Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * CPU Microcode Update Driver for Linux
  4 *
  5 * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
  6 *	      2006	Shaohua Li <shaohua.li@intel.com>
  7 *	      2013-2016	Borislav Petkov <bp@alien8.de>
  8 *
  9 * X86 CPU microcode early update for Linux:
 10 *
 11 *	Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
 12 *			   H Peter Anvin" <hpa@zytor.com>
 13 *		  (C) 2015 Borislav Petkov <bp@alien8.de>
 14 *
 15 * This driver allows to upgrade microcode on x86 processors.
 16 */
 17
 18#define pr_fmt(fmt) "microcode: " fmt
 19
 20#include <linux/platform_device.h>
 21#include <linux/stop_machine.h>
 22#include <linux/syscore_ops.h>
 23#include <linux/miscdevice.h>
 24#include <linux/capability.h>
 25#include <linux/firmware.h>
 
 26#include <linux/kernel.h>
 27#include <linux/delay.h>
 28#include <linux/mutex.h>
 29#include <linux/cpu.h>
 30#include <linux/nmi.h>
 31#include <linux/fs.h>
 32#include <linux/mm.h>
 33
 34#include <asm/microcode_intel.h>
 35#include <asm/cpu_device_id.h>
 36#include <asm/microcode_amd.h>
 37#include <asm/perf_event.h>
 38#include <asm/microcode.h>
 39#include <asm/processor.h>
 40#include <asm/cmdline.h>
 41#include <asm/setup.h>
 42
 43#define DRIVER_VERSION	"2.2"
 44
 45static struct microcode_ops	*microcode_ops;
 46static bool dis_ucode_ldr = true;
 47
 48bool initrd_gone;
 49
 50LIST_HEAD(microcode_cache);
 51
 52/*
 53 * Synchronization.
 54 *
 55 * All non cpu-hotplug-callback call sites use:
 56 *
 57 * - microcode_mutex to synchronize with each other;
 58 * - get/put_online_cpus() to synchronize with
 59 *   the cpu-hotplug-callback call sites.
 60 *
 61 * We guarantee that only a single cpu is being
 62 * updated at any particular moment of time.
 63 */
 64static DEFINE_MUTEX(microcode_mutex);
 65
 66/*
 67 * Serialize late loading so that CPUs get updated one-by-one.
 68 */
 69static DEFINE_RAW_SPINLOCK(update_lock);
 70
 71struct ucode_cpu_info		ucode_cpu_info[NR_CPUS];
 72
 73struct cpu_info_ctx {
 74	struct cpu_signature	*cpu_sig;
 75	int			err;
 76};
 77
 78/*
 79 * Those patch levels cannot be updated to newer ones and thus should be final.
 80 */
 81static u32 final_levels[] = {
 82	0x01000098,
 83	0x0100009f,
 84	0x010000af,
 85	0, /* T-101 terminator */
 86};
 87
 
 
 88/*
 89 * Check the current patch level on this CPU.
 90 *
 91 * Returns:
 92 *  - true: if update should stop
 93 *  - false: otherwise
 94 */
 95static bool amd_check_current_patch_level(void)
 96{
 97	u32 lvl, dummy, i;
 98	u32 *levels;
 99
100	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
101
102	if (IS_ENABLED(CONFIG_X86_32))
103		levels = (u32 *)__pa_nodebug(&final_levels);
104	else
105		levels = final_levels;
106
107	for (i = 0; levels[i]; i++) {
108		if (lvl == levels[i])
109			return true;
110	}
111	return false;
112}
113
114static bool __init check_loader_disabled_bsp(void)
115{
116	static const char *__dis_opt_str = "dis_ucode_ldr";
117
118#ifdef CONFIG_X86_32
119	const char *cmdline = (const char *)__pa_nodebug(boot_command_line);
120	const char *option  = (const char *)__pa_nodebug(__dis_opt_str);
121	bool *res = (bool *)__pa_nodebug(&dis_ucode_ldr);
122
123#else /* CONFIG_X86_64 */
124	const char *cmdline = boot_command_line;
125	const char *option  = __dis_opt_str;
126	bool *res = &dis_ucode_ldr;
127#endif
128
129	/*
130	 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
131	 * completely accurate as xen pv guests don't see that CPUID bit set but
132	 * that's good enough as they don't land on the BSP path anyway.
133	 */
134	if (native_cpuid_ecx(1) & BIT(31))
135		return *res;
136
137	if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
138		if (amd_check_current_patch_level())
139			return *res;
140	}
141
142	if (cmdline_find_option_bool(cmdline, option) <= 0)
143		*res = false;
144
145	return *res;
146}
147
148extern struct builtin_fw __start_builtin_fw[];
149extern struct builtin_fw __end_builtin_fw[];
150
151bool get_builtin_firmware(struct cpio_data *cd, const char *name)
152{
153#ifdef CONFIG_FW_LOADER
154	struct builtin_fw *b_fw;
155
156	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
157		if (!strcmp(name, b_fw->name)) {
158			cd->size = b_fw->size;
159			cd->data = b_fw->data;
160			return true;
161		}
162	}
163#endif
164	return false;
165}
166
167void __init load_ucode_bsp(void)
168{
169	unsigned int cpuid_1_eax;
170	bool intel = true;
171
172	if (!have_cpuid_p())
173		return;
174
175	cpuid_1_eax = native_cpuid_eax(1);
176
177	switch (x86_cpuid_vendor()) {
178	case X86_VENDOR_INTEL:
179		if (x86_family(cpuid_1_eax) < 6)
180			return;
181		break;
182
183	case X86_VENDOR_AMD:
184		if (x86_family(cpuid_1_eax) < 0x10)
185			return;
186		intel = false;
187		break;
188
189	default:
190		return;
191	}
192
193	if (check_loader_disabled_bsp())
194		return;
195
196	if (intel)
197		load_ucode_intel_bsp();
198	else
199		load_ucode_amd_bsp(cpuid_1_eax);
200}
201
202static bool check_loader_disabled_ap(void)
203{
204#ifdef CONFIG_X86_32
205	return *((bool *)__pa_nodebug(&dis_ucode_ldr));
206#else
207	return dis_ucode_ldr;
208#endif
209}
210
211void load_ucode_ap(void)
212{
213	unsigned int cpuid_1_eax;
214
215	if (check_loader_disabled_ap())
216		return;
217
218	cpuid_1_eax = native_cpuid_eax(1);
219
220	switch (x86_cpuid_vendor()) {
221	case X86_VENDOR_INTEL:
222		if (x86_family(cpuid_1_eax) >= 6)
223			load_ucode_intel_ap();
224		break;
225	case X86_VENDOR_AMD:
226		if (x86_family(cpuid_1_eax) >= 0x10)
227			load_ucode_amd_ap(cpuid_1_eax);
228		break;
229	default:
230		break;
231	}
232}
233
234static int __init save_microcode_in_initrd(void)
235{
236	struct cpuinfo_x86 *c = &boot_cpu_data;
237	int ret = -EINVAL;
238
239	switch (c->x86_vendor) {
240	case X86_VENDOR_INTEL:
241		if (c->x86 >= 6)
242			ret = save_microcode_in_initrd_intel();
243		break;
244	case X86_VENDOR_AMD:
245		if (c->x86 >= 0x10)
246			ret = save_microcode_in_initrd_amd(cpuid_eax(1));
247		break;
248	default:
249		break;
250	}
251
252	initrd_gone = true;
253
254	return ret;
255}
256
257struct cpio_data find_microcode_in_initrd(const char *path, bool use_pa)
258{
259#ifdef CONFIG_BLK_DEV_INITRD
260	unsigned long start = 0;
261	size_t size;
262
263#ifdef CONFIG_X86_32
264	struct boot_params *params;
265
266	if (use_pa)
267		params = (struct boot_params *)__pa_nodebug(&boot_params);
268	else
269		params = &boot_params;
270
271	size = params->hdr.ramdisk_size;
272
273	/*
274	 * Set start only if we have an initrd image. We cannot use initrd_start
275	 * because it is not set that early yet.
276	 */
277	if (size)
278		start = params->hdr.ramdisk_image;
279
280# else /* CONFIG_X86_64 */
281	size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
282	size |= boot_params.hdr.ramdisk_size;
283
284	if (size) {
285		start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
286		start |= boot_params.hdr.ramdisk_image;
287
288		start += PAGE_OFFSET;
289	}
290# endif
291
292	/*
293	 * Fixup the start address: after reserve_initrd() runs, initrd_start
294	 * has the virtual address of the beginning of the initrd. It also
295	 * possibly relocates the ramdisk. In either case, initrd_start contains
296	 * the updated address so use that instead.
297	 *
298	 * initrd_gone is for the hotplug case where we've thrown out initrd
299	 * already.
300	 */
301	if (!use_pa) {
302		if (initrd_gone)
303			return (struct cpio_data){ NULL, 0, "" };
304		if (initrd_start)
305			start = initrd_start;
306	} else {
307		/*
308		 * The picture with physical addresses is a bit different: we
309		 * need to get the *physical* address to which the ramdisk was
310		 * relocated, i.e., relocated_ramdisk (not initrd_start) and
311		 * since we're running from physical addresses, we need to access
312		 * relocated_ramdisk through its *physical* address too.
313		 */
314		u64 *rr = (u64 *)__pa_nodebug(&relocated_ramdisk);
315		if (*rr)
316			start = *rr;
317	}
318
319	return find_cpio_data(path, (void *)start, size, NULL);
320#else /* !CONFIG_BLK_DEV_INITRD */
321	return (struct cpio_data){ NULL, 0, "" };
322#endif
323}
324
325void reload_early_microcode(void)
326{
327	int vendor, family;
328
329	vendor = x86_cpuid_vendor();
330	family = x86_cpuid_family();
331
332	switch (vendor) {
333	case X86_VENDOR_INTEL:
334		if (family >= 6)
335			reload_ucode_intel();
336		break;
337	case X86_VENDOR_AMD:
338		if (family >= 0x10)
339			reload_ucode_amd();
340		break;
341	default:
342		break;
343	}
344}
345
346static void collect_cpu_info_local(void *arg)
347{
348	struct cpu_info_ctx *ctx = arg;
349
350	ctx->err = microcode_ops->collect_cpu_info(smp_processor_id(),
351						   ctx->cpu_sig);
352}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353
354static int collect_cpu_info_on_target(int cpu, struct cpu_signature *cpu_sig)
355{
356	struct cpu_info_ctx ctx = { .cpu_sig = cpu_sig, .err = 0 };
357	int ret;
358
359	ret = smp_call_function_single(cpu, collect_cpu_info_local, &ctx, 1);
360	if (!ret)
361		ret = ctx.err;
362
363	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364}
365
366static int collect_cpu_info(int cpu)
367{
368	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
369	int ret;
370
371	memset(uci, 0, sizeof(*uci));
 
 
372
373	ret = collect_cpu_info_on_target(cpu, &uci->cpu_sig);
374	if (!ret)
375		uci->valid = 1;
376
377	return ret;
 
 
 
 
 
 
 
378}
379
380static void apply_microcode_local(void *arg)
 
 
 
 
381{
382	enum ucode_state *err = arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383
384	*err = microcode_ops->apply_microcode(smp_processor_id());
 
 
385}
386
387static int apply_microcode_on_target(int cpu)
 
 
 
 
388{
389	enum ucode_state err;
390	int ret;
391
392	ret = smp_call_function_single(cpu, apply_microcode_local, &err, 1);
393	if (!ret) {
394		if (err == UCODE_ERROR)
395			ret = 1;
 
 
396	}
397	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398}
399
400#ifdef CONFIG_MICROCODE_OLD_INTERFACE
401static int do_microcode_update(const void __user *buf, size_t size)
402{
403	int error = 0;
404	int cpu;
 
 
405
406	for_each_online_cpu(cpu) {
407		struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
408		enum ucode_state ustate;
 
 
 
409
410		if (!uci->valid)
411			continue;
 
412
413		ustate = microcode_ops->request_microcode_user(cpu, buf, size);
414		if (ustate == UCODE_ERROR) {
415			error = -1;
416			break;
417		} else if (ustate == UCODE_NEW) {
418			apply_microcode_on_target(cpu);
419		}
420	}
 
 
421
422	return error;
 
 
 
423}
424
425static int microcode_open(struct inode *inode, struct file *file)
426{
427	return capable(CAP_SYS_RAWIO) ? stream_open(inode, file) : -EPERM;
428}
429
430static ssize_t microcode_write(struct file *file, const char __user *buf,
431			       size_t len, loff_t *ppos)
432{
433	ssize_t ret = -EINVAL;
434	unsigned long nr_pages = totalram_pages();
435
436	if ((len >> PAGE_SHIFT) > nr_pages) {
437		pr_err("too much data (max %ld pages)\n", nr_pages);
438		return ret;
 
 
439	}
 
 
 
440
441	get_online_cpus();
442	mutex_lock(&microcode_mutex);
 
443
444	if (do_microcode_update(buf, len) == 0)
445		ret = (ssize_t)len;
 
446
447	if (ret > 0)
448		perf_check_microcode();
 
 
449
450	mutex_unlock(&microcode_mutex);
451	put_online_cpus();
 
452
453	return ret;
454}
 
455
456static const struct file_operations microcode_fops = {
457	.owner			= THIS_MODULE,
458	.write			= microcode_write,
459	.open			= microcode_open,
460	.llseek		= no_llseek,
461};
462
463static struct miscdevice microcode_dev = {
464	.minor			= MICROCODE_MINOR,
465	.name			= "microcode",
466	.nodename		= "cpu/microcode",
467	.fops			= &microcode_fops,
468};
 
 
 
 
 
 
 
 
469
470static int __init microcode_dev_init(void)
471{
472	int error;
473
474	error = misc_register(&microcode_dev);
475	if (error) {
476		pr_err("can't misc_register on minor=%d\n", MICROCODE_MINOR);
477		return error;
 
 
478	}
479
480	return 0;
481}
 
482
483static void __exit microcode_dev_exit(void)
484{
485	misc_deregister(&microcode_dev);
486}
487#else
488#define microcode_dev_init()	0
489#define microcode_dev_exit()	do { } while (0)
490#endif
491
492/* fake device for request_firmware */
493static struct platform_device	*microcode_pdev;
494
495/*
496 * Late loading dance. Why the heavy-handed stomp_machine effort?
497 *
498 * - HT siblings must be idle and not execute other code while the other sibling
499 *   is loading microcode in order to avoid any negative interactions caused by
500 *   the loading.
501 *
502 * - In addition, microcode update on the cores must be serialized until this
503 *   requirement can be relaxed in the future. Right now, this is conservative
504 *   and good.
 
505 */
506#define SPINUNIT 100 /* 100 nsec */
507
508static int check_online_cpus(void)
509{
510	unsigned int cpu;
 
511
512	/*
513	 * Make sure all CPUs are online.  It's fine for SMT to be disabled if
514	 * all the primary threads are still online.
515	 */
516	for_each_present_cpu(cpu) {
517		if (topology_is_primary_thread(cpu) && !cpu_online(cpu)) {
518			pr_err("Not all CPUs online, aborting microcode update.\n");
519			return -EINVAL;
520		}
521	}
522
 
 
 
 
 
 
 
 
 
 
523	return 0;
524}
525
526static atomic_t late_cpus_in;
527static atomic_t late_cpus_out;
528
529static int __wait_for_cpus(atomic_t *t, long long timeout)
530{
531	int all_cpus = num_online_cpus();
 
 
 
532
533	atomic_inc(t);
 
 
 
534
535	while (atomic_read(t) < all_cpus) {
536		if (timeout < SPINUNIT) {
537			pr_err("Timeout while waiting for CPUs rendezvous, remaining: %d\n",
538				all_cpus - atomic_read(t));
539			return 1;
540		}
541
542		ndelay(SPINUNIT);
543		timeout -= SPINUNIT;
 
 
 
544
545		touch_nmi_watchdog();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546	}
547	return 0;
548}
549
550/*
551 * Returns:
552 * < 0 - on error
553 *   0 - no update done
554 *   1 - microcode was updated
555 */
556static int __reload_late(void *info)
557{
558	int cpu = smp_processor_id();
559	enum ucode_state err;
560	int ret = 0;
561
562	/*
563	 * Wait for all CPUs to arrive. A load will not be attempted unless all
564	 * CPUs show up.
565	 * */
566	if (__wait_for_cpus(&late_cpus_in, NSEC_PER_SEC))
567		return -1;
568
569	raw_spin_lock(&update_lock);
570	apply_microcode_local(&err);
571	raw_spin_unlock(&update_lock);
572
573	/* siblings return UCODE_OK because their engine got updated already */
574	if (err > UCODE_NFOUND) {
575		pr_warn("Error reloading microcode on CPU %d\n", cpu);
576		ret = -1;
577	} else if (err == UCODE_UPDATED || err == UCODE_OK) {
578		ret = 1;
579	}
580
581	/*
582	 * Increase the wait timeout to a safe value here since we're
583	 * serializing the microcode update and that could take a while on a
584	 * large number of CPUs. And that is fine as the *actual* timeout will
585	 * be determined by the last CPU finished updating and thus cut short.
586	 */
587	if (__wait_for_cpus(&late_cpus_out, NSEC_PER_SEC * num_online_cpus()))
588		panic("Timeout during microcode update!\n");
 
 
589
590	return ret;
591}
592
593/*
594 * Reload microcode late on all CPUs. Wait for a sec until they
595 * all gather together.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596 */
597static int microcode_reload_late(void)
598{
599	int ret;
 
 
600
601	atomic_set(&late_cpus_in,  0);
602	atomic_set(&late_cpus_out, 0);
603
604	ret = stop_machine_cpuslocked(__reload_late, NULL, cpu_online_mask);
605	if (ret > 0)
606		microcode_check();
607
608	pr_info("Reload completed, microcode revision: 0x%x\n", boot_cpu_data.microcode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609
610	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611}
612
613static ssize_t reload_store(struct device *dev,
614			    struct device_attribute *attr,
615			    const char *buf, size_t size)
616{
617	enum ucode_state tmp_ret = UCODE_OK;
618	int bsp = boot_cpu_data.cpu_index;
619	unsigned long val;
620	ssize_t ret = 0;
621
622	ret = kstrtoul(buf, 0, &val);
623	if (ret)
624		return ret;
625
626	if (val != 1)
627		return size;
628
629	tmp_ret = microcode_ops->request_microcode_fw(bsp, &microcode_pdev->dev, true);
630	if (tmp_ret != UCODE_NEW)
631		return size;
632
633	get_online_cpus();
634
635	ret = check_online_cpus();
636	if (ret)
637		goto put;
638
639	mutex_lock(&microcode_mutex);
640	ret = microcode_reload_late();
641	mutex_unlock(&microcode_mutex);
642
643put:
644	put_online_cpus();
645
646	if (ret >= 0)
647		ret = size;
 
648
649	return ret;
650}
651
 
 
 
652static ssize_t version_show(struct device *dev,
653			struct device_attribute *attr, char *buf)
654{
655	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
656
657	return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
658}
659
660static ssize_t pf_show(struct device *dev,
661			struct device_attribute *attr, char *buf)
662{
663	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
664
665	return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
666}
667
668static DEVICE_ATTR_WO(reload);
669static DEVICE_ATTR(version, 0444, version_show, NULL);
670static DEVICE_ATTR(processor_flags, 0444, pf_show, NULL);
671
672static struct attribute *mc_default_attrs[] = {
673	&dev_attr_version.attr,
674	&dev_attr_processor_flags.attr,
675	NULL
676};
677
678static const struct attribute_group mc_attr_group = {
679	.attrs			= mc_default_attrs,
680	.name			= "microcode",
681};
682
683static void microcode_fini_cpu(int cpu)
684{
685	if (microcode_ops->microcode_fini_cpu)
686		microcode_ops->microcode_fini_cpu(cpu);
687}
688
689static enum ucode_state microcode_resume_cpu(int cpu)
690{
691	if (apply_microcode_on_target(cpu))
692		return UCODE_ERROR;
693
694	pr_debug("CPU%d updated upon resume\n", cpu);
695
696	return UCODE_OK;
697}
698
699static enum ucode_state microcode_init_cpu(int cpu, bool refresh_fw)
700{
701	enum ucode_state ustate;
702	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
703
704	if (uci->valid)
705		return UCODE_OK;
706
707	if (collect_cpu_info(cpu))
708		return UCODE_ERROR;
709
710	/* --dimm. Trigger a delayed update? */
711	if (system_state != SYSTEM_RUNNING)
712		return UCODE_NFOUND;
713
714	ustate = microcode_ops->request_microcode_fw(cpu, &microcode_pdev->dev, refresh_fw);
715	if (ustate == UCODE_NEW) {
716		pr_debug("CPU%d updated upon init\n", cpu);
717		apply_microcode_on_target(cpu);
718	}
719
720	return ustate;
721}
722
723static enum ucode_state microcode_update_cpu(int cpu)
724{
725	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
726
727	/* Refresh CPU microcode revision after resume. */
728	collect_cpu_info(cpu);
729
730	if (uci->valid)
731		return microcode_resume_cpu(cpu);
732
733	return microcode_init_cpu(cpu, false);
734}
735
736static int mc_device_add(struct device *dev, struct subsys_interface *sif)
737{
738	int err, cpu = dev->id;
739
740	if (!cpu_online(cpu))
741		return 0;
742
743	pr_debug("CPU%d added\n", cpu);
744
745	err = sysfs_create_group(&dev->kobj, &mc_attr_group);
746	if (err)
747		return err;
748
749	if (microcode_init_cpu(cpu, true) == UCODE_ERROR)
750		return -EINVAL;
751
752	return err;
753}
754
755static void mc_device_remove(struct device *dev, struct subsys_interface *sif)
756{
757	int cpu = dev->id;
758
759	if (!cpu_online(cpu))
760		return;
761
762	pr_debug("CPU%d removed\n", cpu);
763	microcode_fini_cpu(cpu);
764	sysfs_remove_group(&dev->kobj, &mc_attr_group);
765}
766
767static struct subsys_interface mc_cpu_interface = {
768	.name			= "microcode",
769	.subsys			= &cpu_subsys,
770	.add_dev		= mc_device_add,
771	.remove_dev		= mc_device_remove,
772};
773
774/**
775 * mc_bp_resume - Update boot CPU microcode during resume.
776 */
777static void mc_bp_resume(void)
778{
779	int cpu = smp_processor_id();
780	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
781
782	if (uci->valid && uci->mc)
783		microcode_ops->apply_microcode(cpu);
784	else if (!uci->mc)
785		reload_early_microcode();
786}
787
788static struct syscore_ops mc_syscore_ops = {
789	.resume			= mc_bp_resume,
790};
791
792static int mc_cpu_starting(unsigned int cpu)
793{
794	microcode_update_cpu(cpu);
795	pr_debug("CPU%d added\n", cpu);
796	return 0;
797}
798
799static int mc_cpu_online(unsigned int cpu)
800{
 
801	struct device *dev = get_cpu_device(cpu);
802
 
 
 
 
 
 
 
803	if (sysfs_create_group(&dev->kobj, &mc_attr_group))
804		pr_err("Failed to create group for CPU%d\n", cpu);
805	return 0;
806}
807
808static int mc_cpu_down_prep(unsigned int cpu)
809{
810	struct device *dev;
811
812	dev = get_cpu_device(cpu);
813	/* Suspend is in progress, only remove the interface */
814	sysfs_remove_group(&dev->kobj, &mc_attr_group);
815	pr_debug("CPU%d removed\n", cpu);
816
817	return 0;
818}
819
820static struct attribute *cpu_root_microcode_attrs[] = {
 
821	&dev_attr_reload.attr,
 
822	NULL
823};
824
825static const struct attribute_group cpu_root_microcode_group = {
826	.name  = "microcode",
827	.attrs = cpu_root_microcode_attrs,
828};
829
830int __init microcode_init(void)
831{
 
832	struct cpuinfo_x86 *c = &boot_cpu_data;
833	int error;
834
835	if (dis_ucode_ldr)
836		return -EINVAL;
837
838	if (c->x86_vendor == X86_VENDOR_INTEL)
839		microcode_ops = init_intel_microcode();
840	else if (c->x86_vendor == X86_VENDOR_AMD)
841		microcode_ops = init_amd_microcode();
842	else
843		pr_err("no support for this CPU vendor\n");
844
845	if (!microcode_ops)
846		return -ENODEV;
847
848	microcode_pdev = platform_device_register_simple("microcode", -1,
849							 NULL, 0);
850	if (IS_ERR(microcode_pdev))
851		return PTR_ERR(microcode_pdev);
852
853	get_online_cpus();
854	mutex_lock(&microcode_mutex);
855
856	error = subsys_interface_register(&mc_cpu_interface);
857	if (!error)
858		perf_check_microcode();
859	mutex_unlock(&microcode_mutex);
860	put_online_cpus();
861
862	if (error)
863		goto out_pdev;
864
865	error = sysfs_create_group(&cpu_subsys.dev_root->kobj,
866				   &cpu_root_microcode_group);
 
867
868	if (error) {
869		pr_err("Error creating microcode group!\n");
870		goto out_driver;
 
 
 
 
 
871	}
872
873	error = microcode_dev_init();
874	if (error)
875		goto out_ucode_group;
876
877	register_syscore_ops(&mc_syscore_ops);
878	cpuhp_setup_state_nocalls(CPUHP_AP_MICROCODE_LOADER, "x86/microcode:starting",
879				  mc_cpu_starting, NULL);
880	cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
881				  mc_cpu_online, mc_cpu_down_prep);
882
883	pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION);
884
885	return 0;
886
887 out_ucode_group:
888	sysfs_remove_group(&cpu_subsys.dev_root->kobj,
889			   &cpu_root_microcode_group);
890
891 out_driver:
892	get_online_cpus();
893	mutex_lock(&microcode_mutex);
894
895	subsys_interface_unregister(&mc_cpu_interface);
896
897	mutex_unlock(&microcode_mutex);
898	put_online_cpus();
899
900 out_pdev:
901	platform_device_unregister(microcode_pdev);
902	return error;
903
904}
905fs_initcall(save_microcode_in_initrd);
906late_initcall(microcode_init);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * CPU Microcode Update Driver for Linux
  4 *
  5 * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
  6 *	      2006	Shaohua Li <shaohua.li@intel.com>
  7 *	      2013-2016	Borislav Petkov <bp@alien8.de>
  8 *
  9 * X86 CPU microcode early update for Linux:
 10 *
 11 *	Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
 12 *			   H Peter Anvin" <hpa@zytor.com>
 13 *		  (C) 2015 Borislav Petkov <bp@alien8.de>
 14 *
 15 * This driver allows to upgrade microcode on x86 processors.
 16 */
 17
 18#define pr_fmt(fmt) "microcode: " fmt
 19
 20#include <linux/platform_device.h>
 21#include <linux/stop_machine.h>
 22#include <linux/syscore_ops.h>
 23#include <linux/miscdevice.h>
 24#include <linux/capability.h>
 25#include <linux/firmware.h>
 26#include <linux/cpumask.h>
 27#include <linux/kernel.h>
 28#include <linux/delay.h>
 29#include <linux/mutex.h>
 30#include <linux/cpu.h>
 31#include <linux/nmi.h>
 32#include <linux/fs.h>
 33#include <linux/mm.h>
 34
 35#include <asm/apic.h>
 36#include <asm/cpu_device_id.h>
 
 37#include <asm/perf_event.h>
 
 38#include <asm/processor.h>
 39#include <asm/cmdline.h>
 40#include <asm/setup.h>
 41
 42#include "internal.h"
 43
 44static struct microcode_ops	*microcode_ops;
 45bool dis_ucode_ldr = true;
 46
 47bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV);
 48module_param(force_minrev, bool, S_IRUSR | S_IWUSR);
 
 49
 50/*
 51 * Synchronization.
 52 *
 53 * All non cpu-hotplug-callback call sites use:
 54 *
 55 * - cpus_read_lock/unlock() to synchronize with
 
 56 *   the cpu-hotplug-callback call sites.
 57 *
 58 * We guarantee that only a single cpu is being
 59 * updated at any particular moment of time.
 60 */
 
 
 
 
 
 
 
 61struct ucode_cpu_info		ucode_cpu_info[NR_CPUS];
 62
 
 
 
 
 
 63/*
 64 * Those patch levels cannot be updated to newer ones and thus should be final.
 65 */
 66static u32 final_levels[] = {
 67	0x01000098,
 68	0x0100009f,
 69	0x010000af,
 70	0, /* T-101 terminator */
 71};
 72
 73struct early_load_data early_data;
 74
 75/*
 76 * Check the current patch level on this CPU.
 77 *
 78 * Returns:
 79 *  - true: if update should stop
 80 *  - false: otherwise
 81 */
 82static bool amd_check_current_patch_level(void)
 83{
 84	u32 lvl, dummy, i;
 85	u32 *levels;
 86
 87	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
 88
 89	levels = final_levels;
 
 
 
 90
 91	for (i = 0; levels[i]; i++) {
 92		if (lvl == levels[i])
 93			return true;
 94	}
 95	return false;
 96}
 97
 98static bool __init check_loader_disabled_bsp(void)
 99{
100	static const char *__dis_opt_str = "dis_ucode_ldr";
 
 
 
 
 
 
 
101	const char *cmdline = boot_command_line;
102	const char *option  = __dis_opt_str;
 
 
103
104	/*
105	 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
106	 * completely accurate as xen pv guests don't see that CPUID bit set but
107	 * that's good enough as they don't land on the BSP path anyway.
108	 */
109	if (native_cpuid_ecx(1) & BIT(31))
110		return true;
111
112	if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
113		if (amd_check_current_patch_level())
114			return true;
115	}
116
117	if (cmdline_find_option_bool(cmdline, option) <= 0)
118		dis_ucode_ldr = false;
 
 
 
 
 
 
119
120	return dis_ucode_ldr;
 
 
 
 
 
 
 
 
 
 
 
 
 
121}
122
123void __init load_ucode_bsp(void)
124{
125	unsigned int cpuid_1_eax;
126	bool intel = true;
127
128	if (!have_cpuid_p())
129		return;
130
131	cpuid_1_eax = native_cpuid_eax(1);
132
133	switch (x86_cpuid_vendor()) {
134	case X86_VENDOR_INTEL:
135		if (x86_family(cpuid_1_eax) < 6)
136			return;
137		break;
138
139	case X86_VENDOR_AMD:
140		if (x86_family(cpuid_1_eax) < 0x10)
141			return;
142		intel = false;
143		break;
144
145	default:
146		return;
147	}
148
149	if (check_loader_disabled_bsp())
150		return;
151
152	if (intel)
153		load_ucode_intel_bsp(&early_data);
154	else
155		load_ucode_amd_bsp(&early_data, cpuid_1_eax);
 
 
 
 
 
 
 
 
 
156}
157
158void load_ucode_ap(void)
159{
160	unsigned int cpuid_1_eax;
161
162	if (dis_ucode_ldr)
163		return;
164
165	cpuid_1_eax = native_cpuid_eax(1);
166
167	switch (x86_cpuid_vendor()) {
168	case X86_VENDOR_INTEL:
169		if (x86_family(cpuid_1_eax) >= 6)
170			load_ucode_intel_ap();
171		break;
172	case X86_VENDOR_AMD:
173		if (x86_family(cpuid_1_eax) >= 0x10)
174			load_ucode_amd_ap(cpuid_1_eax);
175		break;
176	default:
177		break;
178	}
179}
180
181struct cpio_data __init find_microcode_in_initrd(const char *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182{
183#ifdef CONFIG_BLK_DEV_INITRD
184	unsigned long start = 0;
185	size_t size;
186
187#ifdef CONFIG_X86_32
188	size = boot_params.hdr.ramdisk_size;
189	/* Early load on BSP has a temporary mapping. */
 
 
 
 
 
 
 
 
 
 
 
190	if (size)
191		start = initrd_start_early;
192
193#else /* CONFIG_X86_64 */
194	size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
195	size |= boot_params.hdr.ramdisk_size;
196
197	if (size) {
198		start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
199		start |= boot_params.hdr.ramdisk_image;
 
200		start += PAGE_OFFSET;
201	}
202#endif
203
204	/*
205	 * Fixup the start address: after reserve_initrd() runs, initrd_start
206	 * has the virtual address of the beginning of the initrd. It also
207	 * possibly relocates the ramdisk. In either case, initrd_start contains
208	 * the updated address so use that instead.
 
 
 
209	 */
210	if (initrd_start)
211		start = initrd_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
213	return find_cpio_data(path, (void *)start, size, NULL);
214#else /* !CONFIG_BLK_DEV_INITRD */
215	return (struct cpio_data){ NULL, 0, "" };
216#endif
217}
218
219static void reload_early_microcode(unsigned int cpu)
220{
221	int vendor, family;
222
223	vendor = x86_cpuid_vendor();
224	family = x86_cpuid_family();
225
226	switch (vendor) {
227	case X86_VENDOR_INTEL:
228		if (family >= 6)
229			reload_ucode_intel();
230		break;
231	case X86_VENDOR_AMD:
232		if (family >= 0x10)
233			reload_ucode_amd(cpu);
234		break;
235	default:
236		break;
237	}
238}
239
240/* fake device for request_firmware */
241static struct platform_device	*microcode_pdev;
 
242
243#ifdef CONFIG_MICROCODE_LATE_LOADING
244/*
245 * Late loading dance. Why the heavy-handed stomp_machine effort?
246 *
247 * - HT siblings must be idle and not execute other code while the other sibling
248 *   is loading microcode in order to avoid any negative interactions caused by
249 *   the loading.
250 *
251 * - In addition, microcode update on the cores must be serialized until this
252 *   requirement can be relaxed in the future. Right now, this is conservative
253 *   and good.
254 */
255enum sibling_ctrl {
256	/* Spinwait with timeout */
257	SCTRL_WAIT,
258	/* Invoke the microcode_apply() callback */
259	SCTRL_APPLY,
260	/* Proceed without invoking the microcode_apply() callback */
261	SCTRL_DONE,
262};
263
264struct microcode_ctrl {
265	enum sibling_ctrl	ctrl;
266	enum ucode_state	result;
267	unsigned int		ctrl_cpu;
268	bool			nmi_enabled;
269};
270
271DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable);
272static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl);
273static atomic_t late_cpus_in, offline_in_nmi;
274static unsigned int loops_per_usec;
275static cpumask_t cpu_offline_mask;
276
277static noinstr bool wait_for_cpus(atomic_t *cnt)
278{
279	unsigned int timeout, loops;
 
280
281	WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0);
 
 
282
283	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
284		if (!raw_atomic_read(cnt))
285			return true;
286
287		for (loops = 0; loops < loops_per_usec; loops++)
288			cpu_relax();
289
290		/* If invoked directly, tickle the NMI watchdog */
291		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
292			instrumentation_begin();
293			touch_nmi_watchdog();
294			instrumentation_end();
295		}
296	}
297	/* Prevent the late comers from making progress and let them time out */
298	raw_atomic_inc(cnt);
299	return false;
300}
301
302static noinstr bool wait_for_ctrl(void)
303{
304	unsigned int timeout, loops;
 
305
306	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
307		if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT)
308			return true;
309
310		for (loops = 0; loops < loops_per_usec; loops++)
311			cpu_relax();
 
312
313		/* If invoked directly, tickle the NMI watchdog */
314		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
315			instrumentation_begin();
316			touch_nmi_watchdog();
317			instrumentation_end();
318		}
319	}
320	return false;
321}
322
323/*
324 * Protected against instrumentation up to the point where the primary
325 * thread completed the update. See microcode_nmi_handler() for details.
326 */
327static noinstr bool load_secondary_wait(unsigned int ctrl_cpu)
328{
329	/* Initial rendezvous to ensure that all CPUs have arrived */
330	if (!wait_for_cpus(&late_cpus_in)) {
331		raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
332		return false;
333	}
334
335	/*
336	 * Wait for primary threads to complete. If one of them hangs due
337	 * to the update, there is no way out. This is non-recoverable
338	 * because the CPU might hold locks or resources and confuse the
339	 * scheduler, watchdogs etc. There is no way to safely evacuate the
340	 * machine.
341	 */
342	if (wait_for_ctrl())
343		return true;
344
345	instrumentation_begin();
346	panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu);
347	instrumentation_end();
348}
349
350/*
351 * Protected against instrumentation up to the point where the primary
352 * thread completed the update. See microcode_nmi_handler() for details.
353 */
354static noinstr void load_secondary(unsigned int cpu)
355{
356	unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu);
357	enum ucode_state ret;
358
359	if (!load_secondary_wait(ctrl_cpu)) {
360		instrumentation_begin();
361		pr_err_once("load: %d CPUs timed out\n",
362			    atomic_read(&late_cpus_in) - 1);
363		instrumentation_end();
364		return;
365	}
366
367	/* Primary thread completed. Allow to invoke instrumentable code */
368	instrumentation_begin();
369	/*
370	 * If the primary succeeded then invoke the apply() callback,
371	 * otherwise copy the state from the primary thread.
372	 */
373	if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY)
374		ret = microcode_ops->apply_microcode(cpu);
375	else
376		ret = per_cpu(ucode_ctrl.result, ctrl_cpu);
377
378	this_cpu_write(ucode_ctrl.result, ret);
379	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
380	instrumentation_end();
381}
382
383static void __load_primary(unsigned int cpu)
 
384{
385	struct cpumask *secondaries = topology_sibling_cpumask(cpu);
386	enum sibling_ctrl ctrl;
387	enum ucode_state ret;
388	unsigned int sibling;
389
390	/* Initial rendezvous to ensure that all CPUs have arrived */
391	if (!wait_for_cpus(&late_cpus_in)) {
392		this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
393		pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1);
394		return;
395	}
396
397	ret = microcode_ops->apply_microcode(cpu);
398	this_cpu_write(ucode_ctrl.result, ret);
399	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
400
401	/*
402	 * If the update was successful, let the siblings run the apply()
403	 * callback. If not, tell them it's done. This also covers the
404	 * case where the CPU has uniform loading at package or system
405	 * scope implemented but does not advertise it.
406	 */
407	if (ret == UCODE_UPDATED || ret == UCODE_OK)
408		ctrl = SCTRL_APPLY;
409	else
410		ctrl = SCTRL_DONE;
411
412	for_each_cpu(sibling, secondaries) {
413		if (sibling != cpu)
414			per_cpu(ucode_ctrl.ctrl, sibling) = ctrl;
415	}
416}
417
418static bool kick_offline_cpus(unsigned int nr_offl)
419{
420	unsigned int cpu, timeout;
 
421
422	for_each_cpu(cpu, &cpu_offline_mask) {
423		/* Enable the rendezvous handler and send NMI */
424		per_cpu(ucode_ctrl.nmi_enabled, cpu) = true;
425		apic_send_nmi_to_offline_cpu(cpu);
426	}
427
428	/* Wait for them to arrive */
429	for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) {
430		if (atomic_read(&offline_in_nmi) == nr_offl)
431			return true;
432		udelay(1);
433	}
434	/* Let the others time out */
435	return false;
436}
437
438static void release_offline_cpus(void)
439{
440	unsigned int cpu;
441
442	for_each_cpu(cpu, &cpu_offline_mask)
443		per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE;
444}
445
446static void load_primary(unsigned int cpu)
447{
448	unsigned int nr_offl = cpumask_weight(&cpu_offline_mask);
449	bool proceed = true;
450
451	/* Kick soft-offlined SMT siblings if required */
452	if (!cpu && nr_offl)
453		proceed = kick_offline_cpus(nr_offl);
454
455	/* If the soft-offlined CPUs did not respond, abort */
456	if (proceed)
457		__load_primary(cpu);
458
459	/* Unconditionally release soft-offlined SMT siblings if required */
460	if (!cpu && nr_offl)
461		release_offline_cpus();
462}
 
 
463
464/*
465 * Minimal stub rendezvous handler for soft-offlined CPUs which participate
466 * in the NMI rendezvous to protect against a concurrent NMI on affected
467 * CPUs.
468 */
469void noinstr microcode_offline_nmi_handler(void)
470{
471	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
472		return;
473	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
474	raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE);
475	raw_atomic_inc(&offline_in_nmi);
476	wait_for_ctrl();
477}
478
479static noinstr bool microcode_update_handler(void)
480{
481	unsigned int cpu = raw_smp_processor_id();
482
483	if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) {
484		instrumentation_begin();
485		load_primary(cpu);
486		instrumentation_end();
487	} else {
488		load_secondary(cpu);
489	}
490
491	instrumentation_begin();
492	touch_nmi_watchdog();
493	instrumentation_end();
494
495	return true;
 
 
496}
 
 
 
 
 
 
 
497
498/*
499 * Protection against instrumentation is required for CPUs which are not
500 * safe against an NMI which is delivered to the secondary SMT sibling
501 * while the primary thread updates the microcode. Instrumentation can end
502 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI
503 * which is the opposite of what the NMI rendezvous is trying to achieve.
504 *
505 * The primary thread is safe versus instrumentation as the actual
506 * microcode update handles this correctly. It's only the sibling code
507 * path which must be NMI safe until the primary thread completed the
508 * update.
509 */
510bool noinstr microcode_nmi_handler(void)
 
 
511{
512	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
513		return false;
514
515	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
516	return microcode_update_handler();
517}
 
 
 
 
 
 
 
518
519static int load_cpus_stopped(void *unused)
520{
521	if (microcode_ops->use_nmi) {
522		/* Enable the NMI handler and raise NMI */
523		this_cpu_write(ucode_ctrl.nmi_enabled, true);
524		apic->send_IPI(smp_processor_id(), NMI_VECTOR);
525	} else {
526		/* Just invoke the handler directly */
527		microcode_update_handler();
528	}
529	return 0;
530}
531
532static int load_late_stop_cpus(bool is_safe)
 
 
 
533{
534	unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0;
535	unsigned int nr_offl, offline = 0;
536	int old_rev = boot_cpu_data.microcode;
537	struct cpuinfo_x86 prev_info;
538
539	if (!is_safe) {
540		pr_err("Late microcode loading without minimal revision check.\n");
541		pr_err("You should switch to early loading, if possible.\n");
542	}
543
544	atomic_set(&late_cpus_in, num_online_cpus());
545	atomic_set(&offline_in_nmi, 0);
546	loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
 
 
 
547
548	/*
549	 * Take a snapshot before the microcode update in order to compare and
550	 * check whether any bits changed after an update.
551	 */
552	store_cpu_caps(&prev_info);
553
554	if (microcode_ops->use_nmi)
555		static_branch_enable_cpuslocked(&microcode_nmi_handler_enable);
556
557	stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask);
558
559	if (microcode_ops->use_nmi)
560		static_branch_disable_cpuslocked(&microcode_nmi_handler_enable);
561
562	/* Analyze the results */
563	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
564		switch (per_cpu(ucode_ctrl.result, cpu)) {
565		case UCODE_UPDATED:	updated++; break;
566		case UCODE_TIMEOUT:	timedout++; break;
567		case UCODE_OK:		siblings++; break;
568		case UCODE_OFFLINE:	offline++; break;
569		default:		failed++; break;
570		}
571	}
 
 
572
573	if (microcode_ops->finalize_late_load)
574		microcode_ops->finalize_late_load(!updated);
 
 
 
 
 
 
 
 
 
575
576	if (!updated) {
577		/* Nothing changed. */
578		if (!failed && !timedout)
579			return 0;
580
581		nr_offl = cpumask_weight(&cpu_offline_mask);
582		if (offline < nr_offl) {
583			pr_warn("%u offline siblings did not respond.\n",
584				nr_offl - atomic_read(&offline_in_nmi));
585			return -EIO;
586		}
587		pr_err("update failed: %u CPUs failed %u CPUs timed out\n",
588		       failed, timedout);
589		return -EIO;
 
 
 
590	}
591
592	if (!is_safe || failed || timedout)
593		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
594
595	pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings);
596	if (failed || timedout) {
597		pr_err("load incomplete. %u CPUs timed out or failed\n",
598		       num_online_cpus() - (updated + siblings));
599	}
600	pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode);
601	microcode_check(&prev_info);
602
603	return updated + siblings == num_online_cpus() ? 0 : -EIO;
604}
605
606/*
607 * This function does two things:
608 *
609 * 1) Ensure that all required CPUs which are present and have been booted
610 *    once are online.
611 *
612 *    To pass this check, all primary threads must be online.
613 *
614 *    If the microcode load is not safe against NMI then all SMT threads
615 *    must be online as well because they still react to NMIs when they are
616 *    soft-offlined and parked in one of the play_dead() variants. So if a
617 *    NMI hits while the primary thread updates the microcode the resulting
618 *    behaviour is undefined. The default play_dead() implementation on
619 *    modern CPUs uses MWAIT, which is also not guaranteed to be safe
620 *    against a microcode update which affects MWAIT.
621 *
622 *    As soft-offlined CPUs still react on NMIs, the SMT sibling
623 *    restriction can be lifted when the vendor driver signals to use NMI
624 *    for rendezvous and the APIC provides a mechanism to send an NMI to a
625 *    soft-offlined CPU. The soft-offlined CPUs are then able to
626 *    participate in the rendezvous in a trivial stub handler.
627 *
628 * 2) Initialize the per CPU control structure and create a cpumask
629 *    which contains "offline"; secondary threads, so they can be handled
630 *    correctly by a control CPU.
631 */
632static bool setup_cpus(void)
633{
634	struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, };
635	bool allow_smt_offline;
636	unsigned int cpu;
637
638	allow_smt_offline = microcode_ops->nmi_safe ||
639		(microcode_ops->use_nmi && apic->nmi_to_offline_cpu);
640
641	cpumask_clear(&cpu_offline_mask);
 
 
642
643	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
644		/*
645		 * Offline CPUs sit in one of the play_dead() functions
646		 * with interrupts disabled, but they still react on NMIs
647		 * and execute arbitrary code. Also MWAIT being updated
648		 * while the offline CPU sits there is not necessarily safe
649		 * on all CPU variants.
650		 *
651		 * Mark them in the offline_cpus mask which will be handled
652		 * by CPU0 later in the update process.
653		 *
654		 * Ensure that the primary thread is online so that it is
655		 * guaranteed that all cores are updated.
656		 */
657		if (!cpu_online(cpu)) {
658			if (topology_is_primary_thread(cpu) || !allow_smt_offline) {
659				pr_err("CPU %u not online, loading aborted\n", cpu);
660				return false;
661			}
662			cpumask_set_cpu(cpu, &cpu_offline_mask);
663			per_cpu(ucode_ctrl, cpu) = ctrl;
664			continue;
665		}
666
667		/*
668		 * Initialize the per CPU state. This is core scope for now,
669		 * but prepared to take package or system scope into account.
670		 */
671		ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu));
672		per_cpu(ucode_ctrl, cpu) = ctrl;
673	}
674	return true;
675}
676
677static int load_late_locked(void)
678{
679	if (!setup_cpus())
680		return -EBUSY;
681
682	switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
683	case UCODE_NEW:
684		return load_late_stop_cpus(false);
685	case UCODE_NEW_SAFE:
686		return load_late_stop_cpus(true);
687	case UCODE_NFOUND:
688		return -ENOENT;
689	default:
690		return -EBADFD;
691	}
692}
693
694static ssize_t reload_store(struct device *dev,
695			    struct device_attribute *attr,
696			    const char *buf, size_t size)
697{
 
 
698	unsigned long val;
699	ssize_t ret;
700
701	ret = kstrtoul(buf, 0, &val);
702	if (ret || val != 1)
703		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704
705	cpus_read_lock();
706	ret = load_late_locked();
707	cpus_read_unlock();
708
709	return ret ? : size;
710}
711
712static DEVICE_ATTR_WO(reload);
713#endif
714
715static ssize_t version_show(struct device *dev,
716			struct device_attribute *attr, char *buf)
717{
718	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
719
720	return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
721}
722
723static ssize_t processor_flags_show(struct device *dev,
724			struct device_attribute *attr, char *buf)
725{
726	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
727
728	return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
729}
730
731static DEVICE_ATTR_RO(version);
732static DEVICE_ATTR_RO(processor_flags);
 
733
734static struct attribute *mc_default_attrs[] = {
735	&dev_attr_version.attr,
736	&dev_attr_processor_flags.attr,
737	NULL
738};
739
740static const struct attribute_group mc_attr_group = {
741	.attrs			= mc_default_attrs,
742	.name			= "microcode",
743};
744
745static void microcode_fini_cpu(int cpu)
746{
747	if (microcode_ops->microcode_fini_cpu)
748		microcode_ops->microcode_fini_cpu(cpu);
749}
750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751/**
752 * microcode_bsp_resume - Update boot CPU microcode during resume.
753 */
754void microcode_bsp_resume(void)
755{
756	int cpu = smp_processor_id();
757	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
758
759	if (uci->mc)
760		microcode_ops->apply_microcode(cpu);
761	else
762		reload_early_microcode(cpu);
763}
764
765static struct syscore_ops mc_syscore_ops = {
766	.resume	= microcode_bsp_resume,
767};
768
 
 
 
 
 
 
 
769static int mc_cpu_online(unsigned int cpu)
770{
771	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
772	struct device *dev = get_cpu_device(cpu);
773
774	memset(uci, 0, sizeof(*uci));
775
776	microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
777	cpu_data(cpu).microcode = uci->cpu_sig.rev;
778	if (!cpu)
779		boot_cpu_data.microcode = uci->cpu_sig.rev;
780
781	if (sysfs_create_group(&dev->kobj, &mc_attr_group))
782		pr_err("Failed to create group for CPU%d\n", cpu);
783	return 0;
784}
785
786static int mc_cpu_down_prep(unsigned int cpu)
787{
788	struct device *dev = get_cpu_device(cpu);
789
790	microcode_fini_cpu(cpu);
 
791	sysfs_remove_group(&dev->kobj, &mc_attr_group);
 
 
792	return 0;
793}
794
795static struct attribute *cpu_root_microcode_attrs[] = {
796#ifdef CONFIG_MICROCODE_LATE_LOADING
797	&dev_attr_reload.attr,
798#endif
799	NULL
800};
801
802static const struct attribute_group cpu_root_microcode_group = {
803	.name  = "microcode",
804	.attrs = cpu_root_microcode_attrs,
805};
806
807static int __init microcode_init(void)
808{
809	struct device *dev_root;
810	struct cpuinfo_x86 *c = &boot_cpu_data;
811	int error;
812
813	if (dis_ucode_ldr)
814		return -EINVAL;
815
816	if (c->x86_vendor == X86_VENDOR_INTEL)
817		microcode_ops = init_intel_microcode();
818	else if (c->x86_vendor == X86_VENDOR_AMD)
819		microcode_ops = init_amd_microcode();
820	else
821		pr_err("no support for this CPU vendor\n");
822
823	if (!microcode_ops)
824		return -ENODEV;
825
826	pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev));
 
 
 
 
 
 
 
 
 
 
 
 
827
828	if (early_data.new_rev)
829		pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev);
830
831	microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
832	if (IS_ERR(microcode_pdev))
833		return PTR_ERR(microcode_pdev);
834
835	dev_root = bus_get_dev_root(&cpu_subsys);
836	if (dev_root) {
837		error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
838		put_device(dev_root);
839		if (error) {
840			pr_err("Error creating microcode group!\n");
841			goto out_pdev;
842		}
843	}
844
 
 
 
 
845	register_syscore_ops(&mc_syscore_ops);
846	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
847			  mc_cpu_online, mc_cpu_down_prep);
 
 
 
 
848
849	return 0;
850
 
 
 
 
 
 
 
 
 
 
 
 
 
851 out_pdev:
852	platform_device_unregister(microcode_pdev);
853	return error;
854
855}
 
856late_initcall(microcode_init);