Linux Audio

Check our new training course

Loading...
v5.4
 
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
   5 * Rights Reserved.
   6 *
   7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
 
   8 *
   9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
  10 * rights reserved.
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 */
  44
  45/*
  46 * (now, with legal B.S. out of the way.....)
  47 *
  48 * This routine gathers environmental noise from device drivers, etc.,
  49 * and returns good random numbers, suitable for cryptographic use.
  50 * Besides the obvious cryptographic uses, these numbers are also good
  51 * for seeding TCP sequence numbers, and other places where it is
  52 * desirable to have numbers which are not only random, but hard to
  53 * predict by an attacker.
  54 *
  55 * Theory of operation
  56 * ===================
  57 *
  58 * Computers are very predictable devices.  Hence it is extremely hard
  59 * to produce truly random numbers on a computer --- as opposed to
  60 * pseudo-random numbers, which can easily generated by using a
  61 * algorithm.  Unfortunately, it is very easy for attackers to guess
  62 * the sequence of pseudo-random number generators, and for some
  63 * applications this is not acceptable.  So instead, we must try to
  64 * gather "environmental noise" from the computer's environment, which
  65 * must be hard for outside attackers to observe, and use that to
  66 * generate random numbers.  In a Unix environment, this is best done
  67 * from inside the kernel.
  68 *
  69 * Sources of randomness from the environment include inter-keyboard
  70 * timings, inter-interrupt timings from some interrupts, and other
  71 * events which are both (a) non-deterministic and (b) hard for an
  72 * outside observer to measure.  Randomness from these sources are
  73 * added to an "entropy pool", which is mixed using a CRC-like function.
  74 * This is not cryptographically strong, but it is adequate assuming
  75 * the randomness is not chosen maliciously, and it is fast enough that
  76 * the overhead of doing it on every interrupt is very reasonable.
  77 * As random bytes are mixed into the entropy pool, the routines keep
  78 * an *estimate* of how many bits of randomness have been stored into
  79 * the random number generator's internal state.
  80 *
  81 * When random bytes are desired, they are obtained by taking the SHA
  82 * hash of the contents of the "entropy pool".  The SHA hash avoids
  83 * exposing the internal state of the entropy pool.  It is believed to
  84 * be computationally infeasible to derive any useful information
  85 * about the input of SHA from its output.  Even if it is possible to
  86 * analyze SHA in some clever way, as long as the amount of data
  87 * returned from the generator is less than the inherent entropy in
  88 * the pool, the output data is totally unpredictable.  For this
  89 * reason, the routine decreases its internal estimate of how many
  90 * bits of "true randomness" are contained in the entropy pool as it
  91 * outputs random numbers.
  92 *
  93 * If this estimate goes to zero, the routine can still generate
  94 * random numbers; however, an attacker may (at least in theory) be
  95 * able to infer the future output of the generator from prior
  96 * outputs.  This requires successful cryptanalysis of SHA, which is
  97 * not believed to be feasible, but there is a remote possibility.
  98 * Nonetheless, these numbers should be useful for the vast majority
  99 * of purposes.
 100 *
 101 * Exported interfaces ---- output
 102 * ===============================
 103 *
 104 * There are four exported interfaces; two for use within the kernel,
 105 * and two or use from userspace.
 106 *
 107 * Exported interfaces ---- userspace output
 108 * -----------------------------------------
 109 *
 110 * The userspace interfaces are two character devices /dev/random and
 111 * /dev/urandom.  /dev/random is suitable for use when very high
 112 * quality randomness is desired (for example, for key generation or
 113 * one-time pads), as it will only return a maximum of the number of
 114 * bits of randomness (as estimated by the random number generator)
 115 * contained in the entropy pool.
 116 *
 117 * The /dev/urandom device does not have this limit, and will return
 118 * as many bytes as are requested.  As more and more random bytes are
 119 * requested without giving time for the entropy pool to recharge,
 120 * this will result in random numbers that are merely cryptographically
 121 * strong.  For many applications, however, this is acceptable.
 122 *
 123 * Exported interfaces ---- kernel output
 124 * --------------------------------------
 125 *
 126 * The primary kernel interface is
 127 *
 128 * 	void get_random_bytes(void *buf, int nbytes);
 129 *
 130 * This interface will return the requested number of random bytes,
 131 * and place it in the requested buffer.  This is equivalent to a
 132 * read from /dev/urandom.
 133 *
 134 * For less critical applications, there are the functions:
 135 *
 136 * 	u32 get_random_u32()
 137 * 	u64 get_random_u64()
 138 * 	unsigned int get_random_int()
 139 * 	unsigned long get_random_long()
 140 *
 141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 142 * and so do not deplete the entropy pool as much.  These are recommended
 143 * for most in-kernel operations *if the result is going to be stored in
 144 * the kernel*.
 145 *
 146 * Specifically, the get_random_int() family do not attempt to do
 147 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 148 * by snapshotting the VM), you can figure out previous get_random_int()
 149 * return values.  But if the value is stored in the kernel anyway,
 150 * this is not a problem.
 151 *
 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 153 * network cookies); given outputs 1..n, it's not feasible to predict
 154 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 155 * the kernel later; the get_random_int() engine is not reseeded as
 156 * often as the get_random_bytes() one.
 157 *
 158 * get_random_bytes() is needed for keys that need to stay secret after
 159 * they are erased from the kernel.  For example, any key that will
 160 * be wrapped and stored encrypted.  And session encryption keys: we'd
 161 * like to know that after the session is closed and the keys erased,
 162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 163 *
 164 * But for network ports/cookies, stack canaries, PRNG seeds, address
 165 * space layout randomization, session *authentication* keys, or other
 166 * applications where the sensitive data is stored in the kernel in
 167 * plaintext for as long as it's sensitive, the get_random_int() family
 168 * is just fine.
 169 *
 170 * Consider ASLR.  We want to keep the address space secret from an
 171 * outside attacker while the process is running, but once the address
 172 * space is torn down, it's of no use to an attacker any more.  And it's
 173 * stored in kernel data structures as long as it's alive, so worrying
 174 * about an attacker's ability to extrapolate it from the get_random_int()
 175 * CRNG is silly.
 176 *
 177 * Even some cryptographic keys are safe to generate with get_random_int().
 178 * In particular, keys for SipHash are generally fine.  Here, knowledge
 179 * of the key authorizes you to do something to a kernel object (inject
 180 * packets to a network connection, or flood a hash table), and the
 181 * key is stored with the object being protected.  Once it goes away,
 182 * we no longer care if anyone knows the key.
 183 *
 184 * prandom_u32()
 185 * -------------
 186 *
 187 * For even weaker applications, see the pseudorandom generator
 188 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 189 * numbers aren't security-critical at all, these are *far* cheaper.
 190 * Useful for self-tests, random error simulation, randomized backoffs,
 191 * and any other application where you trust that nobody is trying to
 192 * maliciously mess with you by guessing the "random" numbers.
 193 *
 194 * Exported interfaces ---- input
 195 * ==============================
 196 *
 197 * The current exported interfaces for gathering environmental noise
 198 * from the devices are:
 199 *
 200 *	void add_device_randomness(const void *buf, unsigned int size);
 201 * 	void add_input_randomness(unsigned int type, unsigned int code,
 202 *                                unsigned int value);
 203 *	void add_interrupt_randomness(int irq, int irq_flags);
 204 * 	void add_disk_randomness(struct gendisk *disk);
 205 *
 206 * add_device_randomness() is for adding data to the random pool that
 207 * is likely to differ between two devices (or possibly even per boot).
 208 * This would be things like MAC addresses or serial numbers, or the
 209 * read-out of the RTC. This does *not* add any actual entropy to the
 210 * pool, but it initializes the pool to different values for devices
 211 * that might otherwise be identical and have very little entropy
 212 * available to them (particularly common in the embedded world).
 213 *
 214 * add_input_randomness() uses the input layer interrupt timing, as well as
 215 * the event type information from the hardware.
 216 *
 217 * add_interrupt_randomness() uses the interrupt timing as random
 218 * inputs to the entropy pool. Using the cycle counters and the irq source
 219 * as inputs, it feeds the randomness roughly once a second.
 220 *
 221 * add_disk_randomness() uses what amounts to the seek time of block
 222 * layer request events, on a per-disk_devt basis, as input to the
 223 * entropy pool. Note that high-speed solid state drives with very low
 224 * seek times do not make for good sources of entropy, as their seek
 225 * times are usually fairly consistent.
 226 *
 227 * All of these routines try to estimate how many bits of randomness a
 228 * particular randomness source.  They do this by keeping track of the
 229 * first and second order deltas of the event timings.
 230 *
 231 * Ensuring unpredictability at system startup
 232 * ============================================
 233 *
 234 * When any operating system starts up, it will go through a sequence
 235 * of actions that are fairly predictable by an adversary, especially
 236 * if the start-up does not involve interaction with a human operator.
 237 * This reduces the actual number of bits of unpredictability in the
 238 * entropy pool below the value in entropy_count.  In order to
 239 * counteract this effect, it helps to carry information in the
 240 * entropy pool across shut-downs and start-ups.  To do this, put the
 241 * following lines an appropriate script which is run during the boot
 242 * sequence:
 243 *
 244 *	echo "Initializing random number generator..."
 245 *	random_seed=/var/run/random-seed
 246 *	# Carry a random seed from start-up to start-up
 247 *	# Load and then save the whole entropy pool
 248 *	if [ -f $random_seed ]; then
 249 *		cat $random_seed >/dev/urandom
 250 *	else
 251 *		touch $random_seed
 252 *	fi
 253 *	chmod 600 $random_seed
 254 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 255 *
 256 * and the following lines in an appropriate script which is run as
 257 * the system is shutdown:
 258 *
 259 *	# Carry a random seed from shut-down to start-up
 260 *	# Save the whole entropy pool
 261 *	echo "Saving random seed..."
 262 *	random_seed=/var/run/random-seed
 263 *	touch $random_seed
 264 *	chmod 600 $random_seed
 265 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 266 *
 267 * For example, on most modern systems using the System V init
 268 * scripts, such code fragments would be found in
 269 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 271 *
 272 * Effectively, these commands cause the contents of the entropy pool
 273 * to be saved at shut-down time and reloaded into the entropy pool at
 274 * start-up.  (The 'dd' in the addition to the bootup script is to
 275 * make sure that /etc/random-seed is different for every start-up,
 276 * even if the system crashes without executing rc.0.)  Even with
 277 * complete knowledge of the start-up activities, predicting the state
 278 * of the entropy pool requires knowledge of the previous history of
 279 * the system.
 280 *
 281 * Configuring the /dev/random driver under Linux
 282 * ==============================================
 283 *
 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 285 * the /dev/mem major number (#1).  So if your system does not have
 286 * /dev/random and /dev/urandom created already, they can be created
 287 * by using the commands:
 288 *
 289 * 	mknod /dev/random c 1 8
 290 * 	mknod /dev/urandom c 1 9
 291 *
 292 * Acknowledgements:
 293 * =================
 294 *
 295 * Ideas for constructing this random number generator were derived
 296 * from Pretty Good Privacy's random number generator, and from private
 297 * discussions with Phil Karn.  Colin Plumb provided a faster random
 298 * number generator, which speed up the mixing function of the entropy
 299 * pool, taken from PGPfone.  Dale Worley has also contributed many
 300 * useful ideas and suggestions to improve this driver.
 301 *
 302 * Any flaws in the design are solely my responsibility, and should
 303 * not be attributed to the Phil, Colin, or any of authors of PGP.
 304 *
 305 * Further background information on this topic may be obtained from
 306 * RFC 1750, "Randomness Recommendations for Security", by Donald
 307 * Eastlake, Steve Crocker, and Jeff Schiller.
 308 */
 309
 
 
 310#include <linux/utsname.h>
 311#include <linux/module.h>
 312#include <linux/kernel.h>
 313#include <linux/major.h>
 314#include <linux/string.h>
 315#include <linux/fcntl.h>
 316#include <linux/slab.h>
 317#include <linux/random.h>
 318#include <linux/poll.h>
 319#include <linux/init.h>
 320#include <linux/fs.h>
 321#include <linux/genhd.h>
 322#include <linux/interrupt.h>
 323#include <linux/mm.h>
 324#include <linux/nodemask.h>
 325#include <linux/spinlock.h>
 326#include <linux/kthread.h>
 327#include <linux/percpu.h>
 328#include <linux/cryptohash.h>
 329#include <linux/fips.h>
 330#include <linux/ptrace.h>
 331#include <linux/workqueue.h>
 332#include <linux/irq.h>
 333#include <linux/ratelimit.h>
 334#include <linux/syscalls.h>
 335#include <linux/completion.h>
 336#include <linux/uuid.h>
 
 
 
 
 337#include <crypto/chacha.h>
 338
 
 
 
 
 
 
 339#include <asm/processor.h>
 340#include <linux/uaccess.h>
 341#include <asm/irq.h>
 342#include <asm/irq_regs.h>
 343#include <asm/io.h>
 344
 345#define CREATE_TRACE_POINTS
 346#include <trace/events/random.h>
 347
 348/* #define ADD_INTERRUPT_BENCH */
 
 
 
 
 
 349
 350/*
 351 * Configuration information
 
 352 */
 353#define INPUT_POOL_SHIFT	12
 354#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 355#define OUTPUT_POOL_SHIFT	10
 356#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 357#define SEC_XFER_SIZE		512
 358#define EXTRACT_SIZE		10
 359
 360
 361#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 362
 363/*
 364 * To allow fractional bits to be tracked, the entropy_count field is
 365 * denominated in units of 1/8th bits.
 366 *
 367 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
 368 * credit_entropy_bits() needs to be 64 bits wide.
 369 */
 370#define ENTROPY_SHIFT 3
 371#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 372
 373/*
 374 * The minimum number of bits of entropy before we wake up a read on
 375 * /dev/random.  Should be enough to do a significant reseed.
 376 */
 377static int random_read_wakeup_bits = 64;
 378
 379/*
 380 * If the entropy count falls under this number of bits, then we
 381 * should wake up processes which are selecting or polling on write
 382 * access to /dev/random.
 383 */
 384static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 385
 386/*
 387 * Originally, we used a primitive polynomial of degree .poolwords
 388 * over GF(2).  The taps for various sizes are defined below.  They
 389 * were chosen to be evenly spaced except for the last tap, which is 1
 390 * to get the twisting happening as fast as possible.
 391 *
 392 * For the purposes of better mixing, we use the CRC-32 polynomial as
 393 * well to make a (modified) twisted Generalized Feedback Shift
 394 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 395 * generators.  ACM Transactions on Modeling and Computer Simulation
 396 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 397 * GFSR generators II.  ACM Transactions on Modeling and Computer
 398 * Simulation 4:254-266)
 399 *
 400 * Thanks to Colin Plumb for suggesting this.
 401 *
 402 * The mixing operation is much less sensitive than the output hash,
 403 * where we use SHA-1.  All that we want of mixing operation is that
 404 * it be a good non-cryptographic hash; i.e. it not produce collisions
 405 * when fed "random" data of the sort we expect to see.  As long as
 406 * the pool state differs for different inputs, we have preserved the
 407 * input entropy and done a good job.  The fact that an intelligent
 408 * attacker can construct inputs that will produce controlled
 409 * alterations to the pool's state is not important because we don't
 410 * consider such inputs to contribute any randomness.  The only
 411 * property we need with respect to them is that the attacker can't
 412 * increase his/her knowledge of the pool's state.  Since all
 413 * additions are reversible (knowing the final state and the input,
 414 * you can reconstruct the initial state), if an attacker has any
 415 * uncertainty about the initial state, he/she can only shuffle that
 416 * uncertainty about, but never cause any collisions (which would
 417 * decrease the uncertainty).
 418 *
 419 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 420 * Videau in their paper, "The Linux Pseudorandom Number Generator
 421 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 422 * paper, they point out that we are not using a true Twisted GFSR,
 423 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 424 * is, with only three taps, instead of the six that we are using).
 425 * As a result, the resulting polynomial is neither primitive nor
 426 * irreducible, and hence does not have a maximal period over
 427 * GF(2**32).  They suggest a slight change to the generator
 428 * polynomial which improves the resulting TGFSR polynomial to be
 429 * irreducible, which we have made here.
 430 */
 431static const struct poolinfo {
 432	int poolbitshift, poolwords, poolbytes, poolfracbits;
 433#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
 434	int tap1, tap2, tap3, tap4, tap5;
 435} poolinfo_table[] = {
 436	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 437	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 438	{ S(128),	104,	76,	51,	25,	1 },
 439	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
 440	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
 441	{ S(32),	26,	19,	14,	7,	1 },
 442#if 0
 443	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 444	{ S(2048),	1638,	1231,	819,	411,	1 },
 445
 446	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 447	{ S(1024),	817,	615,	412,	204,	1 },
 448
 449	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 450	{ S(1024),	819,	616,	410,	207,	2 },
 451
 452	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 453	{ S(512),	411,	308,	208,	104,	1 },
 454
 455	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 456	{ S(512),	409,	307,	206,	102,	2 },
 457	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 458	{ S(512),	409,	309,	205,	103,	2 },
 459
 460	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 461	{ S(256),	205,	155,	101,	52,	1 },
 462
 463	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 464	{ S(128),	103,	78,	51,	27,	2 },
 465
 466	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 467	{ S(64),	52,	39,	26,	14,	1 },
 468#endif
 469};
 
 
 
 470
 471/*
 472 * Static global variables
 
 
 
 
 
 
 473 */
 474static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 475static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 476static struct fasync_struct *fasync;
 
 
 477
 478static DEFINE_SPINLOCK(random_ready_list_lock);
 479static LIST_HEAD(random_ready_list);
 
 
 480
 481struct crng_state {
 482	__u32		state[16];
 483	unsigned long	init_time;
 484	spinlock_t	lock;
 485};
 486
 487static struct crng_state primary_crng = {
 488	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
 489};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490
 491/*
 492 * crng_init =  0 --> Uninitialized
 493 *		1 --> Initialized
 494 *		2 --> Initialized from input_pool
 495 *
 496 * crng_init is protected by primary_crng->lock, and only increases
 497 * its value (from 0->1->2).
 498 */
 499static int crng_init = 0;
 500#define crng_ready() (likely(crng_init > 1))
 501static int crng_init_cnt = 0;
 502static unsigned long crng_global_init_time = 0;
 503#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
 504static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
 505static void _crng_backtrack_protect(struct crng_state *crng,
 506				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
 507static void process_random_ready_list(void);
 508static void _get_random_bytes(void *buf, int nbytes);
 509
 510static struct ratelimit_state unseeded_warning =
 511	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
 512static struct ratelimit_state urandom_warning =
 513	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
 
 
 
 
 514
 515static int ratelimit_disable __read_mostly;
 
 
 
 516
 517module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 518MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 519
 520/**********************************************************************
 521 *
 522 * OS independent entropy store.   Here are the functions which handle
 523 * storing entropy in an entropy pool.
 524 *
 525 **********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527struct entropy_store;
 528struct entropy_store {
 529	/* read-only data: */
 530	const struct poolinfo *poolinfo;
 531	__u32 *pool;
 532	const char *name;
 533	struct entropy_store *pull;
 534	struct work_struct push_work;
 535
 536	/* read-write data: */
 537	unsigned long last_pulled;
 
 538	spinlock_t lock;
 539	unsigned short add_ptr;
 540	unsigned short input_rotate;
 541	int entropy_count;
 542	unsigned int initialized:1;
 543	unsigned int last_data_init:1;
 544	__u8 last_data[EXTRACT_SIZE];
 545};
 546
 547static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 548			       size_t nbytes, int min, int rsvd);
 549static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 550				size_t nbytes, int fips);
 551
 552static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
 553static void push_to_pool(struct work_struct *work);
 554static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
 555static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
 556
 557static struct entropy_store input_pool = {
 558	.poolinfo = &poolinfo_table[0],
 559	.name = "input",
 560	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 561	.pool = input_pool_data
 562};
 563
 564static struct entropy_store blocking_pool = {
 565	.poolinfo = &poolinfo_table[1],
 566	.name = "blocking",
 567	.pull = &input_pool,
 568	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 569	.pool = blocking_pool_data,
 570	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
 571					push_to_pool),
 572};
 573
 574static __u32 const twist_table[8] = {
 575	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 576	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 577
 578/*
 579 * This function adds bytes into the entropy "pool".  It does not
 580 * update the entropy estimate.  The caller should call
 581 * credit_entropy_bits if this is appropriate.
 582 *
 583 * The pool is stirred with a primitive polynomial of the appropriate
 584 * degree, and then twisted.  We twist by three bits at a time because
 585 * it's cheap to do so and helps slightly in the expected case where
 586 * the entropy is concentrated in the low-order bits.
 587 */
 588static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 589			    int nbytes)
 590{
 591	unsigned long i, tap1, tap2, tap3, tap4, tap5;
 592	int input_rotate;
 593	int wordmask = r->poolinfo->poolwords - 1;
 594	const char *bytes = in;
 595	__u32 w;
 596
 597	tap1 = r->poolinfo->tap1;
 598	tap2 = r->poolinfo->tap2;
 599	tap3 = r->poolinfo->tap3;
 600	tap4 = r->poolinfo->tap4;
 601	tap5 = r->poolinfo->tap5;
 602
 603	input_rotate = r->input_rotate;
 604	i = r->add_ptr;
 605
 606	/* mix one byte at a time to simplify size handling and churn faster */
 607	while (nbytes--) {
 608		w = rol32(*bytes++, input_rotate);
 609		i = (i - 1) & wordmask;
 610
 611		/* XOR in the various taps */
 612		w ^= r->pool[i];
 613		w ^= r->pool[(i + tap1) & wordmask];
 614		w ^= r->pool[(i + tap2) & wordmask];
 615		w ^= r->pool[(i + tap3) & wordmask];
 616		w ^= r->pool[(i + tap4) & wordmask];
 617		w ^= r->pool[(i + tap5) & wordmask];
 618
 619		/* Mix the result back in with a twist */
 620		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 621
 622		/*
 623		 * Normally, we add 7 bits of rotation to the pool.
 624		 * At the beginning of the pool, add an extra 7 bits
 625		 * rotation, so that successive passes spread the
 626		 * input bits across the pool evenly.
 627		 */
 628		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 629	}
 630
 631	r->input_rotate = input_rotate;
 632	r->add_ptr = i;
 633}
 634
 635static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 636			     int nbytes)
 637{
 638	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 639	_mix_pool_bytes(r, in, nbytes);
 640}
 641
 642static void mix_pool_bytes(struct entropy_store *r, const void *in,
 643			   int nbytes)
 644{
 
 645	unsigned long flags;
 
 
 646
 647	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 648	spin_lock_irqsave(&r->lock, flags);
 649	_mix_pool_bytes(r, in, nbytes);
 650	spin_unlock_irqrestore(&r->lock, flags);
 651}
 652
 653struct fast_pool {
 654	__u32		pool[4];
 655	unsigned long	last;
 656	unsigned short	reg_idx;
 657	unsigned char	count;
 658};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659
 660/*
 661 * This is a fast mixing routine used by the interrupt randomness
 662 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 663 * locks that might be needed are taken by the caller.
 
 
 
 
 
 
 
 
 
 664 */
 665static void fast_mix(struct fast_pool *f)
 
 
 666{
 667	__u32 a = f->pool[0],	b = f->pool[1];
 668	__u32 c = f->pool[2],	d = f->pool[3];
 669
 670	a += b;			c += d;
 671	b = rol32(b, 6);	d = rol32(d, 27);
 672	d ^= a;			b ^= c;
 673
 674	a += b;			c += d;
 675	b = rol32(b, 16);	d = rol32(d, 14);
 676	d ^= a;			b ^= c;
 677
 678	a += b;			c += d;
 679	b = rol32(b, 6);	d = rol32(d, 27);
 680	d ^= a;			b ^= c;
 681
 682	a += b;			c += d;
 683	b = rol32(b, 16);	d = rol32(d, 14);
 684	d ^= a;			b ^= c;
 
 685
 686	f->pool[0] = a;  f->pool[1] = b;
 687	f->pool[2] = c;  f->pool[3] = d;
 688	f->count++;
 689}
 690
 691static void process_random_ready_list(void)
 692{
 693	unsigned long flags;
 694	struct random_ready_callback *rdy, *tmp;
 695
 696	spin_lock_irqsave(&random_ready_list_lock, flags);
 697	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 698		struct module *owner = rdy->owner;
 699
 700		list_del_init(&rdy->list);
 701		rdy->func(rdy);
 702		module_put(owner);
 703	}
 704	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 705}
 706
 707/*
 708 * Credit (or debit) the entropy store with n bits of entropy.
 709 * Use credit_entropy_bits_safe() if the value comes from userspace
 710 * or otherwise should be checked for extreme values.
 711 */
 712static void credit_entropy_bits(struct entropy_store *r, int nbits)
 
 713{
 714	int entropy_count, orig, has_initialized = 0;
 715	const int pool_size = r->poolinfo->poolfracbits;
 716	int nfrac = nbits << ENTROPY_SHIFT;
 717
 718	if (!nbits)
 719		return;
 720
 721retry:
 722	entropy_count = orig = READ_ONCE(r->entropy_count);
 723	if (nfrac < 0) {
 724		/* Debit */
 725		entropy_count += nfrac;
 726	} else {
 727		/*
 728		 * Credit: we have to account for the possibility of
 729		 * overwriting already present entropy.	 Even in the
 730		 * ideal case of pure Shannon entropy, new contributions
 731		 * approach the full value asymptotically:
 732		 *
 733		 * entropy <- entropy + (pool_size - entropy) *
 734		 *	(1 - exp(-add_entropy/pool_size))
 735		 *
 736		 * For add_entropy <= pool_size/2 then
 737		 * (1 - exp(-add_entropy/pool_size)) >=
 738		 *    (add_entropy/pool_size)*0.7869...
 739		 * so we can approximate the exponential with
 740		 * 3/4*add_entropy/pool_size and still be on the
 741		 * safe side by adding at most pool_size/2 at a time.
 742		 *
 743		 * The use of pool_size-2 in the while statement is to
 744		 * prevent rounding artifacts from making the loop
 745		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 746		 * turns no matter how large nbits is.
 747		 */
 748		int pnfrac = nfrac;
 749		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 750		/* The +2 corresponds to the /4 in the denominator */
 751
 752		do {
 753			unsigned int anfrac = min(pnfrac, pool_size/2);
 754			unsigned int add =
 755				((pool_size - entropy_count)*anfrac*3) >> s;
 756
 757			entropy_count += add;
 758			pnfrac -= anfrac;
 759		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 760	}
 761
 762	if (unlikely(entropy_count < 0)) {
 763		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
 764			r->name, entropy_count);
 765		WARN_ON(1);
 766		entropy_count = 0;
 767	} else if (entropy_count > pool_size)
 768		entropy_count = pool_size;
 769	if ((r == &blocking_pool) && !r->initialized &&
 770	    (entropy_count >> ENTROPY_SHIFT) > 128)
 771		has_initialized = 1;
 772	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 773		goto retry;
 774
 775	if (has_initialized) {
 776		r->initialized = 1;
 777		wake_up_interruptible(&random_read_wait);
 778		kill_fasync(&fasync, SIGIO, POLL_IN);
 779	}
 780
 781	trace_credit_entropy_bits(r->name, nbits,
 782				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
 
 
 
 
 
 
 783
 784	if (r == &input_pool) {
 785		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 786		struct entropy_store *other = &blocking_pool;
 787
 788		if (crng_init < 2) {
 789			if (entropy_bits < 128)
 790				return;
 791			crng_reseed(&primary_crng, r);
 792			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
 793		}
 794
 795		/* initialize the blocking pool if necessary */
 796		if (entropy_bits >= random_read_wakeup_bits &&
 797		    !other->initialized) {
 798			schedule_work(&other->push_work);
 799			return;
 800		}
 801
 802		/* should we wake readers? */
 803		if (entropy_bits >= random_read_wakeup_bits &&
 804		    wq_has_sleeper(&random_read_wait)) {
 805			wake_up_interruptible(&random_read_wait);
 806			kill_fasync(&fasync, SIGIO, POLL_IN);
 807		}
 808		/* If the input pool is getting full, and the blocking
 809		 * pool has room, send some entropy to the blocking
 810		 * pool.
 811		 */
 812		if (!work_pending(&other->push_work) &&
 813		    (ENTROPY_BITS(r) > 6 * r->poolinfo->poolbytes) &&
 814		    (ENTROPY_BITS(other) <= 6 * other->poolinfo->poolbytes))
 815			schedule_work(&other->push_work);
 816	}
 817}
 818
 819static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 820{
 821	const int nbits_max = r->poolinfo->poolwords * 32;
 822
 823	if (nbits < 0)
 824		return -EINVAL;
 825
 826	/* Cap the value to avoid overflows */
 827	nbits = min(nbits,  nbits_max);
 
 
 
 
 
 
 
 
 
 
 
 828
 829	credit_entropy_bits(r, nbits);
 830	return 0;
 
 
 
 
 
 
 
 831}
 832
 833/*********************************************************************
 834 *
 835 * CRNG using CHACHA20
 836 *
 837 *********************************************************************/
 838
 839#define CRNG_RESEED_INTERVAL (300*HZ)
 840
 841static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
 842
 843#ifdef CONFIG_NUMA
 844/*
 845 * Hack to deal with crazy userspace progams when they are all trying
 846 * to access /dev/urandom in parallel.  The programs are almost
 847 * certainly doing something terribly wrong, but we'll work around
 848 * their brain damage.
 849 */
 850static struct crng_state **crng_node_pool __read_mostly;
 851#endif
 852
 853static void invalidate_batched_entropy(void);
 854static void numa_crng_init(void);
 855
 856static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
 857static int __init parse_trust_cpu(char *arg)
 858{
 859	return kstrtobool(arg, &trust_cpu);
 860}
 861early_param("random.trust_cpu", parse_trust_cpu);
 862
 863static void crng_initialize(struct crng_state *crng)
 864{
 865	int		i;
 866	int		arch_init = 1;
 867	unsigned long	rv;
 868
 869	memcpy(&crng->state[0], "expand 32-byte k", 16);
 870	if (crng == &primary_crng)
 871		_extract_entropy(&input_pool, &crng->state[4],
 872				 sizeof(__u32) * 12, 0);
 873	else
 874		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
 875	for (i = 4; i < 16; i++) {
 876		if (!arch_get_random_seed_long(&rv) &&
 877		    !arch_get_random_long(&rv)) {
 878			rv = random_get_entropy();
 879			arch_init = 0;
 880		}
 881		crng->state[i] ^= rv;
 882	}
 883	if (trust_cpu && arch_init && crng == &primary_crng) {
 884		invalidate_batched_entropy();
 885		numa_crng_init();
 886		crng_init = 2;
 887		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
 888	}
 889	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 890}
 891
 892#ifdef CONFIG_NUMA
 893static void do_numa_crng_init(struct work_struct *work)
 894{
 895	int i;
 896	struct crng_state *crng;
 897	struct crng_state **pool;
 
 
 
 
 
 
 898
 899	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
 900	for_each_online_node(i) {
 901		crng = kmalloc_node(sizeof(struct crng_state),
 902				    GFP_KERNEL | __GFP_NOFAIL, i);
 903		spin_lock_init(&crng->lock);
 904		crng_initialize(crng);
 905		pool[i] = crng;
 906	}
 907	mb();
 908	if (cmpxchg(&crng_node_pool, NULL, pool)) {
 909		for_each_node(i)
 910			kfree(pool[i]);
 911		kfree(pool);
 912	}
 913}
 914
 915static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
 916
 917static void numa_crng_init(void)
 918{
 919	schedule_work(&numa_crng_init_work);
 920}
 921#else
 922static void numa_crng_init(void) {}
 923#endif
 924
 925/*
 926 * crng_fast_load() can be called by code in the interrupt service
 927 * path.  So we can't afford to dilly-dally.
 
 
 
 928 */
 929static int crng_fast_load(const char *cp, size_t len)
 930{
 931	unsigned long flags;
 932	char *p;
 933
 934	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 935		return 0;
 936	if (crng_init != 0) {
 937		spin_unlock_irqrestore(&primary_crng.lock, flags);
 938		return 0;
 939	}
 940	p = (unsigned char *) &primary_crng.state[4];
 941	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
 942		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
 943		cp++; crng_init_cnt++; len--;
 944	}
 945	spin_unlock_irqrestore(&primary_crng.lock, flags);
 946	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
 947		invalidate_batched_entropy();
 948		crng_init = 1;
 949		wake_up_interruptible(&crng_init_wait);
 950		pr_notice("random: fast init done\n");
 951	}
 952	return 1;
 953}
 
 954
 955/*
 956 * crng_slow_load() is called by add_device_randomness, which has two
 957 * attributes.  (1) We can't trust the buffer passed to it is
 958 * guaranteed to be unpredictable (so it might not have any entropy at
 959 * all), and (2) it doesn't have the performance constraints of
 960 * crng_fast_load().
 961 *
 962 * So we do something more comprehensive which is guaranteed to touch
 963 * all of the primary_crng's state, and which uses a LFSR with a
 964 * period of 255 as part of the mixing algorithm.  Finally, we do
 965 * *not* advance crng_init_cnt since buffer we may get may be something
 966 * like a fixed DMI table (for example), which might very well be
 967 * unique to the machine, but is otherwise unvarying.
 968 */
 969static int crng_slow_load(const char *cp, size_t len)
 970{
 971	unsigned long		flags;
 972	static unsigned char	lfsr = 1;
 973	unsigned char		tmp;
 974	unsigned		i, max = CHACHA_KEY_SIZE;
 975	const char *		src_buf = cp;
 976	char *			dest_buf = (char *) &primary_crng.state[4];
 977
 978	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 979		return 0;
 980	if (crng_init != 0) {
 981		spin_unlock_irqrestore(&primary_crng.lock, flags);
 982		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983	}
 984	if (len > max)
 985		max = len;
 986
 987	for (i = 0; i < max ; i++) {
 988		tmp = lfsr;
 989		lfsr >>= 1;
 990		if (tmp & 1)
 991			lfsr ^= 0xE1;
 992		tmp = dest_buf[i % CHACHA_KEY_SIZE];
 993		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
 994		lfsr += (tmp << 3) | (tmp >> 5);
 995	}
 996	spin_unlock_irqrestore(&primary_crng.lock, flags);
 997	return 1;
 998}
 999
1000static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
1001{
1002	unsigned long	flags;
1003	int		i, num;
1004	union {
1005		__u8	block[CHACHA_BLOCK_SIZE];
1006		__u32	key[8];
1007	} buf;
1008
1009	if (r) {
1010		num = extract_entropy(r, &buf, 32, 16, 0);
1011		if (num == 0)
1012			return;
1013	} else {
1014		_extract_crng(&primary_crng, buf.block);
1015		_crng_backtrack_protect(&primary_crng, buf.block,
1016					CHACHA_KEY_SIZE);
1017	}
1018	spin_lock_irqsave(&crng->lock, flags);
1019	for (i = 0; i < 8; i++) {
1020		unsigned long	rv;
1021		if (!arch_get_random_seed_long(&rv) &&
1022		    !arch_get_random_long(&rv))
1023			rv = random_get_entropy();
1024		crng->state[i+4] ^= buf.key[i] ^ rv;
1025	}
1026	memzero_explicit(&buf, sizeof(buf));
1027	crng->init_time = jiffies;
1028	spin_unlock_irqrestore(&crng->lock, flags);
1029	if (crng == &primary_crng && crng_init < 2) {
1030		invalidate_batched_entropy();
1031		numa_crng_init();
1032		crng_init = 2;
1033		process_random_ready_list();
1034		wake_up_interruptible(&crng_init_wait);
1035		pr_notice("random: crng init done\n");
1036		if (unseeded_warning.missed) {
1037			pr_notice("random: %d get_random_xx warning(s) missed "
1038				  "due to ratelimiting\n",
1039				  unseeded_warning.missed);
1040			unseeded_warning.missed = 0;
1041		}
1042		if (urandom_warning.missed) {
1043			pr_notice("random: %d urandom warning(s) missed "
1044				  "due to ratelimiting\n",
1045				  urandom_warning.missed);
1046			urandom_warning.missed = 0;
1047		}
1048	}
1049}
1050
1051static void _extract_crng(struct crng_state *crng,
1052			  __u8 out[CHACHA_BLOCK_SIZE])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053{
1054	unsigned long v, flags;
 
 
 
 
 
 
 
 
 
 
1055
1056	if (crng_ready() &&
1057	    (time_after(crng_global_init_time, crng->init_time) ||
1058	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1059		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1060	spin_lock_irqsave(&crng->lock, flags);
1061	if (arch_get_random_long(&v))
1062		crng->state[14] ^= v;
1063	chacha20_block(&crng->state[0], out);
1064	if (crng->state[12] == 0)
1065		crng->state[13]++;
1066	spin_unlock_irqrestore(&crng->lock, flags);
1067}
1068
1069static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1070{
1071	struct crng_state *crng = NULL;
1072
1073#ifdef CONFIG_NUMA
1074	if (crng_node_pool)
1075		crng = crng_node_pool[numa_node_id()];
1076	if (crng == NULL)
1077#endif
1078		crng = &primary_crng;
1079	_extract_crng(crng, out);
1080}
 
1081
 
1082/*
1083 * Use the leftover bytes from the CRNG block output (if there is
1084 * enough) to mutate the CRNG key to provide backtracking protection.
1085 */
1086static void _crng_backtrack_protect(struct crng_state *crng,
1087				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1088{
1089	unsigned long	flags;
1090	__u32		*s, *d;
1091	int		i;
1092
1093	used = round_up(used, sizeof(__u32));
1094	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1095		extract_crng(tmp);
1096		used = 0;
1097	}
1098	spin_lock_irqsave(&crng->lock, flags);
1099	s = (__u32 *) &tmp[used];
1100	d = &crng->state[4];
1101	for (i=0; i < 8; i++)
1102		*d++ ^= *s++;
1103	spin_unlock_irqrestore(&crng->lock, flags);
1104}
1105
1106static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1107{
1108	struct crng_state *crng = NULL;
1109
1110#ifdef CONFIG_NUMA
1111	if (crng_node_pool)
1112		crng = crng_node_pool[numa_node_id()];
1113	if (crng == NULL)
1114#endif
1115		crng = &primary_crng;
1116	_crng_backtrack_protect(crng, tmp, used);
1117}
1118
1119static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1120{
1121	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1122	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1123	int large_request = (nbytes > 256);
1124
1125	while (nbytes) {
1126		if (large_request && need_resched()) {
1127			if (signal_pending(current)) {
1128				if (ret == 0)
1129					ret = -ERESTARTSYS;
1130				break;
1131			}
1132			schedule();
1133		}
1134
1135		extract_crng(tmp);
1136		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1137		if (copy_to_user(buf, tmp, i)) {
1138			ret = -EFAULT;
1139			break;
1140		}
1141
1142		nbytes -= i;
1143		buf += i;
1144		ret += i;
1145	}
1146	crng_backtrack_protect(tmp, i);
1147
1148	/* Wipe data just written to memory */
1149	memzero_explicit(tmp, sizeof(tmp));
1150
1151	return ret;
1152}
1153
1154
1155/*********************************************************************
1156 *
1157 * Entropy input management
1158 *
1159 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
1160
1161/* There is one of these per entropy source */
1162struct timer_rand_state {
1163	cycles_t last_time;
1164	long last_delta, last_delta2;
1165};
1166
1167#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168
1169/*
1170 * Add device- or boot-specific data to the input pool to help
1171 * initialize it.
1172 *
1173 * None of this adds any entropy; it is meant to avoid the problem of
1174 * the entropy pool having similar initial state across largely
1175 * identical devices.
1176 */
1177void add_device_randomness(const void *buf, unsigned int size)
1178{
1179	unsigned long time = random_get_entropy() ^ jiffies;
1180	unsigned long flags;
1181
1182	if (!crng_ready() && size)
1183		crng_slow_load(buf, size);
1184
1185	trace_add_device_randomness(size, _RET_IP_);
1186	spin_lock_irqsave(&input_pool.lock, flags);
1187	_mix_pool_bytes(&input_pool, buf, size);
1188	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1189	spin_unlock_irqrestore(&input_pool.lock, flags);
1190}
1191EXPORT_SYMBOL(add_device_randomness);
1192
1193static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1194
1195/*
1196 * This function adds entropy to the entropy "pool" by using timing
1197 * delays.  It uses the timer_rand_state structure to make an estimate
1198 * of how many bits of entropy this call has added to the pool.
1199 *
1200 * The number "num" is also added to the pool - it should somehow describe
1201 * the type of event which just happened.  This is currently 0-255 for
1202 * keyboard scan codes, and 256 upwards for interrupts.
1203 *
1204 */
1205static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1206{
1207	struct entropy_store	*r;
 
1208	struct {
1209		long jiffies;
1210		unsigned cycles;
1211		unsigned num;
1212	} sample;
1213	long delta, delta2, delta3;
 
 
 
 
 
 
 
 
 
 
 
 
 
1214
1215	sample.jiffies = jiffies;
1216	sample.cycles = random_get_entropy();
1217	sample.num = num;
1218	r = &input_pool;
1219	mix_pool_bytes(r, &sample, sizeof(sample));
1220
1221	/*
1222	 * Calculate number of bits of randomness we probably added.
1223	 * We take into account the first, second and third-order deltas
1224	 * in order to make our estimate.
1225	 */
1226	delta = sample.jiffies - state->last_time;
1227	state->last_time = sample.jiffies;
1228
1229	delta2 = delta - state->last_delta;
1230	state->last_delta = delta;
 
 
1231
1232	delta3 = delta2 - state->last_delta2;
1233	state->last_delta2 = delta2;
1234
1235	if (delta < 0)
1236		delta = -delta;
1237	if (delta2 < 0)
1238		delta2 = -delta2;
1239	if (delta3 < 0)
1240		delta3 = -delta3;
1241	if (delta > delta2)
1242		delta = delta2;
1243	if (delta > delta3)
1244		delta = delta3;
1245
1246	/*
1247	 * delta is now minimum absolute delta.
1248	 * Round down by 1 bit on general principles,
1249	 * and limit entropy entimate to 12 bits.
1250	 */
1251	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1252}
1253
1254void add_input_randomness(unsigned int type, unsigned int code,
1255				 unsigned int value)
 
1256{
1257	static unsigned char last_value;
 
 
1258
1259	/* ignore autorepeat and the like */
1260	if (value == last_value)
1261		return;
1262
1263	last_value = value;
1264	add_timer_randomness(&input_timer_state,
1265			     (type << 4) ^ code ^ (code >> 4) ^ value);
1266	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1267}
1268EXPORT_SYMBOL_GPL(add_input_randomness);
1269
1270static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1271
1272#ifdef ADD_INTERRUPT_BENCH
1273static unsigned long avg_cycles, avg_deviation;
1274
1275#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1276#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1277
1278static void add_interrupt_bench(cycles_t start)
1279{
1280        long delta = random_get_entropy() - start;
1281
1282        /* Use a weighted moving average */
1283        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1284        avg_cycles += delta;
1285        /* And average deviation */
1286        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1287        avg_deviation += delta;
1288}
1289#else
1290#define add_interrupt_bench(x)
1291#endif
1292
1293static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1294{
1295	__u32 *ptr = (__u32 *) regs;
1296	unsigned int idx;
1297
1298	if (regs == NULL)
1299		return 0;
1300	idx = READ_ONCE(f->reg_idx);
1301	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1302		idx = 0;
1303	ptr += idx++;
1304	WRITE_ONCE(f->reg_idx, idx);
1305	return *ptr;
1306}
1307
1308void add_interrupt_randomness(int irq, int irq_flags)
1309{
1310	struct entropy_store	*r;
1311	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1312	struct pt_regs		*regs = get_irq_regs();
1313	unsigned long		now = jiffies;
1314	cycles_t		cycles = random_get_entropy();
1315	__u32			c_high, j_high;
1316	__u64			ip;
1317	unsigned long		seed;
1318	int			credit = 0;
1319
1320	if (cycles == 0)
1321		cycles = get_reg(fast_pool, regs);
1322	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1323	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1324	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1325	fast_pool->pool[1] ^= now ^ c_high;
1326	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1327	fast_pool->pool[2] ^= ip;
1328	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1329		get_reg(fast_pool, regs);
1330
1331	fast_mix(fast_pool);
1332	add_interrupt_bench(cycles);
1333
1334	if (unlikely(crng_init == 0)) {
1335		if ((fast_pool->count >= 64) &&
1336		    crng_fast_load((char *) fast_pool->pool,
1337				   sizeof(fast_pool->pool))) {
1338			fast_pool->count = 0;
1339			fast_pool->last = now;
1340		}
1341		return;
1342	}
1343
1344	if ((fast_pool->count < 64) &&
1345	    !time_after(now, fast_pool->last + HZ))
1346		return;
1347
1348	r = &input_pool;
1349	if (!spin_trylock(&r->lock))
1350		return;
1351
1352	fast_pool->last = now;
1353	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1354
1355	/*
1356	 * If we have architectural seed generator, produce a seed and
1357	 * add it to the pool.  For the sake of paranoia don't let the
1358	 * architectural seed generator dominate the input from the
1359	 * interrupt noise.
1360	 */
1361	if (arch_get_random_seed_long(&seed)) {
1362		__mix_pool_bytes(r, &seed, sizeof(seed));
1363		credit = 1;
1364	}
1365	spin_unlock(&r->lock);
1366
1367	fast_pool->count = 0;
1368
1369	/* award one bit for the contents of the fast pool */
1370	credit_entropy_bits(r, credit + 1);
1371}
1372EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1373
1374#ifdef CONFIG_BLOCK
1375void add_disk_randomness(struct gendisk *disk)
1376{
1377	if (!disk || !disk->random)
1378		return;
1379	/* first major is 1, so we get >= 0x200 here */
1380	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1381	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1382}
1383EXPORT_SYMBOL_GPL(add_disk_randomness);
1384#endif
1385
1386/*********************************************************************
1387 *
1388 * Entropy extraction routines
1389 *
1390 *********************************************************************/
1391
1392/*
1393 * This utility inline function is responsible for transferring entropy
1394 * from the primary pool to the secondary extraction pool. We make
1395 * sure we pull enough for a 'catastrophic reseed'.
1396 */
1397static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1398static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1399{
1400	if (!r->pull ||
1401	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1402	    r->entropy_count > r->poolinfo->poolfracbits)
1403		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404
1405	_xfer_secondary_pool(r, nbytes);
 
 
 
 
1406}
 
 
 
 
 
 
1407
1408static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1409{
1410	__u32	tmp[OUTPUT_POOL_WORDS];
1411
1412	int bytes = nbytes;
 
 
 
 
1413
1414	/* pull at least as much as a wakeup */
1415	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1416	/* but never more than the buffer size */
1417	bytes = min_t(int, bytes, sizeof(tmp));
 
1418
1419	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1420				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1421	bytes = extract_entropy(r->pull, tmp, bytes,
1422				random_read_wakeup_bits / 8, 0);
1423	mix_pool_bytes(r, tmp, bytes);
1424	credit_entropy_bits(r, bytes*8);
 
1425}
1426
1427/*
1428 * Used as a workqueue function so that when the input pool is getting
1429 * full, we can "spill over" some entropy to the output pools.  That
1430 * way the output pools can store some of the excess entropy instead
1431 * of letting it go to waste.
1432 */
1433static void push_to_pool(struct work_struct *work)
1434{
1435	struct entropy_store *r = container_of(work, struct entropy_store,
1436					      push_work);
1437	BUG_ON(!r);
1438	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1439	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1440			   r->pull->entropy_count >> ENTROPY_SHIFT);
1441}
1442
1443/*
1444 * This function decides how many bytes to actually take from the
1445 * given pool, and also debits the entropy count accordingly.
1446 */
1447static size_t account(struct entropy_store *r, size_t nbytes, int min,
1448		      int reserved)
1449{
1450	int entropy_count, orig, have_bytes;
1451	size_t ibytes, nfrac;
1452
1453	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1454
1455	/* Can we pull enough? */
1456retry:
1457	entropy_count = orig = READ_ONCE(r->entropy_count);
1458	ibytes = nbytes;
1459	/* never pull more than available */
1460	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1461
1462	if ((have_bytes -= reserved) < 0)
1463		have_bytes = 0;
1464	ibytes = min_t(size_t, ibytes, have_bytes);
1465	if (ibytes < min)
1466		ibytes = 0;
1467
1468	if (unlikely(entropy_count < 0)) {
1469		pr_warn("random: negative entropy count: pool %s count %d\n",
1470			r->name, entropy_count);
1471		WARN_ON(1);
1472		entropy_count = 0;
 
 
 
 
 
 
 
 
 
 
1473	}
1474	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1475	if ((size_t) entropy_count > nfrac)
1476		entropy_count -= nfrac;
1477	else
1478		entropy_count = 0;
1479
1480	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1481		goto retry;
1482
1483	trace_debit_entropy(r->name, 8 * ibytes);
1484	if (ibytes &&
1485	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1486		wake_up_interruptible(&random_write_wait);
1487		kill_fasync(&fasync, SIGIO, POLL_OUT);
1488	}
1489
1490	return ibytes;
 
 
 
 
1491}
1492
1493/*
1494 * This function does the actual extraction for extract_entropy and
1495 * extract_entropy_user.
1496 *
1497 * Note: we assume that .poolwords is a multiple of 16 words.
1498 */
1499static void extract_buf(struct entropy_store *r, __u8 *out)
1500{
1501	int i;
1502	union {
1503		__u32 w[5];
1504		unsigned long l[LONGS(20)];
1505	} hash;
1506	__u32 workspace[SHA_WORKSPACE_WORDS];
1507	unsigned long flags;
1508
1509	/*
1510	 * If we have an architectural hardware random number
1511	 * generator, use it for SHA's initial vector
1512	 */
1513	sha_init(hash.w);
1514	for (i = 0; i < LONGS(20); i++) {
1515		unsigned long v;
1516		if (!arch_get_random_long(&v))
1517			break;
1518		hash.l[i] = v;
1519	}
1520
1521	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1522	spin_lock_irqsave(&r->lock, flags);
1523	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1524		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1525
1526	/*
1527	 * We mix the hash back into the pool to prevent backtracking
1528	 * attacks (where the attacker knows the state of the pool
1529	 * plus the current outputs, and attempts to find previous
1530	 * ouputs), unless the hash function can be inverted. By
1531	 * mixing at least a SHA1 worth of hash data back, we make
1532	 * brute-forcing the feedback as hard as brute-forcing the
1533	 * hash.
1534	 */
1535	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1536	spin_unlock_irqrestore(&r->lock, flags);
1537
1538	memzero_explicit(workspace, sizeof(workspace));
 
 
1539
1540	/*
1541	 * In case the hash function has some recognizable output
1542	 * pattern, we fold it in half. Thus, we always feed back
1543	 * twice as much data as we output.
1544	 */
1545	hash.w[0] ^= hash.w[3];
1546	hash.w[1] ^= hash.w[4];
1547	hash.w[2] ^= rol32(hash.w[2], 16);
1548
1549	memcpy(out, &hash, EXTRACT_SIZE);
1550	memzero_explicit(&hash, sizeof(hash));
1551}
1552
1553static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1554				size_t nbytes, int fips)
1555{
1556	ssize_t ret = 0, i;
1557	__u8 tmp[EXTRACT_SIZE];
1558	unsigned long flags;
1559
1560	while (nbytes) {
1561		extract_buf(r, tmp);
1562
1563		if (fips) {
1564			spin_lock_irqsave(&r->lock, flags);
1565			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1566				panic("Hardware RNG duplicated output!\n");
1567			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1568			spin_unlock_irqrestore(&r->lock, flags);
1569		}
1570		i = min_t(int, nbytes, EXTRACT_SIZE);
1571		memcpy(buf, tmp, i);
1572		nbytes -= i;
1573		buf += i;
1574		ret += i;
1575	}
1576
1577	/* Wipe data just returned from memory */
1578	memzero_explicit(tmp, sizeof(tmp));
1579
1580	return ret;
 
1581}
1582
1583/*
1584 * This function extracts randomness from the "entropy pool", and
1585 * returns it in a buffer.
1586 *
1587 * The min parameter specifies the minimum amount we can pull before
1588 * failing to avoid races that defeat catastrophic reseeding while the
1589 * reserved parameter indicates how much entropy we must leave in the
1590 * pool after each pull to avoid starving other readers.
1591 */
1592static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1593				 size_t nbytes, int min, int reserved)
1594{
1595	__u8 tmp[EXTRACT_SIZE];
1596	unsigned long flags;
1597
1598	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1599	if (fips_enabled) {
1600		spin_lock_irqsave(&r->lock, flags);
1601		if (!r->last_data_init) {
1602			r->last_data_init = 1;
1603			spin_unlock_irqrestore(&r->lock, flags);
1604			trace_extract_entropy(r->name, EXTRACT_SIZE,
1605					      ENTROPY_BITS(r), _RET_IP_);
1606			xfer_secondary_pool(r, EXTRACT_SIZE);
1607			extract_buf(r, tmp);
1608			spin_lock_irqsave(&r->lock, flags);
1609			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1610		}
1611		spin_unlock_irqrestore(&r->lock, flags);
1612	}
1613
1614	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1615	xfer_secondary_pool(r, nbytes);
1616	nbytes = account(r, nbytes, min, reserved);
1617
1618	return _extract_entropy(r, buf, nbytes, fips_enabled);
1619}
 
1620
1621/*
1622 * This function extracts randomness from the "entropy pool", and
1623 * returns it in a userspace buffer.
 
1624 */
1625static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1626				    size_t nbytes)
1627{
1628	ssize_t ret = 0, i;
1629	__u8 tmp[EXTRACT_SIZE];
1630	int large_request = (nbytes > 256);
1631
1632	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1633	if (!r->initialized && r->pull) {
1634		xfer_secondary_pool(r, ENTROPY_BITS(r->pull)/8);
1635		if (!r->initialized)
1636			return 0;
1637	}
1638	xfer_secondary_pool(r, nbytes);
1639	nbytes = account(r, nbytes, 0, 0);
1640
1641	while (nbytes) {
1642		if (large_request && need_resched()) {
1643			if (signal_pending(current)) {
1644				if (ret == 0)
1645					ret = -ERESTARTSYS;
1646				break;
1647			}
1648			schedule();
1649		}
1650
1651		extract_buf(r, tmp);
1652		i = min_t(int, nbytes, EXTRACT_SIZE);
1653		if (copy_to_user(buf, tmp, i)) {
1654			ret = -EFAULT;
1655			break;
1656		}
1657
1658		nbytes -= i;
1659		buf += i;
1660		ret += i;
1661	}
1662
1663	/* Wipe data just returned from memory */
1664	memzero_explicit(tmp, sizeof(tmp));
1665
1666	return ret;
1667}
 
1668
1669#define warn_unseeded_randomness(previous) \
1670	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1671
1672static void _warn_unseeded_randomness(const char *func_name, void *caller,
1673				      void **previous)
1674{
1675#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1676	const bool print_once = false;
1677#else
1678	static bool print_once __read_mostly;
1679#endif
1680
1681	if (print_once ||
1682	    crng_ready() ||
1683	    (previous && (caller == READ_ONCE(*previous))))
1684		return;
1685	WRITE_ONCE(*previous, caller);
1686#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1687	print_once = true;
1688#endif
1689	if (__ratelimit(&unseeded_warning))
1690		pr_notice("random: %s called from %pS with crng_init=%d\n",
1691			  func_name, caller, crng_init);
1692}
1693
 
 
 
1694/*
1695 * This function is the exported kernel interface.  It returns some
1696 * number of good random numbers, suitable for key generation, seeding
1697 * TCP sequence numbers, etc.  It does not rely on the hardware random
1698 * number generator.  For random bytes direct from the hardware RNG
1699 * (when available), use get_random_bytes_arch(). In order to ensure
1700 * that the randomness provided by this function is okay, the function
1701 * wait_for_random_bytes() should be called and return 0 at least once
1702 * at any point prior.
1703 */
1704static void _get_random_bytes(void *buf, int nbytes)
1705{
1706	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1707
1708	trace_get_random_bytes(nbytes, _RET_IP_);
1709
1710	while (nbytes >= CHACHA_BLOCK_SIZE) {
1711		extract_crng(buf);
1712		buf += CHACHA_BLOCK_SIZE;
1713		nbytes -= CHACHA_BLOCK_SIZE;
1714	}
1715
1716	if (nbytes > 0) {
1717		extract_crng(tmp);
1718		memcpy(buf, tmp, nbytes);
1719		crng_backtrack_protect(tmp, nbytes);
1720	} else
1721		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1722	memzero_explicit(tmp, sizeof(tmp));
1723}
 
 
 
1724
1725void get_random_bytes(void *buf, int nbytes)
1726{
1727	static void *previous;
1728
1729	warn_unseeded_randomness(&previous);
1730	_get_random_bytes(buf, nbytes);
1731}
1732EXPORT_SYMBOL(get_random_bytes);
1733
1734
1735/*
1736 * Each time the timer fires, we expect that we got an unpredictable
1737 * jump in the cycle counter. Even if the timer is running on another
1738 * CPU, the timer activity will be touching the stack of the CPU that is
1739 * generating entropy..
1740 *
1741 * Note that we don't re-arm the timer in the timer itself - we are
1742 * happy to be scheduled away, since that just makes the load more
1743 * complex, but we do not want the timer to keep ticking unless the
1744 * entropy loop is running.
1745 *
1746 * So the re-arming always happens in the entropy loop itself.
1747 */
1748static void entropy_timer(struct timer_list *t)
1749{
1750	credit_entropy_bits(&input_pool, 1);
1751}
 
 
1752
1753/*
1754 * If we have an actual cycle counter, see if we can
1755 * generate enough entropy with timing noise
1756 */
1757static void try_to_generate_entropy(void)
1758{
1759	struct {
1760		unsigned long now;
1761		struct timer_list timer;
1762	} stack;
1763
1764	stack.now = random_get_entropy();
1765
1766	/* Slow counter - or none. Don't even bother */
1767	if (stack.now == random_get_entropy())
1768		return;
1769
1770	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1771	while (!crng_ready()) {
1772		if (!timer_pending(&stack.timer))
1773			mod_timer(&stack.timer, jiffies+1);
1774		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1775		schedule();
1776		stack.now = random_get_entropy();
1777	}
1778
1779	del_timer_sync(&stack.timer);
1780	destroy_timer_on_stack(&stack.timer);
1781	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1782}
 
 
 
 
 
 
1783
1784/*
1785 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1786 * cryptographically secure random numbers. This applies to: the /dev/urandom
1787 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1788 * family of functions. Using any of these functions without first calling
1789 * this function forfeits the guarantee of security.
1790 *
1791 * Returns: 0 if the urandom pool has been seeded.
1792 *          -ERESTARTSYS if the function was interrupted by a signal.
1793 */
1794int wait_for_random_bytes(void)
1795{
1796	if (likely(crng_ready()))
1797		return 0;
1798
1799	do {
1800		int ret;
1801		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1802		if (ret)
1803			return ret > 0 ? 0 : ret;
1804
1805		try_to_generate_entropy();
1806	} while (!crng_ready());
1807
1808	return 0;
1809}
1810EXPORT_SYMBOL(wait_for_random_bytes);
1811
 
1812/*
1813 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1814 * to supply cryptographically secure random numbers. This applies to: the
1815 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1816 * ,u64,int,long} family of functions.
1817 *
1818 * Returns: true if the urandom pool has been seeded.
1819 *          false if the urandom pool has not been seeded.
1820 */
1821bool rng_is_initialized(void)
1822{
1823	return crng_ready();
 
 
 
 
 
 
 
 
 
 
 
 
1824}
1825EXPORT_SYMBOL(rng_is_initialized);
1826
1827/*
1828 * Add a callback function that will be invoked when the nonblocking
1829 * pool is initialised.
1830 *
1831 * returns: 0 if callback is successfully added
1832 *	    -EALREADY if pool is already initialised (callback not called)
1833 *	    -ENOENT if module for callback is not alive
1834 */
1835int add_random_ready_callback(struct random_ready_callback *rdy)
1836{
1837	struct module *owner;
1838	unsigned long flags;
1839	int err = -EALREADY;
 
 
 
 
 
 
 
1840
1841	if (crng_ready())
1842		return err;
 
 
 
 
1843
1844	owner = rdy->owner;
1845	if (!try_module_get(owner))
1846		return -ENOENT;
 
 
 
 
 
 
1847
1848	spin_lock_irqsave(&random_ready_list_lock, flags);
1849	if (crng_ready())
1850		goto out;
 
 
1851
1852	owner = NULL;
 
 
 
 
 
 
1853
1854	list_add(&rdy->list, &random_ready_list);
1855	err = 0;
 
1856
1857out:
1858	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1859
1860	module_put(owner);
 
1861
1862	return err;
 
 
 
 
1863}
1864EXPORT_SYMBOL(add_random_ready_callback);
 
 
 
 
 
 
1865
1866/*
1867 * Delete a previously registered readiness callback function.
 
 
 
 
1868 */
1869void del_random_ready_callback(struct random_ready_callback *rdy)
1870{
1871	unsigned long flags;
1872	struct module *owner = NULL;
 
1873
1874	spin_lock_irqsave(&random_ready_list_lock, flags);
1875	if (!list_empty(&rdy->list)) {
1876		list_del_init(&rdy->list);
1877		owner = rdy->owner;
 
 
 
 
 
 
 
1878	}
1879	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1880
1881	module_put(owner);
1882}
1883EXPORT_SYMBOL(del_random_ready_callback);
1884
1885/*
1886 * This function will use the architecture-specific hardware random
1887 * number generator if it is available.  The arch-specific hw RNG will
1888 * almost certainly be faster than what we can do in software, but it
1889 * is impossible to verify that it is implemented securely (as
1890 * opposed, to, say, the AES encryption of a sequence number using a
1891 * key known by the NSA).  So it's useful if we need the speed, but
1892 * only if we're willing to trust the hardware manufacturer not to
1893 * have put in a back door.
1894 *
1895 * Return number of bytes filled in.
1896 */
1897int __must_check get_random_bytes_arch(void *buf, int nbytes)
1898{
1899	int left = nbytes;
1900	char *p = buf;
1901
1902	trace_get_random_bytes_arch(left, _RET_IP_);
1903	while (left) {
1904		unsigned long v;
1905		int chunk = min_t(int, left, sizeof(unsigned long));
1906
1907		if (!arch_get_random_long(&v))
1908			break;
1909
1910		memcpy(p, &v, chunk);
1911		p += chunk;
1912		left -= chunk;
1913	}
 
 
 
 
 
 
1914
1915	return nbytes - left;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1916}
1917EXPORT_SYMBOL(get_random_bytes_arch);
1918
1919/*
1920 * init_std_data - initialize pool with system data
1921 *
1922 * @r: pool to initialize
1923 *
1924 * This function clears the pool's entropy count and mixes some system
1925 * data into the pool to prepare it for use. The pool is not cleared
1926 * as that can only decrease the entropy in the pool.
1927 */
1928static void __init init_std_data(struct entropy_store *r)
1929{
1930	int i;
1931	ktime_t now = ktime_get_real();
1932	unsigned long rv;
1933
1934	r->last_pulled = jiffies;
1935	mix_pool_bytes(r, &now, sizeof(now));
1936	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1937		if (!arch_get_random_seed_long(&rv) &&
1938		    !arch_get_random_long(&rv))
1939			rv = random_get_entropy();
1940		mix_pool_bytes(r, &rv, sizeof(rv));
1941	}
1942	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1943}
1944
1945/*
1946 * Note that setup_arch() may call add_device_randomness()
1947 * long before we get here. This allows seeding of the pools
1948 * with some platform dependent data very early in the boot
1949 * process. But it limits our options here. We must use
1950 * statically allocated structures that already have all
1951 * initializations complete at compile time. We should also
1952 * take care not to overwrite the precious per platform data
1953 * we were given.
1954 */
1955int __init rand_initialize(void)
1956{
1957	init_std_data(&input_pool);
1958	init_std_data(&blocking_pool);
1959	crng_initialize(&primary_crng);
1960	crng_global_init_time = jiffies;
1961	if (ratelimit_disable) {
1962		urandom_warning.interval = 0;
1963		unseeded_warning.interval = 0;
1964	}
1965	return 0;
1966}
 
1967
1968#ifdef CONFIG_BLOCK
1969void rand_initialize_disk(struct gendisk *disk)
 
 
 
 
 
 
 
 
 
1970{
1971	struct timer_rand_state *state;
1972
1973	/*
1974	 * If kzalloc returns null, we just won't use that entropy
1975	 * source.
1976	 */
1977	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1978	if (state) {
1979		state->last_time = INITIAL_JIFFIES;
1980		disk->random = state;
1981	}
1982}
1983#endif
1984
1985static ssize_t
1986_random_read(int nonblock, char __user *buf, size_t nbytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987{
1988	ssize_t n;
 
1989
1990	if (nbytes == 0)
1991		return 0;
 
 
1992
1993	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1994	while (1) {
1995		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1996		if (n < 0)
1997			return n;
1998		trace_random_read(n*8, (nbytes-n)*8,
1999				  ENTROPY_BITS(&blocking_pool),
2000				  ENTROPY_BITS(&input_pool));
2001		if (n > 0)
2002			return n;
 
 
2003
2004		/* Pool is (near) empty.  Maybe wait and retry. */
2005		if (nonblock)
2006			return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2007
2008		wait_event_interruptible(random_read_wait,
2009		    blocking_pool.initialized &&
2010		    (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits));
2011		if (signal_pending(current))
2012			return -ERESTARTSYS;
 
 
 
 
 
2013	}
2014}
2015
2016static ssize_t
2017random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
2018{
2019	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
2020}
2021
2022static ssize_t
2023urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024{
2025	unsigned long flags;
2026	static int maxwarn = 10;
2027	int ret;
2028
2029	if (!crng_ready() && maxwarn > 0) {
2030		maxwarn--;
2031		if (__ratelimit(&urandom_warning))
2032			printk(KERN_NOTICE "random: %s: uninitialized "
2033			       "urandom read (%zd bytes read)\n",
2034			       current->comm, nbytes);
2035		spin_lock_irqsave(&primary_crng.lock, flags);
2036		crng_init_cnt = 0;
2037		spin_unlock_irqrestore(&primary_crng.lock, flags);
2038	}
2039	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
2040	ret = extract_crng_user(buf, nbytes);
2041	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
2042	return ret;
 
 
 
 
 
 
 
 
2043}
2044
2045static __poll_t
2046random_poll(struct file *file, poll_table * wait)
2047{
2048	__poll_t mask;
2049
2050	poll_wait(file, &random_read_wait, wait);
2051	poll_wait(file, &random_write_wait, wait);
2052	mask = 0;
2053	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
2054		mask |= EPOLLIN | EPOLLRDNORM;
2055	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
2056		mask |= EPOLLOUT | EPOLLWRNORM;
2057	return mask;
2058}
2059
2060static int
2061write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
2062{
2063	size_t bytes;
2064	__u32 t, buf[16];
2065	const char __user *p = buffer;
2066
2067	while (count > 0) {
2068		int b, i = 0;
2069
2070		bytes = min(count, sizeof(buf));
2071		if (copy_from_user(&buf, p, bytes))
2072			return -EFAULT;
 
 
 
2073
2074		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
2075			if (!arch_get_random_int(&t))
 
2076				break;
2077			buf[i] ^= t;
2078		}
 
2079
2080		count -= bytes;
2081		p += bytes;
 
2082
2083		mix_pool_bytes(r, buf, bytes);
2084		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085	}
2086
2087	return 0;
2088}
2089
2090static ssize_t random_write(struct file *file, const char __user *buffer,
2091			    size_t count, loff_t *ppos)
2092{
2093	size_t ret;
2094
2095	ret = write_pool(&input_pool, buffer, count);
2096	if (ret)
2097		return ret;
 
2098
2099	return (ssize_t)count;
 
 
 
2100}
2101
2102static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2103{
2104	int size, ent_count;
2105	int __user *p = (int __user *)arg;
2106	int retval;
2107
2108	switch (cmd) {
2109	case RNDGETENTCNT:
2110		/* inherently racy, no point locking */
2111		ent_count = ENTROPY_BITS(&input_pool);
2112		if (put_user(ent_count, p))
2113			return -EFAULT;
2114		return 0;
2115	case RNDADDTOENTCNT:
2116		if (!capable(CAP_SYS_ADMIN))
2117			return -EPERM;
2118		if (get_user(ent_count, p))
2119			return -EFAULT;
2120		return credit_entropy_bits_safe(&input_pool, ent_count);
2121	case RNDADDENTROPY:
 
 
 
 
 
 
 
2122		if (!capable(CAP_SYS_ADMIN))
2123			return -EPERM;
2124		if (get_user(ent_count, p++))
2125			return -EFAULT;
2126		if (ent_count < 0)
2127			return -EINVAL;
2128		if (get_user(size, p++))
2129			return -EFAULT;
2130		retval = write_pool(&input_pool, (const char __user *)p,
2131				    size);
2132		if (retval < 0)
2133			return retval;
2134		return credit_entropy_bits_safe(&input_pool, ent_count);
 
 
 
 
 
 
 
2135	case RNDZAPENTCNT:
2136	case RNDCLEARPOOL:
2137		/*
2138		 * Clear the entropy pool counters. We no longer clear
2139		 * the entropy pool, as that's silly.
2140		 */
2141		if (!capable(CAP_SYS_ADMIN))
2142			return -EPERM;
2143		input_pool.entropy_count = 0;
2144		blocking_pool.entropy_count = 0;
2145		return 0;
2146	case RNDRESEEDCRNG:
2147		if (!capable(CAP_SYS_ADMIN))
2148			return -EPERM;
2149		if (crng_init < 2)
2150			return -ENODATA;
2151		crng_reseed(&primary_crng, NULL);
2152		crng_global_init_time = jiffies - 1;
2153		return 0;
2154	default:
2155		return -EINVAL;
2156	}
2157}
2158
2159static int random_fasync(int fd, struct file *filp, int on)
2160{
2161	return fasync_helper(fd, filp, on, &fasync);
2162}
2163
2164const struct file_operations random_fops = {
2165	.read  = random_read,
2166	.write = random_write,
2167	.poll  = random_poll,
2168	.unlocked_ioctl = random_ioctl,
 
2169	.fasync = random_fasync,
2170	.llseek = noop_llseek,
 
 
2171};
2172
2173const struct file_operations urandom_fops = {
2174	.read  = urandom_read,
2175	.write = random_write,
2176	.unlocked_ioctl = random_ioctl,
 
2177	.fasync = random_fasync,
2178	.llseek = noop_llseek,
 
 
2179};
2180
2181SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2182		unsigned int, flags)
2183{
2184	int ret;
2185
2186	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2187		return -EINVAL;
2188
2189	if (count > INT_MAX)
2190		count = INT_MAX;
2191
2192	if (flags & GRND_RANDOM)
2193		return _random_read(flags & GRND_NONBLOCK, buf, count);
2194
2195	if (!crng_ready()) {
2196		if (flags & GRND_NONBLOCK)
2197			return -EAGAIN;
2198		ret = wait_for_random_bytes();
2199		if (unlikely(ret))
2200			return ret;
2201	}
2202	return urandom_read(NULL, buf, count, NULL);
2203}
2204
2205/********************************************************************
2206 *
2207 * Sysctl interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208 *
2209 ********************************************************************/
2210
2211#ifdef CONFIG_SYSCTL
2212
2213#include <linux/sysctl.h>
2214
2215static int min_read_thresh = 8, min_write_thresh;
2216static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2217static int max_write_thresh = INPUT_POOL_WORDS * 32;
2218static int random_min_urandom_seed = 60;
2219static char sysctl_bootid[16];
2220
2221/*
2222 * This function is used to return both the bootid UUID, and random
2223 * UUID.  The difference is in whether table->data is NULL; if it is,
2224 * then a new UUID is generated and returned to the user.
2225 *
2226 * If the user accesses this via the proc interface, the UUID will be
2227 * returned as an ASCII string in the standard UUID format; if via the
2228 * sysctl system call, as 16 bytes of binary data.
2229 */
2230static int proc_do_uuid(struct ctl_table *table, int write,
2231			void __user *buffer, size_t *lenp, loff_t *ppos)
2232{
2233	struct ctl_table fake_table;
2234	unsigned char buf[64], tmp_uuid[16], *uuid;
 
 
 
 
 
 
 
2235
2236	uuid = table->data;
2237	if (!uuid) {
2238		uuid = tmp_uuid;
2239		generate_random_uuid(uuid);
2240	} else {
2241		static DEFINE_SPINLOCK(bootid_spinlock);
2242
2243		spin_lock(&bootid_spinlock);
2244		if (!uuid[8])
2245			generate_random_uuid(uuid);
2246		spin_unlock(&bootid_spinlock);
2247	}
2248
2249	sprintf(buf, "%pU", uuid);
2250
2251	fake_table.data = buf;
2252	fake_table.maxlen = sizeof(buf);
2253
2254	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2255}
2256
2257/*
2258 * Return entropy available scaled to integral bits
2259 */
2260static int proc_do_entropy(struct ctl_table *table, int write,
2261			   void __user *buffer, size_t *lenp, loff_t *ppos)
2262{
2263	struct ctl_table fake_table;
2264	int entropy_count;
2265
2266	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2267
2268	fake_table.data = &entropy_count;
2269	fake_table.maxlen = sizeof(entropy_count);
2270
2271	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2272}
2273
2274static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2275extern struct ctl_table random_table[];
2276struct ctl_table random_table[] = {
2277	{
2278		.procname	= "poolsize",
2279		.data		= &sysctl_poolsize,
2280		.maxlen		= sizeof(int),
2281		.mode		= 0444,
2282		.proc_handler	= proc_dointvec,
2283	},
2284	{
2285		.procname	= "entropy_avail",
 
2286		.maxlen		= sizeof(int),
2287		.mode		= 0444,
2288		.proc_handler	= proc_do_entropy,
2289		.data		= &input_pool.entropy_count,
2290	},
2291	{
2292		.procname	= "read_wakeup_threshold",
2293		.data		= &random_read_wakeup_bits,
2294		.maxlen		= sizeof(int),
2295		.mode		= 0644,
2296		.proc_handler	= proc_dointvec_minmax,
2297		.extra1		= &min_read_thresh,
2298		.extra2		= &max_read_thresh,
2299	},
2300	{
2301		.procname	= "write_wakeup_threshold",
2302		.data		= &random_write_wakeup_bits,
2303		.maxlen		= sizeof(int),
2304		.mode		= 0644,
2305		.proc_handler	= proc_dointvec_minmax,
2306		.extra1		= &min_write_thresh,
2307		.extra2		= &max_write_thresh,
2308	},
2309	{
2310		.procname	= "urandom_min_reseed_secs",
2311		.data		= &random_min_urandom_seed,
2312		.maxlen		= sizeof(int),
2313		.mode		= 0644,
2314		.proc_handler	= proc_dointvec,
2315	},
2316	{
2317		.procname	= "boot_id",
2318		.data		= &sysctl_bootid,
2319		.maxlen		= 16,
2320		.mode		= 0444,
2321		.proc_handler	= proc_do_uuid,
2322	},
2323	{
2324		.procname	= "uuid",
2325		.maxlen		= 16,
2326		.mode		= 0444,
2327		.proc_handler	= proc_do_uuid,
2328	},
2329#ifdef ADD_INTERRUPT_BENCH
2330	{
2331		.procname	= "add_interrupt_avg_cycles",
2332		.data		= &avg_cycles,
2333		.maxlen		= sizeof(avg_cycles),
2334		.mode		= 0444,
2335		.proc_handler	= proc_doulongvec_minmax,
2336	},
2337	{
2338		.procname	= "add_interrupt_avg_deviation",
2339		.data		= &avg_deviation,
2340		.maxlen		= sizeof(avg_deviation),
2341		.mode		= 0444,
2342		.proc_handler	= proc_doulongvec_minmax,
2343	},
2344#endif
2345	{ }
2346};
2347#endif 	/* CONFIG_SYSCTL */
2348
2349struct batched_entropy {
2350	union {
2351		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2352		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2353	};
2354	unsigned int position;
2355	spinlock_t batch_lock;
2356};
2357
2358/*
2359 * Get a random word for internal kernel use only. The quality of the random
2360 * number is either as good as RDRAND or as good as /dev/urandom, with the
2361 * goal of being quite fast and not depleting entropy. In order to ensure
2362 * that the randomness provided by this function is okay, the function
2363 * wait_for_random_bytes() should be called and return 0 at least once
2364 * at any point prior.
2365 */
2366static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2367	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2368};
2369
2370u64 get_random_u64(void)
2371{
2372	u64 ret;
2373	unsigned long flags;
2374	struct batched_entropy *batch;
2375	static void *previous;
2376
2377#if BITS_PER_LONG == 64
2378	if (arch_get_random_long((unsigned long *)&ret))
2379		return ret;
2380#else
2381	if (arch_get_random_long((unsigned long *)&ret) &&
2382	    arch_get_random_long((unsigned long *)&ret + 1))
2383	    return ret;
2384#endif
2385
2386	warn_unseeded_randomness(&previous);
2387
2388	batch = raw_cpu_ptr(&batched_entropy_u64);
2389	spin_lock_irqsave(&batch->batch_lock, flags);
2390	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2391		extract_crng((u8 *)batch->entropy_u64);
2392		batch->position = 0;
2393	}
2394	ret = batch->entropy_u64[batch->position++];
2395	spin_unlock_irqrestore(&batch->batch_lock, flags);
2396	return ret;
2397}
2398EXPORT_SYMBOL(get_random_u64);
2399
2400static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2401	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2402};
2403u32 get_random_u32(void)
2404{
2405	u32 ret;
2406	unsigned long flags;
2407	struct batched_entropy *batch;
2408	static void *previous;
2409
2410	if (arch_get_random_int(&ret))
2411		return ret;
2412
2413	warn_unseeded_randomness(&previous);
2414
2415	batch = raw_cpu_ptr(&batched_entropy_u32);
2416	spin_lock_irqsave(&batch->batch_lock, flags);
2417	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2418		extract_crng((u8 *)batch->entropy_u32);
2419		batch->position = 0;
2420	}
2421	ret = batch->entropy_u32[batch->position++];
2422	spin_unlock_irqrestore(&batch->batch_lock, flags);
2423	return ret;
2424}
2425EXPORT_SYMBOL(get_random_u32);
2426
2427/* It's important to invalidate all potential batched entropy that might
2428 * be stored before the crng is initialized, which we can do lazily by
2429 * simply resetting the counter to zero so that it's re-extracted on the
2430 * next usage. */
2431static void invalidate_batched_entropy(void)
2432{
2433	int cpu;
2434	unsigned long flags;
2435
2436	for_each_possible_cpu (cpu) {
2437		struct batched_entropy *batched_entropy;
2438
2439		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2440		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2441		batched_entropy->position = 0;
2442		spin_unlock(&batched_entropy->batch_lock);
2443
2444		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2445		spin_lock(&batched_entropy->batch_lock);
2446		batched_entropy->position = 0;
2447		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2448	}
2449}
2450
2451/**
2452 * randomize_page - Generate a random, page aligned address
2453 * @start:	The smallest acceptable address the caller will take.
2454 * @range:	The size of the area, starting at @start, within which the
2455 *		random address must fall.
2456 *
2457 * If @start + @range would overflow, @range is capped.
2458 *
2459 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2460 * @start was already page aligned.  We now align it regardless.
2461 *
2462 * Return: A page aligned address within [start, start + range).  On error,
2463 * @start is returned.
2464 */
2465unsigned long
2466randomize_page(unsigned long start, unsigned long range)
2467{
2468	if (!PAGE_ALIGNED(start)) {
2469		range -= PAGE_ALIGN(start) - start;
2470		start = PAGE_ALIGN(start);
2471	}
2472
2473	if (start > ULONG_MAX - range)
2474		range = ULONG_MAX - start;
2475
2476	range >>= PAGE_SHIFT;
2477
2478	if (range == 0)
2479		return start;
2480
2481	return start + (get_random_long() % range << PAGE_SHIFT);
2482}
2483
2484/* Interface for in-kernel drivers of true hardware RNGs.
2485 * Those devices may produce endless random bits and will be throttled
2486 * when our pool is full.
2487 */
2488void add_hwgenerator_randomness(const char *buffer, size_t count,
2489				size_t entropy)
2490{
2491	struct entropy_store *poolp = &input_pool;
2492
2493	if (unlikely(crng_init == 0)) {
2494		crng_fast_load(buffer, count);
2495		return;
2496	}
2497
2498	/* Suspend writing if we're above the trickle threshold.
2499	 * We'll be woken up again once below random_write_wakeup_thresh,
2500	 * or when the calling thread is about to terminate.
2501	 */
2502	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2503			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2504	mix_pool_bytes(poolp, buffer, count);
2505	credit_entropy_bits(poolp, entropy);
2506}
2507EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2508
2509/* Handle random seed passed by bootloader.
2510 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2511 * it would be regarded as device data.
2512 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2513 */
2514void add_bootloader_randomness(const void *buf, unsigned int size)
2515{
2516	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2517		add_hwgenerator_randomness(buf, size, size * 8);
2518	else
2519		add_device_randomness(buf, size);
2520}
2521EXPORT_SYMBOL_GPL(add_bootloader_randomness);
 
v6.13.7
   1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
   2/*
   3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 
 
 
 
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
   6 *
   7 * This driver produces cryptographically secure pseudorandom data. It is divided
   8 * into roughly six sections, each with a section header:
   9 *
  10 *   - Initialization and readiness waiting.
  11 *   - Fast key erasure RNG, the "crng".
  12 *   - Entropy accumulation and extraction routines.
  13 *   - Entropy collection routines.
  14 *   - Userspace reader/writer interfaces.
  15 *   - Sysctl interface.
  16 *
  17 * The high level overview is that there is one input pool, into which
  18 * various pieces of data are hashed. Prior to initialization, some of that
  19 * data is then "credited" as having a certain number of bits of entropy.
  20 * When enough bits of entropy are available, the hash is finalized and
  21 * handed as a key to a stream cipher that expands it indefinitely for
  22 * various consumers. This key is periodically refreshed as the various
  23 * entropy collectors, described below, add data to the input pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/utsname.h>
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/major.h>
  32#include <linux/string.h>
  33#include <linux/fcntl.h>
  34#include <linux/slab.h>
  35#include <linux/random.h>
  36#include <linux/poll.h>
  37#include <linux/init.h>
  38#include <linux/fs.h>
  39#include <linux/blkdev.h>
  40#include <linux/interrupt.h>
  41#include <linux/mm.h>
  42#include <linux/nodemask.h>
  43#include <linux/spinlock.h>
  44#include <linux/kthread.h>
  45#include <linux/percpu.h>
 
 
  46#include <linux/ptrace.h>
  47#include <linux/workqueue.h>
  48#include <linux/irq.h>
  49#include <linux/ratelimit.h>
  50#include <linux/syscalls.h>
  51#include <linux/completion.h>
  52#include <linux/uuid.h>
  53#include <linux/uaccess.h>
  54#include <linux/suspend.h>
  55#include <linux/siphash.h>
  56#include <linux/sched/isolation.h>
  57#include <crypto/chacha.h>
  58#include <crypto/blake2s.h>
  59#ifdef CONFIG_VDSO_GETRANDOM
  60#include <vdso/getrandom.h>
  61#include <vdso/datapage.h>
  62#include <vdso/vsyscall.h>
  63#endif
  64#include <asm/archrandom.h>
  65#include <asm/processor.h>
 
  66#include <asm/irq.h>
  67#include <asm/irq_regs.h>
  68#include <asm/io.h>
  69
  70/*********************************************************************
  71 *
  72 * Initialization and readiness waiting.
  73 *
  74 * Much of the RNG infrastructure is devoted to various dependencies
  75 * being able to wait until the RNG has collected enough entropy and
  76 * is ready for safe consumption.
  77 *
  78 *********************************************************************/
  79
  80/*
  81 * crng_init is protected by base_crng->lock, and only increases
  82 * its value (from empty->early->ready).
  83 */
  84static enum {
  85	CRNG_EMPTY = 0, /* Little to no entropy collected */
  86	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
  87	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
  88} crng_init __read_mostly = CRNG_EMPTY;
  89static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
  90#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
  91/* Various types of waiters for crng_init->CRNG_READY transition. */
  92static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  93static struct fasync_struct *fasync;
  94static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95
  96/* Control how we warn userspace. */
  97static struct ratelimit_state urandom_warning =
  98	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
  99static int ratelimit_disable __read_mostly =
 100	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
 101module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 102MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 103
 104/*
 105 * Returns whether or not the input pool has been seeded and thus guaranteed
 106 * to supply cryptographically secure random numbers. This applies to: the
 107 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
 108 * u16,u32,u64,long} family of functions.
 109 *
 110 * Returns: true if the input pool has been seeded.
 111 *          false if the input pool has not been seeded.
 112 */
 113bool rng_is_initialized(void)
 114{
 115	return crng_ready();
 116}
 117EXPORT_SYMBOL(rng_is_initialized);
 118
 119static void __cold crng_set_ready(struct work_struct *work)
 120{
 121	static_branch_enable(&crng_is_ready);
 122}
 123
 124/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
 125static void try_to_generate_entropy(void);
 
 
 
 126
 127/*
 128 * Wait for the input pool to be seeded and thus guaranteed to supply
 129 * cryptographically secure random numbers. This applies to: the /dev/urandom
 130 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
 131 * long} family of functions. Using any of these functions without first
 132 * calling this function forfeits the guarantee of security.
 133 *
 134 * Returns: 0 if the input pool has been seeded.
 135 *          -ERESTARTSYS if the function was interrupted by a signal.
 136 */
 137int wait_for_random_bytes(void)
 138{
 139	while (!crng_ready()) {
 140		int ret;
 141
 142		try_to_generate_entropy();
 143		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
 144		if (ret)
 145			return ret > 0 ? 0 : ret;
 146	}
 147	return 0;
 148}
 149EXPORT_SYMBOL(wait_for_random_bytes);
 150
 151/*
 152 * Add a callback function that will be invoked when the crng is initialised,
 153 * or immediately if it already has been. Only use this is you are absolutely
 154 * sure it is required. Most users should instead be able to test
 155 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 156 */
 157int __cold execute_with_initialized_rng(struct notifier_block *nb)
 158{
 159	unsigned long flags;
 160	int ret = 0;
 
 
 
 
 
 
 
 
 161
 162	spin_lock_irqsave(&random_ready_notifier.lock, flags);
 163	if (crng_ready())
 164		nb->notifier_call(nb, 0, NULL);
 165	else
 166		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
 167	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
 168	return ret;
 169}
 170
 171#define warn_unseeded_randomness() \
 172	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
 173		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
 174				__func__, (void *)_RET_IP_, crng_init)
 175
 
 
 176
 177/*********************************************************************
 178 *
 179 * Fast key erasure RNG, the "crng".
 
 180 *
 181 * These functions expand entropy from the entropy extractor into
 182 * long streams for external consumption using the "fast key erasure"
 183 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
 184 *
 185 * There are a few exported interfaces for use by other drivers:
 186 *
 187 *	void get_random_bytes(void *buf, size_t len)
 188 *	u8 get_random_u8()
 189 *	u16 get_random_u16()
 190 *	u32 get_random_u32()
 191 *	u32 get_random_u32_below(u32 ceil)
 192 *	u32 get_random_u32_above(u32 floor)
 193 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
 194 *	u64 get_random_u64()
 195 *	unsigned long get_random_long()
 196 *
 197 * These interfaces will return the requested number of random bytes
 198 * into the given buffer or as a return value. This is equivalent to
 199 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 200 * functions may be higher performance for one-off random integers,
 201 * because they do a bit of buffering and do not invoke reseeding
 202 * until the buffer is emptied.
 203 *
 204 *********************************************************************/
 205
 206enum {
 207	CRNG_RESEED_START_INTERVAL = HZ,
 208	CRNG_RESEED_INTERVAL = 60 * HZ
 209};
 
 
 
 
 210
 211static struct {
 212	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
 213	unsigned long generation;
 214	spinlock_t lock;
 215} base_crng = {
 216	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
 
 
 
 
 217};
 218
 219struct crng {
 220	u8 key[CHACHA_KEY_SIZE];
 221	unsigned long generation;
 222	local_lock_t lock;
 
 
 
 
 
 
 
 
 
 
 
 223};
 224
 225static DEFINE_PER_CPU(struct crng, crngs) = {
 226	.generation = ULONG_MAX,
 227	.lock = INIT_LOCAL_LOCK(crngs.lock),
 
 
 
 
 
 228};
 229
 230/*
 231 * Return the interval until the next reseeding, which is normally
 232 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 233 * proportional to the uptime.
 234 */
 235static unsigned int crng_reseed_interval(void)
 236{
 237	static bool early_boot = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239	if (unlikely(READ_ONCE(early_boot))) {
 240		time64_t uptime = ktime_get_seconds();
 241		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
 242			WRITE_ONCE(early_boot, false);
 243		else
 244			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
 245				     (unsigned int)uptime / 2 * HZ);
 246	}
 247	return CRNG_RESEED_INTERVAL;
 
 
 248}
 249
 250/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
 251static void extract_entropy(void *buf, size_t len);
 
 
 
 
 252
 253/* This extracts a new crng key from the input pool. */
 254static void crng_reseed(struct work_struct *work)
 255{
 256	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
 257	unsigned long flags;
 258	unsigned long next_gen;
 259	u8 key[CHACHA_KEY_SIZE];
 260
 261	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
 262	if (likely(system_unbound_wq))
 263		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
 
 
 264
 265	extract_entropy(key, sizeof(key));
 266
 267	/*
 268	 * We copy the new key into the base_crng, overwriting the old one,
 269	 * and update the generation counter. We avoid hitting ULONG_MAX,
 270	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
 271	 * forces new CPUs that come online to always initialize.
 272	 */
 273	spin_lock_irqsave(&base_crng.lock, flags);
 274	memcpy(base_crng.key, key, sizeof(base_crng.key));
 275	next_gen = base_crng.generation + 1;
 276	if (next_gen == ULONG_MAX)
 277		++next_gen;
 278	WRITE_ONCE(base_crng.generation, next_gen);
 279#ifdef CONFIG_VDSO_GETRANDOM
 280	/* base_crng.generation's invalid value is ULONG_MAX, while
 281	 * _vdso_rng_data.generation's invalid value is 0, so add one to the
 282	 * former to arrive at the latter. Use smp_store_release so that this
 283	 * is ordered with the write above to base_crng.generation. Pairs with
 284	 * the smp_rmb() before the syscall in the vDSO code.
 285	 *
 286	 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit
 287	 * operations are not supported on those architectures. This is safe
 288	 * because base_crng.generation is a 32-bit value. On big-endian
 289	 * architectures it will be stored in the upper 32 bits, but that's okay
 290	 * because the vDSO side only checks whether the value changed, without
 291	 * actually using or interpreting the value.
 292	 */
 293	smp_store_release((unsigned long *)&__arch_get_k_vdso_rng_data()->generation, next_gen + 1);
 294#endif
 295	if (!static_branch_likely(&crng_is_ready))
 296		crng_init = CRNG_READY;
 297	spin_unlock_irqrestore(&base_crng.lock, flags);
 298	memzero_explicit(key, sizeof(key));
 299}
 300
 301/*
 302 * This generates a ChaCha block using the provided key, and then
 303 * immediately overwrites that key with half the block. It returns
 304 * the resultant ChaCha state to the user, along with the second
 305 * half of the block containing 32 bytes of random data that may
 306 * be used; random_data_len may not be greater than 32.
 307 *
 308 * The returned ChaCha state contains within it a copy of the old
 309 * key value, at index 4, so the state should always be zeroed out
 310 * immediately after using in order to maintain forward secrecy.
 311 * If the state cannot be erased in a timely manner, then it is
 312 * safer to set the random_data parameter to &chacha_state[4] so
 313 * that this function overwrites it before returning.
 314 */
 315static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
 316				  u32 chacha_state[CHACHA_STATE_WORDS],
 317				  u8 *random_data, size_t random_data_len)
 318{
 319	u8 first_block[CHACHA_BLOCK_SIZE];
 
 
 
 
 
 
 
 
 
 320
 321	BUG_ON(random_data_len > 32);
 
 
 322
 323	chacha_init_consts(chacha_state);
 324	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
 325	memset(&chacha_state[12], 0, sizeof(u32) * 4);
 326	chacha20_block(chacha_state, first_block);
 327
 328	memcpy(key, first_block, CHACHA_KEY_SIZE);
 329	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
 330	memzero_explicit(first_block, sizeof(first_block));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 331}
 332
 333/*
 334 * This function returns a ChaCha state that you may use for generating
 335 * random data. It also returns up to 32 bytes on its own of random data
 336 * that may be used; random_data_len may not be greater than 32.
 337 */
 338static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
 339			    u8 *random_data, size_t random_data_len)
 340{
 341	unsigned long flags;
 342	struct crng *crng;
 
 
 
 
 343
 344	BUG_ON(random_data_len > 32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345
 346	/*
 347	 * For the fast path, we check whether we're ready, unlocked first, and
 348	 * then re-check once locked later. In the case where we're really not
 349	 * ready, we do fast key erasure with the base_crng directly, extracting
 350	 * when crng_init is CRNG_EMPTY.
 351	 */
 352	if (!crng_ready()) {
 353		bool ready;
 354
 355		spin_lock_irqsave(&base_crng.lock, flags);
 356		ready = crng_ready();
 357		if (!ready) {
 358			if (crng_init == CRNG_EMPTY)
 359				extract_entropy(base_crng.key, sizeof(base_crng.key));
 360			crng_fast_key_erasure(base_crng.key, chacha_state,
 361					      random_data, random_data_len);
 
 
 362		}
 363		spin_unlock_irqrestore(&base_crng.lock, flags);
 364		if (!ready)
 
 
 
 365			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366	}
 
 367
 368	local_lock_irqsave(&crngs.lock, flags);
 369	crng = raw_cpu_ptr(&crngs);
 
 
 
 
 370
 371	/*
 372	 * If our per-cpu crng is older than the base_crng, then it means
 373	 * somebody reseeded the base_crng. In that case, we do fast key
 374	 * erasure on the base_crng, and use its output as the new key
 375	 * for our per-cpu crng. This brings us up to date with base_crng.
 376	 */
 377	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
 378		spin_lock(&base_crng.lock);
 379		crng_fast_key_erasure(base_crng.key, chacha_state,
 380				      crng->key, sizeof(crng->key));
 381		crng->generation = base_crng.generation;
 382		spin_unlock(&base_crng.lock);
 383	}
 384
 385	/*
 386	 * Finally, when we've made it this far, our per-cpu crng has an up
 387	 * to date key, and we can do fast key erasure with it to produce
 388	 * some random data and a ChaCha state for the caller. All other
 389	 * branches of this function are "unlikely", so most of the time we
 390	 * should wind up here immediately.
 391	 */
 392	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
 393	local_unlock_irqrestore(&crngs.lock, flags);
 394}
 395
 396static void _get_random_bytes(void *buf, size_t len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397{
 398	u32 chacha_state[CHACHA_STATE_WORDS];
 399	u8 tmp[CHACHA_BLOCK_SIZE];
 400	size_t first_block_len;
 401
 402	if (!len)
 403		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404
 405	first_block_len = min_t(size_t, 32, len);
 406	crng_make_state(chacha_state, buf, first_block_len);
 407	len -= first_block_len;
 408	buf += first_block_len;
 409
 410	while (len) {
 411		if (len < CHACHA_BLOCK_SIZE) {
 412			chacha20_block(chacha_state, tmp);
 413			memcpy(buf, tmp, len);
 414			memzero_explicit(tmp, sizeof(tmp));
 415			break;
 416		}
 417
 418		chacha20_block(chacha_state, buf);
 419		if (unlikely(chacha_state[12] == 0))
 420			++chacha_state[13];
 421		len -= CHACHA_BLOCK_SIZE;
 422		buf += CHACHA_BLOCK_SIZE;
 
 
 
 
 
 
 
 
 423	}
 
 
 
 424
 425	memzero_explicit(chacha_state, sizeof(chacha_state));
 
 
 426}
 
 
 
 427
 428/*
 429 * This returns random bytes in arbitrary quantities. The quality of the
 430 * random bytes is good as /dev/urandom. In order to ensure that the
 431 * randomness provided by this function is okay, the function
 432 * wait_for_random_bytes() should be called and return 0 at least once
 433 * at any point prior.
 434 */
 435void get_random_bytes(void *buf, size_t len)
 436{
 437	warn_unseeded_randomness();
 438	_get_random_bytes(buf, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439}
 440EXPORT_SYMBOL(get_random_bytes);
 441
 442static ssize_t get_random_bytes_user(struct iov_iter *iter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443{
 444	u32 chacha_state[CHACHA_STATE_WORDS];
 445	u8 block[CHACHA_BLOCK_SIZE];
 446	size_t ret = 0, copied;
 
 
 
 447
 448	if (unlikely(!iov_iter_count(iter)))
 
 
 
 449		return 0;
 450
 451	/*
 452	 * Immediately overwrite the ChaCha key at index 4 with random
 453	 * bytes, in case userspace causes copy_to_iter() below to sleep
 454	 * forever, so that we still retain forward secrecy in that case.
 455	 */
 456	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
 457	/*
 458	 * However, if we're doing a read of len <= 32, we don't need to
 459	 * use chacha_state after, so we can simply return those bytes to
 460	 * the user directly.
 461	 */
 462	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
 463		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
 464		goto out_zero_chacha;
 465	}
 
 
 466
 467	for (;;) {
 468		chacha20_block(chacha_state, block);
 469		if (unlikely(chacha_state[12] == 0))
 470			++chacha_state[13];
 471
 472		copied = copy_to_iter(block, sizeof(block), iter);
 473		ret += copied;
 474		if (!iov_iter_count(iter) || copied != sizeof(block))
 475			break;
 476
 477		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
 478		if (ret % PAGE_SIZE == 0) {
 479			if (signal_pending(current))
 480				break;
 481			cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482		}
 483	}
 
 484
 485	memzero_explicit(block, sizeof(block));
 486out_zero_chacha:
 487	memzero_explicit(chacha_state, sizeof(chacha_state));
 488	return ret ? ret : -EFAULT;
 489}
 490
 491/*
 492 * Batched entropy returns random integers. The quality of the random
 493 * number is good as /dev/urandom. In order to ensure that the randomness
 494 * provided by this function is okay, the function wait_for_random_bytes()
 495 * should be called and return 0 at least once at any point prior.
 496 */
 497
 498#define DEFINE_BATCHED_ENTROPY(type)						\
 499struct batch_ ##type {								\
 500	/*									\
 501	 * We make this 1.5x a ChaCha block, so that we get the			\
 502	 * remaining 32 bytes from fast key erasure, plus one full		\
 503	 * block from the detached ChaCha state. We can increase		\
 504	 * the size of this later if needed so long as we keep the		\
 505	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
 506	 */									\
 507	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
 508	local_lock_t lock;							\
 509	unsigned long generation;						\
 510	unsigned int position;							\
 511};										\
 512										\
 513static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
 514	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
 515	.position = UINT_MAX							\
 516};										\
 517										\
 518type get_random_ ##type(void)							\
 519{										\
 520	type ret;								\
 521	unsigned long flags;							\
 522	struct batch_ ##type *batch;						\
 523	unsigned long next_gen;							\
 524										\
 525	warn_unseeded_randomness();						\
 526										\
 527	if  (!crng_ready()) {							\
 528		_get_random_bytes(&ret, sizeof(ret));				\
 529		return ret;							\
 530	}									\
 531										\
 532	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
 533	batch = raw_cpu_ptr(&batched_entropy_##type);				\
 534										\
 535	next_gen = READ_ONCE(base_crng.generation);				\
 536	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
 537	    next_gen != batch->generation) {					\
 538		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
 539		batch->position = 0;						\
 540		batch->generation = next_gen;					\
 541	}									\
 542										\
 543	ret = batch->entropy[batch->position];					\
 544	batch->entropy[batch->position] = 0;					\
 545	++batch->position;							\
 546	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
 547	return ret;								\
 548}										\
 549EXPORT_SYMBOL(get_random_ ##type);
 550
 551DEFINE_BATCHED_ENTROPY(u8)
 552DEFINE_BATCHED_ENTROPY(u16)
 553DEFINE_BATCHED_ENTROPY(u32)
 554DEFINE_BATCHED_ENTROPY(u64)
 555
 556u32 __get_random_u32_below(u32 ceil)
 557{
 558	/*
 559	 * This is the slow path for variable ceil. It is still fast, most of
 560	 * the time, by doing traditional reciprocal multiplication and
 561	 * opportunistically comparing the lower half to ceil itself, before
 562	 * falling back to computing a larger bound, and then rejecting samples
 563	 * whose lower half would indicate a range indivisible by ceil. The use
 564	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
 565	 * in 32-bits.
 566	 */
 567	u32 rand = get_random_u32();
 568	u64 mult;
 569
 570	/*
 571	 * This function is technically undefined for ceil == 0, and in fact
 572	 * for the non-underscored constant version in the header, we build bug
 573	 * on that. But for the non-constant case, it's convenient to have that
 574	 * evaluate to being a straight call to get_random_u32(), so that
 575	 * get_random_u32_inclusive() can work over its whole range without
 576	 * undefined behavior.
 577	 */
 578	if (unlikely(!ceil))
 579		return rand;
 580
 581	mult = (u64)ceil * rand;
 582	if (unlikely((u32)mult < ceil)) {
 583		u32 bound = -ceil % ceil;
 584		while (unlikely((u32)mult < bound))
 585			mult = (u64)ceil * get_random_u32();
 586	}
 587	return mult >> 32;
 
 
 
 
 
 
 588}
 589EXPORT_SYMBOL(__get_random_u32_below);
 590
 591#ifdef CONFIG_SMP
 592/*
 593 * This function is called when the CPU is coming up, with entry
 594 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 595 */
 596int __cold random_prepare_cpu(unsigned int cpu)
 
 597{
 598	/*
 599	 * When the cpu comes back online, immediately invalidate both
 600	 * the per-cpu crng and all batches, so that we serve fresh
 601	 * randomness.
 602	 */
 603	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
 604	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
 605	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
 606	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
 607	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
 608	return 0;
 
 
 
 
 609}
 
 
 
 
 
 
 
 
 
 610#endif
 
 
 
 611
 
 
 
 
 
 612
 613/**********************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614 *
 615 * Entropy accumulation and extraction routines.
 616 *
 617 * Callers may add entropy via:
 618 *
 619 *     static void mix_pool_bytes(const void *buf, size_t len)
 620 *
 621 * After which, if added entropy should be credited:
 622 *
 623 *     static void credit_init_bits(size_t bits)
 624 *
 625 * Finally, extract entropy via:
 626 *
 627 *     static void extract_entropy(void *buf, size_t len)
 628 *
 629 **********************************************************************/
 630
 631enum {
 632	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
 633	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
 634	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
 635};
 636
 637static struct {
 638	struct blake2s_state hash;
 639	spinlock_t lock;
 640	unsigned int init_bits;
 641} input_pool = {
 642	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
 643		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
 644		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
 645	.hash.outlen = BLAKE2S_HASH_SIZE,
 646	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 647};
 648
 649static void _mix_pool_bytes(const void *buf, size_t len)
 650{
 651	blake2s_update(&input_pool.hash, buf, len);
 652}
 653
 654/*
 655 * This function adds bytes into the input pool. It does not
 656 * update the initialization bit counter; the caller should call
 657 * credit_init_bits if this is appropriate.
 
 
 
 658 */
 659static void mix_pool_bytes(const void *buf, size_t len)
 660{
 
 661	unsigned long flags;
 662
 
 
 
 
 663	spin_lock_irqsave(&input_pool.lock, flags);
 664	_mix_pool_bytes(buf, len);
 
 665	spin_unlock_irqrestore(&input_pool.lock, flags);
 666}
 
 
 
 667
 668/*
 669 * This is an HKDF-like construction for using the hashed collected entropy
 670 * as a PRF key, that's then expanded block-by-block.
 
 
 
 
 
 
 671 */
 672static void extract_entropy(void *buf, size_t len)
 673{
 674	unsigned long flags;
 675	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
 676	struct {
 677		unsigned long rdseed[32 / sizeof(long)];
 678		size_t counter;
 679	} block;
 680	size_t i, longs;
 681
 682	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
 683		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 684		if (longs) {
 685			i += longs;
 686			continue;
 687		}
 688		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 689		if (longs) {
 690			i += longs;
 691			continue;
 692		}
 693		block.rdseed[i++] = random_get_entropy();
 694	}
 695
 696	spin_lock_irqsave(&input_pool.lock, flags);
 
 
 
 
 697
 698	/* seed = HASHPRF(last_key, entropy_input) */
 699	blake2s_final(&input_pool.hash, seed);
 
 
 
 
 
 700
 701	/* next_key = HASHPRF(seed, RDSEED || 0) */
 702	block.counter = 0;
 703	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
 704	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
 705
 706	spin_unlock_irqrestore(&input_pool.lock, flags);
 707	memzero_explicit(next_key, sizeof(next_key));
 708
 709	while (len) {
 710		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
 711		/* output = HASHPRF(seed, RDSEED || ++counter) */
 712		++block.counter;
 713		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
 714		len -= i;
 715		buf += i;
 716	}
 
 
 717
 718	memzero_explicit(seed, sizeof(seed));
 719	memzero_explicit(&block, sizeof(block));
 
 
 
 
 720}
 721
 722#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
 723
 724static void __cold _credit_init_bits(size_t bits)
 725{
 726	static DECLARE_WORK(set_ready, crng_set_ready);
 727	unsigned int new, orig, add;
 728	unsigned long flags;
 729
 730	if (!bits)
 
 731		return;
 732
 733	add = min_t(size_t, bits, POOL_BITS);
 
 
 
 
 
 
 
 
 
 
 734
 735	orig = READ_ONCE(input_pool.init_bits);
 736	do {
 737		new = min_t(unsigned int, POOL_BITS, orig + add);
 738	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
 
 
 739
 740	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
 741		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
 742		if (static_key_initialized && system_unbound_wq)
 743			queue_work(system_unbound_wq, &set_ready);
 744		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
 745#ifdef CONFIG_VDSO_GETRANDOM
 746		WRITE_ONCE(__arch_get_k_vdso_rng_data()->is_ready, true);
 
 
 747#endif
 748		wake_up_interruptible(&crng_init_wait);
 749		kill_fasync(&fasync, SIGIO, POLL_IN);
 750		pr_notice("crng init done\n");
 751		if (urandom_warning.missed)
 752			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 753				  urandom_warning.missed);
 754	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
 755		spin_lock_irqsave(&base_crng.lock, flags);
 756		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
 757		if (crng_init == CRNG_EMPTY) {
 758			extract_entropy(base_crng.key, sizeof(base_crng.key));
 759			crng_init = CRNG_EARLY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760		}
 761		spin_unlock_irqrestore(&base_crng.lock, flags);
 762	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763}
 
 764
 
 
 
 
 
 
 
 
 
 
 
 765
 766/**********************************************************************
 767 *
 768 * Entropy collection routines.
 769 *
 770 * The following exported functions are used for pushing entropy into
 771 * the above entropy accumulation routines:
 772 *
 773 *	void add_device_randomness(const void *buf, size_t len);
 774 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
 775 *	void add_bootloader_randomness(const void *buf, size_t len);
 776 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
 777 *	void add_interrupt_randomness(int irq);
 778 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
 779 *	void add_disk_randomness(struct gendisk *disk);
 780 *
 781 * add_device_randomness() adds data to the input pool that
 782 * is likely to differ between two devices (or possibly even per boot).
 783 * This would be things like MAC addresses or serial numbers, or the
 784 * read-out of the RTC. This does *not* credit any actual entropy to
 785 * the pool, but it initializes the pool to different values for devices
 786 * that might otherwise be identical and have very little entropy
 787 * available to them (particularly common in the embedded world).
 788 *
 789 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 790 * entropy as specified by the caller. If the entropy pool is full it will
 791 * block until more entropy is needed.
 792 *
 793 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 794 * and device tree, and credits its input depending on whether or not the
 795 * command line option 'random.trust_bootloader'.
 796 *
 797 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 798 * representing the current instance of a VM to the pool, without crediting,
 799 * and then force-reseeds the crng so that it takes effect immediately.
 800 *
 801 * add_interrupt_randomness() uses the interrupt timing as random
 802 * inputs to the entropy pool. Using the cycle counters and the irq source
 803 * as inputs, it feeds the input pool roughly once a second or after 64
 804 * interrupts, crediting 1 bit of entropy for whichever comes first.
 805 *
 806 * add_input_randomness() uses the input layer interrupt timing, as well
 807 * as the event type information from the hardware.
 808 *
 809 * add_disk_randomness() uses what amounts to the seek time of block
 810 * layer request events, on a per-disk_devt basis, as input to the
 811 * entropy pool. Note that high-speed solid state drives with very low
 812 * seek times do not make for good sources of entropy, as their seek
 813 * times are usually fairly consistent.
 814 *
 815 * The last two routines try to estimate how many bits of entropy
 816 * to credit. They do this by keeping track of the first and second
 817 * order deltas of the event timings.
 818 *
 819 **********************************************************************/
 820
 821static bool trust_cpu __initdata = true;
 822static bool trust_bootloader __initdata = true;
 823static int __init parse_trust_cpu(char *arg)
 824{
 825	return kstrtobool(arg, &trust_cpu);
 826}
 827static int __init parse_trust_bootloader(char *arg)
 828{
 829	return kstrtobool(arg, &trust_bootloader);
 830}
 831early_param("random.trust_cpu", parse_trust_cpu);
 832early_param("random.trust_bootloader", parse_trust_bootloader);
 833
 834static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
 835{
 836	unsigned long flags, entropy = random_get_entropy();
 837
 838	/*
 839	 * Encode a representation of how long the system has been suspended,
 840	 * in a way that is distinct from prior system suspends.
 841	 */
 842	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
 843
 844	spin_lock_irqsave(&input_pool.lock, flags);
 845	_mix_pool_bytes(&action, sizeof(action));
 846	_mix_pool_bytes(stamps, sizeof(stamps));
 847	_mix_pool_bytes(&entropy, sizeof(entropy));
 848	spin_unlock_irqrestore(&input_pool.lock, flags);
 849
 850	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
 851	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
 852	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
 853		crng_reseed(NULL);
 854		pr_notice("crng reseeded on system resumption\n");
 855	}
 856	return 0;
 857}
 858
 859static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860
 861/*
 862 * This is called extremely early, before time keeping functionality is
 863 * available, but arch randomness is. Interrupts are not yet enabled.
 864 */
 865void __init random_init_early(const char *command_line)
 
 866{
 867	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
 868	size_t i, longs, arch_bits;
 
 
 
 
 
 
 
 
 
 869
 870#if defined(LATENT_ENTROPY_PLUGIN)
 871	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
 872	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
 873#endif
 
 874
 875	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
 876		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
 877		if (longs) {
 878			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 879			i += longs;
 880			continue;
 881		}
 882		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
 883		if (longs) {
 884			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 885			i += longs;
 886			continue;
 887		}
 888		arch_bits -= sizeof(*entropy) * 8;
 889		++i;
 890	}
 
 
 
 
 
 
 
 
 891
 892	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
 893	_mix_pool_bytes(command_line, strlen(command_line));
 
 
 
 
 894
 895	/* Reseed if already seeded by earlier phases. */
 896	if (crng_ready())
 897		crng_reseed(NULL);
 898	else if (trust_cpu)
 899		_credit_init_bits(arch_bits);
 900}
 901
 902/*
 903 * This is called a little bit after the prior function, and now there is
 904 * access to timestamps counters. Interrupts are not yet enabled.
 
 
 905 */
 906void __init random_init(void)
 907{
 908	unsigned long entropy = random_get_entropy();
 909	ktime_t now = ktime_get_real();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910
 911	_mix_pool_bytes(&now, sizeof(now));
 912	_mix_pool_bytes(&entropy, sizeof(entropy));
 913	add_latent_entropy();
 914
 915	/*
 916	 * If we were initialized by the cpu or bootloader before jump labels
 917	 * or workqueues are initialized, then we should enable the static
 918	 * branch here, where it's guaranteed that these have been initialized.
 919	 */
 920	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
 921		crng_set_ready(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922
 923	/* Reseed if already seeded by earlier phases. */
 924	if (crng_ready())
 925		crng_reseed(NULL);
 
 
 
 
 
 
 
 
 
 
 926
 927	WARN_ON(register_pm_notifier(&pm_notifier));
 
 928
 929	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
 930		       "entropy collection will consequently suffer.");
 931}
 932
 933/*
 934 * Add device- or boot-specific data to the input pool to help
 935 * initialize it.
 936 *
 937 * None of this adds any entropy; it is meant to avoid the problem of
 938 * the entropy pool having similar initial state across largely
 939 * identical devices.
 
 940 */
 941void add_device_randomness(const void *buf, size_t len)
 
 942{
 943	unsigned long entropy = random_get_entropy();
 944	unsigned long flags;
 945
 946	spin_lock_irqsave(&input_pool.lock, flags);
 947	_mix_pool_bytes(&entropy, sizeof(entropy));
 948	_mix_pool_bytes(buf, len);
 949	spin_unlock_irqrestore(&input_pool.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950}
 951EXPORT_SYMBOL(add_device_randomness);
 952
 953/*
 954 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 955 * may produce endless random bits, so this function will sleep for
 956 * some amount of time after, if the sleep_after parameter is true.
 957 */
 958void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
 
 959{
 960	mix_pool_bytes(buf, len);
 961	credit_init_bits(entropy);
 
 
 
 
 
 
 
 
 
 
 962
 963	/*
 964	 * Throttle writing to once every reseed interval, unless we're not yet
 965	 * initialized or no entropy is credited.
 966	 */
 967	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
 968		schedule_timeout_interruptible(crng_reseed_interval());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969}
 970EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
 971
 972/*
 973 * Handle random seed passed by bootloader, and credit it depending
 974 * on the command line option 'random.trust_bootloader'.
 975 */
 976void __init add_bootloader_randomness(const void *buf, size_t len)
 977{
 978	mix_pool_bytes(buf, len);
 979	if (trust_bootloader)
 980		credit_init_bits(len * 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981}
 982
 983#if IS_ENABLED(CONFIG_VMGENID)
 984static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
 985
 986/*
 987 * Handle a new unique VM ID, which is unique, not secret, so we
 988 * don't credit it, but we do immediately force a reseed after so
 989 * that it's used by the crng posthaste.
 
 
 
 
 
 990 */
 991void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
 992{
 993	add_device_randomness(unique_vm_id, len);
 994	if (crng_ready()) {
 995		crng_reseed(NULL);
 996		pr_notice("crng reseeded due to virtual machine fork\n");
 
 
 
 
 997	}
 998	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
 
 
 
 
 
 
 
 999}
1000#if IS_MODULE(CONFIG_VMGENID)
1001EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1002#endif
1003
1004int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1005{
1006	return blocking_notifier_chain_register(&vmfork_chain, nb);
 
 
 
1007}
1008EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
 
1009
1010int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
 
 
 
 
 
 
 
 
 
 
 
 
 
1011{
1012	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1013}
1014EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1015#endif
1016
1017struct fast_pool {
1018	unsigned long pool[4];
1019	unsigned long last;
1020	unsigned int count;
1021	struct timer_list mix;
1022};
 
 
 
 
 
 
 
 
 
 
1023
1024static void mix_interrupt_randomness(struct timer_list *work);
 
 
 
 
 
 
 
1025
1026static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1027#ifdef CONFIG_64BIT
1028#define FASTMIX_PERM SIPHASH_PERMUTATION
1029	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1030#else
1031#define FASTMIX_PERM HSIPHASH_PERMUTATION
1032	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1033#endif
1034	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1035};
1036
1037/*
1038 * This is [Half]SipHash-1-x, starting from an empty key. Because
1039 * the key is fixed, it assumes that its inputs are non-malicious,
1040 * and therefore this has no security on its own. s represents the
1041 * four-word SipHash state, while v represents a two-word input.
 
 
 
 
1042 */
1043static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1044{
1045	s[3] ^= v1;
1046	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1047	s[0] ^= v1;
1048	s[3] ^= v2;
1049	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1050	s[0] ^= v2;
 
 
 
 
 
 
 
1051}
 
1052
1053#ifdef CONFIG_SMP
1054/*
1055 * This function is called when the CPU has just come online, with
1056 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 
 
 
 
 
1057 */
1058int __cold random_online_cpu(unsigned int cpu)
1059{
1060	/*
1061	 * During CPU shutdown and before CPU onlining, add_interrupt_
1062	 * randomness() may schedule mix_interrupt_randomness(), and
1063	 * set the MIX_INFLIGHT flag. However, because the worker can
1064	 * be scheduled on a different CPU during this period, that
1065	 * flag will never be cleared. For that reason, we zero out
1066	 * the flag here, which runs just after workqueues are onlined
1067	 * for the CPU again. This also has the effect of setting the
1068	 * irq randomness count to zero so that new accumulated irqs
1069	 * are fresh.
1070	 */
1071	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1072	return 0;
1073}
1074#endif
1075
1076static void mix_interrupt_randomness(struct timer_list *work)
 
 
 
 
 
 
 
 
1077{
1078	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1079	/*
1080	 * The size of the copied stack pool is explicitly 2 longs so that we
1081	 * only ever ingest half of the siphash output each time, retaining
1082	 * the other half as the next "key" that carries over. The entropy is
1083	 * supposed to be sufficiently dispersed between bits so on average
1084	 * we don't wind up "losing" some.
1085	 */
1086	unsigned long pool[2];
1087	unsigned int count;
1088
1089	/* Check to see if we're running on the wrong CPU due to hotplug. */
1090	local_irq_disable();
1091	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1092		local_irq_enable();
1093		return;
1094	}
1095
1096	/*
1097	 * Copy the pool to the stack so that the mixer always has a
1098	 * consistent view, before we reenable irqs again.
1099	 */
1100	memcpy(pool, fast_pool->pool, sizeof(pool));
1101	count = fast_pool->count;
1102	fast_pool->count = 0;
1103	fast_pool->last = jiffies;
1104	local_irq_enable();
1105
1106	mix_pool_bytes(pool, sizeof(pool));
1107	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1108
1109	memzero_explicit(pool, sizeof(pool));
1110}
1111
1112void add_interrupt_randomness(int irq)
1113{
1114	enum { MIX_INFLIGHT = 1U << 31 };
1115	unsigned long entropy = random_get_entropy();
1116	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1117	struct pt_regs *regs = get_irq_regs();
1118	unsigned int new_count;
1119
1120	fast_mix(fast_pool->pool, entropy,
1121		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1122	new_count = ++fast_pool->count;
1123
1124	if (new_count & MIX_INFLIGHT)
1125		return;
1126
1127	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1128		return;
1129
1130	fast_pool->count |= MIX_INFLIGHT;
1131	if (!timer_pending(&fast_pool->mix)) {
1132		fast_pool->mix.expires = jiffies;
1133		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1134	}
1135}
1136EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1137
1138/* There is one of these per entropy source */
1139struct timer_rand_state {
1140	unsigned long last_time;
1141	long last_delta, last_delta2;
1142};
1143
1144/*
1145 * This function adds entropy to the entropy "pool" by using timing
1146 * delays. It uses the timer_rand_state structure to make an estimate
1147 * of how many bits of entropy this call has added to the pool. The
1148 * value "num" is also added to the pool; it should somehow describe
1149 * the type of event that just happened.
1150 */
1151static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1152{
1153	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1154	long delta, delta2, delta3;
1155	unsigned int bits;
1156
1157	/*
1158	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1159	 * sometime after, so mix into the fast pool.
1160	 */
1161	if (in_hardirq()) {
1162		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1163	} else {
1164		spin_lock_irqsave(&input_pool.lock, flags);
1165		_mix_pool_bytes(&entropy, sizeof(entropy));
1166		_mix_pool_bytes(&num, sizeof(num));
1167		spin_unlock_irqrestore(&input_pool.lock, flags);
1168	}
 
1169
1170	if (crng_ready())
1171		return;
 
1172
1173	/*
1174	 * Calculate number of bits of randomness we probably added.
1175	 * We take into account the first, second and third-order deltas
1176	 * in order to make our estimate.
1177	 */
1178	delta = now - READ_ONCE(state->last_time);
1179	WRITE_ONCE(state->last_time, now);
 
 
 
 
 
 
 
 
 
1180
1181	delta2 = delta - READ_ONCE(state->last_delta);
1182	WRITE_ONCE(state->last_delta, delta);
 
 
1183
1184	delta3 = delta2 - READ_ONCE(state->last_delta2);
1185	WRITE_ONCE(state->last_delta2, delta2);
1186
1187	if (delta < 0)
1188		delta = -delta;
1189	if (delta2 < 0)
1190		delta2 = -delta2;
1191	if (delta3 < 0)
1192		delta3 = -delta3;
1193	if (delta > delta2)
1194		delta = delta2;
1195	if (delta > delta3)
1196		delta = delta3;
1197
1198	/*
1199	 * delta is now minimum absolute delta. Round down by 1 bit
1200	 * on general principles, and limit entropy estimate to 11 bits.
1201	 */
1202	bits = min(fls(delta >> 1), 11);
1203
1204	/*
1205	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1206	 * will run after this, which uses a different crediting scheme of 1 bit
1207	 * per every 64 interrupts. In order to let that function do accounting
1208	 * close to the one in this function, we credit a full 64/64 bit per bit,
1209	 * and then subtract one to account for the extra one added.
1210	 */
1211	if (in_hardirq())
1212		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1213	else
1214		_credit_init_bits(bits);
1215}
 
1216
1217void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
 
 
 
 
 
 
 
 
 
1218{
1219	static unsigned char last_value;
1220	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
 
1221
1222	/* Ignore autorepeat and the like. */
1223	if (value == last_value)
1224		return;
 
 
 
 
 
 
 
1225
1226	last_value = value;
1227	add_timer_randomness(&input_timer_state,
1228			     (type << 4) ^ code ^ (code >> 4) ^ value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229}
1230EXPORT_SYMBOL_GPL(add_input_randomness);
1231
1232#ifdef CONFIG_BLOCK
1233void add_disk_randomness(struct gendisk *disk)
1234{
1235	if (!disk || !disk->random)
1236		return;
1237	/* First major is 1, so we get >= 0x200 here. */
1238	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1239}
1240EXPORT_SYMBOL_GPL(add_disk_randomness);
1241
1242void __cold rand_initialize_disk(struct gendisk *disk)
1243{
1244	struct timer_rand_state *state;
1245
1246	/*
1247	 * If kzalloc returns null, we just won't use that entropy
1248	 * source.
1249	 */
1250	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1251	if (state) {
1252		state->last_time = INITIAL_JIFFIES;
1253		disk->random = state;
1254	}
1255}
1256#endif
1257
1258struct entropy_timer_state {
1259	unsigned long entropy;
1260	struct timer_list timer;
1261	atomic_t samples;
1262	unsigned int samples_per_bit;
1263};
1264
1265/*
1266 * Each time the timer fires, we expect that we got an unpredictable jump in
1267 * the cycle counter. Even if the timer is running on another CPU, the timer
1268 * activity will be touching the stack of the CPU that is generating entropy.
1269 *
1270 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1271 * scheduled away, since that just makes the load more complex, but we do not
1272 * want the timer to keep ticking unless the entropy loop is running.
1273 *
1274 * So the re-arming always happens in the entropy loop itself.
1275 */
1276static void __cold entropy_timer(struct timer_list *timer)
1277{
1278	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1279	unsigned long entropy = random_get_entropy();
1280
1281	mix_pool_bytes(&entropy, sizeof(entropy));
1282	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1283		credit_init_bits(1);
1284}
1285
1286/*
1287 * If we have an actual cycle counter, see if we can generate enough entropy
1288 * with timing noise.
1289 */
1290static void __cold try_to_generate_entropy(void)
1291{
1292	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1293	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1294	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1295	unsigned int i, num_different = 0;
1296	unsigned long last = random_get_entropy();
1297	int cpu = -1;
1298
1299	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1300		stack->entropy = random_get_entropy();
1301		if (stack->entropy != last)
1302			++num_different;
1303		last = stack->entropy;
1304	}
1305	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1306	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1307		return;
1308
1309	atomic_set(&stack->samples, 0);
1310	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1311	while (!crng_ready() && !signal_pending(current)) {
1312		/*
1313		 * Check !timer_pending() and then ensure that any previous callback has finished
1314		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1315		 */
1316		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1317			struct cpumask timer_cpus;
1318			unsigned int num_cpus;
1319
1320			/*
1321			 * Preemption must be disabled here, both to read the current CPU number
1322			 * and to avoid scheduling a timer on a dead CPU.
1323			 */
1324			preempt_disable();
1325
1326			/* Only schedule callbacks on timer CPUs that are online. */
1327			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1328			num_cpus = cpumask_weight(&timer_cpus);
1329			/* In very bizarre case of misconfiguration, fallback to all online. */
1330			if (unlikely(num_cpus == 0)) {
1331				timer_cpus = *cpu_online_mask;
1332				num_cpus = cpumask_weight(&timer_cpus);
1333			}
1334
1335			/* Basic CPU round-robin, which avoids the current CPU. */
1336			do {
1337				cpu = cpumask_next(cpu, &timer_cpus);
1338				if (cpu >= nr_cpu_ids)
1339					cpu = cpumask_first(&timer_cpus);
1340			} while (cpu == smp_processor_id() && num_cpus > 1);
1341
1342			/* Expiring the timer at `jiffies` means it's the next tick. */
1343			stack->timer.expires = jiffies;
1344
1345			add_timer_on(&stack->timer, cpu);
1346
1347			preempt_enable();
1348		}
1349		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1350		schedule();
1351		stack->entropy = random_get_entropy();
1352	}
1353	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1354
1355	del_timer_sync(&stack->timer);
1356	destroy_timer_on_stack(&stack->timer);
 
 
1357}
1358
1359
1360/**********************************************************************
1361 *
1362 * Userspace reader/writer interfaces.
1363 *
1364 * getrandom(2) is the primary modern interface into the RNG and should
1365 * be used in preference to anything else.
1366 *
1367 * Reading from /dev/random has the same functionality as calling
1368 * getrandom(2) with flags=0. In earlier versions, however, it had
1369 * vastly different semantics and should therefore be avoided, to
1370 * prevent backwards compatibility issues.
1371 *
1372 * Reading from /dev/urandom has the same functionality as calling
1373 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1374 * waiting for the RNG to be ready, it should not be used.
1375 *
1376 * Writing to either /dev/random or /dev/urandom adds entropy to
1377 * the input pool but does not credit it.
1378 *
1379 * Polling on /dev/random indicates when the RNG is initialized, on
1380 * the read side, and when it wants new entropy, on the write side.
1381 *
1382 * Both /dev/random and /dev/urandom have the same set of ioctls for
1383 * adding entropy, getting the entropy count, zeroing the count, and
1384 * reseeding the crng.
1385 *
1386 **********************************************************************/
1387
1388SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1389{
1390	struct iov_iter iter;
 
1391	int ret;
1392
1393	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1394		return -EINVAL;
1395
1396	/*
1397	 * Requesting insecure and blocking randomness at the same time makes
1398	 * no sense.
1399	 */
1400	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1401		return -EINVAL;
1402
1403	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1404		if (flags & GRND_NONBLOCK)
1405			return -EAGAIN;
1406		ret = wait_for_random_bytes();
1407		if (unlikely(ret))
1408			return ret;
1409	}
1410
1411	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1412	if (unlikely(ret))
1413		return ret;
1414	return get_random_bytes_user(&iter);
1415}
1416
1417static __poll_t random_poll(struct file *file, poll_table *wait)
 
1418{
1419	poll_wait(file, &crng_init_wait, wait);
1420	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
 
 
 
 
 
 
 
 
1421}
1422
1423static ssize_t write_pool_user(struct iov_iter *iter)
 
1424{
1425	u8 block[BLAKE2S_BLOCK_SIZE];
1426	ssize_t ret = 0;
1427	size_t copied;
1428
1429	if (unlikely(!iov_iter_count(iter)))
1430		return 0;
1431
1432	for (;;) {
1433		copied = copy_from_iter(block, sizeof(block), iter);
1434		ret += copied;
1435		mix_pool_bytes(block, copied);
1436		if (!iov_iter_count(iter) || copied != sizeof(block))
1437			break;
1438
1439		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1440		if (ret % PAGE_SIZE == 0) {
1441			if (signal_pending(current))
1442				break;
1443			cond_resched();
1444		}
1445	}
1446
1447	memzero_explicit(block, sizeof(block));
1448	return ret ? ret : -EFAULT;
1449}
1450
1451static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1452{
1453	return write_pool_user(iter);
1454}
1455
1456static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1457{
1458	static int maxwarn = 10;
1459
1460	/*
1461	 * Opportunistically attempt to initialize the RNG on platforms that
1462	 * have fast cycle counters, but don't (for now) require it to succeed.
1463	 */
1464	if (!crng_ready())
1465		try_to_generate_entropy();
1466
1467	if (!crng_ready()) {
1468		if (!ratelimit_disable && maxwarn <= 0)
1469			++urandom_warning.missed;
1470		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1471			--maxwarn;
1472			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1473				  current->comm, iov_iter_count(iter));
1474		}
1475	}
1476
1477	return get_random_bytes_user(iter);
1478}
1479
1480static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1481{
1482	int ret;
1483
1484	if (!crng_ready() &&
1485	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1486	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1487		return -EAGAIN;
1488
1489	ret = wait_for_random_bytes();
1490	if (ret != 0)
1491		return ret;
1492	return get_random_bytes_user(iter);
1493}
1494
1495static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1496{
 
1497	int __user *p = (int __user *)arg;
1498	int ent_count;
1499
1500	switch (cmd) {
1501	case RNDGETENTCNT:
1502		/* Inherently racy, no point locking. */
1503		if (put_user(input_pool.init_bits, p))
 
1504			return -EFAULT;
1505		return 0;
1506	case RNDADDTOENTCNT:
1507		if (!capable(CAP_SYS_ADMIN))
1508			return -EPERM;
1509		if (get_user(ent_count, p))
1510			return -EFAULT;
1511		if (ent_count < 0)
1512			return -EINVAL;
1513		credit_init_bits(ent_count);
1514		return 0;
1515	case RNDADDENTROPY: {
1516		struct iov_iter iter;
1517		ssize_t ret;
1518		int len;
1519
1520		if (!capable(CAP_SYS_ADMIN))
1521			return -EPERM;
1522		if (get_user(ent_count, p++))
1523			return -EFAULT;
1524		if (ent_count < 0)
1525			return -EINVAL;
1526		if (get_user(len, p++))
1527			return -EFAULT;
1528		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1529		if (unlikely(ret))
1530			return ret;
1531		ret = write_pool_user(&iter);
1532		if (unlikely(ret < 0))
1533			return ret;
1534		/* Since we're crediting, enforce that it was all written into the pool. */
1535		if (unlikely(ret != len))
1536			return -EFAULT;
1537		credit_init_bits(ent_count);
1538		return 0;
1539	}
1540	case RNDZAPENTCNT:
1541	case RNDCLEARPOOL:
1542		/* No longer has any effect. */
 
 
 
1543		if (!capable(CAP_SYS_ADMIN))
1544			return -EPERM;
 
 
1545		return 0;
1546	case RNDRESEEDCRNG:
1547		if (!capable(CAP_SYS_ADMIN))
1548			return -EPERM;
1549		if (!crng_ready())
1550			return -ENODATA;
1551		crng_reseed(NULL);
 
1552		return 0;
1553	default:
1554		return -EINVAL;
1555	}
1556}
1557
1558static int random_fasync(int fd, struct file *filp, int on)
1559{
1560	return fasync_helper(fd, filp, on, &fasync);
1561}
1562
1563const struct file_operations random_fops = {
1564	.read_iter = random_read_iter,
1565	.write_iter = random_write_iter,
1566	.poll = random_poll,
1567	.unlocked_ioctl = random_ioctl,
1568	.compat_ioctl = compat_ptr_ioctl,
1569	.fasync = random_fasync,
1570	.llseek = noop_llseek,
1571	.splice_read = copy_splice_read,
1572	.splice_write = iter_file_splice_write,
1573};
1574
1575const struct file_operations urandom_fops = {
1576	.read_iter = urandom_read_iter,
1577	.write_iter = random_write_iter,
1578	.unlocked_ioctl = random_ioctl,
1579	.compat_ioctl = compat_ptr_ioctl,
1580	.fasync = random_fasync,
1581	.llseek = noop_llseek,
1582	.splice_read = copy_splice_read,
1583	.splice_write = iter_file_splice_write,
1584};
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586
1587/********************************************************************
1588 *
1589 * Sysctl interface.
1590 *
1591 * These are partly unused legacy knobs with dummy values to not break
1592 * userspace and partly still useful things. They are usually accessible
1593 * in /proc/sys/kernel/random/ and are as follows:
1594 *
1595 * - boot_id - a UUID representing the current boot.
1596 *
1597 * - uuid - a random UUID, different each time the file is read.
1598 *
1599 * - poolsize - the number of bits of entropy that the input pool can
1600 *   hold, tied to the POOL_BITS constant.
1601 *
1602 * - entropy_avail - the number of bits of entropy currently in the
1603 *   input pool. Always <= poolsize.
1604 *
1605 * - write_wakeup_threshold - the amount of entropy in the input pool
1606 *   below which write polls to /dev/random will unblock, requesting
1607 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1608 *   to avoid breaking old userspaces, but writing to it does not
1609 *   change any behavior of the RNG.
1610 *
1611 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1612 *   It is writable to avoid breaking old userspaces, but writing
1613 *   to it does not change any behavior of the RNG.
1614 *
1615 ********************************************************************/
1616
1617#ifdef CONFIG_SYSCTL
1618
1619#include <linux/sysctl.h>
1620
1621static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1622static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1623static int sysctl_poolsize = POOL_BITS;
1624static u8 sysctl_bootid[UUID_SIZE];
 
1625
1626/*
1627 * This function is used to return both the bootid UUID, and random
1628 * UUID. The difference is in whether table->data is NULL; if it is,
1629 * then a new UUID is generated and returned to the user.
 
 
 
 
1630 */
1631static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1632			size_t *lenp, loff_t *ppos)
1633{
1634	u8 tmp_uuid[UUID_SIZE], *uuid;
1635	char uuid_string[UUID_STRING_LEN + 1];
1636	struct ctl_table fake_table = {
1637		.data = uuid_string,
1638		.maxlen = UUID_STRING_LEN
1639	};
1640
1641	if (write)
1642		return -EPERM;
1643
1644	uuid = table->data;
1645	if (!uuid) {
1646		uuid = tmp_uuid;
1647		generate_random_uuid(uuid);
1648	} else {
1649		static DEFINE_SPINLOCK(bootid_spinlock);
1650
1651		spin_lock(&bootid_spinlock);
1652		if (!uuid[8])
1653			generate_random_uuid(uuid);
1654		spin_unlock(&bootid_spinlock);
1655	}
1656
1657	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1658	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
 
 
 
 
1659}
1660
1661/* The same as proc_dointvec, but writes don't change anything. */
1662static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1663			    size_t *lenp, loff_t *ppos)
 
 
1664{
1665	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
 
 
 
 
 
 
 
 
1666}
1667
1668static struct ctl_table random_table[] = {
 
 
1669	{
1670		.procname	= "poolsize",
1671		.data		= &sysctl_poolsize,
1672		.maxlen		= sizeof(int),
1673		.mode		= 0444,
1674		.proc_handler	= proc_dointvec,
1675	},
1676	{
1677		.procname	= "entropy_avail",
1678		.data		= &input_pool.init_bits,
1679		.maxlen		= sizeof(int),
1680		.mode		= 0444,
1681		.proc_handler	= proc_dointvec,
 
 
 
 
 
 
 
 
 
 
1682	},
1683	{
1684		.procname	= "write_wakeup_threshold",
1685		.data		= &sysctl_random_write_wakeup_bits,
1686		.maxlen		= sizeof(int),
1687		.mode		= 0644,
1688		.proc_handler	= proc_do_rointvec,
 
 
1689	},
1690	{
1691		.procname	= "urandom_min_reseed_secs",
1692		.data		= &sysctl_random_min_urandom_seed,
1693		.maxlen		= sizeof(int),
1694		.mode		= 0644,
1695		.proc_handler	= proc_do_rointvec,
1696	},
1697	{
1698		.procname	= "boot_id",
1699		.data		= &sysctl_bootid,
 
1700		.mode		= 0444,
1701		.proc_handler	= proc_do_uuid,
1702	},
1703	{
1704		.procname	= "uuid",
 
1705		.mode		= 0444,
1706		.proc_handler	= proc_do_uuid,
1707	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708};
1709
1710/*
1711 * random_init() is called before sysctl_init(),
1712 * so we cannot call register_sysctl_init() in random_init()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713 */
1714static int __init random_sysctls_init(void)
 
1715{
1716	register_sysctl_init("kernel/random", random_table);
1717	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718}
1719device_initcall(random_sysctls_init);
1720#endif