Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1// SPDX-License-Identifier: GPL-2.0
  2#include <test_progs.h>
  3
  4#define MAX_INSNS	512
  5#define MAX_MATCHES	16
  6
  7struct bpf_reg_match {
  8	unsigned int line;
  9	const char *match;
 10};
 11
 12struct bpf_align_test {
 13	const char *descr;
 14	struct bpf_insn	insns[MAX_INSNS];
 15	enum {
 16		UNDEF,
 17		ACCEPT,
 18		REJECT
 19	} result;
 20	enum bpf_prog_type prog_type;
 21	/* Matches must be in order of increasing line */
 22	struct bpf_reg_match matches[MAX_MATCHES];
 23};
 24
 25static struct bpf_align_test tests[] = {
 26	/* Four tests of known constants.  These aren't staggeringly
 27	 * interesting since we track exact values now.
 28	 */
 29	{
 30		.descr = "mov",
 31		.insns = {
 32			BPF_MOV64_IMM(BPF_REG_3, 2),
 33			BPF_MOV64_IMM(BPF_REG_3, 4),
 34			BPF_MOV64_IMM(BPF_REG_3, 8),
 35			BPF_MOV64_IMM(BPF_REG_3, 16),
 36			BPF_MOV64_IMM(BPF_REG_3, 32),
 37			BPF_MOV64_IMM(BPF_REG_0, 0),
 38			BPF_EXIT_INSN(),
 39		},
 40		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
 41		.matches = {
 42			{1, "R1=ctx(id=0,off=0,imm=0)"},
 43			{1, "R10=fp0"},
 44			{1, "R3_w=inv2"},
 45			{2, "R3_w=inv4"},
 46			{3, "R3_w=inv8"},
 47			{4, "R3_w=inv16"},
 48			{5, "R3_w=inv32"},
 49		},
 50	},
 51	{
 52		.descr = "shift",
 53		.insns = {
 54			BPF_MOV64_IMM(BPF_REG_3, 1),
 55			BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
 56			BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
 57			BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
 58			BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
 59			BPF_ALU64_IMM(BPF_RSH, BPF_REG_3, 4),
 60			BPF_MOV64_IMM(BPF_REG_4, 32),
 61			BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
 62			BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
 63			BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
 64			BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
 65			BPF_MOV64_IMM(BPF_REG_0, 0),
 66			BPF_EXIT_INSN(),
 67		},
 68		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
 69		.matches = {
 70			{1, "R1=ctx(id=0,off=0,imm=0)"},
 71			{1, "R10=fp0"},
 72			{1, "R3_w=inv1"},
 73			{2, "R3_w=inv2"},
 74			{3, "R3_w=inv4"},
 75			{4, "R3_w=inv8"},
 76			{5, "R3_w=inv16"},
 77			{6, "R3_w=inv1"},
 78			{7, "R4_w=inv32"},
 79			{8, "R4_w=inv16"},
 80			{9, "R4_w=inv8"},
 81			{10, "R4_w=inv4"},
 82			{11, "R4_w=inv2"},
 83		},
 84	},
 85	{
 86		.descr = "addsub",
 87		.insns = {
 88			BPF_MOV64_IMM(BPF_REG_3, 4),
 89			BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 4),
 90			BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 2),
 91			BPF_MOV64_IMM(BPF_REG_4, 8),
 92			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
 93			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2),
 94			BPF_MOV64_IMM(BPF_REG_0, 0),
 95			BPF_EXIT_INSN(),
 96		},
 97		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
 98		.matches = {
 99			{1, "R1=ctx(id=0,off=0,imm=0)"},
100			{1, "R10=fp0"},
101			{1, "R3_w=inv4"},
102			{2, "R3_w=inv8"},
103			{3, "R3_w=inv10"},
104			{4, "R4_w=inv8"},
105			{5, "R4_w=inv12"},
106			{6, "R4_w=inv14"},
107		},
108	},
109	{
110		.descr = "mul",
111		.insns = {
112			BPF_MOV64_IMM(BPF_REG_3, 7),
113			BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 1),
114			BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 2),
115			BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 4),
116			BPF_MOV64_IMM(BPF_REG_0, 0),
117			BPF_EXIT_INSN(),
118		},
119		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
120		.matches = {
121			{1, "R1=ctx(id=0,off=0,imm=0)"},
122			{1, "R10=fp0"},
123			{1, "R3_w=inv7"},
124			{2, "R3_w=inv7"},
125			{3, "R3_w=inv14"},
126			{4, "R3_w=inv56"},
127		},
128	},
129
130	/* Tests using unknown values */
131#define PREP_PKT_POINTERS \
132	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
133		    offsetof(struct __sk_buff, data)), \
134	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
135		    offsetof(struct __sk_buff, data_end))
136
137#define LOAD_UNKNOWN(DST_REG) \
138	PREP_PKT_POINTERS, \
139	BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), \
140	BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), \
141	BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 1), \
142	BPF_EXIT_INSN(), \
143	BPF_LDX_MEM(BPF_B, DST_REG, BPF_REG_2, 0)
144
145	{
146		.descr = "unknown shift",
147		.insns = {
148			LOAD_UNKNOWN(BPF_REG_3),
149			BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
150			BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
151			BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
152			BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
153			LOAD_UNKNOWN(BPF_REG_4),
154			BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 5),
155			BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
156			BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
157			BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
158			BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
159			BPF_MOV64_IMM(BPF_REG_0, 0),
160			BPF_EXIT_INSN(),
161		},
162		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
163		.matches = {
164			{7, "R0_w=pkt(id=0,off=8,r=8,imm=0)"},
165			{7, "R3_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"},
166			{8, "R3_w=inv(id=0,umax_value=510,var_off=(0x0; 0x1fe))"},
167			{9, "R3_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
168			{10, "R3_w=inv(id=0,umax_value=2040,var_off=(0x0; 0x7f8))"},
169			{11, "R3_w=inv(id=0,umax_value=4080,var_off=(0x0; 0xff0))"},
170			{18, "R3=pkt_end(id=0,off=0,imm=0)"},
171			{18, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"},
172			{19, "R4_w=inv(id=0,umax_value=8160,var_off=(0x0; 0x1fe0))"},
173			{20, "R4_w=inv(id=0,umax_value=4080,var_off=(0x0; 0xff0))"},
174			{21, "R4_w=inv(id=0,umax_value=2040,var_off=(0x0; 0x7f8))"},
175			{22, "R4_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
176			{23, "R4_w=inv(id=0,umax_value=510,var_off=(0x0; 0x1fe))"},
177		},
178	},
179	{
180		.descr = "unknown mul",
181		.insns = {
182			LOAD_UNKNOWN(BPF_REG_3),
183			BPF_MOV64_REG(BPF_REG_4, BPF_REG_3),
184			BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 1),
185			BPF_MOV64_REG(BPF_REG_4, BPF_REG_3),
186			BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2),
187			BPF_MOV64_REG(BPF_REG_4, BPF_REG_3),
188			BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 4),
189			BPF_MOV64_REG(BPF_REG_4, BPF_REG_3),
190			BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 8),
191			BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2),
192			BPF_MOV64_IMM(BPF_REG_0, 0),
193			BPF_EXIT_INSN(),
194		},
195		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
196		.matches = {
197			{7, "R3_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"},
198			{8, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"},
199			{9, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"},
200			{10, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"},
201			{11, "R4_w=inv(id=0,umax_value=510,var_off=(0x0; 0x1fe))"},
202			{12, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"},
203			{13, "R4_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
204			{14, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"},
205			{15, "R4_w=inv(id=0,umax_value=2040,var_off=(0x0; 0x7f8))"},
206			{16, "R4_w=inv(id=0,umax_value=4080,var_off=(0x0; 0xff0))"},
207		},
208	},
209	{
210		.descr = "packet const offset",
211		.insns = {
212			PREP_PKT_POINTERS,
213			BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
214
215			BPF_MOV64_IMM(BPF_REG_0, 0),
216
217			/* Skip over ethernet header.  */
218			BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
219			BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
220			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
221			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
222			BPF_EXIT_INSN(),
223
224			BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 0),
225			BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 1),
226			BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 2),
227			BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 3),
228			BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 0),
229			BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 2),
230			BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0),
231
232			BPF_MOV64_IMM(BPF_REG_0, 0),
233			BPF_EXIT_INSN(),
234		},
235		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
236		.matches = {
237			{4, "R5_w=pkt(id=0,off=0,r=0,imm=0)"},
238			{5, "R5_w=pkt(id=0,off=14,r=0,imm=0)"},
239			{6, "R4_w=pkt(id=0,off=14,r=0,imm=0)"},
240			{10, "R2=pkt(id=0,off=0,r=18,imm=0)"},
241			{10, "R5=pkt(id=0,off=14,r=18,imm=0)"},
242			{10, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"},
243			{14, "R4_w=inv(id=0,umax_value=65535,var_off=(0x0; 0xffff))"},
244			{15, "R4_w=inv(id=0,umax_value=65535,var_off=(0x0; 0xffff))"},
245		},
246	},
247	{
248		.descr = "packet variable offset",
249		.insns = {
250			LOAD_UNKNOWN(BPF_REG_6),
251			BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
252
253			/* First, add a constant to the R5 packet pointer,
254			 * then a variable with a known alignment.
255			 */
256			BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
257			BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
258			BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
259			BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
260			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
261			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
262			BPF_EXIT_INSN(),
263			BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0),
264
265			/* Now, test in the other direction.  Adding first
266			 * the variable offset to R5, then the constant.
267			 */
268			BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
269			BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
270			BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
271			BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
272			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
273			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
274			BPF_EXIT_INSN(),
275			BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0),
276
277			/* Test multiple accumulations of unknown values
278			 * into a packet pointer.
279			 */
280			BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
281			BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
282			BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
283			BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 4),
284			BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
285			BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
286			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
287			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
288			BPF_EXIT_INSN(),
289			BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0),
290
291			BPF_MOV64_IMM(BPF_REG_0, 0),
292			BPF_EXIT_INSN(),
293		},
294		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
295		.matches = {
296			/* Calculated offset in R6 has unknown value, but known
297			 * alignment of 4.
298			 */
299			{8, "R2_w=pkt(id=0,off=0,r=8,imm=0)"},
300			{8, "R6_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
301			/* Offset is added to packet pointer R5, resulting in
302			 * known fixed offset, and variable offset from R6.
303			 */
304			{11, "R5_w=pkt(id=1,off=14,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
305			/* At the time the word size load is performed from R5,
306			 * it's total offset is NET_IP_ALIGN + reg->off (0) +
307			 * reg->aux_off (14) which is 16.  Then the variable
308			 * offset is considered using reg->aux_off_align which
309			 * is 4 and meets the load's requirements.
310			 */
311			{15, "R4=pkt(id=1,off=18,r=18,umax_value=1020,var_off=(0x0; 0x3fc))"},
312			{15, "R5=pkt(id=1,off=14,r=18,umax_value=1020,var_off=(0x0; 0x3fc))"},
313			/* Variable offset is added to R5 packet pointer,
314			 * resulting in auxiliary alignment of 4.
315			 */
316			{18, "R5_w=pkt(id=2,off=0,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
317			/* Constant offset is added to R5, resulting in
318			 * reg->off of 14.
319			 */
320			{19, "R5_w=pkt(id=2,off=14,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
321			/* At the time the word size load is performed from R5,
322			 * its total fixed offset is NET_IP_ALIGN + reg->off
323			 * (14) which is 16.  Then the variable offset is 4-byte
324			 * aligned, so the total offset is 4-byte aligned and
325			 * meets the load's requirements.
326			 */
327			{23, "R4=pkt(id=2,off=18,r=18,umax_value=1020,var_off=(0x0; 0x3fc))"},
328			{23, "R5=pkt(id=2,off=14,r=18,umax_value=1020,var_off=(0x0; 0x3fc))"},
329			/* Constant offset is added to R5 packet pointer,
330			 * resulting in reg->off value of 14.
331			 */
332			{26, "R5_w=pkt(id=0,off=14,r=8"},
333			/* Variable offset is added to R5, resulting in a
334			 * variable offset of (4n).
335			 */
336			{27, "R5_w=pkt(id=3,off=14,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
337			/* Constant is added to R5 again, setting reg->off to 18. */
338			{28, "R5_w=pkt(id=3,off=18,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
339			/* And once more we add a variable; resulting var_off
340			 * is still (4n), fixed offset is not changed.
341			 * Also, we create a new reg->id.
342			 */
343			{29, "R5_w=pkt(id=4,off=18,r=0,umax_value=2040,var_off=(0x0; 0x7fc)"},
344			/* At the time the word size load is performed from R5,
345			 * its total fixed offset is NET_IP_ALIGN + reg->off (18)
346			 * which is 20.  Then the variable offset is (4n), so
347			 * the total offset is 4-byte aligned and meets the
348			 * load's requirements.
349			 */
350			{33, "R4=pkt(id=4,off=22,r=22,umax_value=2040,var_off=(0x0; 0x7fc)"},
351			{33, "R5=pkt(id=4,off=18,r=22,umax_value=2040,var_off=(0x0; 0x7fc)"},
352		},
353	},
354	{
355		.descr = "packet variable offset 2",
356		.insns = {
357			/* Create an unknown offset, (4n+2)-aligned */
358			LOAD_UNKNOWN(BPF_REG_6),
359			BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
360			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14),
361			/* Add it to the packet pointer */
362			BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
363			BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
364			/* Check bounds and perform a read */
365			BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
366			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
367			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
368			BPF_EXIT_INSN(),
369			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0),
370			/* Make a (4n) offset from the value we just read */
371			BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xff),
372			BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
373			/* Add it to the packet pointer */
374			BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
375			/* Check bounds and perform a read */
376			BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
377			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
378			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
379			BPF_EXIT_INSN(),
380			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0),
381			BPF_MOV64_IMM(BPF_REG_0, 0),
382			BPF_EXIT_INSN(),
383		},
384		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
385		.matches = {
386			/* Calculated offset in R6 has unknown value, but known
387			 * alignment of 4.
388			 */
389			{8, "R2_w=pkt(id=0,off=0,r=8,imm=0)"},
390			{8, "R6_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
391			/* Adding 14 makes R6 be (4n+2) */
392			{9, "R6_w=inv(id=0,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc))"},
393			/* Packet pointer has (4n+2) offset */
394			{11, "R5_w=pkt(id=1,off=0,r=0,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc)"},
395			{13, "R4=pkt(id=1,off=4,r=0,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc)"},
396			/* At the time the word size load is performed from R5,
397			 * its total fixed offset is NET_IP_ALIGN + reg->off (0)
398			 * which is 2.  Then the variable offset is (4n+2), so
399			 * the total offset is 4-byte aligned and meets the
400			 * load's requirements.
401			 */
402			{15, "R5=pkt(id=1,off=0,r=4,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc)"},
403			/* Newly read value in R6 was shifted left by 2, so has
404			 * known alignment of 4.
405			 */
406			{18, "R6_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
407			/* Added (4n) to packet pointer's (4n+2) var_off, giving
408			 * another (4n+2).
409			 */
410			{19, "R5_w=pkt(id=2,off=0,r=0,umin_value=14,umax_value=2054,var_off=(0x2; 0xffc)"},
411			{21, "R4=pkt(id=2,off=4,r=0,umin_value=14,umax_value=2054,var_off=(0x2; 0xffc)"},
412			/* At the time the word size load is performed from R5,
413			 * its total fixed offset is NET_IP_ALIGN + reg->off (0)
414			 * which is 2.  Then the variable offset is (4n+2), so
415			 * the total offset is 4-byte aligned and meets the
416			 * load's requirements.
417			 */
418			{23, "R5=pkt(id=2,off=0,r=4,umin_value=14,umax_value=2054,var_off=(0x2; 0xffc)"},
419		},
420	},
421	{
422		.descr = "dubious pointer arithmetic",
423		.insns = {
424			PREP_PKT_POINTERS,
425			BPF_MOV64_IMM(BPF_REG_0, 0),
426			/* (ptr - ptr) << 2 */
427			BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
428			BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_2),
429			BPF_ALU64_IMM(BPF_LSH, BPF_REG_5, 2),
430			/* We have a (4n) value.  Let's make a packet offset
431			 * out of it.  First add 14, to make it a (4n+2)
432			 */
433			BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
434			/* Then make sure it's nonnegative */
435			BPF_JMP_IMM(BPF_JSGE, BPF_REG_5, 0, 1),
436			BPF_EXIT_INSN(),
437			/* Add it to packet pointer */
438			BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
439			BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
440			/* Check bounds and perform a read */
441			BPF_MOV64_REG(BPF_REG_4, BPF_REG_6),
442			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
443			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
444			BPF_EXIT_INSN(),
445			BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_6, 0),
446			BPF_EXIT_INSN(),
447		},
448		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
449		.result = REJECT,
450		.matches = {
451			{4, "R5_w=pkt_end(id=0,off=0,imm=0)"},
452			/* (ptr - ptr) << 2 == unknown, (4n) */
453			{6, "R5_w=inv(id=0,smax_value=9223372036854775804,umax_value=18446744073709551612,var_off=(0x0; 0xfffffffffffffffc)"},
454			/* (4n) + 14 == (4n+2).  We blow our bounds, because
455			 * the add could overflow.
456			 */
457			{7, "R5_w=inv(id=0,smin_value=-9223372036854775806,smax_value=9223372036854775806,umin_value=2,umax_value=18446744073709551614,var_off=(0x2; 0xfffffffffffffffc)"},
458			/* Checked s>=0 */
459			{9, "R5=inv(id=0,umin_value=2,umax_value=9223372034707292158,var_off=(0x2; 0x7fffffff7ffffffc)"},
460			/* packet pointer + nonnegative (4n+2) */
461			{11, "R6_w=pkt(id=1,off=0,r=0,umin_value=2,umax_value=9223372034707292158,var_off=(0x2; 0x7fffffff7ffffffc)"},
462			{13, "R4_w=pkt(id=1,off=4,r=0,umin_value=2,umax_value=9223372034707292158,var_off=(0x2; 0x7fffffff7ffffffc)"},
463			/* NET_IP_ALIGN + (4n+2) == (4n), alignment is fine.
464			 * We checked the bounds, but it might have been able
465			 * to overflow if the packet pointer started in the
466			 * upper half of the address space.
467			 * So we did not get a 'range' on R6, and the access
468			 * attempt will fail.
469			 */
470			{15, "R6_w=pkt(id=1,off=0,r=0,umin_value=2,umax_value=9223372034707292158,var_off=(0x2; 0x7fffffff7ffffffc)"},
471		}
472	},
473	{
474		.descr = "variable subtraction",
475		.insns = {
476			/* Create an unknown offset, (4n+2)-aligned */
477			LOAD_UNKNOWN(BPF_REG_6),
478			BPF_MOV64_REG(BPF_REG_7, BPF_REG_6),
479			BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
480			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14),
481			/* Create another unknown, (4n)-aligned, and subtract
482			 * it from the first one
483			 */
484			BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2),
485			BPF_ALU64_REG(BPF_SUB, BPF_REG_6, BPF_REG_7),
486			/* Bounds-check the result */
487			BPF_JMP_IMM(BPF_JSGE, BPF_REG_6, 0, 1),
488			BPF_EXIT_INSN(),
489			/* Add it to the packet pointer */
490			BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
491			BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
492			/* Check bounds and perform a read */
493			BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
494			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
495			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
496			BPF_EXIT_INSN(),
497			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0),
498			BPF_EXIT_INSN(),
499		},
500		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
501		.matches = {
502			/* Calculated offset in R6 has unknown value, but known
503			 * alignment of 4.
504			 */
505			{7, "R2_w=pkt(id=0,off=0,r=8,imm=0)"},
506			{9, "R6_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
507			/* Adding 14 makes R6 be (4n+2) */
508			{10, "R6_w=inv(id=0,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc))"},
509			/* New unknown value in R7 is (4n) */
510			{11, "R7_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"},
511			/* Subtracting it from R6 blows our unsigned bounds */
512			{12, "R6=inv(id=0,smin_value=-1006,smax_value=1034,umin_value=2,umax_value=18446744073709551614,var_off=(0x2; 0xfffffffffffffffc)"},
513			/* Checked s>= 0 */
514			{14, "R6=inv(id=0,umin_value=2,umax_value=1034,var_off=(0x2; 0x7fc))"},
515			/* At the time the word size load is performed from R5,
516			 * its total fixed offset is NET_IP_ALIGN + reg->off (0)
517			 * which is 2.  Then the variable offset is (4n+2), so
518			 * the total offset is 4-byte aligned and meets the
519			 * load's requirements.
520			 */
521			{20, "R5=pkt(id=1,off=0,r=4,umin_value=2,umax_value=1034,var_off=(0x2; 0x7fc)"},
522
523		},
524	},
525	{
526		.descr = "pointer variable subtraction",
527		.insns = {
528			/* Create an unknown offset, (4n+2)-aligned and bounded
529			 * to [14,74]
530			 */
531			LOAD_UNKNOWN(BPF_REG_6),
532			BPF_MOV64_REG(BPF_REG_7, BPF_REG_6),
533			BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xf),
534			BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
535			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14),
536			/* Subtract it from the packet pointer */
537			BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
538			BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_6),
539			/* Create another unknown, (4n)-aligned and >= 74.
540			 * That in fact means >= 76, since 74 % 4 == 2
541			 */
542			BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2),
543			BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 76),
544			/* Add it to the packet pointer */
545			BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_7),
546			/* Check bounds and perform a read */
547			BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
548			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
549			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
550			BPF_EXIT_INSN(),
551			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0),
552			BPF_EXIT_INSN(),
553		},
554		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
555		.matches = {
556			/* Calculated offset in R6 has unknown value, but known
557			 * alignment of 4.
558			 */
559			{7, "R2_w=pkt(id=0,off=0,r=8,imm=0)"},
560			{10, "R6_w=inv(id=0,umax_value=60,var_off=(0x0; 0x3c))"},
561			/* Adding 14 makes R6 be (4n+2) */
562			{11, "R6_w=inv(id=0,umin_value=14,umax_value=74,var_off=(0x2; 0x7c))"},
563			/* Subtracting from packet pointer overflows ubounds */
564			{13, "R5_w=pkt(id=1,off=0,r=8,umin_value=18446744073709551542,umax_value=18446744073709551602,var_off=(0xffffffffffffff82; 0x7c)"},
565			/* New unknown value in R7 is (4n), >= 76 */
566			{15, "R7_w=inv(id=0,umin_value=76,umax_value=1096,var_off=(0x0; 0x7fc))"},
567			/* Adding it to packet pointer gives nice bounds again */
568			{16, "R5_w=pkt(id=2,off=0,r=0,umin_value=2,umax_value=1082,var_off=(0x2; 0xfffffffc)"},
569			/* At the time the word size load is performed from R5,
570			 * its total fixed offset is NET_IP_ALIGN + reg->off (0)
571			 * which is 2.  Then the variable offset is (4n+2), so
572			 * the total offset is 4-byte aligned and meets the
573			 * load's requirements.
574			 */
575			{20, "R5=pkt(id=2,off=0,r=4,umin_value=2,umax_value=1082,var_off=(0x2; 0xfffffffc)"},
576		},
577	},
578};
579
580static int probe_filter_length(const struct bpf_insn *fp)
581{
582	int len;
583
584	for (len = MAX_INSNS - 1; len > 0; --len)
585		if (fp[len].code != 0 || fp[len].imm != 0)
586			break;
587	return len + 1;
588}
589
590static char bpf_vlog[32768];
591
592static int do_test_single(struct bpf_align_test *test)
593{
594	struct bpf_insn *prog = test->insns;
595	int prog_type = test->prog_type;
596	char bpf_vlog_copy[32768];
597	const char *line_ptr;
598	int cur_line = -1;
599	int prog_len, i;
600	int fd_prog;
601	int ret;
602
603	prog_len = probe_filter_length(prog);
604	fd_prog = bpf_verify_program(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER,
605				     prog, prog_len, BPF_F_STRICT_ALIGNMENT,
606				     "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 2);
607	if (fd_prog < 0 && test->result != REJECT) {
608		printf("Failed to load program.\n");
609		printf("%s", bpf_vlog);
610		ret = 1;
611	} else if (fd_prog >= 0 && test->result == REJECT) {
612		printf("Unexpected success to load!\n");
613		printf("%s", bpf_vlog);
614		ret = 1;
615		close(fd_prog);
616	} else {
617		ret = 0;
618		/* We make a local copy so that we can strtok() it */
619		strncpy(bpf_vlog_copy, bpf_vlog, sizeof(bpf_vlog_copy));
620		line_ptr = strtok(bpf_vlog_copy, "\n");
621		for (i = 0; i < MAX_MATCHES; i++) {
622			struct bpf_reg_match m = test->matches[i];
623
624			if (!m.match)
625				break;
626			while (line_ptr) {
627				cur_line = -1;
628				sscanf(line_ptr, "%u: ", &cur_line);
629				if (cur_line == m.line)
630					break;
631				line_ptr = strtok(NULL, "\n");
632			}
633			if (!line_ptr) {
634				printf("Failed to find line %u for match: %s\n",
635				       m.line, m.match);
636				ret = 1;
637				printf("%s", bpf_vlog);
638				break;
639			}
640			if (!strstr(line_ptr, m.match)) {
641				printf("Failed to find match %u: %s\n",
642				       m.line, m.match);
643				ret = 1;
644				printf("%s", bpf_vlog);
645				break;
646			}
647		}
648		if (fd_prog >= 0)
649			close(fd_prog);
650	}
651	return ret;
652}
653
654void test_align(void)
655{
656	unsigned int i;
657
658	for (i = 0; i < ARRAY_SIZE(tests); i++) {
659		struct bpf_align_test *test = &tests[i];
660
661		if (!test__start_subtest(test->descr))
662			continue;
663
664		CHECK_FAIL(do_test_single(test));
665	}
666}