Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2 * Handle unaligned accesses by emulation.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Copyright (C) 2014 Imagination Technologies Ltd.
  11 *
  12 * This file contains exception handler for address error exception with the
  13 * special capability to execute faulting instructions in software.  The
  14 * handler does not try to handle the case when the program counter points
  15 * to an address not aligned to a word boundary.
  16 *
  17 * Putting data to unaligned addresses is a bad practice even on Intel where
  18 * only the performance is affected.  Much worse is that such code is non-
  19 * portable.  Due to several programs that die on MIPS due to alignment
  20 * problems I decided to implement this handler anyway though I originally
  21 * didn't intend to do this at all for user code.
  22 *
  23 * For now I enable fixing of address errors by default to make life easier.
  24 * I however intend to disable this somewhen in the future when the alignment
  25 * problems with user programs have been fixed.	 For programmers this is the
  26 * right way to go.
  27 *
  28 * Fixing address errors is a per process option.  The option is inherited
  29 * across fork(2) and execve(2) calls.	If you really want to use the
  30 * option in your user programs - I discourage the use of the software
  31 * emulation strongly - use the following code in your userland stuff:
  32 *
  33 * #include <sys/sysmips.h>
  34 *
  35 * ...
  36 * sysmips(MIPS_FIXADE, x);
  37 * ...
  38 *
  39 * The argument x is 0 for disabling software emulation, enabled otherwise.
  40 *
  41 * Below a little program to play around with this feature.
  42 *
  43 * #include <stdio.h>
  44 * #include <sys/sysmips.h>
  45 *
  46 * struct foo {
  47 *	   unsigned char bar[8];
  48 * };
  49 *
  50 * main(int argc, char *argv[])
  51 * {
  52 *	   struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
  53 *	   unsigned int *p = (unsigned int *) (x.bar + 3);
  54 *	   int i;
  55 *
  56 *	   if (argc > 1)
  57 *		   sysmips(MIPS_FIXADE, atoi(argv[1]));
  58 *
  59 *	   printf("*p = %08lx\n", *p);
  60 *
  61 *	   *p = 0xdeadface;
  62 *
  63 *	   for(i = 0; i <= 7; i++)
  64 *	   printf("%02x ", x.bar[i]);
  65 *	   printf("\n");
  66 * }
  67 *
  68 * Coprocessor loads are not supported; I think this case is unimportant
  69 * in the practice.
  70 *
  71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
  72 *	 exception for the R6000.
  73 *	 A store crossing a page boundary might be executed only partially.
  74 *	 Undo the partial store in this case.
  75 */
  76#include <linux/context_tracking.h>
  77#include <linux/mm.h>
  78#include <linux/signal.h>
  79#include <linux/smp.h>
  80#include <linux/sched.h>
  81#include <linux/debugfs.h>
  82#include <linux/perf_event.h>
  83
  84#include <asm/asm.h>
  85#include <asm/branch.h>
  86#include <asm/byteorder.h>
  87#include <asm/cop2.h>
  88#include <asm/debug.h>
  89#include <asm/fpu.h>
  90#include <asm/fpu_emulator.h>
  91#include <asm/inst.h>
 
  92#include <asm/mmu_context.h>
 
  93#include <linux/uaccess.h>
  94
  95#define STR(x)	__STR(x)
  96#define __STR(x)  #x
  97
  98enum {
  99	UNALIGNED_ACTION_QUIET,
 100	UNALIGNED_ACTION_SIGNAL,
 101	UNALIGNED_ACTION_SHOW,
 102};
 103#ifdef CONFIG_DEBUG_FS
 104static u32 unaligned_instructions;
 105static u32 unaligned_action;
 106#else
 107#define unaligned_action UNALIGNED_ACTION_QUIET
 108#endif
 109extern void show_registers(struct pt_regs *regs);
 110
 111#ifdef __BIG_ENDIAN
 112#define     _LoadHW(addr, value, res, type)  \
 113do {                                                        \
 114		__asm__ __volatile__ (".set\tnoat\n"        \
 115			"1:\t"type##_lb("%0", "0(%2)")"\n"  \
 116			"2:\t"type##_lbu("$1", "1(%2)")"\n\t"\
 117			"sll\t%0, 0x8\n\t"                  \
 118			"or\t%0, $1\n\t"                    \
 119			"li\t%1, 0\n"                       \
 120			"3:\t.set\tat\n\t"                  \
 121			".insn\n\t"                         \
 122			".section\t.fixup,\"ax\"\n\t"       \
 123			"4:\tli\t%1, %3\n\t"                \
 124			"j\t3b\n\t"                         \
 125			".previous\n\t"                     \
 126			".section\t__ex_table,\"a\"\n\t"    \
 127			STR(PTR)"\t1b, 4b\n\t"              \
 128			STR(PTR)"\t2b, 4b\n\t"              \
 129			".previous"                         \
 130			: "=&r" (value), "=r" (res)         \
 131			: "r" (addr), "i" (-EFAULT));       \
 132} while(0)
 133
 134#ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
 135#define     _LoadW(addr, value, res, type)   \
 136do {                                                        \
 137		__asm__ __volatile__ (                      \
 138			"1:\t"type##_lwl("%0", "(%2)")"\n"   \
 139			"2:\t"type##_lwr("%0", "3(%2)")"\n\t"\
 140			"li\t%1, 0\n"                       \
 141			"3:\n\t"                            \
 142			".insn\n\t"                         \
 143			".section\t.fixup,\"ax\"\n\t"       \
 144			"4:\tli\t%1, %3\n\t"                \
 145			"j\t3b\n\t"                         \
 146			".previous\n\t"                     \
 147			".section\t__ex_table,\"a\"\n\t"    \
 148			STR(PTR)"\t1b, 4b\n\t"              \
 149			STR(PTR)"\t2b, 4b\n\t"              \
 150			".previous"                         \
 151			: "=&r" (value), "=r" (res)         \
 152			: "r" (addr), "i" (-EFAULT));       \
 153} while(0)
 154
 155#else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 156/* For CPUs without lwl instruction */
 157#define     _LoadW(addr, value, res, type) \
 158do {                                                        \
 159		__asm__ __volatile__ (			    \
 160			".set\tpush\n"			    \
 161			".set\tnoat\n\t"		    \
 162			"1:"type##_lb("%0", "0(%2)")"\n\t"  \
 163			"2:"type##_lbu("$1", "1(%2)")"\n\t" \
 164			"sll\t%0, 0x8\n\t"		    \
 165			"or\t%0, $1\n\t"		    \
 166			"3:"type##_lbu("$1", "2(%2)")"\n\t" \
 167			"sll\t%0, 0x8\n\t"		    \
 168			"or\t%0, $1\n\t"		    \
 169			"4:"type##_lbu("$1", "3(%2)")"\n\t" \
 170			"sll\t%0, 0x8\n\t"		    \
 171			"or\t%0, $1\n\t"		    \
 172			"li\t%1, 0\n"			    \
 173			".set\tpop\n"			    \
 174			"10:\n\t"			    \
 175			".insn\n\t"			    \
 176			".section\t.fixup,\"ax\"\n\t"	    \
 177			"11:\tli\t%1, %3\n\t"		    \
 178			"j\t10b\n\t"			    \
 179			".previous\n\t"			    \
 180			".section\t__ex_table,\"a\"\n\t"    \
 181			STR(PTR)"\t1b, 11b\n\t"		    \
 182			STR(PTR)"\t2b, 11b\n\t"		    \
 183			STR(PTR)"\t3b, 11b\n\t"		    \
 184			STR(PTR)"\t4b, 11b\n\t"		    \
 185			".previous"			    \
 186			: "=&r" (value), "=r" (res)	    \
 187			: "r" (addr), "i" (-EFAULT));       \
 188} while(0)
 189
 190#endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 191
 192#define     _LoadHWU(addr, value, res, type) \
 193do {                                                        \
 194		__asm__ __volatile__ (                      \
 195			".set\tnoat\n"                      \
 196			"1:\t"type##_lbu("%0", "0(%2)")"\n" \
 197			"2:\t"type##_lbu("$1", "1(%2)")"\n\t"\
 198			"sll\t%0, 0x8\n\t"                  \
 199			"or\t%0, $1\n\t"                    \
 200			"li\t%1, 0\n"                       \
 201			"3:\n\t"                            \
 202			".insn\n\t"                         \
 203			".set\tat\n\t"                      \
 204			".section\t.fixup,\"ax\"\n\t"       \
 205			"4:\tli\t%1, %3\n\t"                \
 206			"j\t3b\n\t"                         \
 207			".previous\n\t"                     \
 208			".section\t__ex_table,\"a\"\n\t"    \
 209			STR(PTR)"\t1b, 4b\n\t"              \
 210			STR(PTR)"\t2b, 4b\n\t"              \
 211			".previous"                         \
 212			: "=&r" (value), "=r" (res)         \
 213			: "r" (addr), "i" (-EFAULT));       \
 214} while(0)
 215
 216#ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
 217#define     _LoadWU(addr, value, res, type)  \
 218do {                                                        \
 219		__asm__ __volatile__ (                      \
 220			"1:\t"type##_lwl("%0", "(%2)")"\n"  \
 221			"2:\t"type##_lwr("%0", "3(%2)")"\n\t"\
 222			"dsll\t%0, %0, 32\n\t"              \
 223			"dsrl\t%0, %0, 32\n\t"              \
 224			"li\t%1, 0\n"                       \
 225			"3:\n\t"                            \
 226			".insn\n\t"                         \
 227			"\t.section\t.fixup,\"ax\"\n\t"     \
 228			"4:\tli\t%1, %3\n\t"                \
 229			"j\t3b\n\t"                         \
 230			".previous\n\t"                     \
 231			".section\t__ex_table,\"a\"\n\t"    \
 232			STR(PTR)"\t1b, 4b\n\t"              \
 233			STR(PTR)"\t2b, 4b\n\t"              \
 234			".previous"                         \
 235			: "=&r" (value), "=r" (res)         \
 236			: "r" (addr), "i" (-EFAULT));       \
 237} while(0)
 238
 239#define     _LoadDW(addr, value, res)  \
 240do {                                                        \
 241		__asm__ __volatile__ (                      \
 242			"1:\tldl\t%0, (%2)\n"               \
 243			"2:\tldr\t%0, 7(%2)\n\t"            \
 244			"li\t%1, 0\n"                       \
 245			"3:\n\t"                            \
 246			".insn\n\t"                         \
 247			"\t.section\t.fixup,\"ax\"\n\t"     \
 248			"4:\tli\t%1, %3\n\t"                \
 249			"j\t3b\n\t"                         \
 250			".previous\n\t"                     \
 251			".section\t__ex_table,\"a\"\n\t"    \
 252			STR(PTR)"\t1b, 4b\n\t"              \
 253			STR(PTR)"\t2b, 4b\n\t"              \
 254			".previous"                         \
 255			: "=&r" (value), "=r" (res)         \
 256			: "r" (addr), "i" (-EFAULT));       \
 257} while(0)
 258
 259#else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 260/* For CPUs without lwl and ldl instructions */
 261#define	    _LoadWU(addr, value, res, type) \
 262do {                                                        \
 263		__asm__ __volatile__ (			    \
 264			".set\tpush\n\t"		    \
 265			".set\tnoat\n\t"		    \
 266			"1:"type##_lbu("%0", "0(%2)")"\n\t" \
 267			"2:"type##_lbu("$1", "1(%2)")"\n\t" \
 268			"sll\t%0, 0x8\n\t"		    \
 269			"or\t%0, $1\n\t"		    \
 270			"3:"type##_lbu("$1", "2(%2)")"\n\t" \
 271			"sll\t%0, 0x8\n\t"		    \
 272			"or\t%0, $1\n\t"		    \
 273			"4:"type##_lbu("$1", "3(%2)")"\n\t" \
 274			"sll\t%0, 0x8\n\t"		    \
 275			"or\t%0, $1\n\t"		    \
 276			"li\t%1, 0\n"			    \
 277			".set\tpop\n"			    \
 278			"10:\n\t"			    \
 279			".insn\n\t"			    \
 280			".section\t.fixup,\"ax\"\n\t"	    \
 281			"11:\tli\t%1, %3\n\t"		    \
 282			"j\t10b\n\t"			    \
 283			".previous\n\t"			    \
 284			".section\t__ex_table,\"a\"\n\t"    \
 285			STR(PTR)"\t1b, 11b\n\t"		    \
 286			STR(PTR)"\t2b, 11b\n\t"		    \
 287			STR(PTR)"\t3b, 11b\n\t"		    \
 288			STR(PTR)"\t4b, 11b\n\t"		    \
 289			".previous"			    \
 290			: "=&r" (value), "=r" (res)	    \
 291			: "r" (addr), "i" (-EFAULT));       \
 292} while(0)
 293
 294#define     _LoadDW(addr, value, res)  \
 295do {                                                        \
 296		__asm__ __volatile__ (			    \
 297			".set\tpush\n\t"		    \
 298			".set\tnoat\n\t"		    \
 299			"1:lb\t%0, 0(%2)\n\t"    	    \
 300			"2:lbu\t $1, 1(%2)\n\t"   	    \
 301			"dsll\t%0, 0x8\n\t"		    \
 302			"or\t%0, $1\n\t"		    \
 303			"3:lbu\t$1, 2(%2)\n\t"   	    \
 304			"dsll\t%0, 0x8\n\t"		    \
 305			"or\t%0, $1\n\t"		    \
 306			"4:lbu\t$1, 3(%2)\n\t"   	    \
 307			"dsll\t%0, 0x8\n\t"		    \
 308			"or\t%0, $1\n\t"		    \
 309			"5:lbu\t$1, 4(%2)\n\t"   	    \
 310			"dsll\t%0, 0x8\n\t"		    \
 311			"or\t%0, $1\n\t"		    \
 312			"6:lbu\t$1, 5(%2)\n\t"   	    \
 313			"dsll\t%0, 0x8\n\t"		    \
 314			"or\t%0, $1\n\t"		    \
 315			"7:lbu\t$1, 6(%2)\n\t"   	    \
 316			"dsll\t%0, 0x8\n\t"		    \
 317			"or\t%0, $1\n\t"		    \
 318			"8:lbu\t$1, 7(%2)\n\t"   	    \
 319			"dsll\t%0, 0x8\n\t"		    \
 320			"or\t%0, $1\n\t"		    \
 321			"li\t%1, 0\n"			    \
 322			".set\tpop\n\t"			    \
 323			"10:\n\t"			    \
 324			".insn\n\t"			    \
 325			".section\t.fixup,\"ax\"\n\t"	    \
 326			"11:\tli\t%1, %3\n\t"		    \
 327			"j\t10b\n\t"			    \
 328			".previous\n\t"			    \
 329			".section\t__ex_table,\"a\"\n\t"    \
 330			STR(PTR)"\t1b, 11b\n\t"		    \
 331			STR(PTR)"\t2b, 11b\n\t"		    \
 332			STR(PTR)"\t3b, 11b\n\t"		    \
 333			STR(PTR)"\t4b, 11b\n\t"		    \
 334			STR(PTR)"\t5b, 11b\n\t"		    \
 335			STR(PTR)"\t6b, 11b\n\t"		    \
 336			STR(PTR)"\t7b, 11b\n\t"		    \
 337			STR(PTR)"\t8b, 11b\n\t"		    \
 338			".previous"			    \
 339			: "=&r" (value), "=r" (res)	    \
 340			: "r" (addr), "i" (-EFAULT));       \
 341} while(0)
 342
 343#endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 344
 345
 346#define     _StoreHW(addr, value, res, type) \
 347do {                                                        \
 348		__asm__ __volatile__ (                      \
 349			".set\tnoat\n"                      \
 350			"1:\t"type##_sb("%1", "1(%2)")"\n"  \
 351			"srl\t$1, %1, 0x8\n"                \
 352			"2:\t"type##_sb("$1", "0(%2)")"\n"  \
 353			".set\tat\n\t"                      \
 354			"li\t%0, 0\n"                       \
 355			"3:\n\t"                            \
 356			".insn\n\t"                         \
 357			".section\t.fixup,\"ax\"\n\t"       \
 358			"4:\tli\t%0, %3\n\t"                \
 359			"j\t3b\n\t"                         \
 360			".previous\n\t"                     \
 361			".section\t__ex_table,\"a\"\n\t"    \
 362			STR(PTR)"\t1b, 4b\n\t"              \
 363			STR(PTR)"\t2b, 4b\n\t"              \
 364			".previous"                         \
 365			: "=r" (res)                        \
 366			: "r" (value), "r" (addr), "i" (-EFAULT));\
 367} while(0)
 368
 369#ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
 370#define     _StoreW(addr, value, res, type)  \
 371do {                                                        \
 372		__asm__ __volatile__ (                      \
 373			"1:\t"type##_swl("%1", "(%2)")"\n"  \
 374			"2:\t"type##_swr("%1", "3(%2)")"\n\t"\
 375			"li\t%0, 0\n"                       \
 376			"3:\n\t"                            \
 377			".insn\n\t"                         \
 378			".section\t.fixup,\"ax\"\n\t"       \
 379			"4:\tli\t%0, %3\n\t"                \
 380			"j\t3b\n\t"                         \
 381			".previous\n\t"                     \
 382			".section\t__ex_table,\"a\"\n\t"    \
 383			STR(PTR)"\t1b, 4b\n\t"              \
 384			STR(PTR)"\t2b, 4b\n\t"              \
 385			".previous"                         \
 386		: "=r" (res)                                \
 387		: "r" (value), "r" (addr), "i" (-EFAULT));  \
 388} while(0)
 389
 390#define     _StoreDW(addr, value, res) \
 391do {                                                        \
 392		__asm__ __volatile__ (                      \
 393			"1:\tsdl\t%1,(%2)\n"                \
 394			"2:\tsdr\t%1, 7(%2)\n\t"            \
 395			"li\t%0, 0\n"                       \
 396			"3:\n\t"                            \
 397			".insn\n\t"                         \
 398			".section\t.fixup,\"ax\"\n\t"       \
 399			"4:\tli\t%0, %3\n\t"                \
 400			"j\t3b\n\t"                         \
 401			".previous\n\t"                     \
 402			".section\t__ex_table,\"a\"\n\t"    \
 403			STR(PTR)"\t1b, 4b\n\t"              \
 404			STR(PTR)"\t2b, 4b\n\t"              \
 405			".previous"                         \
 406		: "=r" (res)                                \
 407		: "r" (value), "r" (addr), "i" (-EFAULT));  \
 408} while(0)
 409
 410#else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 411#define     _StoreW(addr, value, res, type)  \
 412do {                                                        \
 413		__asm__ __volatile__ (                      \
 414			".set\tpush\n\t"		    \
 415			".set\tnoat\n\t"		    \
 416			"1:"type##_sb("%1", "3(%2)")"\n\t"  \
 417			"srl\t$1, %1, 0x8\n\t"		    \
 418			"2:"type##_sb("$1", "2(%2)")"\n\t"  \
 419			"srl\t$1, $1,  0x8\n\t"		    \
 420			"3:"type##_sb("$1", "1(%2)")"\n\t"  \
 421			"srl\t$1, $1, 0x8\n\t"		    \
 422			"4:"type##_sb("$1", "0(%2)")"\n\t"  \
 423			".set\tpop\n\t"			    \
 424			"li\t%0, 0\n"			    \
 425			"10:\n\t"			    \
 426			".insn\n\t"			    \
 427			".section\t.fixup,\"ax\"\n\t"	    \
 428			"11:\tli\t%0, %3\n\t"		    \
 429			"j\t10b\n\t"			    \
 430			".previous\n\t"			    \
 431			".section\t__ex_table,\"a\"\n\t"    \
 432			STR(PTR)"\t1b, 11b\n\t"		    \
 433			STR(PTR)"\t2b, 11b\n\t"		    \
 434			STR(PTR)"\t3b, 11b\n\t"		    \
 435			STR(PTR)"\t4b, 11b\n\t"		    \
 436			".previous"			    \
 437		: "=&r" (res)			    	    \
 438		: "r" (value), "r" (addr), "i" (-EFAULT)    \
 439		: "memory");                                \
 440} while(0)
 441
 442#define     _StoreDW(addr, value, res) \
 443do {                                                        \
 444		__asm__ __volatile__ (                      \
 445			".set\tpush\n\t"		    \
 446			".set\tnoat\n\t"		    \
 447			"1:sb\t%1, 7(%2)\n\t"    	    \
 448			"dsrl\t$1, %1, 0x8\n\t"		    \
 449			"2:sb\t$1, 6(%2)\n\t"    	    \
 450			"dsrl\t$1, $1, 0x8\n\t"		    \
 451			"3:sb\t$1, 5(%2)\n\t"    	    \
 452			"dsrl\t$1, $1, 0x8\n\t"		    \
 453			"4:sb\t$1, 4(%2)\n\t"    	    \
 454			"dsrl\t$1, $1, 0x8\n\t"		    \
 455			"5:sb\t$1, 3(%2)\n\t"    	    \
 456			"dsrl\t$1, $1, 0x8\n\t"		    \
 457			"6:sb\t$1, 2(%2)\n\t"    	    \
 458			"dsrl\t$1, $1, 0x8\n\t"		    \
 459			"7:sb\t$1, 1(%2)\n\t"    	    \
 460			"dsrl\t$1, $1, 0x8\n\t"		    \
 461			"8:sb\t$1, 0(%2)\n\t"    	    \
 462			"dsrl\t$1, $1, 0x8\n\t"		    \
 463			".set\tpop\n\t"			    \
 464			"li\t%0, 0\n"			    \
 465			"10:\n\t"			    \
 466			".insn\n\t"			    \
 467			".section\t.fixup,\"ax\"\n\t"	    \
 468			"11:\tli\t%0, %3\n\t"		    \
 469			"j\t10b\n\t"			    \
 470			".previous\n\t"			    \
 471			".section\t__ex_table,\"a\"\n\t"    \
 472			STR(PTR)"\t1b, 11b\n\t"		    \
 473			STR(PTR)"\t2b, 11b\n\t"		    \
 474			STR(PTR)"\t3b, 11b\n\t"		    \
 475			STR(PTR)"\t4b, 11b\n\t"		    \
 476			STR(PTR)"\t5b, 11b\n\t"		    \
 477			STR(PTR)"\t6b, 11b\n\t"		    \
 478			STR(PTR)"\t7b, 11b\n\t"		    \
 479			STR(PTR)"\t8b, 11b\n\t"		    \
 480			".previous"			    \
 481		: "=&r" (res)			    	    \
 482		: "r" (value), "r" (addr), "i" (-EFAULT)    \
 483		: "memory");                                \
 484} while(0)
 485
 486#endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 487
 488#else /* __BIG_ENDIAN */
 489
 490#define     _LoadHW(addr, value, res, type)  \
 491do {                                                        \
 492		__asm__ __volatile__ (".set\tnoat\n"        \
 493			"1:\t"type##_lb("%0", "1(%2)")"\n"  \
 494			"2:\t"type##_lbu("$1", "0(%2)")"\n\t"\
 495			"sll\t%0, 0x8\n\t"                  \
 496			"or\t%0, $1\n\t"                    \
 497			"li\t%1, 0\n"                       \
 498			"3:\t.set\tat\n\t"                  \
 499			".insn\n\t"                         \
 500			".section\t.fixup,\"ax\"\n\t"       \
 501			"4:\tli\t%1, %3\n\t"                \
 502			"j\t3b\n\t"                         \
 503			".previous\n\t"                     \
 504			".section\t__ex_table,\"a\"\n\t"    \
 505			STR(PTR)"\t1b, 4b\n\t"              \
 506			STR(PTR)"\t2b, 4b\n\t"              \
 507			".previous"                         \
 508			: "=&r" (value), "=r" (res)         \
 509			: "r" (addr), "i" (-EFAULT));       \
 510} while(0)
 511
 512#ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
 513#define     _LoadW(addr, value, res, type)   \
 514do {                                                        \
 515		__asm__ __volatile__ (                      \
 516			"1:\t"type##_lwl("%0", "3(%2)")"\n" \
 517			"2:\t"type##_lwr("%0", "(%2)")"\n\t"\
 518			"li\t%1, 0\n"                       \
 519			"3:\n\t"                            \
 520			".insn\n\t"                         \
 521			".section\t.fixup,\"ax\"\n\t"       \
 522			"4:\tli\t%1, %3\n\t"                \
 523			"j\t3b\n\t"                         \
 524			".previous\n\t"                     \
 525			".section\t__ex_table,\"a\"\n\t"    \
 526			STR(PTR)"\t1b, 4b\n\t"              \
 527			STR(PTR)"\t2b, 4b\n\t"              \
 528			".previous"                         \
 529			: "=&r" (value), "=r" (res)         \
 530			: "r" (addr), "i" (-EFAULT));       \
 531} while(0)
 532
 533#else  /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 534/* For CPUs without lwl instruction */
 535#define     _LoadW(addr, value, res, type) \
 536do {                                                        \
 537		__asm__ __volatile__ (			    \
 538			".set\tpush\n"			    \
 539			".set\tnoat\n\t"		    \
 540			"1:"type##_lb("%0", "3(%2)")"\n\t"  \
 541			"2:"type##_lbu("$1", "2(%2)")"\n\t" \
 542			"sll\t%0, 0x8\n\t"		    \
 543			"or\t%0, $1\n\t"		    \
 544			"3:"type##_lbu("$1", "1(%2)")"\n\t" \
 545			"sll\t%0, 0x8\n\t"		    \
 546			"or\t%0, $1\n\t"		    \
 547			"4:"type##_lbu("$1", "0(%2)")"\n\t" \
 548			"sll\t%0, 0x8\n\t"		    \
 549			"or\t%0, $1\n\t"		    \
 550			"li\t%1, 0\n"			    \
 551			".set\tpop\n"			    \
 552			"10:\n\t"			    \
 553			".insn\n\t"			    \
 554			".section\t.fixup,\"ax\"\n\t"	    \
 555			"11:\tli\t%1, %3\n\t"		    \
 556			"j\t10b\n\t"			    \
 557			".previous\n\t"			    \
 558			".section\t__ex_table,\"a\"\n\t"    \
 559			STR(PTR)"\t1b, 11b\n\t"		    \
 560			STR(PTR)"\t2b, 11b\n\t"		    \
 561			STR(PTR)"\t3b, 11b\n\t"		    \
 562			STR(PTR)"\t4b, 11b\n\t"		    \
 563			".previous"			    \
 564			: "=&r" (value), "=r" (res)	    \
 565			: "r" (addr), "i" (-EFAULT));       \
 566} while(0)
 567
 568#endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 569
 570
 571#define     _LoadHWU(addr, value, res, type) \
 572do {                                                        \
 573		__asm__ __volatile__ (                      \
 574			".set\tnoat\n"                      \
 575			"1:\t"type##_lbu("%0", "1(%2)")"\n" \
 576			"2:\t"type##_lbu("$1", "0(%2)")"\n\t"\
 577			"sll\t%0, 0x8\n\t"                  \
 578			"or\t%0, $1\n\t"                    \
 579			"li\t%1, 0\n"                       \
 580			"3:\n\t"                            \
 581			".insn\n\t"                         \
 582			".set\tat\n\t"                      \
 583			".section\t.fixup,\"ax\"\n\t"       \
 584			"4:\tli\t%1, %3\n\t"                \
 585			"j\t3b\n\t"                         \
 586			".previous\n\t"                     \
 587			".section\t__ex_table,\"a\"\n\t"    \
 588			STR(PTR)"\t1b, 4b\n\t"              \
 589			STR(PTR)"\t2b, 4b\n\t"              \
 590			".previous"                         \
 591			: "=&r" (value), "=r" (res)         \
 592			: "r" (addr), "i" (-EFAULT));       \
 593} while(0)
 594
 595#ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
 596#define     _LoadWU(addr, value, res, type)  \
 597do {                                                        \
 598		__asm__ __volatile__ (                      \
 599			"1:\t"type##_lwl("%0", "3(%2)")"\n" \
 600			"2:\t"type##_lwr("%0", "(%2)")"\n\t"\
 601			"dsll\t%0, %0, 32\n\t"              \
 602			"dsrl\t%0, %0, 32\n\t"              \
 603			"li\t%1, 0\n"                       \
 604			"3:\n\t"                            \
 605			".insn\n\t"                         \
 606			"\t.section\t.fixup,\"ax\"\n\t"     \
 607			"4:\tli\t%1, %3\n\t"                \
 608			"j\t3b\n\t"                         \
 609			".previous\n\t"                     \
 610			".section\t__ex_table,\"a\"\n\t"    \
 611			STR(PTR)"\t1b, 4b\n\t"              \
 612			STR(PTR)"\t2b, 4b\n\t"              \
 613			".previous"                         \
 614			: "=&r" (value), "=r" (res)         \
 615			: "r" (addr), "i" (-EFAULT));       \
 616} while(0)
 617
 618#define     _LoadDW(addr, value, res)  \
 619do {                                                        \
 620		__asm__ __volatile__ (                      \
 621			"1:\tldl\t%0, 7(%2)\n"              \
 622			"2:\tldr\t%0, (%2)\n\t"             \
 623			"li\t%1, 0\n"                       \
 624			"3:\n\t"                            \
 625			".insn\n\t"                         \
 626			"\t.section\t.fixup,\"ax\"\n\t"     \
 627			"4:\tli\t%1, %3\n\t"                \
 628			"j\t3b\n\t"                         \
 629			".previous\n\t"                     \
 630			".section\t__ex_table,\"a\"\n\t"    \
 631			STR(PTR)"\t1b, 4b\n\t"              \
 632			STR(PTR)"\t2b, 4b\n\t"              \
 633			".previous"                         \
 634			: "=&r" (value), "=r" (res)         \
 635			: "r" (addr), "i" (-EFAULT));       \
 636} while(0)
 637
 638#else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 639/* For CPUs without lwl and ldl instructions */
 640#define	    _LoadWU(addr, value, res, type) \
 641do {                                                        \
 642		__asm__ __volatile__ (			    \
 643			".set\tpush\n\t"		    \
 644			".set\tnoat\n\t"		    \
 645			"1:"type##_lbu("%0", "3(%2)")"\n\t" \
 646			"2:"type##_lbu("$1", "2(%2)")"\n\t" \
 647			"sll\t%0, 0x8\n\t"		    \
 648			"or\t%0, $1\n\t"		    \
 649			"3:"type##_lbu("$1", "1(%2)")"\n\t" \
 650			"sll\t%0, 0x8\n\t"		    \
 651			"or\t%0, $1\n\t"		    \
 652			"4:"type##_lbu("$1", "0(%2)")"\n\t" \
 653			"sll\t%0, 0x8\n\t"		    \
 654			"or\t%0, $1\n\t"		    \
 655			"li\t%1, 0\n"			    \
 656			".set\tpop\n"			    \
 657			"10:\n\t"			    \
 658			".insn\n\t"			    \
 659			".section\t.fixup,\"ax\"\n\t"	    \
 660			"11:\tli\t%1, %3\n\t"		    \
 661			"j\t10b\n\t"			    \
 662			".previous\n\t"			    \
 663			".section\t__ex_table,\"a\"\n\t"    \
 664			STR(PTR)"\t1b, 11b\n\t"		    \
 665			STR(PTR)"\t2b, 11b\n\t"		    \
 666			STR(PTR)"\t3b, 11b\n\t"		    \
 667			STR(PTR)"\t4b, 11b\n\t"		    \
 668			".previous"			    \
 669			: "=&r" (value), "=r" (res)	    \
 670			: "r" (addr), "i" (-EFAULT));       \
 671} while(0)
 672
 673#define     _LoadDW(addr, value, res)  \
 674do {                                                        \
 675		__asm__ __volatile__ (			    \
 676			".set\tpush\n\t"		    \
 677			".set\tnoat\n\t"		    \
 678			"1:lb\t%0, 7(%2)\n\t"    	    \
 679			"2:lbu\t$1, 6(%2)\n\t"   	    \
 680			"dsll\t%0, 0x8\n\t"		    \
 681			"or\t%0, $1\n\t"		    \
 682			"3:lbu\t$1, 5(%2)\n\t"   	    \
 683			"dsll\t%0, 0x8\n\t"		    \
 684			"or\t%0, $1\n\t"		    \
 685			"4:lbu\t$1, 4(%2)\n\t"   	    \
 686			"dsll\t%0, 0x8\n\t"		    \
 687			"or\t%0, $1\n\t"		    \
 688			"5:lbu\t$1, 3(%2)\n\t"   	    \
 689			"dsll\t%0, 0x8\n\t"		    \
 690			"or\t%0, $1\n\t"		    \
 691			"6:lbu\t$1, 2(%2)\n\t"   	    \
 692			"dsll\t%0, 0x8\n\t"		    \
 693			"or\t%0, $1\n\t"		    \
 694			"7:lbu\t$1, 1(%2)\n\t"   	    \
 695			"dsll\t%0, 0x8\n\t"		    \
 696			"or\t%0, $1\n\t"		    \
 697			"8:lbu\t$1, 0(%2)\n\t"   	    \
 698			"dsll\t%0, 0x8\n\t"		    \
 699			"or\t%0, $1\n\t"		    \
 700			"li\t%1, 0\n"			    \
 701			".set\tpop\n\t"			    \
 702			"10:\n\t"			    \
 703			".insn\n\t"			    \
 704			".section\t.fixup,\"ax\"\n\t"	    \
 705			"11:\tli\t%1, %3\n\t"		    \
 706			"j\t10b\n\t"			    \
 707			".previous\n\t"			    \
 708			".section\t__ex_table,\"a\"\n\t"    \
 709			STR(PTR)"\t1b, 11b\n\t"		    \
 710			STR(PTR)"\t2b, 11b\n\t"		    \
 711			STR(PTR)"\t3b, 11b\n\t"		    \
 712			STR(PTR)"\t4b, 11b\n\t"		    \
 713			STR(PTR)"\t5b, 11b\n\t"		    \
 714			STR(PTR)"\t6b, 11b\n\t"		    \
 715			STR(PTR)"\t7b, 11b\n\t"		    \
 716			STR(PTR)"\t8b, 11b\n\t"		    \
 717			".previous"			    \
 718			: "=&r" (value), "=r" (res)	    \
 719			: "r" (addr), "i" (-EFAULT));       \
 720} while(0)
 721#endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 722
 723#define     _StoreHW(addr, value, res, type) \
 724do {                                                        \
 725		__asm__ __volatile__ (                      \
 726			".set\tnoat\n"                      \
 727			"1:\t"type##_sb("%1", "0(%2)")"\n"  \
 728			"srl\t$1,%1, 0x8\n"                 \
 729			"2:\t"type##_sb("$1", "1(%2)")"\n"  \
 730			".set\tat\n\t"                      \
 731			"li\t%0, 0\n"                       \
 732			"3:\n\t"                            \
 733			".insn\n\t"                         \
 734			".section\t.fixup,\"ax\"\n\t"       \
 735			"4:\tli\t%0, %3\n\t"                \
 736			"j\t3b\n\t"                         \
 737			".previous\n\t"                     \
 738			".section\t__ex_table,\"a\"\n\t"    \
 739			STR(PTR)"\t1b, 4b\n\t"              \
 740			STR(PTR)"\t2b, 4b\n\t"              \
 741			".previous"                         \
 742			: "=r" (res)                        \
 743			: "r" (value), "r" (addr), "i" (-EFAULT));\
 744} while(0)
 745
 746#ifdef CONFIG_CPU_HAS_LOAD_STORE_LR
 747#define     _StoreW(addr, value, res, type)  \
 748do {                                                        \
 749		__asm__ __volatile__ (                      \
 750			"1:\t"type##_swl("%1", "3(%2)")"\n" \
 751			"2:\t"type##_swr("%1", "(%2)")"\n\t"\
 752			"li\t%0, 0\n"                       \
 753			"3:\n\t"                            \
 754			".insn\n\t"                         \
 755			".section\t.fixup,\"ax\"\n\t"       \
 756			"4:\tli\t%0, %3\n\t"                \
 757			"j\t3b\n\t"                         \
 758			".previous\n\t"                     \
 759			".section\t__ex_table,\"a\"\n\t"    \
 760			STR(PTR)"\t1b, 4b\n\t"              \
 761			STR(PTR)"\t2b, 4b\n\t"              \
 762			".previous"                         \
 763		: "=r" (res)                                \
 764		: "r" (value), "r" (addr), "i" (-EFAULT));  \
 765} while(0)
 766
 767#define     _StoreDW(addr, value, res) \
 768do {                                                        \
 769		__asm__ __volatile__ (                      \
 770			"1:\tsdl\t%1, 7(%2)\n"              \
 771			"2:\tsdr\t%1, (%2)\n\t"             \
 772			"li\t%0, 0\n"                       \
 773			"3:\n\t"                            \
 774			".insn\n\t"                         \
 775			".section\t.fixup,\"ax\"\n\t"       \
 776			"4:\tli\t%0, %3\n\t"                \
 777			"j\t3b\n\t"                         \
 778			".previous\n\t"                     \
 779			".section\t__ex_table,\"a\"\n\t"    \
 780			STR(PTR)"\t1b, 4b\n\t"              \
 781			STR(PTR)"\t2b, 4b\n\t"              \
 782			".previous"                         \
 783		: "=r" (res)                                \
 784		: "r" (value), "r" (addr), "i" (-EFAULT));  \
 785} while(0)
 786
 787#else /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 788/* For CPUs without swl and sdl instructions */
 789#define     _StoreW(addr, value, res, type)  \
 790do {                                                        \
 791		__asm__ __volatile__ (                      \
 792			".set\tpush\n\t"		    \
 793			".set\tnoat\n\t"		    \
 794			"1:"type##_sb("%1", "0(%2)")"\n\t"  \
 795			"srl\t$1, %1, 0x8\n\t"		    \
 796			"2:"type##_sb("$1", "1(%2)")"\n\t"  \
 797			"srl\t$1, $1,  0x8\n\t"		    \
 798			"3:"type##_sb("$1", "2(%2)")"\n\t"  \
 799			"srl\t$1, $1, 0x8\n\t"		    \
 800			"4:"type##_sb("$1", "3(%2)")"\n\t"  \
 801			".set\tpop\n\t"			    \
 802			"li\t%0, 0\n"			    \
 803			"10:\n\t"			    \
 804			".insn\n\t"			    \
 805			".section\t.fixup,\"ax\"\n\t"	    \
 806			"11:\tli\t%0, %3\n\t"		    \
 807			"j\t10b\n\t"			    \
 808			".previous\n\t"			    \
 809			".section\t__ex_table,\"a\"\n\t"    \
 810			STR(PTR)"\t1b, 11b\n\t"		    \
 811			STR(PTR)"\t2b, 11b\n\t"		    \
 812			STR(PTR)"\t3b, 11b\n\t"		    \
 813			STR(PTR)"\t4b, 11b\n\t"		    \
 814			".previous"			    \
 815		: "=&r" (res)			    	    \
 816		: "r" (value), "r" (addr), "i" (-EFAULT)    \
 817		: "memory");                                \
 818} while(0)
 819
 820#define     _StoreDW(addr, value, res) \
 821do {                                                        \
 822		__asm__ __volatile__ (                      \
 823			".set\tpush\n\t"		    \
 824			".set\tnoat\n\t"		    \
 825			"1:sb\t%1, 0(%2)\n\t"    	    \
 826			"dsrl\t$1, %1, 0x8\n\t"		    \
 827			"2:sb\t$1, 1(%2)\n\t"    	    \
 828			"dsrl\t$1, $1, 0x8\n\t"		    \
 829			"3:sb\t$1, 2(%2)\n\t"    	    \
 830			"dsrl\t$1, $1, 0x8\n\t"		    \
 831			"4:sb\t$1, 3(%2)\n\t"    	    \
 832			"dsrl\t$1, $1, 0x8\n\t"		    \
 833			"5:sb\t$1, 4(%2)\n\t"    	    \
 834			"dsrl\t$1, $1, 0x8\n\t"		    \
 835			"6:sb\t$1, 5(%2)\n\t"    	    \
 836			"dsrl\t$1, $1, 0x8\n\t"		    \
 837			"7:sb\t$1, 6(%2)\n\t"    	    \
 838			"dsrl\t$1, $1, 0x8\n\t"		    \
 839			"8:sb\t$1, 7(%2)\n\t"    	    \
 840			"dsrl\t$1, $1, 0x8\n\t"		    \
 841			".set\tpop\n\t"			    \
 842			"li\t%0, 0\n"			    \
 843			"10:\n\t"			    \
 844			".insn\n\t"			    \
 845			".section\t.fixup,\"ax\"\n\t"	    \
 846			"11:\tli\t%0, %3\n\t"		    \
 847			"j\t10b\n\t"			    \
 848			".previous\n\t"			    \
 849			".section\t__ex_table,\"a\"\n\t"    \
 850			STR(PTR)"\t1b, 11b\n\t"		    \
 851			STR(PTR)"\t2b, 11b\n\t"		    \
 852			STR(PTR)"\t3b, 11b\n\t"		    \
 853			STR(PTR)"\t4b, 11b\n\t"		    \
 854			STR(PTR)"\t5b, 11b\n\t"		    \
 855			STR(PTR)"\t6b, 11b\n\t"		    \
 856			STR(PTR)"\t7b, 11b\n\t"		    \
 857			STR(PTR)"\t8b, 11b\n\t"		    \
 858			".previous"			    \
 859		: "=&r" (res)			    	    \
 860		: "r" (value), "r" (addr), "i" (-EFAULT)    \
 861		: "memory");                                \
 862} while(0)
 863
 864#endif /* !CONFIG_CPU_HAS_LOAD_STORE_LR */
 865#endif
 866
 867#define LoadHWU(addr, value, res)	_LoadHWU(addr, value, res, kernel)
 868#define LoadHWUE(addr, value, res)	_LoadHWU(addr, value, res, user)
 869#define LoadWU(addr, value, res)	_LoadWU(addr, value, res, kernel)
 870#define LoadWUE(addr, value, res)	_LoadWU(addr, value, res, user)
 871#define LoadHW(addr, value, res)	_LoadHW(addr, value, res, kernel)
 872#define LoadHWE(addr, value, res)	_LoadHW(addr, value, res, user)
 873#define LoadW(addr, value, res)		_LoadW(addr, value, res, kernel)
 874#define LoadWE(addr, value, res)	_LoadW(addr, value, res, user)
 875#define LoadDW(addr, value, res)	_LoadDW(addr, value, res)
 876
 877#define StoreHW(addr, value, res)	_StoreHW(addr, value, res, kernel)
 878#define StoreHWE(addr, value, res)	_StoreHW(addr, value, res, user)
 879#define StoreW(addr, value, res)	_StoreW(addr, value, res, kernel)
 880#define StoreWE(addr, value, res)	_StoreW(addr, value, res, user)
 881#define StoreDW(addr, value, res)	_StoreDW(addr, value, res)
 882
 883static void emulate_load_store_insn(struct pt_regs *regs,
 884	void __user *addr, unsigned int __user *pc)
 885{
 886	unsigned long origpc, orig31, value;
 887	union mips_instruction insn;
 888	unsigned int res;
 889#ifdef	CONFIG_EVA
 890	mm_segment_t seg;
 891#endif
 892	origpc = (unsigned long)pc;
 893	orig31 = regs->regs[31];
 894
 895	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 896
 897	/*
 898	 * This load never faults.
 899	 */
 900	__get_user(insn.word, pc);
 901
 902	switch (insn.i_format.opcode) {
 903		/*
 904		 * These are instructions that a compiler doesn't generate.  We
 905		 * can assume therefore that the code is MIPS-aware and
 906		 * really buggy.  Emulating these instructions would break the
 907		 * semantics anyway.
 908		 */
 909	case ll_op:
 910	case lld_op:
 911	case sc_op:
 912	case scd_op:
 913
 914		/*
 915		 * For these instructions the only way to create an address
 916		 * error is an attempted access to kernel/supervisor address
 917		 * space.
 918		 */
 919	case ldl_op:
 920	case ldr_op:
 921	case lwl_op:
 922	case lwr_op:
 923	case sdl_op:
 924	case sdr_op:
 925	case swl_op:
 926	case swr_op:
 927	case lb_op:
 928	case lbu_op:
 929	case sb_op:
 930		goto sigbus;
 931
 932		/*
 933		 * The remaining opcodes are the ones that are really of
 934		 * interest.
 935		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936	case spec3_op:
 937		if (insn.dsp_format.func == lx_op) {
 938			switch (insn.dsp_format.op) {
 939			case lwx_op:
 940				if (!access_ok(addr, 4))
 941					goto sigbus;
 942				LoadW(addr, value, res);
 943				if (res)
 944					goto fault;
 945				compute_return_epc(regs);
 946				regs->regs[insn.dsp_format.rd] = value;
 947				break;
 948			case lhx_op:
 949				if (!access_ok(addr, 2))
 950					goto sigbus;
 951				LoadHW(addr, value, res);
 952				if (res)
 953					goto fault;
 954				compute_return_epc(regs);
 955				regs->regs[insn.dsp_format.rd] = value;
 956				break;
 957			default:
 958				goto sigill;
 959			}
 960		}
 961#ifdef CONFIG_EVA
 962		else {
 963			/*
 964			 * we can land here only from kernel accessing user
 965			 * memory, so we need to "switch" the address limit to
 966			 * user space, so that address check can work properly.
 967			 */
 968			seg = get_fs();
 969			set_fs(USER_DS);
 970			switch (insn.spec3_format.func) {
 971			case lhe_op:
 972				if (!access_ok(addr, 2)) {
 973					set_fs(seg);
 974					goto sigbus;
 975				}
 976				LoadHWE(addr, value, res);
 977				if (res) {
 978					set_fs(seg);
 979					goto fault;
 980				}
 981				compute_return_epc(regs);
 982				regs->regs[insn.spec3_format.rt] = value;
 983				break;
 984			case lwe_op:
 985				if (!access_ok(addr, 4)) {
 986					set_fs(seg);
 987					goto sigbus;
 988				}
 989				LoadWE(addr, value, res);
 990				if (res) {
 991					set_fs(seg);
 992					goto fault;
 993				}
 994				compute_return_epc(regs);
 995				regs->regs[insn.spec3_format.rt] = value;
 996				break;
 997			case lhue_op:
 998				if (!access_ok(addr, 2)) {
 999					set_fs(seg);
1000					goto sigbus;
1001				}
1002				LoadHWUE(addr, value, res);
1003				if (res) {
1004					set_fs(seg);
1005					goto fault;
1006				}
1007				compute_return_epc(regs);
1008				regs->regs[insn.spec3_format.rt] = value;
1009				break;
1010			case she_op:
1011				if (!access_ok(addr, 2)) {
1012					set_fs(seg);
1013					goto sigbus;
1014				}
1015				compute_return_epc(regs);
1016				value = regs->regs[insn.spec3_format.rt];
1017				StoreHWE(addr, value, res);
1018				if (res) {
1019					set_fs(seg);
1020					goto fault;
1021				}
1022				break;
1023			case swe_op:
1024				if (!access_ok(addr, 4)) {
1025					set_fs(seg);
1026					goto sigbus;
1027				}
1028				compute_return_epc(regs);
1029				value = regs->regs[insn.spec3_format.rt];
1030				StoreWE(addr, value, res);
1031				if (res) {
1032					set_fs(seg);
1033					goto fault;
1034				}
1035				break;
1036			default:
1037				set_fs(seg);
1038				goto sigill;
1039			}
1040			set_fs(seg);
1041		}
1042#endif
1043		break;
1044	case lh_op:
1045		if (!access_ok(addr, 2))
1046			goto sigbus;
1047
1048		if (IS_ENABLED(CONFIG_EVA)) {
1049			if (uaccess_kernel())
1050				LoadHW(addr, value, res);
1051			else
1052				LoadHWE(addr, value, res);
1053		} else {
1054			LoadHW(addr, value, res);
1055		}
1056
1057		if (res)
1058			goto fault;
1059		compute_return_epc(regs);
1060		regs->regs[insn.i_format.rt] = value;
1061		break;
1062
1063	case lw_op:
1064		if (!access_ok(addr, 4))
1065			goto sigbus;
1066
1067		if (IS_ENABLED(CONFIG_EVA)) {
1068			if (uaccess_kernel())
1069				LoadW(addr, value, res);
1070			else
1071				LoadWE(addr, value, res);
1072		} else {
1073			LoadW(addr, value, res);
1074		}
1075
1076		if (res)
1077			goto fault;
1078		compute_return_epc(regs);
1079		regs->regs[insn.i_format.rt] = value;
1080		break;
1081
1082	case lhu_op:
1083		if (!access_ok(addr, 2))
1084			goto sigbus;
1085
1086		if (IS_ENABLED(CONFIG_EVA)) {
1087			if (uaccess_kernel())
1088				LoadHWU(addr, value, res);
1089			else
1090				LoadHWUE(addr, value, res);
1091		} else {
1092			LoadHWU(addr, value, res);
1093		}
1094
1095		if (res)
1096			goto fault;
1097		compute_return_epc(regs);
1098		regs->regs[insn.i_format.rt] = value;
1099		break;
1100
1101	case lwu_op:
1102#ifdef CONFIG_64BIT
1103		/*
1104		 * A 32-bit kernel might be running on a 64-bit processor.  But
1105		 * if we're on a 32-bit processor and an i-cache incoherency
1106		 * or race makes us see a 64-bit instruction here the sdl/sdr
1107		 * would blow up, so for now we don't handle unaligned 64-bit
1108		 * instructions on 32-bit kernels.
1109		 */
1110		if (!access_ok(addr, 4))
1111			goto sigbus;
1112
1113		LoadWU(addr, value, res);
1114		if (res)
1115			goto fault;
1116		compute_return_epc(regs);
1117		regs->regs[insn.i_format.rt] = value;
1118		break;
1119#endif /* CONFIG_64BIT */
1120
1121		/* Cannot handle 64-bit instructions in 32-bit kernel */
1122		goto sigill;
1123
1124	case ld_op:
1125#ifdef CONFIG_64BIT
1126		/*
1127		 * A 32-bit kernel might be running on a 64-bit processor.  But
1128		 * if we're on a 32-bit processor and an i-cache incoherency
1129		 * or race makes us see a 64-bit instruction here the sdl/sdr
1130		 * would blow up, so for now we don't handle unaligned 64-bit
1131		 * instructions on 32-bit kernels.
1132		 */
1133		if (!access_ok(addr, 8))
1134			goto sigbus;
1135
1136		LoadDW(addr, value, res);
1137		if (res)
1138			goto fault;
1139		compute_return_epc(regs);
1140		regs->regs[insn.i_format.rt] = value;
1141		break;
1142#endif /* CONFIG_64BIT */
1143
1144		/* Cannot handle 64-bit instructions in 32-bit kernel */
1145		goto sigill;
1146
1147	case sh_op:
1148		if (!access_ok(addr, 2))
1149			goto sigbus;
1150
1151		compute_return_epc(regs);
1152		value = regs->regs[insn.i_format.rt];
1153
1154		if (IS_ENABLED(CONFIG_EVA)) {
1155			if (uaccess_kernel())
1156				StoreHW(addr, value, res);
1157			else
1158				StoreHWE(addr, value, res);
1159		} else {
1160			StoreHW(addr, value, res);
1161		}
1162
1163		if (res)
1164			goto fault;
1165		break;
1166
1167	case sw_op:
1168		if (!access_ok(addr, 4))
1169			goto sigbus;
1170
1171		compute_return_epc(regs);
1172		value = regs->regs[insn.i_format.rt];
1173
1174		if (IS_ENABLED(CONFIG_EVA)) {
1175			if (uaccess_kernel())
1176				StoreW(addr, value, res);
1177			else
1178				StoreWE(addr, value, res);
1179		} else {
1180			StoreW(addr, value, res);
1181		}
1182
1183		if (res)
1184			goto fault;
1185		break;
1186
1187	case sd_op:
1188#ifdef CONFIG_64BIT
1189		/*
1190		 * A 32-bit kernel might be running on a 64-bit processor.  But
1191		 * if we're on a 32-bit processor and an i-cache incoherency
1192		 * or race makes us see a 64-bit instruction here the sdl/sdr
1193		 * would blow up, so for now we don't handle unaligned 64-bit
1194		 * instructions on 32-bit kernels.
1195		 */
1196		if (!access_ok(addr, 8))
1197			goto sigbus;
1198
1199		compute_return_epc(regs);
1200		value = regs->regs[insn.i_format.rt];
1201		StoreDW(addr, value, res);
1202		if (res)
1203			goto fault;
1204		break;
1205#endif /* CONFIG_64BIT */
1206
1207		/* Cannot handle 64-bit instructions in 32-bit kernel */
1208		goto sigill;
1209
1210#ifdef CONFIG_MIPS_FP_SUPPORT
1211
1212	case lwc1_op:
1213	case ldc1_op:
1214	case swc1_op:
1215	case sdc1_op:
1216	case cop1x_op: {
1217		void __user *fault_addr = NULL;
1218
1219		die_if_kernel("Unaligned FP access in kernel code", regs);
1220		BUG_ON(!used_math());
1221
1222		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
1223					       &fault_addr);
1224		own_fpu(1);	/* Restore FPU state. */
1225
1226		/* Signal if something went wrong. */
1227		process_fpemu_return(res, fault_addr, 0);
1228
1229		if (res == 0)
1230			break;
1231		return;
1232	}
1233#endif /* CONFIG_MIPS_FP_SUPPORT */
1234
1235#ifdef CONFIG_CPU_HAS_MSA
1236
1237	case msa_op: {
1238		unsigned int wd, preempted;
1239		enum msa_2b_fmt df;
1240		union fpureg *fpr;
1241
1242		if (!cpu_has_msa)
1243			goto sigill;
1244
1245		/*
1246		 * If we've reached this point then userland should have taken
1247		 * the MSA disabled exception & initialised vector context at
1248		 * some point in the past.
1249		 */
1250		BUG_ON(!thread_msa_context_live());
1251
1252		df = insn.msa_mi10_format.df;
1253		wd = insn.msa_mi10_format.wd;
1254		fpr = &current->thread.fpu.fpr[wd];
1255
1256		switch (insn.msa_mi10_format.func) {
1257		case msa_ld_op:
1258			if (!access_ok(addr, sizeof(*fpr)))
1259				goto sigbus;
1260
1261			do {
1262				/*
1263				 * If we have live MSA context keep track of
1264				 * whether we get preempted in order to avoid
1265				 * the register context we load being clobbered
1266				 * by the live context as it's saved during
1267				 * preemption. If we don't have live context
1268				 * then it can't be saved to clobber the value
1269				 * we load.
1270				 */
1271				preempted = test_thread_flag(TIF_USEDMSA);
1272
1273				res = __copy_from_user_inatomic(fpr, addr,
1274								sizeof(*fpr));
1275				if (res)
1276					goto fault;
1277
1278				/*
1279				 * Update the hardware register if it is in use
1280				 * by the task in this quantum, in order to
1281				 * avoid having to save & restore the whole
1282				 * vector context.
1283				 */
1284				preempt_disable();
1285				if (test_thread_flag(TIF_USEDMSA)) {
1286					write_msa_wr(wd, fpr, df);
1287					preempted = 0;
1288				}
1289				preempt_enable();
1290			} while (preempted);
1291			break;
1292
1293		case msa_st_op:
1294			if (!access_ok(addr, sizeof(*fpr)))
1295				goto sigbus;
1296
1297			/*
1298			 * Update from the hardware register if it is in use by
1299			 * the task in this quantum, in order to avoid having to
1300			 * save & restore the whole vector context.
1301			 */
1302			preempt_disable();
1303			if (test_thread_flag(TIF_USEDMSA))
1304				read_msa_wr(wd, fpr, df);
1305			preempt_enable();
1306
1307			res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
1308			if (res)
1309				goto fault;
1310			break;
1311
1312		default:
1313			goto sigbus;
1314		}
1315
1316		compute_return_epc(regs);
1317		break;
1318	}
1319#endif /* CONFIG_CPU_HAS_MSA */
1320
1321#ifndef CONFIG_CPU_MIPSR6
1322	/*
1323	 * COP2 is available to implementor for application specific use.
1324	 * It's up to applications to register a notifier chain and do
1325	 * whatever they have to do, including possible sending of signals.
1326	 *
1327	 * This instruction has been reallocated in Release 6
1328	 */
1329	case lwc2_op:
1330		cu2_notifier_call_chain(CU2_LWC2_OP, regs);
1331		break;
1332
1333	case ldc2_op:
1334		cu2_notifier_call_chain(CU2_LDC2_OP, regs);
1335		break;
1336
1337	case swc2_op:
1338		cu2_notifier_call_chain(CU2_SWC2_OP, regs);
1339		break;
1340
1341	case sdc2_op:
1342		cu2_notifier_call_chain(CU2_SDC2_OP, regs);
1343		break;
1344#endif
1345	default:
1346		/*
1347		 * Pheeee...  We encountered an yet unknown instruction or
1348		 * cache coherence problem.  Die sucker, die ...
1349		 */
1350		goto sigill;
1351	}
1352
1353#ifdef CONFIG_DEBUG_FS
1354	unaligned_instructions++;
1355#endif
1356
1357	return;
1358
1359fault:
1360	/* roll back jump/branch */
1361	regs->cp0_epc = origpc;
1362	regs->regs[31] = orig31;
1363	/* Did we have an exception handler installed? */
1364	if (fixup_exception(regs))
1365		return;
1366
1367	die_if_kernel("Unhandled kernel unaligned access", regs);
1368	force_sig(SIGSEGV);
1369
1370	return;
1371
1372sigbus:
1373	die_if_kernel("Unhandled kernel unaligned access", regs);
1374	force_sig(SIGBUS);
1375
1376	return;
1377
1378sigill:
1379	die_if_kernel
1380	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1381	force_sig(SIGILL);
1382}
1383
1384/* Recode table from 16-bit register notation to 32-bit GPR. */
1385const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
1386
1387/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
1388static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
1389
1390static void emulate_load_store_microMIPS(struct pt_regs *regs,
1391					 void __user *addr)
1392{
1393	unsigned long value;
1394	unsigned int res;
1395	int i;
1396	unsigned int reg = 0, rvar;
1397	unsigned long orig31;
1398	u16 __user *pc16;
1399	u16 halfword;
1400	unsigned int word;
1401	unsigned long origpc, contpc;
1402	union mips_instruction insn;
1403	struct mm_decoded_insn mminsn;
 
1404
1405	origpc = regs->cp0_epc;
1406	orig31 = regs->regs[31];
1407
1408	mminsn.micro_mips_mode = 1;
1409
1410	/*
1411	 * This load never faults.
1412	 */
1413	pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
1414	__get_user(halfword, pc16);
1415	pc16++;
1416	contpc = regs->cp0_epc + 2;
1417	word = ((unsigned int)halfword << 16);
1418	mminsn.pc_inc = 2;
1419
1420	if (!mm_insn_16bit(halfword)) {
1421		__get_user(halfword, pc16);
1422		pc16++;
1423		contpc = regs->cp0_epc + 4;
1424		mminsn.pc_inc = 4;
1425		word |= halfword;
1426	}
1427	mminsn.insn = word;
1428
1429	if (get_user(halfword, pc16))
1430		goto fault;
1431	mminsn.next_pc_inc = 2;
1432	word = ((unsigned int)halfword << 16);
1433
1434	if (!mm_insn_16bit(halfword)) {
1435		pc16++;
1436		if (get_user(halfword, pc16))
1437			goto fault;
1438		mminsn.next_pc_inc = 4;
1439		word |= halfword;
1440	}
1441	mminsn.next_insn = word;
1442
1443	insn = (union mips_instruction)(mminsn.insn);
1444	if (mm_isBranchInstr(regs, mminsn, &contpc))
1445		insn = (union mips_instruction)(mminsn.next_insn);
1446
1447	/*  Parse instruction to find what to do */
1448
1449	switch (insn.mm_i_format.opcode) {
1450
1451	case mm_pool32a_op:
1452		switch (insn.mm_x_format.func) {
1453		case mm_lwxs_op:
1454			reg = insn.mm_x_format.rd;
1455			goto loadW;
1456		}
1457
1458		goto sigbus;
1459
1460	case mm_pool32b_op:
1461		switch (insn.mm_m_format.func) {
1462		case mm_lwp_func:
1463			reg = insn.mm_m_format.rd;
1464			if (reg == 31)
1465				goto sigbus;
1466
1467			if (!access_ok(addr, 8))
1468				goto sigbus;
1469
1470			LoadW(addr, value, res);
1471			if (res)
1472				goto fault;
1473			regs->regs[reg] = value;
1474			addr += 4;
1475			LoadW(addr, value, res);
1476			if (res)
1477				goto fault;
1478			regs->regs[reg + 1] = value;
1479			goto success;
1480
1481		case mm_swp_func:
1482			reg = insn.mm_m_format.rd;
1483			if (reg == 31)
1484				goto sigbus;
1485
1486			if (!access_ok(addr, 8))
1487				goto sigbus;
1488
1489			value = regs->regs[reg];
1490			StoreW(addr, value, res);
1491			if (res)
1492				goto fault;
1493			addr += 4;
1494			value = regs->regs[reg + 1];
1495			StoreW(addr, value, res);
1496			if (res)
1497				goto fault;
1498			goto success;
1499
1500		case mm_ldp_func:
1501#ifdef CONFIG_64BIT
1502			reg = insn.mm_m_format.rd;
1503			if (reg == 31)
1504				goto sigbus;
1505
1506			if (!access_ok(addr, 16))
1507				goto sigbus;
1508
1509			LoadDW(addr, value, res);
1510			if (res)
1511				goto fault;
1512			regs->regs[reg] = value;
1513			addr += 8;
1514			LoadDW(addr, value, res);
1515			if (res)
1516				goto fault;
1517			regs->regs[reg + 1] = value;
1518			goto success;
1519#endif /* CONFIG_64BIT */
1520
1521			goto sigill;
1522
1523		case mm_sdp_func:
1524#ifdef CONFIG_64BIT
1525			reg = insn.mm_m_format.rd;
1526			if (reg == 31)
1527				goto sigbus;
1528
1529			if (!access_ok(addr, 16))
1530				goto sigbus;
1531
1532			value = regs->regs[reg];
1533			StoreDW(addr, value, res);
1534			if (res)
1535				goto fault;
1536			addr += 8;
1537			value = regs->regs[reg + 1];
1538			StoreDW(addr, value, res);
1539			if (res)
1540				goto fault;
1541			goto success;
1542#endif /* CONFIG_64BIT */
1543
1544			goto sigill;
1545
1546		case mm_lwm32_func:
1547			reg = insn.mm_m_format.rd;
1548			rvar = reg & 0xf;
1549			if ((rvar > 9) || !reg)
1550				goto sigill;
1551			if (reg & 0x10) {
1552				if (!access_ok(addr, 4 * (rvar + 1)))
1553					goto sigbus;
1554			} else {
1555				if (!access_ok(addr, 4 * rvar))
1556					goto sigbus;
1557			}
1558			if (rvar == 9)
1559				rvar = 8;
1560			for (i = 16; rvar; rvar--, i++) {
1561				LoadW(addr, value, res);
1562				if (res)
1563					goto fault;
1564				addr += 4;
1565				regs->regs[i] = value;
1566			}
1567			if ((reg & 0xf) == 9) {
1568				LoadW(addr, value, res);
1569				if (res)
1570					goto fault;
1571				addr += 4;
1572				regs->regs[30] = value;
1573			}
1574			if (reg & 0x10) {
1575				LoadW(addr, value, res);
1576				if (res)
1577					goto fault;
1578				regs->regs[31] = value;
1579			}
1580			goto success;
1581
1582		case mm_swm32_func:
1583			reg = insn.mm_m_format.rd;
1584			rvar = reg & 0xf;
1585			if ((rvar > 9) || !reg)
1586				goto sigill;
1587			if (reg & 0x10) {
1588				if (!access_ok(addr, 4 * (rvar + 1)))
1589					goto sigbus;
1590			} else {
1591				if (!access_ok(addr, 4 * rvar))
1592					goto sigbus;
1593			}
1594			if (rvar == 9)
1595				rvar = 8;
1596			for (i = 16; rvar; rvar--, i++) {
1597				value = regs->regs[i];
1598				StoreW(addr, value, res);
1599				if (res)
1600					goto fault;
1601				addr += 4;
1602			}
1603			if ((reg & 0xf) == 9) {
1604				value = regs->regs[30];
1605				StoreW(addr, value, res);
1606				if (res)
1607					goto fault;
1608				addr += 4;
1609			}
1610			if (reg & 0x10) {
1611				value = regs->regs[31];
1612				StoreW(addr, value, res);
1613				if (res)
1614					goto fault;
1615			}
1616			goto success;
1617
1618		case mm_ldm_func:
1619#ifdef CONFIG_64BIT
1620			reg = insn.mm_m_format.rd;
1621			rvar = reg & 0xf;
1622			if ((rvar > 9) || !reg)
1623				goto sigill;
1624			if (reg & 0x10) {
1625				if (!access_ok(addr, 8 * (rvar + 1)))
1626					goto sigbus;
1627			} else {
1628				if (!access_ok(addr, 8 * rvar))
1629					goto sigbus;
1630			}
1631			if (rvar == 9)
1632				rvar = 8;
1633
1634			for (i = 16; rvar; rvar--, i++) {
1635				LoadDW(addr, value, res);
1636				if (res)
1637					goto fault;
1638				addr += 4;
1639				regs->regs[i] = value;
1640			}
1641			if ((reg & 0xf) == 9) {
1642				LoadDW(addr, value, res);
1643				if (res)
1644					goto fault;
1645				addr += 8;
1646				regs->regs[30] = value;
1647			}
1648			if (reg & 0x10) {
1649				LoadDW(addr, value, res);
1650				if (res)
1651					goto fault;
1652				regs->regs[31] = value;
1653			}
1654			goto success;
1655#endif /* CONFIG_64BIT */
1656
1657			goto sigill;
1658
1659		case mm_sdm_func:
1660#ifdef CONFIG_64BIT
1661			reg = insn.mm_m_format.rd;
1662			rvar = reg & 0xf;
1663			if ((rvar > 9) || !reg)
1664				goto sigill;
1665			if (reg & 0x10) {
1666				if (!access_ok(addr, 8 * (rvar + 1)))
1667					goto sigbus;
1668			} else {
1669				if (!access_ok(addr, 8 * rvar))
1670					goto sigbus;
1671			}
1672			if (rvar == 9)
1673				rvar = 8;
1674
1675			for (i = 16; rvar; rvar--, i++) {
1676				value = regs->regs[i];
1677				StoreDW(addr, value, res);
1678				if (res)
1679					goto fault;
1680				addr += 8;
1681			}
1682			if ((reg & 0xf) == 9) {
1683				value = regs->regs[30];
1684				StoreDW(addr, value, res);
1685				if (res)
1686					goto fault;
1687				addr += 8;
1688			}
1689			if (reg & 0x10) {
1690				value = regs->regs[31];
1691				StoreDW(addr, value, res);
1692				if (res)
1693					goto fault;
1694			}
1695			goto success;
1696#endif /* CONFIG_64BIT */
1697
1698			goto sigill;
1699
1700			/*  LWC2, SWC2, LDC2, SDC2 are not serviced */
1701		}
1702
1703		goto sigbus;
1704
1705	case mm_pool32c_op:
1706		switch (insn.mm_m_format.func) {
1707		case mm_lwu_func:
1708			reg = insn.mm_m_format.rd;
1709			goto loadWU;
1710		}
1711
1712		/*  LL,SC,LLD,SCD are not serviced */
1713		goto sigbus;
1714
1715#ifdef CONFIG_MIPS_FP_SUPPORT
1716	case mm_pool32f_op:
1717		switch (insn.mm_x_format.func) {
1718		case mm_lwxc1_func:
1719		case mm_swxc1_func:
1720		case mm_ldxc1_func:
1721		case mm_sdxc1_func:
1722			goto fpu_emul;
1723		}
1724
1725		goto sigbus;
1726
1727	case mm_ldc132_op:
1728	case mm_sdc132_op:
1729	case mm_lwc132_op:
1730	case mm_swc132_op: {
1731		void __user *fault_addr = NULL;
1732
1733fpu_emul:
1734		/* roll back jump/branch */
1735		regs->cp0_epc = origpc;
1736		regs->regs[31] = orig31;
1737
1738		die_if_kernel("Unaligned FP access in kernel code", regs);
1739		BUG_ON(!used_math());
1740		BUG_ON(!is_fpu_owner());
1741
1742		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
1743					       &fault_addr);
1744		own_fpu(1);	/* restore FPU state */
1745
1746		/* If something went wrong, signal */
1747		process_fpemu_return(res, fault_addr, 0);
1748
1749		if (res == 0)
1750			goto success;
1751		return;
1752	}
1753#endif /* CONFIG_MIPS_FP_SUPPORT */
1754
1755	case mm_lh32_op:
1756		reg = insn.mm_i_format.rt;
1757		goto loadHW;
1758
1759	case mm_lhu32_op:
1760		reg = insn.mm_i_format.rt;
1761		goto loadHWU;
1762
1763	case mm_lw32_op:
1764		reg = insn.mm_i_format.rt;
1765		goto loadW;
1766
1767	case mm_sh32_op:
1768		reg = insn.mm_i_format.rt;
1769		goto storeHW;
1770
1771	case mm_sw32_op:
1772		reg = insn.mm_i_format.rt;
1773		goto storeW;
1774
1775	case mm_ld32_op:
1776		reg = insn.mm_i_format.rt;
1777		goto loadDW;
1778
1779	case mm_sd32_op:
1780		reg = insn.mm_i_format.rt;
1781		goto storeDW;
1782
1783	case mm_pool16c_op:
1784		switch (insn.mm16_m_format.func) {
1785		case mm_lwm16_op:
1786			reg = insn.mm16_m_format.rlist;
1787			rvar = reg + 1;
1788			if (!access_ok(addr, 4 * rvar))
1789				goto sigbus;
1790
1791			for (i = 16; rvar; rvar--, i++) {
1792				LoadW(addr, value, res);
1793				if (res)
1794					goto fault;
1795				addr += 4;
1796				regs->regs[i] = value;
1797			}
1798			LoadW(addr, value, res);
1799			if (res)
1800				goto fault;
1801			regs->regs[31] = value;
1802
1803			goto success;
1804
1805		case mm_swm16_op:
1806			reg = insn.mm16_m_format.rlist;
1807			rvar = reg + 1;
1808			if (!access_ok(addr, 4 * rvar))
1809				goto sigbus;
1810
1811			for (i = 16; rvar; rvar--, i++) {
1812				value = regs->regs[i];
1813				StoreW(addr, value, res);
1814				if (res)
1815					goto fault;
1816				addr += 4;
1817			}
1818			value = regs->regs[31];
1819			StoreW(addr, value, res);
1820			if (res)
1821				goto fault;
1822
1823			goto success;
1824
1825		}
1826
1827		goto sigbus;
1828
1829	case mm_lhu16_op:
1830		reg = reg16to32[insn.mm16_rb_format.rt];
1831		goto loadHWU;
1832
1833	case mm_lw16_op:
1834		reg = reg16to32[insn.mm16_rb_format.rt];
1835		goto loadW;
1836
1837	case mm_sh16_op:
1838		reg = reg16to32st[insn.mm16_rb_format.rt];
1839		goto storeHW;
1840
1841	case mm_sw16_op:
1842		reg = reg16to32st[insn.mm16_rb_format.rt];
1843		goto storeW;
1844
1845	case mm_lwsp16_op:
1846		reg = insn.mm16_r5_format.rt;
1847		goto loadW;
1848
1849	case mm_swsp16_op:
1850		reg = insn.mm16_r5_format.rt;
1851		goto storeW;
1852
1853	case mm_lwgp16_op:
1854		reg = reg16to32[insn.mm16_r3_format.rt];
1855		goto loadW;
1856
1857	default:
1858		goto sigill;
1859	}
1860
1861loadHW:
1862	if (!access_ok(addr, 2))
1863		goto sigbus;
1864
1865	LoadHW(addr, value, res);
1866	if (res)
1867		goto fault;
1868	regs->regs[reg] = value;
1869	goto success;
1870
1871loadHWU:
1872	if (!access_ok(addr, 2))
1873		goto sigbus;
1874
1875	LoadHWU(addr, value, res);
1876	if (res)
1877		goto fault;
1878	regs->regs[reg] = value;
1879	goto success;
1880
1881loadW:
1882	if (!access_ok(addr, 4))
1883		goto sigbus;
1884
1885	LoadW(addr, value, res);
1886	if (res)
1887		goto fault;
1888	regs->regs[reg] = value;
1889	goto success;
1890
1891loadWU:
1892#ifdef CONFIG_64BIT
1893	/*
1894	 * A 32-bit kernel might be running on a 64-bit processor.  But
1895	 * if we're on a 32-bit processor and an i-cache incoherency
1896	 * or race makes us see a 64-bit instruction here the sdl/sdr
1897	 * would blow up, so for now we don't handle unaligned 64-bit
1898	 * instructions on 32-bit kernels.
1899	 */
1900	if (!access_ok(addr, 4))
1901		goto sigbus;
1902
1903	LoadWU(addr, value, res);
1904	if (res)
1905		goto fault;
1906	regs->regs[reg] = value;
1907	goto success;
1908#endif /* CONFIG_64BIT */
1909
1910	/* Cannot handle 64-bit instructions in 32-bit kernel */
1911	goto sigill;
1912
1913loadDW:
1914#ifdef CONFIG_64BIT
1915	/*
1916	 * A 32-bit kernel might be running on a 64-bit processor.  But
1917	 * if we're on a 32-bit processor and an i-cache incoherency
1918	 * or race makes us see a 64-bit instruction here the sdl/sdr
1919	 * would blow up, so for now we don't handle unaligned 64-bit
1920	 * instructions on 32-bit kernels.
1921	 */
1922	if (!access_ok(addr, 8))
1923		goto sigbus;
1924
1925	LoadDW(addr, value, res);
1926	if (res)
1927		goto fault;
1928	regs->regs[reg] = value;
1929	goto success;
1930#endif /* CONFIG_64BIT */
1931
1932	/* Cannot handle 64-bit instructions in 32-bit kernel */
1933	goto sigill;
1934
1935storeHW:
1936	if (!access_ok(addr, 2))
1937		goto sigbus;
1938
1939	value = regs->regs[reg];
1940	StoreHW(addr, value, res);
1941	if (res)
1942		goto fault;
1943	goto success;
1944
1945storeW:
1946	if (!access_ok(addr, 4))
1947		goto sigbus;
1948
1949	value = regs->regs[reg];
1950	StoreW(addr, value, res);
1951	if (res)
1952		goto fault;
1953	goto success;
1954
1955storeDW:
1956#ifdef CONFIG_64BIT
1957	/*
1958	 * A 32-bit kernel might be running on a 64-bit processor.  But
1959	 * if we're on a 32-bit processor and an i-cache incoherency
1960	 * or race makes us see a 64-bit instruction here the sdl/sdr
1961	 * would blow up, so for now we don't handle unaligned 64-bit
1962	 * instructions on 32-bit kernels.
1963	 */
1964	if (!access_ok(addr, 8))
1965		goto sigbus;
1966
1967	value = regs->regs[reg];
1968	StoreDW(addr, value, res);
1969	if (res)
1970		goto fault;
1971	goto success;
1972#endif /* CONFIG_64BIT */
1973
1974	/* Cannot handle 64-bit instructions in 32-bit kernel */
1975	goto sigill;
1976
1977success:
1978	regs->cp0_epc = contpc;	/* advance or branch */
1979
1980#ifdef CONFIG_DEBUG_FS
1981	unaligned_instructions++;
1982#endif
1983	return;
1984
1985fault:
1986	/* roll back jump/branch */
1987	regs->cp0_epc = origpc;
1988	regs->regs[31] = orig31;
1989	/* Did we have an exception handler installed? */
1990	if (fixup_exception(regs))
1991		return;
1992
1993	die_if_kernel("Unhandled kernel unaligned access", regs);
1994	force_sig(SIGSEGV);
1995
1996	return;
1997
1998sigbus:
1999	die_if_kernel("Unhandled kernel unaligned access", regs);
2000	force_sig(SIGBUS);
2001
2002	return;
2003
2004sigill:
2005	die_if_kernel
2006	    ("Unhandled kernel unaligned access or invalid instruction", regs);
2007	force_sig(SIGILL);
2008}
2009
2010static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
2011{
2012	unsigned long value;
2013	unsigned int res;
2014	int reg;
2015	unsigned long orig31;
2016	u16 __user *pc16;
2017	unsigned long origpc;
2018	union mips16e_instruction mips16inst, oldinst;
2019	unsigned int opcode;
2020	int extended = 0;
 
2021
2022	origpc = regs->cp0_epc;
2023	orig31 = regs->regs[31];
2024	pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
2025	/*
2026	 * This load never faults.
2027	 */
2028	__get_user(mips16inst.full, pc16);
2029	oldinst = mips16inst;
2030
2031	/* skip EXTEND instruction */
2032	if (mips16inst.ri.opcode == MIPS16e_extend_op) {
2033		extended = 1;
2034		pc16++;
2035		__get_user(mips16inst.full, pc16);
2036	} else if (delay_slot(regs)) {
2037		/*  skip jump instructions */
2038		/*  JAL/JALX are 32 bits but have OPCODE in first short int */
2039		if (mips16inst.ri.opcode == MIPS16e_jal_op)
2040			pc16++;
2041		pc16++;
2042		if (get_user(mips16inst.full, pc16))
2043			goto sigbus;
2044	}
2045
2046	opcode = mips16inst.ri.opcode;
2047	switch (opcode) {
2048	case MIPS16e_i64_op:	/* I64 or RI64 instruction */
2049		switch (mips16inst.i64.func) {	/* I64/RI64 func field check */
2050		case MIPS16e_ldpc_func:
2051		case MIPS16e_ldsp_func:
2052			reg = reg16to32[mips16inst.ri64.ry];
2053			goto loadDW;
2054
2055		case MIPS16e_sdsp_func:
2056			reg = reg16to32[mips16inst.ri64.ry];
2057			goto writeDW;
2058
2059		case MIPS16e_sdrasp_func:
2060			reg = 29;	/* GPRSP */
2061			goto writeDW;
2062		}
2063
2064		goto sigbus;
2065
2066	case MIPS16e_swsp_op:
2067		reg = reg16to32[mips16inst.ri.rx];
2068		if (extended && cpu_has_mips16e2)
2069			switch (mips16inst.ri.imm >> 5) {
2070			case 0:		/* SWSP */
2071			case 1:		/* SWGP */
2072				break;
2073			case 2:		/* SHGP */
2074				opcode = MIPS16e_sh_op;
2075				break;
2076			default:
2077				goto sigbus;
2078			}
2079		break;
2080
2081	case MIPS16e_lwpc_op:
2082		reg = reg16to32[mips16inst.ri.rx];
2083		break;
2084
2085	case MIPS16e_lwsp_op:
2086		reg = reg16to32[mips16inst.ri.rx];
2087		if (extended && cpu_has_mips16e2)
2088			switch (mips16inst.ri.imm >> 5) {
2089			case 0:		/* LWSP */
2090			case 1:		/* LWGP */
2091				break;
2092			case 2:		/* LHGP */
2093				opcode = MIPS16e_lh_op;
2094				break;
2095			case 4:		/* LHUGP */
2096				opcode = MIPS16e_lhu_op;
2097				break;
2098			default:
2099				goto sigbus;
2100			}
2101		break;
2102
2103	case MIPS16e_i8_op:
2104		if (mips16inst.i8.func != MIPS16e_swrasp_func)
2105			goto sigbus;
2106		reg = 29;	/* GPRSP */
2107		break;
2108
2109	default:
2110		reg = reg16to32[mips16inst.rri.ry];
2111		break;
2112	}
2113
2114	switch (opcode) {
2115
2116	case MIPS16e_lb_op:
2117	case MIPS16e_lbu_op:
2118	case MIPS16e_sb_op:
2119		goto sigbus;
2120
2121	case MIPS16e_lh_op:
2122		if (!access_ok(addr, 2))
2123			goto sigbus;
2124
2125		LoadHW(addr, value, res);
2126		if (res)
2127			goto fault;
2128		MIPS16e_compute_return_epc(regs, &oldinst);
2129		regs->regs[reg] = value;
2130		break;
2131
2132	case MIPS16e_lhu_op:
2133		if (!access_ok(addr, 2))
2134			goto sigbus;
2135
2136		LoadHWU(addr, value, res);
2137		if (res)
2138			goto fault;
2139		MIPS16e_compute_return_epc(regs, &oldinst);
2140		regs->regs[reg] = value;
2141		break;
2142
2143	case MIPS16e_lw_op:
2144	case MIPS16e_lwpc_op:
2145	case MIPS16e_lwsp_op:
2146		if (!access_ok(addr, 4))
2147			goto sigbus;
2148
2149		LoadW(addr, value, res);
2150		if (res)
2151			goto fault;
2152		MIPS16e_compute_return_epc(regs, &oldinst);
2153		regs->regs[reg] = value;
2154		break;
2155
2156	case MIPS16e_lwu_op:
2157#ifdef CONFIG_64BIT
2158		/*
2159		 * A 32-bit kernel might be running on a 64-bit processor.  But
2160		 * if we're on a 32-bit processor and an i-cache incoherency
2161		 * or race makes us see a 64-bit instruction here the sdl/sdr
2162		 * would blow up, so for now we don't handle unaligned 64-bit
2163		 * instructions on 32-bit kernels.
2164		 */
2165		if (!access_ok(addr, 4))
2166			goto sigbus;
2167
2168		LoadWU(addr, value, res);
2169		if (res)
2170			goto fault;
2171		MIPS16e_compute_return_epc(regs, &oldinst);
2172		regs->regs[reg] = value;
2173		break;
2174#endif /* CONFIG_64BIT */
2175
2176		/* Cannot handle 64-bit instructions in 32-bit kernel */
2177		goto sigill;
2178
2179	case MIPS16e_ld_op:
2180loadDW:
2181#ifdef CONFIG_64BIT
2182		/*
2183		 * A 32-bit kernel might be running on a 64-bit processor.  But
2184		 * if we're on a 32-bit processor and an i-cache incoherency
2185		 * or race makes us see a 64-bit instruction here the sdl/sdr
2186		 * would blow up, so for now we don't handle unaligned 64-bit
2187		 * instructions on 32-bit kernels.
2188		 */
2189		if (!access_ok(addr, 8))
2190			goto sigbus;
2191
2192		LoadDW(addr, value, res);
2193		if (res)
2194			goto fault;
2195		MIPS16e_compute_return_epc(regs, &oldinst);
2196		regs->regs[reg] = value;
2197		break;
2198#endif /* CONFIG_64BIT */
2199
2200		/* Cannot handle 64-bit instructions in 32-bit kernel */
2201		goto sigill;
2202
2203	case MIPS16e_sh_op:
2204		if (!access_ok(addr, 2))
2205			goto sigbus;
2206
2207		MIPS16e_compute_return_epc(regs, &oldinst);
2208		value = regs->regs[reg];
2209		StoreHW(addr, value, res);
2210		if (res)
2211			goto fault;
2212		break;
2213
2214	case MIPS16e_sw_op:
2215	case MIPS16e_swsp_op:
2216	case MIPS16e_i8_op:	/* actually - MIPS16e_swrasp_func */
2217		if (!access_ok(addr, 4))
2218			goto sigbus;
2219
2220		MIPS16e_compute_return_epc(regs, &oldinst);
2221		value = regs->regs[reg];
2222		StoreW(addr, value, res);
2223		if (res)
2224			goto fault;
2225		break;
2226
2227	case MIPS16e_sd_op:
2228writeDW:
2229#ifdef CONFIG_64BIT
2230		/*
2231		 * A 32-bit kernel might be running on a 64-bit processor.  But
2232		 * if we're on a 32-bit processor and an i-cache incoherency
2233		 * or race makes us see a 64-bit instruction here the sdl/sdr
2234		 * would blow up, so for now we don't handle unaligned 64-bit
2235		 * instructions on 32-bit kernels.
2236		 */
2237		if (!access_ok(addr, 8))
2238			goto sigbus;
2239
2240		MIPS16e_compute_return_epc(regs, &oldinst);
2241		value = regs->regs[reg];
2242		StoreDW(addr, value, res);
2243		if (res)
2244			goto fault;
2245		break;
2246#endif /* CONFIG_64BIT */
2247
2248		/* Cannot handle 64-bit instructions in 32-bit kernel */
2249		goto sigill;
2250
2251	default:
2252		/*
2253		 * Pheeee...  We encountered an yet unknown instruction or
2254		 * cache coherence problem.  Die sucker, die ...
2255		 */
2256		goto sigill;
2257	}
2258
2259#ifdef CONFIG_DEBUG_FS
2260	unaligned_instructions++;
2261#endif
2262
2263	return;
2264
2265fault:
2266	/* roll back jump/branch */
2267	regs->cp0_epc = origpc;
2268	regs->regs[31] = orig31;
2269	/* Did we have an exception handler installed? */
2270	if (fixup_exception(regs))
2271		return;
2272
2273	die_if_kernel("Unhandled kernel unaligned access", regs);
2274	force_sig(SIGSEGV);
2275
2276	return;
2277
2278sigbus:
2279	die_if_kernel("Unhandled kernel unaligned access", regs);
2280	force_sig(SIGBUS);
2281
2282	return;
2283
2284sigill:
2285	die_if_kernel
2286	    ("Unhandled kernel unaligned access or invalid instruction", regs);
2287	force_sig(SIGILL);
2288}
2289
2290asmlinkage void do_ade(struct pt_regs *regs)
2291{
2292	enum ctx_state prev_state;
2293	unsigned int __user *pc;
2294	mm_segment_t seg;
2295
2296	prev_state = exception_enter();
2297	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
2298			1, regs, regs->cp0_badvaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2299	/*
2300	 * Did we catch a fault trying to load an instruction?
2301	 */
2302	if (regs->cp0_badvaddr == regs->cp0_epc)
2303		goto sigbus;
2304
2305	if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
2306		goto sigbus;
2307	if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
2308		goto sigbus;
2309
2310	/*
2311	 * Do branch emulation only if we didn't forward the exception.
2312	 * This is all so but ugly ...
2313	 */
2314
2315	/*
2316	 * Are we running in microMIPS mode?
2317	 */
2318	if (get_isa16_mode(regs->cp0_epc)) {
2319		/*
2320		 * Did we catch a fault trying to load an instruction in
2321		 * 16-bit mode?
2322		 */
2323		if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
2324			goto sigbus;
2325		if (unaligned_action == UNALIGNED_ACTION_SHOW)
2326			show_registers(regs);
2327
2328		if (cpu_has_mmips) {
2329			seg = get_fs();
2330			if (!user_mode(regs))
2331				set_fs(KERNEL_DS);
2332			emulate_load_store_microMIPS(regs,
2333				(void __user *)regs->cp0_badvaddr);
2334			set_fs(seg);
2335
2336			return;
2337		}
2338
2339		if (cpu_has_mips16) {
2340			seg = get_fs();
2341			if (!user_mode(regs))
2342				set_fs(KERNEL_DS);
2343			emulate_load_store_MIPS16e(regs,
2344				(void __user *)regs->cp0_badvaddr);
2345			set_fs(seg);
2346
2347			return;
2348		}
2349
2350		goto sigbus;
2351	}
2352
2353	if (unaligned_action == UNALIGNED_ACTION_SHOW)
2354		show_registers(regs);
2355	pc = (unsigned int __user *)exception_epc(regs);
2356
2357	seg = get_fs();
2358	if (!user_mode(regs))
2359		set_fs(KERNEL_DS);
2360	emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
2361	set_fs(seg);
2362
2363	return;
2364
2365sigbus:
2366	die_if_kernel("Kernel unaligned instruction access", regs);
2367	force_sig(SIGBUS);
2368
2369	/*
2370	 * XXX On return from the signal handler we should advance the epc
2371	 */
2372	exception_exit(prev_state);
2373}
2374
2375#ifdef CONFIG_DEBUG_FS
2376static int __init debugfs_unaligned(void)
2377{
2378	debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
2379			   &unaligned_instructions);
2380	debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
2381			   mips_debugfs_dir, &unaligned_action);
2382	return 0;
2383}
2384arch_initcall(debugfs_unaligned);
2385#endif
v6.13.7
   1/*
   2 * Handle unaligned accesses by emulation.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Copyright (C) 2014 Imagination Technologies Ltd.
  11 *
  12 * This file contains exception handler for address error exception with the
  13 * special capability to execute faulting instructions in software.  The
  14 * handler does not try to handle the case when the program counter points
  15 * to an address not aligned to a word boundary.
  16 *
  17 * Putting data to unaligned addresses is a bad practice even on Intel where
  18 * only the performance is affected.  Much worse is that such code is non-
  19 * portable.  Due to several programs that die on MIPS due to alignment
  20 * problems I decided to implement this handler anyway though I originally
  21 * didn't intend to do this at all for user code.
  22 *
  23 * For now I enable fixing of address errors by default to make life easier.
  24 * I however intend to disable this somewhen in the future when the alignment
  25 * problems with user programs have been fixed.	 For programmers this is the
  26 * right way to go.
  27 *
  28 * Fixing address errors is a per process option.  The option is inherited
  29 * across fork(2) and execve(2) calls.	If you really want to use the
  30 * option in your user programs - I discourage the use of the software
  31 * emulation strongly - use the following code in your userland stuff:
  32 *
  33 * #include <sys/sysmips.h>
  34 *
  35 * ...
  36 * sysmips(MIPS_FIXADE, x);
  37 * ...
  38 *
  39 * The argument x is 0 for disabling software emulation, enabled otherwise.
  40 *
  41 * Below a little program to play around with this feature.
  42 *
  43 * #include <stdio.h>
  44 * #include <sys/sysmips.h>
  45 *
  46 * struct foo {
  47 *	   unsigned char bar[8];
  48 * };
  49 *
  50 * main(int argc, char *argv[])
  51 * {
  52 *	   struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
  53 *	   unsigned int *p = (unsigned int *) (x.bar + 3);
  54 *	   int i;
  55 *
  56 *	   if (argc > 1)
  57 *		   sysmips(MIPS_FIXADE, atoi(argv[1]));
  58 *
  59 *	   printf("*p = %08lx\n", *p);
  60 *
  61 *	   *p = 0xdeadface;
  62 *
  63 *	   for(i = 0; i <= 7; i++)
  64 *	   printf("%02x ", x.bar[i]);
  65 *	   printf("\n");
  66 * }
  67 *
  68 * Coprocessor loads are not supported; I think this case is unimportant
  69 * in the practice.
  70 *
  71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
  72 *	 exception for the R6000.
  73 *	 A store crossing a page boundary might be executed only partially.
  74 *	 Undo the partial store in this case.
  75 */
  76#include <linux/context_tracking.h>
  77#include <linux/mm.h>
  78#include <linux/signal.h>
  79#include <linux/smp.h>
  80#include <linux/sched.h>
  81#include <linux/debugfs.h>
  82#include <linux/perf_event.h>
  83
  84#include <asm/asm.h>
  85#include <asm/branch.h>
  86#include <asm/byteorder.h>
  87#include <asm/cop2.h>
  88#include <asm/debug.h>
  89#include <asm/fpu.h>
  90#include <asm/fpu_emulator.h>
  91#include <asm/inst.h>
  92#include <asm/unaligned-emul.h>
  93#include <asm/mmu_context.h>
  94#include <asm/traps.h>
  95#include <linux/uaccess.h>
  96
  97#include "access-helper.h"
 
  98
  99enum {
 100	UNALIGNED_ACTION_QUIET,
 101	UNALIGNED_ACTION_SIGNAL,
 102	UNALIGNED_ACTION_SHOW,
 103};
 104#ifdef CONFIG_DEBUG_FS
 105static u32 unaligned_instructions;
 106static u32 unaligned_action;
 107#else
 108#define unaligned_action UNALIGNED_ACTION_QUIET
 109#endif
 110extern void show_registers(struct pt_regs *regs);
 111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112static void emulate_load_store_insn(struct pt_regs *regs,
 113	void __user *addr, unsigned int *pc)
 114{
 115	unsigned long origpc, orig31, value;
 116	union mips_instruction insn;
 117	unsigned int res;
 118	bool user = user_mode(regs);
 119
 
 120	origpc = (unsigned long)pc;
 121	orig31 = regs->regs[31];
 122
 123	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 124
 125	/*
 126	 * This load never faults.
 127	 */
 128	__get_inst32(&insn.word, pc, user);
 129
 130	switch (insn.i_format.opcode) {
 131		/*
 132		 * These are instructions that a compiler doesn't generate.  We
 133		 * can assume therefore that the code is MIPS-aware and
 134		 * really buggy.  Emulating these instructions would break the
 135		 * semantics anyway.
 136		 */
 137	case ll_op:
 138	case lld_op:
 139	case sc_op:
 140	case scd_op:
 141
 142		/*
 143		 * For these instructions the only way to create an address
 144		 * error is an attempted access to kernel/supervisor address
 145		 * space.
 146		 */
 147	case ldl_op:
 148	case ldr_op:
 149	case lwl_op:
 150	case lwr_op:
 151	case sdl_op:
 152	case sdr_op:
 153	case swl_op:
 154	case swr_op:
 155	case lb_op:
 156	case lbu_op:
 157	case sb_op:
 158		goto sigbus;
 159
 160		/*
 161		 * The remaining opcodes are the ones that are really of
 162		 * interest.
 163		 */
 164#ifdef CONFIG_MACH_INGENIC
 165	case spec2_op:
 166		if (insn.mxu_lx_format.func != mxu_lx_op)
 167			goto sigbus; /* other MXU instructions we don't care */
 168
 169		switch (insn.mxu_lx_format.op) {
 170		case mxu_lxw_op:
 171			if (user && !access_ok(addr, 4))
 172				goto sigbus;
 173			LoadW(addr, value, res);
 174			if (res)
 175				goto fault;
 176			compute_return_epc(regs);
 177			regs->regs[insn.mxu_lx_format.rd] = value;
 178			break;
 179		case mxu_lxh_op:
 180			if (user && !access_ok(addr, 2))
 181				goto sigbus;
 182			LoadHW(addr, value, res);
 183			if (res)
 184				goto fault;
 185			compute_return_epc(regs);
 186			regs->regs[insn.dsp_format.rd] = value;
 187			break;
 188		case mxu_lxhu_op:
 189			if (user && !access_ok(addr, 2))
 190				goto sigbus;
 191			LoadHWU(addr, value, res);
 192			if (res)
 193				goto fault;
 194			compute_return_epc(regs);
 195			regs->regs[insn.dsp_format.rd] = value;
 196			break;
 197		case mxu_lxb_op:
 198		case mxu_lxbu_op:
 199			goto sigbus;
 200		default:
 201			goto sigill;
 202		}
 203		break;
 204#endif
 205	case spec3_op:
 206		if (insn.dsp_format.func == lx_op) {
 207			switch (insn.dsp_format.op) {
 208			case lwx_op:
 209				if (user && !access_ok(addr, 4))
 210					goto sigbus;
 211				LoadW(addr, value, res);
 212				if (res)
 213					goto fault;
 214				compute_return_epc(regs);
 215				regs->regs[insn.dsp_format.rd] = value;
 216				break;
 217			case lhx_op:
 218				if (user && !access_ok(addr, 2))
 219					goto sigbus;
 220				LoadHW(addr, value, res);
 221				if (res)
 222					goto fault;
 223				compute_return_epc(regs);
 224				regs->regs[insn.dsp_format.rd] = value;
 225				break;
 226			default:
 227				goto sigill;
 228			}
 229		}
 230#ifdef CONFIG_EVA
 231		else {
 232			/*
 233			 * we can land here only from kernel accessing user
 234			 * memory, so we need to "switch" the address limit to
 235			 * user space, so that address check can work properly.
 236			 */
 
 
 237			switch (insn.spec3_format.func) {
 238			case lhe_op:
 239				if (!access_ok(addr, 2))
 
 240					goto sigbus;
 
 241				LoadHWE(addr, value, res);
 242				if (res)
 
 243					goto fault;
 
 244				compute_return_epc(regs);
 245				regs->regs[insn.spec3_format.rt] = value;
 246				break;
 247			case lwe_op:
 248				if (!access_ok(addr, 4))
 
 249					goto sigbus;
 
 250				LoadWE(addr, value, res);
 251				if (res)
 
 252					goto fault;
 
 253				compute_return_epc(regs);
 254				regs->regs[insn.spec3_format.rt] = value;
 255				break;
 256			case lhue_op:
 257				if (!access_ok(addr, 2))
 
 258					goto sigbus;
 
 259				LoadHWUE(addr, value, res);
 260				if (res)
 
 261					goto fault;
 
 262				compute_return_epc(regs);
 263				regs->regs[insn.spec3_format.rt] = value;
 264				break;
 265			case she_op:
 266				if (!access_ok(addr, 2))
 
 267					goto sigbus;
 
 268				compute_return_epc(regs);
 269				value = regs->regs[insn.spec3_format.rt];
 270				StoreHWE(addr, value, res);
 271				if (res)
 
 272					goto fault;
 
 273				break;
 274			case swe_op:
 275				if (!access_ok(addr, 4))
 
 276					goto sigbus;
 
 277				compute_return_epc(regs);
 278				value = regs->regs[insn.spec3_format.rt];
 279				StoreWE(addr, value, res);
 280				if (res)
 
 281					goto fault;
 
 282				break;
 283			default:
 
 284				goto sigill;
 285			}
 
 286		}
 287#endif
 288		break;
 289	case lh_op:
 290		if (user && !access_ok(addr, 2))
 291			goto sigbus;
 292
 293		if (IS_ENABLED(CONFIG_EVA) && user)
 294			LoadHWE(addr, value, res);
 295		else
 
 
 
 296			LoadHW(addr, value, res);
 
 297
 298		if (res)
 299			goto fault;
 300		compute_return_epc(regs);
 301		regs->regs[insn.i_format.rt] = value;
 302		break;
 303
 304	case lw_op:
 305		if (user && !access_ok(addr, 4))
 306			goto sigbus;
 307
 308		if (IS_ENABLED(CONFIG_EVA) && user)
 309			LoadWE(addr, value, res);
 310		else
 
 
 
 311			LoadW(addr, value, res);
 
 312
 313		if (res)
 314			goto fault;
 315		compute_return_epc(regs);
 316		regs->regs[insn.i_format.rt] = value;
 317		break;
 318
 319	case lhu_op:
 320		if (user && !access_ok(addr, 2))
 321			goto sigbus;
 322
 323		if (IS_ENABLED(CONFIG_EVA) && user)
 324			LoadHWUE(addr, value, res);
 325		else
 
 
 
 326			LoadHWU(addr, value, res);
 
 327
 328		if (res)
 329			goto fault;
 330		compute_return_epc(regs);
 331		regs->regs[insn.i_format.rt] = value;
 332		break;
 333
 334	case lwu_op:
 335#ifdef CONFIG_64BIT
 336		/*
 337		 * A 32-bit kernel might be running on a 64-bit processor.  But
 338		 * if we're on a 32-bit processor and an i-cache incoherency
 339		 * or race makes us see a 64-bit instruction here the sdl/sdr
 340		 * would blow up, so for now we don't handle unaligned 64-bit
 341		 * instructions on 32-bit kernels.
 342		 */
 343		if (user && !access_ok(addr, 4))
 344			goto sigbus;
 345
 346		LoadWU(addr, value, res);
 347		if (res)
 348			goto fault;
 349		compute_return_epc(regs);
 350		regs->regs[insn.i_format.rt] = value;
 351		break;
 352#endif /* CONFIG_64BIT */
 353
 354		/* Cannot handle 64-bit instructions in 32-bit kernel */
 355		goto sigill;
 356
 357	case ld_op:
 358#ifdef CONFIG_64BIT
 359		/*
 360		 * A 32-bit kernel might be running on a 64-bit processor.  But
 361		 * if we're on a 32-bit processor and an i-cache incoherency
 362		 * or race makes us see a 64-bit instruction here the sdl/sdr
 363		 * would blow up, so for now we don't handle unaligned 64-bit
 364		 * instructions on 32-bit kernels.
 365		 */
 366		if (user && !access_ok(addr, 8))
 367			goto sigbus;
 368
 369		LoadDW(addr, value, res);
 370		if (res)
 371			goto fault;
 372		compute_return_epc(regs);
 373		regs->regs[insn.i_format.rt] = value;
 374		break;
 375#endif /* CONFIG_64BIT */
 376
 377		/* Cannot handle 64-bit instructions in 32-bit kernel */
 378		goto sigill;
 379
 380	case sh_op:
 381		if (user && !access_ok(addr, 2))
 382			goto sigbus;
 383
 384		compute_return_epc(regs);
 385		value = regs->regs[insn.i_format.rt];
 386
 387		if (IS_ENABLED(CONFIG_EVA) && user)
 388			StoreHWE(addr, value, res);
 389		else
 
 
 
 390			StoreHW(addr, value, res);
 
 391
 392		if (res)
 393			goto fault;
 394		break;
 395
 396	case sw_op:
 397		if (user && !access_ok(addr, 4))
 398			goto sigbus;
 399
 400		compute_return_epc(regs);
 401		value = regs->regs[insn.i_format.rt];
 402
 403		if (IS_ENABLED(CONFIG_EVA) && user)
 404			StoreWE(addr, value, res);
 405		else
 
 
 
 406			StoreW(addr, value, res);
 
 407
 408		if (res)
 409			goto fault;
 410		break;
 411
 412	case sd_op:
 413#ifdef CONFIG_64BIT
 414		/*
 415		 * A 32-bit kernel might be running on a 64-bit processor.  But
 416		 * if we're on a 32-bit processor and an i-cache incoherency
 417		 * or race makes us see a 64-bit instruction here the sdl/sdr
 418		 * would blow up, so for now we don't handle unaligned 64-bit
 419		 * instructions on 32-bit kernels.
 420		 */
 421		if (user && !access_ok(addr, 8))
 422			goto sigbus;
 423
 424		compute_return_epc(regs);
 425		value = regs->regs[insn.i_format.rt];
 426		StoreDW(addr, value, res);
 427		if (res)
 428			goto fault;
 429		break;
 430#endif /* CONFIG_64BIT */
 431
 432		/* Cannot handle 64-bit instructions in 32-bit kernel */
 433		goto sigill;
 434
 435#ifdef CONFIG_MIPS_FP_SUPPORT
 436
 437	case lwc1_op:
 438	case ldc1_op:
 439	case swc1_op:
 440	case sdc1_op:
 441	case cop1x_op: {
 442		void __user *fault_addr = NULL;
 443
 444		die_if_kernel("Unaligned FP access in kernel code", regs);
 445		BUG_ON(!used_math());
 446
 447		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 448					       &fault_addr);
 449		own_fpu(1);	/* Restore FPU state. */
 450
 451		/* Signal if something went wrong. */
 452		process_fpemu_return(res, fault_addr, 0);
 453
 454		if (res == 0)
 455			break;
 456		return;
 457	}
 458#endif /* CONFIG_MIPS_FP_SUPPORT */
 459
 460#ifdef CONFIG_CPU_HAS_MSA
 461
 462	case msa_op: {
 463		unsigned int wd, preempted;
 464		enum msa_2b_fmt df;
 465		union fpureg *fpr;
 466
 467		if (!cpu_has_msa)
 468			goto sigill;
 469
 470		/*
 471		 * If we've reached this point then userland should have taken
 472		 * the MSA disabled exception & initialised vector context at
 473		 * some point in the past.
 474		 */
 475		BUG_ON(!thread_msa_context_live());
 476
 477		df = insn.msa_mi10_format.df;
 478		wd = insn.msa_mi10_format.wd;
 479		fpr = &current->thread.fpu.fpr[wd];
 480
 481		switch (insn.msa_mi10_format.func) {
 482		case msa_ld_op:
 483			if (!access_ok(addr, sizeof(*fpr)))
 484				goto sigbus;
 485
 486			do {
 487				/*
 488				 * If we have live MSA context keep track of
 489				 * whether we get preempted in order to avoid
 490				 * the register context we load being clobbered
 491				 * by the live context as it's saved during
 492				 * preemption. If we don't have live context
 493				 * then it can't be saved to clobber the value
 494				 * we load.
 495				 */
 496				preempted = test_thread_flag(TIF_USEDMSA);
 497
 498				res = __copy_from_user_inatomic(fpr, addr,
 499								sizeof(*fpr));
 500				if (res)
 501					goto fault;
 502
 503				/*
 504				 * Update the hardware register if it is in use
 505				 * by the task in this quantum, in order to
 506				 * avoid having to save & restore the whole
 507				 * vector context.
 508				 */
 509				preempt_disable();
 510				if (test_thread_flag(TIF_USEDMSA)) {
 511					write_msa_wr(wd, fpr, df);
 512					preempted = 0;
 513				}
 514				preempt_enable();
 515			} while (preempted);
 516			break;
 517
 518		case msa_st_op:
 519			if (!access_ok(addr, sizeof(*fpr)))
 520				goto sigbus;
 521
 522			/*
 523			 * Update from the hardware register if it is in use by
 524			 * the task in this quantum, in order to avoid having to
 525			 * save & restore the whole vector context.
 526			 */
 527			preempt_disable();
 528			if (test_thread_flag(TIF_USEDMSA))
 529				read_msa_wr(wd, fpr, df);
 530			preempt_enable();
 531
 532			res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
 533			if (res)
 534				goto fault;
 535			break;
 536
 537		default:
 538			goto sigbus;
 539		}
 540
 541		compute_return_epc(regs);
 542		break;
 543	}
 544#endif /* CONFIG_CPU_HAS_MSA */
 545
 546#ifndef CONFIG_CPU_MIPSR6
 547	/*
 548	 * COP2 is available to implementor for application specific use.
 549	 * It's up to applications to register a notifier chain and do
 550	 * whatever they have to do, including possible sending of signals.
 551	 *
 552	 * This instruction has been reallocated in Release 6
 553	 */
 554	case lwc2_op:
 555		cu2_notifier_call_chain(CU2_LWC2_OP, regs);
 556		break;
 557
 558	case ldc2_op:
 559		cu2_notifier_call_chain(CU2_LDC2_OP, regs);
 560		break;
 561
 562	case swc2_op:
 563		cu2_notifier_call_chain(CU2_SWC2_OP, regs);
 564		break;
 565
 566	case sdc2_op:
 567		cu2_notifier_call_chain(CU2_SDC2_OP, regs);
 568		break;
 569#endif
 570	default:
 571		/*
 572		 * Pheeee...  We encountered an yet unknown instruction or
 573		 * cache coherence problem.  Die sucker, die ...
 574		 */
 575		goto sigill;
 576	}
 577
 578#ifdef CONFIG_DEBUG_FS
 579	unaligned_instructions++;
 580#endif
 581
 582	return;
 583
 584fault:
 585	/* roll back jump/branch */
 586	regs->cp0_epc = origpc;
 587	regs->regs[31] = orig31;
 588	/* Did we have an exception handler installed? */
 589	if (fixup_exception(regs))
 590		return;
 591
 592	die_if_kernel("Unhandled kernel unaligned access", regs);
 593	force_sig(SIGSEGV);
 594
 595	return;
 596
 597sigbus:
 598	die_if_kernel("Unhandled kernel unaligned access", regs);
 599	force_sig(SIGBUS);
 600
 601	return;
 602
 603sigill:
 604	die_if_kernel
 605	    ("Unhandled kernel unaligned access or invalid instruction", regs);
 606	force_sig(SIGILL);
 607}
 608
 609/* Recode table from 16-bit register notation to 32-bit GPR. */
 610const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
 611
 612/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
 613static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
 614
 615static void emulate_load_store_microMIPS(struct pt_regs *regs,
 616					 void __user *addr)
 617{
 618	unsigned long value;
 619	unsigned int res;
 620	int i;
 621	unsigned int reg = 0, rvar;
 622	unsigned long orig31;
 623	u16 __user *pc16;
 624	u16 halfword;
 625	unsigned int word;
 626	unsigned long origpc, contpc;
 627	union mips_instruction insn;
 628	struct mm_decoded_insn mminsn;
 629	bool user = user_mode(regs);
 630
 631	origpc = regs->cp0_epc;
 632	orig31 = regs->regs[31];
 633
 634	mminsn.micro_mips_mode = 1;
 635
 636	/*
 637	 * This load never faults.
 638	 */
 639	pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
 640	__get_user(halfword, pc16);
 641	pc16++;
 642	contpc = regs->cp0_epc + 2;
 643	word = ((unsigned int)halfword << 16);
 644	mminsn.pc_inc = 2;
 645
 646	if (!mm_insn_16bit(halfword)) {
 647		__get_user(halfword, pc16);
 648		pc16++;
 649		contpc = regs->cp0_epc + 4;
 650		mminsn.pc_inc = 4;
 651		word |= halfword;
 652	}
 653	mminsn.insn = word;
 654
 655	if (get_user(halfword, pc16))
 656		goto fault;
 657	mminsn.next_pc_inc = 2;
 658	word = ((unsigned int)halfword << 16);
 659
 660	if (!mm_insn_16bit(halfword)) {
 661		pc16++;
 662		if (get_user(halfword, pc16))
 663			goto fault;
 664		mminsn.next_pc_inc = 4;
 665		word |= halfword;
 666	}
 667	mminsn.next_insn = word;
 668
 669	insn = (union mips_instruction)(mminsn.insn);
 670	if (mm_isBranchInstr(regs, mminsn, &contpc))
 671		insn = (union mips_instruction)(mminsn.next_insn);
 672
 673	/*  Parse instruction to find what to do */
 674
 675	switch (insn.mm_i_format.opcode) {
 676
 677	case mm_pool32a_op:
 678		switch (insn.mm_x_format.func) {
 679		case mm_lwxs_op:
 680			reg = insn.mm_x_format.rd;
 681			goto loadW;
 682		}
 683
 684		goto sigbus;
 685
 686	case mm_pool32b_op:
 687		switch (insn.mm_m_format.func) {
 688		case mm_lwp_func:
 689			reg = insn.mm_m_format.rd;
 690			if (reg == 31)
 691				goto sigbus;
 692
 693			if (user && !access_ok(addr, 8))
 694				goto sigbus;
 695
 696			LoadW(addr, value, res);
 697			if (res)
 698				goto fault;
 699			regs->regs[reg] = value;
 700			addr += 4;
 701			LoadW(addr, value, res);
 702			if (res)
 703				goto fault;
 704			regs->regs[reg + 1] = value;
 705			goto success;
 706
 707		case mm_swp_func:
 708			reg = insn.mm_m_format.rd;
 709			if (reg == 31)
 710				goto sigbus;
 711
 712			if (user && !access_ok(addr, 8))
 713				goto sigbus;
 714
 715			value = regs->regs[reg];
 716			StoreW(addr, value, res);
 717			if (res)
 718				goto fault;
 719			addr += 4;
 720			value = regs->regs[reg + 1];
 721			StoreW(addr, value, res);
 722			if (res)
 723				goto fault;
 724			goto success;
 725
 726		case mm_ldp_func:
 727#ifdef CONFIG_64BIT
 728			reg = insn.mm_m_format.rd;
 729			if (reg == 31)
 730				goto sigbus;
 731
 732			if (user && !access_ok(addr, 16))
 733				goto sigbus;
 734
 735			LoadDW(addr, value, res);
 736			if (res)
 737				goto fault;
 738			regs->regs[reg] = value;
 739			addr += 8;
 740			LoadDW(addr, value, res);
 741			if (res)
 742				goto fault;
 743			regs->regs[reg + 1] = value;
 744			goto success;
 745#endif /* CONFIG_64BIT */
 746
 747			goto sigill;
 748
 749		case mm_sdp_func:
 750#ifdef CONFIG_64BIT
 751			reg = insn.mm_m_format.rd;
 752			if (reg == 31)
 753				goto sigbus;
 754
 755			if (user && !access_ok(addr, 16))
 756				goto sigbus;
 757
 758			value = regs->regs[reg];
 759			StoreDW(addr, value, res);
 760			if (res)
 761				goto fault;
 762			addr += 8;
 763			value = regs->regs[reg + 1];
 764			StoreDW(addr, value, res);
 765			if (res)
 766				goto fault;
 767			goto success;
 768#endif /* CONFIG_64BIT */
 769
 770			goto sigill;
 771
 772		case mm_lwm32_func:
 773			reg = insn.mm_m_format.rd;
 774			rvar = reg & 0xf;
 775			if ((rvar > 9) || !reg)
 776				goto sigill;
 777			if (reg & 0x10) {
 778				if (user && !access_ok(addr, 4 * (rvar + 1)))
 779					goto sigbus;
 780			} else {
 781				if (user && !access_ok(addr, 4 * rvar))
 782					goto sigbus;
 783			}
 784			if (rvar == 9)
 785				rvar = 8;
 786			for (i = 16; rvar; rvar--, i++) {
 787				LoadW(addr, value, res);
 788				if (res)
 789					goto fault;
 790				addr += 4;
 791				regs->regs[i] = value;
 792			}
 793			if ((reg & 0xf) == 9) {
 794				LoadW(addr, value, res);
 795				if (res)
 796					goto fault;
 797				addr += 4;
 798				regs->regs[30] = value;
 799			}
 800			if (reg & 0x10) {
 801				LoadW(addr, value, res);
 802				if (res)
 803					goto fault;
 804				regs->regs[31] = value;
 805			}
 806			goto success;
 807
 808		case mm_swm32_func:
 809			reg = insn.mm_m_format.rd;
 810			rvar = reg & 0xf;
 811			if ((rvar > 9) || !reg)
 812				goto sigill;
 813			if (reg & 0x10) {
 814				if (user && !access_ok(addr, 4 * (rvar + 1)))
 815					goto sigbus;
 816			} else {
 817				if (user && !access_ok(addr, 4 * rvar))
 818					goto sigbus;
 819			}
 820			if (rvar == 9)
 821				rvar = 8;
 822			for (i = 16; rvar; rvar--, i++) {
 823				value = regs->regs[i];
 824				StoreW(addr, value, res);
 825				if (res)
 826					goto fault;
 827				addr += 4;
 828			}
 829			if ((reg & 0xf) == 9) {
 830				value = regs->regs[30];
 831				StoreW(addr, value, res);
 832				if (res)
 833					goto fault;
 834				addr += 4;
 835			}
 836			if (reg & 0x10) {
 837				value = regs->regs[31];
 838				StoreW(addr, value, res);
 839				if (res)
 840					goto fault;
 841			}
 842			goto success;
 843
 844		case mm_ldm_func:
 845#ifdef CONFIG_64BIT
 846			reg = insn.mm_m_format.rd;
 847			rvar = reg & 0xf;
 848			if ((rvar > 9) || !reg)
 849				goto sigill;
 850			if (reg & 0x10) {
 851				if (user && !access_ok(addr, 8 * (rvar + 1)))
 852					goto sigbus;
 853			} else {
 854				if (user && !access_ok(addr, 8 * rvar))
 855					goto sigbus;
 856			}
 857			if (rvar == 9)
 858				rvar = 8;
 859
 860			for (i = 16; rvar; rvar--, i++) {
 861				LoadDW(addr, value, res);
 862				if (res)
 863					goto fault;
 864				addr += 4;
 865				regs->regs[i] = value;
 866			}
 867			if ((reg & 0xf) == 9) {
 868				LoadDW(addr, value, res);
 869				if (res)
 870					goto fault;
 871				addr += 8;
 872				regs->regs[30] = value;
 873			}
 874			if (reg & 0x10) {
 875				LoadDW(addr, value, res);
 876				if (res)
 877					goto fault;
 878				regs->regs[31] = value;
 879			}
 880			goto success;
 881#endif /* CONFIG_64BIT */
 882
 883			goto sigill;
 884
 885		case mm_sdm_func:
 886#ifdef CONFIG_64BIT
 887			reg = insn.mm_m_format.rd;
 888			rvar = reg & 0xf;
 889			if ((rvar > 9) || !reg)
 890				goto sigill;
 891			if (reg & 0x10) {
 892				if (user && !access_ok(addr, 8 * (rvar + 1)))
 893					goto sigbus;
 894			} else {
 895				if (user && !access_ok(addr, 8 * rvar))
 896					goto sigbus;
 897			}
 898			if (rvar == 9)
 899				rvar = 8;
 900
 901			for (i = 16; rvar; rvar--, i++) {
 902				value = regs->regs[i];
 903				StoreDW(addr, value, res);
 904				if (res)
 905					goto fault;
 906				addr += 8;
 907			}
 908			if ((reg & 0xf) == 9) {
 909				value = regs->regs[30];
 910				StoreDW(addr, value, res);
 911				if (res)
 912					goto fault;
 913				addr += 8;
 914			}
 915			if (reg & 0x10) {
 916				value = regs->regs[31];
 917				StoreDW(addr, value, res);
 918				if (res)
 919					goto fault;
 920			}
 921			goto success;
 922#endif /* CONFIG_64BIT */
 923
 924			goto sigill;
 925
 926			/*  LWC2, SWC2, LDC2, SDC2 are not serviced */
 927		}
 928
 929		goto sigbus;
 930
 931	case mm_pool32c_op:
 932		switch (insn.mm_m_format.func) {
 933		case mm_lwu_func:
 934			reg = insn.mm_m_format.rd;
 935			goto loadWU;
 936		}
 937
 938		/*  LL,SC,LLD,SCD are not serviced */
 939		goto sigbus;
 940
 941#ifdef CONFIG_MIPS_FP_SUPPORT
 942	case mm_pool32f_op:
 943		switch (insn.mm_x_format.func) {
 944		case mm_lwxc1_func:
 945		case mm_swxc1_func:
 946		case mm_ldxc1_func:
 947		case mm_sdxc1_func:
 948			goto fpu_emul;
 949		}
 950
 951		goto sigbus;
 952
 953	case mm_ldc132_op:
 954	case mm_sdc132_op:
 955	case mm_lwc132_op:
 956	case mm_swc132_op: {
 957		void __user *fault_addr = NULL;
 958
 959fpu_emul:
 960		/* roll back jump/branch */
 961		regs->cp0_epc = origpc;
 962		regs->regs[31] = orig31;
 963
 964		die_if_kernel("Unaligned FP access in kernel code", regs);
 965		BUG_ON(!used_math());
 966		BUG_ON(!is_fpu_owner());
 967
 968		res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 969					       &fault_addr);
 970		own_fpu(1);	/* restore FPU state */
 971
 972		/* If something went wrong, signal */
 973		process_fpemu_return(res, fault_addr, 0);
 974
 975		if (res == 0)
 976			goto success;
 977		return;
 978	}
 979#endif /* CONFIG_MIPS_FP_SUPPORT */
 980
 981	case mm_lh32_op:
 982		reg = insn.mm_i_format.rt;
 983		goto loadHW;
 984
 985	case mm_lhu32_op:
 986		reg = insn.mm_i_format.rt;
 987		goto loadHWU;
 988
 989	case mm_lw32_op:
 990		reg = insn.mm_i_format.rt;
 991		goto loadW;
 992
 993	case mm_sh32_op:
 994		reg = insn.mm_i_format.rt;
 995		goto storeHW;
 996
 997	case mm_sw32_op:
 998		reg = insn.mm_i_format.rt;
 999		goto storeW;
1000
1001	case mm_ld32_op:
1002		reg = insn.mm_i_format.rt;
1003		goto loadDW;
1004
1005	case mm_sd32_op:
1006		reg = insn.mm_i_format.rt;
1007		goto storeDW;
1008
1009	case mm_pool16c_op:
1010		switch (insn.mm16_m_format.func) {
1011		case mm_lwm16_op:
1012			reg = insn.mm16_m_format.rlist;
1013			rvar = reg + 1;
1014			if (user && !access_ok(addr, 4 * rvar))
1015				goto sigbus;
1016
1017			for (i = 16; rvar; rvar--, i++) {
1018				LoadW(addr, value, res);
1019				if (res)
1020					goto fault;
1021				addr += 4;
1022				regs->regs[i] = value;
1023			}
1024			LoadW(addr, value, res);
1025			if (res)
1026				goto fault;
1027			regs->regs[31] = value;
1028
1029			goto success;
1030
1031		case mm_swm16_op:
1032			reg = insn.mm16_m_format.rlist;
1033			rvar = reg + 1;
1034			if (user && !access_ok(addr, 4 * rvar))
1035				goto sigbus;
1036
1037			for (i = 16; rvar; rvar--, i++) {
1038				value = regs->regs[i];
1039				StoreW(addr, value, res);
1040				if (res)
1041					goto fault;
1042				addr += 4;
1043			}
1044			value = regs->regs[31];
1045			StoreW(addr, value, res);
1046			if (res)
1047				goto fault;
1048
1049			goto success;
1050
1051		}
1052
1053		goto sigbus;
1054
1055	case mm_lhu16_op:
1056		reg = reg16to32[insn.mm16_rb_format.rt];
1057		goto loadHWU;
1058
1059	case mm_lw16_op:
1060		reg = reg16to32[insn.mm16_rb_format.rt];
1061		goto loadW;
1062
1063	case mm_sh16_op:
1064		reg = reg16to32st[insn.mm16_rb_format.rt];
1065		goto storeHW;
1066
1067	case mm_sw16_op:
1068		reg = reg16to32st[insn.mm16_rb_format.rt];
1069		goto storeW;
1070
1071	case mm_lwsp16_op:
1072		reg = insn.mm16_r5_format.rt;
1073		goto loadW;
1074
1075	case mm_swsp16_op:
1076		reg = insn.mm16_r5_format.rt;
1077		goto storeW;
1078
1079	case mm_lwgp16_op:
1080		reg = reg16to32[insn.mm16_r3_format.rt];
1081		goto loadW;
1082
1083	default:
1084		goto sigill;
1085	}
1086
1087loadHW:
1088	if (user && !access_ok(addr, 2))
1089		goto sigbus;
1090
1091	LoadHW(addr, value, res);
1092	if (res)
1093		goto fault;
1094	regs->regs[reg] = value;
1095	goto success;
1096
1097loadHWU:
1098	if (user && !access_ok(addr, 2))
1099		goto sigbus;
1100
1101	LoadHWU(addr, value, res);
1102	if (res)
1103		goto fault;
1104	regs->regs[reg] = value;
1105	goto success;
1106
1107loadW:
1108	if (user && !access_ok(addr, 4))
1109		goto sigbus;
1110
1111	LoadW(addr, value, res);
1112	if (res)
1113		goto fault;
1114	regs->regs[reg] = value;
1115	goto success;
1116
1117loadWU:
1118#ifdef CONFIG_64BIT
1119	/*
1120	 * A 32-bit kernel might be running on a 64-bit processor.  But
1121	 * if we're on a 32-bit processor and an i-cache incoherency
1122	 * or race makes us see a 64-bit instruction here the sdl/sdr
1123	 * would blow up, so for now we don't handle unaligned 64-bit
1124	 * instructions on 32-bit kernels.
1125	 */
1126	if (user && !access_ok(addr, 4))
1127		goto sigbus;
1128
1129	LoadWU(addr, value, res);
1130	if (res)
1131		goto fault;
1132	regs->regs[reg] = value;
1133	goto success;
1134#endif /* CONFIG_64BIT */
1135
1136	/* Cannot handle 64-bit instructions in 32-bit kernel */
1137	goto sigill;
1138
1139loadDW:
1140#ifdef CONFIG_64BIT
1141	/*
1142	 * A 32-bit kernel might be running on a 64-bit processor.  But
1143	 * if we're on a 32-bit processor and an i-cache incoherency
1144	 * or race makes us see a 64-bit instruction here the sdl/sdr
1145	 * would blow up, so for now we don't handle unaligned 64-bit
1146	 * instructions on 32-bit kernels.
1147	 */
1148	if (user && !access_ok(addr, 8))
1149		goto sigbus;
1150
1151	LoadDW(addr, value, res);
1152	if (res)
1153		goto fault;
1154	regs->regs[reg] = value;
1155	goto success;
1156#endif /* CONFIG_64BIT */
1157
1158	/* Cannot handle 64-bit instructions in 32-bit kernel */
1159	goto sigill;
1160
1161storeHW:
1162	if (user && !access_ok(addr, 2))
1163		goto sigbus;
1164
1165	value = regs->regs[reg];
1166	StoreHW(addr, value, res);
1167	if (res)
1168		goto fault;
1169	goto success;
1170
1171storeW:
1172	if (user && !access_ok(addr, 4))
1173		goto sigbus;
1174
1175	value = regs->regs[reg];
1176	StoreW(addr, value, res);
1177	if (res)
1178		goto fault;
1179	goto success;
1180
1181storeDW:
1182#ifdef CONFIG_64BIT
1183	/*
1184	 * A 32-bit kernel might be running on a 64-bit processor.  But
1185	 * if we're on a 32-bit processor and an i-cache incoherency
1186	 * or race makes us see a 64-bit instruction here the sdl/sdr
1187	 * would blow up, so for now we don't handle unaligned 64-bit
1188	 * instructions on 32-bit kernels.
1189	 */
1190	if (user && !access_ok(addr, 8))
1191		goto sigbus;
1192
1193	value = regs->regs[reg];
1194	StoreDW(addr, value, res);
1195	if (res)
1196		goto fault;
1197	goto success;
1198#endif /* CONFIG_64BIT */
1199
1200	/* Cannot handle 64-bit instructions in 32-bit kernel */
1201	goto sigill;
1202
1203success:
1204	regs->cp0_epc = contpc;	/* advance or branch */
1205
1206#ifdef CONFIG_DEBUG_FS
1207	unaligned_instructions++;
1208#endif
1209	return;
1210
1211fault:
1212	/* roll back jump/branch */
1213	regs->cp0_epc = origpc;
1214	regs->regs[31] = orig31;
1215	/* Did we have an exception handler installed? */
1216	if (fixup_exception(regs))
1217		return;
1218
1219	die_if_kernel("Unhandled kernel unaligned access", regs);
1220	force_sig(SIGSEGV);
1221
1222	return;
1223
1224sigbus:
1225	die_if_kernel("Unhandled kernel unaligned access", regs);
1226	force_sig(SIGBUS);
1227
1228	return;
1229
1230sigill:
1231	die_if_kernel
1232	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1233	force_sig(SIGILL);
1234}
1235
1236static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1237{
1238	unsigned long value;
1239	unsigned int res;
1240	int reg;
1241	unsigned long orig31;
1242	u16 __user *pc16;
1243	unsigned long origpc;
1244	union mips16e_instruction mips16inst, oldinst;
1245	unsigned int opcode;
1246	int extended = 0;
1247	bool user = user_mode(regs);
1248
1249	origpc = regs->cp0_epc;
1250	orig31 = regs->regs[31];
1251	pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1252	/*
1253	 * This load never faults.
1254	 */
1255	__get_user(mips16inst.full, pc16);
1256	oldinst = mips16inst;
1257
1258	/* skip EXTEND instruction */
1259	if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1260		extended = 1;
1261		pc16++;
1262		__get_user(mips16inst.full, pc16);
1263	} else if (delay_slot(regs)) {
1264		/*  skip jump instructions */
1265		/*  JAL/JALX are 32 bits but have OPCODE in first short int */
1266		if (mips16inst.ri.opcode == MIPS16e_jal_op)
1267			pc16++;
1268		pc16++;
1269		if (get_user(mips16inst.full, pc16))
1270			goto sigbus;
1271	}
1272
1273	opcode = mips16inst.ri.opcode;
1274	switch (opcode) {
1275	case MIPS16e_i64_op:	/* I64 or RI64 instruction */
1276		switch (mips16inst.i64.func) {	/* I64/RI64 func field check */
1277		case MIPS16e_ldpc_func:
1278		case MIPS16e_ldsp_func:
1279			reg = reg16to32[mips16inst.ri64.ry];
1280			goto loadDW;
1281
1282		case MIPS16e_sdsp_func:
1283			reg = reg16to32[mips16inst.ri64.ry];
1284			goto writeDW;
1285
1286		case MIPS16e_sdrasp_func:
1287			reg = 29;	/* GPRSP */
1288			goto writeDW;
1289		}
1290
1291		goto sigbus;
1292
1293	case MIPS16e_swsp_op:
1294		reg = reg16to32[mips16inst.ri.rx];
1295		if (extended && cpu_has_mips16e2)
1296			switch (mips16inst.ri.imm >> 5) {
1297			case 0:		/* SWSP */
1298			case 1:		/* SWGP */
1299				break;
1300			case 2:		/* SHGP */
1301				opcode = MIPS16e_sh_op;
1302				break;
1303			default:
1304				goto sigbus;
1305			}
1306		break;
1307
1308	case MIPS16e_lwpc_op:
1309		reg = reg16to32[mips16inst.ri.rx];
1310		break;
1311
1312	case MIPS16e_lwsp_op:
1313		reg = reg16to32[mips16inst.ri.rx];
1314		if (extended && cpu_has_mips16e2)
1315			switch (mips16inst.ri.imm >> 5) {
1316			case 0:		/* LWSP */
1317			case 1:		/* LWGP */
1318				break;
1319			case 2:		/* LHGP */
1320				opcode = MIPS16e_lh_op;
1321				break;
1322			case 4:		/* LHUGP */
1323				opcode = MIPS16e_lhu_op;
1324				break;
1325			default:
1326				goto sigbus;
1327			}
1328		break;
1329
1330	case MIPS16e_i8_op:
1331		if (mips16inst.i8.func != MIPS16e_swrasp_func)
1332			goto sigbus;
1333		reg = 29;	/* GPRSP */
1334		break;
1335
1336	default:
1337		reg = reg16to32[mips16inst.rri.ry];
1338		break;
1339	}
1340
1341	switch (opcode) {
1342
1343	case MIPS16e_lb_op:
1344	case MIPS16e_lbu_op:
1345	case MIPS16e_sb_op:
1346		goto sigbus;
1347
1348	case MIPS16e_lh_op:
1349		if (user && !access_ok(addr, 2))
1350			goto sigbus;
1351
1352		LoadHW(addr, value, res);
1353		if (res)
1354			goto fault;
1355		MIPS16e_compute_return_epc(regs, &oldinst);
1356		regs->regs[reg] = value;
1357		break;
1358
1359	case MIPS16e_lhu_op:
1360		if (user && !access_ok(addr, 2))
1361			goto sigbus;
1362
1363		LoadHWU(addr, value, res);
1364		if (res)
1365			goto fault;
1366		MIPS16e_compute_return_epc(regs, &oldinst);
1367		regs->regs[reg] = value;
1368		break;
1369
1370	case MIPS16e_lw_op:
1371	case MIPS16e_lwpc_op:
1372	case MIPS16e_lwsp_op:
1373		if (user && !access_ok(addr, 4))
1374			goto sigbus;
1375
1376		LoadW(addr, value, res);
1377		if (res)
1378			goto fault;
1379		MIPS16e_compute_return_epc(regs, &oldinst);
1380		regs->regs[reg] = value;
1381		break;
1382
1383	case MIPS16e_lwu_op:
1384#ifdef CONFIG_64BIT
1385		/*
1386		 * A 32-bit kernel might be running on a 64-bit processor.  But
1387		 * if we're on a 32-bit processor and an i-cache incoherency
1388		 * or race makes us see a 64-bit instruction here the sdl/sdr
1389		 * would blow up, so for now we don't handle unaligned 64-bit
1390		 * instructions on 32-bit kernels.
1391		 */
1392		if (user && !access_ok(addr, 4))
1393			goto sigbus;
1394
1395		LoadWU(addr, value, res);
1396		if (res)
1397			goto fault;
1398		MIPS16e_compute_return_epc(regs, &oldinst);
1399		regs->regs[reg] = value;
1400		break;
1401#endif /* CONFIG_64BIT */
1402
1403		/* Cannot handle 64-bit instructions in 32-bit kernel */
1404		goto sigill;
1405
1406	case MIPS16e_ld_op:
1407loadDW:
1408#ifdef CONFIG_64BIT
1409		/*
1410		 * A 32-bit kernel might be running on a 64-bit processor.  But
1411		 * if we're on a 32-bit processor and an i-cache incoherency
1412		 * or race makes us see a 64-bit instruction here the sdl/sdr
1413		 * would blow up, so for now we don't handle unaligned 64-bit
1414		 * instructions on 32-bit kernels.
1415		 */
1416		if (user && !access_ok(addr, 8))
1417			goto sigbus;
1418
1419		LoadDW(addr, value, res);
1420		if (res)
1421			goto fault;
1422		MIPS16e_compute_return_epc(regs, &oldinst);
1423		regs->regs[reg] = value;
1424		break;
1425#endif /* CONFIG_64BIT */
1426
1427		/* Cannot handle 64-bit instructions in 32-bit kernel */
1428		goto sigill;
1429
1430	case MIPS16e_sh_op:
1431		if (user && !access_ok(addr, 2))
1432			goto sigbus;
1433
1434		MIPS16e_compute_return_epc(regs, &oldinst);
1435		value = regs->regs[reg];
1436		StoreHW(addr, value, res);
1437		if (res)
1438			goto fault;
1439		break;
1440
1441	case MIPS16e_sw_op:
1442	case MIPS16e_swsp_op:
1443	case MIPS16e_i8_op:	/* actually - MIPS16e_swrasp_func */
1444		if (user && !access_ok(addr, 4))
1445			goto sigbus;
1446
1447		MIPS16e_compute_return_epc(regs, &oldinst);
1448		value = regs->regs[reg];
1449		StoreW(addr, value, res);
1450		if (res)
1451			goto fault;
1452		break;
1453
1454	case MIPS16e_sd_op:
1455writeDW:
1456#ifdef CONFIG_64BIT
1457		/*
1458		 * A 32-bit kernel might be running on a 64-bit processor.  But
1459		 * if we're on a 32-bit processor and an i-cache incoherency
1460		 * or race makes us see a 64-bit instruction here the sdl/sdr
1461		 * would blow up, so for now we don't handle unaligned 64-bit
1462		 * instructions on 32-bit kernels.
1463		 */
1464		if (user && !access_ok(addr, 8))
1465			goto sigbus;
1466
1467		MIPS16e_compute_return_epc(regs, &oldinst);
1468		value = regs->regs[reg];
1469		StoreDW(addr, value, res);
1470		if (res)
1471			goto fault;
1472		break;
1473#endif /* CONFIG_64BIT */
1474
1475		/* Cannot handle 64-bit instructions in 32-bit kernel */
1476		goto sigill;
1477
1478	default:
1479		/*
1480		 * Pheeee...  We encountered an yet unknown instruction or
1481		 * cache coherence problem.  Die sucker, die ...
1482		 */
1483		goto sigill;
1484	}
1485
1486#ifdef CONFIG_DEBUG_FS
1487	unaligned_instructions++;
1488#endif
1489
1490	return;
1491
1492fault:
1493	/* roll back jump/branch */
1494	regs->cp0_epc = origpc;
1495	regs->regs[31] = orig31;
1496	/* Did we have an exception handler installed? */
1497	if (fixup_exception(regs))
1498		return;
1499
1500	die_if_kernel("Unhandled kernel unaligned access", regs);
1501	force_sig(SIGSEGV);
1502
1503	return;
1504
1505sigbus:
1506	die_if_kernel("Unhandled kernel unaligned access", regs);
1507	force_sig(SIGBUS);
1508
1509	return;
1510
1511sigill:
1512	die_if_kernel
1513	    ("Unhandled kernel unaligned access or invalid instruction", regs);
1514	force_sig(SIGILL);
1515}
1516
1517asmlinkage void do_ade(struct pt_regs *regs)
1518{
1519	enum ctx_state prev_state;
1520	unsigned int *pc;
 
1521
1522	prev_state = exception_enter();
1523	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1524			1, regs, regs->cp0_badvaddr);
1525
1526#ifdef CONFIG_64BIT
1527	/*
1528	 * check, if we are hitting space between CPU implemented maximum
1529	 * virtual user address and 64bit maximum virtual user address
1530	 * and do exception handling to get EFAULTs for get_user/put_user
1531	 */
1532	if ((regs->cp0_badvaddr >= (1UL << cpu_vmbits)) &&
1533	    (regs->cp0_badvaddr < XKSSEG)) {
1534		if (fixup_exception(regs)) {
1535			current->thread.cp0_baduaddr = regs->cp0_badvaddr;
1536			return;
1537		}
1538		goto sigbus;
1539	}
1540#endif
1541
1542	/*
1543	 * Did we catch a fault trying to load an instruction?
1544	 */
1545	if (regs->cp0_badvaddr == regs->cp0_epc)
1546		goto sigbus;
1547
1548	if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1549		goto sigbus;
1550	if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1551		goto sigbus;
1552
1553	/*
1554	 * Do branch emulation only if we didn't forward the exception.
1555	 * This is all so but ugly ...
1556	 */
1557
1558	/*
1559	 * Are we running in microMIPS mode?
1560	 */
1561	if (get_isa16_mode(regs->cp0_epc)) {
1562		/*
1563		 * Did we catch a fault trying to load an instruction in
1564		 * 16-bit mode?
1565		 */
1566		if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1567			goto sigbus;
1568		if (unaligned_action == UNALIGNED_ACTION_SHOW)
1569			show_registers(regs);
1570
1571		if (cpu_has_mmips) {
 
 
 
1572			emulate_load_store_microMIPS(regs,
1573				(void __user *)regs->cp0_badvaddr);
 
 
1574			return;
1575		}
1576
1577		if (cpu_has_mips16) {
 
 
 
1578			emulate_load_store_MIPS16e(regs,
1579				(void __user *)regs->cp0_badvaddr);
 
 
1580			return;
1581		}
1582
1583		goto sigbus;
1584	}
1585
1586	if (unaligned_action == UNALIGNED_ACTION_SHOW)
1587		show_registers(regs);
1588	pc = (unsigned int *)exception_epc(regs);
1589
 
 
 
1590	emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
 
1591
1592	return;
1593
1594sigbus:
1595	die_if_kernel("Kernel unaligned instruction access", regs);
1596	force_sig(SIGBUS);
1597
1598	/*
1599	 * XXX On return from the signal handler we should advance the epc
1600	 */
1601	exception_exit(prev_state);
1602}
1603
1604#ifdef CONFIG_DEBUG_FS
1605static int __init debugfs_unaligned(void)
1606{
1607	debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
1608			   &unaligned_instructions);
1609	debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1610			   mips_debugfs_dir, &unaligned_action);
1611	return 0;
1612}
1613arch_initcall(debugfs_unaligned);
1614#endif