Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Authors: Karl MacMillan <kmacmillan@tresys.com>
  3 *	    Frank Mayer <mayerf@tresys.com>
  4 *
  5 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/errno.h>
 10#include <linux/string.h>
 11#include <linux/spinlock.h>
 12#include <linux/slab.h>
 13
 14#include "security.h"
 15#include "conditional.h"
 16#include "services.h"
 17
 18/*
 19 * cond_evaluate_expr evaluates a conditional expr
 20 * in reverse polish notation. It returns true (1), false (0),
 21 * or undefined (-1). Undefined occurs when the expression
 22 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
 23 */
 24static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
 25{
 26
 27	struct cond_expr *cur;
 28	int s[COND_EXPR_MAXDEPTH];
 29	int sp = -1;
 30
 31	for (cur = expr; cur; cur = cur->next) {
 32		switch (cur->expr_type) {
 
 
 
 
 
 33		case COND_BOOL:
 34			if (sp == (COND_EXPR_MAXDEPTH - 1))
 35				return -1;
 36			sp++;
 37			s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
 38			break;
 39		case COND_NOT:
 40			if (sp < 0)
 41				return -1;
 42			s[sp] = !s[sp];
 43			break;
 44		case COND_OR:
 45			if (sp < 1)
 46				return -1;
 47			sp--;
 48			s[sp] |= s[sp + 1];
 49			break;
 50		case COND_AND:
 51			if (sp < 1)
 52				return -1;
 53			sp--;
 54			s[sp] &= s[sp + 1];
 55			break;
 56		case COND_XOR:
 57			if (sp < 1)
 58				return -1;
 59			sp--;
 60			s[sp] ^= s[sp + 1];
 61			break;
 62		case COND_EQ:
 63			if (sp < 1)
 64				return -1;
 65			sp--;
 66			s[sp] = (s[sp] == s[sp + 1]);
 67			break;
 68		case COND_NEQ:
 69			if (sp < 1)
 70				return -1;
 71			sp--;
 72			s[sp] = (s[sp] != s[sp + 1]);
 73			break;
 74		default:
 75			return -1;
 76		}
 77	}
 78	return s[0];
 79}
 80
 81/*
 82 * evaluate_cond_node evaluates the conditional stored in
 83 * a struct cond_node and if the result is different than the
 84 * current state of the node it sets the rules in the true/false
 85 * list appropriately. If the result of the expression is undefined
 86 * all of the rules are disabled for safety.
 87 */
 88int evaluate_cond_node(struct policydb *p, struct cond_node *node)
 89{
 
 90	int new_state;
 91	struct cond_av_list *cur;
 92
 93	new_state = cond_evaluate_expr(p, node->expr);
 94	if (new_state != node->cur_state) {
 95		node->cur_state = new_state;
 96		if (new_state == -1)
 97			pr_err("SELinux: expression result was undefined - disabling all rules.\n");
 98		/* turn the rules on or off */
 99		for (cur = node->true_list; cur; cur = cur->next) {
 
100			if (new_state <= 0)
101				cur->node->key.specified &= ~AVTAB_ENABLED;
102			else
103				cur->node->key.specified |= AVTAB_ENABLED;
104		}
105
106		for (cur = node->false_list; cur; cur = cur->next) {
 
107			/* -1 or 1 */
108			if (new_state)
109				cur->node->key.specified &= ~AVTAB_ENABLED;
110			else
111				cur->node->key.specified |= AVTAB_ENABLED;
112		}
113	}
114	return 0;
115}
116
117int cond_policydb_init(struct policydb *p)
118{
119	int rc;
120
121	p->bool_val_to_struct = NULL;
122	p->cond_list = NULL;
123
124	rc = avtab_init(&p->te_cond_avtab);
125	if (rc)
126		return rc;
127
128	return 0;
 
129}
130
131static void cond_av_list_destroy(struct cond_av_list *list)
132{
133	struct cond_av_list *cur, *next;
134	for (cur = list; cur; cur = next) {
135		next = cur->next;
136		/* the avtab_ptr_t node is destroy by the avtab */
137		kfree(cur);
138	}
139}
140
141static void cond_node_destroy(struct cond_node *node)
142{
143	struct cond_expr *cur_expr, *next_expr;
144
145	for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
146		next_expr = cur_expr->next;
147		kfree(cur_expr);
148	}
149	cond_av_list_destroy(node->true_list);
150	cond_av_list_destroy(node->false_list);
151	kfree(node);
152}
153
154static void cond_list_destroy(struct cond_node *list)
155{
156	struct cond_node *next, *cur;
157
158	if (list == NULL)
159		return;
160
161	for (cur = list; cur; cur = next) {
162		next = cur->next;
163		cond_node_destroy(cur);
164	}
165}
166
167void cond_policydb_destroy(struct policydb *p)
168{
169	kfree(p->bool_val_to_struct);
170	avtab_destroy(&p->te_cond_avtab);
171	cond_list_destroy(p->cond_list);
172}
173
174int cond_init_bool_indexes(struct policydb *p)
175{
176	kfree(p->bool_val_to_struct);
177	p->bool_val_to_struct = kmalloc_array(p->p_bools.nprim,
178					      sizeof(*p->bool_val_to_struct),
179					      GFP_KERNEL);
180	if (!p->bool_val_to_struct)
181		return -ENOMEM;
182	return 0;
183}
184
185int cond_destroy_bool(void *key, void *datum, void *p)
186{
187	kfree(key);
188	kfree(datum);
189	return 0;
190}
191
192int cond_index_bool(void *key, void *datum, void *datap)
193{
194	struct policydb *p;
195	struct cond_bool_datum *booldatum;
196
197	booldatum = datum;
198	p = datap;
199
200	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
201		return -EINVAL;
202
203	p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key;
204	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
205
206	return 0;
207}
208
209static int bool_isvalid(struct cond_bool_datum *b)
210{
211	if (!(b->state == 0 || b->state == 1))
212		return 0;
213	return 1;
214}
215
216int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
217{
218	char *key = NULL;
219	struct cond_bool_datum *booldatum;
220	__le32 buf[3];
221	u32 len;
222	int rc;
223
224	booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
225	if (!booldatum)
226		return -ENOMEM;
227
228	rc = next_entry(buf, fp, sizeof buf);
229	if (rc)
230		goto err;
231
232	booldatum->value = le32_to_cpu(buf[0]);
233	booldatum->state = le32_to_cpu(buf[1]);
234
235	rc = -EINVAL;
236	if (!bool_isvalid(booldatum))
237		goto err;
238
239	len = le32_to_cpu(buf[2]);
240	if (((len == 0) || (len == (u32)-1)))
241		goto err;
242
243	rc = -ENOMEM;
244	key = kmalloc(len + 1, GFP_KERNEL);
245	if (!key)
246		goto err;
247	rc = next_entry(key, fp, len);
248	if (rc)
249		goto err;
250	key[len] = '\0';
251	rc = hashtab_insert(h, key, booldatum);
252	if (rc)
253		goto err;
254
255	return 0;
256err:
257	cond_destroy_bool(key, booldatum, NULL);
258	return rc;
259}
260
261struct cond_insertf_data {
262	struct policydb *p;
 
263	struct cond_av_list *other;
264	struct cond_av_list *head;
265	struct cond_av_list *tail;
266};
267
268static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
269{
270	struct cond_insertf_data *data = ptr;
271	struct policydb *p = data->p;
272	struct cond_av_list *other = data->other, *list, *cur;
273	struct avtab_node *node_ptr;
274	u8 found;
275	int rc = -EINVAL;
276
277	/*
278	 * For type rules we have to make certain there aren't any
279	 * conflicting rules by searching the te_avtab and the
280	 * cond_te_avtab.
281	 */
282	if (k->specified & AVTAB_TYPE) {
283		if (avtab_search(&p->te_avtab, k)) {
284			pr_err("SELinux: type rule already exists outside of a conditional.\n");
285			goto err;
286		}
287		/*
288		 * If we are reading the false list other will be a pointer to
289		 * the true list. We can have duplicate entries if there is only
290		 * 1 other entry and it is in our true list.
291		 *
292		 * If we are reading the true list (other == NULL) there shouldn't
293		 * be any other entries.
294		 */
295		if (other) {
296			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
297			if (node_ptr) {
298				if (avtab_search_node_next(node_ptr, k->specified)) {
299					pr_err("SELinux: too many conflicting type rules.\n");
300					goto err;
301				}
302				found = 0;
303				for (cur = other; cur; cur = cur->next) {
304					if (cur->node == node_ptr) {
305						found = 1;
306						break;
307					}
308				}
309				if (!found) {
310					pr_err("SELinux: conflicting type rules.\n");
311					goto err;
312				}
313			}
314		} else {
315			if (avtab_search(&p->te_cond_avtab, k)) {
316				pr_err("SELinux: conflicting type rules when adding type rule for true.\n");
317				goto err;
318			}
319		}
320	}
321
322	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
323	if (!node_ptr) {
324		pr_err("SELinux: could not insert rule.\n");
325		rc = -ENOMEM;
326		goto err;
327	}
328
329	list = kzalloc(sizeof(*list), GFP_KERNEL);
330	if (!list) {
331		rc = -ENOMEM;
332		goto err;
333	}
334
335	list->node = node_ptr;
336	if (!data->head)
337		data->head = list;
338	else
339		data->tail->next = list;
340	data->tail = list;
341	return 0;
342
343err:
344	cond_av_list_destroy(data->head);
345	data->head = NULL;
346	return rc;
347}
348
349static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
 
 
350{
351	int i, rc;
352	__le32 buf[1];
353	u32 len;
354	struct cond_insertf_data data;
355
356	*ret_list = NULL;
357
358	rc = next_entry(buf, fp, sizeof(u32));
359	if (rc)
360		return rc;
361
362	len = le32_to_cpu(buf[0]);
363	if (len == 0)
364		return 0;
365
 
 
 
 
366	data.p = p;
367	data.other = other;
368	data.head = NULL;
369	data.tail = NULL;
370	for (i = 0; i < len; i++) {
 
371		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
372				     &data);
373		if (rc)
 
 
374			return rc;
 
375	}
376
377	*ret_list = data.head;
378	return 0;
379}
380
381static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
382{
383	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
384		pr_err("SELinux: conditional expressions uses unknown operator.\n");
385		return 0;
386	}
387
388	if (expr->bool > p->p_bools.nprim) {
389		pr_err("SELinux: conditional expressions uses unknown bool.\n");
390		return 0;
391	}
392	return 1;
393}
394
395static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
396{
397	__le32 buf[2];
398	u32 len, i;
399	int rc;
400	struct cond_expr *expr = NULL, *last = NULL;
401
402	rc = next_entry(buf, fp, sizeof(u32) * 2);
403	if (rc)
404		goto err;
405
406	node->cur_state = le32_to_cpu(buf[0]);
407
408	/* expr */
409	len = le32_to_cpu(buf[1]);
 
 
 
 
 
410
411	for (i = 0; i < len; i++) {
 
 
412		rc = next_entry(buf, fp, sizeof(u32) * 2);
413		if (rc)
414			goto err;
415
416		rc = -ENOMEM;
417		expr = kzalloc(sizeof(*expr), GFP_KERNEL);
418		if (!expr)
419			goto err;
420
421		expr->expr_type = le32_to_cpu(buf[0]);
422		expr->bool = le32_to_cpu(buf[1]);
423
424		if (!expr_isvalid(p, expr)) {
425			rc = -EINVAL;
426			kfree(expr);
427			goto err;
428		}
429
430		if (i == 0)
431			node->expr = expr;
432		else
433			last->next = expr;
434		last = expr;
435	}
436
437	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
438	if (rc)
439		goto err;
440	rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
441	if (rc)
442		goto err;
443	return 0;
444err:
445	cond_node_destroy(node);
446	return rc;
447}
448
449int cond_read_list(struct policydb *p, void *fp)
450{
451	struct cond_node *node, *last = NULL;
452	__le32 buf[1];
453	u32 i, len;
454	int rc;
455
456	rc = next_entry(buf, fp, sizeof buf);
457	if (rc)
458		return rc;
459
460	len = le32_to_cpu(buf[0]);
461
 
 
 
 
462	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
463	if (rc)
464		goto err;
465
466	for (i = 0; i < len; i++) {
467		rc = -ENOMEM;
468		node = kzalloc(sizeof(*node), GFP_KERNEL);
469		if (!node)
470			goto err;
471
472		rc = cond_read_node(p, node, fp);
 
473		if (rc)
474			goto err;
475
476		if (i == 0)
477			p->cond_list = node;
478		else
479			last->next = node;
480		last = node;
481	}
482	return 0;
483err:
484	cond_list_destroy(p->cond_list);
485	p->cond_list = NULL;
486	return rc;
487}
488
489int cond_write_bool(void *vkey, void *datum, void *ptr)
490{
491	char *key = vkey;
492	struct cond_bool_datum *booldatum = datum;
493	struct policy_data *pd = ptr;
494	void *fp = pd->fp;
495	__le32 buf[3];
496	u32 len;
497	int rc;
498
499	len = strlen(key);
500	buf[0] = cpu_to_le32(booldatum->value);
501	buf[1] = cpu_to_le32(booldatum->state);
502	buf[2] = cpu_to_le32(len);
503	rc = put_entry(buf, sizeof(u32), 3, fp);
504	if (rc)
505		return rc;
506	rc = put_entry(key, 1, len, fp);
507	if (rc)
508		return rc;
509	return 0;
510}
511
512/*
513 * cond_write_cond_av_list doesn't write out the av_list nodes.
514 * Instead it writes out the key/value pairs from the avtab. This
515 * is necessary because there is no way to uniquely identifying rules
516 * in the avtab so it is not possible to associate individual rules
517 * in the avtab with a conditional without saving them as part of
518 * the conditional. This means that the avtab with the conditional
519 * rules will not be saved but will be rebuilt on policy load.
520 */
521static int cond_write_av_list(struct policydb *p,
522			      struct cond_av_list *list, struct policy_file *fp)
523{
524	__le32 buf[1];
525	struct cond_av_list *cur_list;
526	u32 len;
527	int rc;
528
529	len = 0;
530	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
531		len++;
532
533	buf[0] = cpu_to_le32(len);
534	rc = put_entry(buf, sizeof(u32), 1, fp);
535	if (rc)
536		return rc;
537
538	if (len == 0)
539		return 0;
540
541	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
542		rc = avtab_write_item(p, cur_list->node, fp);
543		if (rc)
544			return rc;
545	}
546
547	return 0;
548}
549
550static int cond_write_node(struct policydb *p, struct cond_node *node,
551		    struct policy_file *fp)
552{
553	struct cond_expr *cur_expr;
554	__le32 buf[2];
555	int rc;
556	u32 len = 0;
557
558	buf[0] = cpu_to_le32(node->cur_state);
559	rc = put_entry(buf, sizeof(u32), 1, fp);
560	if (rc)
561		return rc;
562
563	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
564		len++;
565
566	buf[0] = cpu_to_le32(len);
567	rc = put_entry(buf, sizeof(u32), 1, fp);
568	if (rc)
569		return rc;
570
571	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
572		buf[0] = cpu_to_le32(cur_expr->expr_type);
573		buf[1] = cpu_to_le32(cur_expr->bool);
574		rc = put_entry(buf, sizeof(u32), 2, fp);
575		if (rc)
576			return rc;
577	}
578
579	rc = cond_write_av_list(p, node->true_list, fp);
580	if (rc)
581		return rc;
582	rc = cond_write_av_list(p, node->false_list, fp);
583	if (rc)
584		return rc;
585
586	return 0;
587}
588
589int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
590{
591	struct cond_node *cur;
592	u32 len;
593	__le32 buf[1];
594	int rc;
595
596	len = 0;
597	for (cur = list; cur != NULL; cur = cur->next)
598		len++;
599	buf[0] = cpu_to_le32(len);
600	rc = put_entry(buf, sizeof(u32), 1, fp);
601	if (rc)
602		return rc;
603
604	for (cur = list; cur != NULL; cur = cur->next) {
605		rc = cond_write_node(p, cur, fp);
606		if (rc)
607			return rc;
608	}
609
610	return 0;
611}
612
613void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
614		struct extended_perms_decision *xpermd)
615{
616	struct avtab_node *node;
617
618	if (!ctab || !key || !xpermd)
619		return;
620
621	for (node = avtab_search_node(ctab, key); node;
622			node = avtab_search_node_next(node, key->specified)) {
623		if (node->key.specified & AVTAB_ENABLED)
624			services_compute_xperms_decision(xpermd, node);
625	}
626	return;
627
628}
629/* Determine whether additional permissions are granted by the conditional
630 * av table, and if so, add them to the result
631 */
632void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
633		struct av_decision *avd, struct extended_perms *xperms)
634{
635	struct avtab_node *node;
636
637	if (!ctab || !key || !avd)
638		return;
639
640	for (node = avtab_search_node(ctab, key); node;
641				node = avtab_search_node_next(node, key->specified)) {
642		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
643		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
644			avd->allowed |= node->datum.u.data;
645		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
646		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
647			/* Since a '0' in an auditdeny mask represents a
648			 * permission we do NOT want to audit (dontaudit), we use
649			 * the '&' operand to ensure that all '0's in the mask
650			 * are retained (much unlike the allow and auditallow cases).
651			 */
652			avd->auditdeny &= node->datum.u.data;
653		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
654		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
655			avd->auditallow |= node->datum.u.data;
656		if (xperms && (node->key.specified & AVTAB_ENABLED) &&
657				(node->key.specified & AVTAB_XPERMS))
658			services_compute_xperms_drivers(xperms, node);
659	}
660}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Authors: Karl MacMillan <kmacmillan@tresys.com>
  3 *	    Frank Mayer <mayerf@tresys.com>
  4 *
  5 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/errno.h>
 10#include <linux/string.h>
 11#include <linux/spinlock.h>
 12#include <linux/slab.h>
 13
 14#include "security.h"
 15#include "conditional.h"
 16#include "services.h"
 17
 18/*
 19 * cond_evaluate_expr evaluates a conditional expr
 20 * in reverse polish notation. It returns true (1), false (0),
 21 * or undefined (-1). Undefined occurs when the expression
 22 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
 23 */
 24static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
 25{
 26	u32 i;
 
 27	int s[COND_EXPR_MAXDEPTH];
 28	int sp = -1;
 29
 30	if (expr->len == 0)
 31		return -1;
 32
 33	for (i = 0; i < expr->len; i++) {
 34		struct cond_expr_node *node = &expr->nodes[i];
 35
 36		switch (node->expr_type) {
 37		case COND_BOOL:
 38			if (sp == (COND_EXPR_MAXDEPTH - 1))
 39				return -1;
 40			sp++;
 41			s[sp] = p->bool_val_to_struct[node->bool - 1]->state;
 42			break;
 43		case COND_NOT:
 44			if (sp < 0)
 45				return -1;
 46			s[sp] = !s[sp];
 47			break;
 48		case COND_OR:
 49			if (sp < 1)
 50				return -1;
 51			sp--;
 52			s[sp] |= s[sp + 1];
 53			break;
 54		case COND_AND:
 55			if (sp < 1)
 56				return -1;
 57			sp--;
 58			s[sp] &= s[sp + 1];
 59			break;
 60		case COND_XOR:
 61			if (sp < 1)
 62				return -1;
 63			sp--;
 64			s[sp] ^= s[sp + 1];
 65			break;
 66		case COND_EQ:
 67			if (sp < 1)
 68				return -1;
 69			sp--;
 70			s[sp] = (s[sp] == s[sp + 1]);
 71			break;
 72		case COND_NEQ:
 73			if (sp < 1)
 74				return -1;
 75			sp--;
 76			s[sp] = (s[sp] != s[sp + 1]);
 77			break;
 78		default:
 79			return -1;
 80		}
 81	}
 82	return s[0];
 83}
 84
 85/*
 86 * evaluate_cond_node evaluates the conditional stored in
 87 * a struct cond_node and if the result is different than the
 88 * current state of the node it sets the rules in the true/false
 89 * list appropriately. If the result of the expression is undefined
 90 * all of the rules are disabled for safety.
 91 */
 92static void evaluate_cond_node(struct policydb *p, struct cond_node *node)
 93{
 94	struct avtab_node *avnode;
 95	int new_state;
 96	u32 i;
 97
 98	new_state = cond_evaluate_expr(p, &node->expr);
 99	if (new_state != node->cur_state) {
100		node->cur_state = new_state;
101		if (new_state == -1)
102			pr_err("SELinux: expression result was undefined - disabling all rules.\n");
103		/* turn the rules on or off */
104		for (i = 0; i < node->true_list.len; i++) {
105			avnode = node->true_list.nodes[i];
106			if (new_state <= 0)
107				avnode->key.specified &= ~AVTAB_ENABLED;
108			else
109				avnode->key.specified |= AVTAB_ENABLED;
110		}
111
112		for (i = 0; i < node->false_list.len; i++) {
113			avnode = node->false_list.nodes[i];
114			/* -1 or 1 */
115			if (new_state)
116				avnode->key.specified &= ~AVTAB_ENABLED;
117			else
118				avnode->key.specified |= AVTAB_ENABLED;
119		}
120	}
 
121}
122
123void evaluate_cond_nodes(struct policydb *p)
124{
125	u32 i;
 
 
 
 
 
 
 
126
127	for (i = 0; i < p->cond_list_len; i++)
128		evaluate_cond_node(p, &p->cond_list[i]);
129}
130
131void cond_policydb_init(struct policydb *p)
132{
133	p->bool_val_to_struct = NULL;
134	p->cond_list = NULL;
135	p->cond_list_len = 0;
136
137	avtab_init(&p->te_cond_avtab);
 
138}
139
140static void cond_node_destroy(struct cond_node *node)
141{
142	kfree(node->expr.nodes);
143	/* the avtab_ptr_t nodes are destroyed by the avtab */
144	kfree(node->true_list.nodes);
145	kfree(node->false_list.nodes);
 
 
 
 
 
146}
147
148static void cond_list_destroy(struct policydb *p)
149{
150	u32 i;
151
152	for (i = 0; i < p->cond_list_len; i++)
153		cond_node_destroy(&p->cond_list[i]);
154	kfree(p->cond_list);
 
 
 
 
155}
156
157void cond_policydb_destroy(struct policydb *p)
158{
159	kfree(p->bool_val_to_struct);
160	avtab_destroy(&p->te_cond_avtab);
161	cond_list_destroy(p);
162}
163
164int cond_init_bool_indexes(struct policydb *p)
165{
166	kfree(p->bool_val_to_struct);
167	p->bool_val_to_struct = kmalloc_array(p->p_bools.nprim,
168					      sizeof(*p->bool_val_to_struct),
169					      GFP_KERNEL);
170	if (!p->bool_val_to_struct)
171		return -ENOMEM;
172	return 0;
173}
174
175int cond_destroy_bool(void *key, void *datum, void *p)
176{
177	kfree(key);
178	kfree(datum);
179	return 0;
180}
181
182int cond_index_bool(void *key, void *datum, void *datap)
183{
184	struct policydb *p;
185	struct cond_bool_datum *booldatum;
186
187	booldatum = datum;
188	p = datap;
189
190	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
191		return -EINVAL;
192
193	p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key;
194	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
195
196	return 0;
197}
198
199static int bool_isvalid(struct cond_bool_datum *b)
200{
201	if (!(b->state == 0 || b->state == 1))
202		return 0;
203	return 1;
204}
205
206int cond_read_bool(struct policydb *p, struct symtab *s, void *fp)
207{
208	char *key = NULL;
209	struct cond_bool_datum *booldatum;
210	__le32 buf[3];
211	u32 len;
212	int rc;
213
214	booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
215	if (!booldatum)
216		return -ENOMEM;
217
218	rc = next_entry(buf, fp, sizeof(buf));
219	if (rc)
220		goto err;
221
222	booldatum->value = le32_to_cpu(buf[0]);
223	booldatum->state = le32_to_cpu(buf[1]);
224
225	rc = -EINVAL;
226	if (!bool_isvalid(booldatum))
227		goto err;
228
229	len = le32_to_cpu(buf[2]);
230	if (((len == 0) || (len == (u32)-1)))
231		goto err;
232
233	rc = -ENOMEM;
234	key = kmalloc(len + 1, GFP_KERNEL);
235	if (!key)
236		goto err;
237	rc = next_entry(key, fp, len);
238	if (rc)
239		goto err;
240	key[len] = '\0';
241	rc = symtab_insert(s, key, booldatum);
242	if (rc)
243		goto err;
244
245	return 0;
246err:
247	cond_destroy_bool(key, booldatum, NULL);
248	return rc;
249}
250
251struct cond_insertf_data {
252	struct policydb *p;
253	struct avtab_node **dst;
254	struct cond_av_list *other;
 
 
255};
256
257static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
258{
259	struct cond_insertf_data *data = ptr;
260	struct policydb *p = data->p;
261	struct cond_av_list *other = data->other;
262	struct avtab_node *node_ptr;
263	u32 i;
264	bool found;
265
266	/*
267	 * For type rules we have to make certain there aren't any
268	 * conflicting rules by searching the te_avtab and the
269	 * cond_te_avtab.
270	 */
271	if (k->specified & AVTAB_TYPE) {
272		if (avtab_search(&p->te_avtab, k)) {
273			pr_err("SELinux: type rule already exists outside of a conditional.\n");
274			return -EINVAL;
275		}
276		/*
277		 * If we are reading the false list other will be a pointer to
278		 * the true list. We can have duplicate entries if there is only
279		 * 1 other entry and it is in our true list.
280		 *
281		 * If we are reading the true list (other == NULL) there shouldn't
282		 * be any other entries.
283		 */
284		if (other) {
285			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
286			if (node_ptr) {
287				if (avtab_search_node_next(node_ptr, k->specified)) {
288					pr_err("SELinux: too many conflicting type rules.\n");
289					return -EINVAL;
290				}
291				found = false;
292				for (i = 0; i < other->len; i++) {
293					if (other->nodes[i] == node_ptr) {
294						found = true;
295						break;
296					}
297				}
298				if (!found) {
299					pr_err("SELinux: conflicting type rules.\n");
300					return -EINVAL;
301				}
302			}
303		} else {
304			if (avtab_search(&p->te_cond_avtab, k)) {
305				pr_err("SELinux: conflicting type rules when adding type rule for true.\n");
306				return -EINVAL;
307			}
308		}
309	}
310
311	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
312	if (!node_ptr) {
313		pr_err("SELinux: could not insert rule.\n");
314		return -ENOMEM;
 
 
 
 
 
 
 
315	}
316
317	*data->dst = node_ptr;
 
 
 
 
 
318	return 0;
 
 
 
 
 
319}
320
321static int cond_read_av_list(struct policydb *p, void *fp,
322			     struct cond_av_list *list,
323			     struct cond_av_list *other)
324{
325	int rc;
326	__le32 buf[1];
327	u32 i, len;
328	struct cond_insertf_data data;
329
 
 
330	rc = next_entry(buf, fp, sizeof(u32));
331	if (rc)
332		return rc;
333
334	len = le32_to_cpu(buf[0]);
335	if (len == 0)
336		return 0;
337
338	list->nodes = kcalloc(len, sizeof(*list->nodes), GFP_KERNEL);
339	if (!list->nodes)
340		return -ENOMEM;
341
342	data.p = p;
343	data.other = other;
 
 
344	for (i = 0; i < len; i++) {
345		data.dst = &list->nodes[i];
346		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
347				     &data);
348		if (rc) {
349			kfree(list->nodes);
350			list->nodes = NULL;
351			return rc;
352		}
353	}
354
355	list->len = len;
356	return 0;
357}
358
359static int expr_node_isvalid(struct policydb *p, struct cond_expr_node *expr)
360{
361	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
362		pr_err("SELinux: conditional expressions uses unknown operator.\n");
363		return 0;
364	}
365
366	if (expr->bool > p->p_bools.nprim) {
367		pr_err("SELinux: conditional expressions uses unknown bool.\n");
368		return 0;
369	}
370	return 1;
371}
372
373static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
374{
375	__le32 buf[2];
376	u32 i, len;
377	int rc;
 
378
379	rc = next_entry(buf, fp, sizeof(u32) * 2);
380	if (rc)
381		return rc;
382
383	node->cur_state = le32_to_cpu(buf[0]);
384
385	/* expr */
386	len = le32_to_cpu(buf[1]);
387	node->expr.nodes = kcalloc(len, sizeof(*node->expr.nodes), GFP_KERNEL);
388	if (!node->expr.nodes)
389		return -ENOMEM;
390
391	node->expr.len = len;
392
393	for (i = 0; i < len; i++) {
394		struct cond_expr_node *expr = &node->expr.nodes[i];
395
396		rc = next_entry(buf, fp, sizeof(u32) * 2);
397		if (rc)
398			return rc;
 
 
 
 
 
399
400		expr->expr_type = le32_to_cpu(buf[0]);
401		expr->bool = le32_to_cpu(buf[1]);
402
403		if (!expr_node_isvalid(p, expr))
404			return -EINVAL;
 
 
 
 
 
 
 
 
 
405	}
406
407	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
408	if (rc)
409		return rc;
410	return cond_read_av_list(p, fp, &node->false_list, &node->true_list);
 
 
 
 
 
 
411}
412
413int cond_read_list(struct policydb *p, void *fp)
414{
 
415	__le32 buf[1];
416	u32 i, len;
417	int rc;
418
419	rc = next_entry(buf, fp, sizeof(buf));
420	if (rc)
421		return rc;
422
423	len = le32_to_cpu(buf[0]);
424
425	p->cond_list = kcalloc(len, sizeof(*p->cond_list), GFP_KERNEL);
426	if (!p->cond_list)
427		return -ENOMEM;
428
429	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
430	if (rc)
431		goto err;
432
433	p->cond_list_len = len;
 
 
 
 
434
435	for (i = 0; i < len; i++) {
436		rc = cond_read_node(p, &p->cond_list[i], fp);
437		if (rc)
438			goto err;
 
 
 
 
 
 
439	}
440	return 0;
441err:
442	cond_list_destroy(p);
443	p->cond_list = NULL;
444	return rc;
445}
446
447int cond_write_bool(void *vkey, void *datum, void *ptr)
448{
449	char *key = vkey;
450	struct cond_bool_datum *booldatum = datum;
451	struct policy_data *pd = ptr;
452	void *fp = pd->fp;
453	__le32 buf[3];
454	u32 len;
455	int rc;
456
457	len = strlen(key);
458	buf[0] = cpu_to_le32(booldatum->value);
459	buf[1] = cpu_to_le32(booldatum->state);
460	buf[2] = cpu_to_le32(len);
461	rc = put_entry(buf, sizeof(u32), 3, fp);
462	if (rc)
463		return rc;
464	rc = put_entry(key, 1, len, fp);
465	if (rc)
466		return rc;
467	return 0;
468}
469
470/*
471 * cond_write_cond_av_list doesn't write out the av_list nodes.
472 * Instead it writes out the key/value pairs from the avtab. This
473 * is necessary because there is no way to uniquely identifying rules
474 * in the avtab so it is not possible to associate individual rules
475 * in the avtab with a conditional without saving them as part of
476 * the conditional. This means that the avtab with the conditional
477 * rules will not be saved but will be rebuilt on policy load.
478 */
479static int cond_write_av_list(struct policydb *p,
480			      struct cond_av_list *list, struct policy_file *fp)
481{
482	__le32 buf[1];
483	u32 i;
 
484	int rc;
485
486	buf[0] = cpu_to_le32(list->len);
 
 
 
 
487	rc = put_entry(buf, sizeof(u32), 1, fp);
488	if (rc)
489		return rc;
490
491	for (i = 0; i < list->len; i++) {
492		rc = avtab_write_item(p, list->nodes[i], fp);
 
 
 
493		if (rc)
494			return rc;
495	}
496
497	return 0;
498}
499
500static int cond_write_node(struct policydb *p, struct cond_node *node,
501		    struct policy_file *fp)
502{
 
503	__le32 buf[2];
504	int rc;
505	u32 i;
506
507	buf[0] = cpu_to_le32(node->cur_state);
508	rc = put_entry(buf, sizeof(u32), 1, fp);
509	if (rc)
510		return rc;
511
512	buf[0] = cpu_to_le32(node->expr.len);
 
 
 
513	rc = put_entry(buf, sizeof(u32), 1, fp);
514	if (rc)
515		return rc;
516
517	for (i = 0; i < node->expr.len; i++) {
518		buf[0] = cpu_to_le32(node->expr.nodes[i].expr_type);
519		buf[1] = cpu_to_le32(node->expr.nodes[i].bool);
520		rc = put_entry(buf, sizeof(u32), 2, fp);
521		if (rc)
522			return rc;
523	}
524
525	rc = cond_write_av_list(p, &node->true_list, fp);
526	if (rc)
527		return rc;
528	rc = cond_write_av_list(p, &node->false_list, fp);
529	if (rc)
530		return rc;
531
532	return 0;
533}
534
535int cond_write_list(struct policydb *p, void *fp)
536{
537	u32 i;
 
538	__le32 buf[1];
539	int rc;
540
541	buf[0] = cpu_to_le32(p->cond_list_len);
 
 
 
542	rc = put_entry(buf, sizeof(u32), 1, fp);
543	if (rc)
544		return rc;
545
546	for (i = 0; i < p->cond_list_len; i++) {
547		rc = cond_write_node(p, &p->cond_list[i], fp);
548		if (rc)
549			return rc;
550	}
551
552	return 0;
553}
554
555void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
556		struct extended_perms_decision *xpermd)
557{
558	struct avtab_node *node;
559
560	if (!ctab || !key || !xpermd)
561		return;
562
563	for (node = avtab_search_node(ctab, key); node;
564			node = avtab_search_node_next(node, key->specified)) {
565		if (node->key.specified & AVTAB_ENABLED)
566			services_compute_xperms_decision(xpermd, node);
567	}
568	return;
569
570}
571/* Determine whether additional permissions are granted by the conditional
572 * av table, and if so, add them to the result
573 */
574void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
575		struct av_decision *avd, struct extended_perms *xperms)
576{
577	struct avtab_node *node;
578
579	if (!ctab || !key || !avd)
580		return;
581
582	for (node = avtab_search_node(ctab, key); node;
583				node = avtab_search_node_next(node, key->specified)) {
584		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
585		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
586			avd->allowed |= node->datum.u.data;
587		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
588		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
589			/* Since a '0' in an auditdeny mask represents a
590			 * permission we do NOT want to audit (dontaudit), we use
591			 * the '&' operand to ensure that all '0's in the mask
592			 * are retained (much unlike the allow and auditallow cases).
593			 */
594			avd->auditdeny &= node->datum.u.data;
595		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
596		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
597			avd->auditallow |= node->datum.u.data;
598		if (xperms && (node->key.specified & AVTAB_ENABLED) &&
599				(node->key.specified & AVTAB_XPERMS))
600			services_compute_xperms_drivers(xperms, node);
601	}
602}