e. completely pointless.
2164 *
2165 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2166 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2167 * writeback happening.
2168 */
2169 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2170 c->vi.vol_id);
2171 if (err)
2172 goto out_close;
2173 sb->s_bdi->ra_pages = 0;
2174 sb->s_bdi->io_pages = 0;
2175
2176 sb->s_fs_info = c;
2177 sb->s_magic = UBIFS_SUPER_MAGIC;
2178 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2179 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2180 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2181 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2182 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2183 sb->s_op = &ubifs_super_operations;
2184 sb->s_xattr = ubifs_xattr_handlers;
2185 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2186
2187 mutex_lock(&c->umount_mutex);
2188 err = mount_ubifs(c);
2189 if (err) {
2190 ubifs_assert(c, err < 0);
2191 goto out_unlock;
2192 }
2193
2194 /* Read the root inode */
2195 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2196 if (IS_ERR(root)) {
2197 err = PTR_ERR(root);
2198 goto out_umount;
2199 }
2200
2201 generic_set_sb_d_ops(sb);
2202 sb->s_root = d_make_root(root);
2203 if (!sb->s_root) {
2204 err = -ENOMEM;
2205 goto out_umount;
2206 }
2207
2208 super_set_uuid(sb, c->uuid, sizeof(c->uuid));
2209 super_set_sysfs_name_generic(sb, UBIFS_DFS_DIR_NAME,
2210 c->vi.ubi_num, c->vi.vol_id);
2211
2212 mutex_unlock(&c->umount_mutex);
2213 return 0;
2214
2215out_umount:
2216 ubifs_umount(c);
2217out_unlock:
2218 mutex_unlock(&c->umount_mutex);
2219out_close:
2220 ubifs_release_options(c);
2221 ubi_close_volume(c->ubi);
2222out:
2223 return err;
2224}
2225
2226static int sb_test(struct super_block *sb, struct fs_context *fc)
2227{
2228 struct ubifs_info *c1 = fc->s_fs_info;
2229 struct ubifs_info *c = sb->s_fs_info;
2230
2231 return c->vi.cdev == c1->vi.cdev;
2232}
2233
2234static int ubifs_get_tree(struct fs_context *fc)
2235{
2236 struct ubi_volume_desc *ubi;
2237 struct ubifs_info *c;
2238 struct super_block *sb;
2239 int err;
2240
2241 if (!fc->source || !*fc->source)
2242 return invalf(fc, "No source specified");
2243
2244 dbg_gen("name %s, flags %#x", fc->source, fc->sb_flags);
2245
2246 /*
2247 * Get UBI device number and volume ID. Mount it read-only so far
2248 * because this might be a new mount point, and UBI allows only one
2249 * read-write user at a time.
2250 */
2251 ubi = open_ubi(fc, UBI_READONLY);
2252 if (IS_ERR(ubi)) {
2253 err = PTR_ERR(ubi);
2254 if (!(fc->sb_flags & SB_SILENT))
2255 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2256 current->pid, fc->source, err);
2257 return err;
2258 }
2259
2260 c = alloc_ubifs_info(ubi);
2261 if (!c) {
2262 err = -ENOMEM;
2263 goto out_close;
2264 }
2265 fc->s_fs_info = c;
2266
2267 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2268
2269 sb = sget_fc(fc, sb_test, set_anon_super_fc);
2270 if (IS_ERR(sb)) {
2271 err = PTR_ERR(sb);
2272 kfree(c);
2273 goto out_close;
2274 }
2275
2276 if (sb->s_root) {
2277 struct ubifs_info *c1 = sb->s_fs_info;
2278 kfree(c);
2279 /* A new mount point for already mounted UBIFS */
2280 dbg_gen("this ubi volume is already mounted");
2281 if (!!(fc->sb_flags & SB_RDONLY) != c1->ro_mount) {
2282 err = -EBUSY;
2283 goto out_deact;
2284 }
2285 } else {
2286 err = ubifs_fill_super(sb, fc);
2287 if (err)
2288 goto out_deact;
2289 /* We do not support atime */
2290 sb->s_flags |= SB_ACTIVE;
2291 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2292 ubifs_msg(c, "full atime support is enabled.");
2293 else
2294 sb->s_flags |= SB_NOATIME;
2295 }
2296
2297 /* 'fill_super()' opens ubi again so we must close it here */
2298 ubi_close_volume(ubi);
2299
2300 fc->root = dget(sb->s_root);
2301 return 0;
2302
2303out_deact:
2304 deactivate_locked_super(sb);
2305out_close:
2306 ubi_close_volume(ubi);
2307 return err;
2308}
2309
2310static void kill_ubifs_super(struct super_block *s)
2311{
2312 struct ubifs_info *c = s->s_fs_info;
2313 kill_anon_super(s);
2314 kfree(c);
2315}
2316
2317static void ubifs_free_fc(struct fs_context *fc)
2318{
2319 struct ubifs_fs_context *ctx = fc->fs_private;
2320
2321 if (ctx) {
2322 kfree(ctx->auth_key_name);
2323 kfree(ctx->auth_hash_name);
2324 kfree(ctx);
2325 }
2326}
2327
2328static const struct fs_context_operations ubifs_context_ops = {
2329 .free = ubifs_free_fc,
2330 .parse_param = ubifs_parse_param,
2331 .get_tree = ubifs_get_tree,
2332 .reconfigure = ubifs_reconfigure,
2333};
2334
2335static int ubifs_init_fs_context(struct fs_context *fc)
2336{
2337 struct ubifs_fs_context *ctx;
2338
2339 ctx = kzalloc(sizeof(struct ubifs_fs_context), GFP_KERNEL);
2340 if (!ctx)
2341 return -ENOMEM;
2342
2343 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) {
2344 /* Iniitialize for first mount */
2345 ctx->no_chk_data_crc = 1;
2346 ctx->assert_action = ASSACT_RO;
2347 } else {
2348 struct ubifs_info *c = fc->root->d_sb->s_fs_info;
2349
2350 /*
2351 * Preserve existing options across remounts.
2352 * auth_key_name and auth_hash_name are not remountable.
2353 */
2354 ctx->mount_opts = c->mount_opts;
2355 ctx->bulk_read = c->bulk_read;
2356 ctx->no_chk_data_crc = c->no_chk_data_crc;
2357 ctx->default_compr = c->default_compr;
2358 ctx->assert_action = c->assert_action;
2359 }
2360
2361 fc->ops = &ubifs_context_ops;
2362 fc->fs_private = ctx;
2363
2364 return 0;
2365}
2366
2367static struct file_system_type ubifs_fs_type = {
2368 .name = "ubifs",
2369 .owner = THIS_MODULE,
2370 .init_fs_context = ubifs_init_fs_context,
2371 .parameters = ubifs_fs_param_spec,
2372 .kill_sb = kill_ubifs_super,
2373};
2374MODULE_ALIAS_FS("ubifs");
2375
2376/*
2377 * Inode slab cache constructor.
2378 */
2379static void inode_slab_ctor(void *obj)
2380{
2381 struct ubifs_inode *ui = obj;
2382 inode_init_once(&ui->vfs_inode);
2383}
2384
2385static int __init ubifs_init(void)
2386{
2387 int err = -ENOMEM;
2388
2389 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2390
2391 /* Make sure node sizes are 8-byte aligned */
2392 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2393 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2394 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2395 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2396 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2397 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2398 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2399 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2400 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2401 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2402 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2403
2404 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2405 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2406 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2407 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2408 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2409 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2410
2411 /* Check min. node size */
2412 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2413 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2414 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2415 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2416
2417 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2418 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2419 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2420 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2421
2422 /* Defined node sizes */
2423 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2424 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2425 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2426 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2427
2428 /*
2429 * We use 2 bit wide bit-fields to store compression type, which should
2430 * be amended if more compressors are added. The bit-fields are:
2431 * @compr_type in 'struct ubifs_inode', @default_compr in
2432 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2433 */
2434 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2435
2436 /*
2437 * We require that PAGE_SIZE is greater-than-or-equal-to
2438 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2439 */
2440 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2441 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2442 current->pid, (unsigned int)PAGE_SIZE);
2443 return -EINVAL;
2444 }
2445
2446 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2447 sizeof(struct ubifs_inode), 0,
2448 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
2449 &inode_slab_ctor);
2450 if (!ubifs_inode_slab)
2451 return -ENOMEM;
2452
2453 ubifs_shrinker_info = shrinker_alloc(0, "ubifs-slab");
2454 if (!ubifs_shrinker_info)
2455 goto out_slab;
2456
2457 ubifs_shrinker_info->count_objects = ubifs_shrink_count;
2458 ubifs_shrinker_info->scan_objects = ubifs_shrink_scan;
2459
2460 shrinker_register(ubifs_shrinker_info);
2461
2462 err = ubifs_compressors_init();
2463 if (err)
2464 goto out_shrinker;
2465
2466 dbg_debugfs_init();
2467
2468 err = ubifs_sysfs_init();
2469 if (err)
2470 goto out_dbg;
2471
2472 err = register_filesystem(&ubifs_fs_type);
2473 if (err) {
2474 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2475 current->pid, err);
2476 goto out_sysfs;
2477 }
2478 return 0;
2479
2480out_sysfs:
2481 ubifs_sysfs_exit();
2482out_dbg:
2483 dbg_debugfs_exit();
2484 ubifs_compressors_exit();
2485out_shrinker:
2486 shrinker_free(ubifs_shrinker_info);
2487out_slab:
2488 kmem_cache_destroy(ubifs_inode_slab);
2489 return err;
2490}
2491/* late_initcall to let compressors initialize first */
2492late_initcall(ubifs_init);
2493
2494static void __exit ubifs_exit(void)
2495{
2496 WARN_ON(!list_empty(&ubifs_infos));
2497 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2498
2499 dbg_debugfs_exit();
2500 ubifs_sysfs_exit();
2501 ubifs_compressors_exit();
2502 shrinker_free(ubifs_shrinker_info);
2503
2504 /*
2505 * Make sure all delayed rcu free inodes are flushed before we
2506 * destroy cache.
2507 */
2508 rcu_barrier();
2509 kmem_cache_destroy(ubifs_inode_slab);
2510 unregister_filesystem(&ubifs_fs_type);
2511}
2512module_exit(ubifs_exit);
2513
2514MODULE_LICENSE("GPL");
2515MODULE_VERSION(__stringify(UBIFS_VERSION));
2516MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2517MODULE_DESCRIPTION("UBIFS - UBI File System");