Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *    Copyright IBM Corp. 2006
  4 *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  5 */
  6
 
  7#include <linux/memblock.h>
  8#include <linux/pfn.h>
  9#include <linux/mm.h>
 10#include <linux/init.h>
 11#include <linux/list.h>
 12#include <linux/hugetlb.h>
 13#include <linux/slab.h>
 
 
 
 14#include <asm/cacheflush.h>
 
 
 
 15#include <asm/pgalloc.h>
 16#include <asm/pgtable.h>
 17#include <asm/setup.h>
 18#include <asm/tlbflush.h>
 19#include <asm/sections.h>
 20#include <asm/set_memory.h>
 
 21
 22static DEFINE_MUTEX(vmem_mutex);
 23
 24struct memory_segment {
 25	struct list_head list;
 26	unsigned long start;
 27	unsigned long size;
 28};
 29
 30static LIST_HEAD(mem_segs);
 31
 32static void __ref *vmem_alloc_pages(unsigned int order)
 33{
 34	unsigned long size = PAGE_SIZE << order;
 35
 36	if (slab_is_available())
 37		return (void *)__get_free_pages(GFP_KERNEL, order);
 38	return (void *) memblock_phys_alloc(size, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 39}
 40
 41void *vmem_crst_alloc(unsigned long val)
 42{
 43	unsigned long *table;
 44
 45	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
 46	if (table)
 47		crst_table_init(table, val);
 
 
 48	return table;
 49}
 50
 51pte_t __ref *vmem_pte_alloc(void)
 52{
 53	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
 54	pte_t *pte;
 55
 56	if (slab_is_available())
 57		pte = (pte_t *) page_table_alloc(&init_mm);
 58	else
 59		pte = (pte_t *) memblock_phys_alloc(size, size);
 60	if (!pte)
 61		return NULL;
 62	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
 
 63	return pte;
 64}
 65
 
 
 
 
 
 
 
 
 
 
 
 66/*
 67 * Add a physical memory range to the 1:1 mapping.
 
 68 */
 69static int vmem_add_mem(unsigned long start, unsigned long size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 70{
 71	unsigned long pgt_prot, sgt_prot, r3_prot;
 72	unsigned long pages4k, pages1m, pages2g;
 73	unsigned long end = start + size;
 74	unsigned long address = start;
 75	pgd_t *pg_dir;
 76	p4d_t *p4_dir;
 77	pud_t *pu_dir;
 78	pmd_t *pm_dir;
 79	pte_t *pt_dir;
 80	int ret = -ENOMEM;
 
 81
 82	pgt_prot = pgprot_val(PAGE_KERNEL);
 83	sgt_prot = pgprot_val(SEGMENT_KERNEL);
 84	r3_prot = pgprot_val(REGION3_KERNEL);
 85	if (!MACHINE_HAS_NX) {
 86		pgt_prot &= ~_PAGE_NOEXEC;
 87		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
 88		r3_prot &= ~_REGION_ENTRY_NOEXEC;
 89	}
 90	pages4k = pages1m = pages2g = 0;
 91	while (address < end) {
 92		pg_dir = pgd_offset_k(address);
 93		if (pgd_none(*pg_dir)) {
 94			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
 95			if (!p4_dir)
 96				goto out;
 97			pgd_populate(&init_mm, pg_dir, p4_dir);
 98		}
 99		p4_dir = p4d_offset(pg_dir, address);
100		if (p4d_none(*p4_dir)) {
101			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
102			if (!pu_dir)
103				goto out;
104			p4d_populate(&init_mm, p4_dir, pu_dir);
105		}
106		pu_dir = pud_offset(p4_dir, address);
107		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
108		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
109		     !debug_pagealloc_enabled()) {
110			pud_val(*pu_dir) = address | r3_prot;
111			address += PUD_SIZE;
112			pages2g++;
113			continue;
114		}
115		if (pud_none(*pu_dir)) {
116			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
117			if (!pm_dir)
118				goto out;
119			pud_populate(&init_mm, pu_dir, pm_dir);
120		}
121		pm_dir = pmd_offset(pu_dir, address);
122		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
123		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
124		    !debug_pagealloc_enabled()) {
125			pmd_val(*pm_dir) = address | sgt_prot;
126			address += PMD_SIZE;
127			pages1m++;
128			continue;
129		}
130		if (pmd_none(*pm_dir)) {
131			pt_dir = vmem_pte_alloc();
132			if (!pt_dir)
133				goto out;
134			pmd_populate(&init_mm, pm_dir, pt_dir);
135		}
136
137		pt_dir = pte_offset_kernel(pm_dir, address);
138		pte_val(*pt_dir) = address | pgt_prot;
139		address += PAGE_SIZE;
140		pages4k++;
141	}
142	ret = 0;
143out:
144	update_page_count(PG_DIRECT_MAP_4K, pages4k);
145	update_page_count(PG_DIRECT_MAP_1M, pages1m);
146	update_page_count(PG_DIRECT_MAP_2G, pages2g);
147	return ret;
148}
149
150/*
151 * Remove a physical memory range from the 1:1 mapping.
152 * Currently only invalidates page table entries.
153 */
154static void vmem_remove_range(unsigned long start, unsigned long size)
155{
156	unsigned long pages4k, pages1m, pages2g;
157	unsigned long end = start + size;
158	unsigned long address = start;
159	pgd_t *pg_dir;
160	p4d_t *p4_dir;
161	pud_t *pu_dir;
162	pmd_t *pm_dir;
163	pte_t *pt_dir;
164
165	pages4k = pages1m = pages2g = 0;
166	while (address < end) {
167		pg_dir = pgd_offset_k(address);
168		if (pgd_none(*pg_dir)) {
169			address += PGDIR_SIZE;
170			continue;
171		}
172		p4_dir = p4d_offset(pg_dir, address);
173		if (p4d_none(*p4_dir)) {
174			address += P4D_SIZE;
175			continue;
176		}
177		pu_dir = pud_offset(p4_dir, address);
178		if (pud_none(*pu_dir)) {
179			address += PUD_SIZE;
180			continue;
181		}
182		if (pud_large(*pu_dir)) {
183			pud_clear(pu_dir);
184			address += PUD_SIZE;
185			pages2g++;
186			continue;
187		}
188		pm_dir = pmd_offset(pu_dir, address);
189		if (pmd_none(*pm_dir)) {
190			address += PMD_SIZE;
191			continue;
192		}
193		if (pmd_large(*pm_dir)) {
194			pmd_clear(pm_dir);
195			address += PMD_SIZE;
196			pages1m++;
197			continue;
198		}
199		pt_dir = pte_offset_kernel(pm_dir, address);
200		pte_clear(&init_mm, address, pt_dir);
201		address += PAGE_SIZE;
202		pages4k++;
203	}
204	flush_tlb_kernel_range(start, end);
205	update_page_count(PG_DIRECT_MAP_4K, -pages4k);
206	update_page_count(PG_DIRECT_MAP_1M, -pages1m);
207	update_page_count(PG_DIRECT_MAP_2G, -pages2g);
208}
209
210/*
211 * Add a backed mem_map array to the virtual mem_map array.
212 */
213int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
214		struct vmem_altmap *altmap)
215{
216	unsigned long pgt_prot, sgt_prot;
217	unsigned long address = start;
218	pgd_t *pg_dir;
219	p4d_t *p4_dir;
220	pud_t *pu_dir;
221	pmd_t *pm_dir;
222	pte_t *pt_dir;
223	int ret = -ENOMEM;
 
 
224
225	pgt_prot = pgprot_val(PAGE_KERNEL);
226	sgt_prot = pgprot_val(SEGMENT_KERNEL);
227	if (!MACHINE_HAS_NX) {
228		pgt_prot &= ~_PAGE_NOEXEC;
229		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
230	}
231	for (address = start; address < end;) {
232		pg_dir = pgd_offset_k(address);
233		if (pgd_none(*pg_dir)) {
234			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
235			if (!p4_dir)
236				goto out;
237			pgd_populate(&init_mm, pg_dir, p4_dir);
238		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239
240		p4_dir = p4d_offset(pg_dir, address);
241		if (p4d_none(*p4_dir)) {
242			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
243			if (!pu_dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244				goto out;
245			p4d_populate(&init_mm, p4_dir, pu_dir);
 
 
 
 
246		}
 
 
 
 
 
 
 
 
 
 
 
 
247
248		pu_dir = pud_offset(p4_dir, address);
249		if (pud_none(*pu_dir)) {
250			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
251			if (!pm_dir)
252				goto out;
253			pud_populate(&init_mm, pu_dir, pm_dir);
254		}
255
256		pm_dir = pmd_offset(pu_dir, address);
257		if (pmd_none(*pm_dir)) {
258			/* Use 1MB frames for vmemmap if available. We always
259			 * use large frames even if they are only partially
260			 * used.
261			 * Otherwise we would have also page tables since
262			 * vmemmap_populate gets called for each section
263			 * separately. */
264			if (MACHINE_HAS_EDAT1) {
265				void *new_page;
266
267				new_page = vmemmap_alloc_block(PMD_SIZE, node);
268				if (!new_page)
269					goto out;
270				pmd_val(*pm_dir) = __pa(new_page) | sgt_prot;
271				address = (address + PMD_SIZE) & PMD_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272				continue;
273			}
274			pt_dir = vmem_pte_alloc();
275			if (!pt_dir)
276				goto out;
277			pmd_populate(&init_mm, pm_dir, pt_dir);
278		} else if (pmd_large(*pm_dir)) {
279			address = (address + PMD_SIZE) & PMD_MASK;
280			continue;
281		}
 
 
 
 
 
 
 
 
 
 
 
 
282
283		pt_dir = pte_offset_kernel(pm_dir, address);
284		if (pte_none(*pt_dir)) {
285			void *new_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286
287			new_page = vmemmap_alloc_block(PAGE_SIZE, node);
288			if (!new_page)
 
 
 
 
 
 
 
289				goto out;
290			pte_val(*pt_dir) = __pa(new_page) | pgt_prot;
291		}
292		address += PAGE_SIZE;
 
 
 
 
293	}
294	ret = 0;
295out:
296	return ret;
297}
298
299void vmemmap_free(unsigned long start, unsigned long end,
300		struct vmem_altmap *altmap)
301{
 
 
 
 
 
 
 
 
 
 
302}
303
304/*
305 * Add memory segment to the segment list if it doesn't overlap with
306 * an already present segment.
307 */
308static int insert_memory_segment(struct memory_segment *seg)
309{
310	struct memory_segment *tmp;
 
 
 
311
312	if (seg->start + seg->size > VMEM_MAX_PHYS ||
313	    seg->start + seg->size < seg->start)
314		return -ERANGE;
 
 
 
 
 
315
316	list_for_each_entry(tmp, &mem_segs, list) {
317		if (seg->start >= tmp->start + tmp->size)
318			continue;
319		if (seg->start + seg->size <= tmp->start)
320			continue;
321		return -ENOSPC;
 
 
 
 
 
 
 
 
322	}
323	list_add(&seg->list, &mem_segs);
324	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325}
326
327/*
328 * Remove memory segment from the segment list.
329 */
330static void remove_memory_segment(struct memory_segment *seg)
331{
332	list_del(&seg->list);
 
333}
334
335static void __remove_shared_memory(struct memory_segment *seg)
 
 
 
336{
337	remove_memory_segment(seg);
338	vmem_remove_range(seg->start, seg->size);
339}
340
341int vmem_remove_mapping(unsigned long start, unsigned long size)
 
 
 
 
342{
343	struct memory_segment *seg;
344	int ret;
345
346	mutex_lock(&vmem_mutex);
 
 
 
 
 
 
 
347
348	ret = -ENOENT;
349	list_for_each_entry(seg, &mem_segs, list) {
350		if (seg->start == start && seg->size == size)
351			break;
352	}
353
354	if (seg->start != start || seg->size != size)
355		goto out;
 
 
 
 
 
356
357	ret = 0;
358	__remove_shared_memory(seg);
359	kfree(seg);
360out:
 
 
361	mutex_unlock(&vmem_mutex);
362	return ret;
 
 
 
 
 
 
 
 
363}
364
365int vmem_add_mapping(unsigned long start, unsigned long size)
366{
367	struct memory_segment *seg;
368	int ret;
369
370	mutex_lock(&vmem_mutex);
371	ret = -ENOMEM;
372	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
373	if (!seg)
374		goto out;
375	seg->start = start;
376	seg->size = size;
377
378	ret = insert_memory_segment(seg);
379	if (ret)
380		goto out_free;
381
382	ret = vmem_add_mem(start, size);
 
383	if (ret)
384		goto out_remove;
385	goto out;
386
387out_remove:
388	__remove_shared_memory(seg);
389out_free:
390	kfree(seg);
391out:
392	mutex_unlock(&vmem_mutex);
393	return ret;
394}
395
396/*
397 * map whole physical memory to virtual memory (identity mapping)
398 * we reserve enough space in the vmalloc area for vmemmap to hotplug
399 * additional memory segments.
 
 
400 */
401void __init vmem_map_init(void)
402{
403	struct memblock_region *reg;
 
 
 
 
 
404
405	for_each_memblock(memory, reg)
406		vmem_add_mem(reg->base, reg->size);
407	__set_memory((unsigned long)_stext,
408		     (unsigned long)(_etext - _stext) >> PAGE_SHIFT,
409		     SET_MEMORY_RO | SET_MEMORY_X);
410	__set_memory((unsigned long)_etext,
411		     (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT,
412		     SET_MEMORY_RO);
413	__set_memory((unsigned long)_sinittext,
414		     (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT,
415		     SET_MEMORY_RO | SET_MEMORY_X);
416	__set_memory(__stext_dma, (__etext_dma - __stext_dma) >> PAGE_SHIFT,
417		     SET_MEMORY_RO | SET_MEMORY_X);
418	pr_info("Write protected kernel read-only data: %luk\n",
419		(unsigned long)(__end_rodata - _stext) >> 10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420}
421
422/*
423 * Convert memblock.memory  to a memory segment list so there is a single
424 * list that contains all memory segments.
425 */
426static int __init vmem_convert_memory_chunk(void)
427{
428	struct memblock_region *reg;
429	struct memory_segment *seg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430
431	mutex_lock(&vmem_mutex);
432	for_each_memblock(memory, reg) {
433		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
434		if (!seg)
435			panic("Out of memory...\n");
436		seg->start = reg->base;
437		seg->size = reg->size;
438		insert_memory_segment(seg);
439	}
 
 
 
 
 
440	mutex_unlock(&vmem_mutex);
441	return 0;
442}
443
444core_initcall(vmem_convert_memory_chunk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *    Copyright IBM Corp. 2006
 
  4 */
  5
  6#include <linux/memory_hotplug.h>
  7#include <linux/memblock.h>
  8#include <linux/pfn.h>
  9#include <linux/mm.h>
 10#include <linux/init.h>
 11#include <linux/list.h>
 12#include <linux/hugetlb.h>
 13#include <linux/slab.h>
 14#include <linux/sort.h>
 15#include <asm/page-states.h>
 16#include <asm/abs_lowcore.h>
 17#include <asm/cacheflush.h>
 18#include <asm/maccess.h>
 19#include <asm/nospec-branch.h>
 20#include <asm/ctlreg.h>
 21#include <asm/pgalloc.h>
 
 22#include <asm/setup.h>
 23#include <asm/tlbflush.h>
 24#include <asm/sections.h>
 25#include <asm/set_memory.h>
 26#include <asm/physmem_info.h>
 27
 28static DEFINE_MUTEX(vmem_mutex);
 29
 
 
 
 
 
 
 
 
 30static void __ref *vmem_alloc_pages(unsigned int order)
 31{
 32	unsigned long size = PAGE_SIZE << order;
 33
 34	if (slab_is_available())
 35		return (void *)__get_free_pages(GFP_KERNEL, order);
 36	return memblock_alloc(size, size);
 37}
 38
 39static void vmem_free_pages(unsigned long addr, int order, struct vmem_altmap *altmap)
 40{
 41	if (altmap) {
 42		vmem_altmap_free(altmap, 1 << order);
 43		return;
 44	}
 45	/* We don't expect boot memory to be removed ever. */
 46	if (!slab_is_available() ||
 47	    WARN_ON_ONCE(PageReserved(virt_to_page((void *)addr))))
 48		return;
 49	free_pages(addr, order);
 50}
 51
 52void *vmem_crst_alloc(unsigned long val)
 53{
 54	unsigned long *table;
 55
 56	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
 57	if (!table)
 58		return NULL;
 59	crst_table_init(table, val);
 60	__arch_set_page_dat(table, 1UL << CRST_ALLOC_ORDER);
 61	return table;
 62}
 63
 64pte_t __ref *vmem_pte_alloc(void)
 65{
 66	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
 67	pte_t *pte;
 68
 69	if (slab_is_available())
 70		pte = (pte_t *) page_table_alloc(&init_mm);
 71	else
 72		pte = (pte_t *) memblock_alloc(size, size);
 73	if (!pte)
 74		return NULL;
 75	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
 76	__arch_set_page_dat(pte, 1);
 77	return pte;
 78}
 79
 80static void vmem_pte_free(unsigned long *table)
 81{
 82	/* We don't expect boot memory to be removed ever. */
 83	if (!slab_is_available() ||
 84	    WARN_ON_ONCE(PageReserved(virt_to_page(table))))
 85		return;
 86	page_table_free(&init_mm, table);
 87}
 88
 89#define PAGE_UNUSED 0xFD
 90
 91/*
 92 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED) ranges
 93 * from unused_sub_pmd_start to next PMD_SIZE boundary.
 94 */
 95static unsigned long unused_sub_pmd_start;
 96
 97static void vmemmap_flush_unused_sub_pmd(void)
 98{
 99	if (!unused_sub_pmd_start)
100		return;
101	memset((void *)unused_sub_pmd_start, PAGE_UNUSED,
102	       ALIGN(unused_sub_pmd_start, PMD_SIZE) - unused_sub_pmd_start);
103	unused_sub_pmd_start = 0;
104}
105
106static void vmemmap_mark_sub_pmd_used(unsigned long start, unsigned long end)
107{
108	/*
109	 * As we expect to add in the same granularity as we remove, it's
110	 * sufficient to mark only some piece used to block the memmap page from
111	 * getting removed (just in case the memmap never gets initialized,
112	 * e.g., because the memory block never gets onlined).
113	 */
114	memset((void *)start, 0, sizeof(struct page));
115}
116
117static void vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
118{
119	/*
120	 * We only optimize if the new used range directly follows the
121	 * previously unused range (esp., when populating consecutive sections).
122	 */
123	if (unused_sub_pmd_start == start) {
124		unused_sub_pmd_start = end;
125		if (likely(IS_ALIGNED(unused_sub_pmd_start, PMD_SIZE)))
126			unused_sub_pmd_start = 0;
127		return;
128	}
129	vmemmap_flush_unused_sub_pmd();
130	vmemmap_mark_sub_pmd_used(start, end);
131}
132
133static void vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
134{
135	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
136
137	vmemmap_flush_unused_sub_pmd();
138
139	/* Could be our memmap page is filled with PAGE_UNUSED already ... */
140	vmemmap_mark_sub_pmd_used(start, end);
141
142	/* Mark the unused parts of the new memmap page PAGE_UNUSED. */
143	if (!IS_ALIGNED(start, PMD_SIZE))
144		memset((void *)page, PAGE_UNUSED, start - page);
145	/*
146	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
147	 * consecutive sections. Remember for the last added PMD the last
148	 * unused range in the populated PMD.
149	 */
150	if (!IS_ALIGNED(end, PMD_SIZE))
151		unused_sub_pmd_start = end;
152}
153
154/* Returns true if the PMD is completely unused and can be freed. */
155static bool vmemmap_unuse_sub_pmd(unsigned long start, unsigned long end)
156{
157	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
158
159	vmemmap_flush_unused_sub_pmd();
160	memset((void *)start, PAGE_UNUSED, end - start);
161	return !memchr_inv((void *)page, PAGE_UNUSED, PMD_SIZE);
162}
163
164/* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
165static int __ref modify_pte_table(pmd_t *pmd, unsigned long addr,
166				  unsigned long end, bool add, bool direct,
167				  struct vmem_altmap *altmap)
168{
169	unsigned long prot, pages = 0;
 
 
 
 
 
 
 
 
170	int ret = -ENOMEM;
171	pte_t *pte;
172
173	prot = pgprot_val(PAGE_KERNEL);
174	if (!MACHINE_HAS_NX)
175		prot &= ~_PAGE_NOEXEC;
176
177	pte = pte_offset_kernel(pmd, addr);
178	for (; addr < end; addr += PAGE_SIZE, pte++) {
179		if (!add) {
180			if (pte_none(*pte))
181				continue;
182			if (!direct)
183				vmem_free_pages((unsigned long)pfn_to_virt(pte_pfn(*pte)), get_order(PAGE_SIZE), altmap);
184			pte_clear(&init_mm, addr, pte);
185		} else if (pte_none(*pte)) {
186			if (!direct) {
187				void *new_page = vmemmap_alloc_block_buf(PAGE_SIZE, NUMA_NO_NODE, altmap);
188
189				if (!new_page)
190					goto out;
191				set_pte(pte, __pte(__pa(new_page) | prot));
192			} else {
193				set_pte(pte, __pte(__pa(addr) | prot));
194			}
195		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196			continue;
197		}
198		pages++;
 
 
 
 
 
 
 
 
 
 
199	}
200	ret = 0;
201out:
202	if (direct)
203		update_page_count(PG_DIRECT_MAP_4K, add ? pages : -pages);
 
204	return ret;
205}
206
207static void try_free_pte_table(pmd_t *pmd, unsigned long start)
 
 
 
 
208{
209	pte_t *pte;
210	int i;
211
212	/* We can safely assume this is fully in 1:1 mapping & vmemmap area */
213	pte = pte_offset_kernel(pmd, start);
214	for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
215		if (!pte_none(*pte))
216			return;
217	}
218	vmem_pte_free((unsigned long *) pmd_deref(*pmd));
219	pmd_clear(pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220}
221
222/* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
223static int __ref modify_pmd_table(pud_t *pud, unsigned long addr,
224				  unsigned long end, bool add, bool direct,
225				  struct vmem_altmap *altmap)
 
226{
227	unsigned long next, prot, pages = 0;
 
 
 
 
 
 
228	int ret = -ENOMEM;
229	pmd_t *pmd;
230	pte_t *pte;
231
232	prot = pgprot_val(SEGMENT_KERNEL);
233	if (!MACHINE_HAS_NX)
234		prot &= ~_SEGMENT_ENTRY_NOEXEC;
235
236	pmd = pmd_offset(pud, addr);
237	for (; addr < end; addr = next, pmd++) {
238		next = pmd_addr_end(addr, end);
239		if (!add) {
240			if (pmd_none(*pmd))
241				continue;
242			if (pmd_leaf(*pmd)) {
243				if (IS_ALIGNED(addr, PMD_SIZE) &&
244				    IS_ALIGNED(next, PMD_SIZE)) {
245					if (!direct)
246						vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE), altmap);
247					pmd_clear(pmd);
248					pages++;
249				} else if (!direct && vmemmap_unuse_sub_pmd(addr, next)) {
250					vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE), altmap);
251					pmd_clear(pmd);
252				}
253				continue;
254			}
255		} else if (pmd_none(*pmd)) {
256			if (IS_ALIGNED(addr, PMD_SIZE) &&
257			    IS_ALIGNED(next, PMD_SIZE) &&
258			    MACHINE_HAS_EDAT1 && direct &&
259			    !debug_pagealloc_enabled()) {
260				set_pmd(pmd, __pmd(__pa(addr) | prot));
261				pages++;
262				continue;
263			} else if (!direct && MACHINE_HAS_EDAT1) {
264				void *new_page;
265
266				/*
267				 * Use 1MB frames for vmemmap if available. We
268				 * always use large frames even if they are only
269				 * partially used. Otherwise we would have also
270				 * page tables since vmemmap_populate gets
271				 * called for each section separately.
272				 */
273				new_page = vmemmap_alloc_block_buf(PMD_SIZE, NUMA_NO_NODE, altmap);
274				if (new_page) {
275					set_pmd(pmd, __pmd(__pa(new_page) | prot));
276					if (!IS_ALIGNED(addr, PMD_SIZE) ||
277					    !IS_ALIGNED(next, PMD_SIZE)) {
278						vmemmap_use_new_sub_pmd(addr, next);
279					}
280					continue;
281				}
282			}
283			pte = vmem_pte_alloc();
284			if (!pte)
285				goto out;
286			pmd_populate(&init_mm, pmd, pte);
287		} else if (pmd_leaf(*pmd)) {
288			if (!direct)
289				vmemmap_use_sub_pmd(addr, next);
290			continue;
291		}
292		ret = modify_pte_table(pmd, addr, next, add, direct, altmap);
293		if (ret)
294			goto out;
295		if (!add)
296			try_free_pte_table(pmd, addr & PMD_MASK);
297	}
298	ret = 0;
299out:
300	if (direct)
301		update_page_count(PG_DIRECT_MAP_1M, add ? pages : -pages);
302	return ret;
303}
304
305static void try_free_pmd_table(pud_t *pud, unsigned long start)
306{
307	pmd_t *pmd;
308	int i;
 
 
 
309
310	pmd = pmd_offset(pud, start);
311	for (i = 0; i < PTRS_PER_PMD; i++, pmd++)
312		if (!pmd_none(*pmd))
313			return;
314	vmem_free_pages(pud_deref(*pud), CRST_ALLOC_ORDER, NULL);
315	pud_clear(pud);
316}
 
 
 
317
318static int modify_pud_table(p4d_t *p4d, unsigned long addr, unsigned long end,
319			    bool add, bool direct, struct vmem_altmap *altmap)
320{
321	unsigned long next, prot, pages = 0;
322	int ret = -ENOMEM;
323	pud_t *pud;
324	pmd_t *pmd;
325
326	prot = pgprot_val(REGION3_KERNEL);
327	if (!MACHINE_HAS_NX)
328		prot &= ~_REGION_ENTRY_NOEXEC;
329	pud = pud_offset(p4d, addr);
330	for (; addr < end; addr = next, pud++) {
331		next = pud_addr_end(addr, end);
332		if (!add) {
333			if (pud_none(*pud))
334				continue;
335			if (pud_leaf(*pud)) {
336				if (IS_ALIGNED(addr, PUD_SIZE) &&
337				    IS_ALIGNED(next, PUD_SIZE)) {
338					pud_clear(pud);
339					pages++;
340				}
341				continue;
342			}
343		} else if (pud_none(*pud)) {
344			if (IS_ALIGNED(addr, PUD_SIZE) &&
345			    IS_ALIGNED(next, PUD_SIZE) &&
346			    MACHINE_HAS_EDAT2 && direct &&
347			    !debug_pagealloc_enabled()) {
348				set_pud(pud, __pud(__pa(addr) | prot));
349				pages++;
350				continue;
351			}
352			pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
353			if (!pmd)
354				goto out;
355			pud_populate(&init_mm, pud, pmd);
356		} else if (pud_leaf(*pud)) {
 
357			continue;
358		}
359		ret = modify_pmd_table(pud, addr, next, add, direct, altmap);
360		if (ret)
361			goto out;
362		if (!add)
363			try_free_pmd_table(pud, addr & PUD_MASK);
364	}
365	ret = 0;
366out:
367	if (direct)
368		update_page_count(PG_DIRECT_MAP_2G, add ? pages : -pages);
369	return ret;
370}
371
372static void try_free_pud_table(p4d_t *p4d, unsigned long start)
373{
374	pud_t *pud;
375	int i;
376
377	pud = pud_offset(p4d, start);
378	for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
379		if (!pud_none(*pud))
380			return;
381	}
382	vmem_free_pages(p4d_deref(*p4d), CRST_ALLOC_ORDER, NULL);
383	p4d_clear(p4d);
384}
385
386static int modify_p4d_table(pgd_t *pgd, unsigned long addr, unsigned long end,
387			    bool add, bool direct, struct vmem_altmap *altmap)
388{
389	unsigned long next;
390	int ret = -ENOMEM;
391	p4d_t *p4d;
392	pud_t *pud;
393
394	p4d = p4d_offset(pgd, addr);
395	for (; addr < end; addr = next, p4d++) {
396		next = p4d_addr_end(addr, end);
397		if (!add) {
398			if (p4d_none(*p4d))
399				continue;
400		} else if (p4d_none(*p4d)) {
401			pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
402			if (!pud)
403				goto out;
404			p4d_populate(&init_mm, p4d, pud);
405		}
406		ret = modify_pud_table(p4d, addr, next, add, direct, altmap);
407		if (ret)
408			goto out;
409		if (!add)
410			try_free_pud_table(p4d, addr & P4D_MASK);
411	}
412	ret = 0;
413out:
414	return ret;
415}
416
417static void try_free_p4d_table(pgd_t *pgd, unsigned long start)
 
418{
419	p4d_t *p4d;
420	int i;
421
422	p4d = p4d_offset(pgd, start);
423	for (i = 0; i < PTRS_PER_P4D; i++, p4d++) {
424		if (!p4d_none(*p4d))
425			return;
426	}
427	vmem_free_pages(pgd_deref(*pgd), CRST_ALLOC_ORDER, NULL);
428	pgd_clear(pgd);
429}
430
431static int modify_pagetable(unsigned long start, unsigned long end, bool add,
432			    bool direct, struct vmem_altmap *altmap)
 
 
 
433{
434	unsigned long addr, next;
435	int ret = -ENOMEM;
436	pgd_t *pgd;
437	p4d_t *p4d;
438
439	if (WARN_ON_ONCE(!PAGE_ALIGNED(start | end)))
440		return -EINVAL;
441	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
442	if (WARN_ON_ONCE(end > __abs_lowcore))
443		return -EINVAL;
444	for (addr = start; addr < end; addr = next) {
445		next = pgd_addr_end(addr, end);
446		pgd = pgd_offset_k(addr);
447
448		if (!add) {
449			if (pgd_none(*pgd))
450				continue;
451		} else if (pgd_none(*pgd)) {
452			p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
453			if (!p4d)
454				goto out;
455			pgd_populate(&init_mm, pgd, p4d);
456		}
457		ret = modify_p4d_table(pgd, addr, next, add, direct, altmap);
458		if (ret)
459			goto out;
460		if (!add)
461			try_free_p4d_table(pgd, addr & PGDIR_MASK);
462	}
463	ret = 0;
464out:
465	if (!add)
466		flush_tlb_kernel_range(start, end);
467	return ret;
468}
469
470static int add_pagetable(unsigned long start, unsigned long end, bool direct,
471			 struct vmem_altmap *altmap)
472{
473	return modify_pagetable(start, end, true, direct, altmap);
474}
475
476static int remove_pagetable(unsigned long start, unsigned long end, bool direct,
477			    struct vmem_altmap *altmap)
478{
479	return modify_pagetable(start, end, false, direct, altmap);
480}
481
482/*
483 * Add a physical memory range to the 1:1 mapping.
484 */
485static int vmem_add_range(unsigned long start, unsigned long size)
486{
487	start = (unsigned long)__va(start);
488	return add_pagetable(start, start + size, true, NULL);
489}
490
491/*
492 * Remove a physical memory range from the 1:1 mapping.
493 */
494static void vmem_remove_range(unsigned long start, unsigned long size)
495{
496	start = (unsigned long)__va(start);
497	remove_pagetable(start, start + size, true, NULL);
498}
499
500/*
501 * Add a backed mem_map array to the virtual mem_map array.
502 */
503int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
504			       struct vmem_altmap *altmap)
505{
 
506	int ret;
507
508	mutex_lock(&vmem_mutex);
509	/* We don't care about the node, just use NUMA_NO_NODE on allocations */
510	ret = add_pagetable(start, end, false, altmap);
511	if (ret)
512		remove_pagetable(start, end, false, altmap);
513	mutex_unlock(&vmem_mutex);
514	return ret;
515}
516
517#ifdef CONFIG_MEMORY_HOTPLUG
 
 
 
 
518
519void vmemmap_free(unsigned long start, unsigned long end,
520		  struct vmem_altmap *altmap)
521{
522	mutex_lock(&vmem_mutex);
523	remove_pagetable(start, end, false, altmap);
524	mutex_unlock(&vmem_mutex);
525}
526
527#endif
528
529void vmem_remove_mapping(unsigned long start, unsigned long size)
530{
531	mutex_lock(&vmem_mutex);
532	vmem_remove_range(start, size);
533	mutex_unlock(&vmem_mutex);
534}
535
536struct range arch_get_mappable_range(void)
537{
538	struct range mhp_range;
539
540	mhp_range.start = 0;
541	mhp_range.end = max_mappable - 1;
542	return mhp_range;
543}
544
545int vmem_add_mapping(unsigned long start, unsigned long size)
546{
547	struct range range = arch_get_mappable_range();
548	int ret;
549
550	if (start < range.start ||
551	    start + size > range.end + 1 ||
552	    start + size < start)
553		return -ERANGE;
 
 
 
 
 
 
 
554
555	mutex_lock(&vmem_mutex);
556	ret = vmem_add_range(start, size);
557	if (ret)
558		vmem_remove_range(start, size);
 
 
 
 
 
 
 
559	mutex_unlock(&vmem_mutex);
560	return ret;
561}
562
563/*
564 * Allocate new or return existing page-table entry, but do not map it
565 * to any physical address. If missing, allocate segment- and region-
566 * table entries along. Meeting a large segment- or region-table entry
567 * while traversing is an error, since the function is expected to be
568 * called against virtual regions reserved for 4KB mappings only.
569 */
570pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc)
571{
572	pte_t *ptep = NULL;
573	pgd_t *pgd;
574	p4d_t *p4d;
575	pud_t *pud;
576	pmd_t *pmd;
577	pte_t *pte;
578
579	pgd = pgd_offset_k(addr);
580	if (pgd_none(*pgd)) {
581		if (!alloc)
582			goto out;
583		p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
584		if (!p4d)
585			goto out;
586		pgd_populate(&init_mm, pgd, p4d);
587	}
588	p4d = p4d_offset(pgd, addr);
589	if (p4d_none(*p4d)) {
590		if (!alloc)
591			goto out;
592		pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
593		if (!pud)
594			goto out;
595		p4d_populate(&init_mm, p4d, pud);
596	}
597	pud = pud_offset(p4d, addr);
598	if (pud_none(*pud)) {
599		if (!alloc)
600			goto out;
601		pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
602		if (!pmd)
603			goto out;
604		pud_populate(&init_mm, pud, pmd);
605	} else if (WARN_ON_ONCE(pud_leaf(*pud))) {
606		goto out;
607	}
608	pmd = pmd_offset(pud, addr);
609	if (pmd_none(*pmd)) {
610		if (!alloc)
611			goto out;
612		pte = vmem_pte_alloc();
613		if (!pte)
614			goto out;
615		pmd_populate(&init_mm, pmd, pte);
616	} else if (WARN_ON_ONCE(pmd_leaf(*pmd))) {
617		goto out;
618	}
619	ptep = pte_offset_kernel(pmd, addr);
620out:
621	return ptep;
622}
623
624int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc)
 
 
 
 
625{
626	pte_t *ptep, pte;
627
628	if (!IS_ALIGNED(addr, PAGE_SIZE))
629		return -EINVAL;
630	ptep = vmem_get_alloc_pte(addr, alloc);
631	if (!ptep)
632		return -ENOMEM;
633	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
634	pte = mk_pte_phys(phys, prot);
635	set_pte(ptep, pte);
636	return 0;
637}
638
639int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot)
640{
641	int rc;
642
643	mutex_lock(&vmem_mutex);
644	rc = __vmem_map_4k_page(addr, phys, prot, true);
645	mutex_unlock(&vmem_mutex);
646	return rc;
647}
648
649void vmem_unmap_4k_page(unsigned long addr)
650{
651	pte_t *ptep;
652
653	mutex_lock(&vmem_mutex);
654	ptep = virt_to_kpte(addr);
655	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
656	pte_clear(&init_mm, addr, ptep);
657	mutex_unlock(&vmem_mutex);
 
658}
659
660void __init vmem_map_init(void)
661{
662	__set_memory_rox(_stext, _etext);
663	__set_memory_ro(_etext, __end_rodata);
664	__set_memory_rox(__stext_amode31, __etext_amode31);
665	/*
666	 * If the BEAR-enhancement facility is not installed the first
667	 * prefix page is used to return to the previous context with
668	 * an LPSWE instruction and therefore must be executable.
669	 */
670	if (!static_key_enabled(&cpu_has_bear))
671		set_memory_x(0, 1);
672	if (debug_pagealloc_enabled())
673		__set_memory_4k(__va(0), __va(0) + ident_map_size);
674	pr_info("Write protected kernel read-only data: %luk\n",
675		(unsigned long)(__end_rodata - _stext) >> 10);
676}