Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
 
 
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
 
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
 
 
 
 
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
 
 
 
  29#include <linux/sysfs.h>
  30
  31#include "base.h"
 
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41{
  42	return kstrtol(arg, 10, &sysfs_deprecated);
 
 
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49#ifdef CONFIG_SRCU
  50static DEFINE_MUTEX(device_links_lock);
  51DEFINE_STATIC_SRCU(device_links_srcu);
  52
  53static inline void device_links_write_lock(void)
  54{
  55	mutex_lock(&device_links_lock);
  56}
  57
  58static inline void device_links_write_unlock(void)
  59{
  60	mutex_unlock(&device_links_lock);
  61}
  62
  63int device_links_read_lock(void)
  64{
  65	return srcu_read_lock(&device_links_srcu);
  66}
  67
  68void device_links_read_unlock(int idx)
  69{
  70	srcu_read_unlock(&device_links_srcu, idx);
  71}
  72
  73int device_links_read_lock_held(void)
  74{
  75	return srcu_read_lock_held(&device_links_srcu);
  76}
  77#else /* !CONFIG_SRCU */
  78static DECLARE_RWSEM(device_links_lock);
  79
  80static inline void device_links_write_lock(void)
  81{
  82	down_write(&device_links_lock);
  83}
  84
  85static inline void device_links_write_unlock(void)
  86{
  87	up_write(&device_links_lock);
  88}
  89
  90int device_links_read_lock(void)
  91{
  92	down_read(&device_links_lock);
  93	return 0;
  94}
  95
  96void device_links_read_unlock(int not_used)
  97{
  98	up_read(&device_links_lock);
 
 
 
 
 
  99}
 100
 101#ifdef CONFIG_DEBUG_LOCK_ALLOC
 102int device_links_read_lock_held(void)
 
 
 103{
 104	return lockdep_is_held(&device_links_lock);
 105}
 106#endif
 107#endif /* !CONFIG_SRCU */
 108
 109/**
 110 * device_is_dependent - Check if one device depends on another one
 111 * @dev: Device to check dependencies for.
 112 * @target: Device to check against.
 113 *
 114 * Check if @target depends on @dev or any device dependent on it (its child or
 115 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 116 */
 117static int device_is_dependent(struct device *dev, void *target)
 118{
 119	struct device_link *link;
 120	int ret;
 121
 122	if (dev == target)
 
 
 
 
 
 123		return 1;
 124
 125	ret = device_for_each_child(dev, target, device_is_dependent);
 126	if (ret)
 127		return ret;
 128
 129	list_for_each_entry(link, &dev->links.consumers, s_node) {
 
 
 
 130		if (link->consumer == target)
 131			return 1;
 132
 133		ret = device_is_dependent(link->consumer, target);
 134		if (ret)
 135			break;
 136	}
 137	return ret;
 138}
 139
 140static void device_link_init_status(struct device_link *link,
 141				    struct device *consumer,
 142				    struct device *supplier)
 143{
 144	switch (supplier->links.status) {
 145	case DL_DEV_PROBING:
 146		switch (consumer->links.status) {
 147		case DL_DEV_PROBING:
 148			/*
 149			 * A consumer driver can create a link to a supplier
 150			 * that has not completed its probing yet as long as it
 151			 * knows that the supplier is already functional (for
 152			 * example, it has just acquired some resources from the
 153			 * supplier).
 154			 */
 155			link->status = DL_STATE_CONSUMER_PROBE;
 156			break;
 157		default:
 158			link->status = DL_STATE_DORMANT;
 159			break;
 160		}
 161		break;
 162	case DL_DEV_DRIVER_BOUND:
 163		switch (consumer->links.status) {
 164		case DL_DEV_PROBING:
 165			link->status = DL_STATE_CONSUMER_PROBE;
 166			break;
 167		case DL_DEV_DRIVER_BOUND:
 168			link->status = DL_STATE_ACTIVE;
 169			break;
 170		default:
 171			link->status = DL_STATE_AVAILABLE;
 172			break;
 173		}
 174		break;
 175	case DL_DEV_UNBINDING:
 176		link->status = DL_STATE_SUPPLIER_UNBIND;
 177		break;
 178	default:
 179		link->status = DL_STATE_DORMANT;
 180		break;
 181	}
 182}
 183
 184static int device_reorder_to_tail(struct device *dev, void *not_used)
 185{
 186	struct device_link *link;
 187
 188	/*
 189	 * Devices that have not been registered yet will be put to the ends
 190	 * of the lists during the registration, so skip them here.
 191	 */
 192	if (device_is_registered(dev))
 193		devices_kset_move_last(dev);
 194
 195	if (device_pm_initialized(dev))
 196		device_pm_move_last(dev);
 197
 198	device_for_each_child(dev, NULL, device_reorder_to_tail);
 199	list_for_each_entry(link, &dev->links.consumers, s_node)
 
 
 200		device_reorder_to_tail(link->consumer, NULL);
 
 201
 202	return 0;
 203}
 204
 205/**
 206 * device_pm_move_to_tail - Move set of devices to the end of device lists
 207 * @dev: Device to move
 208 *
 209 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 210 *
 211 * It moves the @dev along with all of its children and all of its consumers
 212 * to the ends of the device_kset and dpm_list, recursively.
 213 */
 214void device_pm_move_to_tail(struct device *dev)
 215{
 216	int idx;
 217
 218	idx = device_links_read_lock();
 219	device_pm_lock();
 220	device_reorder_to_tail(dev, NULL);
 221	device_pm_unlock();
 222	device_links_read_unlock(idx);
 223}
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 226			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 227			       DL_FLAG_AUTOPROBE_CONSUMER)
 
 
 
 228
 229#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 230			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 231
 232/**
 233 * device_link_add - Create a link between two devices.
 234 * @consumer: Consumer end of the link.
 235 * @supplier: Supplier end of the link.
 236 * @flags: Link flags.
 237 *
 
 
 
 238 * The caller is responsible for the proper synchronization of the link creation
 239 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 240 * runtime PM framework to take the link into account.  Second, if the
 241 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 242 * be forced into the active metastate and reference-counted upon the creation
 243 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 244 * ignored.
 245 *
 246 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 247 * expected to release the link returned by it directly with the help of either
 248 * device_link_del() or device_link_remove().
 249 *
 250 * If that flag is not set, however, the caller of this function is handing the
 251 * management of the link over to the driver core entirely and its return value
 252 * can only be used to check whether or not the link is present.  In that case,
 253 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 254 * flags can be used to indicate to the driver core when the link can be safely
 255 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 256 * that the link is not going to be used (by the given caller of this function)
 257 * after unbinding the consumer or supplier driver, respectively, from its
 258 * device, so the link can be deleted at that point.  If none of them is set,
 259 * the link will be maintained until one of the devices pointed to by it (either
 260 * the consumer or the supplier) is unregistered.
 261 *
 262 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 263 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 264 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 265 * be used to request the driver core to automaticall probe for a consmer
 266 * driver after successfully binding a driver to the supplier device.
 267 *
 268 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 269 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 270 * the same time is invalid and will cause NULL to be returned upfront.
 271 * However, if a device link between the given @consumer and @supplier pair
 272 * exists already when this function is called for them, the existing link will
 273 * be returned regardless of its current type and status (the link's flags may
 274 * be modified then).  The caller of this function is then expected to treat
 275 * the link as though it has just been created, so (in particular) if
 276 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 277 * explicitly when not needed any more (as stated above).
 278 *
 279 * A side effect of the link creation is re-ordering of dpm_list and the
 280 * devices_kset list by moving the consumer device and all devices depending
 281 * on it to the ends of these lists (that does not happen to devices that have
 282 * not been registered when this function is called).
 283 *
 284 * The supplier device is required to be registered when this function is called
 285 * and NULL will be returned if that is not the case.  The consumer device need
 286 * not be registered, however.
 287 */
 288struct device_link *device_link_add(struct device *consumer,
 289				    struct device *supplier, u32 flags)
 290{
 291	struct device_link *link;
 292
 293	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 
 294	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 295	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 296	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 297		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 298		return NULL;
 299
 300	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 301		if (pm_runtime_get_sync(supplier) < 0) {
 302			pm_runtime_put_noidle(supplier);
 303			return NULL;
 304		}
 305	}
 306
 307	if (!(flags & DL_FLAG_STATELESS))
 308		flags |= DL_FLAG_MANAGED;
 309
 
 
 
 
 310	device_links_write_lock();
 311	device_pm_lock();
 312
 313	/*
 314	 * If the supplier has not been fully registered yet or there is a
 315	 * reverse dependency between the consumer and the supplier already in
 316	 * the graph, return NULL.
 
 
 317	 */
 318	if (!device_pm_initialized(supplier)
 319	    || device_is_dependent(consumer, supplier)) {
 
 
 
 
 
 
 
 
 
 
 
 
 320		link = NULL;
 321		goto out;
 322	}
 323
 324	/*
 325	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 326	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 327	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 328	 */
 329	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 330		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 331
 332	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 333		if (link->consumer != consumer)
 334			continue;
 335
 
 
 
 
 336		if (flags & DL_FLAG_PM_RUNTIME) {
 337			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 338				pm_runtime_new_link(consumer);
 339				link->flags |= DL_FLAG_PM_RUNTIME;
 340			}
 341			if (flags & DL_FLAG_RPM_ACTIVE)
 342				refcount_inc(&link->rpm_active);
 343		}
 344
 345		if (flags & DL_FLAG_STATELESS) {
 346			link->flags |= DL_FLAG_STATELESS;
 347			kref_get(&link->kref);
 348			goto out;
 
 
 
 
 
 
 
 349		}
 350
 351		/*
 352		 * If the life time of the link following from the new flags is
 353		 * longer than indicated by the flags of the existing link,
 354		 * update the existing link to stay around longer.
 355		 */
 356		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 357			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 358				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 359				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 360			}
 361		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 362			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 363					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 364		}
 365		if (!(link->flags & DL_FLAG_MANAGED)) {
 366			kref_get(&link->kref);
 367			link->flags |= DL_FLAG_MANAGED;
 368			device_link_init_status(link, consumer, supplier);
 369		}
 
 
 
 
 
 
 370		goto out;
 371	}
 372
 373	link = kzalloc(sizeof(*link), GFP_KERNEL);
 374	if (!link)
 375		goto out;
 376
 377	refcount_set(&link->rpm_active, 1);
 378
 379	if (flags & DL_FLAG_PM_RUNTIME) {
 380		if (flags & DL_FLAG_RPM_ACTIVE)
 381			refcount_inc(&link->rpm_active);
 382
 383		pm_runtime_new_link(consumer);
 384	}
 385
 386	get_device(supplier);
 387	link->supplier = supplier;
 388	INIT_LIST_HEAD(&link->s_node);
 389	get_device(consumer);
 390	link->consumer = consumer;
 391	INIT_LIST_HEAD(&link->c_node);
 392	link->flags = flags;
 393	kref_init(&link->kref);
 394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395	/* Determine the initial link state. */
 396	if (flags & DL_FLAG_STATELESS)
 397		link->status = DL_STATE_NONE;
 398	else
 399		device_link_init_status(link, consumer, supplier);
 400
 401	/*
 402	 * Some callers expect the link creation during consumer driver probe to
 403	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 404	 */
 405	if (link->status == DL_STATE_CONSUMER_PROBE &&
 406	    flags & DL_FLAG_PM_RUNTIME)
 407		pm_runtime_resume(supplier);
 408
 
 
 
 
 
 
 
 
 
 
 
 409	/*
 410	 * Move the consumer and all of the devices depending on it to the end
 411	 * of dpm_list and the devices_kset list.
 412	 *
 413	 * It is necessary to hold dpm_list locked throughout all that or else
 414	 * we may end up suspending with a wrong ordering of it.
 415	 */
 416	device_reorder_to_tail(consumer, NULL);
 417
 418	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 419	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 420
 421	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 422
 423 out:
 424	device_pm_unlock();
 425	device_links_write_unlock();
 426
 427	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 428		pm_runtime_put(supplier);
 429
 430	return link;
 431}
 432EXPORT_SYMBOL_GPL(device_link_add);
 433
 434static void device_link_free(struct device_link *link)
 435{
 436	while (refcount_dec_not_one(&link->rpm_active))
 437		pm_runtime_put(link->supplier);
 438
 439	put_device(link->consumer);
 440	put_device(link->supplier);
 441	kfree(link);
 442}
 443
 444#ifdef CONFIG_SRCU
 445static void __device_link_free_srcu(struct rcu_head *rhead)
 446{
 447	device_link_free(container_of(rhead, struct device_link, rcu_head));
 448}
 449
 450static void __device_link_del(struct kref *kref)
 451{
 452	struct device_link *link = container_of(kref, struct device_link, kref);
 453
 454	dev_dbg(link->consumer, "Dropping the link to %s\n",
 455		dev_name(link->supplier));
 456
 457	if (link->flags & DL_FLAG_PM_RUNTIME)
 458		pm_runtime_drop_link(link->consumer);
 459
 460	list_del_rcu(&link->s_node);
 461	list_del_rcu(&link->c_node);
 462	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 463}
 464#else /* !CONFIG_SRCU */
 465static void __device_link_del(struct kref *kref)
 466{
 467	struct device_link *link = container_of(kref, struct device_link, kref);
 468
 469	dev_info(link->consumer, "Dropping the link to %s\n",
 470		 dev_name(link->supplier));
 471
 472	if (link->flags & DL_FLAG_PM_RUNTIME)
 473		pm_runtime_drop_link(link->consumer);
 474
 475	list_del(&link->s_node);
 476	list_del(&link->c_node);
 477	device_link_free(link);
 478}
 479#endif /* !CONFIG_SRCU */
 480
 481static void device_link_put_kref(struct device_link *link)
 482{
 483	if (link->flags & DL_FLAG_STATELESS)
 484		kref_put(&link->kref, __device_link_del);
 
 
 485	else
 486		WARN(1, "Unable to drop a managed device link reference\n");
 487}
 488
 489/**
 490 * device_link_del - Delete a stateless link between two devices.
 491 * @link: Device link to delete.
 492 *
 493 * The caller must ensure proper synchronization of this function with runtime
 494 * PM.  If the link was added multiple times, it needs to be deleted as often.
 495 * Care is required for hotplugged devices:  Their links are purged on removal
 496 * and calling device_link_del() is then no longer allowed.
 497 */
 498void device_link_del(struct device_link *link)
 499{
 500	device_links_write_lock();
 501	device_pm_lock();
 502	device_link_put_kref(link);
 503	device_pm_unlock();
 504	device_links_write_unlock();
 505}
 506EXPORT_SYMBOL_GPL(device_link_del);
 507
 508/**
 509 * device_link_remove - Delete a stateless link between two devices.
 510 * @consumer: Consumer end of the link.
 511 * @supplier: Supplier end of the link.
 512 *
 513 * The caller must ensure proper synchronization of this function with runtime
 514 * PM.
 515 */
 516void device_link_remove(void *consumer, struct device *supplier)
 517{
 518	struct device_link *link;
 519
 520	if (WARN_ON(consumer == supplier))
 521		return;
 522
 523	device_links_write_lock();
 524	device_pm_lock();
 525
 526	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 527		if (link->consumer == consumer) {
 528			device_link_put_kref(link);
 529			break;
 530		}
 531	}
 532
 533	device_pm_unlock();
 534	device_links_write_unlock();
 535}
 536EXPORT_SYMBOL_GPL(device_link_remove);
 537
 538static void device_links_missing_supplier(struct device *dev)
 539{
 540	struct device_link *link;
 541
 542	list_for_each_entry(link, &dev->links.suppliers, c_node)
 543		if (link->status == DL_STATE_CONSUMER_PROBE)
 
 
 
 544			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545}
 546
 547/**
 548 * device_links_check_suppliers - Check presence of supplier drivers.
 549 * @dev: Consumer device.
 550 *
 551 * Check links from this device to any suppliers.  Walk the list of the device's
 552 * links to suppliers and see if all of them are available.  If not, simply
 553 * return -EPROBE_DEFER.
 554 *
 555 * We need to guarantee that the supplier will not go away after the check has
 556 * been positive here.  It only can go away in __device_release_driver() and
 557 * that function  checks the device's links to consumers.  This means we need to
 558 * mark the link as "consumer probe in progress" to make the supplier removal
 559 * wait for us to complete (or bad things may happen).
 560 *
 561 * Links without the DL_FLAG_MANAGED flag set are ignored.
 562 */
 563int device_links_check_suppliers(struct device *dev)
 564{
 565	struct device_link *link;
 566	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567
 568	device_links_write_lock();
 569
 570	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 571		if (!(link->flags & DL_FLAG_MANAGED))
 572			continue;
 573
 574		if (link->status != DL_STATE_AVAILABLE) {
 
 
 
 
 
 
 
 
 
 575			device_links_missing_supplier(dev);
 576			ret = -EPROBE_DEFER;
 
 577			break;
 578		}
 579		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 580	}
 581	dev->links.status = DL_DEV_PROBING;
 582
 583	device_links_write_unlock();
 584	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585}
 586
 587/**
 588 * device_links_driver_bound - Update device links after probing its driver.
 589 * @dev: Device to update the links for.
 590 *
 591 * The probe has been successful, so update links from this device to any
 592 * consumers by changing their status to "available".
 593 *
 594 * Also change the status of @dev's links to suppliers to "active".
 595 *
 596 * Links without the DL_FLAG_MANAGED flag set are ignored.
 597 */
 598void device_links_driver_bound(struct device *dev)
 599{
 600	struct device_link *link;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601
 602	device_links_write_lock();
 603
 604	list_for_each_entry(link, &dev->links.consumers, s_node) {
 605		if (!(link->flags & DL_FLAG_MANAGED))
 606			continue;
 607
 608		/*
 609		 * Links created during consumer probe may be in the "consumer
 610		 * probe" state to start with if the supplier is still probing
 611		 * when they are created and they may become "active" if the
 612		 * consumer probe returns first.  Skip them here.
 613		 */
 614		if (link->status == DL_STATE_CONSUMER_PROBE ||
 615		    link->status == DL_STATE_ACTIVE)
 616			continue;
 617
 618		WARN_ON(link->status != DL_STATE_DORMANT);
 619		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 620
 621		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
 622			driver_deferred_probe_add(link->consumer);
 623	}
 624
 625	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 
 
 
 
 
 
 
 626		if (!(link->flags & DL_FLAG_MANAGED))
 627			continue;
 628
 629		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
 630		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631	}
 632
 633	dev->links.status = DL_DEV_DRIVER_BOUND;
 634
 635	device_links_write_unlock();
 636}
 637
 638static void device_link_drop_managed(struct device_link *link)
 639{
 640	link->flags &= ~DL_FLAG_MANAGED;
 641	WRITE_ONCE(link->status, DL_STATE_NONE);
 642	kref_put(&link->kref, __device_link_del);
 643}
 644
 645/**
 646 * __device_links_no_driver - Update links of a device without a driver.
 647 * @dev: Device without a drvier.
 648 *
 649 * Delete all non-persistent links from this device to any suppliers.
 650 *
 651 * Persistent links stay around, but their status is changed to "available",
 652 * unless they already are in the "supplier unbind in progress" state in which
 653 * case they need not be updated.
 654 *
 655 * Links without the DL_FLAG_MANAGED flag set are ignored.
 656 */
 657static void __device_links_no_driver(struct device *dev)
 658{
 659	struct device_link *link, *ln;
 660
 661	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 662		if (!(link->flags & DL_FLAG_MANAGED))
 663			continue;
 664
 665		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 666			device_link_drop_managed(link);
 667		else if (link->status == DL_STATE_CONSUMER_PROBE ||
 668			 link->status == DL_STATE_ACTIVE)
 
 
 
 
 
 
 669			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 
 670	}
 671
 672	dev->links.status = DL_DEV_NO_DRIVER;
 673}
 674
 675/**
 676 * device_links_no_driver - Update links after failing driver probe.
 677 * @dev: Device whose driver has just failed to probe.
 678 *
 679 * Clean up leftover links to consumers for @dev and invoke
 680 * %__device_links_no_driver() to update links to suppliers for it as
 681 * appropriate.
 682 *
 683 * Links without the DL_FLAG_MANAGED flag set are ignored.
 684 */
 685void device_links_no_driver(struct device *dev)
 686{
 687	struct device_link *link;
 688
 689	device_links_write_lock();
 690
 691	list_for_each_entry(link, &dev->links.consumers, s_node) {
 692		if (!(link->flags & DL_FLAG_MANAGED))
 693			continue;
 694
 695		/*
 696		 * The probe has failed, so if the status of the link is
 697		 * "consumer probe" or "active", it must have been added by
 698		 * a probing consumer while this device was still probing.
 699		 * Change its state to "dormant", as it represents a valid
 700		 * relationship, but it is not functionally meaningful.
 701		 */
 702		if (link->status == DL_STATE_CONSUMER_PROBE ||
 703		    link->status == DL_STATE_ACTIVE)
 704			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 705	}
 706
 707	__device_links_no_driver(dev);
 708
 709	device_links_write_unlock();
 710}
 711
 712/**
 713 * device_links_driver_cleanup - Update links after driver removal.
 714 * @dev: Device whose driver has just gone away.
 715 *
 716 * Update links to consumers for @dev by changing their status to "dormant" and
 717 * invoke %__device_links_no_driver() to update links to suppliers for it as
 718 * appropriate.
 719 *
 720 * Links without the DL_FLAG_MANAGED flag set are ignored.
 721 */
 722void device_links_driver_cleanup(struct device *dev)
 723{
 724	struct device_link *link, *ln;
 725
 726	device_links_write_lock();
 727
 728	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
 729		if (!(link->flags & DL_FLAG_MANAGED))
 730			continue;
 731
 732		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
 733		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
 734
 735		/*
 736		 * autoremove the links between this @dev and its consumer
 737		 * devices that are not active, i.e. where the link state
 738		 * has moved to DL_STATE_SUPPLIER_UNBIND.
 739		 */
 740		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
 741		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 742			device_link_drop_managed(link);
 743
 744		WRITE_ONCE(link->status, DL_STATE_DORMANT);
 745	}
 746
 
 747	__device_links_no_driver(dev);
 748
 749	device_links_write_unlock();
 750}
 751
 752/**
 753 * device_links_busy - Check if there are any busy links to consumers.
 754 * @dev: Device to check.
 755 *
 756 * Check each consumer of the device and return 'true' if its link's status
 757 * is one of "consumer probe" or "active" (meaning that the given consumer is
 758 * probing right now or its driver is present).  Otherwise, change the link
 759 * state to "supplier unbind" to prevent the consumer from being probed
 760 * successfully going forward.
 761 *
 762 * Return 'false' if there are no probing or active consumers.
 763 *
 764 * Links without the DL_FLAG_MANAGED flag set are ignored.
 765 */
 766bool device_links_busy(struct device *dev)
 767{
 768	struct device_link *link;
 769	bool ret = false;
 770
 771	device_links_write_lock();
 772
 773	list_for_each_entry(link, &dev->links.consumers, s_node) {
 774		if (!(link->flags & DL_FLAG_MANAGED))
 775			continue;
 776
 777		if (link->status == DL_STATE_CONSUMER_PROBE
 778		    || link->status == DL_STATE_ACTIVE) {
 779			ret = true;
 780			break;
 781		}
 782		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 783	}
 784
 785	dev->links.status = DL_DEV_UNBINDING;
 786
 787	device_links_write_unlock();
 788	return ret;
 789}
 790
 791/**
 792 * device_links_unbind_consumers - Force unbind consumers of the given device.
 793 * @dev: Device to unbind the consumers of.
 794 *
 795 * Walk the list of links to consumers for @dev and if any of them is in the
 796 * "consumer probe" state, wait for all device probes in progress to complete
 797 * and start over.
 798 *
 799 * If that's not the case, change the status of the link to "supplier unbind"
 800 * and check if the link was in the "active" state.  If so, force the consumer
 801 * driver to unbind and start over (the consumer will not re-probe as we have
 802 * changed the state of the link already).
 803 *
 804 * Links without the DL_FLAG_MANAGED flag set are ignored.
 805 */
 806void device_links_unbind_consumers(struct device *dev)
 807{
 808	struct device_link *link;
 809
 810 start:
 811	device_links_write_lock();
 812
 813	list_for_each_entry(link, &dev->links.consumers, s_node) {
 814		enum device_link_state status;
 815
 816		if (!(link->flags & DL_FLAG_MANAGED))
 
 817			continue;
 818
 819		status = link->status;
 820		if (status == DL_STATE_CONSUMER_PROBE) {
 821			device_links_write_unlock();
 822
 823			wait_for_device_probe();
 824			goto start;
 825		}
 826		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 827		if (status == DL_STATE_ACTIVE) {
 828			struct device *consumer = link->consumer;
 829
 830			get_device(consumer);
 831
 832			device_links_write_unlock();
 833
 834			device_release_driver_internal(consumer, NULL,
 835						       consumer->parent);
 836			put_device(consumer);
 837			goto start;
 838		}
 839	}
 840
 841	device_links_write_unlock();
 842}
 843
 844/**
 845 * device_links_purge - Delete existing links to other devices.
 846 * @dev: Target device.
 847 */
 848static void device_links_purge(struct device *dev)
 849{
 850	struct device_link *link, *ln;
 851
 
 
 
 852	/*
 853	 * Delete all of the remaining links from this device to any other
 854	 * devices (either consumers or suppliers).
 855	 */
 856	device_links_write_lock();
 857
 858	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 859		WARN_ON(link->status == DL_STATE_ACTIVE);
 860		__device_link_del(&link->kref);
 861	}
 862
 863	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
 864		WARN_ON(link->status != DL_STATE_DORMANT &&
 865			link->status != DL_STATE_NONE);
 866		__device_link_del(&link->kref);
 867	}
 868
 869	device_links_write_unlock();
 870}
 871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872/* Device links support end. */
 873
 874int (*platform_notify)(struct device *dev) = NULL;
 875int (*platform_notify_remove)(struct device *dev) = NULL;
 876static struct kobject *dev_kobj;
 877struct kobject *sysfs_dev_char_kobj;
 878struct kobject *sysfs_dev_block_kobj;
 
 
 
 
 879
 880static DEFINE_MUTEX(device_hotplug_lock);
 881
 882void lock_device_hotplug(void)
 883{
 884	mutex_lock(&device_hotplug_lock);
 885}
 886
 887void unlock_device_hotplug(void)
 888{
 889	mutex_unlock(&device_hotplug_lock);
 890}
 891
 892int lock_device_hotplug_sysfs(void)
 893{
 894	if (mutex_trylock(&device_hotplug_lock))
 895		return 0;
 896
 897	/* Avoid busy looping (5 ms of sleep should do). */
 898	msleep(5);
 899	return restart_syscall();
 900}
 901
 902#ifdef CONFIG_BLOCK
 903static inline int device_is_not_partition(struct device *dev)
 904{
 905	return !(dev->type == &part_type);
 906}
 907#else
 908static inline int device_is_not_partition(struct device *dev)
 909{
 910	return 1;
 911}
 912#endif
 913
 914static int
 915device_platform_notify(struct device *dev, enum kobject_action action)
 916{
 917	int ret;
 918
 919	ret = acpi_platform_notify(dev, action);
 920	if (ret)
 921		return ret;
 922
 923	ret = software_node_notify(dev, action);
 924	if (ret)
 925		return ret;
 926
 927	if (platform_notify && action == KOBJ_ADD)
 928		platform_notify(dev);
 929	else if (platform_notify_remove && action == KOBJ_REMOVE)
 930		platform_notify_remove(dev);
 931	return 0;
 932}
 933
 934/**
 935 * dev_driver_string - Return a device's driver name, if at all possible
 936 * @dev: struct device to get the name of
 937 *
 938 * Will return the device's driver's name if it is bound to a device.  If
 939 * the device is not bound to a driver, it will return the name of the bus
 940 * it is attached to.  If it is not attached to a bus either, an empty
 941 * string will be returned.
 942 */
 943const char *dev_driver_string(const struct device *dev)
 944{
 945	struct device_driver *drv;
 946
 947	/* dev->driver can change to NULL underneath us because of unbinding,
 948	 * so be careful about accessing it.  dev->bus and dev->class should
 949	 * never change once they are set, so they don't need special care.
 950	 */
 951	drv = READ_ONCE(dev->driver);
 952	return drv ? drv->name :
 953			(dev->bus ? dev->bus->name :
 954			(dev->class ? dev->class->name : ""));
 955}
 956EXPORT_SYMBOL(dev_driver_string);
 957
 958#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 959
 960static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 961			     char *buf)
 962{
 963	struct device_attribute *dev_attr = to_dev_attr(attr);
 964	struct device *dev = kobj_to_dev(kobj);
 965	ssize_t ret = -EIO;
 966
 967	if (dev_attr->show)
 968		ret = dev_attr->show(dev, dev_attr, buf);
 969	if (ret >= (ssize_t)PAGE_SIZE) {
 970		printk("dev_attr_show: %pS returned bad count\n",
 971				dev_attr->show);
 972	}
 973	return ret;
 974}
 975
 976static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 977			      const char *buf, size_t count)
 978{
 979	struct device_attribute *dev_attr = to_dev_attr(attr);
 980	struct device *dev = kobj_to_dev(kobj);
 981	ssize_t ret = -EIO;
 982
 983	if (dev_attr->store)
 984		ret = dev_attr->store(dev, dev_attr, buf, count);
 985	return ret;
 986}
 987
 988static const struct sysfs_ops dev_sysfs_ops = {
 989	.show	= dev_attr_show,
 990	.store	= dev_attr_store,
 991};
 992
 993#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 994
 995ssize_t device_store_ulong(struct device *dev,
 996			   struct device_attribute *attr,
 997			   const char *buf, size_t size)
 998{
 999	struct dev_ext_attribute *ea = to_ext_attr(attr);
1000	int ret;
1001	unsigned long new;
1002
1003	ret = kstrtoul(buf, 0, &new);
1004	if (ret)
1005		return ret;
1006	*(unsigned long *)(ea->var) = new;
1007	/* Always return full write size even if we didn't consume all */
1008	return size;
1009}
1010EXPORT_SYMBOL_GPL(device_store_ulong);
1011
1012ssize_t device_show_ulong(struct device *dev,
1013			  struct device_attribute *attr,
1014			  char *buf)
1015{
1016	struct dev_ext_attribute *ea = to_ext_attr(attr);
1017	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1018}
1019EXPORT_SYMBOL_GPL(device_show_ulong);
1020
1021ssize_t device_store_int(struct device *dev,
1022			 struct device_attribute *attr,
1023			 const char *buf, size_t size)
1024{
1025	struct dev_ext_attribute *ea = to_ext_attr(attr);
1026	int ret;
1027	long new;
1028
1029	ret = kstrtol(buf, 0, &new);
1030	if (ret)
1031		return ret;
1032
1033	if (new > INT_MAX || new < INT_MIN)
1034		return -EINVAL;
1035	*(int *)(ea->var) = new;
1036	/* Always return full write size even if we didn't consume all */
1037	return size;
1038}
1039EXPORT_SYMBOL_GPL(device_store_int);
1040
1041ssize_t device_show_int(struct device *dev,
1042			struct device_attribute *attr,
1043			char *buf)
1044{
1045	struct dev_ext_attribute *ea = to_ext_attr(attr);
1046
1047	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1048}
1049EXPORT_SYMBOL_GPL(device_show_int);
1050
1051ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1052			  const char *buf, size_t size)
1053{
1054	struct dev_ext_attribute *ea = to_ext_attr(attr);
1055
1056	if (strtobool(buf, ea->var) < 0)
1057		return -EINVAL;
1058
1059	return size;
1060}
1061EXPORT_SYMBOL_GPL(device_store_bool);
1062
1063ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1064			 char *buf)
1065{
1066	struct dev_ext_attribute *ea = to_ext_attr(attr);
1067
1068	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1069}
1070EXPORT_SYMBOL_GPL(device_show_bool);
1071
 
 
 
 
 
 
 
 
 
1072/**
1073 * device_release - free device structure.
1074 * @kobj: device's kobject.
1075 *
1076 * This is called once the reference count for the object
1077 * reaches 0. We forward the call to the device's release
1078 * method, which should handle actually freeing the structure.
1079 */
1080static void device_release(struct kobject *kobj)
1081{
1082	struct device *dev = kobj_to_dev(kobj);
1083	struct device_private *p = dev->p;
1084
1085	/*
1086	 * Some platform devices are driven without driver attached
1087	 * and managed resources may have been acquired.  Make sure
1088	 * all resources are released.
1089	 *
1090	 * Drivers still can add resources into device after device
1091	 * is deleted but alive, so release devres here to avoid
1092	 * possible memory leak.
1093	 */
1094	devres_release_all(dev);
1095
 
 
1096	if (dev->release)
1097		dev->release(dev);
1098	else if (dev->type && dev->type->release)
1099		dev->type->release(dev);
1100	else if (dev->class && dev->class->dev_release)
1101		dev->class->dev_release(dev);
1102	else
1103		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1104			dev_name(dev));
1105	kfree(p);
1106}
1107
1108static const void *device_namespace(struct kobject *kobj)
1109{
1110	struct device *dev = kobj_to_dev(kobj);
1111	const void *ns = NULL;
1112
1113	if (dev->class && dev->class->ns_type)
1114		ns = dev->class->namespace(dev);
1115
1116	return ns;
1117}
1118
1119static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1120{
1121	struct device *dev = kobj_to_dev(kobj);
1122
1123	if (dev->class && dev->class->get_ownership)
1124		dev->class->get_ownership(dev, uid, gid);
1125}
1126
1127static struct kobj_type device_ktype = {
1128	.release	= device_release,
1129	.sysfs_ops	= &dev_sysfs_ops,
1130	.namespace	= device_namespace,
1131	.get_ownership	= device_get_ownership,
1132};
1133
1134
1135static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1136{
1137	struct kobj_type *ktype = get_ktype(kobj);
1138
1139	if (ktype == &device_ktype) {
1140		struct device *dev = kobj_to_dev(kobj);
1141		if (dev->bus)
1142			return 1;
1143		if (dev->class)
1144			return 1;
1145	}
1146	return 0;
1147}
1148
1149static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1150{
1151	struct device *dev = kobj_to_dev(kobj);
1152
1153	if (dev->bus)
1154		return dev->bus->name;
1155	if (dev->class)
1156		return dev->class->name;
1157	return NULL;
1158}
1159
1160static int dev_uevent(struct kset *kset, struct kobject *kobj,
1161		      struct kobj_uevent_env *env)
1162{
1163	struct device *dev = kobj_to_dev(kobj);
1164	int retval = 0;
1165
1166	/* add device node properties if present */
1167	if (MAJOR(dev->devt)) {
1168		const char *tmp;
1169		const char *name;
1170		umode_t mode = 0;
1171		kuid_t uid = GLOBAL_ROOT_UID;
1172		kgid_t gid = GLOBAL_ROOT_GID;
1173
1174		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1175		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1176		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1177		if (name) {
1178			add_uevent_var(env, "DEVNAME=%s", name);
1179			if (mode)
1180				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1181			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1182				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1183			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1184				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1185			kfree(tmp);
1186		}
1187	}
1188
1189	if (dev->type && dev->type->name)
1190		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1191
1192	if (dev->driver)
1193		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1194
1195	/* Add common DT information about the device */
1196	of_device_uevent(dev, env);
1197
1198	/* have the bus specific function add its stuff */
1199	if (dev->bus && dev->bus->uevent) {
1200		retval = dev->bus->uevent(dev, env);
1201		if (retval)
1202			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1203				 dev_name(dev), __func__, retval);
1204	}
1205
1206	/* have the class specific function add its stuff */
1207	if (dev->class && dev->class->dev_uevent) {
1208		retval = dev->class->dev_uevent(dev, env);
1209		if (retval)
1210			pr_debug("device: '%s': %s: class uevent() "
1211				 "returned %d\n", dev_name(dev),
1212				 __func__, retval);
1213	}
1214
1215	/* have the device type specific function add its stuff */
1216	if (dev->type && dev->type->uevent) {
1217		retval = dev->type->uevent(dev, env);
1218		if (retval)
1219			pr_debug("device: '%s': %s: dev_type uevent() "
1220				 "returned %d\n", dev_name(dev),
1221				 __func__, retval);
1222	}
1223
1224	return retval;
1225}
1226
1227static const struct kset_uevent_ops device_uevent_ops = {
1228	.filter =	dev_uevent_filter,
1229	.name =		dev_uevent_name,
1230	.uevent =	dev_uevent,
1231};
1232
1233static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1234			   char *buf)
1235{
1236	struct kobject *top_kobj;
1237	struct kset *kset;
1238	struct kobj_uevent_env *env = NULL;
1239	int i;
1240	size_t count = 0;
1241	int retval;
1242
1243	/* search the kset, the device belongs to */
1244	top_kobj = &dev->kobj;
1245	while (!top_kobj->kset && top_kobj->parent)
1246		top_kobj = top_kobj->parent;
1247	if (!top_kobj->kset)
1248		goto out;
1249
1250	kset = top_kobj->kset;
1251	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1252		goto out;
1253
1254	/* respect filter */
1255	if (kset->uevent_ops && kset->uevent_ops->filter)
1256		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1257			goto out;
1258
1259	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1260	if (!env)
1261		return -ENOMEM;
1262
 
 
1263	/* let the kset specific function add its keys */
1264	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
 
1265	if (retval)
1266		goto out;
1267
1268	/* copy keys to file */
1269	for (i = 0; i < env->envp_idx; i++)
1270		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1271out:
1272	kfree(env);
1273	return count;
1274}
1275
1276static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1277			    const char *buf, size_t count)
1278{
1279	int rc;
1280
1281	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1282
1283	if (rc) {
1284		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1285		return rc;
1286	}
1287
1288	return count;
1289}
1290static DEVICE_ATTR_RW(uevent);
1291
1292static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1293			   char *buf)
1294{
1295	bool val;
1296
1297	device_lock(dev);
1298	val = !dev->offline;
1299	device_unlock(dev);
1300	return sprintf(buf, "%u\n", val);
1301}
1302
1303static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1304			    const char *buf, size_t count)
1305{
1306	bool val;
1307	int ret;
1308
1309	ret = strtobool(buf, &val);
1310	if (ret < 0)
1311		return ret;
1312
1313	ret = lock_device_hotplug_sysfs();
1314	if (ret)
1315		return ret;
1316
1317	ret = val ? device_online(dev) : device_offline(dev);
1318	unlock_device_hotplug();
1319	return ret < 0 ? ret : count;
1320}
1321static DEVICE_ATTR_RW(online);
1322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323int device_add_groups(struct device *dev, const struct attribute_group **groups)
1324{
1325	return sysfs_create_groups(&dev->kobj, groups);
1326}
1327EXPORT_SYMBOL_GPL(device_add_groups);
1328
1329void device_remove_groups(struct device *dev,
1330			  const struct attribute_group **groups)
1331{
1332	sysfs_remove_groups(&dev->kobj, groups);
1333}
1334EXPORT_SYMBOL_GPL(device_remove_groups);
1335
1336union device_attr_group_devres {
1337	const struct attribute_group *group;
1338	const struct attribute_group **groups;
1339};
1340
1341static int devm_attr_group_match(struct device *dev, void *res, void *data)
1342{
1343	return ((union device_attr_group_devres *)res)->group == data;
1344}
1345
1346static void devm_attr_group_remove(struct device *dev, void *res)
1347{
1348	union device_attr_group_devres *devres = res;
1349	const struct attribute_group *group = devres->group;
1350
1351	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1352	sysfs_remove_group(&dev->kobj, group);
1353}
1354
1355static void devm_attr_groups_remove(struct device *dev, void *res)
1356{
1357	union device_attr_group_devres *devres = res;
1358	const struct attribute_group **groups = devres->groups;
1359
1360	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1361	sysfs_remove_groups(&dev->kobj, groups);
1362}
1363
1364/**
1365 * devm_device_add_group - given a device, create a managed attribute group
1366 * @dev:	The device to create the group for
1367 * @grp:	The attribute group to create
1368 *
1369 * This function creates a group for the first time.  It will explicitly
1370 * warn and error if any of the attribute files being created already exist.
1371 *
1372 * Returns 0 on success or error code on failure.
1373 */
1374int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1375{
1376	union device_attr_group_devres *devres;
1377	int error;
1378
1379	devres = devres_alloc(devm_attr_group_remove,
1380			      sizeof(*devres), GFP_KERNEL);
1381	if (!devres)
1382		return -ENOMEM;
1383
1384	error = sysfs_create_group(&dev->kobj, grp);
1385	if (error) {
1386		devres_free(devres);
1387		return error;
1388	}
1389
1390	devres->group = grp;
1391	devres_add(dev, devres);
1392	return 0;
1393}
1394EXPORT_SYMBOL_GPL(devm_device_add_group);
1395
1396/**
1397 * devm_device_remove_group: remove a managed group from a device
1398 * @dev:	device to remove the group from
1399 * @grp:	group to remove
1400 *
1401 * This function removes a group of attributes from a device. The attributes
1402 * previously have to have been created for this group, otherwise it will fail.
1403 */
1404void devm_device_remove_group(struct device *dev,
1405			      const struct attribute_group *grp)
1406{
1407	WARN_ON(devres_release(dev, devm_attr_group_remove,
1408			       devm_attr_group_match,
1409			       /* cast away const */ (void *)grp));
1410}
1411EXPORT_SYMBOL_GPL(devm_device_remove_group);
1412
1413/**
1414 * devm_device_add_groups - create a bunch of managed attribute groups
1415 * @dev:	The device to create the group for
1416 * @groups:	The attribute groups to create, NULL terminated
1417 *
1418 * This function creates a bunch of managed attribute groups.  If an error
1419 * occurs when creating a group, all previously created groups will be
1420 * removed, unwinding everything back to the original state when this
1421 * function was called.  It will explicitly warn and error if any of the
1422 * attribute files being created already exist.
1423 *
1424 * Returns 0 on success or error code from sysfs_create_group on failure.
1425 */
1426int devm_device_add_groups(struct device *dev,
1427			   const struct attribute_group **groups)
1428{
1429	union device_attr_group_devres *devres;
1430	int error;
1431
1432	devres = devres_alloc(devm_attr_groups_remove,
1433			      sizeof(*devres), GFP_KERNEL);
1434	if (!devres)
1435		return -ENOMEM;
1436
1437	error = sysfs_create_groups(&dev->kobj, groups);
1438	if (error) {
1439		devres_free(devres);
1440		return error;
1441	}
1442
1443	devres->groups = groups;
1444	devres_add(dev, devres);
1445	return 0;
1446}
1447EXPORT_SYMBOL_GPL(devm_device_add_groups);
1448
1449/**
1450 * devm_device_remove_groups - remove a list of managed groups
1451 *
1452 * @dev:	The device for the groups to be removed from
1453 * @groups:	NULL terminated list of groups to be removed
1454 *
1455 * If groups is not NULL, remove the specified groups from the device.
1456 */
1457void devm_device_remove_groups(struct device *dev,
1458			       const struct attribute_group **groups)
1459{
1460	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1461			       devm_attr_group_match,
1462			       /* cast away const */ (void *)groups));
1463}
1464EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1465
1466static int device_add_attrs(struct device *dev)
1467{
1468	struct class *class = dev->class;
1469	const struct device_type *type = dev->type;
1470	int error;
1471
1472	if (class) {
1473		error = device_add_groups(dev, class->dev_groups);
1474		if (error)
1475			return error;
1476	}
1477
1478	if (type) {
1479		error = device_add_groups(dev, type->groups);
1480		if (error)
1481			goto err_remove_class_groups;
1482	}
1483
1484	error = device_add_groups(dev, dev->groups);
1485	if (error)
1486		goto err_remove_type_groups;
1487
1488	if (device_supports_offline(dev) && !dev->offline_disabled) {
1489		error = device_create_file(dev, &dev_attr_online);
1490		if (error)
1491			goto err_remove_dev_groups;
1492	}
1493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1494	return 0;
1495
 
 
 
 
 
 
1496 err_remove_dev_groups:
1497	device_remove_groups(dev, dev->groups);
1498 err_remove_type_groups:
1499	if (type)
1500		device_remove_groups(dev, type->groups);
1501 err_remove_class_groups:
1502	if (class)
1503		device_remove_groups(dev, class->dev_groups);
1504
1505	return error;
1506}
1507
1508static void device_remove_attrs(struct device *dev)
1509{
1510	struct class *class = dev->class;
1511	const struct device_type *type = dev->type;
1512
 
 
 
 
 
 
 
1513	device_remove_file(dev, &dev_attr_online);
1514	device_remove_groups(dev, dev->groups);
1515
1516	if (type)
1517		device_remove_groups(dev, type->groups);
1518
1519	if (class)
1520		device_remove_groups(dev, class->dev_groups);
1521}
1522
1523static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1524			char *buf)
1525{
1526	return print_dev_t(buf, dev->devt);
1527}
1528static DEVICE_ATTR_RO(dev);
1529
1530/* /sys/devices/ */
1531struct kset *devices_kset;
1532
1533/**
1534 * devices_kset_move_before - Move device in the devices_kset's list.
1535 * @deva: Device to move.
1536 * @devb: Device @deva should come before.
1537 */
1538static void devices_kset_move_before(struct device *deva, struct device *devb)
1539{
1540	if (!devices_kset)
1541		return;
1542	pr_debug("devices_kset: Moving %s before %s\n",
1543		 dev_name(deva), dev_name(devb));
1544	spin_lock(&devices_kset->list_lock);
1545	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1546	spin_unlock(&devices_kset->list_lock);
1547}
1548
1549/**
1550 * devices_kset_move_after - Move device in the devices_kset's list.
1551 * @deva: Device to move
1552 * @devb: Device @deva should come after.
1553 */
1554static void devices_kset_move_after(struct device *deva, struct device *devb)
1555{
1556	if (!devices_kset)
1557		return;
1558	pr_debug("devices_kset: Moving %s after %s\n",
1559		 dev_name(deva), dev_name(devb));
1560	spin_lock(&devices_kset->list_lock);
1561	list_move(&deva->kobj.entry, &devb->kobj.entry);
1562	spin_unlock(&devices_kset->list_lock);
1563}
1564
1565/**
1566 * devices_kset_move_last - move the device to the end of devices_kset's list.
1567 * @dev: device to move
1568 */
1569void devices_kset_move_last(struct device *dev)
1570{
1571	if (!devices_kset)
1572		return;
1573	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1574	spin_lock(&devices_kset->list_lock);
1575	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1576	spin_unlock(&devices_kset->list_lock);
1577}
1578
1579/**
1580 * device_create_file - create sysfs attribute file for device.
1581 * @dev: device.
1582 * @attr: device attribute descriptor.
1583 */
1584int device_create_file(struct device *dev,
1585		       const struct device_attribute *attr)
1586{
1587	int error = 0;
1588
1589	if (dev) {
1590		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1591			"Attribute %s: write permission without 'store'\n",
1592			attr->attr.name);
1593		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1594			"Attribute %s: read permission without 'show'\n",
1595			attr->attr.name);
1596		error = sysfs_create_file(&dev->kobj, &attr->attr);
1597	}
1598
1599	return error;
1600}
1601EXPORT_SYMBOL_GPL(device_create_file);
1602
1603/**
1604 * device_remove_file - remove sysfs attribute file.
1605 * @dev: device.
1606 * @attr: device attribute descriptor.
1607 */
1608void device_remove_file(struct device *dev,
1609			const struct device_attribute *attr)
1610{
1611	if (dev)
1612		sysfs_remove_file(&dev->kobj, &attr->attr);
1613}
1614EXPORT_SYMBOL_GPL(device_remove_file);
1615
1616/**
1617 * device_remove_file_self - remove sysfs attribute file from its own method.
1618 * @dev: device.
1619 * @attr: device attribute descriptor.
1620 *
1621 * See kernfs_remove_self() for details.
1622 */
1623bool device_remove_file_self(struct device *dev,
1624			     const struct device_attribute *attr)
1625{
1626	if (dev)
1627		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1628	else
1629		return false;
1630}
1631EXPORT_SYMBOL_GPL(device_remove_file_self);
1632
1633/**
1634 * device_create_bin_file - create sysfs binary attribute file for device.
1635 * @dev: device.
1636 * @attr: device binary attribute descriptor.
1637 */
1638int device_create_bin_file(struct device *dev,
1639			   const struct bin_attribute *attr)
1640{
1641	int error = -EINVAL;
1642	if (dev)
1643		error = sysfs_create_bin_file(&dev->kobj, attr);
1644	return error;
1645}
1646EXPORT_SYMBOL_GPL(device_create_bin_file);
1647
1648/**
1649 * device_remove_bin_file - remove sysfs binary attribute file
1650 * @dev: device.
1651 * @attr: device binary attribute descriptor.
1652 */
1653void device_remove_bin_file(struct device *dev,
1654			    const struct bin_attribute *attr)
1655{
1656	if (dev)
1657		sysfs_remove_bin_file(&dev->kobj, attr);
1658}
1659EXPORT_SYMBOL_GPL(device_remove_bin_file);
1660
1661static void klist_children_get(struct klist_node *n)
1662{
1663	struct device_private *p = to_device_private_parent(n);
1664	struct device *dev = p->device;
1665
1666	get_device(dev);
1667}
1668
1669static void klist_children_put(struct klist_node *n)
1670{
1671	struct device_private *p = to_device_private_parent(n);
1672	struct device *dev = p->device;
1673
1674	put_device(dev);
1675}
1676
1677/**
1678 * device_initialize - init device structure.
1679 * @dev: device.
1680 *
1681 * This prepares the device for use by other layers by initializing
1682 * its fields.
1683 * It is the first half of device_register(), if called by
1684 * that function, though it can also be called separately, so one
1685 * may use @dev's fields. In particular, get_device()/put_device()
1686 * may be used for reference counting of @dev after calling this
1687 * function.
1688 *
1689 * All fields in @dev must be initialized by the caller to 0, except
1690 * for those explicitly set to some other value.  The simplest
1691 * approach is to use kzalloc() to allocate the structure containing
1692 * @dev.
1693 *
1694 * NOTE: Use put_device() to give up your reference instead of freeing
1695 * @dev directly once you have called this function.
1696 */
1697void device_initialize(struct device *dev)
1698{
1699	dev->kobj.kset = devices_kset;
1700	kobject_init(&dev->kobj, &device_ktype);
1701	INIT_LIST_HEAD(&dev->dma_pools);
1702	mutex_init(&dev->mutex);
1703#ifdef CONFIG_PROVE_LOCKING
1704	mutex_init(&dev->lockdep_mutex);
1705#endif
1706	lockdep_set_novalidate_class(&dev->mutex);
1707	spin_lock_init(&dev->devres_lock);
1708	INIT_LIST_HEAD(&dev->devres_head);
1709	device_pm_init(dev);
1710	set_dev_node(dev, -1);
1711#ifdef CONFIG_GENERIC_MSI_IRQ
1712	INIT_LIST_HEAD(&dev->msi_list);
1713#endif
1714	INIT_LIST_HEAD(&dev->links.consumers);
1715	INIT_LIST_HEAD(&dev->links.suppliers);
 
1716	dev->links.status = DL_DEV_NO_DRIVER;
 
 
 
 
 
 
1717}
1718EXPORT_SYMBOL_GPL(device_initialize);
1719
1720struct kobject *virtual_device_parent(struct device *dev)
1721{
1722	static struct kobject *virtual_dir = NULL;
1723
1724	if (!virtual_dir)
1725		virtual_dir = kobject_create_and_add("virtual",
1726						     &devices_kset->kobj);
1727
1728	return virtual_dir;
1729}
1730
1731struct class_dir {
1732	struct kobject kobj;
1733	struct class *class;
1734};
1735
1736#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1737
1738static void class_dir_release(struct kobject *kobj)
1739{
1740	struct class_dir *dir = to_class_dir(kobj);
1741	kfree(dir);
1742}
1743
1744static const
1745struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1746{
1747	struct class_dir *dir = to_class_dir(kobj);
1748	return dir->class->ns_type;
1749}
1750
1751static struct kobj_type class_dir_ktype = {
1752	.release	= class_dir_release,
1753	.sysfs_ops	= &kobj_sysfs_ops,
1754	.child_ns_type	= class_dir_child_ns_type
1755};
1756
1757static struct kobject *
1758class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1759{
1760	struct class_dir *dir;
1761	int retval;
1762
1763	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1764	if (!dir)
1765		return ERR_PTR(-ENOMEM);
1766
1767	dir->class = class;
1768	kobject_init(&dir->kobj, &class_dir_ktype);
1769
1770	dir->kobj.kset = &class->p->glue_dirs;
1771
1772	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1773	if (retval < 0) {
1774		kobject_put(&dir->kobj);
1775		return ERR_PTR(retval);
1776	}
1777	return &dir->kobj;
1778}
1779
1780static DEFINE_MUTEX(gdp_mutex);
1781
1782static struct kobject *get_device_parent(struct device *dev,
1783					 struct device *parent)
1784{
1785	if (dev->class) {
1786		struct kobject *kobj = NULL;
 
 
1787		struct kobject *parent_kobj;
1788		struct kobject *k;
1789
1790#ifdef CONFIG_BLOCK
1791		/* block disks show up in /sys/block */
1792		if (sysfs_deprecated && dev->class == &block_class) {
1793			if (parent && parent->class == &block_class)
1794				return &parent->kobj;
1795			return &block_class.p->subsys.kobj;
1796		}
1797#endif
1798
1799		/*
1800		 * If we have no parent, we live in "virtual".
1801		 * Class-devices with a non class-device as parent, live
1802		 * in a "glue" directory to prevent namespace collisions.
1803		 */
1804		if (parent == NULL)
1805			parent_kobj = virtual_device_parent(dev);
1806		else if (parent->class && !dev->class->ns_type)
 
1807			return &parent->kobj;
1808		else
1809			parent_kobj = &parent->kobj;
 
1810
1811		mutex_lock(&gdp_mutex);
1812
1813		/* find our class-directory at the parent and reference it */
1814		spin_lock(&dev->class->p->glue_dirs.list_lock);
1815		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1816			if (k->parent == parent_kobj) {
1817				kobj = kobject_get(k);
1818				break;
1819			}
1820		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1821		if (kobj) {
1822			mutex_unlock(&gdp_mutex);
 
1823			return kobj;
1824		}
1825
1826		/* or create a new class-directory at the parent device */
1827		k = class_dir_create_and_add(dev->class, parent_kobj);
1828		/* do not emit an uevent for this simple "glue" directory */
1829		mutex_unlock(&gdp_mutex);
 
1830		return k;
1831	}
1832
1833	/* subsystems can specify a default root directory for their devices */
1834	if (!parent && dev->bus && dev->bus->dev_root)
1835		return &dev->bus->dev_root->kobj;
 
 
 
 
 
 
 
1836
1837	if (parent)
1838		return &parent->kobj;
1839	return NULL;
1840}
1841
1842static inline bool live_in_glue_dir(struct kobject *kobj,
1843				    struct device *dev)
1844{
1845	if (!kobj || !dev->class ||
1846	    kobj->kset != &dev->class->p->glue_dirs)
 
 
1847		return false;
1848	return true;
 
 
 
 
 
 
 
 
 
 
 
1849}
1850
1851static inline struct kobject *get_glue_dir(struct device *dev)
1852{
1853	return dev->kobj.parent;
1854}
1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856/*
1857 * make sure cleaning up dir as the last step, we need to make
1858 * sure .release handler of kobject is run with holding the
1859 * global lock
1860 */
1861static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1862{
1863	unsigned int ref;
1864
1865	/* see if we live in a "glue" directory */
1866	if (!live_in_glue_dir(glue_dir, dev))
1867		return;
1868
1869	mutex_lock(&gdp_mutex);
1870	/**
1871	 * There is a race condition between removing glue directory
1872	 * and adding a new device under the glue directory.
1873	 *
1874	 * CPU1:                                         CPU2:
1875	 *
1876	 * device_add()
1877	 *   get_device_parent()
1878	 *     class_dir_create_and_add()
1879	 *       kobject_add_internal()
1880	 *         create_dir()    // create glue_dir
1881	 *
1882	 *                                               device_add()
1883	 *                                                 get_device_parent()
1884	 *                                                   kobject_get() // get glue_dir
1885	 *
1886	 * device_del()
1887	 *   cleanup_glue_dir()
1888	 *     kobject_del(glue_dir)
1889	 *
1890	 *                                               kobject_add()
1891	 *                                                 kobject_add_internal()
1892	 *                                                   create_dir() // in glue_dir
1893	 *                                                     sysfs_create_dir_ns()
1894	 *                                                       kernfs_create_dir_ns(sd)
1895	 *
1896	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1897	 *       sysfs_put()        // free glue_dir->sd
1898	 *
1899	 *                                                         // sd is freed
1900	 *                                                         kernfs_new_node(sd)
1901	 *                                                           kernfs_get(glue_dir)
1902	 *                                                           kernfs_add_one()
1903	 *                                                           kernfs_put()
1904	 *
1905	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1906	 * a new device under glue dir, the glue_dir kobject reference count
1907	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1908	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1909	 * and sysfs_put(). This result in glue_dir->sd is freed.
1910	 *
1911	 * Then the CPU2 will see a stale "empty" but still potentially used
1912	 * glue dir around in kernfs_new_node().
1913	 *
1914	 * In order to avoid this happening, we also should make sure that
1915	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1916	 * for glue_dir kobj is 1.
1917	 */
1918	ref = kref_read(&glue_dir->kref);
1919	if (!kobject_has_children(glue_dir) && !--ref)
1920		kobject_del(glue_dir);
1921	kobject_put(glue_dir);
1922	mutex_unlock(&gdp_mutex);
1923}
1924
1925static int device_add_class_symlinks(struct device *dev)
1926{
1927	struct device_node *of_node = dev_of_node(dev);
 
1928	int error;
1929
1930	if (of_node) {
1931		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1932		if (error)
1933			dev_warn(dev, "Error %d creating of_node link\n",error);
1934		/* An error here doesn't warrant bringing down the device */
1935	}
1936
1937	if (!dev->class)
 
1938		return 0;
1939
1940	error = sysfs_create_link(&dev->kobj,
1941				  &dev->class->p->subsys.kobj,
1942				  "subsystem");
1943	if (error)
1944		goto out_devnode;
1945
1946	if (dev->parent && device_is_not_partition(dev)) {
1947		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1948					  "device");
1949		if (error)
1950			goto out_subsys;
1951	}
1952
1953#ifdef CONFIG_BLOCK
1954	/* /sys/block has directories and does not need symlinks */
1955	if (sysfs_deprecated && dev->class == &block_class)
1956		return 0;
1957#endif
1958
1959	/* link in the class directory pointing to the device */
1960	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1961				  &dev->kobj, dev_name(dev));
1962	if (error)
1963		goto out_device;
1964
1965	return 0;
1966
1967out_device:
1968	sysfs_remove_link(&dev->kobj, "device");
1969
1970out_subsys:
1971	sysfs_remove_link(&dev->kobj, "subsystem");
1972out_devnode:
1973	sysfs_remove_link(&dev->kobj, "of_node");
 
 
1974	return error;
1975}
1976
1977static void device_remove_class_symlinks(struct device *dev)
1978{
 
 
1979	if (dev_of_node(dev))
1980		sysfs_remove_link(&dev->kobj, "of_node");
1981
1982	if (!dev->class)
1983		return;
1984
1985	if (dev->parent && device_is_not_partition(dev))
1986		sysfs_remove_link(&dev->kobj, "device");
1987	sysfs_remove_link(&dev->kobj, "subsystem");
1988#ifdef CONFIG_BLOCK
1989	if (sysfs_deprecated && dev->class == &block_class)
1990		return;
1991#endif
1992	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1993}
1994
1995/**
1996 * dev_set_name - set a device name
1997 * @dev: device
1998 * @fmt: format string for the device's name
1999 */
2000int dev_set_name(struct device *dev, const char *fmt, ...)
2001{
2002	va_list vargs;
2003	int err;
2004
2005	va_start(vargs, fmt);
2006	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2007	va_end(vargs);
2008	return err;
2009}
2010EXPORT_SYMBOL_GPL(dev_set_name);
2011
2012/**
2013 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2014 * @dev: device
2015 *
2016 * By default we select char/ for new entries.  Setting class->dev_obj
2017 * to NULL prevents an entry from being created.  class->dev_kobj must
2018 * be set (or cleared) before any devices are registered to the class
2019 * otherwise device_create_sys_dev_entry() and
2020 * device_remove_sys_dev_entry() will disagree about the presence of
2021 * the link.
2022 */
2023static struct kobject *device_to_dev_kobj(struct device *dev)
2024{
2025	struct kobject *kobj;
2026
2027	if (dev->class)
2028		kobj = dev->class->dev_kobj;
2029	else
2030		kobj = sysfs_dev_char_kobj;
2031
2032	return kobj;
2033}
2034
2035static int device_create_sys_dev_entry(struct device *dev)
2036{
2037	struct kobject *kobj = device_to_dev_kobj(dev);
2038	int error = 0;
2039	char devt_str[15];
2040
2041	if (kobj) {
2042		format_dev_t(devt_str, dev->devt);
2043		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2044	}
2045
2046	return error;
2047}
2048
2049static void device_remove_sys_dev_entry(struct device *dev)
2050{
2051	struct kobject *kobj = device_to_dev_kobj(dev);
2052	char devt_str[15];
2053
2054	if (kobj) {
2055		format_dev_t(devt_str, dev->devt);
2056		sysfs_remove_link(kobj, devt_str);
2057	}
2058}
2059
2060static int device_private_init(struct device *dev)
2061{
2062	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2063	if (!dev->p)
2064		return -ENOMEM;
2065	dev->p->device = dev;
2066	klist_init(&dev->p->klist_children, klist_children_get,
2067		   klist_children_put);
2068	INIT_LIST_HEAD(&dev->p->deferred_probe);
2069	return 0;
2070}
2071
2072/**
2073 * device_add - add device to device hierarchy.
2074 * @dev: device.
2075 *
2076 * This is part 2 of device_register(), though may be called
2077 * separately _iff_ device_initialize() has been called separately.
2078 *
2079 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2080 * to the global and sibling lists for the device, then
2081 * adds it to the other relevant subsystems of the driver model.
2082 *
2083 * Do not call this routine or device_register() more than once for
2084 * any device structure.  The driver model core is not designed to work
2085 * with devices that get unregistered and then spring back to life.
2086 * (Among other things, it's very hard to guarantee that all references
2087 * to the previous incarnation of @dev have been dropped.)  Allocate
2088 * and register a fresh new struct device instead.
2089 *
2090 * NOTE: _Never_ directly free @dev after calling this function, even
2091 * if it returned an error! Always use put_device() to give up your
2092 * reference instead.
2093 *
2094 * Rule of thumb is: if device_add() succeeds, you should call
2095 * device_del() when you want to get rid of it. If device_add() has
2096 * *not* succeeded, use *only* put_device() to drop the reference
2097 * count.
2098 */
2099int device_add(struct device *dev)
2100{
 
2101	struct device *parent;
2102	struct kobject *kobj;
2103	struct class_interface *class_intf;
2104	int error = -EINVAL;
2105	struct kobject *glue_dir = NULL;
2106
2107	dev = get_device(dev);
2108	if (!dev)
2109		goto done;
2110
2111	if (!dev->p) {
2112		error = device_private_init(dev);
2113		if (error)
2114			goto done;
2115	}
2116
2117	/*
2118	 * for statically allocated devices, which should all be converted
2119	 * some day, we need to initialize the name. We prevent reading back
2120	 * the name, and force the use of dev_name()
2121	 */
2122	if (dev->init_name) {
2123		dev_set_name(dev, "%s", dev->init_name);
2124		dev->init_name = NULL;
2125	}
2126
 
 
2127	/* subsystems can specify simple device enumeration */
2128	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2129		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2130
2131	if (!dev_name(dev)) {
2132		error = -EINVAL;
 
2133		goto name_error;
2134	}
2135
2136	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2137
2138	parent = get_device(dev->parent);
2139	kobj = get_device_parent(dev, parent);
2140	if (IS_ERR(kobj)) {
2141		error = PTR_ERR(kobj);
2142		goto parent_error;
2143	}
2144	if (kobj)
2145		dev->kobj.parent = kobj;
2146
2147	/* use parent numa_node */
2148	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2149		set_dev_node(dev, dev_to_node(parent));
2150
2151	/* first, register with generic layer. */
2152	/* we require the name to be set before, and pass NULL */
2153	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2154	if (error) {
2155		glue_dir = get_glue_dir(dev);
2156		goto Error;
2157	}
2158
2159	/* notify platform of device entry */
2160	error = device_platform_notify(dev, KOBJ_ADD);
2161	if (error)
2162		goto platform_error;
2163
2164	error = device_create_file(dev, &dev_attr_uevent);
2165	if (error)
2166		goto attrError;
2167
2168	error = device_add_class_symlinks(dev);
2169	if (error)
2170		goto SymlinkError;
2171	error = device_add_attrs(dev);
2172	if (error)
2173		goto AttrsError;
2174	error = bus_add_device(dev);
2175	if (error)
2176		goto BusError;
2177	error = dpm_sysfs_add(dev);
2178	if (error)
2179		goto DPMError;
2180	device_pm_add(dev);
2181
2182	if (MAJOR(dev->devt)) {
2183		error = device_create_file(dev, &dev_attr_dev);
2184		if (error)
2185			goto DevAttrError;
2186
2187		error = device_create_sys_dev_entry(dev);
2188		if (error)
2189			goto SysEntryError;
2190
2191		devtmpfs_create_node(dev);
2192	}
2193
2194	/* Notify clients of device addition.  This call must come
2195	 * after dpm_sysfs_add() and before kobject_uevent().
2196	 */
2197	if (dev->bus)
2198		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2199					     BUS_NOTIFY_ADD_DEVICE, dev);
2200
2201	kobject_uevent(&dev->kobj, KOBJ_ADD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202	bus_probe_device(dev);
 
 
 
 
 
 
 
 
 
2203	if (parent)
2204		klist_add_tail(&dev->p->knode_parent,
2205			       &parent->p->klist_children);
2206
2207	if (dev->class) {
2208		mutex_lock(&dev->class->p->mutex);
 
2209		/* tie the class to the device */
2210		klist_add_tail(&dev->p->knode_class,
2211			       &dev->class->p->klist_devices);
2212
2213		/* notify any interfaces that the device is here */
2214		list_for_each_entry(class_intf,
2215				    &dev->class->p->interfaces, node)
2216			if (class_intf->add_dev)
2217				class_intf->add_dev(dev, class_intf);
2218		mutex_unlock(&dev->class->p->mutex);
 
2219	}
2220done:
2221	put_device(dev);
2222	return error;
2223 SysEntryError:
2224	if (MAJOR(dev->devt))
2225		device_remove_file(dev, &dev_attr_dev);
2226 DevAttrError:
2227	device_pm_remove(dev);
2228	dpm_sysfs_remove(dev);
2229 DPMError:
 
2230	bus_remove_device(dev);
2231 BusError:
2232	device_remove_attrs(dev);
2233 AttrsError:
2234	device_remove_class_symlinks(dev);
2235 SymlinkError:
2236	device_remove_file(dev, &dev_attr_uevent);
2237 attrError:
2238	device_platform_notify(dev, KOBJ_REMOVE);
2239platform_error:
2240	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2241	glue_dir = get_glue_dir(dev);
2242	kobject_del(&dev->kobj);
2243 Error:
2244	cleanup_glue_dir(dev, glue_dir);
2245parent_error:
2246	put_device(parent);
2247name_error:
2248	kfree(dev->p);
2249	dev->p = NULL;
2250	goto done;
2251}
2252EXPORT_SYMBOL_GPL(device_add);
2253
2254/**
2255 * device_register - register a device with the system.
2256 * @dev: pointer to the device structure
2257 *
2258 * This happens in two clean steps - initialize the device
2259 * and add it to the system. The two steps can be called
2260 * separately, but this is the easiest and most common.
2261 * I.e. you should only call the two helpers separately if
2262 * have a clearly defined need to use and refcount the device
2263 * before it is added to the hierarchy.
2264 *
2265 * For more information, see the kerneldoc for device_initialize()
2266 * and device_add().
2267 *
2268 * NOTE: _Never_ directly free @dev after calling this function, even
2269 * if it returned an error! Always use put_device() to give up the
2270 * reference initialized in this function instead.
2271 */
2272int device_register(struct device *dev)
2273{
2274	device_initialize(dev);
2275	return device_add(dev);
2276}
2277EXPORT_SYMBOL_GPL(device_register);
2278
2279/**
2280 * get_device - increment reference count for device.
2281 * @dev: device.
2282 *
2283 * This simply forwards the call to kobject_get(), though
2284 * we do take care to provide for the case that we get a NULL
2285 * pointer passed in.
2286 */
2287struct device *get_device(struct device *dev)
2288{
2289	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2290}
2291EXPORT_SYMBOL_GPL(get_device);
2292
2293/**
2294 * put_device - decrement reference count.
2295 * @dev: device in question.
2296 */
2297void put_device(struct device *dev)
2298{
2299	/* might_sleep(); */
2300	if (dev)
2301		kobject_put(&dev->kobj);
2302}
2303EXPORT_SYMBOL_GPL(put_device);
2304
2305bool kill_device(struct device *dev)
2306{
2307	/*
2308	 * Require the device lock and set the "dead" flag to guarantee that
2309	 * the update behavior is consistent with the other bitfields near
2310	 * it and that we cannot have an asynchronous probe routine trying
2311	 * to run while we are tearing out the bus/class/sysfs from
2312	 * underneath the device.
2313	 */
2314	lockdep_assert_held(&dev->mutex);
2315
2316	if (dev->p->dead)
2317		return false;
2318	dev->p->dead = true;
2319	return true;
2320}
2321EXPORT_SYMBOL_GPL(kill_device);
2322
2323/**
2324 * device_del - delete device from system.
2325 * @dev: device.
2326 *
2327 * This is the first part of the device unregistration
2328 * sequence. This removes the device from the lists we control
2329 * from here, has it removed from the other driver model
2330 * subsystems it was added to in device_add(), and removes it
2331 * from the kobject hierarchy.
2332 *
2333 * NOTE: this should be called manually _iff_ device_add() was
2334 * also called manually.
2335 */
2336void device_del(struct device *dev)
2337{
 
2338	struct device *parent = dev->parent;
2339	struct kobject *glue_dir = NULL;
2340	struct class_interface *class_intf;
 
2341
2342	device_lock(dev);
2343	kill_device(dev);
2344	device_unlock(dev);
2345
 
 
 
2346	/* Notify clients of device removal.  This call must come
2347	 * before dpm_sysfs_remove().
2348	 */
2349	if (dev->bus)
2350		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2351					     BUS_NOTIFY_DEL_DEVICE, dev);
2352
2353	dpm_sysfs_remove(dev);
2354	if (parent)
2355		klist_del(&dev->p->knode_parent);
2356	if (MAJOR(dev->devt)) {
2357		devtmpfs_delete_node(dev);
2358		device_remove_sys_dev_entry(dev);
2359		device_remove_file(dev, &dev_attr_dev);
2360	}
2361	if (dev->class) {
 
 
2362		device_remove_class_symlinks(dev);
2363
2364		mutex_lock(&dev->class->p->mutex);
2365		/* notify any interfaces that the device is now gone */
2366		list_for_each_entry(class_intf,
2367				    &dev->class->p->interfaces, node)
2368			if (class_intf->remove_dev)
2369				class_intf->remove_dev(dev, class_intf);
2370		/* remove the device from the class list */
2371		klist_del(&dev->p->knode_class);
2372		mutex_unlock(&dev->class->p->mutex);
 
2373	}
2374	device_remove_file(dev, &dev_attr_uevent);
2375	device_remove_attrs(dev);
2376	bus_remove_device(dev);
2377	device_pm_remove(dev);
2378	driver_deferred_probe_del(dev);
2379	device_platform_notify(dev, KOBJ_REMOVE);
2380	device_remove_properties(dev);
2381	device_links_purge(dev);
2382
2383	if (dev->bus)
2384		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2385					     BUS_NOTIFY_REMOVED_DEVICE, dev);
 
 
 
 
 
 
 
 
 
2386	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2387	glue_dir = get_glue_dir(dev);
2388	kobject_del(&dev->kobj);
2389	cleanup_glue_dir(dev, glue_dir);
 
2390	put_device(parent);
2391}
2392EXPORT_SYMBOL_GPL(device_del);
2393
2394/**
2395 * device_unregister - unregister device from system.
2396 * @dev: device going away.
2397 *
2398 * We do this in two parts, like we do device_register(). First,
2399 * we remove it from all the subsystems with device_del(), then
2400 * we decrement the reference count via put_device(). If that
2401 * is the final reference count, the device will be cleaned up
2402 * via device_release() above. Otherwise, the structure will
2403 * stick around until the final reference to the device is dropped.
2404 */
2405void device_unregister(struct device *dev)
2406{
2407	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2408	device_del(dev);
2409	put_device(dev);
2410}
2411EXPORT_SYMBOL_GPL(device_unregister);
2412
2413static struct device *prev_device(struct klist_iter *i)
2414{
2415	struct klist_node *n = klist_prev(i);
2416	struct device *dev = NULL;
2417	struct device_private *p;
2418
2419	if (n) {
2420		p = to_device_private_parent(n);
2421		dev = p->device;
2422	}
2423	return dev;
2424}
2425
2426static struct device *next_device(struct klist_iter *i)
2427{
2428	struct klist_node *n = klist_next(i);
2429	struct device *dev = NULL;
2430	struct device_private *p;
2431
2432	if (n) {
2433		p = to_device_private_parent(n);
2434		dev = p->device;
2435	}
2436	return dev;
2437}
2438
2439/**
2440 * device_get_devnode - path of device node file
2441 * @dev: device
2442 * @mode: returned file access mode
2443 * @uid: returned file owner
2444 * @gid: returned file group
2445 * @tmp: possibly allocated string
2446 *
2447 * Return the relative path of a possible device node.
2448 * Non-default names may need to allocate a memory to compose
2449 * a name. This memory is returned in tmp and needs to be
2450 * freed by the caller.
2451 */
2452const char *device_get_devnode(struct device *dev,
2453			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2454			       const char **tmp)
2455{
2456	char *s;
2457
2458	*tmp = NULL;
2459
2460	/* the device type may provide a specific name */
2461	if (dev->type && dev->type->devnode)
2462		*tmp = dev->type->devnode(dev, mode, uid, gid);
2463	if (*tmp)
2464		return *tmp;
2465
2466	/* the class may provide a specific name */
2467	if (dev->class && dev->class->devnode)
2468		*tmp = dev->class->devnode(dev, mode);
2469	if (*tmp)
2470		return *tmp;
2471
2472	/* return name without allocation, tmp == NULL */
2473	if (strchr(dev_name(dev), '!') == NULL)
2474		return dev_name(dev);
2475
2476	/* replace '!' in the name with '/' */
2477	s = kstrdup(dev_name(dev), GFP_KERNEL);
2478	if (!s)
2479		return NULL;
2480	strreplace(s, '!', '/');
2481	return *tmp = s;
2482}
2483
2484/**
2485 * device_for_each_child - device child iterator.
2486 * @parent: parent struct device.
2487 * @fn: function to be called for each device.
2488 * @data: data for the callback.
2489 *
2490 * Iterate over @parent's child devices, and call @fn for each,
2491 * passing it @data.
2492 *
2493 * We check the return of @fn each time. If it returns anything
2494 * other than 0, we break out and return that value.
2495 */
2496int device_for_each_child(struct device *parent, void *data,
2497			  int (*fn)(struct device *dev, void *data))
2498{
2499	struct klist_iter i;
2500	struct device *child;
2501	int error = 0;
2502
2503	if (!parent->p)
2504		return 0;
2505
2506	klist_iter_init(&parent->p->klist_children, &i);
2507	while (!error && (child = next_device(&i)))
2508		error = fn(child, data);
2509	klist_iter_exit(&i);
2510	return error;
2511}
2512EXPORT_SYMBOL_GPL(device_for_each_child);
2513
2514/**
2515 * device_for_each_child_reverse - device child iterator in reversed order.
2516 * @parent: parent struct device.
2517 * @fn: function to be called for each device.
2518 * @data: data for the callback.
2519 *
2520 * Iterate over @parent's child devices, and call @fn for each,
2521 * passing it @data.
2522 *
2523 * We check the return of @fn each time. If it returns anything
2524 * other than 0, we break out and return that value.
2525 */
2526int device_for_each_child_reverse(struct device *parent, void *data,
2527				  int (*fn)(struct device *dev, void *data))
2528{
2529	struct klist_iter i;
2530	struct device *child;
2531	int error = 0;
2532
2533	if (!parent->p)
2534		return 0;
2535
2536	klist_iter_init(&parent->p->klist_children, &i);
2537	while ((child = prev_device(&i)) && !error)
2538		error = fn(child, data);
2539	klist_iter_exit(&i);
2540	return error;
2541}
2542EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2543
2544/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2545 * device_find_child - device iterator for locating a particular device.
2546 * @parent: parent struct device
2547 * @match: Callback function to check device
2548 * @data: Data to pass to match function
2549 *
2550 * This is similar to the device_for_each_child() function above, but it
2551 * returns a reference to a device that is 'found' for later use, as
2552 * determined by the @match callback.
2553 *
2554 * The callback should return 0 if the device doesn't match and non-zero
2555 * if it does.  If the callback returns non-zero and a reference to the
2556 * current device can be obtained, this function will return to the caller
2557 * and not iterate over any more devices.
2558 *
2559 * NOTE: you will need to drop the reference with put_device() after use.
2560 */
2561struct device *device_find_child(struct device *parent, void *data,
2562				 int (*match)(struct device *dev, void *data))
2563{
2564	struct klist_iter i;
2565	struct device *child;
2566
2567	if (!parent)
2568		return NULL;
2569
2570	klist_iter_init(&parent->p->klist_children, &i);
2571	while ((child = next_device(&i)))
2572		if (match(child, data) && get_device(child))
2573			break;
2574	klist_iter_exit(&i);
2575	return child;
2576}
2577EXPORT_SYMBOL_GPL(device_find_child);
2578
2579/**
2580 * device_find_child_by_name - device iterator for locating a child device.
2581 * @parent: parent struct device
2582 * @name: name of the child device
2583 *
2584 * This is similar to the device_find_child() function above, but it
2585 * returns a reference to a device that has the name @name.
2586 *
2587 * NOTE: you will need to drop the reference with put_device() after use.
2588 */
2589struct device *device_find_child_by_name(struct device *parent,
2590					 const char *name)
2591{
2592	struct klist_iter i;
2593	struct device *child;
2594
2595	if (!parent)
2596		return NULL;
2597
2598	klist_iter_init(&parent->p->klist_children, &i);
2599	while ((child = next_device(&i)))
2600		if (!strcmp(dev_name(child), name) && get_device(child))
2601			break;
2602	klist_iter_exit(&i);
2603	return child;
2604}
2605EXPORT_SYMBOL_GPL(device_find_child_by_name);
2606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2607int __init devices_init(void)
2608{
2609	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2610	if (!devices_kset)
2611		return -ENOMEM;
2612	dev_kobj = kobject_create_and_add("dev", NULL);
2613	if (!dev_kobj)
2614		goto dev_kobj_err;
2615	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2616	if (!sysfs_dev_block_kobj)
2617		goto block_kobj_err;
2618	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2619	if (!sysfs_dev_char_kobj)
2620		goto char_kobj_err;
 
 
 
2621
2622	return 0;
2623
 
 
2624 char_kobj_err:
2625	kobject_put(sysfs_dev_block_kobj);
2626 block_kobj_err:
2627	kobject_put(dev_kobj);
2628 dev_kobj_err:
2629	kset_unregister(devices_kset);
2630	return -ENOMEM;
2631}
2632
2633static int device_check_offline(struct device *dev, void *not_used)
2634{
2635	int ret;
2636
2637	ret = device_for_each_child(dev, NULL, device_check_offline);
2638	if (ret)
2639		return ret;
2640
2641	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2642}
2643
2644/**
2645 * device_offline - Prepare the device for hot-removal.
2646 * @dev: Device to be put offline.
2647 *
2648 * Execute the device bus type's .offline() callback, if present, to prepare
2649 * the device for a subsequent hot-removal.  If that succeeds, the device must
2650 * not be used until either it is removed or its bus type's .online() callback
2651 * is executed.
2652 *
2653 * Call under device_hotplug_lock.
2654 */
2655int device_offline(struct device *dev)
2656{
2657	int ret;
2658
2659	if (dev->offline_disabled)
2660		return -EPERM;
2661
2662	ret = device_for_each_child(dev, NULL, device_check_offline);
2663	if (ret)
2664		return ret;
2665
2666	device_lock(dev);
2667	if (device_supports_offline(dev)) {
2668		if (dev->offline) {
2669			ret = 1;
2670		} else {
2671			ret = dev->bus->offline(dev);
2672			if (!ret) {
2673				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2674				dev->offline = true;
2675			}
2676		}
2677	}
2678	device_unlock(dev);
2679
2680	return ret;
2681}
2682
2683/**
2684 * device_online - Put the device back online after successful device_offline().
2685 * @dev: Device to be put back online.
2686 *
2687 * If device_offline() has been successfully executed for @dev, but the device
2688 * has not been removed subsequently, execute its bus type's .online() callback
2689 * to indicate that the device can be used again.
2690 *
2691 * Call under device_hotplug_lock.
2692 */
2693int device_online(struct device *dev)
2694{
2695	int ret = 0;
2696
2697	device_lock(dev);
2698	if (device_supports_offline(dev)) {
2699		if (dev->offline) {
2700			ret = dev->bus->online(dev);
2701			if (!ret) {
2702				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2703				dev->offline = false;
2704			}
2705		} else {
2706			ret = 1;
2707		}
2708	}
2709	device_unlock(dev);
2710
2711	return ret;
2712}
2713
2714struct root_device {
2715	struct device dev;
2716	struct module *owner;
2717};
2718
2719static inline struct root_device *to_root_device(struct device *d)
2720{
2721	return container_of(d, struct root_device, dev);
2722}
2723
2724static void root_device_release(struct device *dev)
2725{
2726	kfree(to_root_device(dev));
2727}
2728
2729/**
2730 * __root_device_register - allocate and register a root device
2731 * @name: root device name
2732 * @owner: owner module of the root device, usually THIS_MODULE
2733 *
2734 * This function allocates a root device and registers it
2735 * using device_register(). In order to free the returned
2736 * device, use root_device_unregister().
2737 *
2738 * Root devices are dummy devices which allow other devices
2739 * to be grouped under /sys/devices. Use this function to
2740 * allocate a root device and then use it as the parent of
2741 * any device which should appear under /sys/devices/{name}
2742 *
2743 * The /sys/devices/{name} directory will also contain a
2744 * 'module' symlink which points to the @owner directory
2745 * in sysfs.
2746 *
2747 * Returns &struct device pointer on success, or ERR_PTR() on error.
2748 *
2749 * Note: You probably want to use root_device_register().
2750 */
2751struct device *__root_device_register(const char *name, struct module *owner)
2752{
2753	struct root_device *root;
2754	int err = -ENOMEM;
2755
2756	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2757	if (!root)
2758		return ERR_PTR(err);
2759
2760	err = dev_set_name(&root->dev, "%s", name);
2761	if (err) {
2762		kfree(root);
2763		return ERR_PTR(err);
2764	}
2765
2766	root->dev.release = root_device_release;
2767
2768	err = device_register(&root->dev);
2769	if (err) {
2770		put_device(&root->dev);
2771		return ERR_PTR(err);
2772	}
2773
2774#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2775	if (owner) {
2776		struct module_kobject *mk = &owner->mkobj;
2777
2778		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2779		if (err) {
2780			device_unregister(&root->dev);
2781			return ERR_PTR(err);
2782		}
2783		root->owner = owner;
2784	}
2785#endif
2786
2787	return &root->dev;
2788}
2789EXPORT_SYMBOL_GPL(__root_device_register);
2790
2791/**
2792 * root_device_unregister - unregister and free a root device
2793 * @dev: device going away
2794 *
2795 * This function unregisters and cleans up a device that was created by
2796 * root_device_register().
2797 */
2798void root_device_unregister(struct device *dev)
2799{
2800	struct root_device *root = to_root_device(dev);
2801
2802	if (root->owner)
2803		sysfs_remove_link(&root->dev.kobj, "module");
2804
2805	device_unregister(dev);
2806}
2807EXPORT_SYMBOL_GPL(root_device_unregister);
2808
2809
2810static void device_create_release(struct device *dev)
2811{
2812	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2813	kfree(dev);
2814}
2815
2816static __printf(6, 0) struct device *
2817device_create_groups_vargs(struct class *class, struct device *parent,
2818			   dev_t devt, void *drvdata,
2819			   const struct attribute_group **groups,
2820			   const char *fmt, va_list args)
2821{
2822	struct device *dev = NULL;
2823	int retval = -ENODEV;
2824
2825	if (class == NULL || IS_ERR(class))
2826		goto error;
2827
2828	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829	if (!dev) {
2830		retval = -ENOMEM;
2831		goto error;
2832	}
2833
2834	device_initialize(dev);
2835	dev->devt = devt;
2836	dev->class = class;
2837	dev->parent = parent;
2838	dev->groups = groups;
2839	dev->release = device_create_release;
2840	dev_set_drvdata(dev, drvdata);
2841
2842	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2843	if (retval)
2844		goto error;
2845
2846	retval = device_add(dev);
2847	if (retval)
2848		goto error;
2849
2850	return dev;
2851
2852error:
2853	put_device(dev);
2854	return ERR_PTR(retval);
2855}
2856
2857/**
2858 * device_create_vargs - creates a device and registers it with sysfs
2859 * @class: pointer to the struct class that this device should be registered to
2860 * @parent: pointer to the parent struct device of this new device, if any
2861 * @devt: the dev_t for the char device to be added
2862 * @drvdata: the data to be added to the device for callbacks
2863 * @fmt: string for the device's name
2864 * @args: va_list for the device's name
2865 *
2866 * This function can be used by char device classes.  A struct device
2867 * will be created in sysfs, registered to the specified class.
2868 *
2869 * A "dev" file will be created, showing the dev_t for the device, if
2870 * the dev_t is not 0,0.
2871 * If a pointer to a parent struct device is passed in, the newly created
2872 * struct device will be a child of that device in sysfs.
2873 * The pointer to the struct device will be returned from the call.
2874 * Any further sysfs files that might be required can be created using this
2875 * pointer.
2876 *
2877 * Returns &struct device pointer on success, or ERR_PTR() on error.
2878 *
2879 * Note: the struct class passed to this function must have previously
2880 * been created with a call to class_create().
2881 */
2882struct device *device_create_vargs(struct class *class, struct device *parent,
2883				   dev_t devt, void *drvdata, const char *fmt,
2884				   va_list args)
2885{
2886	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2887					  fmt, args);
2888}
2889EXPORT_SYMBOL_GPL(device_create_vargs);
2890
2891/**
2892 * device_create - creates a device and registers it with sysfs
2893 * @class: pointer to the struct class that this device should be registered to
2894 * @parent: pointer to the parent struct device of this new device, if any
2895 * @devt: the dev_t for the char device to be added
2896 * @drvdata: the data to be added to the device for callbacks
2897 * @fmt: string for the device's name
2898 *
2899 * This function can be used by char device classes.  A struct device
2900 * will be created in sysfs, registered to the specified class.
2901 *
2902 * A "dev" file will be created, showing the dev_t for the device, if
2903 * the dev_t is not 0,0.
2904 * If a pointer to a parent struct device is passed in, the newly created
2905 * struct device will be a child of that device in sysfs.
2906 * The pointer to the struct device will be returned from the call.
2907 * Any further sysfs files that might be required can be created using this
2908 * pointer.
2909 *
2910 * Returns &struct device pointer on success, or ERR_PTR() on error.
2911 *
2912 * Note: the struct class passed to this function must have previously
2913 * been created with a call to class_create().
2914 */
2915struct device *device_create(struct class *class, struct device *parent,
2916			     dev_t devt, void *drvdata, const char *fmt, ...)
2917{
2918	va_list vargs;
2919	struct device *dev;
2920
2921	va_start(vargs, fmt);
2922	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
 
2923	va_end(vargs);
2924	return dev;
2925}
2926EXPORT_SYMBOL_GPL(device_create);
2927
2928/**
2929 * device_create_with_groups - creates a device and registers it with sysfs
2930 * @class: pointer to the struct class that this device should be registered to
2931 * @parent: pointer to the parent struct device of this new device, if any
2932 * @devt: the dev_t for the char device to be added
2933 * @drvdata: the data to be added to the device for callbacks
2934 * @groups: NULL-terminated list of attribute groups to be created
2935 * @fmt: string for the device's name
2936 *
2937 * This function can be used by char device classes.  A struct device
2938 * will be created in sysfs, registered to the specified class.
2939 * Additional attributes specified in the groups parameter will also
2940 * be created automatically.
2941 *
2942 * A "dev" file will be created, showing the dev_t for the device, if
2943 * the dev_t is not 0,0.
2944 * If a pointer to a parent struct device is passed in, the newly created
2945 * struct device will be a child of that device in sysfs.
2946 * The pointer to the struct device will be returned from the call.
2947 * Any further sysfs files that might be required can be created using this
2948 * pointer.
2949 *
2950 * Returns &struct device pointer on success, or ERR_PTR() on error.
2951 *
2952 * Note: the struct class passed to this function must have previously
2953 * been created with a call to class_create().
2954 */
2955struct device *device_create_with_groups(struct class *class,
2956					 struct device *parent, dev_t devt,
2957					 void *drvdata,
2958					 const struct attribute_group **groups,
2959					 const char *fmt, ...)
2960{
2961	va_list vargs;
2962	struct device *dev;
2963
2964	va_start(vargs, fmt);
2965	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2966					 fmt, vargs);
2967	va_end(vargs);
2968	return dev;
2969}
2970EXPORT_SYMBOL_GPL(device_create_with_groups);
2971
2972/**
2973 * device_destroy - removes a device that was created with device_create()
2974 * @class: pointer to the struct class that this device was registered with
2975 * @devt: the dev_t of the device that was previously registered
2976 *
2977 * This call unregisters and cleans up a device that was created with a
2978 * call to device_create().
2979 */
2980void device_destroy(struct class *class, dev_t devt)
2981{
2982	struct device *dev;
2983
2984	dev = class_find_device_by_devt(class, devt);
2985	if (dev) {
2986		put_device(dev);
2987		device_unregister(dev);
2988	}
2989}
2990EXPORT_SYMBOL_GPL(device_destroy);
2991
2992/**
2993 * device_rename - renames a device
2994 * @dev: the pointer to the struct device to be renamed
2995 * @new_name: the new name of the device
2996 *
2997 * It is the responsibility of the caller to provide mutual
2998 * exclusion between two different calls of device_rename
2999 * on the same device to ensure that new_name is valid and
3000 * won't conflict with other devices.
3001 *
3002 * Note: Don't call this function.  Currently, the networking layer calls this
3003 * function, but that will change.  The following text from Kay Sievers offers
3004 * some insight:
 
 
 
3005 *
3006 * Renaming devices is racy at many levels, symlinks and other stuff are not
3007 * replaced atomically, and you get a "move" uevent, but it's not easy to
3008 * connect the event to the old and new device. Device nodes are not renamed at
3009 * all, there isn't even support for that in the kernel now.
3010 *
3011 * In the meantime, during renaming, your target name might be taken by another
3012 * driver, creating conflicts. Or the old name is taken directly after you
3013 * renamed it -- then you get events for the same DEVPATH, before you even see
3014 * the "move" event. It's just a mess, and nothing new should ever rely on
3015 * kernel device renaming. Besides that, it's not even implemented now for
3016 * other things than (driver-core wise very simple) network devices.
3017 *
3018 * We are currently about to change network renaming in udev to completely
3019 * disallow renaming of devices in the same namespace as the kernel uses,
3020 * because we can't solve the problems properly, that arise with swapping names
3021 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3022 * be allowed to some other name than eth[0-9]*, for the aforementioned
3023 * reasons.
3024 *
3025 * Make up a "real" name in the driver before you register anything, or add
3026 * some other attributes for userspace to find the device, or use udev to add
3027 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3028 * don't even want to get into that and try to implement the missing pieces in
3029 * the core. We really have other pieces to fix in the driver core mess. :)
3030 */
3031int device_rename(struct device *dev, const char *new_name)
3032{
 
3033	struct kobject *kobj = &dev->kobj;
3034	char *old_device_name = NULL;
3035	int error;
 
3036
3037	dev = get_device(dev);
3038	if (!dev)
3039		return -EINVAL;
3040
3041	dev_dbg(dev, "renaming to %s\n", new_name);
3042
3043	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3044	if (!old_device_name) {
3045		error = -ENOMEM;
3046		goto out;
3047	}
3048
3049	if (dev->class) {
3050		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3051					     kobj, old_device_name,
 
 
 
 
 
 
3052					     new_name, kobject_namespace(kobj));
3053		if (error)
3054			goto out;
 
 
3055	}
3056
3057	error = kobject_rename(kobj, new_name);
3058	if (error)
3059		goto out;
3060
3061out:
 
 
 
 
 
3062	put_device(dev);
3063
3064	kfree(old_device_name);
3065
3066	return error;
3067}
3068EXPORT_SYMBOL_GPL(device_rename);
3069
3070static int device_move_class_links(struct device *dev,
3071				   struct device *old_parent,
3072				   struct device *new_parent)
3073{
3074	int error = 0;
3075
3076	if (old_parent)
3077		sysfs_remove_link(&dev->kobj, "device");
3078	if (new_parent)
3079		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3080					  "device");
3081	return error;
3082}
3083
3084/**
3085 * device_move - moves a device to a new parent
3086 * @dev: the pointer to the struct device to be moved
3087 * @new_parent: the new parent of the device (can be NULL)
3088 * @dpm_order: how to reorder the dpm_list
3089 */
3090int device_move(struct device *dev, struct device *new_parent,
3091		enum dpm_order dpm_order)
3092{
3093	int error;
3094	struct device *old_parent;
3095	struct kobject *new_parent_kobj;
3096
3097	dev = get_device(dev);
3098	if (!dev)
3099		return -EINVAL;
3100
3101	device_pm_lock();
3102	new_parent = get_device(new_parent);
3103	new_parent_kobj = get_device_parent(dev, new_parent);
3104	if (IS_ERR(new_parent_kobj)) {
3105		error = PTR_ERR(new_parent_kobj);
3106		put_device(new_parent);
3107		goto out;
3108	}
3109
3110	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3111		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3112	error = kobject_move(&dev->kobj, new_parent_kobj);
3113	if (error) {
3114		cleanup_glue_dir(dev, new_parent_kobj);
3115		put_device(new_parent);
3116		goto out;
3117	}
3118	old_parent = dev->parent;
3119	dev->parent = new_parent;
3120	if (old_parent)
3121		klist_remove(&dev->p->knode_parent);
3122	if (new_parent) {
3123		klist_add_tail(&dev->p->knode_parent,
3124			       &new_parent->p->klist_children);
3125		set_dev_node(dev, dev_to_node(new_parent));
3126	}
3127
3128	if (dev->class) {
3129		error = device_move_class_links(dev, old_parent, new_parent);
3130		if (error) {
3131			/* We ignore errors on cleanup since we're hosed anyway... */
3132			device_move_class_links(dev, new_parent, old_parent);
3133			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3134				if (new_parent)
3135					klist_remove(&dev->p->knode_parent);
3136				dev->parent = old_parent;
3137				if (old_parent) {
3138					klist_add_tail(&dev->p->knode_parent,
3139						       &old_parent->p->klist_children);
3140					set_dev_node(dev, dev_to_node(old_parent));
3141				}
3142			}
3143			cleanup_glue_dir(dev, new_parent_kobj);
3144			put_device(new_parent);
3145			goto out;
3146		}
3147	}
3148	switch (dpm_order) {
3149	case DPM_ORDER_NONE:
3150		break;
3151	case DPM_ORDER_DEV_AFTER_PARENT:
3152		device_pm_move_after(dev, new_parent);
3153		devices_kset_move_after(dev, new_parent);
3154		break;
3155	case DPM_ORDER_PARENT_BEFORE_DEV:
3156		device_pm_move_before(new_parent, dev);
3157		devices_kset_move_before(new_parent, dev);
3158		break;
3159	case DPM_ORDER_DEV_LAST:
3160		device_pm_move_last(dev);
3161		devices_kset_move_last(dev);
3162		break;
3163	}
3164
3165	put_device(old_parent);
3166out:
3167	device_pm_unlock();
3168	put_device(dev);
3169	return error;
3170}
3171EXPORT_SYMBOL_GPL(device_move);
3172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3173/**
3174 * device_shutdown - call ->shutdown() on each device to shutdown.
3175 */
3176void device_shutdown(void)
3177{
3178	struct device *dev, *parent;
3179
3180	wait_for_device_probe();
3181	device_block_probing();
3182
3183	cpufreq_suspend();
3184
3185	spin_lock(&devices_kset->list_lock);
3186	/*
3187	 * Walk the devices list backward, shutting down each in turn.
3188	 * Beware that device unplug events may also start pulling
3189	 * devices offline, even as the system is shutting down.
3190	 */
3191	while (!list_empty(&devices_kset->list)) {
3192		dev = list_entry(devices_kset->list.prev, struct device,
3193				kobj.entry);
3194
3195		/*
3196		 * hold reference count of device's parent to
3197		 * prevent it from being freed because parent's
3198		 * lock is to be held
3199		 */
3200		parent = get_device(dev->parent);
3201		get_device(dev);
3202		/*
3203		 * Make sure the device is off the kset list, in the
3204		 * event that dev->*->shutdown() doesn't remove it.
3205		 */
3206		list_del_init(&dev->kobj.entry);
3207		spin_unlock(&devices_kset->list_lock);
3208
3209		/* hold lock to avoid race with probe/release */
3210		if (parent)
3211			device_lock(parent);
3212		device_lock(dev);
3213
3214		/* Don't allow any more runtime suspends */
3215		pm_runtime_get_noresume(dev);
3216		pm_runtime_barrier(dev);
3217
3218		if (dev->class && dev->class->shutdown_pre) {
3219			if (initcall_debug)
3220				dev_info(dev, "shutdown_pre\n");
3221			dev->class->shutdown_pre(dev);
3222		}
3223		if (dev->bus && dev->bus->shutdown) {
3224			if (initcall_debug)
3225				dev_info(dev, "shutdown\n");
3226			dev->bus->shutdown(dev);
3227		} else if (dev->driver && dev->driver->shutdown) {
3228			if (initcall_debug)
3229				dev_info(dev, "shutdown\n");
3230			dev->driver->shutdown(dev);
3231		}
3232
3233		device_unlock(dev);
3234		if (parent)
3235			device_unlock(parent);
3236
3237		put_device(dev);
3238		put_device(parent);
3239
3240		spin_lock(&devices_kset->list_lock);
3241	}
3242	spin_unlock(&devices_kset->list_lock);
3243}
3244
3245/*
3246 * Device logging functions
3247 */
3248
3249#ifdef CONFIG_PRINTK
3250static int
3251create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3252{
3253	const char *subsys;
3254	size_t pos = 0;
 
3255
3256	if (dev->class)
3257		subsys = dev->class->name;
3258	else if (dev->bus)
3259		subsys = dev->bus->name;
3260	else
3261		return 0;
3262
3263	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3264	if (pos >= hdrlen)
3265		goto overflow;
3266
3267	/*
3268	 * Add device identifier DEVICE=:
3269	 *   b12:8         block dev_t
3270	 *   c127:3        char dev_t
3271	 *   n8            netdev ifindex
3272	 *   +sound:card0  subsystem:devname
3273	 */
3274	if (MAJOR(dev->devt)) {
3275		char c;
3276
3277		if (strcmp(subsys, "block") == 0)
3278			c = 'b';
3279		else
3280			c = 'c';
3281		pos++;
3282		pos += snprintf(hdr + pos, hdrlen - pos,
3283				"DEVICE=%c%u:%u",
3284				c, MAJOR(dev->devt), MINOR(dev->devt));
3285	} else if (strcmp(subsys, "net") == 0) {
3286		struct net_device *net = to_net_dev(dev);
3287
3288		pos++;
3289		pos += snprintf(hdr + pos, hdrlen - pos,
3290				"DEVICE=n%u", net->ifindex);
3291	} else {
3292		pos++;
3293		pos += snprintf(hdr + pos, hdrlen - pos,
3294				"DEVICE=+%s:%s", subsys, dev_name(dev));
3295	}
3296
3297	if (pos >= hdrlen)
3298		goto overflow;
3299
3300	return pos;
3301
3302overflow:
3303	dev_WARN(dev, "device/subsystem name too long");
3304	return 0;
3305}
3306
3307int dev_vprintk_emit(int level, const struct device *dev,
3308		     const char *fmt, va_list args)
3309{
3310	char hdr[128];
3311	size_t hdrlen;
3312
3313	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3314
3315	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3316}
3317EXPORT_SYMBOL(dev_vprintk_emit);
3318
3319int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3320{
3321	va_list args;
3322	int r;
3323
3324	va_start(args, fmt);
3325
3326	r = dev_vprintk_emit(level, dev, fmt, args);
3327
3328	va_end(args);
3329
3330	return r;
3331}
3332EXPORT_SYMBOL(dev_printk_emit);
3333
3334static void __dev_printk(const char *level, const struct device *dev,
3335			struct va_format *vaf)
3336{
3337	if (dev)
3338		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3339				dev_driver_string(dev), dev_name(dev), vaf);
3340	else
3341		printk("%s(NULL device *): %pV", level, vaf);
3342}
3343
3344void dev_printk(const char *level, const struct device *dev,
3345		const char *fmt, ...)
3346{
3347	struct va_format vaf;
3348	va_list args;
3349
3350	va_start(args, fmt);
3351
3352	vaf.fmt = fmt;
3353	vaf.va = &args;
3354
3355	__dev_printk(level, dev, &vaf);
3356
3357	va_end(args);
3358}
3359EXPORT_SYMBOL(dev_printk);
3360
3361#define define_dev_printk_level(func, kern_level)		\
3362void func(const struct device *dev, const char *fmt, ...)	\
3363{								\
3364	struct va_format vaf;					\
3365	va_list args;						\
3366								\
3367	va_start(args, fmt);					\
3368								\
3369	vaf.fmt = fmt;						\
3370	vaf.va = &args;						\
3371								\
3372	__dev_printk(kern_level, dev, &vaf);			\
3373								\
3374	va_end(args);						\
3375}								\
3376EXPORT_SYMBOL(func);
3377
3378define_dev_printk_level(_dev_emerg, KERN_EMERG);
3379define_dev_printk_level(_dev_alert, KERN_ALERT);
3380define_dev_printk_level(_dev_crit, KERN_CRIT);
3381define_dev_printk_level(_dev_err, KERN_ERR);
3382define_dev_printk_level(_dev_warn, KERN_WARNING);
3383define_dev_printk_level(_dev_notice, KERN_NOTICE);
3384define_dev_printk_level(_dev_info, KERN_INFO);
3385
3386#endif
3387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3389{
3390	return fwnode && !IS_ERR(fwnode->secondary);
3391}
3392
3393/**
3394 * set_primary_fwnode - Change the primary firmware node of a given device.
3395 * @dev: Device to handle.
3396 * @fwnode: New primary firmware node of the device.
3397 *
3398 * Set the device's firmware node pointer to @fwnode, but if a secondary
3399 * firmware node of the device is present, preserve it.
 
 
 
 
 
 
3400 */
3401void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3402{
3403	if (fwnode) {
3404		struct fwnode_handle *fn = dev->fwnode;
3405
 
3406		if (fwnode_is_primary(fn))
3407			fn = fn->secondary;
3408
3409		if (fn) {
3410			WARN_ON(fwnode->secondary);
3411			fwnode->secondary = fn;
3412		}
3413		dev->fwnode = fwnode;
3414	} else {
3415		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3416			dev->fwnode->secondary : NULL;
 
 
 
 
 
 
 
 
 
 
3417	}
3418}
3419EXPORT_SYMBOL_GPL(set_primary_fwnode);
3420
3421/**
3422 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3423 * @dev: Device to handle.
3424 * @fwnode: New secondary firmware node of the device.
3425 *
3426 * If a primary firmware node of the device is present, set its secondary
3427 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3428 * @fwnode.
3429 */
3430void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3431{
3432	if (fwnode)
3433		fwnode->secondary = ERR_PTR(-ENODEV);
3434
3435	if (fwnode_is_primary(dev->fwnode))
3436		dev->fwnode->secondary = fwnode;
3437	else
3438		dev->fwnode = fwnode;
3439}
 
3440
3441/**
3442 * device_set_of_node_from_dev - reuse device-tree node of another device
3443 * @dev: device whose device-tree node is being set
3444 * @dev2: device whose device-tree node is being reused
3445 *
3446 * Takes another reference to the new device-tree node after first dropping
3447 * any reference held to the old node.
3448 */
3449void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3450{
3451	of_node_put(dev->of_node);
3452	dev->of_node = of_node_get(dev2->of_node);
3453	dev->of_node_reused = true;
3454}
3455EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3456
 
 
 
 
 
 
 
3457int device_match_name(struct device *dev, const void *name)
3458{
3459	return sysfs_streq(dev_name(dev), name);
3460}
3461EXPORT_SYMBOL_GPL(device_match_name);
3462
3463int device_match_of_node(struct device *dev, const void *np)
3464{
3465	return dev->of_node == np;
3466}
3467EXPORT_SYMBOL_GPL(device_match_of_node);
3468
3469int device_match_fwnode(struct device *dev, const void *fwnode)
3470{
3471	return dev_fwnode(dev) == fwnode;
3472}
3473EXPORT_SYMBOL_GPL(device_match_fwnode);
3474
3475int device_match_devt(struct device *dev, const void *pdevt)
3476{
3477	return dev->devt == *(dev_t *)pdevt;
3478}
3479EXPORT_SYMBOL_GPL(device_match_devt);
3480
3481int device_match_acpi_dev(struct device *dev, const void *adev)
3482{
3483	return ACPI_COMPANION(dev) == adev;
3484}
3485EXPORT_SYMBOL(device_match_acpi_dev);
 
 
 
 
 
 
3486
3487int device_match_any(struct device *dev, const void *unused)
3488{
3489	return 1;
3490}
3491EXPORT_SYMBOL_GPL(device_match_any);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/blkdev.h>
  13#include <linux/cleanup.h>
  14#include <linux/cpufreq.h>
  15#include <linux/device.h>
  16#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  17#include <linux/err.h>
  18#include <linux/fwnode.h>
  19#include <linux/init.h>
 
 
 
  20#include <linux/kdev_t.h>
  21#include <linux/kstrtox.h>
  22#include <linux/module.h>
  23#include <linux/mutex.h>
  24#include <linux/netdevice.h>
  25#include <linux/notifier.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
 
 
  28#include <linux/pm_runtime.h>
  29#include <linux/sched/mm.h>
  30#include <linux/sched/signal.h>
  31#include <linux/slab.h>
  32#include <linux/string_helpers.h>
  33#include <linux/swiotlb.h>
  34#include <linux/sysfs.h>
  35
  36#include "base.h"
  37#include "physical_location.h"
  38#include "power/power.h"
  39
  40/* Device links support. */
  41static LIST_HEAD(deferred_sync);
  42static unsigned int defer_sync_state_count = 1;
  43static DEFINE_MUTEX(fwnode_link_lock);
  44static bool fw_devlink_is_permissive(void);
  45static void __fw_devlink_link_to_consumers(struct device *dev);
  46static bool fw_devlink_drv_reg_done;
  47static bool fw_devlink_best_effort;
  48static struct workqueue_struct *device_link_wq;
  49
  50/**
  51 * __fwnode_link_add - Create a link between two fwnode_handles.
  52 * @con: Consumer end of the link.
  53 * @sup: Supplier end of the link.
  54 * @flags: Link flags.
  55 *
  56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  57 * represents the detail that the firmware lists @sup fwnode as supplying a
  58 * resource to @con.
  59 *
  60 * The driver core will use the fwnode link to create a device link between the
  61 * two device objects corresponding to @con and @sup when they are created. The
  62 * driver core will automatically delete the fwnode link between @con and @sup
  63 * after doing that.
  64 *
  65 * Attempts to create duplicate links between the same pair of fwnode handles
  66 * are ignored and there is no reference counting.
  67 */
  68static int __fwnode_link_add(struct fwnode_handle *con,
  69			     struct fwnode_handle *sup, u8 flags)
  70{
  71	struct fwnode_link *link;
  72
  73	list_for_each_entry(link, &sup->consumers, s_hook)
  74		if (link->consumer == con) {
  75			link->flags |= flags;
  76			return 0;
  77		}
  78
  79	link = kzalloc(sizeof(*link), GFP_KERNEL);
  80	if (!link)
  81		return -ENOMEM;
  82
  83	link->supplier = sup;
  84	INIT_LIST_HEAD(&link->s_hook);
  85	link->consumer = con;
  86	INIT_LIST_HEAD(&link->c_hook);
  87	link->flags = flags;
  88
  89	list_add(&link->s_hook, &sup->consumers);
  90	list_add(&link->c_hook, &con->suppliers);
  91	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
  92		 con, sup);
  93
  94	return 0;
  95}
  96
  97int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
  98		    u8 flags)
  99{
 100	guard(mutex)(&fwnode_link_lock);
 101
 102	return __fwnode_link_add(con, sup, flags);
 103}
 
 
 104
 105/**
 106 * __fwnode_link_del - Delete a link between two fwnode_handles.
 107 * @link: the fwnode_link to be deleted
 108 *
 109 * The fwnode_link_lock needs to be held when this function is called.
 110 */
 111static void __fwnode_link_del(struct fwnode_link *link)
 112{
 113	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
 114		 link->consumer, link->supplier);
 115	list_del(&link->s_hook);
 116	list_del(&link->c_hook);
 117	kfree(link);
 118}
 119
 120/**
 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
 122 * @link: the fwnode_link to be marked
 123 *
 124 * The fwnode_link_lock needs to be held when this function is called.
 125 */
 126static void __fwnode_link_cycle(struct fwnode_link *link)
 127{
 128	pr_debug("%pfwf: cycle: depends on %pfwf\n",
 129		 link->consumer, link->supplier);
 130	link->flags |= FWLINK_FLAG_CYCLE;
 131}
 132
 133/**
 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 135 * @fwnode: fwnode whose supplier links need to be deleted
 136 *
 137 * Deletes all supplier links connecting directly to @fwnode.
 138 */
 139static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 140{
 141	struct fwnode_link *link, *tmp;
 142
 143	guard(mutex)(&fwnode_link_lock);
 144
 145	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
 146		__fwnode_link_del(link);
 147}
 148
 149/**
 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 151 * @fwnode: fwnode whose consumer links need to be deleted
 152 *
 153 * Deletes all consumer links connecting directly to @fwnode.
 154 */
 155static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 156{
 157	struct fwnode_link *link, *tmp;
 158
 159	guard(mutex)(&fwnode_link_lock);
 160
 161	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
 162		__fwnode_link_del(link);
 163}
 164
 165/**
 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 167 * @fwnode: fwnode whose links needs to be deleted
 168 *
 169 * Deletes all links connecting directly to a fwnode.
 170 */
 171void fwnode_links_purge(struct fwnode_handle *fwnode)
 172{
 173	fwnode_links_purge_suppliers(fwnode);
 174	fwnode_links_purge_consumers(fwnode);
 175}
 176
 177void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 178{
 179	struct fwnode_handle *child;
 180
 181	/* Don't purge consumer links of an added child */
 182	if (fwnode->dev)
 183		return;
 184
 185	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 186	fwnode_links_purge_consumers(fwnode);
 187
 188	fwnode_for_each_available_child_node(fwnode, child)
 189		fw_devlink_purge_absent_suppliers(child);
 190}
 191EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 192
 193/**
 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
 195 * @from: move consumers away from this fwnode
 196 * @to: move consumers to this fwnode
 197 *
 198 * Move all consumer links from @from fwnode to @to fwnode.
 199 */
 200static void __fwnode_links_move_consumers(struct fwnode_handle *from,
 201					  struct fwnode_handle *to)
 202{
 203	struct fwnode_link *link, *tmp;
 204
 205	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
 206		__fwnode_link_add(link->consumer, to, link->flags);
 207		__fwnode_link_del(link);
 208	}
 209}
 210
 211/**
 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
 213 * @fwnode: fwnode from which to pick up dangling consumers
 214 * @new_sup: fwnode of new supplier
 215 *
 216 * If the @fwnode has a corresponding struct device and the device supports
 217 * probing (that is, added to a bus), then we want to let fw_devlink create
 218 * MANAGED device links to this device, so leave @fwnode and its descendant's
 219 * fwnode links alone.
 220 *
 221 * Otherwise, move its consumers to the new supplier @new_sup.
 222 */
 223static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
 224						   struct fwnode_handle *new_sup)
 225{
 226	struct fwnode_handle *child;
 227
 228	if (fwnode->dev && fwnode->dev->bus)
 229		return;
 230
 231	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 232	__fwnode_links_move_consumers(fwnode, new_sup);
 233
 234	fwnode_for_each_available_child_node(fwnode, child)
 235		__fw_devlink_pickup_dangling_consumers(child, new_sup);
 236}
 237
 
 238static DEFINE_MUTEX(device_links_lock);
 239DEFINE_STATIC_SRCU(device_links_srcu);
 240
 241static inline void device_links_write_lock(void)
 242{
 243	mutex_lock(&device_links_lock);
 244}
 245
 246static inline void device_links_write_unlock(void)
 247{
 248	mutex_unlock(&device_links_lock);
 249}
 250
 251int device_links_read_lock(void) __acquires(&device_links_srcu)
 252{
 253	return srcu_read_lock(&device_links_srcu);
 254}
 255
 256void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 257{
 258	srcu_read_unlock(&device_links_srcu, idx);
 259}
 260
 261int device_links_read_lock_held(void)
 262{
 263	return srcu_read_lock_held(&device_links_srcu);
 264}
 
 
 265
 266static void device_link_synchronize_removal(void)
 267{
 268	synchronize_srcu(&device_links_srcu);
 269}
 270
 271static void device_link_remove_from_lists(struct device_link *link)
 272{
 273	list_del_rcu(&link->s_node);
 274	list_del_rcu(&link->c_node);
 
 
 
 
 
 275}
 276
 277static bool device_is_ancestor(struct device *dev, struct device *target)
 278{
 279	while (target->parent) {
 280		target = target->parent;
 281		if (dev == target)
 282			return true;
 283	}
 284	return false;
 285}
 286
 287#define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
 288				 DL_FLAG_CYCLE | \
 289				 DL_FLAG_MANAGED)
 290static inline bool device_link_flag_is_sync_state_only(u32 flags)
 291{
 292	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
 293}
 
 
 294
 295/**
 296 * device_is_dependent - Check if one device depends on another one
 297 * @dev: Device to check dependencies for.
 298 * @target: Device to check against.
 299 *
 300 * Check if @target depends on @dev or any device dependent on it (its child or
 301 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 302 */
 303static int device_is_dependent(struct device *dev, void *target)
 304{
 305	struct device_link *link;
 306	int ret;
 307
 308	/*
 309	 * The "ancestors" check is needed to catch the case when the target
 310	 * device has not been completely initialized yet and it is still
 311	 * missing from the list of children of its parent device.
 312	 */
 313	if (dev == target || device_is_ancestor(dev, target))
 314		return 1;
 315
 316	ret = device_for_each_child(dev, target, device_is_dependent);
 317	if (ret)
 318		return ret;
 319
 320	list_for_each_entry(link, &dev->links.consumers, s_node) {
 321		if (device_link_flag_is_sync_state_only(link->flags))
 322			continue;
 323
 324		if (link->consumer == target)
 325			return 1;
 326
 327		ret = device_is_dependent(link->consumer, target);
 328		if (ret)
 329			break;
 330	}
 331	return ret;
 332}
 333
 334static void device_link_init_status(struct device_link *link,
 335				    struct device *consumer,
 336				    struct device *supplier)
 337{
 338	switch (supplier->links.status) {
 339	case DL_DEV_PROBING:
 340		switch (consumer->links.status) {
 341		case DL_DEV_PROBING:
 342			/*
 343			 * A consumer driver can create a link to a supplier
 344			 * that has not completed its probing yet as long as it
 345			 * knows that the supplier is already functional (for
 346			 * example, it has just acquired some resources from the
 347			 * supplier).
 348			 */
 349			link->status = DL_STATE_CONSUMER_PROBE;
 350			break;
 351		default:
 352			link->status = DL_STATE_DORMANT;
 353			break;
 354		}
 355		break;
 356	case DL_DEV_DRIVER_BOUND:
 357		switch (consumer->links.status) {
 358		case DL_DEV_PROBING:
 359			link->status = DL_STATE_CONSUMER_PROBE;
 360			break;
 361		case DL_DEV_DRIVER_BOUND:
 362			link->status = DL_STATE_ACTIVE;
 363			break;
 364		default:
 365			link->status = DL_STATE_AVAILABLE;
 366			break;
 367		}
 368		break;
 369	case DL_DEV_UNBINDING:
 370		link->status = DL_STATE_SUPPLIER_UNBIND;
 371		break;
 372	default:
 373		link->status = DL_STATE_DORMANT;
 374		break;
 375	}
 376}
 377
 378static int device_reorder_to_tail(struct device *dev, void *not_used)
 379{
 380	struct device_link *link;
 381
 382	/*
 383	 * Devices that have not been registered yet will be put to the ends
 384	 * of the lists during the registration, so skip them here.
 385	 */
 386	if (device_is_registered(dev))
 387		devices_kset_move_last(dev);
 388
 389	if (device_pm_initialized(dev))
 390		device_pm_move_last(dev);
 391
 392	device_for_each_child(dev, NULL, device_reorder_to_tail);
 393	list_for_each_entry(link, &dev->links.consumers, s_node) {
 394		if (device_link_flag_is_sync_state_only(link->flags))
 395			continue;
 396		device_reorder_to_tail(link->consumer, NULL);
 397	}
 398
 399	return 0;
 400}
 401
 402/**
 403 * device_pm_move_to_tail - Move set of devices to the end of device lists
 404 * @dev: Device to move
 405 *
 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 407 *
 408 * It moves the @dev along with all of its children and all of its consumers
 409 * to the ends of the device_kset and dpm_list, recursively.
 410 */
 411void device_pm_move_to_tail(struct device *dev)
 412{
 413	int idx;
 414
 415	idx = device_links_read_lock();
 416	device_pm_lock();
 417	device_reorder_to_tail(dev, NULL);
 418	device_pm_unlock();
 419	device_links_read_unlock(idx);
 420}
 421
 422#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 423
 424static ssize_t status_show(struct device *dev,
 425			   struct device_attribute *attr, char *buf)
 426{
 427	const char *output;
 428
 429	switch (to_devlink(dev)->status) {
 430	case DL_STATE_NONE:
 431		output = "not tracked";
 432		break;
 433	case DL_STATE_DORMANT:
 434		output = "dormant";
 435		break;
 436	case DL_STATE_AVAILABLE:
 437		output = "available";
 438		break;
 439	case DL_STATE_CONSUMER_PROBE:
 440		output = "consumer probing";
 441		break;
 442	case DL_STATE_ACTIVE:
 443		output = "active";
 444		break;
 445	case DL_STATE_SUPPLIER_UNBIND:
 446		output = "supplier unbinding";
 447		break;
 448	default:
 449		output = "unknown";
 450		break;
 451	}
 452
 453	return sysfs_emit(buf, "%s\n", output);
 454}
 455static DEVICE_ATTR_RO(status);
 456
 457static ssize_t auto_remove_on_show(struct device *dev,
 458				   struct device_attribute *attr, char *buf)
 459{
 460	struct device_link *link = to_devlink(dev);
 461	const char *output;
 462
 463	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 464		output = "supplier unbind";
 465	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 466		output = "consumer unbind";
 467	else
 468		output = "never";
 469
 470	return sysfs_emit(buf, "%s\n", output);
 471}
 472static DEVICE_ATTR_RO(auto_remove_on);
 473
 474static ssize_t runtime_pm_show(struct device *dev,
 475			       struct device_attribute *attr, char *buf)
 476{
 477	struct device_link *link = to_devlink(dev);
 478
 479	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 480}
 481static DEVICE_ATTR_RO(runtime_pm);
 482
 483static ssize_t sync_state_only_show(struct device *dev,
 484				    struct device_attribute *attr, char *buf)
 485{
 486	struct device_link *link = to_devlink(dev);
 487
 488	return sysfs_emit(buf, "%d\n",
 489			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 490}
 491static DEVICE_ATTR_RO(sync_state_only);
 492
 493static struct attribute *devlink_attrs[] = {
 494	&dev_attr_status.attr,
 495	&dev_attr_auto_remove_on.attr,
 496	&dev_attr_runtime_pm.attr,
 497	&dev_attr_sync_state_only.attr,
 498	NULL,
 499};
 500ATTRIBUTE_GROUPS(devlink);
 501
 502static void device_link_release_fn(struct work_struct *work)
 503{
 504	struct device_link *link = container_of(work, struct device_link, rm_work);
 505
 506	/* Ensure that all references to the link object have been dropped. */
 507	device_link_synchronize_removal();
 508
 509	pm_runtime_release_supplier(link);
 510	/*
 511	 * If supplier_preactivated is set, the link has been dropped between
 512	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
 513	 * in __driver_probe_device().  In that case, drop the supplier's
 514	 * PM-runtime usage counter to remove the reference taken by
 515	 * pm_runtime_get_suppliers().
 516	 */
 517	if (link->supplier_preactivated)
 518		pm_runtime_put_noidle(link->supplier);
 519
 520	pm_request_idle(link->supplier);
 521
 522	put_device(link->consumer);
 523	put_device(link->supplier);
 524	kfree(link);
 525}
 526
 527static void devlink_dev_release(struct device *dev)
 528{
 529	struct device_link *link = to_devlink(dev);
 530
 531	INIT_WORK(&link->rm_work, device_link_release_fn);
 532	/*
 533	 * It may take a while to complete this work because of the SRCU
 534	 * synchronization in device_link_release_fn() and if the consumer or
 535	 * supplier devices get deleted when it runs, so put it into the
 536	 * dedicated workqueue.
 537	 */
 538	queue_work(device_link_wq, &link->rm_work);
 539}
 540
 541/**
 542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
 543 */
 544void device_link_wait_removal(void)
 545{
 546	/*
 547	 * devlink removal jobs are queued in the dedicated work queue.
 548	 * To be sure that all removal jobs are terminated, ensure that any
 549	 * scheduled work has run to completion.
 550	 */
 551	flush_workqueue(device_link_wq);
 552}
 553EXPORT_SYMBOL_GPL(device_link_wait_removal);
 554
 555static const struct class devlink_class = {
 556	.name = "devlink",
 557	.dev_groups = devlink_groups,
 558	.dev_release = devlink_dev_release,
 559};
 560
 561static int devlink_add_symlinks(struct device *dev)
 562{
 563	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
 564	int ret;
 565	struct device_link *link = to_devlink(dev);
 566	struct device *sup = link->supplier;
 567	struct device *con = link->consumer;
 568
 569	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 570	if (ret)
 571		goto out;
 572
 573	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 574	if (ret)
 575		goto err_con;
 576
 577	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 578	if (!buf_con) {
 579		ret = -ENOMEM;
 580		goto err_con_dev;
 581	}
 582
 583	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
 584	if (ret)
 585		goto err_con_dev;
 586
 587	buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 588	if (!buf_sup) {
 589		ret = -ENOMEM;
 590		goto err_sup_dev;
 591	}
 592
 593	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
 594	if (ret)
 595		goto err_sup_dev;
 596
 597	goto out;
 598
 599err_sup_dev:
 600	sysfs_remove_link(&sup->kobj, buf_con);
 601err_con_dev:
 602	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 603err_con:
 604	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 605out:
 606	return ret;
 607}
 608
 609static void devlink_remove_symlinks(struct device *dev)
 610{
 611	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
 612	struct device_link *link = to_devlink(dev);
 613	struct device *sup = link->supplier;
 614	struct device *con = link->consumer;
 615
 616	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 617	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 618
 619	if (device_is_registered(con)) {
 620		buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 621		if (!buf_sup)
 622			goto out;
 623		sysfs_remove_link(&con->kobj, buf_sup);
 624	}
 625
 626	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 627	if (!buf_con)
 628		goto out;
 629	sysfs_remove_link(&sup->kobj, buf_con);
 630
 631	return;
 632
 633out:
 634	WARN(1, "Unable to properly free device link symlinks!\n");
 635}
 636
 637static struct class_interface devlink_class_intf = {
 638	.class = &devlink_class,
 639	.add_dev = devlink_add_symlinks,
 640	.remove_dev = devlink_remove_symlinks,
 641};
 642
 643static int __init devlink_class_init(void)
 644{
 645	int ret;
 646
 647	ret = class_register(&devlink_class);
 648	if (ret)
 649		return ret;
 650
 651	ret = class_interface_register(&devlink_class_intf);
 652	if (ret)
 653		class_unregister(&devlink_class);
 654
 655	return ret;
 656}
 657postcore_initcall(devlink_class_init);
 658
 659#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 660			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 661			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 662			       DL_FLAG_SYNC_STATE_ONLY | \
 663			       DL_FLAG_INFERRED | \
 664			       DL_FLAG_CYCLE)
 665
 666#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 667			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 668
 669/**
 670 * device_link_add - Create a link between two devices.
 671 * @consumer: Consumer end of the link.
 672 * @supplier: Supplier end of the link.
 673 * @flags: Link flags.
 674 *
 675 * Return: On success, a device_link struct will be returned.
 676 *         On error or invalid flag settings, NULL will be returned.
 677 *
 678 * The caller is responsible for the proper synchronization of the link creation
 679 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 680 * runtime PM framework to take the link into account.  Second, if the
 681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 682 * be forced into the active meta state and reference-counted upon the creation
 683 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 684 * ignored.
 685 *
 686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 687 * expected to release the link returned by it directly with the help of either
 688 * device_link_del() or device_link_remove().
 689 *
 690 * If that flag is not set, however, the caller of this function is handing the
 691 * management of the link over to the driver core entirely and its return value
 692 * can only be used to check whether or not the link is present.  In that case,
 693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 694 * flags can be used to indicate to the driver core when the link can be safely
 695 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 696 * that the link is not going to be used (by the given caller of this function)
 697 * after unbinding the consumer or supplier driver, respectively, from its
 698 * device, so the link can be deleted at that point.  If none of them is set,
 699 * the link will be maintained until one of the devices pointed to by it (either
 700 * the consumer or the supplier) is unregistered.
 701 *
 702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 705 * be used to request the driver core to automatically probe for a consumer
 706 * driver after successfully binding a driver to the supplier device.
 707 *
 708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 710 * the same time is invalid and will cause NULL to be returned upfront.
 711 * However, if a device link between the given @consumer and @supplier pair
 712 * exists already when this function is called for them, the existing link will
 713 * be returned regardless of its current type and status (the link's flags may
 714 * be modified then).  The caller of this function is then expected to treat
 715 * the link as though it has just been created, so (in particular) if
 716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 717 * explicitly when not needed any more (as stated above).
 718 *
 719 * A side effect of the link creation is re-ordering of dpm_list and the
 720 * devices_kset list by moving the consumer device and all devices depending
 721 * on it to the ends of these lists (that does not happen to devices that have
 722 * not been registered when this function is called).
 723 *
 724 * The supplier device is required to be registered when this function is called
 725 * and NULL will be returned if that is not the case.  The consumer device need
 726 * not be registered, however.
 727 */
 728struct device_link *device_link_add(struct device *consumer,
 729				    struct device *supplier, u32 flags)
 730{
 731	struct device_link *link;
 732
 733	if (!consumer || !supplier || consumer == supplier ||
 734	    flags & ~DL_ADD_VALID_FLAGS ||
 735	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 736	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 737	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 738		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 739		return NULL;
 740
 741	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 742		if (pm_runtime_get_sync(supplier) < 0) {
 743			pm_runtime_put_noidle(supplier);
 744			return NULL;
 745		}
 746	}
 747
 748	if (!(flags & DL_FLAG_STATELESS))
 749		flags |= DL_FLAG_MANAGED;
 750
 751	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 752	    !device_link_flag_is_sync_state_only(flags))
 753		return NULL;
 754
 755	device_links_write_lock();
 756	device_pm_lock();
 757
 758	/*
 759	 * If the supplier has not been fully registered yet or there is a
 760	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 761	 * the supplier already in the graph, return NULL. If the link is a
 762	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 763	 * because it only affects sync_state() callbacks.
 764	 */
 765	if (!device_pm_initialized(supplier)
 766	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 767		  device_is_dependent(consumer, supplier))) {
 768		link = NULL;
 769		goto out;
 770	}
 771
 772	/*
 773	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 774	 * So, only create it if the consumer hasn't probed yet.
 775	 */
 776	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 777	    consumer->links.status != DL_DEV_NO_DRIVER &&
 778	    consumer->links.status != DL_DEV_PROBING) {
 779		link = NULL;
 780		goto out;
 781	}
 782
 783	/*
 784	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 785	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 786	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 787	 */
 788	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 789		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 790
 791	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 792		if (link->consumer != consumer)
 793			continue;
 794
 795		if (link->flags & DL_FLAG_INFERRED &&
 796		    !(flags & DL_FLAG_INFERRED))
 797			link->flags &= ~DL_FLAG_INFERRED;
 798
 799		if (flags & DL_FLAG_PM_RUNTIME) {
 800			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 801				pm_runtime_new_link(consumer);
 802				link->flags |= DL_FLAG_PM_RUNTIME;
 803			}
 804			if (flags & DL_FLAG_RPM_ACTIVE)
 805				refcount_inc(&link->rpm_active);
 806		}
 807
 808		if (flags & DL_FLAG_STATELESS) {
 
 809			kref_get(&link->kref);
 810			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 811			    !(link->flags & DL_FLAG_STATELESS)) {
 812				link->flags |= DL_FLAG_STATELESS;
 813				goto reorder;
 814			} else {
 815				link->flags |= DL_FLAG_STATELESS;
 816				goto out;
 817			}
 818		}
 819
 820		/*
 821		 * If the life time of the link following from the new flags is
 822		 * longer than indicated by the flags of the existing link,
 823		 * update the existing link to stay around longer.
 824		 */
 825		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 826			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 827				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 828				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 829			}
 830		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 831			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 832					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 833		}
 834		if (!(link->flags & DL_FLAG_MANAGED)) {
 835			kref_get(&link->kref);
 836			link->flags |= DL_FLAG_MANAGED;
 837			device_link_init_status(link, consumer, supplier);
 838		}
 839		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 840		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 841			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 842			goto reorder;
 843		}
 844
 845		goto out;
 846	}
 847
 848	link = kzalloc(sizeof(*link), GFP_KERNEL);
 849	if (!link)
 850		goto out;
 851
 852	refcount_set(&link->rpm_active, 1);
 853
 
 
 
 
 
 
 
 854	get_device(supplier);
 855	link->supplier = supplier;
 856	INIT_LIST_HEAD(&link->s_node);
 857	get_device(consumer);
 858	link->consumer = consumer;
 859	INIT_LIST_HEAD(&link->c_node);
 860	link->flags = flags;
 861	kref_init(&link->kref);
 862
 863	link->link_dev.class = &devlink_class;
 864	device_set_pm_not_required(&link->link_dev);
 865	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 866		     dev_bus_name(supplier), dev_name(supplier),
 867		     dev_bus_name(consumer), dev_name(consumer));
 868	if (device_register(&link->link_dev)) {
 869		put_device(&link->link_dev);
 870		link = NULL;
 871		goto out;
 872	}
 873
 874	if (flags & DL_FLAG_PM_RUNTIME) {
 875		if (flags & DL_FLAG_RPM_ACTIVE)
 876			refcount_inc(&link->rpm_active);
 877
 878		pm_runtime_new_link(consumer);
 879	}
 880
 881	/* Determine the initial link state. */
 882	if (flags & DL_FLAG_STATELESS)
 883		link->status = DL_STATE_NONE;
 884	else
 885		device_link_init_status(link, consumer, supplier);
 886
 887	/*
 888	 * Some callers expect the link creation during consumer driver probe to
 889	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 890	 */
 891	if (link->status == DL_STATE_CONSUMER_PROBE &&
 892	    flags & DL_FLAG_PM_RUNTIME)
 893		pm_runtime_resume(supplier);
 894
 895	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 896	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 897
 898	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 899		dev_dbg(consumer,
 900			"Linked as a sync state only consumer to %s\n",
 901			dev_name(supplier));
 902		goto out;
 903	}
 904
 905reorder:
 906	/*
 907	 * Move the consumer and all of the devices depending on it to the end
 908	 * of dpm_list and the devices_kset list.
 909	 *
 910	 * It is necessary to hold dpm_list locked throughout all that or else
 911	 * we may end up suspending with a wrong ordering of it.
 912	 */
 913	device_reorder_to_tail(consumer, NULL);
 914
 
 
 
 915	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 916
 917out:
 918	device_pm_unlock();
 919	device_links_write_unlock();
 920
 921	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 922		pm_runtime_put(supplier);
 923
 924	return link;
 925}
 926EXPORT_SYMBOL_GPL(device_link_add);
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928static void __device_link_del(struct kref *kref)
 929{
 930	struct device_link *link = container_of(kref, struct device_link, kref);
 931
 932	dev_dbg(link->consumer, "Dropping the link to %s\n",
 933		dev_name(link->supplier));
 934
 935	pm_runtime_drop_link(link);
 
 936
 937	device_link_remove_from_lists(link);
 938	device_unregister(&link->link_dev);
 
 939}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940
 941static void device_link_put_kref(struct device_link *link)
 942{
 943	if (link->flags & DL_FLAG_STATELESS)
 944		kref_put(&link->kref, __device_link_del);
 945	else if (!device_is_registered(link->consumer))
 946		__device_link_del(&link->kref);
 947	else
 948		WARN(1, "Unable to drop a managed device link reference\n");
 949}
 950
 951/**
 952 * device_link_del - Delete a stateless link between two devices.
 953 * @link: Device link to delete.
 954 *
 955 * The caller must ensure proper synchronization of this function with runtime
 956 * PM.  If the link was added multiple times, it needs to be deleted as often.
 957 * Care is required for hotplugged devices:  Their links are purged on removal
 958 * and calling device_link_del() is then no longer allowed.
 959 */
 960void device_link_del(struct device_link *link)
 961{
 962	device_links_write_lock();
 
 963	device_link_put_kref(link);
 
 964	device_links_write_unlock();
 965}
 966EXPORT_SYMBOL_GPL(device_link_del);
 967
 968/**
 969 * device_link_remove - Delete a stateless link between two devices.
 970 * @consumer: Consumer end of the link.
 971 * @supplier: Supplier end of the link.
 972 *
 973 * The caller must ensure proper synchronization of this function with runtime
 974 * PM.
 975 */
 976void device_link_remove(void *consumer, struct device *supplier)
 977{
 978	struct device_link *link;
 979
 980	if (WARN_ON(consumer == supplier))
 981		return;
 982
 983	device_links_write_lock();
 
 984
 985	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 986		if (link->consumer == consumer) {
 987			device_link_put_kref(link);
 988			break;
 989		}
 990	}
 991
 
 992	device_links_write_unlock();
 993}
 994EXPORT_SYMBOL_GPL(device_link_remove);
 995
 996static void device_links_missing_supplier(struct device *dev)
 997{
 998	struct device_link *link;
 999
1000	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001		if (link->status != DL_STATE_CONSUMER_PROBE)
1002			continue;
1003
1004		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006		} else {
1007			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009		}
1010	}
1011}
1012
1013static bool dev_is_best_effort(struct device *dev)
1014{
1015	return (fw_devlink_best_effort && dev->can_match) ||
1016		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017}
1018
1019static struct fwnode_handle *fwnode_links_check_suppliers(
1020						struct fwnode_handle *fwnode)
1021{
1022	struct fwnode_link *link;
1023
1024	if (!fwnode || fw_devlink_is_permissive())
1025		return NULL;
1026
1027	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028		if (!(link->flags &
1029		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030			return link->supplier;
1031
1032	return NULL;
1033}
1034
1035/**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers.  Walk the list of the device's
1040 * links to suppliers and see if all of them are available.  If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here.  It only can go away in __device_release_driver() and
1045 * that function  checks the device's links to consumers.  This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
1051int device_links_check_suppliers(struct device *dev)
1052{
1053	struct device_link *link;
1054	int ret = 0, fwnode_ret = 0;
1055	struct fwnode_handle *sup_fw;
1056
1057	/*
1058	 * Device waiting for supplier to become available is not allowed to
1059	 * probe.
1060	 */
1061	scoped_guard(mutex, &fwnode_link_lock) {
1062		sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063		if (sup_fw) {
1064			if (dev_is_best_effort(dev))
1065				fwnode_ret = -EAGAIN;
1066			else
1067				return dev_err_probe(dev, -EPROBE_DEFER,
1068						     "wait for supplier %pfwf\n", sup_fw);
1069		}
1070	}
1071
1072	device_links_write_lock();
1073
1074	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075		if (!(link->flags & DL_FLAG_MANAGED))
1076			continue;
1077
1078		if (link->status != DL_STATE_AVAILABLE &&
1079		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080
1081			if (dev_is_best_effort(dev) &&
1082			    link->flags & DL_FLAG_INFERRED &&
1083			    !link->supplier->can_match) {
1084				ret = -EAGAIN;
1085				continue;
1086			}
1087
1088			device_links_missing_supplier(dev);
1089			ret = dev_err_probe(dev, -EPROBE_DEFER,
1090					    "supplier %s not ready\n", dev_name(link->supplier));
1091			break;
1092		}
1093		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094	}
1095	dev->links.status = DL_DEV_PROBING;
1096
1097	device_links_write_unlock();
1098
1099	return ret ? ret : fwnode_ret;
1100}
1101
1102/**
1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104 * @dev: Device to call sync_state() on
1105 * @list: List head to queue the @dev on
1106 *
1107 * Queues a device for a sync_state() callback when the device links write lock
1108 * isn't held. This allows the sync_state() execution flow to use device links
1109 * APIs.  The caller must ensure this function is called with
1110 * device_links_write_lock() held.
1111 *
1112 * This function does a get_device() to make sure the device is not freed while
1113 * on this list.
1114 *
1115 * So the caller must also ensure that device_links_flush_sync_list() is called
1116 * as soon as the caller releases device_links_write_lock().  This is necessary
1117 * to make sure the sync_state() is called in a timely fashion and the
1118 * put_device() is called on this device.
1119 */
1120static void __device_links_queue_sync_state(struct device *dev,
1121					    struct list_head *list)
1122{
1123	struct device_link *link;
1124
1125	if (!dev_has_sync_state(dev))
1126		return;
1127	if (dev->state_synced)
1128		return;
1129
1130	list_for_each_entry(link, &dev->links.consumers, s_node) {
1131		if (!(link->flags & DL_FLAG_MANAGED))
1132			continue;
1133		if (link->status != DL_STATE_ACTIVE)
1134			return;
1135	}
1136
1137	/*
1138	 * Set the flag here to avoid adding the same device to a list more
1139	 * than once. This can happen if new consumers get added to the device
1140	 * and probed before the list is flushed.
1141	 */
1142	dev->state_synced = true;
1143
1144	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145		return;
1146
1147	get_device(dev);
1148	list_add_tail(&dev->links.defer_sync, list);
1149}
1150
1151/**
1152 * device_links_flush_sync_list - Call sync_state() on a list of devices
1153 * @list: List of devices to call sync_state() on
1154 * @dont_lock_dev: Device for which lock is already held by the caller
1155 *
1156 * Calls sync_state() on all the devices that have been queued for it. This
1157 * function is used in conjunction with __device_links_queue_sync_state(). The
1158 * @dont_lock_dev parameter is useful when this function is called from a
1159 * context where a device lock is already held.
1160 */
1161static void device_links_flush_sync_list(struct list_head *list,
1162					 struct device *dont_lock_dev)
1163{
1164	struct device *dev, *tmp;
1165
1166	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167		list_del_init(&dev->links.defer_sync);
1168
1169		if (dev != dont_lock_dev)
1170			device_lock(dev);
1171
1172		dev_sync_state(dev);
1173
1174		if (dev != dont_lock_dev)
1175			device_unlock(dev);
1176
1177		put_device(dev);
1178	}
1179}
1180
1181void device_links_supplier_sync_state_pause(void)
1182{
1183	device_links_write_lock();
1184	defer_sync_state_count++;
1185	device_links_write_unlock();
1186}
1187
1188void device_links_supplier_sync_state_resume(void)
1189{
1190	struct device *dev, *tmp;
1191	LIST_HEAD(sync_list);
1192
1193	device_links_write_lock();
1194	if (!defer_sync_state_count) {
1195		WARN(true, "Unmatched sync_state pause/resume!");
1196		goto out;
1197	}
1198	defer_sync_state_count--;
1199	if (defer_sync_state_count)
1200		goto out;
1201
1202	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203		/*
1204		 * Delete from deferred_sync list before queuing it to
1205		 * sync_list because defer_sync is used for both lists.
1206		 */
1207		list_del_init(&dev->links.defer_sync);
1208		__device_links_queue_sync_state(dev, &sync_list);
1209	}
1210out:
1211	device_links_write_unlock();
1212
1213	device_links_flush_sync_list(&sync_list, NULL);
1214}
1215
1216static int sync_state_resume_initcall(void)
1217{
1218	device_links_supplier_sync_state_resume();
1219	return 0;
1220}
1221late_initcall(sync_state_resume_initcall);
1222
1223static void __device_links_supplier_defer_sync(struct device *sup)
1224{
1225	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227}
1228
1229static void device_link_drop_managed(struct device_link *link)
1230{
1231	link->flags &= ~DL_FLAG_MANAGED;
1232	WRITE_ONCE(link->status, DL_STATE_NONE);
1233	kref_put(&link->kref, __device_link_del);
1234}
1235
1236static ssize_t waiting_for_supplier_show(struct device *dev,
1237					 struct device_attribute *attr,
1238					 char *buf)
1239{
1240	bool val;
1241
1242	device_lock(dev);
1243	scoped_guard(mutex, &fwnode_link_lock)
1244		val = !!fwnode_links_check_suppliers(dev->fwnode);
1245	device_unlock(dev);
1246	return sysfs_emit(buf, "%u\n", val);
1247}
1248static DEVICE_ATTR_RO(waiting_for_supplier);
1249
1250/**
1251 * device_links_force_bind - Prepares device to be force bound
1252 * @dev: Consumer device.
1253 *
1254 * device_bind_driver() force binds a device to a driver without calling any
1255 * driver probe functions. So the consumer really isn't going to wait for any
1256 * supplier before it's bound to the driver. We still want the device link
1257 * states to be sensible when this happens.
1258 *
1259 * In preparation for device_bind_driver(), this function goes through each
1260 * supplier device links and checks if the supplier is bound. If it is, then
1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263 */
1264void device_links_force_bind(struct device *dev)
1265{
1266	struct device_link *link, *ln;
1267
1268	device_links_write_lock();
1269
1270	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271		if (!(link->flags & DL_FLAG_MANAGED))
1272			continue;
1273
1274		if (link->status != DL_STATE_AVAILABLE) {
1275			device_link_drop_managed(link);
1276			continue;
1277		}
1278		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279	}
1280	dev->links.status = DL_DEV_PROBING;
1281
1282	device_links_write_unlock();
1283}
1284
1285/**
1286 * device_links_driver_bound - Update device links after probing its driver.
1287 * @dev: Device to update the links for.
1288 *
1289 * The probe has been successful, so update links from this device to any
1290 * consumers by changing their status to "available".
1291 *
1292 * Also change the status of @dev's links to suppliers to "active".
1293 *
1294 * Links without the DL_FLAG_MANAGED flag set are ignored.
1295 */
1296void device_links_driver_bound(struct device *dev)
1297{
1298	struct device_link *link, *ln;
1299	LIST_HEAD(sync_list);
1300
1301	/*
1302	 * If a device binds successfully, it's expected to have created all
1303	 * the device links it needs to or make new device links as it needs
1304	 * them. So, fw_devlink no longer needs to create device links to any
1305	 * of the device's suppliers.
1306	 *
1307	 * Also, if a child firmware node of this bound device is not added as a
1308	 * device by now, assume it is never going to be added. Make this bound
1309	 * device the fallback supplier to the dangling consumers of the child
1310	 * firmware node because this bound device is probably implementing the
1311	 * child firmware node functionality and we don't want the dangling
1312	 * consumers to defer probe indefinitely waiting for a device for the
1313	 * child firmware node.
1314	 */
1315	if (dev->fwnode && dev->fwnode->dev == dev) {
1316		struct fwnode_handle *child;
1317
1318		fwnode_links_purge_suppliers(dev->fwnode);
1319
1320		guard(mutex)(&fwnode_link_lock);
1321
1322		fwnode_for_each_available_child_node(dev->fwnode, child)
1323			__fw_devlink_pickup_dangling_consumers(child,
1324							       dev->fwnode);
1325		__fw_devlink_link_to_consumers(dev);
1326	}
1327	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328
1329	device_links_write_lock();
1330
1331	list_for_each_entry(link, &dev->links.consumers, s_node) {
1332		if (!(link->flags & DL_FLAG_MANAGED))
1333			continue;
1334
1335		/*
1336		 * Links created during consumer probe may be in the "consumer
1337		 * probe" state to start with if the supplier is still probing
1338		 * when they are created and they may become "active" if the
1339		 * consumer probe returns first.  Skip them here.
1340		 */
1341		if (link->status == DL_STATE_CONSUMER_PROBE ||
1342		    link->status == DL_STATE_ACTIVE)
1343			continue;
1344
1345		WARN_ON(link->status != DL_STATE_DORMANT);
1346		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347
1348		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349			driver_deferred_probe_add(link->consumer);
1350	}
1351
1352	if (defer_sync_state_count)
1353		__device_links_supplier_defer_sync(dev);
1354	else
1355		__device_links_queue_sync_state(dev, &sync_list);
1356
1357	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358		struct device *supplier;
1359
1360		if (!(link->flags & DL_FLAG_MANAGED))
1361			continue;
1362
1363		supplier = link->supplier;
1364		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365			/*
1366			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368			 * save to drop the managed link completely.
1369			 */
1370			device_link_drop_managed(link);
1371		} else if (dev_is_best_effort(dev) &&
1372			   link->flags & DL_FLAG_INFERRED &&
1373			   link->status != DL_STATE_CONSUMER_PROBE &&
1374			   !link->supplier->can_match) {
1375			/*
1376			 * When dev_is_best_effort() is true, we ignore device
1377			 * links to suppliers that don't have a driver.  If the
1378			 * consumer device still managed to probe, there's no
1379			 * point in maintaining a device link in a weird state
1380			 * (consumer probed before supplier). So delete it.
1381			 */
1382			device_link_drop_managed(link);
1383		} else {
1384			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386		}
1387
1388		/*
1389		 * This needs to be done even for the deleted
1390		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391		 * device link that was preventing the supplier from getting a
1392		 * sync_state() call.
1393		 */
1394		if (defer_sync_state_count)
1395			__device_links_supplier_defer_sync(supplier);
1396		else
1397			__device_links_queue_sync_state(supplier, &sync_list);
1398	}
1399
1400	dev->links.status = DL_DEV_DRIVER_BOUND;
1401
1402	device_links_write_unlock();
 
1403
1404	device_links_flush_sync_list(&sync_list, dev);
 
 
 
 
1405}
1406
1407/**
1408 * __device_links_no_driver - Update links of a device without a driver.
1409 * @dev: Device without a drvier.
1410 *
1411 * Delete all non-persistent links from this device to any suppliers.
1412 *
1413 * Persistent links stay around, but their status is changed to "available",
1414 * unless they already are in the "supplier unbind in progress" state in which
1415 * case they need not be updated.
1416 *
1417 * Links without the DL_FLAG_MANAGED flag set are ignored.
1418 */
1419static void __device_links_no_driver(struct device *dev)
1420{
1421	struct device_link *link, *ln;
1422
1423	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424		if (!(link->flags & DL_FLAG_MANAGED))
1425			continue;
1426
1427		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428			device_link_drop_managed(link);
1429			continue;
1430		}
1431
1432		if (link->status != DL_STATE_CONSUMER_PROBE &&
1433		    link->status != DL_STATE_ACTIVE)
1434			continue;
1435
1436		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438		} else {
1439			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441		}
1442	}
1443
1444	dev->links.status = DL_DEV_NO_DRIVER;
1445}
1446
1447/**
1448 * device_links_no_driver - Update links after failing driver probe.
1449 * @dev: Device whose driver has just failed to probe.
1450 *
1451 * Clean up leftover links to consumers for @dev and invoke
1452 * %__device_links_no_driver() to update links to suppliers for it as
1453 * appropriate.
1454 *
1455 * Links without the DL_FLAG_MANAGED flag set are ignored.
1456 */
1457void device_links_no_driver(struct device *dev)
1458{
1459	struct device_link *link;
1460
1461	device_links_write_lock();
1462
1463	list_for_each_entry(link, &dev->links.consumers, s_node) {
1464		if (!(link->flags & DL_FLAG_MANAGED))
1465			continue;
1466
1467		/*
1468		 * The probe has failed, so if the status of the link is
1469		 * "consumer probe" or "active", it must have been added by
1470		 * a probing consumer while this device was still probing.
1471		 * Change its state to "dormant", as it represents a valid
1472		 * relationship, but it is not functionally meaningful.
1473		 */
1474		if (link->status == DL_STATE_CONSUMER_PROBE ||
1475		    link->status == DL_STATE_ACTIVE)
1476			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477	}
1478
1479	__device_links_no_driver(dev);
1480
1481	device_links_write_unlock();
1482}
1483
1484/**
1485 * device_links_driver_cleanup - Update links after driver removal.
1486 * @dev: Device whose driver has just gone away.
1487 *
1488 * Update links to consumers for @dev by changing their status to "dormant" and
1489 * invoke %__device_links_no_driver() to update links to suppliers for it as
1490 * appropriate.
1491 *
1492 * Links without the DL_FLAG_MANAGED flag set are ignored.
1493 */
1494void device_links_driver_cleanup(struct device *dev)
1495{
1496	struct device_link *link, *ln;
1497
1498	device_links_write_lock();
1499
1500	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501		if (!(link->flags & DL_FLAG_MANAGED))
1502			continue;
1503
1504		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506
1507		/*
1508		 * autoremove the links between this @dev and its consumer
1509		 * devices that are not active, i.e. where the link state
1510		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511		 */
1512		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514			device_link_drop_managed(link);
1515
1516		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517	}
1518
1519	list_del_init(&dev->links.defer_sync);
1520	__device_links_no_driver(dev);
1521
1522	device_links_write_unlock();
1523}
1524
1525/**
1526 * device_links_busy - Check if there are any busy links to consumers.
1527 * @dev: Device to check.
1528 *
1529 * Check each consumer of the device and return 'true' if its link's status
1530 * is one of "consumer probe" or "active" (meaning that the given consumer is
1531 * probing right now or its driver is present).  Otherwise, change the link
1532 * state to "supplier unbind" to prevent the consumer from being probed
1533 * successfully going forward.
1534 *
1535 * Return 'false' if there are no probing or active consumers.
1536 *
1537 * Links without the DL_FLAG_MANAGED flag set are ignored.
1538 */
1539bool device_links_busy(struct device *dev)
1540{
1541	struct device_link *link;
1542	bool ret = false;
1543
1544	device_links_write_lock();
1545
1546	list_for_each_entry(link, &dev->links.consumers, s_node) {
1547		if (!(link->flags & DL_FLAG_MANAGED))
1548			continue;
1549
1550		if (link->status == DL_STATE_CONSUMER_PROBE
1551		    || link->status == DL_STATE_ACTIVE) {
1552			ret = true;
1553			break;
1554		}
1555		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556	}
1557
1558	dev->links.status = DL_DEV_UNBINDING;
1559
1560	device_links_write_unlock();
1561	return ret;
1562}
1563
1564/**
1565 * device_links_unbind_consumers - Force unbind consumers of the given device.
1566 * @dev: Device to unbind the consumers of.
1567 *
1568 * Walk the list of links to consumers for @dev and if any of them is in the
1569 * "consumer probe" state, wait for all device probes in progress to complete
1570 * and start over.
1571 *
1572 * If that's not the case, change the status of the link to "supplier unbind"
1573 * and check if the link was in the "active" state.  If so, force the consumer
1574 * driver to unbind and start over (the consumer will not re-probe as we have
1575 * changed the state of the link already).
1576 *
1577 * Links without the DL_FLAG_MANAGED flag set are ignored.
1578 */
1579void device_links_unbind_consumers(struct device *dev)
1580{
1581	struct device_link *link;
1582
1583 start:
1584	device_links_write_lock();
1585
1586	list_for_each_entry(link, &dev->links.consumers, s_node) {
1587		enum device_link_state status;
1588
1589		if (!(link->flags & DL_FLAG_MANAGED) ||
1590		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591			continue;
1592
1593		status = link->status;
1594		if (status == DL_STATE_CONSUMER_PROBE) {
1595			device_links_write_unlock();
1596
1597			wait_for_device_probe();
1598			goto start;
1599		}
1600		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601		if (status == DL_STATE_ACTIVE) {
1602			struct device *consumer = link->consumer;
1603
1604			get_device(consumer);
1605
1606			device_links_write_unlock();
1607
1608			device_release_driver_internal(consumer, NULL,
1609						       consumer->parent);
1610			put_device(consumer);
1611			goto start;
1612		}
1613	}
1614
1615	device_links_write_unlock();
1616}
1617
1618/**
1619 * device_links_purge - Delete existing links to other devices.
1620 * @dev: Target device.
1621 */
1622static void device_links_purge(struct device *dev)
1623{
1624	struct device_link *link, *ln;
1625
1626	if (dev->class == &devlink_class)
1627		return;
1628
1629	/*
1630	 * Delete all of the remaining links from this device to any other
1631	 * devices (either consumers or suppliers).
1632	 */
1633	device_links_write_lock();
1634
1635	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636		WARN_ON(link->status == DL_STATE_ACTIVE);
1637		__device_link_del(&link->kref);
1638	}
1639
1640	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641		WARN_ON(link->status != DL_STATE_DORMANT &&
1642			link->status != DL_STATE_NONE);
1643		__device_link_del(&link->kref);
1644	}
1645
1646	device_links_write_unlock();
1647}
1648
1649#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1650					 DL_FLAG_SYNC_STATE_ONLY)
1651#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1652					 DL_FLAG_AUTOPROBE_CONSUMER)
1653#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1654					 DL_FLAG_PM_RUNTIME)
1655
1656static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1657static int __init fw_devlink_setup(char *arg)
1658{
1659	if (!arg)
1660		return -EINVAL;
1661
1662	if (strcmp(arg, "off") == 0) {
1663		fw_devlink_flags = 0;
1664	} else if (strcmp(arg, "permissive") == 0) {
1665		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666	} else if (strcmp(arg, "on") == 0) {
1667		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668	} else if (strcmp(arg, "rpm") == 0) {
1669		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670	}
1671	return 0;
1672}
1673early_param("fw_devlink", fw_devlink_setup);
1674
1675static bool fw_devlink_strict;
1676static int __init fw_devlink_strict_setup(char *arg)
1677{
1678	return kstrtobool(arg, &fw_devlink_strict);
1679}
1680early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681
1682#define FW_DEVLINK_SYNC_STATE_STRICT	0
1683#define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1684
1685#ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686static int fw_devlink_sync_state;
1687#else
1688static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689#endif
1690
1691static int __init fw_devlink_sync_state_setup(char *arg)
1692{
1693	if (!arg)
1694		return -EINVAL;
1695
1696	if (strcmp(arg, "strict") == 0) {
1697		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698		return 0;
1699	} else if (strcmp(arg, "timeout") == 0) {
1700		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701		return 0;
1702	}
1703	return -EINVAL;
1704}
1705early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706
1707static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708{
1709	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711
1712	return fw_devlink_flags;
1713}
1714
1715static bool fw_devlink_is_permissive(void)
1716{
1717	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718}
1719
1720bool fw_devlink_is_strict(void)
1721{
1722	return fw_devlink_strict && !fw_devlink_is_permissive();
1723}
1724
1725static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726{
1727	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728		return;
1729
1730	fwnode_call_int_op(fwnode, add_links);
1731	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732}
1733
1734static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735{
1736	struct fwnode_handle *child = NULL;
1737
1738	fw_devlink_parse_fwnode(fwnode);
1739
1740	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741		fw_devlink_parse_fwtree(child);
1742}
1743
1744static void fw_devlink_relax_link(struct device_link *link)
1745{
1746	if (!(link->flags & DL_FLAG_INFERRED))
1747		return;
1748
1749	if (device_link_flag_is_sync_state_only(link->flags))
1750		return;
1751
1752	pm_runtime_drop_link(link);
1753	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754	dev_dbg(link->consumer, "Relaxing link with %s\n",
1755		dev_name(link->supplier));
1756}
1757
1758static int fw_devlink_no_driver(struct device *dev, void *data)
1759{
1760	struct device_link *link = to_devlink(dev);
1761
1762	if (!link->supplier->can_match)
1763		fw_devlink_relax_link(link);
1764
1765	return 0;
1766}
1767
1768void fw_devlink_drivers_done(void)
1769{
1770	fw_devlink_drv_reg_done = true;
1771	device_links_write_lock();
1772	class_for_each_device(&devlink_class, NULL, NULL,
1773			      fw_devlink_no_driver);
1774	device_links_write_unlock();
1775}
1776
1777static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778{
1779	struct device_link *link = to_devlink(dev);
1780	struct device *sup = link->supplier;
1781
1782	if (!(link->flags & DL_FLAG_MANAGED) ||
1783	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784	    !dev_has_sync_state(sup))
1785		return 0;
1786
1787	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788		dev_warn(sup, "sync_state() pending due to %s\n",
1789			 dev_name(link->consumer));
1790		return 0;
1791	}
1792
1793	if (!list_empty(&sup->links.defer_sync))
1794		return 0;
1795
1796	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797	sup->state_synced = true;
1798	get_device(sup);
1799	list_add_tail(&sup->links.defer_sync, data);
1800
1801	return 0;
1802}
1803
1804void fw_devlink_probing_done(void)
1805{
1806	LIST_HEAD(sync_list);
1807
1808	device_links_write_lock();
1809	class_for_each_device(&devlink_class, NULL, &sync_list,
1810			      fw_devlink_dev_sync_state);
1811	device_links_write_unlock();
1812	device_links_flush_sync_list(&sync_list, NULL);
1813}
1814
1815/**
1816 * wait_for_init_devices_probe - Try to probe any device needed for init
1817 *
1818 * Some devices might need to be probed and bound successfully before the kernel
1819 * boot sequence can finish and move on to init/userspace. For example, a
1820 * network interface might need to be bound to be able to mount a NFS rootfs.
1821 *
1822 * With fw_devlink=on by default, some of these devices might be blocked from
1823 * probing because they are waiting on a optional supplier that doesn't have a
1824 * driver. While fw_devlink will eventually identify such devices and unblock
1825 * the probing automatically, it might be too late by the time it unblocks the
1826 * probing of devices. For example, the IP4 autoconfig might timeout before
1827 * fw_devlink unblocks probing of the network interface.
1828 *
1829 * This function is available to temporarily try and probe all devices that have
1830 * a driver even if some of their suppliers haven't been added or don't have
1831 * drivers.
1832 *
1833 * The drivers can then decide which of the suppliers are optional vs mandatory
1834 * and probe the device if possible. By the time this function returns, all such
1835 * "best effort" probes are guaranteed to be completed. If a device successfully
1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837 * device where the supplier hasn't yet probed successfully because they have to
1838 * be optional dependencies.
1839 *
1840 * Any devices that didn't successfully probe go back to being treated as if
1841 * this function was never called.
1842 *
1843 * This also means that some devices that aren't needed for init and could have
1844 * waited for their optional supplier to probe (when the supplier's module is
1845 * loaded later on) would end up probing prematurely with limited functionality.
1846 * So call this function only when boot would fail without it.
1847 */
1848void __init wait_for_init_devices_probe(void)
1849{
1850	if (!fw_devlink_flags || fw_devlink_is_permissive())
1851		return;
1852
1853	/*
1854	 * Wait for all ongoing probes to finish so that the "best effort" is
1855	 * only applied to devices that can't probe otherwise.
1856	 */
1857	wait_for_device_probe();
1858
1859	pr_info("Trying to probe devices needed for running init ...\n");
1860	fw_devlink_best_effort = true;
1861	driver_deferred_probe_trigger();
1862
1863	/*
1864	 * Wait for all "best effort" probes to finish before going back to
1865	 * normal enforcement.
1866	 */
1867	wait_for_device_probe();
1868	fw_devlink_best_effort = false;
1869}
1870
1871static void fw_devlink_unblock_consumers(struct device *dev)
1872{
1873	struct device_link *link;
1874
1875	if (!fw_devlink_flags || fw_devlink_is_permissive())
1876		return;
1877
1878	device_links_write_lock();
1879	list_for_each_entry(link, &dev->links.consumers, s_node)
1880		fw_devlink_relax_link(link);
1881	device_links_write_unlock();
1882}
1883
1884#define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1885
1886static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1887{
1888	struct device *dev;
1889	bool ret;
1890
1891	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1892		return false;
1893
1894	dev = get_dev_from_fwnode(fwnode);
1895	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1896	put_device(dev);
1897
1898	return ret;
1899}
1900
1901static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1902{
1903	struct fwnode_handle *parent;
1904
1905	fwnode_for_each_parent_node(fwnode, parent) {
1906		if (fwnode_init_without_drv(parent)) {
1907			fwnode_handle_put(parent);
1908			return true;
1909		}
1910	}
1911
1912	return false;
1913}
1914
1915/**
1916 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1917 * @ancestor: Firmware which is tested for being an ancestor
1918 * @child: Firmware which is tested for being the child
1919 *
1920 * A node is considered an ancestor of itself too.
1921 *
1922 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1923 */
1924static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1925				  const struct fwnode_handle *child)
1926{
1927	struct fwnode_handle *parent;
1928
1929	if (IS_ERR_OR_NULL(ancestor))
1930		return false;
1931
1932	if (child == ancestor)
1933		return true;
1934
1935	fwnode_for_each_parent_node(child, parent) {
1936		if (parent == ancestor) {
1937			fwnode_handle_put(parent);
1938			return true;
1939		}
1940	}
1941	return false;
1942}
1943
1944/**
1945 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1946 * @fwnode: firmware node
1947 *
1948 * Given a firmware node (@fwnode), this function finds its closest ancestor
1949 * firmware node that has a corresponding struct device and returns that struct
1950 * device.
1951 *
1952 * The caller is responsible for calling put_device() on the returned device
1953 * pointer.
1954 *
1955 * Return: a pointer to the device of the @fwnode's closest ancestor.
1956 */
1957static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1958{
1959	struct fwnode_handle *parent;
1960	struct device *dev;
1961
1962	fwnode_for_each_parent_node(fwnode, parent) {
1963		dev = get_dev_from_fwnode(parent);
1964		if (dev) {
1965			fwnode_handle_put(parent);
1966			return dev;
1967		}
1968	}
1969	return NULL;
1970}
1971
1972/**
1973 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1974 * @con_handle: Potential consumer device fwnode.
1975 * @sup_handle: Potential supplier's fwnode.
1976 *
1977 * Needs to be called with fwnode_lock and device link lock held.
1978 *
1979 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1980 * depend on @con. This function can detect multiple cyles between @sup_handle
1981 * and @con. When such dependency cycles are found, convert all device links
1982 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1983 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1984 * converted into a device link in the future, they are created as
1985 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1986 * fw_devlink=permissive just between the devices in the cycle. We need to do
1987 * this because, at this point, fw_devlink can't tell which of these
1988 * dependencies is not a real dependency.
1989 *
1990 * Return true if one or more cycles were found. Otherwise, return false.
1991 */
1992static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1993				 struct fwnode_handle *sup_handle)
1994{
1995	struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1996	struct fwnode_link *link;
1997	struct device_link *dev_link;
1998	bool ret = false;
1999
2000	if (!sup_handle)
2001		return false;
2002
2003	/*
2004	 * We aren't trying to find all cycles. Just a cycle between con and
2005	 * sup_handle.
2006	 */
2007	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2008		return false;
2009
2010	sup_handle->flags |= FWNODE_FLAG_VISITED;
2011
2012	/* Termination condition. */
2013	if (sup_handle == con_handle) {
2014		pr_debug("----- cycle: start -----\n");
2015		ret = true;
2016		goto out;
2017	}
2018
2019	sup_dev = get_dev_from_fwnode(sup_handle);
2020	con_dev = get_dev_from_fwnode(con_handle);
2021	/*
2022	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2023	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2024	 * further.
2025	 */
2026	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2027	    con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2028		ret = false;
2029		goto out;
2030	}
2031
2032	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2033		if (link->flags & FWLINK_FLAG_IGNORE)
2034			continue;
2035
2036		if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2037			__fwnode_link_cycle(link);
2038			ret = true;
2039		}
2040	}
2041
2042	/*
2043	 * Give priority to device parent over fwnode parent to account for any
2044	 * quirks in how fwnodes are converted to devices.
2045	 */
2046	if (sup_dev)
2047		par_dev = get_device(sup_dev->parent);
2048	else
2049		par_dev = fwnode_get_next_parent_dev(sup_handle);
2050
2051	if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2052		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2053			 par_dev->fwnode);
2054		ret = true;
2055	}
2056
2057	if (!sup_dev)
2058		goto out;
2059
2060	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2061		/*
2062		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2063		 * such due to a cycle.
2064		 */
2065		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2066		    !(dev_link->flags & DL_FLAG_CYCLE))
2067			continue;
2068
2069		if (__fw_devlink_relax_cycles(con_handle,
2070					      dev_link->supplier->fwnode)) {
2071			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2072				 dev_link->supplier->fwnode);
2073			fw_devlink_relax_link(dev_link);
2074			dev_link->flags |= DL_FLAG_CYCLE;
2075			ret = true;
2076		}
2077	}
2078
2079out:
2080	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2081	put_device(sup_dev);
2082	put_device(con_dev);
2083	put_device(par_dev);
2084	return ret;
2085}
2086
2087/**
2088 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2089 * @con: consumer device for the device link
2090 * @sup_handle: fwnode handle of supplier
2091 * @link: fwnode link that's being converted to a device link
2092 *
2093 * This function will try to create a device link between the consumer device
2094 * @con and the supplier device represented by @sup_handle.
2095 *
2096 * The supplier has to be provided as a fwnode because incorrect cycles in
2097 * fwnode links can sometimes cause the supplier device to never be created.
2098 * This function detects such cases and returns an error if it cannot create a
2099 * device link from the consumer to a missing supplier.
2100 *
2101 * Returns,
2102 * 0 on successfully creating a device link
2103 * -EINVAL if the device link cannot be created as expected
2104 * -EAGAIN if the device link cannot be created right now, but it may be
2105 *  possible to do that in the future
2106 */
2107static int fw_devlink_create_devlink(struct device *con,
2108				     struct fwnode_handle *sup_handle,
2109				     struct fwnode_link *link)
2110{
2111	struct device *sup_dev;
2112	int ret = 0;
2113	u32 flags;
2114
2115	if (link->flags & FWLINK_FLAG_IGNORE)
2116		return 0;
2117
2118	/*
2119	 * In some cases, a device P might also be a supplier to its child node
2120	 * C. However, this would defer the probe of C until the probe of P
2121	 * completes successfully. This is perfectly fine in the device driver
2122	 * model. device_add() doesn't guarantee probe completion of the device
2123	 * by the time it returns.
2124	 *
2125	 * However, there are a few drivers that assume C will finish probing
2126	 * as soon as it's added and before P finishes probing. So, we provide
2127	 * a flag to let fw_devlink know not to delay the probe of C until the
2128	 * probe of P completes successfully.
2129	 *
2130	 * When such a flag is set, we can't create device links where P is the
2131	 * supplier of C as that would delay the probe of C.
2132	 */
2133	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2134	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2135		return -EINVAL;
2136
2137	/*
2138	 * Don't try to optimize by not calling the cycle detection logic under
2139	 * certain conditions. There's always some corner case that won't get
2140	 * detected.
2141	 */
2142	device_links_write_lock();
2143	if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2144		__fwnode_link_cycle(link);
2145		pr_debug("----- cycle: end -----\n");
2146		pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2147			link->consumer, sup_handle);
2148	}
2149	device_links_write_unlock();
2150
2151	if (con->fwnode == link->consumer)
2152		flags = fw_devlink_get_flags(link->flags);
2153	else
2154		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2155
2156	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2157		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2158	else
2159		sup_dev = get_dev_from_fwnode(sup_handle);
2160
2161	if (sup_dev) {
2162		/*
2163		 * If it's one of those drivers that don't actually bind to
2164		 * their device using driver core, then don't wait on this
2165		 * supplier device indefinitely.
2166		 */
2167		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2168		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2169			dev_dbg(con,
2170				"Not linking %pfwf - dev might never probe\n",
2171				sup_handle);
2172			ret = -EINVAL;
2173			goto out;
2174		}
2175
2176		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2177			dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2178				flags, dev_name(sup_dev), link->consumer);
2179			ret = -EINVAL;
2180		}
2181
2182		goto out;
2183	}
2184
2185	/*
2186	 * Supplier or supplier's ancestor already initialized without a struct
2187	 * device or being probed by a driver.
2188	 */
2189	if (fwnode_init_without_drv(sup_handle) ||
2190	    fwnode_ancestor_init_without_drv(sup_handle)) {
2191		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2192			sup_handle);
2193		return -EINVAL;
2194	}
2195
2196	ret = -EAGAIN;
2197out:
2198	put_device(sup_dev);
2199	return ret;
2200}
2201
2202/**
2203 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2204 * @dev: Device that needs to be linked to its consumers
2205 *
2206 * This function looks at all the consumer fwnodes of @dev and creates device
2207 * links between the consumer device and @dev (supplier).
2208 *
2209 * If the consumer device has not been added yet, then this function creates a
2210 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2211 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2212 * sync_state() callback before the real consumer device gets to be added and
2213 * then probed.
2214 *
2215 * Once device links are created from the real consumer to @dev (supplier), the
2216 * fwnode links are deleted.
2217 */
2218static void __fw_devlink_link_to_consumers(struct device *dev)
2219{
2220	struct fwnode_handle *fwnode = dev->fwnode;
2221	struct fwnode_link *link, *tmp;
2222
2223	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2224		struct device *con_dev;
2225		bool own_link = true;
2226		int ret;
2227
2228		con_dev = get_dev_from_fwnode(link->consumer);
2229		/*
2230		 * If consumer device is not available yet, make a "proxy"
2231		 * SYNC_STATE_ONLY link from the consumer's parent device to
2232		 * the supplier device. This is necessary to make sure the
2233		 * supplier doesn't get a sync_state() callback before the real
2234		 * consumer can create a device link to the supplier.
2235		 *
2236		 * This proxy link step is needed to handle the case where the
2237		 * consumer's parent device is added before the supplier.
2238		 */
2239		if (!con_dev) {
2240			con_dev = fwnode_get_next_parent_dev(link->consumer);
2241			/*
2242			 * However, if the consumer's parent device is also the
2243			 * parent of the supplier, don't create a
2244			 * consumer-supplier link from the parent to its child
2245			 * device. Such a dependency is impossible.
2246			 */
2247			if (con_dev &&
2248			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2249				put_device(con_dev);
2250				con_dev = NULL;
2251			} else {
2252				own_link = false;
2253			}
2254		}
2255
2256		if (!con_dev)
2257			continue;
2258
2259		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2260		put_device(con_dev);
2261		if (!own_link || ret == -EAGAIN)
2262			continue;
2263
2264		__fwnode_link_del(link);
2265	}
2266}
2267
2268/**
2269 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2270 * @dev: The consumer device that needs to be linked to its suppliers
2271 * @fwnode: Root of the fwnode tree that is used to create device links
2272 *
2273 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2274 * @fwnode and creates device links between @dev (consumer) and all the
2275 * supplier devices of the entire fwnode tree at @fwnode.
2276 *
2277 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2278 * and the real suppliers of @dev. Once these device links are created, the
2279 * fwnode links are deleted.
2280 *
2281 * In addition, it also looks at all the suppliers of the entire fwnode tree
2282 * because some of the child devices of @dev that have not been added yet
2283 * (because @dev hasn't probed) might already have their suppliers added to
2284 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2285 * @dev (consumer) and these suppliers to make sure they don't execute their
2286 * sync_state() callbacks before these child devices have a chance to create
2287 * their device links. The fwnode links that correspond to the child devices
2288 * aren't delete because they are needed later to create the device links
2289 * between the real consumer and supplier devices.
2290 */
2291static void __fw_devlink_link_to_suppliers(struct device *dev,
2292					   struct fwnode_handle *fwnode)
2293{
2294	bool own_link = (dev->fwnode == fwnode);
2295	struct fwnode_link *link, *tmp;
2296	struct fwnode_handle *child = NULL;
2297
2298	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2299		int ret;
2300		struct fwnode_handle *sup = link->supplier;
2301
2302		ret = fw_devlink_create_devlink(dev, sup, link);
2303		if (!own_link || ret == -EAGAIN)
2304			continue;
2305
2306		__fwnode_link_del(link);
2307	}
2308
2309	/*
2310	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2311	 * all the descendants. This proxy link step is needed to handle the
2312	 * case where the supplier is added before the consumer's parent device
2313	 * (@dev).
2314	 */
2315	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2316		__fw_devlink_link_to_suppliers(dev, child);
2317}
2318
2319static void fw_devlink_link_device(struct device *dev)
2320{
2321	struct fwnode_handle *fwnode = dev->fwnode;
2322
2323	if (!fw_devlink_flags)
2324		return;
2325
2326	fw_devlink_parse_fwtree(fwnode);
2327
2328	guard(mutex)(&fwnode_link_lock);
2329
2330	__fw_devlink_link_to_consumers(dev);
2331	__fw_devlink_link_to_suppliers(dev, fwnode);
2332}
2333
2334/* Device links support end. */
2335
 
 
2336static struct kobject *dev_kobj;
2337
2338/* /sys/dev/char */
2339static struct kobject *sysfs_dev_char_kobj;
2340
2341/* /sys/dev/block */
2342static struct kobject *sysfs_dev_block_kobj;
2343
2344static DEFINE_MUTEX(device_hotplug_lock);
2345
2346void lock_device_hotplug(void)
2347{
2348	mutex_lock(&device_hotplug_lock);
2349}
2350
2351void unlock_device_hotplug(void)
2352{
2353	mutex_unlock(&device_hotplug_lock);
2354}
2355
2356int lock_device_hotplug_sysfs(void)
2357{
2358	if (mutex_trylock(&device_hotplug_lock))
2359		return 0;
2360
2361	/* Avoid busy looping (5 ms of sleep should do). */
2362	msleep(5);
2363	return restart_syscall();
2364}
2365
2366#ifdef CONFIG_BLOCK
2367static inline int device_is_not_partition(struct device *dev)
2368{
2369	return !(dev->type == &part_type);
2370}
2371#else
2372static inline int device_is_not_partition(struct device *dev)
2373{
2374	return 1;
2375}
2376#endif
2377
2378static void device_platform_notify(struct device *dev)
 
2379{
2380	acpi_device_notify(dev);
2381
2382	software_node_notify(dev);
2383}
 
2384
2385static void device_platform_notify_remove(struct device *dev)
2386{
2387	software_node_notify_remove(dev);
2388
2389	acpi_device_notify_remove(dev);
 
 
 
 
2390}
2391
2392/**
2393 * dev_driver_string - Return a device's driver name, if at all possible
2394 * @dev: struct device to get the name of
2395 *
2396 * Will return the device's driver's name if it is bound to a device.  If
2397 * the device is not bound to a driver, it will return the name of the bus
2398 * it is attached to.  If it is not attached to a bus either, an empty
2399 * string will be returned.
2400 */
2401const char *dev_driver_string(const struct device *dev)
2402{
2403	struct device_driver *drv;
2404
2405	/* dev->driver can change to NULL underneath us because of unbinding,
2406	 * so be careful about accessing it.  dev->bus and dev->class should
2407	 * never change once they are set, so they don't need special care.
2408	 */
2409	drv = READ_ONCE(dev->driver);
2410	return drv ? drv->name : dev_bus_name(dev);
 
 
2411}
2412EXPORT_SYMBOL(dev_driver_string);
2413
2414#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2415
2416static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2417			     char *buf)
2418{
2419	struct device_attribute *dev_attr = to_dev_attr(attr);
2420	struct device *dev = kobj_to_dev(kobj);
2421	ssize_t ret = -EIO;
2422
2423	if (dev_attr->show)
2424		ret = dev_attr->show(dev, dev_attr, buf);
2425	if (ret >= (ssize_t)PAGE_SIZE) {
2426		printk("dev_attr_show: %pS returned bad count\n",
2427				dev_attr->show);
2428	}
2429	return ret;
2430}
2431
2432static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2433			      const char *buf, size_t count)
2434{
2435	struct device_attribute *dev_attr = to_dev_attr(attr);
2436	struct device *dev = kobj_to_dev(kobj);
2437	ssize_t ret = -EIO;
2438
2439	if (dev_attr->store)
2440		ret = dev_attr->store(dev, dev_attr, buf, count);
2441	return ret;
2442}
2443
2444static const struct sysfs_ops dev_sysfs_ops = {
2445	.show	= dev_attr_show,
2446	.store	= dev_attr_store,
2447};
2448
2449#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2450
2451ssize_t device_store_ulong(struct device *dev,
2452			   struct device_attribute *attr,
2453			   const char *buf, size_t size)
2454{
2455	struct dev_ext_attribute *ea = to_ext_attr(attr);
2456	int ret;
2457	unsigned long new;
2458
2459	ret = kstrtoul(buf, 0, &new);
2460	if (ret)
2461		return ret;
2462	*(unsigned long *)(ea->var) = new;
2463	/* Always return full write size even if we didn't consume all */
2464	return size;
2465}
2466EXPORT_SYMBOL_GPL(device_store_ulong);
2467
2468ssize_t device_show_ulong(struct device *dev,
2469			  struct device_attribute *attr,
2470			  char *buf)
2471{
2472	struct dev_ext_attribute *ea = to_ext_attr(attr);
2473	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2474}
2475EXPORT_SYMBOL_GPL(device_show_ulong);
2476
2477ssize_t device_store_int(struct device *dev,
2478			 struct device_attribute *attr,
2479			 const char *buf, size_t size)
2480{
2481	struct dev_ext_attribute *ea = to_ext_attr(attr);
2482	int ret;
2483	long new;
2484
2485	ret = kstrtol(buf, 0, &new);
2486	if (ret)
2487		return ret;
2488
2489	if (new > INT_MAX || new < INT_MIN)
2490		return -EINVAL;
2491	*(int *)(ea->var) = new;
2492	/* Always return full write size even if we didn't consume all */
2493	return size;
2494}
2495EXPORT_SYMBOL_GPL(device_store_int);
2496
2497ssize_t device_show_int(struct device *dev,
2498			struct device_attribute *attr,
2499			char *buf)
2500{
2501	struct dev_ext_attribute *ea = to_ext_attr(attr);
2502
2503	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2504}
2505EXPORT_SYMBOL_GPL(device_show_int);
2506
2507ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2508			  const char *buf, size_t size)
2509{
2510	struct dev_ext_attribute *ea = to_ext_attr(attr);
2511
2512	if (kstrtobool(buf, ea->var) < 0)
2513		return -EINVAL;
2514
2515	return size;
2516}
2517EXPORT_SYMBOL_GPL(device_store_bool);
2518
2519ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2520			 char *buf)
2521{
2522	struct dev_ext_attribute *ea = to_ext_attr(attr);
2523
2524	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2525}
2526EXPORT_SYMBOL_GPL(device_show_bool);
2527
2528ssize_t device_show_string(struct device *dev,
2529			   struct device_attribute *attr, char *buf)
2530{
2531	struct dev_ext_attribute *ea = to_ext_attr(attr);
2532
2533	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2534}
2535EXPORT_SYMBOL_GPL(device_show_string);
2536
2537/**
2538 * device_release - free device structure.
2539 * @kobj: device's kobject.
2540 *
2541 * This is called once the reference count for the object
2542 * reaches 0. We forward the call to the device's release
2543 * method, which should handle actually freeing the structure.
2544 */
2545static void device_release(struct kobject *kobj)
2546{
2547	struct device *dev = kobj_to_dev(kobj);
2548	struct device_private *p = dev->p;
2549
2550	/*
2551	 * Some platform devices are driven without driver attached
2552	 * and managed resources may have been acquired.  Make sure
2553	 * all resources are released.
2554	 *
2555	 * Drivers still can add resources into device after device
2556	 * is deleted but alive, so release devres here to avoid
2557	 * possible memory leak.
2558	 */
2559	devres_release_all(dev);
2560
2561	kfree(dev->dma_range_map);
2562
2563	if (dev->release)
2564		dev->release(dev);
2565	else if (dev->type && dev->type->release)
2566		dev->type->release(dev);
2567	else if (dev->class && dev->class->dev_release)
2568		dev->class->dev_release(dev);
2569	else
2570		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2571			dev_name(dev));
2572	kfree(p);
2573}
2574
2575static const void *device_namespace(const struct kobject *kobj)
2576{
2577	const struct device *dev = kobj_to_dev(kobj);
2578	const void *ns = NULL;
2579
2580	if (dev->class && dev->class->namespace)
2581		ns = dev->class->namespace(dev);
2582
2583	return ns;
2584}
2585
2586static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2587{
2588	const struct device *dev = kobj_to_dev(kobj);
2589
2590	if (dev->class && dev->class->get_ownership)
2591		dev->class->get_ownership(dev, uid, gid);
2592}
2593
2594static const struct kobj_type device_ktype = {
2595	.release	= device_release,
2596	.sysfs_ops	= &dev_sysfs_ops,
2597	.namespace	= device_namespace,
2598	.get_ownership	= device_get_ownership,
2599};
2600
2601
2602static int dev_uevent_filter(const struct kobject *kobj)
2603{
2604	const struct kobj_type *ktype = get_ktype(kobj);
2605
2606	if (ktype == &device_ktype) {
2607		const struct device *dev = kobj_to_dev(kobj);
2608		if (dev->bus)
2609			return 1;
2610		if (dev->class)
2611			return 1;
2612	}
2613	return 0;
2614}
2615
2616static const char *dev_uevent_name(const struct kobject *kobj)
2617{
2618	const struct device *dev = kobj_to_dev(kobj);
2619
2620	if (dev->bus)
2621		return dev->bus->name;
2622	if (dev->class)
2623		return dev->class->name;
2624	return NULL;
2625}
2626
2627static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
 
2628{
2629	const struct device *dev = kobj_to_dev(kobj);
2630	int retval = 0;
2631
2632	/* add device node properties if present */
2633	if (MAJOR(dev->devt)) {
2634		const char *tmp;
2635		const char *name;
2636		umode_t mode = 0;
2637		kuid_t uid = GLOBAL_ROOT_UID;
2638		kgid_t gid = GLOBAL_ROOT_GID;
2639
2640		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2641		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2642		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2643		if (name) {
2644			add_uevent_var(env, "DEVNAME=%s", name);
2645			if (mode)
2646				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2647			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2648				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2649			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2650				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2651			kfree(tmp);
2652		}
2653	}
2654
2655	if (dev->type && dev->type->name)
2656		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2657
2658	if (dev->driver)
2659		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2660
2661	/* Add common DT information about the device */
2662	of_device_uevent(dev, env);
2663
2664	/* have the bus specific function add its stuff */
2665	if (dev->bus && dev->bus->uevent) {
2666		retval = dev->bus->uevent(dev, env);
2667		if (retval)
2668			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2669				 dev_name(dev), __func__, retval);
2670	}
2671
2672	/* have the class specific function add its stuff */
2673	if (dev->class && dev->class->dev_uevent) {
2674		retval = dev->class->dev_uevent(dev, env);
2675		if (retval)
2676			pr_debug("device: '%s': %s: class uevent() "
2677				 "returned %d\n", dev_name(dev),
2678				 __func__, retval);
2679	}
2680
2681	/* have the device type specific function add its stuff */
2682	if (dev->type && dev->type->uevent) {
2683		retval = dev->type->uevent(dev, env);
2684		if (retval)
2685			pr_debug("device: '%s': %s: dev_type uevent() "
2686				 "returned %d\n", dev_name(dev),
2687				 __func__, retval);
2688	}
2689
2690	return retval;
2691}
2692
2693static const struct kset_uevent_ops device_uevent_ops = {
2694	.filter =	dev_uevent_filter,
2695	.name =		dev_uevent_name,
2696	.uevent =	dev_uevent,
2697};
2698
2699static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2700			   char *buf)
2701{
2702	struct kobject *top_kobj;
2703	struct kset *kset;
2704	struct kobj_uevent_env *env = NULL;
2705	int i;
2706	int len = 0;
2707	int retval;
2708
2709	/* search the kset, the device belongs to */
2710	top_kobj = &dev->kobj;
2711	while (!top_kobj->kset && top_kobj->parent)
2712		top_kobj = top_kobj->parent;
2713	if (!top_kobj->kset)
2714		goto out;
2715
2716	kset = top_kobj->kset;
2717	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2718		goto out;
2719
2720	/* respect filter */
2721	if (kset->uevent_ops && kset->uevent_ops->filter)
2722		if (!kset->uevent_ops->filter(&dev->kobj))
2723			goto out;
2724
2725	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2726	if (!env)
2727		return -ENOMEM;
2728
2729	/* Synchronize with really_probe() */
2730	device_lock(dev);
2731	/* let the kset specific function add its keys */
2732	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2733	device_unlock(dev);
2734	if (retval)
2735		goto out;
2736
2737	/* copy keys to file */
2738	for (i = 0; i < env->envp_idx; i++)
2739		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2740out:
2741	kfree(env);
2742	return len;
2743}
2744
2745static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2746			    const char *buf, size_t count)
2747{
2748	int rc;
2749
2750	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2751
2752	if (rc) {
2753		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2754		return rc;
2755	}
2756
2757	return count;
2758}
2759static DEVICE_ATTR_RW(uevent);
2760
2761static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2762			   char *buf)
2763{
2764	bool val;
2765
2766	device_lock(dev);
2767	val = !dev->offline;
2768	device_unlock(dev);
2769	return sysfs_emit(buf, "%u\n", val);
2770}
2771
2772static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2773			    const char *buf, size_t count)
2774{
2775	bool val;
2776	int ret;
2777
2778	ret = kstrtobool(buf, &val);
2779	if (ret < 0)
2780		return ret;
2781
2782	ret = lock_device_hotplug_sysfs();
2783	if (ret)
2784		return ret;
2785
2786	ret = val ? device_online(dev) : device_offline(dev);
2787	unlock_device_hotplug();
2788	return ret < 0 ? ret : count;
2789}
2790static DEVICE_ATTR_RW(online);
2791
2792static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2793			      char *buf)
2794{
2795	const char *loc;
2796
2797	switch (dev->removable) {
2798	case DEVICE_REMOVABLE:
2799		loc = "removable";
2800		break;
2801	case DEVICE_FIXED:
2802		loc = "fixed";
2803		break;
2804	default:
2805		loc = "unknown";
2806	}
2807	return sysfs_emit(buf, "%s\n", loc);
2808}
2809static DEVICE_ATTR_RO(removable);
2810
2811int device_add_groups(struct device *dev, const struct attribute_group **groups)
2812{
2813	return sysfs_create_groups(&dev->kobj, groups);
2814}
2815EXPORT_SYMBOL_GPL(device_add_groups);
2816
2817void device_remove_groups(struct device *dev,
2818			  const struct attribute_group **groups)
2819{
2820	sysfs_remove_groups(&dev->kobj, groups);
2821}
2822EXPORT_SYMBOL_GPL(device_remove_groups);
2823
2824union device_attr_group_devres {
2825	const struct attribute_group *group;
2826	const struct attribute_group **groups;
2827};
2828
 
 
 
 
 
2829static void devm_attr_group_remove(struct device *dev, void *res)
2830{
2831	union device_attr_group_devres *devres = res;
2832	const struct attribute_group *group = devres->group;
2833
2834	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2835	sysfs_remove_group(&dev->kobj, group);
2836}
2837
 
 
 
 
 
 
 
 
 
2838/**
2839 * devm_device_add_group - given a device, create a managed attribute group
2840 * @dev:	The device to create the group for
2841 * @grp:	The attribute group to create
2842 *
2843 * This function creates a group for the first time.  It will explicitly
2844 * warn and error if any of the attribute files being created already exist.
2845 *
2846 * Returns 0 on success or error code on failure.
2847 */
2848int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2849{
2850	union device_attr_group_devres *devres;
2851	int error;
2852
2853	devres = devres_alloc(devm_attr_group_remove,
2854			      sizeof(*devres), GFP_KERNEL);
2855	if (!devres)
2856		return -ENOMEM;
2857
2858	error = sysfs_create_group(&dev->kobj, grp);
2859	if (error) {
2860		devres_free(devres);
2861		return error;
2862	}
2863
2864	devres->group = grp;
2865	devres_add(dev, devres);
2866	return 0;
2867}
2868EXPORT_SYMBOL_GPL(devm_device_add_group);
2869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870static int device_add_attrs(struct device *dev)
2871{
2872	const struct class *class = dev->class;
2873	const struct device_type *type = dev->type;
2874	int error;
2875
2876	if (class) {
2877		error = device_add_groups(dev, class->dev_groups);
2878		if (error)
2879			return error;
2880	}
2881
2882	if (type) {
2883		error = device_add_groups(dev, type->groups);
2884		if (error)
2885			goto err_remove_class_groups;
2886	}
2887
2888	error = device_add_groups(dev, dev->groups);
2889	if (error)
2890		goto err_remove_type_groups;
2891
2892	if (device_supports_offline(dev) && !dev->offline_disabled) {
2893		error = device_create_file(dev, &dev_attr_online);
2894		if (error)
2895			goto err_remove_dev_groups;
2896	}
2897
2898	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2899		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2900		if (error)
2901			goto err_remove_dev_online;
2902	}
2903
2904	if (dev_removable_is_valid(dev)) {
2905		error = device_create_file(dev, &dev_attr_removable);
2906		if (error)
2907			goto err_remove_dev_waiting_for_supplier;
2908	}
2909
2910	if (dev_add_physical_location(dev)) {
2911		error = device_add_group(dev,
2912			&dev_attr_physical_location_group);
2913		if (error)
2914			goto err_remove_dev_removable;
2915	}
2916
2917	return 0;
2918
2919 err_remove_dev_removable:
2920	device_remove_file(dev, &dev_attr_removable);
2921 err_remove_dev_waiting_for_supplier:
2922	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2923 err_remove_dev_online:
2924	device_remove_file(dev, &dev_attr_online);
2925 err_remove_dev_groups:
2926	device_remove_groups(dev, dev->groups);
2927 err_remove_type_groups:
2928	if (type)
2929		device_remove_groups(dev, type->groups);
2930 err_remove_class_groups:
2931	if (class)
2932		device_remove_groups(dev, class->dev_groups);
2933
2934	return error;
2935}
2936
2937static void device_remove_attrs(struct device *dev)
2938{
2939	const struct class *class = dev->class;
2940	const struct device_type *type = dev->type;
2941
2942	if (dev->physical_location) {
2943		device_remove_group(dev, &dev_attr_physical_location_group);
2944		kfree(dev->physical_location);
2945	}
2946
2947	device_remove_file(dev, &dev_attr_removable);
2948	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2949	device_remove_file(dev, &dev_attr_online);
2950	device_remove_groups(dev, dev->groups);
2951
2952	if (type)
2953		device_remove_groups(dev, type->groups);
2954
2955	if (class)
2956		device_remove_groups(dev, class->dev_groups);
2957}
2958
2959static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2960			char *buf)
2961{
2962	return print_dev_t(buf, dev->devt);
2963}
2964static DEVICE_ATTR_RO(dev);
2965
2966/* /sys/devices/ */
2967struct kset *devices_kset;
2968
2969/**
2970 * devices_kset_move_before - Move device in the devices_kset's list.
2971 * @deva: Device to move.
2972 * @devb: Device @deva should come before.
2973 */
2974static void devices_kset_move_before(struct device *deva, struct device *devb)
2975{
2976	if (!devices_kset)
2977		return;
2978	pr_debug("devices_kset: Moving %s before %s\n",
2979		 dev_name(deva), dev_name(devb));
2980	spin_lock(&devices_kset->list_lock);
2981	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2982	spin_unlock(&devices_kset->list_lock);
2983}
2984
2985/**
2986 * devices_kset_move_after - Move device in the devices_kset's list.
2987 * @deva: Device to move
2988 * @devb: Device @deva should come after.
2989 */
2990static void devices_kset_move_after(struct device *deva, struct device *devb)
2991{
2992	if (!devices_kset)
2993		return;
2994	pr_debug("devices_kset: Moving %s after %s\n",
2995		 dev_name(deva), dev_name(devb));
2996	spin_lock(&devices_kset->list_lock);
2997	list_move(&deva->kobj.entry, &devb->kobj.entry);
2998	spin_unlock(&devices_kset->list_lock);
2999}
3000
3001/**
3002 * devices_kset_move_last - move the device to the end of devices_kset's list.
3003 * @dev: device to move
3004 */
3005void devices_kset_move_last(struct device *dev)
3006{
3007	if (!devices_kset)
3008		return;
3009	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3010	spin_lock(&devices_kset->list_lock);
3011	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3012	spin_unlock(&devices_kset->list_lock);
3013}
3014
3015/**
3016 * device_create_file - create sysfs attribute file for device.
3017 * @dev: device.
3018 * @attr: device attribute descriptor.
3019 */
3020int device_create_file(struct device *dev,
3021		       const struct device_attribute *attr)
3022{
3023	int error = 0;
3024
3025	if (dev) {
3026		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3027			"Attribute %s: write permission without 'store'\n",
3028			attr->attr.name);
3029		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3030			"Attribute %s: read permission without 'show'\n",
3031			attr->attr.name);
3032		error = sysfs_create_file(&dev->kobj, &attr->attr);
3033	}
3034
3035	return error;
3036}
3037EXPORT_SYMBOL_GPL(device_create_file);
3038
3039/**
3040 * device_remove_file - remove sysfs attribute file.
3041 * @dev: device.
3042 * @attr: device attribute descriptor.
3043 */
3044void device_remove_file(struct device *dev,
3045			const struct device_attribute *attr)
3046{
3047	if (dev)
3048		sysfs_remove_file(&dev->kobj, &attr->attr);
3049}
3050EXPORT_SYMBOL_GPL(device_remove_file);
3051
3052/**
3053 * device_remove_file_self - remove sysfs attribute file from its own method.
3054 * @dev: device.
3055 * @attr: device attribute descriptor.
3056 *
3057 * See kernfs_remove_self() for details.
3058 */
3059bool device_remove_file_self(struct device *dev,
3060			     const struct device_attribute *attr)
3061{
3062	if (dev)
3063		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3064	else
3065		return false;
3066}
3067EXPORT_SYMBOL_GPL(device_remove_file_self);
3068
3069/**
3070 * device_create_bin_file - create sysfs binary attribute file for device.
3071 * @dev: device.
3072 * @attr: device binary attribute descriptor.
3073 */
3074int device_create_bin_file(struct device *dev,
3075			   const struct bin_attribute *attr)
3076{
3077	int error = -EINVAL;
3078	if (dev)
3079		error = sysfs_create_bin_file(&dev->kobj, attr);
3080	return error;
3081}
3082EXPORT_SYMBOL_GPL(device_create_bin_file);
3083
3084/**
3085 * device_remove_bin_file - remove sysfs binary attribute file
3086 * @dev: device.
3087 * @attr: device binary attribute descriptor.
3088 */
3089void device_remove_bin_file(struct device *dev,
3090			    const struct bin_attribute *attr)
3091{
3092	if (dev)
3093		sysfs_remove_bin_file(&dev->kobj, attr);
3094}
3095EXPORT_SYMBOL_GPL(device_remove_bin_file);
3096
3097static void klist_children_get(struct klist_node *n)
3098{
3099	struct device_private *p = to_device_private_parent(n);
3100	struct device *dev = p->device;
3101
3102	get_device(dev);
3103}
3104
3105static void klist_children_put(struct klist_node *n)
3106{
3107	struct device_private *p = to_device_private_parent(n);
3108	struct device *dev = p->device;
3109
3110	put_device(dev);
3111}
3112
3113/**
3114 * device_initialize - init device structure.
3115 * @dev: device.
3116 *
3117 * This prepares the device for use by other layers by initializing
3118 * its fields.
3119 * It is the first half of device_register(), if called by
3120 * that function, though it can also be called separately, so one
3121 * may use @dev's fields. In particular, get_device()/put_device()
3122 * may be used for reference counting of @dev after calling this
3123 * function.
3124 *
3125 * All fields in @dev must be initialized by the caller to 0, except
3126 * for those explicitly set to some other value.  The simplest
3127 * approach is to use kzalloc() to allocate the structure containing
3128 * @dev.
3129 *
3130 * NOTE: Use put_device() to give up your reference instead of freeing
3131 * @dev directly once you have called this function.
3132 */
3133void device_initialize(struct device *dev)
3134{
3135	dev->kobj.kset = devices_kset;
3136	kobject_init(&dev->kobj, &device_ktype);
3137	INIT_LIST_HEAD(&dev->dma_pools);
3138	mutex_init(&dev->mutex);
 
 
 
3139	lockdep_set_novalidate_class(&dev->mutex);
3140	spin_lock_init(&dev->devres_lock);
3141	INIT_LIST_HEAD(&dev->devres_head);
3142	device_pm_init(dev);
3143	set_dev_node(dev, NUMA_NO_NODE);
 
 
 
3144	INIT_LIST_HEAD(&dev->links.consumers);
3145	INIT_LIST_HEAD(&dev->links.suppliers);
3146	INIT_LIST_HEAD(&dev->links.defer_sync);
3147	dev->links.status = DL_DEV_NO_DRIVER;
3148#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3149    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3150    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3151	dev->dma_coherent = dma_default_coherent;
3152#endif
3153	swiotlb_dev_init(dev);
3154}
3155EXPORT_SYMBOL_GPL(device_initialize);
3156
3157struct kobject *virtual_device_parent(void)
3158{
3159	static struct kobject *virtual_dir = NULL;
3160
3161	if (!virtual_dir)
3162		virtual_dir = kobject_create_and_add("virtual",
3163						     &devices_kset->kobj);
3164
3165	return virtual_dir;
3166}
3167
3168struct class_dir {
3169	struct kobject kobj;
3170	const struct class *class;
3171};
3172
3173#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3174
3175static void class_dir_release(struct kobject *kobj)
3176{
3177	struct class_dir *dir = to_class_dir(kobj);
3178	kfree(dir);
3179}
3180
3181static const
3182struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3183{
3184	const struct class_dir *dir = to_class_dir(kobj);
3185	return dir->class->ns_type;
3186}
3187
3188static const struct kobj_type class_dir_ktype = {
3189	.release	= class_dir_release,
3190	.sysfs_ops	= &kobj_sysfs_ops,
3191	.child_ns_type	= class_dir_child_ns_type
3192};
3193
3194static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3195						struct kobject *parent_kobj)
3196{
3197	struct class_dir *dir;
3198	int retval;
3199
3200	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3201	if (!dir)
3202		return ERR_PTR(-ENOMEM);
3203
3204	dir->class = sp->class;
3205	kobject_init(&dir->kobj, &class_dir_ktype);
3206
3207	dir->kobj.kset = &sp->glue_dirs;
3208
3209	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3210	if (retval < 0) {
3211		kobject_put(&dir->kobj);
3212		return ERR_PTR(retval);
3213	}
3214	return &dir->kobj;
3215}
3216
3217static DEFINE_MUTEX(gdp_mutex);
3218
3219static struct kobject *get_device_parent(struct device *dev,
3220					 struct device *parent)
3221{
3222	struct subsys_private *sp = class_to_subsys(dev->class);
3223	struct kobject *kobj = NULL;
3224
3225	if (sp) {
3226		struct kobject *parent_kobj;
3227		struct kobject *k;
3228
 
 
 
 
 
 
 
 
 
3229		/*
3230		 * If we have no parent, we live in "virtual".
3231		 * Class-devices with a non class-device as parent, live
3232		 * in a "glue" directory to prevent namespace collisions.
3233		 */
3234		if (parent == NULL)
3235			parent_kobj = virtual_device_parent();
3236		else if (parent->class && !dev->class->ns_type) {
3237			subsys_put(sp);
3238			return &parent->kobj;
3239		} else {
3240			parent_kobj = &parent->kobj;
3241		}
3242
3243		mutex_lock(&gdp_mutex);
3244
3245		/* find our class-directory at the parent and reference it */
3246		spin_lock(&sp->glue_dirs.list_lock);
3247		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3248			if (k->parent == parent_kobj) {
3249				kobj = kobject_get(k);
3250				break;
3251			}
3252		spin_unlock(&sp->glue_dirs.list_lock);
3253		if (kobj) {
3254			mutex_unlock(&gdp_mutex);
3255			subsys_put(sp);
3256			return kobj;
3257		}
3258
3259		/* or create a new class-directory at the parent device */
3260		k = class_dir_create_and_add(sp, parent_kobj);
3261		/* do not emit an uevent for this simple "glue" directory */
3262		mutex_unlock(&gdp_mutex);
3263		subsys_put(sp);
3264		return k;
3265	}
3266
3267	/* subsystems can specify a default root directory for their devices */
3268	if (!parent && dev->bus) {
3269		struct device *dev_root = bus_get_dev_root(dev->bus);
3270
3271		if (dev_root) {
3272			kobj = &dev_root->kobj;
3273			put_device(dev_root);
3274			return kobj;
3275		}
3276	}
3277
3278	if (parent)
3279		return &parent->kobj;
3280	return NULL;
3281}
3282
3283static inline bool live_in_glue_dir(struct kobject *kobj,
3284				    struct device *dev)
3285{
3286	struct subsys_private *sp;
3287	bool retval;
3288
3289	if (!kobj || !dev->class)
3290		return false;
3291
3292	sp = class_to_subsys(dev->class);
3293	if (!sp)
3294		return false;
3295
3296	if (kobj->kset == &sp->glue_dirs)
3297		retval = true;
3298	else
3299		retval = false;
3300
3301	subsys_put(sp);
3302	return retval;
3303}
3304
3305static inline struct kobject *get_glue_dir(struct device *dev)
3306{
3307	return dev->kobj.parent;
3308}
3309
3310/**
3311 * kobject_has_children - Returns whether a kobject has children.
3312 * @kobj: the object to test
3313 *
3314 * This will return whether a kobject has other kobjects as children.
3315 *
3316 * It does NOT account for the presence of attribute files, only sub
3317 * directories. It also assumes there is no concurrent addition or
3318 * removal of such children, and thus relies on external locking.
3319 */
3320static inline bool kobject_has_children(struct kobject *kobj)
3321{
3322	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3323
3324	return kobj->sd && kobj->sd->dir.subdirs;
3325}
3326
3327/*
3328 * make sure cleaning up dir as the last step, we need to make
3329 * sure .release handler of kobject is run with holding the
3330 * global lock
3331 */
3332static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3333{
3334	unsigned int ref;
3335
3336	/* see if we live in a "glue" directory */
3337	if (!live_in_glue_dir(glue_dir, dev))
3338		return;
3339
3340	mutex_lock(&gdp_mutex);
3341	/**
3342	 * There is a race condition between removing glue directory
3343	 * and adding a new device under the glue directory.
3344	 *
3345	 * CPU1:                                         CPU2:
3346	 *
3347	 * device_add()
3348	 *   get_device_parent()
3349	 *     class_dir_create_and_add()
3350	 *       kobject_add_internal()
3351	 *         create_dir()    // create glue_dir
3352	 *
3353	 *                                               device_add()
3354	 *                                                 get_device_parent()
3355	 *                                                   kobject_get() // get glue_dir
3356	 *
3357	 * device_del()
3358	 *   cleanup_glue_dir()
3359	 *     kobject_del(glue_dir)
3360	 *
3361	 *                                               kobject_add()
3362	 *                                                 kobject_add_internal()
3363	 *                                                   create_dir() // in glue_dir
3364	 *                                                     sysfs_create_dir_ns()
3365	 *                                                       kernfs_create_dir_ns(sd)
3366	 *
3367	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3368	 *       sysfs_put()        // free glue_dir->sd
3369	 *
3370	 *                                                         // sd is freed
3371	 *                                                         kernfs_new_node(sd)
3372	 *                                                           kernfs_get(glue_dir)
3373	 *                                                           kernfs_add_one()
3374	 *                                                           kernfs_put()
3375	 *
3376	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3377	 * a new device under glue dir, the glue_dir kobject reference count
3378	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3379	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3380	 * and sysfs_put(). This result in glue_dir->sd is freed.
3381	 *
3382	 * Then the CPU2 will see a stale "empty" but still potentially used
3383	 * glue dir around in kernfs_new_node().
3384	 *
3385	 * In order to avoid this happening, we also should make sure that
3386	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3387	 * for glue_dir kobj is 1.
3388	 */
3389	ref = kref_read(&glue_dir->kref);
3390	if (!kobject_has_children(glue_dir) && !--ref)
3391		kobject_del(glue_dir);
3392	kobject_put(glue_dir);
3393	mutex_unlock(&gdp_mutex);
3394}
3395
3396static int device_add_class_symlinks(struct device *dev)
3397{
3398	struct device_node *of_node = dev_of_node(dev);
3399	struct subsys_private *sp;
3400	int error;
3401
3402	if (of_node) {
3403		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3404		if (error)
3405			dev_warn(dev, "Error %d creating of_node link\n",error);
3406		/* An error here doesn't warrant bringing down the device */
3407	}
3408
3409	sp = class_to_subsys(dev->class);
3410	if (!sp)
3411		return 0;
3412
3413	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
 
 
3414	if (error)
3415		goto out_devnode;
3416
3417	if (dev->parent && device_is_not_partition(dev)) {
3418		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3419					  "device");
3420		if (error)
3421			goto out_subsys;
3422	}
3423
 
 
 
 
 
 
3424	/* link in the class directory pointing to the device */
3425	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
 
3426	if (error)
3427		goto out_device;
3428	goto exit;
 
3429
3430out_device:
3431	sysfs_remove_link(&dev->kobj, "device");
 
3432out_subsys:
3433	sysfs_remove_link(&dev->kobj, "subsystem");
3434out_devnode:
3435	sysfs_remove_link(&dev->kobj, "of_node");
3436exit:
3437	subsys_put(sp);
3438	return error;
3439}
3440
3441static void device_remove_class_symlinks(struct device *dev)
3442{
3443	struct subsys_private *sp = class_to_subsys(dev->class);
3444
3445	if (dev_of_node(dev))
3446		sysfs_remove_link(&dev->kobj, "of_node");
3447
3448	if (!sp)
3449		return;
3450
3451	if (dev->parent && device_is_not_partition(dev))
3452		sysfs_remove_link(&dev->kobj, "device");
3453	sysfs_remove_link(&dev->kobj, "subsystem");
3454	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3455	subsys_put(sp);
 
 
 
3456}
3457
3458/**
3459 * dev_set_name - set a device name
3460 * @dev: device
3461 * @fmt: format string for the device's name
3462 */
3463int dev_set_name(struct device *dev, const char *fmt, ...)
3464{
3465	va_list vargs;
3466	int err;
3467
3468	va_start(vargs, fmt);
3469	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3470	va_end(vargs);
3471	return err;
3472}
3473EXPORT_SYMBOL_GPL(dev_set_name);
3474
3475/* select a /sys/dev/ directory for the device */
 
 
 
 
 
 
 
 
 
 
3476static struct kobject *device_to_dev_kobj(struct device *dev)
3477{
3478	if (is_blockdev(dev))
3479		return sysfs_dev_block_kobj;
 
 
3480	else
3481		return sysfs_dev_char_kobj;
 
 
3482}
3483
3484static int device_create_sys_dev_entry(struct device *dev)
3485{
3486	struct kobject *kobj = device_to_dev_kobj(dev);
3487	int error = 0;
3488	char devt_str[15];
3489
3490	if (kobj) {
3491		format_dev_t(devt_str, dev->devt);
3492		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3493	}
3494
3495	return error;
3496}
3497
3498static void device_remove_sys_dev_entry(struct device *dev)
3499{
3500	struct kobject *kobj = device_to_dev_kobj(dev);
3501	char devt_str[15];
3502
3503	if (kobj) {
3504		format_dev_t(devt_str, dev->devt);
3505		sysfs_remove_link(kobj, devt_str);
3506	}
3507}
3508
3509static int device_private_init(struct device *dev)
3510{
3511	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3512	if (!dev->p)
3513		return -ENOMEM;
3514	dev->p->device = dev;
3515	klist_init(&dev->p->klist_children, klist_children_get,
3516		   klist_children_put);
3517	INIT_LIST_HEAD(&dev->p->deferred_probe);
3518	return 0;
3519}
3520
3521/**
3522 * device_add - add device to device hierarchy.
3523 * @dev: device.
3524 *
3525 * This is part 2 of device_register(), though may be called
3526 * separately _iff_ device_initialize() has been called separately.
3527 *
3528 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3529 * to the global and sibling lists for the device, then
3530 * adds it to the other relevant subsystems of the driver model.
3531 *
3532 * Do not call this routine or device_register() more than once for
3533 * any device structure.  The driver model core is not designed to work
3534 * with devices that get unregistered and then spring back to life.
3535 * (Among other things, it's very hard to guarantee that all references
3536 * to the previous incarnation of @dev have been dropped.)  Allocate
3537 * and register a fresh new struct device instead.
3538 *
3539 * NOTE: _Never_ directly free @dev after calling this function, even
3540 * if it returned an error! Always use put_device() to give up your
3541 * reference instead.
3542 *
3543 * Rule of thumb is: if device_add() succeeds, you should call
3544 * device_del() when you want to get rid of it. If device_add() has
3545 * *not* succeeded, use *only* put_device() to drop the reference
3546 * count.
3547 */
3548int device_add(struct device *dev)
3549{
3550	struct subsys_private *sp;
3551	struct device *parent;
3552	struct kobject *kobj;
3553	struct class_interface *class_intf;
3554	int error = -EINVAL;
3555	struct kobject *glue_dir = NULL;
3556
3557	dev = get_device(dev);
3558	if (!dev)
3559		goto done;
3560
3561	if (!dev->p) {
3562		error = device_private_init(dev);
3563		if (error)
3564			goto done;
3565	}
3566
3567	/*
3568	 * for statically allocated devices, which should all be converted
3569	 * some day, we need to initialize the name. We prevent reading back
3570	 * the name, and force the use of dev_name()
3571	 */
3572	if (dev->init_name) {
3573		error = dev_set_name(dev, "%s", dev->init_name);
3574		dev->init_name = NULL;
3575	}
3576
3577	if (dev_name(dev))
3578		error = 0;
3579	/* subsystems can specify simple device enumeration */
3580	else if (dev->bus && dev->bus->dev_name)
3581		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3582	else
 
3583		error = -EINVAL;
3584	if (error)
3585		goto name_error;
 
3586
3587	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3588
3589	parent = get_device(dev->parent);
3590	kobj = get_device_parent(dev, parent);
3591	if (IS_ERR(kobj)) {
3592		error = PTR_ERR(kobj);
3593		goto parent_error;
3594	}
3595	if (kobj)
3596		dev->kobj.parent = kobj;
3597
3598	/* use parent numa_node */
3599	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3600		set_dev_node(dev, dev_to_node(parent));
3601
3602	/* first, register with generic layer. */
3603	/* we require the name to be set before, and pass NULL */
3604	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3605	if (error) {
3606		glue_dir = kobj;
3607		goto Error;
3608	}
3609
3610	/* notify platform of device entry */
3611	device_platform_notify(dev);
 
 
3612
3613	error = device_create_file(dev, &dev_attr_uevent);
3614	if (error)
3615		goto attrError;
3616
3617	error = device_add_class_symlinks(dev);
3618	if (error)
3619		goto SymlinkError;
3620	error = device_add_attrs(dev);
3621	if (error)
3622		goto AttrsError;
3623	error = bus_add_device(dev);
3624	if (error)
3625		goto BusError;
3626	error = dpm_sysfs_add(dev);
3627	if (error)
3628		goto DPMError;
3629	device_pm_add(dev);
3630
3631	if (MAJOR(dev->devt)) {
3632		error = device_create_file(dev, &dev_attr_dev);
3633		if (error)
3634			goto DevAttrError;
3635
3636		error = device_create_sys_dev_entry(dev);
3637		if (error)
3638			goto SysEntryError;
3639
3640		devtmpfs_create_node(dev);
3641	}
3642
3643	/* Notify clients of device addition.  This call must come
3644	 * after dpm_sysfs_add() and before kobject_uevent().
3645	 */
3646	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
 
 
 
3647	kobject_uevent(&dev->kobj, KOBJ_ADD);
3648
3649	/*
3650	 * Check if any of the other devices (consumers) have been waiting for
3651	 * this device (supplier) to be added so that they can create a device
3652	 * link to it.
3653	 *
3654	 * This needs to happen after device_pm_add() because device_link_add()
3655	 * requires the supplier be registered before it's called.
3656	 *
3657	 * But this also needs to happen before bus_probe_device() to make sure
3658	 * waiting consumers can link to it before the driver is bound to the
3659	 * device and the driver sync_state callback is called for this device.
3660	 */
3661	if (dev->fwnode && !dev->fwnode->dev) {
3662		dev->fwnode->dev = dev;
3663		fw_devlink_link_device(dev);
3664	}
3665
3666	bus_probe_device(dev);
3667
3668	/*
3669	 * If all driver registration is done and a newly added device doesn't
3670	 * match with any driver, don't block its consumers from probing in
3671	 * case the consumer device is able to operate without this supplier.
3672	 */
3673	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3674		fw_devlink_unblock_consumers(dev);
3675
3676	if (parent)
3677		klist_add_tail(&dev->p->knode_parent,
3678			       &parent->p->klist_children);
3679
3680	sp = class_to_subsys(dev->class);
3681	if (sp) {
3682		mutex_lock(&sp->mutex);
3683		/* tie the class to the device */
3684		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
 
3685
3686		/* notify any interfaces that the device is here */
3687		list_for_each_entry(class_intf, &sp->interfaces, node)
 
3688			if (class_intf->add_dev)
3689				class_intf->add_dev(dev);
3690		mutex_unlock(&sp->mutex);
3691		subsys_put(sp);
3692	}
3693done:
3694	put_device(dev);
3695	return error;
3696 SysEntryError:
3697	if (MAJOR(dev->devt))
3698		device_remove_file(dev, &dev_attr_dev);
3699 DevAttrError:
3700	device_pm_remove(dev);
3701	dpm_sysfs_remove(dev);
3702 DPMError:
3703	dev->driver = NULL;
3704	bus_remove_device(dev);
3705 BusError:
3706	device_remove_attrs(dev);
3707 AttrsError:
3708	device_remove_class_symlinks(dev);
3709 SymlinkError:
3710	device_remove_file(dev, &dev_attr_uevent);
3711 attrError:
3712	device_platform_notify_remove(dev);
 
3713	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3714	glue_dir = get_glue_dir(dev);
3715	kobject_del(&dev->kobj);
3716 Error:
3717	cleanup_glue_dir(dev, glue_dir);
3718parent_error:
3719	put_device(parent);
3720name_error:
3721	kfree(dev->p);
3722	dev->p = NULL;
3723	goto done;
3724}
3725EXPORT_SYMBOL_GPL(device_add);
3726
3727/**
3728 * device_register - register a device with the system.
3729 * @dev: pointer to the device structure
3730 *
3731 * This happens in two clean steps - initialize the device
3732 * and add it to the system. The two steps can be called
3733 * separately, but this is the easiest and most common.
3734 * I.e. you should only call the two helpers separately if
3735 * have a clearly defined need to use and refcount the device
3736 * before it is added to the hierarchy.
3737 *
3738 * For more information, see the kerneldoc for device_initialize()
3739 * and device_add().
3740 *
3741 * NOTE: _Never_ directly free @dev after calling this function, even
3742 * if it returned an error! Always use put_device() to give up the
3743 * reference initialized in this function instead.
3744 */
3745int device_register(struct device *dev)
3746{
3747	device_initialize(dev);
3748	return device_add(dev);
3749}
3750EXPORT_SYMBOL_GPL(device_register);
3751
3752/**
3753 * get_device - increment reference count for device.
3754 * @dev: device.
3755 *
3756 * This simply forwards the call to kobject_get(), though
3757 * we do take care to provide for the case that we get a NULL
3758 * pointer passed in.
3759 */
3760struct device *get_device(struct device *dev)
3761{
3762	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3763}
3764EXPORT_SYMBOL_GPL(get_device);
3765
3766/**
3767 * put_device - decrement reference count.
3768 * @dev: device in question.
3769 */
3770void put_device(struct device *dev)
3771{
3772	/* might_sleep(); */
3773	if (dev)
3774		kobject_put(&dev->kobj);
3775}
3776EXPORT_SYMBOL_GPL(put_device);
3777
3778bool kill_device(struct device *dev)
3779{
3780	/*
3781	 * Require the device lock and set the "dead" flag to guarantee that
3782	 * the update behavior is consistent with the other bitfields near
3783	 * it and that we cannot have an asynchronous probe routine trying
3784	 * to run while we are tearing out the bus/class/sysfs from
3785	 * underneath the device.
3786	 */
3787	device_lock_assert(dev);
3788
3789	if (dev->p->dead)
3790		return false;
3791	dev->p->dead = true;
3792	return true;
3793}
3794EXPORT_SYMBOL_GPL(kill_device);
3795
3796/**
3797 * device_del - delete device from system.
3798 * @dev: device.
3799 *
3800 * This is the first part of the device unregistration
3801 * sequence. This removes the device from the lists we control
3802 * from here, has it removed from the other driver model
3803 * subsystems it was added to in device_add(), and removes it
3804 * from the kobject hierarchy.
3805 *
3806 * NOTE: this should be called manually _iff_ device_add() was
3807 * also called manually.
3808 */
3809void device_del(struct device *dev)
3810{
3811	struct subsys_private *sp;
3812	struct device *parent = dev->parent;
3813	struct kobject *glue_dir = NULL;
3814	struct class_interface *class_intf;
3815	unsigned int noio_flag;
3816
3817	device_lock(dev);
3818	kill_device(dev);
3819	device_unlock(dev);
3820
3821	if (dev->fwnode && dev->fwnode->dev == dev)
3822		dev->fwnode->dev = NULL;
3823
3824	/* Notify clients of device removal.  This call must come
3825	 * before dpm_sysfs_remove().
3826	 */
3827	noio_flag = memalloc_noio_save();
3828	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
 
3829
3830	dpm_sysfs_remove(dev);
3831	if (parent)
3832		klist_del(&dev->p->knode_parent);
3833	if (MAJOR(dev->devt)) {
3834		devtmpfs_delete_node(dev);
3835		device_remove_sys_dev_entry(dev);
3836		device_remove_file(dev, &dev_attr_dev);
3837	}
3838
3839	sp = class_to_subsys(dev->class);
3840	if (sp) {
3841		device_remove_class_symlinks(dev);
3842
3843		mutex_lock(&sp->mutex);
3844		/* notify any interfaces that the device is now gone */
3845		list_for_each_entry(class_intf, &sp->interfaces, node)
 
3846			if (class_intf->remove_dev)
3847				class_intf->remove_dev(dev);
3848		/* remove the device from the class list */
3849		klist_del(&dev->p->knode_class);
3850		mutex_unlock(&sp->mutex);
3851		subsys_put(sp);
3852	}
3853	device_remove_file(dev, &dev_attr_uevent);
3854	device_remove_attrs(dev);
3855	bus_remove_device(dev);
3856	device_pm_remove(dev);
3857	driver_deferred_probe_del(dev);
3858	device_platform_notify_remove(dev);
 
3859	device_links_purge(dev);
3860
3861	/*
3862	 * If a device does not have a driver attached, we need to clean
3863	 * up any managed resources. We do this in device_release(), but
3864	 * it's never called (and we leak the device) if a managed
3865	 * resource holds a reference to the device. So release all
3866	 * managed resources here, like we do in driver_detach(). We
3867	 * still need to do so again in device_release() in case someone
3868	 * adds a new resource after this point, though.
3869	 */
3870	devres_release_all(dev);
3871
3872	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3873	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3874	glue_dir = get_glue_dir(dev);
3875	kobject_del(&dev->kobj);
3876	cleanup_glue_dir(dev, glue_dir);
3877	memalloc_noio_restore(noio_flag);
3878	put_device(parent);
3879}
3880EXPORT_SYMBOL_GPL(device_del);
3881
3882/**
3883 * device_unregister - unregister device from system.
3884 * @dev: device going away.
3885 *
3886 * We do this in two parts, like we do device_register(). First,
3887 * we remove it from all the subsystems with device_del(), then
3888 * we decrement the reference count via put_device(). If that
3889 * is the final reference count, the device will be cleaned up
3890 * via device_release() above. Otherwise, the structure will
3891 * stick around until the final reference to the device is dropped.
3892 */
3893void device_unregister(struct device *dev)
3894{
3895	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3896	device_del(dev);
3897	put_device(dev);
3898}
3899EXPORT_SYMBOL_GPL(device_unregister);
3900
3901static struct device *prev_device(struct klist_iter *i)
3902{
3903	struct klist_node *n = klist_prev(i);
3904	struct device *dev = NULL;
3905	struct device_private *p;
3906
3907	if (n) {
3908		p = to_device_private_parent(n);
3909		dev = p->device;
3910	}
3911	return dev;
3912}
3913
3914static struct device *next_device(struct klist_iter *i)
3915{
3916	struct klist_node *n = klist_next(i);
3917	struct device *dev = NULL;
3918	struct device_private *p;
3919
3920	if (n) {
3921		p = to_device_private_parent(n);
3922		dev = p->device;
3923	}
3924	return dev;
3925}
3926
3927/**
3928 * device_get_devnode - path of device node file
3929 * @dev: device
3930 * @mode: returned file access mode
3931 * @uid: returned file owner
3932 * @gid: returned file group
3933 * @tmp: possibly allocated string
3934 *
3935 * Return the relative path of a possible device node.
3936 * Non-default names may need to allocate a memory to compose
3937 * a name. This memory is returned in tmp and needs to be
3938 * freed by the caller.
3939 */
3940const char *device_get_devnode(const struct device *dev,
3941			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3942			       const char **tmp)
3943{
3944	char *s;
3945
3946	*tmp = NULL;
3947
3948	/* the device type may provide a specific name */
3949	if (dev->type && dev->type->devnode)
3950		*tmp = dev->type->devnode(dev, mode, uid, gid);
3951	if (*tmp)
3952		return *tmp;
3953
3954	/* the class may provide a specific name */
3955	if (dev->class && dev->class->devnode)
3956		*tmp = dev->class->devnode(dev, mode);
3957	if (*tmp)
3958		return *tmp;
3959
3960	/* return name without allocation, tmp == NULL */
3961	if (strchr(dev_name(dev), '!') == NULL)
3962		return dev_name(dev);
3963
3964	/* replace '!' in the name with '/' */
3965	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3966	if (!s)
3967		return NULL;
 
3968	return *tmp = s;
3969}
3970
3971/**
3972 * device_for_each_child - device child iterator.
3973 * @parent: parent struct device.
3974 * @fn: function to be called for each device.
3975 * @data: data for the callback.
3976 *
3977 * Iterate over @parent's child devices, and call @fn for each,
3978 * passing it @data.
3979 *
3980 * We check the return of @fn each time. If it returns anything
3981 * other than 0, we break out and return that value.
3982 */
3983int device_for_each_child(struct device *parent, void *data,
3984			  int (*fn)(struct device *dev, void *data))
3985{
3986	struct klist_iter i;
3987	struct device *child;
3988	int error = 0;
3989
3990	if (!parent || !parent->p)
3991		return 0;
3992
3993	klist_iter_init(&parent->p->klist_children, &i);
3994	while (!error && (child = next_device(&i)))
3995		error = fn(child, data);
3996	klist_iter_exit(&i);
3997	return error;
3998}
3999EXPORT_SYMBOL_GPL(device_for_each_child);
4000
4001/**
4002 * device_for_each_child_reverse - device child iterator in reversed order.
4003 * @parent: parent struct device.
4004 * @fn: function to be called for each device.
4005 * @data: data for the callback.
4006 *
4007 * Iterate over @parent's child devices, and call @fn for each,
4008 * passing it @data.
4009 *
4010 * We check the return of @fn each time. If it returns anything
4011 * other than 0, we break out and return that value.
4012 */
4013int device_for_each_child_reverse(struct device *parent, void *data,
4014				  int (*fn)(struct device *dev, void *data))
4015{
4016	struct klist_iter i;
4017	struct device *child;
4018	int error = 0;
4019
4020	if (!parent || !parent->p)
4021		return 0;
4022
4023	klist_iter_init(&parent->p->klist_children, &i);
4024	while ((child = prev_device(&i)) && !error)
4025		error = fn(child, data);
4026	klist_iter_exit(&i);
4027	return error;
4028}
4029EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4030
4031/**
4032 * device_for_each_child_reverse_from - device child iterator in reversed order.
4033 * @parent: parent struct device.
4034 * @from: optional starting point in child list
4035 * @fn: function to be called for each device.
4036 * @data: data for the callback.
4037 *
4038 * Iterate over @parent's child devices, starting at @from, and call @fn
4039 * for each, passing it @data. This helper is identical to
4040 * device_for_each_child_reverse() when @from is NULL.
4041 *
4042 * @fn is checked each iteration. If it returns anything other than 0,
4043 * iteration stop and that value is returned to the caller of
4044 * device_for_each_child_reverse_from();
4045 */
4046int device_for_each_child_reverse_from(struct device *parent,
4047				       struct device *from, const void *data,
4048				       int (*fn)(struct device *, const void *))
4049{
4050	struct klist_iter i;
4051	struct device *child;
4052	int error = 0;
4053
4054	if (!parent->p)
4055		return 0;
4056
4057	klist_iter_init_node(&parent->p->klist_children, &i,
4058			     (from ? &from->p->knode_parent : NULL));
4059	while ((child = prev_device(&i)) && !error)
4060		error = fn(child, data);
4061	klist_iter_exit(&i);
4062	return error;
4063}
4064EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4065
4066/**
4067 * device_find_child - device iterator for locating a particular device.
4068 * @parent: parent struct device
4069 * @match: Callback function to check device
4070 * @data: Data to pass to match function
4071 *
4072 * This is similar to the device_for_each_child() function above, but it
4073 * returns a reference to a device that is 'found' for later use, as
4074 * determined by the @match callback.
4075 *
4076 * The callback should return 0 if the device doesn't match and non-zero
4077 * if it does.  If the callback returns non-zero and a reference to the
4078 * current device can be obtained, this function will return to the caller
4079 * and not iterate over any more devices.
4080 *
4081 * NOTE: you will need to drop the reference with put_device() after use.
4082 */
4083struct device *device_find_child(struct device *parent, void *data,
4084				 int (*match)(struct device *dev, void *data))
4085{
4086	struct klist_iter i;
4087	struct device *child;
4088
4089	if (!parent || !parent->p)
4090		return NULL;
4091
4092	klist_iter_init(&parent->p->klist_children, &i);
4093	while ((child = next_device(&i)))
4094		if (match(child, data) && get_device(child))
4095			break;
4096	klist_iter_exit(&i);
4097	return child;
4098}
4099EXPORT_SYMBOL_GPL(device_find_child);
4100
4101/**
4102 * device_find_child_by_name - device iterator for locating a child device.
4103 * @parent: parent struct device
4104 * @name: name of the child device
4105 *
4106 * This is similar to the device_find_child() function above, but it
4107 * returns a reference to a device that has the name @name.
4108 *
4109 * NOTE: you will need to drop the reference with put_device() after use.
4110 */
4111struct device *device_find_child_by_name(struct device *parent,
4112					 const char *name)
4113{
4114	struct klist_iter i;
4115	struct device *child;
4116
4117	if (!parent)
4118		return NULL;
4119
4120	klist_iter_init(&parent->p->klist_children, &i);
4121	while ((child = next_device(&i)))
4122		if (sysfs_streq(dev_name(child), name) && get_device(child))
4123			break;
4124	klist_iter_exit(&i);
4125	return child;
4126}
4127EXPORT_SYMBOL_GPL(device_find_child_by_name);
4128
4129static int match_any(struct device *dev, void *unused)
4130{
4131	return 1;
4132}
4133
4134/**
4135 * device_find_any_child - device iterator for locating a child device, if any.
4136 * @parent: parent struct device
4137 *
4138 * This is similar to the device_find_child() function above, but it
4139 * returns a reference to a child device, if any.
4140 *
4141 * NOTE: you will need to drop the reference with put_device() after use.
4142 */
4143struct device *device_find_any_child(struct device *parent)
4144{
4145	return device_find_child(parent, NULL, match_any);
4146}
4147EXPORT_SYMBOL_GPL(device_find_any_child);
4148
4149int __init devices_init(void)
4150{
4151	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4152	if (!devices_kset)
4153		return -ENOMEM;
4154	dev_kobj = kobject_create_and_add("dev", NULL);
4155	if (!dev_kobj)
4156		goto dev_kobj_err;
4157	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4158	if (!sysfs_dev_block_kobj)
4159		goto block_kobj_err;
4160	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4161	if (!sysfs_dev_char_kobj)
4162		goto char_kobj_err;
4163	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4164	if (!device_link_wq)
4165		goto wq_err;
4166
4167	return 0;
4168
4169 wq_err:
4170	kobject_put(sysfs_dev_char_kobj);
4171 char_kobj_err:
4172	kobject_put(sysfs_dev_block_kobj);
4173 block_kobj_err:
4174	kobject_put(dev_kobj);
4175 dev_kobj_err:
4176	kset_unregister(devices_kset);
4177	return -ENOMEM;
4178}
4179
4180static int device_check_offline(struct device *dev, void *not_used)
4181{
4182	int ret;
4183
4184	ret = device_for_each_child(dev, NULL, device_check_offline);
4185	if (ret)
4186		return ret;
4187
4188	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4189}
4190
4191/**
4192 * device_offline - Prepare the device for hot-removal.
4193 * @dev: Device to be put offline.
4194 *
4195 * Execute the device bus type's .offline() callback, if present, to prepare
4196 * the device for a subsequent hot-removal.  If that succeeds, the device must
4197 * not be used until either it is removed or its bus type's .online() callback
4198 * is executed.
4199 *
4200 * Call under device_hotplug_lock.
4201 */
4202int device_offline(struct device *dev)
4203{
4204	int ret;
4205
4206	if (dev->offline_disabled)
4207		return -EPERM;
4208
4209	ret = device_for_each_child(dev, NULL, device_check_offline);
4210	if (ret)
4211		return ret;
4212
4213	device_lock(dev);
4214	if (device_supports_offline(dev)) {
4215		if (dev->offline) {
4216			ret = 1;
4217		} else {
4218			ret = dev->bus->offline(dev);
4219			if (!ret) {
4220				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4221				dev->offline = true;
4222			}
4223		}
4224	}
4225	device_unlock(dev);
4226
4227	return ret;
4228}
4229
4230/**
4231 * device_online - Put the device back online after successful device_offline().
4232 * @dev: Device to be put back online.
4233 *
4234 * If device_offline() has been successfully executed for @dev, but the device
4235 * has not been removed subsequently, execute its bus type's .online() callback
4236 * to indicate that the device can be used again.
4237 *
4238 * Call under device_hotplug_lock.
4239 */
4240int device_online(struct device *dev)
4241{
4242	int ret = 0;
4243
4244	device_lock(dev);
4245	if (device_supports_offline(dev)) {
4246		if (dev->offline) {
4247			ret = dev->bus->online(dev);
4248			if (!ret) {
4249				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4250				dev->offline = false;
4251			}
4252		} else {
4253			ret = 1;
4254		}
4255	}
4256	device_unlock(dev);
4257
4258	return ret;
4259}
4260
4261struct root_device {
4262	struct device dev;
4263	struct module *owner;
4264};
4265
4266static inline struct root_device *to_root_device(struct device *d)
4267{
4268	return container_of(d, struct root_device, dev);
4269}
4270
4271static void root_device_release(struct device *dev)
4272{
4273	kfree(to_root_device(dev));
4274}
4275
4276/**
4277 * __root_device_register - allocate and register a root device
4278 * @name: root device name
4279 * @owner: owner module of the root device, usually THIS_MODULE
4280 *
4281 * This function allocates a root device and registers it
4282 * using device_register(). In order to free the returned
4283 * device, use root_device_unregister().
4284 *
4285 * Root devices are dummy devices which allow other devices
4286 * to be grouped under /sys/devices. Use this function to
4287 * allocate a root device and then use it as the parent of
4288 * any device which should appear under /sys/devices/{name}
4289 *
4290 * The /sys/devices/{name} directory will also contain a
4291 * 'module' symlink which points to the @owner directory
4292 * in sysfs.
4293 *
4294 * Returns &struct device pointer on success, or ERR_PTR() on error.
4295 *
4296 * Note: You probably want to use root_device_register().
4297 */
4298struct device *__root_device_register(const char *name, struct module *owner)
4299{
4300	struct root_device *root;
4301	int err = -ENOMEM;
4302
4303	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4304	if (!root)
4305		return ERR_PTR(err);
4306
4307	err = dev_set_name(&root->dev, "%s", name);
4308	if (err) {
4309		kfree(root);
4310		return ERR_PTR(err);
4311	}
4312
4313	root->dev.release = root_device_release;
4314
4315	err = device_register(&root->dev);
4316	if (err) {
4317		put_device(&root->dev);
4318		return ERR_PTR(err);
4319	}
4320
4321#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4322	if (owner) {
4323		struct module_kobject *mk = &owner->mkobj;
4324
4325		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4326		if (err) {
4327			device_unregister(&root->dev);
4328			return ERR_PTR(err);
4329		}
4330		root->owner = owner;
4331	}
4332#endif
4333
4334	return &root->dev;
4335}
4336EXPORT_SYMBOL_GPL(__root_device_register);
4337
4338/**
4339 * root_device_unregister - unregister and free a root device
4340 * @dev: device going away
4341 *
4342 * This function unregisters and cleans up a device that was created by
4343 * root_device_register().
4344 */
4345void root_device_unregister(struct device *dev)
4346{
4347	struct root_device *root = to_root_device(dev);
4348
4349	if (root->owner)
4350		sysfs_remove_link(&root->dev.kobj, "module");
4351
4352	device_unregister(dev);
4353}
4354EXPORT_SYMBOL_GPL(root_device_unregister);
4355
4356
4357static void device_create_release(struct device *dev)
4358{
4359	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4360	kfree(dev);
4361}
4362
4363static __printf(6, 0) struct device *
4364device_create_groups_vargs(const struct class *class, struct device *parent,
4365			   dev_t devt, void *drvdata,
4366			   const struct attribute_group **groups,
4367			   const char *fmt, va_list args)
4368{
4369	struct device *dev = NULL;
4370	int retval = -ENODEV;
4371
4372	if (IS_ERR_OR_NULL(class))
4373		goto error;
4374
4375	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4376	if (!dev) {
4377		retval = -ENOMEM;
4378		goto error;
4379	}
4380
4381	device_initialize(dev);
4382	dev->devt = devt;
4383	dev->class = class;
4384	dev->parent = parent;
4385	dev->groups = groups;
4386	dev->release = device_create_release;
4387	dev_set_drvdata(dev, drvdata);
4388
4389	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4390	if (retval)
4391		goto error;
4392
4393	retval = device_add(dev);
4394	if (retval)
4395		goto error;
4396
4397	return dev;
4398
4399error:
4400	put_device(dev);
4401	return ERR_PTR(retval);
4402}
4403
4404/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4405 * device_create - creates a device and registers it with sysfs
4406 * @class: pointer to the struct class that this device should be registered to
4407 * @parent: pointer to the parent struct device of this new device, if any
4408 * @devt: the dev_t for the char device to be added
4409 * @drvdata: the data to be added to the device for callbacks
4410 * @fmt: string for the device's name
4411 *
4412 * This function can be used by char device classes.  A struct device
4413 * will be created in sysfs, registered to the specified class.
4414 *
4415 * A "dev" file will be created, showing the dev_t for the device, if
4416 * the dev_t is not 0,0.
4417 * If a pointer to a parent struct device is passed in, the newly created
4418 * struct device will be a child of that device in sysfs.
4419 * The pointer to the struct device will be returned from the call.
4420 * Any further sysfs files that might be required can be created using this
4421 * pointer.
4422 *
4423 * Returns &struct device pointer on success, or ERR_PTR() on error.
 
 
 
4424 */
4425struct device *device_create(const struct class *class, struct device *parent,
4426			     dev_t devt, void *drvdata, const char *fmt, ...)
4427{
4428	va_list vargs;
4429	struct device *dev;
4430
4431	va_start(vargs, fmt);
4432	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4433					  fmt, vargs);
4434	va_end(vargs);
4435	return dev;
4436}
4437EXPORT_SYMBOL_GPL(device_create);
4438
4439/**
4440 * device_create_with_groups - creates a device and registers it with sysfs
4441 * @class: pointer to the struct class that this device should be registered to
4442 * @parent: pointer to the parent struct device of this new device, if any
4443 * @devt: the dev_t for the char device to be added
4444 * @drvdata: the data to be added to the device for callbacks
4445 * @groups: NULL-terminated list of attribute groups to be created
4446 * @fmt: string for the device's name
4447 *
4448 * This function can be used by char device classes.  A struct device
4449 * will be created in sysfs, registered to the specified class.
4450 * Additional attributes specified in the groups parameter will also
4451 * be created automatically.
4452 *
4453 * A "dev" file will be created, showing the dev_t for the device, if
4454 * the dev_t is not 0,0.
4455 * If a pointer to a parent struct device is passed in, the newly created
4456 * struct device will be a child of that device in sysfs.
4457 * The pointer to the struct device will be returned from the call.
4458 * Any further sysfs files that might be required can be created using this
4459 * pointer.
4460 *
4461 * Returns &struct device pointer on success, or ERR_PTR() on error.
 
 
 
4462 */
4463struct device *device_create_with_groups(const struct class *class,
4464					 struct device *parent, dev_t devt,
4465					 void *drvdata,
4466					 const struct attribute_group **groups,
4467					 const char *fmt, ...)
4468{
4469	va_list vargs;
4470	struct device *dev;
4471
4472	va_start(vargs, fmt);
4473	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4474					 fmt, vargs);
4475	va_end(vargs);
4476	return dev;
4477}
4478EXPORT_SYMBOL_GPL(device_create_with_groups);
4479
4480/**
4481 * device_destroy - removes a device that was created with device_create()
4482 * @class: pointer to the struct class that this device was registered with
4483 * @devt: the dev_t of the device that was previously registered
4484 *
4485 * This call unregisters and cleans up a device that was created with a
4486 * call to device_create().
4487 */
4488void device_destroy(const struct class *class, dev_t devt)
4489{
4490	struct device *dev;
4491
4492	dev = class_find_device_by_devt(class, devt);
4493	if (dev) {
4494		put_device(dev);
4495		device_unregister(dev);
4496	}
4497}
4498EXPORT_SYMBOL_GPL(device_destroy);
4499
4500/**
4501 * device_rename - renames a device
4502 * @dev: the pointer to the struct device to be renamed
4503 * @new_name: the new name of the device
4504 *
4505 * It is the responsibility of the caller to provide mutual
4506 * exclusion between two different calls of device_rename
4507 * on the same device to ensure that new_name is valid and
4508 * won't conflict with other devices.
4509 *
4510 * Note: given that some subsystems (networking and infiniband) use this
4511 * function, with no immediate plans for this to change, we cannot assume or
4512 * require that this function not be called at all.
4513 *
4514 * However, if you're writing new code, do not call this function. The following
4515 * text from Kay Sievers offers some insight:
4516 *
4517 * Renaming devices is racy at many levels, symlinks and other stuff are not
4518 * replaced atomically, and you get a "move" uevent, but it's not easy to
4519 * connect the event to the old and new device. Device nodes are not renamed at
4520 * all, there isn't even support for that in the kernel now.
4521 *
4522 * In the meantime, during renaming, your target name might be taken by another
4523 * driver, creating conflicts. Or the old name is taken directly after you
4524 * renamed it -- then you get events for the same DEVPATH, before you even see
4525 * the "move" event. It's just a mess, and nothing new should ever rely on
4526 * kernel device renaming. Besides that, it's not even implemented now for
4527 * other things than (driver-core wise very simple) network devices.
4528 *
 
 
 
 
 
 
 
4529 * Make up a "real" name in the driver before you register anything, or add
4530 * some other attributes for userspace to find the device, or use udev to add
4531 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4532 * don't even want to get into that and try to implement the missing pieces in
4533 * the core. We really have other pieces to fix in the driver core mess. :)
4534 */
4535int device_rename(struct device *dev, const char *new_name)
4536{
4537	struct subsys_private *sp = NULL;
4538	struct kobject *kobj = &dev->kobj;
4539	char *old_device_name = NULL;
4540	int error;
4541	bool is_link_renamed = false;
4542
4543	dev = get_device(dev);
4544	if (!dev)
4545		return -EINVAL;
4546
4547	dev_dbg(dev, "renaming to %s\n", new_name);
4548
4549	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4550	if (!old_device_name) {
4551		error = -ENOMEM;
4552		goto out;
4553	}
4554
4555	if (dev->class) {
4556		sp = class_to_subsys(dev->class);
4557
4558		if (!sp) {
4559			error = -EINVAL;
4560			goto out;
4561		}
4562
4563		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4564					     new_name, kobject_namespace(kobj));
4565		if (error)
4566			goto out;
4567
4568		is_link_renamed = true;
4569	}
4570
4571	error = kobject_rename(kobj, new_name);
 
 
 
4572out:
4573	if (error && is_link_renamed)
4574		sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4575				     old_device_name, kobject_namespace(kobj));
4576	subsys_put(sp);
4577
4578	put_device(dev);
4579
4580	kfree(old_device_name);
4581
4582	return error;
4583}
4584EXPORT_SYMBOL_GPL(device_rename);
4585
4586static int device_move_class_links(struct device *dev,
4587				   struct device *old_parent,
4588				   struct device *new_parent)
4589{
4590	int error = 0;
4591
4592	if (old_parent)
4593		sysfs_remove_link(&dev->kobj, "device");
4594	if (new_parent)
4595		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4596					  "device");
4597	return error;
4598}
4599
4600/**
4601 * device_move - moves a device to a new parent
4602 * @dev: the pointer to the struct device to be moved
4603 * @new_parent: the new parent of the device (can be NULL)
4604 * @dpm_order: how to reorder the dpm_list
4605 */
4606int device_move(struct device *dev, struct device *new_parent,
4607		enum dpm_order dpm_order)
4608{
4609	int error;
4610	struct device *old_parent;
4611	struct kobject *new_parent_kobj;
4612
4613	dev = get_device(dev);
4614	if (!dev)
4615		return -EINVAL;
4616
4617	device_pm_lock();
4618	new_parent = get_device(new_parent);
4619	new_parent_kobj = get_device_parent(dev, new_parent);
4620	if (IS_ERR(new_parent_kobj)) {
4621		error = PTR_ERR(new_parent_kobj);
4622		put_device(new_parent);
4623		goto out;
4624	}
4625
4626	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4627		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4628	error = kobject_move(&dev->kobj, new_parent_kobj);
4629	if (error) {
4630		cleanup_glue_dir(dev, new_parent_kobj);
4631		put_device(new_parent);
4632		goto out;
4633	}
4634	old_parent = dev->parent;
4635	dev->parent = new_parent;
4636	if (old_parent)
4637		klist_remove(&dev->p->knode_parent);
4638	if (new_parent) {
4639		klist_add_tail(&dev->p->knode_parent,
4640			       &new_parent->p->klist_children);
4641		set_dev_node(dev, dev_to_node(new_parent));
4642	}
4643
4644	if (dev->class) {
4645		error = device_move_class_links(dev, old_parent, new_parent);
4646		if (error) {
4647			/* We ignore errors on cleanup since we're hosed anyway... */
4648			device_move_class_links(dev, new_parent, old_parent);
4649			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4650				if (new_parent)
4651					klist_remove(&dev->p->knode_parent);
4652				dev->parent = old_parent;
4653				if (old_parent) {
4654					klist_add_tail(&dev->p->knode_parent,
4655						       &old_parent->p->klist_children);
4656					set_dev_node(dev, dev_to_node(old_parent));
4657				}
4658			}
4659			cleanup_glue_dir(dev, new_parent_kobj);
4660			put_device(new_parent);
4661			goto out;
4662		}
4663	}
4664	switch (dpm_order) {
4665	case DPM_ORDER_NONE:
4666		break;
4667	case DPM_ORDER_DEV_AFTER_PARENT:
4668		device_pm_move_after(dev, new_parent);
4669		devices_kset_move_after(dev, new_parent);
4670		break;
4671	case DPM_ORDER_PARENT_BEFORE_DEV:
4672		device_pm_move_before(new_parent, dev);
4673		devices_kset_move_before(new_parent, dev);
4674		break;
4675	case DPM_ORDER_DEV_LAST:
4676		device_pm_move_last(dev);
4677		devices_kset_move_last(dev);
4678		break;
4679	}
4680
4681	put_device(old_parent);
4682out:
4683	device_pm_unlock();
4684	put_device(dev);
4685	return error;
4686}
4687EXPORT_SYMBOL_GPL(device_move);
4688
4689static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4690				     kgid_t kgid)
4691{
4692	struct kobject *kobj = &dev->kobj;
4693	const struct class *class = dev->class;
4694	const struct device_type *type = dev->type;
4695	int error;
4696
4697	if (class) {
4698		/*
4699		 * Change the device groups of the device class for @dev to
4700		 * @kuid/@kgid.
4701		 */
4702		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4703						  kgid);
4704		if (error)
4705			return error;
4706	}
4707
4708	if (type) {
4709		/*
4710		 * Change the device groups of the device type for @dev to
4711		 * @kuid/@kgid.
4712		 */
4713		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4714						  kgid);
4715		if (error)
4716			return error;
4717	}
4718
4719	/* Change the device groups of @dev to @kuid/@kgid. */
4720	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4721	if (error)
4722		return error;
4723
4724	if (device_supports_offline(dev) && !dev->offline_disabled) {
4725		/* Change online device attributes of @dev to @kuid/@kgid. */
4726		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4727						kuid, kgid);
4728		if (error)
4729			return error;
4730	}
4731
4732	return 0;
4733}
4734
4735/**
4736 * device_change_owner - change the owner of an existing device.
4737 * @dev: device.
4738 * @kuid: new owner's kuid
4739 * @kgid: new owner's kgid
4740 *
4741 * This changes the owner of @dev and its corresponding sysfs entries to
4742 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4743 * core.
4744 *
4745 * Returns 0 on success or error code on failure.
4746 */
4747int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4748{
4749	int error;
4750	struct kobject *kobj = &dev->kobj;
4751	struct subsys_private *sp;
4752
4753	dev = get_device(dev);
4754	if (!dev)
4755		return -EINVAL;
4756
4757	/*
4758	 * Change the kobject and the default attributes and groups of the
4759	 * ktype associated with it to @kuid/@kgid.
4760	 */
4761	error = sysfs_change_owner(kobj, kuid, kgid);
4762	if (error)
4763		goto out;
4764
4765	/*
4766	 * Change the uevent file for @dev to the new owner. The uevent file
4767	 * was created in a separate step when @dev got added and we mirror
4768	 * that step here.
4769	 */
4770	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4771					kgid);
4772	if (error)
4773		goto out;
4774
4775	/*
4776	 * Change the device groups, the device groups associated with the
4777	 * device class, and the groups associated with the device type of @dev
4778	 * to @kuid/@kgid.
4779	 */
4780	error = device_attrs_change_owner(dev, kuid, kgid);
4781	if (error)
4782		goto out;
4783
4784	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4785	if (error)
4786		goto out;
4787
4788	/*
4789	 * Change the owner of the symlink located in the class directory of
4790	 * the device class associated with @dev which points to the actual
4791	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4792	 * symlink shows the same permissions as its target.
4793	 */
4794	sp = class_to_subsys(dev->class);
4795	if (!sp) {
4796		error = -EINVAL;
4797		goto out;
4798	}
4799	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4800	subsys_put(sp);
4801
4802out:
4803	put_device(dev);
4804	return error;
4805}
4806EXPORT_SYMBOL_GPL(device_change_owner);
4807
4808/**
4809 * device_shutdown - call ->shutdown() on each device to shutdown.
4810 */
4811void device_shutdown(void)
4812{
4813	struct device *dev, *parent;
4814
4815	wait_for_device_probe();
4816	device_block_probing();
4817
4818	cpufreq_suspend();
4819
4820	spin_lock(&devices_kset->list_lock);
4821	/*
4822	 * Walk the devices list backward, shutting down each in turn.
4823	 * Beware that device unplug events may also start pulling
4824	 * devices offline, even as the system is shutting down.
4825	 */
4826	while (!list_empty(&devices_kset->list)) {
4827		dev = list_entry(devices_kset->list.prev, struct device,
4828				kobj.entry);
4829
4830		/*
4831		 * hold reference count of device's parent to
4832		 * prevent it from being freed because parent's
4833		 * lock is to be held
4834		 */
4835		parent = get_device(dev->parent);
4836		get_device(dev);
4837		/*
4838		 * Make sure the device is off the kset list, in the
4839		 * event that dev->*->shutdown() doesn't remove it.
4840		 */
4841		list_del_init(&dev->kobj.entry);
4842		spin_unlock(&devices_kset->list_lock);
4843
4844		/* hold lock to avoid race with probe/release */
4845		if (parent)
4846			device_lock(parent);
4847		device_lock(dev);
4848
4849		/* Don't allow any more runtime suspends */
4850		pm_runtime_get_noresume(dev);
4851		pm_runtime_barrier(dev);
4852
4853		if (dev->class && dev->class->shutdown_pre) {
4854			if (initcall_debug)
4855				dev_info(dev, "shutdown_pre\n");
4856			dev->class->shutdown_pre(dev);
4857		}
4858		if (dev->bus && dev->bus->shutdown) {
4859			if (initcall_debug)
4860				dev_info(dev, "shutdown\n");
4861			dev->bus->shutdown(dev);
4862		} else if (dev->driver && dev->driver->shutdown) {
4863			if (initcall_debug)
4864				dev_info(dev, "shutdown\n");
4865			dev->driver->shutdown(dev);
4866		}
4867
4868		device_unlock(dev);
4869		if (parent)
4870			device_unlock(parent);
4871
4872		put_device(dev);
4873		put_device(parent);
4874
4875		spin_lock(&devices_kset->list_lock);
4876	}
4877	spin_unlock(&devices_kset->list_lock);
4878}
4879
4880/*
4881 * Device logging functions
4882 */
4883
4884#ifdef CONFIG_PRINTK
4885static void
4886set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4887{
4888	const char *subsys;
4889
4890	memset(dev_info, 0, sizeof(*dev_info));
4891
4892	if (dev->class)
4893		subsys = dev->class->name;
4894	else if (dev->bus)
4895		subsys = dev->bus->name;
4896	else
4897		return;
4898
4899	strscpy(dev_info->subsystem, subsys);
 
 
4900
4901	/*
4902	 * Add device identifier DEVICE=:
4903	 *   b12:8         block dev_t
4904	 *   c127:3        char dev_t
4905	 *   n8            netdev ifindex
4906	 *   +sound:card0  subsystem:devname
4907	 */
4908	if (MAJOR(dev->devt)) {
4909		char c;
4910
4911		if (strcmp(subsys, "block") == 0)
4912			c = 'b';
4913		else
4914			c = 'c';
4915
4916		snprintf(dev_info->device, sizeof(dev_info->device),
4917			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
 
4918	} else if (strcmp(subsys, "net") == 0) {
4919		struct net_device *net = to_net_dev(dev);
4920
4921		snprintf(dev_info->device, sizeof(dev_info->device),
4922			 "n%u", net->ifindex);
 
4923	} else {
4924		snprintf(dev_info->device, sizeof(dev_info->device),
4925			 "+%s:%s", subsys, dev_name(dev));
 
4926	}
 
 
 
 
 
 
 
 
 
4927}
4928
4929int dev_vprintk_emit(int level, const struct device *dev,
4930		     const char *fmt, va_list args)
4931{
4932	struct dev_printk_info dev_info;
 
4933
4934	set_dev_info(dev, &dev_info);
4935
4936	return vprintk_emit(0, level, &dev_info, fmt, args);
4937}
4938EXPORT_SYMBOL(dev_vprintk_emit);
4939
4940int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4941{
4942	va_list args;
4943	int r;
4944
4945	va_start(args, fmt);
4946
4947	r = dev_vprintk_emit(level, dev, fmt, args);
4948
4949	va_end(args);
4950
4951	return r;
4952}
4953EXPORT_SYMBOL(dev_printk_emit);
4954
4955static void __dev_printk(const char *level, const struct device *dev,
4956			struct va_format *vaf)
4957{
4958	if (dev)
4959		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4960				dev_driver_string(dev), dev_name(dev), vaf);
4961	else
4962		printk("%s(NULL device *): %pV", level, vaf);
4963}
4964
4965void _dev_printk(const char *level, const struct device *dev,
4966		 const char *fmt, ...)
4967{
4968	struct va_format vaf;
4969	va_list args;
4970
4971	va_start(args, fmt);
4972
4973	vaf.fmt = fmt;
4974	vaf.va = &args;
4975
4976	__dev_printk(level, dev, &vaf);
4977
4978	va_end(args);
4979}
4980EXPORT_SYMBOL(_dev_printk);
4981
4982#define define_dev_printk_level(func, kern_level)		\
4983void func(const struct device *dev, const char *fmt, ...)	\
4984{								\
4985	struct va_format vaf;					\
4986	va_list args;						\
4987								\
4988	va_start(args, fmt);					\
4989								\
4990	vaf.fmt = fmt;						\
4991	vaf.va = &args;						\
4992								\
4993	__dev_printk(kern_level, dev, &vaf);			\
4994								\
4995	va_end(args);						\
4996}								\
4997EXPORT_SYMBOL(func);
4998
4999define_dev_printk_level(_dev_emerg, KERN_EMERG);
5000define_dev_printk_level(_dev_alert, KERN_ALERT);
5001define_dev_printk_level(_dev_crit, KERN_CRIT);
5002define_dev_printk_level(_dev_err, KERN_ERR);
5003define_dev_printk_level(_dev_warn, KERN_WARNING);
5004define_dev_printk_level(_dev_notice, KERN_NOTICE);
5005define_dev_printk_level(_dev_info, KERN_INFO);
5006
5007#endif
5008
5009static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
5010			       const char *fmt, va_list vargsp)
5011{
5012	struct va_format vaf;
5013	va_list vargs;
5014
5015	/*
5016	 * On x86_64 and possibly on other architectures, va_list is actually a
5017	 * size-1 array containing a structure.  As a result, function parameter
5018	 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
5019	 * T(*)[1], which is expected by its assignment to vaf.va below.
5020	 *
5021	 * One standard way to solve this mess is by creating a copy in a local
5022	 * variable of type va_list and then using a pointer to that local copy
5023	 * instead, which is the approach employed here.
5024	 */
5025	va_copy(vargs, vargsp);
5026
5027	vaf.fmt = fmt;
5028	vaf.va = &vargs;
5029
5030	switch (err) {
5031	case -EPROBE_DEFER:
5032		device_set_deferred_probe_reason(dev, &vaf);
5033		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5034		break;
5035
5036	case -ENOMEM:
5037		/* Don't print anything on -ENOMEM, there's already enough output */
5038		break;
5039
5040	default:
5041		/* Log fatal final failures as errors, otherwise produce warnings */
5042		if (fatal)
5043			dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5044		else
5045			dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5046		break;
5047	}
5048
5049	va_end(vargs);
5050}
5051
5052/**
5053 * dev_err_probe - probe error check and log helper
5054 * @dev: the pointer to the struct device
5055 * @err: error value to test
5056 * @fmt: printf-style format string
5057 * @...: arguments as specified in the format string
5058 *
5059 * This helper implements common pattern present in probe functions for error
5060 * checking: print debug or error message depending if the error value is
5061 * -EPROBE_DEFER and propagate error upwards.
5062 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5063 * checked later by reading devices_deferred debugfs attribute.
5064 * It replaces the following code sequence::
5065 *
5066 * 	if (err != -EPROBE_DEFER)
5067 * 		dev_err(dev, ...);
5068 * 	else
5069 * 		dev_dbg(dev, ...);
5070 * 	return err;
5071 *
5072 * with::
5073 *
5074 * 	return dev_err_probe(dev, err, ...);
5075 *
5076 * Using this helper in your probe function is totally fine even if @err
5077 * is known to never be -EPROBE_DEFER.
5078 * The benefit compared to a normal dev_err() is the standardized format
5079 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5080 * instead of "-35"), and having the error code returned allows more
5081 * compact error paths.
5082 *
5083 * Returns @err.
5084 */
5085int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5086{
5087	va_list vargs;
5088
5089	va_start(vargs, fmt);
5090
5091	/* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5092	__dev_probe_failed(dev, err, true, fmt, vargs);
5093
5094	va_end(vargs);
5095
5096	return err;
5097}
5098EXPORT_SYMBOL_GPL(dev_err_probe);
5099
5100/**
5101 * dev_warn_probe - probe error check and log helper
5102 * @dev: the pointer to the struct device
5103 * @err: error value to test
5104 * @fmt: printf-style format string
5105 * @...: arguments as specified in the format string
5106 *
5107 * This helper implements common pattern present in probe functions for error
5108 * checking: print debug or warning message depending if the error value is
5109 * -EPROBE_DEFER and propagate error upwards.
5110 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5111 * checked later by reading devices_deferred debugfs attribute.
5112 * It replaces the following code sequence::
5113 *
5114 * 	if (err != -EPROBE_DEFER)
5115 * 		dev_warn(dev, ...);
5116 * 	else
5117 * 		dev_dbg(dev, ...);
5118 * 	return err;
5119 *
5120 * with::
5121 *
5122 * 	return dev_warn_probe(dev, err, ...);
5123 *
5124 * Using this helper in your probe function is totally fine even if @err
5125 * is known to never be -EPROBE_DEFER.
5126 * The benefit compared to a normal dev_warn() is the standardized format
5127 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5128 * instead of "-35"), and having the error code returned allows more
5129 * compact error paths.
5130 *
5131 * Returns @err.
5132 */
5133int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5134{
5135	va_list vargs;
5136
5137	va_start(vargs, fmt);
5138
5139	/* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5140	__dev_probe_failed(dev, err, false, fmt, vargs);
5141
5142	va_end(vargs);
5143
5144	return err;
5145}
5146EXPORT_SYMBOL_GPL(dev_warn_probe);
5147
5148static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5149{
5150	return fwnode && !IS_ERR(fwnode->secondary);
5151}
5152
5153/**
5154 * set_primary_fwnode - Change the primary firmware node of a given device.
5155 * @dev: Device to handle.
5156 * @fwnode: New primary firmware node of the device.
5157 *
5158 * Set the device's firmware node pointer to @fwnode, but if a secondary
5159 * firmware node of the device is present, preserve it.
5160 *
5161 * Valid fwnode cases are:
5162 *  - primary --> secondary --> -ENODEV
5163 *  - primary --> NULL
5164 *  - secondary --> -ENODEV
5165 *  - NULL
5166 */
5167void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5168{
5169	struct device *parent = dev->parent;
5170	struct fwnode_handle *fn = dev->fwnode;
5171
5172	if (fwnode) {
5173		if (fwnode_is_primary(fn))
5174			fn = fn->secondary;
5175
5176		if (fn) {
5177			WARN_ON(fwnode->secondary);
5178			fwnode->secondary = fn;
5179		}
5180		dev->fwnode = fwnode;
5181	} else {
5182		if (fwnode_is_primary(fn)) {
5183			dev->fwnode = fn->secondary;
5184
5185			/* Skip nullifying fn->secondary if the primary is shared */
5186			if (parent && fn == parent->fwnode)
5187				return;
5188
5189			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5190			fn->secondary = NULL;
5191		} else {
5192			dev->fwnode = NULL;
5193		}
5194	}
5195}
5196EXPORT_SYMBOL_GPL(set_primary_fwnode);
5197
5198/**
5199 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5200 * @dev: Device to handle.
5201 * @fwnode: New secondary firmware node of the device.
5202 *
5203 * If a primary firmware node of the device is present, set its secondary
5204 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5205 * @fwnode.
5206 */
5207void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5208{
5209	if (fwnode)
5210		fwnode->secondary = ERR_PTR(-ENODEV);
5211
5212	if (fwnode_is_primary(dev->fwnode))
5213		dev->fwnode->secondary = fwnode;
5214	else
5215		dev->fwnode = fwnode;
5216}
5217EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5218
5219/**
5220 * device_set_of_node_from_dev - reuse device-tree node of another device
5221 * @dev: device whose device-tree node is being set
5222 * @dev2: device whose device-tree node is being reused
5223 *
5224 * Takes another reference to the new device-tree node after first dropping
5225 * any reference held to the old node.
5226 */
5227void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5228{
5229	of_node_put(dev->of_node);
5230	dev->of_node = of_node_get(dev2->of_node);
5231	dev->of_node_reused = true;
5232}
5233EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5234
5235void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5236{
5237	dev->fwnode = fwnode;
5238	dev->of_node = to_of_node(fwnode);
5239}
5240EXPORT_SYMBOL_GPL(device_set_node);
5241
5242int device_match_name(struct device *dev, const void *name)
5243{
5244	return sysfs_streq(dev_name(dev), name);
5245}
5246EXPORT_SYMBOL_GPL(device_match_name);
5247
5248int device_match_of_node(struct device *dev, const void *np)
5249{
5250	return dev->of_node == np;
5251}
5252EXPORT_SYMBOL_GPL(device_match_of_node);
5253
5254int device_match_fwnode(struct device *dev, const void *fwnode)
5255{
5256	return dev_fwnode(dev) == fwnode;
5257}
5258EXPORT_SYMBOL_GPL(device_match_fwnode);
5259
5260int device_match_devt(struct device *dev, const void *pdevt)
5261{
5262	return dev->devt == *(dev_t *)pdevt;
5263}
5264EXPORT_SYMBOL_GPL(device_match_devt);
5265
5266int device_match_acpi_dev(struct device *dev, const void *adev)
5267{
5268	return ACPI_COMPANION(dev) == adev;
5269}
5270EXPORT_SYMBOL(device_match_acpi_dev);
5271
5272int device_match_acpi_handle(struct device *dev, const void *handle)
5273{
5274	return ACPI_HANDLE(dev) == handle;
5275}
5276EXPORT_SYMBOL(device_match_acpi_handle);
5277
5278int device_match_any(struct device *dev, const void *unused)
5279{
5280	return 1;
5281}
5282EXPORT_SYMBOL_GPL(device_match_any);