Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22*/
23
24#include <linux/sched/signal.h>
25
26#include <net/bluetooth/bluetooth.h>
27#include <net/bluetooth/hci_core.h>
28#include <net/bluetooth/mgmt.h>
29
30#include "smp.h"
31#include "hci_request.h"
32
33#define HCI_REQ_DONE 0
34#define HCI_REQ_PEND 1
35#define HCI_REQ_CANCELED 2
36
37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38{
39 skb_queue_head_init(&req->cmd_q);
40 req->hdev = hdev;
41 req->err = 0;
42}
43
44void hci_req_purge(struct hci_request *req)
45{
46 skb_queue_purge(&req->cmd_q);
47}
48
49bool hci_req_status_pend(struct hci_dev *hdev)
50{
51 return hdev->req_status == HCI_REQ_PEND;
52}
53
54static int req_run(struct hci_request *req, hci_req_complete_t complete,
55 hci_req_complete_skb_t complete_skb)
56{
57 struct hci_dev *hdev = req->hdev;
58 struct sk_buff *skb;
59 unsigned long flags;
60
61 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
62
63 /* If an error occurred during request building, remove all HCI
64 * commands queued on the HCI request queue.
65 */
66 if (req->err) {
67 skb_queue_purge(&req->cmd_q);
68 return req->err;
69 }
70
71 /* Do not allow empty requests */
72 if (skb_queue_empty(&req->cmd_q))
73 return -ENODATA;
74
75 skb = skb_peek_tail(&req->cmd_q);
76 if (complete) {
77 bt_cb(skb)->hci.req_complete = complete;
78 } else if (complete_skb) {
79 bt_cb(skb)->hci.req_complete_skb = complete_skb;
80 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
81 }
82
83 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
84 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
85 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
86
87 queue_work(hdev->workqueue, &hdev->cmd_work);
88
89 return 0;
90}
91
92int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
93{
94 return req_run(req, complete, NULL);
95}
96
97int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
98{
99 return req_run(req, NULL, complete);
100}
101
102static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
103 struct sk_buff *skb)
104{
105 BT_DBG("%s result 0x%2.2x", hdev->name, result);
106
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 if (skb)
111 hdev->req_skb = skb_get(skb);
112 wake_up_interruptible(&hdev->req_wait_q);
113 }
114}
115
116void hci_req_sync_cancel(struct hci_dev *hdev, int err)
117{
118 BT_DBG("%s err 0x%2.2x", hdev->name, err);
119
120 if (hdev->req_status == HCI_REQ_PEND) {
121 hdev->req_result = err;
122 hdev->req_status = HCI_REQ_CANCELED;
123 wake_up_interruptible(&hdev->req_wait_q);
124 }
125}
126
127struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
128 const void *param, u8 event, u32 timeout)
129{
130 struct hci_request req;
131 struct sk_buff *skb;
132 int err = 0;
133
134 BT_DBG("%s", hdev->name);
135
136 hci_req_init(&req, hdev);
137
138 hci_req_add_ev(&req, opcode, plen, param, event);
139
140 hdev->req_status = HCI_REQ_PEND;
141
142 err = hci_req_run_skb(&req, hci_req_sync_complete);
143 if (err < 0)
144 return ERR_PTR(err);
145
146 err = wait_event_interruptible_timeout(hdev->req_wait_q,
147 hdev->req_status != HCI_REQ_PEND, timeout);
148
149 if (err == -ERESTARTSYS)
150 return ERR_PTR(-EINTR);
151
152 switch (hdev->req_status) {
153 case HCI_REQ_DONE:
154 err = -bt_to_errno(hdev->req_result);
155 break;
156
157 case HCI_REQ_CANCELED:
158 err = -hdev->req_result;
159 break;
160
161 default:
162 err = -ETIMEDOUT;
163 break;
164 }
165
166 hdev->req_status = hdev->req_result = 0;
167 skb = hdev->req_skb;
168 hdev->req_skb = NULL;
169
170 BT_DBG("%s end: err %d", hdev->name, err);
171
172 if (err < 0) {
173 kfree_skb(skb);
174 return ERR_PTR(err);
175 }
176
177 if (!skb)
178 return ERR_PTR(-ENODATA);
179
180 return skb;
181}
182EXPORT_SYMBOL(__hci_cmd_sync_ev);
183
184struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
185 const void *param, u32 timeout)
186{
187 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
188}
189EXPORT_SYMBOL(__hci_cmd_sync);
190
191/* Execute request and wait for completion. */
192int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
193 unsigned long opt),
194 unsigned long opt, u32 timeout, u8 *hci_status)
195{
196 struct hci_request req;
197 int err = 0;
198
199 BT_DBG("%s start", hdev->name);
200
201 hci_req_init(&req, hdev);
202
203 hdev->req_status = HCI_REQ_PEND;
204
205 err = func(&req, opt);
206 if (err) {
207 if (hci_status)
208 *hci_status = HCI_ERROR_UNSPECIFIED;
209 return err;
210 }
211
212 err = hci_req_run_skb(&req, hci_req_sync_complete);
213 if (err < 0) {
214 hdev->req_status = 0;
215
216 /* ENODATA means the HCI request command queue is empty.
217 * This can happen when a request with conditionals doesn't
218 * trigger any commands to be sent. This is normal behavior
219 * and should not trigger an error return.
220 */
221 if (err == -ENODATA) {
222 if (hci_status)
223 *hci_status = 0;
224 return 0;
225 }
226
227 if (hci_status)
228 *hci_status = HCI_ERROR_UNSPECIFIED;
229
230 return err;
231 }
232
233 err = wait_event_interruptible_timeout(hdev->req_wait_q,
234 hdev->req_status != HCI_REQ_PEND, timeout);
235
236 if (err == -ERESTARTSYS)
237 return -EINTR;
238
239 switch (hdev->req_status) {
240 case HCI_REQ_DONE:
241 err = -bt_to_errno(hdev->req_result);
242 if (hci_status)
243 *hci_status = hdev->req_result;
244 break;
245
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
248 if (hci_status)
249 *hci_status = HCI_ERROR_UNSPECIFIED;
250 break;
251
252 default:
253 err = -ETIMEDOUT;
254 if (hci_status)
255 *hci_status = HCI_ERROR_UNSPECIFIED;
256 break;
257 }
258
259 kfree_skb(hdev->req_skb);
260 hdev->req_skb = NULL;
261 hdev->req_status = hdev->req_result = 0;
262
263 BT_DBG("%s end: err %d", hdev->name, err);
264
265 return err;
266}
267
268int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
269 unsigned long opt),
270 unsigned long opt, u32 timeout, u8 *hci_status)
271{
272 int ret;
273
274 if (!test_bit(HCI_UP, &hdev->flags))
275 return -ENETDOWN;
276
277 /* Serialize all requests */
278 hci_req_sync_lock(hdev);
279 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
280 hci_req_sync_unlock(hdev);
281
282 return ret;
283}
284
285struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
286 const void *param)
287{
288 int len = HCI_COMMAND_HDR_SIZE + plen;
289 struct hci_command_hdr *hdr;
290 struct sk_buff *skb;
291
292 skb = bt_skb_alloc(len, GFP_ATOMIC);
293 if (!skb)
294 return NULL;
295
296 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
297 hdr->opcode = cpu_to_le16(opcode);
298 hdr->plen = plen;
299
300 if (plen)
301 skb_put_data(skb, param, plen);
302
303 BT_DBG("skb len %d", skb->len);
304
305 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
306 hci_skb_opcode(skb) = opcode;
307
308 return skb;
309}
310
311/* Queue a command to an asynchronous HCI request */
312void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
313 const void *param, u8 event)
314{
315 struct hci_dev *hdev = req->hdev;
316 struct sk_buff *skb;
317
318 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
319
320 /* If an error occurred during request building, there is no point in
321 * queueing the HCI command. We can simply return.
322 */
323 if (req->err)
324 return;
325
326 skb = hci_prepare_cmd(hdev, opcode, plen, param);
327 if (!skb) {
328 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
329 opcode);
330 req->err = -ENOMEM;
331 return;
332 }
333
334 if (skb_queue_empty(&req->cmd_q))
335 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
336
337 bt_cb(skb)->hci.req_event = event;
338
339 skb_queue_tail(&req->cmd_q, skb);
340}
341
342void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
343 const void *param)
344{
345 hci_req_add_ev(req, opcode, plen, param, 0);
346}
347
348void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
349{
350 struct hci_dev *hdev = req->hdev;
351 struct hci_cp_write_page_scan_activity acp;
352 u8 type;
353
354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
355 return;
356
357 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
358 return;
359
360 if (enable) {
361 type = PAGE_SCAN_TYPE_INTERLACED;
362
363 /* 160 msec page scan interval */
364 acp.interval = cpu_to_le16(0x0100);
365 } else {
366 type = PAGE_SCAN_TYPE_STANDARD; /* default */
367
368 /* default 1.28 sec page scan */
369 acp.interval = cpu_to_le16(0x0800);
370 }
371
372 acp.window = cpu_to_le16(0x0012);
373
374 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
375 __cpu_to_le16(hdev->page_scan_window) != acp.window)
376 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
377 sizeof(acp), &acp);
378
379 if (hdev->page_scan_type != type)
380 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
381}
382
383/* This function controls the background scanning based on hdev->pend_le_conns
384 * list. If there are pending LE connection we start the background scanning,
385 * otherwise we stop it.
386 *
387 * This function requires the caller holds hdev->lock.
388 */
389static void __hci_update_background_scan(struct hci_request *req)
390{
391 struct hci_dev *hdev = req->hdev;
392
393 if (!test_bit(HCI_UP, &hdev->flags) ||
394 test_bit(HCI_INIT, &hdev->flags) ||
395 hci_dev_test_flag(hdev, HCI_SETUP) ||
396 hci_dev_test_flag(hdev, HCI_CONFIG) ||
397 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
398 hci_dev_test_flag(hdev, HCI_UNREGISTER))
399 return;
400
401 /* No point in doing scanning if LE support hasn't been enabled */
402 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
403 return;
404
405 /* If discovery is active don't interfere with it */
406 if (hdev->discovery.state != DISCOVERY_STOPPED)
407 return;
408
409 /* Reset RSSI and UUID filters when starting background scanning
410 * since these filters are meant for service discovery only.
411 *
412 * The Start Discovery and Start Service Discovery operations
413 * ensure to set proper values for RSSI threshold and UUID
414 * filter list. So it is safe to just reset them here.
415 */
416 hci_discovery_filter_clear(hdev);
417
418 if (list_empty(&hdev->pend_le_conns) &&
419 list_empty(&hdev->pend_le_reports)) {
420 /* If there is no pending LE connections or devices
421 * to be scanned for, we should stop the background
422 * scanning.
423 */
424
425 /* If controller is not scanning we are done. */
426 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
427 return;
428
429 hci_req_add_le_scan_disable(req);
430
431 BT_DBG("%s stopping background scanning", hdev->name);
432 } else {
433 /* If there is at least one pending LE connection, we should
434 * keep the background scan running.
435 */
436
437 /* If controller is connecting, we should not start scanning
438 * since some controllers are not able to scan and connect at
439 * the same time.
440 */
441 if (hci_lookup_le_connect(hdev))
442 return;
443
444 /* If controller is currently scanning, we stop it to ensure we
445 * don't miss any advertising (due to duplicates filter).
446 */
447 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
448 hci_req_add_le_scan_disable(req);
449
450 hci_req_add_le_passive_scan(req);
451
452 BT_DBG("%s starting background scanning", hdev->name);
453 }
454}
455
456void __hci_req_update_name(struct hci_request *req)
457{
458 struct hci_dev *hdev = req->hdev;
459 struct hci_cp_write_local_name cp;
460
461 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
462
463 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
464}
465
466#define PNP_INFO_SVCLASS_ID 0x1200
467
468static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
469{
470 u8 *ptr = data, *uuids_start = NULL;
471 struct bt_uuid *uuid;
472
473 if (len < 4)
474 return ptr;
475
476 list_for_each_entry(uuid, &hdev->uuids, list) {
477 u16 uuid16;
478
479 if (uuid->size != 16)
480 continue;
481
482 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
483 if (uuid16 < 0x1100)
484 continue;
485
486 if (uuid16 == PNP_INFO_SVCLASS_ID)
487 continue;
488
489 if (!uuids_start) {
490 uuids_start = ptr;
491 uuids_start[0] = 1;
492 uuids_start[1] = EIR_UUID16_ALL;
493 ptr += 2;
494 }
495
496 /* Stop if not enough space to put next UUID */
497 if ((ptr - data) + sizeof(u16) > len) {
498 uuids_start[1] = EIR_UUID16_SOME;
499 break;
500 }
501
502 *ptr++ = (uuid16 & 0x00ff);
503 *ptr++ = (uuid16 & 0xff00) >> 8;
504 uuids_start[0] += sizeof(uuid16);
505 }
506
507 return ptr;
508}
509
510static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
511{
512 u8 *ptr = data, *uuids_start = NULL;
513 struct bt_uuid *uuid;
514
515 if (len < 6)
516 return ptr;
517
518 list_for_each_entry(uuid, &hdev->uuids, list) {
519 if (uuid->size != 32)
520 continue;
521
522 if (!uuids_start) {
523 uuids_start = ptr;
524 uuids_start[0] = 1;
525 uuids_start[1] = EIR_UUID32_ALL;
526 ptr += 2;
527 }
528
529 /* Stop if not enough space to put next UUID */
530 if ((ptr - data) + sizeof(u32) > len) {
531 uuids_start[1] = EIR_UUID32_SOME;
532 break;
533 }
534
535 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
536 ptr += sizeof(u32);
537 uuids_start[0] += sizeof(u32);
538 }
539
540 return ptr;
541}
542
543static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
544{
545 u8 *ptr = data, *uuids_start = NULL;
546 struct bt_uuid *uuid;
547
548 if (len < 18)
549 return ptr;
550
551 list_for_each_entry(uuid, &hdev->uuids, list) {
552 if (uuid->size != 128)
553 continue;
554
555 if (!uuids_start) {
556 uuids_start = ptr;
557 uuids_start[0] = 1;
558 uuids_start[1] = EIR_UUID128_ALL;
559 ptr += 2;
560 }
561
562 /* Stop if not enough space to put next UUID */
563 if ((ptr - data) + 16 > len) {
564 uuids_start[1] = EIR_UUID128_SOME;
565 break;
566 }
567
568 memcpy(ptr, uuid->uuid, 16);
569 ptr += 16;
570 uuids_start[0] += 16;
571 }
572
573 return ptr;
574}
575
576static void create_eir(struct hci_dev *hdev, u8 *data)
577{
578 u8 *ptr = data;
579 size_t name_len;
580
581 name_len = strlen(hdev->dev_name);
582
583 if (name_len > 0) {
584 /* EIR Data type */
585 if (name_len > 48) {
586 name_len = 48;
587 ptr[1] = EIR_NAME_SHORT;
588 } else
589 ptr[1] = EIR_NAME_COMPLETE;
590
591 /* EIR Data length */
592 ptr[0] = name_len + 1;
593
594 memcpy(ptr + 2, hdev->dev_name, name_len);
595
596 ptr += (name_len + 2);
597 }
598
599 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
600 ptr[0] = 2;
601 ptr[1] = EIR_TX_POWER;
602 ptr[2] = (u8) hdev->inq_tx_power;
603
604 ptr += 3;
605 }
606
607 if (hdev->devid_source > 0) {
608 ptr[0] = 9;
609 ptr[1] = EIR_DEVICE_ID;
610
611 put_unaligned_le16(hdev->devid_source, ptr + 2);
612 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
613 put_unaligned_le16(hdev->devid_product, ptr + 6);
614 put_unaligned_le16(hdev->devid_version, ptr + 8);
615
616 ptr += 10;
617 }
618
619 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
620 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
621 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
622}
623
624void __hci_req_update_eir(struct hci_request *req)
625{
626 struct hci_dev *hdev = req->hdev;
627 struct hci_cp_write_eir cp;
628
629 if (!hdev_is_powered(hdev))
630 return;
631
632 if (!lmp_ext_inq_capable(hdev))
633 return;
634
635 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
636 return;
637
638 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
639 return;
640
641 memset(&cp, 0, sizeof(cp));
642
643 create_eir(hdev, cp.data);
644
645 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
646 return;
647
648 memcpy(hdev->eir, cp.data, sizeof(cp.data));
649
650 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
651}
652
653void hci_req_add_le_scan_disable(struct hci_request *req)
654{
655 struct hci_dev *hdev = req->hdev;
656
657 if (use_ext_scan(hdev)) {
658 struct hci_cp_le_set_ext_scan_enable cp;
659
660 memset(&cp, 0, sizeof(cp));
661 cp.enable = LE_SCAN_DISABLE;
662 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
663 &cp);
664 } else {
665 struct hci_cp_le_set_scan_enable cp;
666
667 memset(&cp, 0, sizeof(cp));
668 cp.enable = LE_SCAN_DISABLE;
669 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
670 }
671}
672
673static void add_to_white_list(struct hci_request *req,
674 struct hci_conn_params *params)
675{
676 struct hci_cp_le_add_to_white_list cp;
677
678 cp.bdaddr_type = params->addr_type;
679 bacpy(&cp.bdaddr, ¶ms->addr);
680
681 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
682}
683
684static u8 update_white_list(struct hci_request *req)
685{
686 struct hci_dev *hdev = req->hdev;
687 struct hci_conn_params *params;
688 struct bdaddr_list *b;
689 uint8_t white_list_entries = 0;
690
691 /* Go through the current white list programmed into the
692 * controller one by one and check if that address is still
693 * in the list of pending connections or list of devices to
694 * report. If not present in either list, then queue the
695 * command to remove it from the controller.
696 */
697 list_for_each_entry(b, &hdev->le_white_list, list) {
698 /* If the device is neither in pend_le_conns nor
699 * pend_le_reports then remove it from the whitelist.
700 */
701 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
702 &b->bdaddr, b->bdaddr_type) &&
703 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
704 &b->bdaddr, b->bdaddr_type)) {
705 struct hci_cp_le_del_from_white_list cp;
706
707 cp.bdaddr_type = b->bdaddr_type;
708 bacpy(&cp.bdaddr, &b->bdaddr);
709
710 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
711 sizeof(cp), &cp);
712 continue;
713 }
714
715 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
716 /* White list can not be used with RPAs */
717 return 0x00;
718 }
719
720 white_list_entries++;
721 }
722
723 /* Since all no longer valid white list entries have been
724 * removed, walk through the list of pending connections
725 * and ensure that any new device gets programmed into
726 * the controller.
727 *
728 * If the list of the devices is larger than the list of
729 * available white list entries in the controller, then
730 * just abort and return filer policy value to not use the
731 * white list.
732 */
733 list_for_each_entry(params, &hdev->pend_le_conns, action) {
734 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
735 ¶ms->addr, params->addr_type))
736 continue;
737
738 if (white_list_entries >= hdev->le_white_list_size) {
739 /* Select filter policy to accept all advertising */
740 return 0x00;
741 }
742
743 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
744 params->addr_type)) {
745 /* White list can not be used with RPAs */
746 return 0x00;
747 }
748
749 white_list_entries++;
750 add_to_white_list(req, params);
751 }
752
753 /* After adding all new pending connections, walk through
754 * the list of pending reports and also add these to the
755 * white list if there is still space.
756 */
757 list_for_each_entry(params, &hdev->pend_le_reports, action) {
758 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
759 ¶ms->addr, params->addr_type))
760 continue;
761
762 if (white_list_entries >= hdev->le_white_list_size) {
763 /* Select filter policy to accept all advertising */
764 return 0x00;
765 }
766
767 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
768 params->addr_type)) {
769 /* White list can not be used with RPAs */
770 return 0x00;
771 }
772
773 white_list_entries++;
774 add_to_white_list(req, params);
775 }
776
777 /* Select filter policy to use white list */
778 return 0x01;
779}
780
781static bool scan_use_rpa(struct hci_dev *hdev)
782{
783 return hci_dev_test_flag(hdev, HCI_PRIVACY);
784}
785
786static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
787 u16 window, u8 own_addr_type, u8 filter_policy)
788{
789 struct hci_dev *hdev = req->hdev;
790
791 /* Use ext scanning if set ext scan param and ext scan enable is
792 * supported
793 */
794 if (use_ext_scan(hdev)) {
795 struct hci_cp_le_set_ext_scan_params *ext_param_cp;
796 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
797 struct hci_cp_le_scan_phy_params *phy_params;
798 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
799 u32 plen;
800
801 ext_param_cp = (void *)data;
802 phy_params = (void *)ext_param_cp->data;
803
804 memset(ext_param_cp, 0, sizeof(*ext_param_cp));
805 ext_param_cp->own_addr_type = own_addr_type;
806 ext_param_cp->filter_policy = filter_policy;
807
808 plen = sizeof(*ext_param_cp);
809
810 if (scan_1m(hdev) || scan_2m(hdev)) {
811 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
812
813 memset(phy_params, 0, sizeof(*phy_params));
814 phy_params->type = type;
815 phy_params->interval = cpu_to_le16(interval);
816 phy_params->window = cpu_to_le16(window);
817
818 plen += sizeof(*phy_params);
819 phy_params++;
820 }
821
822 if (scan_coded(hdev)) {
823 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
824
825 memset(phy_params, 0, sizeof(*phy_params));
826 phy_params->type = type;
827 phy_params->interval = cpu_to_le16(interval);
828 phy_params->window = cpu_to_le16(window);
829
830 plen += sizeof(*phy_params);
831 phy_params++;
832 }
833
834 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
835 plen, ext_param_cp);
836
837 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
838 ext_enable_cp.enable = LE_SCAN_ENABLE;
839 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
840
841 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
842 sizeof(ext_enable_cp), &ext_enable_cp);
843 } else {
844 struct hci_cp_le_set_scan_param param_cp;
845 struct hci_cp_le_set_scan_enable enable_cp;
846
847 memset(¶m_cp, 0, sizeof(param_cp));
848 param_cp.type = type;
849 param_cp.interval = cpu_to_le16(interval);
850 param_cp.window = cpu_to_le16(window);
851 param_cp.own_address_type = own_addr_type;
852 param_cp.filter_policy = filter_policy;
853 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
854 ¶m_cp);
855
856 memset(&enable_cp, 0, sizeof(enable_cp));
857 enable_cp.enable = LE_SCAN_ENABLE;
858 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
859 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
860 &enable_cp);
861 }
862}
863
864void hci_req_add_le_passive_scan(struct hci_request *req)
865{
866 struct hci_dev *hdev = req->hdev;
867 u8 own_addr_type;
868 u8 filter_policy;
869
870 /* Set require_privacy to false since no SCAN_REQ are send
871 * during passive scanning. Not using an non-resolvable address
872 * here is important so that peer devices using direct
873 * advertising with our address will be correctly reported
874 * by the controller.
875 */
876 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
877 &own_addr_type))
878 return;
879
880 /* Adding or removing entries from the white list must
881 * happen before enabling scanning. The controller does
882 * not allow white list modification while scanning.
883 */
884 filter_policy = update_white_list(req);
885
886 /* When the controller is using random resolvable addresses and
887 * with that having LE privacy enabled, then controllers with
888 * Extended Scanner Filter Policies support can now enable support
889 * for handling directed advertising.
890 *
891 * So instead of using filter polices 0x00 (no whitelist)
892 * and 0x01 (whitelist enabled) use the new filter policies
893 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
894 */
895 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
896 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
897 filter_policy |= 0x02;
898
899 hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval,
900 hdev->le_scan_window, own_addr_type, filter_policy);
901}
902
903static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
904{
905 struct adv_info *adv_instance;
906
907 /* Ignore instance 0 */
908 if (instance == 0x00)
909 return 0;
910
911 adv_instance = hci_find_adv_instance(hdev, instance);
912 if (!adv_instance)
913 return 0;
914
915 /* TODO: Take into account the "appearance" and "local-name" flags here.
916 * These are currently being ignored as they are not supported.
917 */
918 return adv_instance->scan_rsp_len;
919}
920
921static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
922{
923 u8 instance = hdev->cur_adv_instance;
924 struct adv_info *adv_instance;
925
926 /* Ignore instance 0 */
927 if (instance == 0x00)
928 return 0;
929
930 adv_instance = hci_find_adv_instance(hdev, instance);
931 if (!adv_instance)
932 return 0;
933
934 /* TODO: Take into account the "appearance" and "local-name" flags here.
935 * These are currently being ignored as they are not supported.
936 */
937 return adv_instance->scan_rsp_len;
938}
939
940void __hci_req_disable_advertising(struct hci_request *req)
941{
942 if (ext_adv_capable(req->hdev)) {
943 struct hci_cp_le_set_ext_adv_enable cp;
944
945 cp.enable = 0x00;
946 /* Disable all sets since we only support one set at the moment */
947 cp.num_of_sets = 0x00;
948
949 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
950 } else {
951 u8 enable = 0x00;
952
953 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
954 }
955}
956
957static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
958{
959 u32 flags;
960 struct adv_info *adv_instance;
961
962 if (instance == 0x00) {
963 /* Instance 0 always manages the "Tx Power" and "Flags"
964 * fields
965 */
966 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
967
968 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
969 * corresponds to the "connectable" instance flag.
970 */
971 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
972 flags |= MGMT_ADV_FLAG_CONNECTABLE;
973
974 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
975 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
976 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
977 flags |= MGMT_ADV_FLAG_DISCOV;
978
979 return flags;
980 }
981
982 adv_instance = hci_find_adv_instance(hdev, instance);
983
984 /* Return 0 when we got an invalid instance identifier. */
985 if (!adv_instance)
986 return 0;
987
988 return adv_instance->flags;
989}
990
991static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
992{
993 /* If privacy is not enabled don't use RPA */
994 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
995 return false;
996
997 /* If basic privacy mode is enabled use RPA */
998 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
999 return true;
1000
1001 /* If limited privacy mode is enabled don't use RPA if we're
1002 * both discoverable and bondable.
1003 */
1004 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1005 hci_dev_test_flag(hdev, HCI_BONDABLE))
1006 return false;
1007
1008 /* We're neither bondable nor discoverable in the limited
1009 * privacy mode, therefore use RPA.
1010 */
1011 return true;
1012}
1013
1014static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1015{
1016 /* If there is no connection we are OK to advertise. */
1017 if (hci_conn_num(hdev, LE_LINK) == 0)
1018 return true;
1019
1020 /* Check le_states if there is any connection in slave role. */
1021 if (hdev->conn_hash.le_num_slave > 0) {
1022 /* Slave connection state and non connectable mode bit 20. */
1023 if (!connectable && !(hdev->le_states[2] & 0x10))
1024 return false;
1025
1026 /* Slave connection state and connectable mode bit 38
1027 * and scannable bit 21.
1028 */
1029 if (connectable && (!(hdev->le_states[4] & 0x40) ||
1030 !(hdev->le_states[2] & 0x20)))
1031 return false;
1032 }
1033
1034 /* Check le_states if there is any connection in master role. */
1035 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1036 /* Master connection state and non connectable mode bit 18. */
1037 if (!connectable && !(hdev->le_states[2] & 0x02))
1038 return false;
1039
1040 /* Master connection state and connectable mode bit 35 and
1041 * scannable 19.
1042 */
1043 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1044 !(hdev->le_states[2] & 0x08)))
1045 return false;
1046 }
1047
1048 return true;
1049}
1050
1051void __hci_req_enable_advertising(struct hci_request *req)
1052{
1053 struct hci_dev *hdev = req->hdev;
1054 struct hci_cp_le_set_adv_param cp;
1055 u8 own_addr_type, enable = 0x01;
1056 bool connectable;
1057 u16 adv_min_interval, adv_max_interval;
1058 u32 flags;
1059
1060 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1061
1062 /* If the "connectable" instance flag was not set, then choose between
1063 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1064 */
1065 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1066 mgmt_get_connectable(hdev);
1067
1068 if (!is_advertising_allowed(hdev, connectable))
1069 return;
1070
1071 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1072 __hci_req_disable_advertising(req);
1073
1074 /* Clear the HCI_LE_ADV bit temporarily so that the
1075 * hci_update_random_address knows that it's safe to go ahead
1076 * and write a new random address. The flag will be set back on
1077 * as soon as the SET_ADV_ENABLE HCI command completes.
1078 */
1079 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1080
1081 /* Set require_privacy to true only when non-connectable
1082 * advertising is used. In that case it is fine to use a
1083 * non-resolvable private address.
1084 */
1085 if (hci_update_random_address(req, !connectable,
1086 adv_use_rpa(hdev, flags),
1087 &own_addr_type) < 0)
1088 return;
1089
1090 memset(&cp, 0, sizeof(cp));
1091
1092 if (connectable) {
1093 cp.type = LE_ADV_IND;
1094
1095 adv_min_interval = hdev->le_adv_min_interval;
1096 adv_max_interval = hdev->le_adv_max_interval;
1097 } else {
1098 if (get_cur_adv_instance_scan_rsp_len(hdev))
1099 cp.type = LE_ADV_SCAN_IND;
1100 else
1101 cp.type = LE_ADV_NONCONN_IND;
1102
1103 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1104 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1105 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1106 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1107 } else {
1108 adv_min_interval = hdev->le_adv_min_interval;
1109 adv_max_interval = hdev->le_adv_max_interval;
1110 }
1111 }
1112
1113 cp.min_interval = cpu_to_le16(adv_min_interval);
1114 cp.max_interval = cpu_to_le16(adv_max_interval);
1115 cp.own_address_type = own_addr_type;
1116 cp.channel_map = hdev->le_adv_channel_map;
1117
1118 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1119
1120 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1121}
1122
1123u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1124{
1125 size_t short_len;
1126 size_t complete_len;
1127
1128 /* no space left for name (+ NULL + type + len) */
1129 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1130 return ad_len;
1131
1132 /* use complete name if present and fits */
1133 complete_len = strlen(hdev->dev_name);
1134 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1135 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1136 hdev->dev_name, complete_len + 1);
1137
1138 /* use short name if present */
1139 short_len = strlen(hdev->short_name);
1140 if (short_len)
1141 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1142 hdev->short_name, short_len + 1);
1143
1144 /* use shortened full name if present, we already know that name
1145 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1146 */
1147 if (complete_len) {
1148 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1149
1150 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1151 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1152
1153 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1154 sizeof(name));
1155 }
1156
1157 return ad_len;
1158}
1159
1160static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1161{
1162 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1163}
1164
1165static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1166{
1167 u8 scan_rsp_len = 0;
1168
1169 if (hdev->appearance) {
1170 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1171 }
1172
1173 return append_local_name(hdev, ptr, scan_rsp_len);
1174}
1175
1176static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1177 u8 *ptr)
1178{
1179 struct adv_info *adv_instance;
1180 u32 instance_flags;
1181 u8 scan_rsp_len = 0;
1182
1183 adv_instance = hci_find_adv_instance(hdev, instance);
1184 if (!adv_instance)
1185 return 0;
1186
1187 instance_flags = adv_instance->flags;
1188
1189 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1190 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1191 }
1192
1193 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1194 adv_instance->scan_rsp_len);
1195
1196 scan_rsp_len += adv_instance->scan_rsp_len;
1197
1198 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1199 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1200
1201 return scan_rsp_len;
1202}
1203
1204void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1205{
1206 struct hci_dev *hdev = req->hdev;
1207 u8 len;
1208
1209 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1210 return;
1211
1212 if (ext_adv_capable(hdev)) {
1213 struct hci_cp_le_set_ext_scan_rsp_data cp;
1214
1215 memset(&cp, 0, sizeof(cp));
1216
1217 if (instance)
1218 len = create_instance_scan_rsp_data(hdev, instance,
1219 cp.data);
1220 else
1221 len = create_default_scan_rsp_data(hdev, cp.data);
1222
1223 if (hdev->scan_rsp_data_len == len &&
1224 !memcmp(cp.data, hdev->scan_rsp_data, len))
1225 return;
1226
1227 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1228 hdev->scan_rsp_data_len = len;
1229
1230 cp.handle = 0;
1231 cp.length = len;
1232 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1233 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1234
1235 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1236 &cp);
1237 } else {
1238 struct hci_cp_le_set_scan_rsp_data cp;
1239
1240 memset(&cp, 0, sizeof(cp));
1241
1242 if (instance)
1243 len = create_instance_scan_rsp_data(hdev, instance,
1244 cp.data);
1245 else
1246 len = create_default_scan_rsp_data(hdev, cp.data);
1247
1248 if (hdev->scan_rsp_data_len == len &&
1249 !memcmp(cp.data, hdev->scan_rsp_data, len))
1250 return;
1251
1252 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1253 hdev->scan_rsp_data_len = len;
1254
1255 cp.length = len;
1256
1257 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1258 }
1259}
1260
1261static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1262{
1263 struct adv_info *adv_instance = NULL;
1264 u8 ad_len = 0, flags = 0;
1265 u32 instance_flags;
1266
1267 /* Return 0 when the current instance identifier is invalid. */
1268 if (instance) {
1269 adv_instance = hci_find_adv_instance(hdev, instance);
1270 if (!adv_instance)
1271 return 0;
1272 }
1273
1274 instance_flags = get_adv_instance_flags(hdev, instance);
1275
1276 /* The Add Advertising command allows userspace to set both the general
1277 * and limited discoverable flags.
1278 */
1279 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1280 flags |= LE_AD_GENERAL;
1281
1282 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1283 flags |= LE_AD_LIMITED;
1284
1285 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1286 flags |= LE_AD_NO_BREDR;
1287
1288 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1289 /* If a discovery flag wasn't provided, simply use the global
1290 * settings.
1291 */
1292 if (!flags)
1293 flags |= mgmt_get_adv_discov_flags(hdev);
1294
1295 /* If flags would still be empty, then there is no need to
1296 * include the "Flags" AD field".
1297 */
1298 if (flags) {
1299 ptr[0] = 0x02;
1300 ptr[1] = EIR_FLAGS;
1301 ptr[2] = flags;
1302
1303 ad_len += 3;
1304 ptr += 3;
1305 }
1306 }
1307
1308 if (adv_instance) {
1309 memcpy(ptr, adv_instance->adv_data,
1310 adv_instance->adv_data_len);
1311 ad_len += adv_instance->adv_data_len;
1312 ptr += adv_instance->adv_data_len;
1313 }
1314
1315 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1316 s8 adv_tx_power;
1317
1318 if (ext_adv_capable(hdev)) {
1319 if (adv_instance)
1320 adv_tx_power = adv_instance->tx_power;
1321 else
1322 adv_tx_power = hdev->adv_tx_power;
1323 } else {
1324 adv_tx_power = hdev->adv_tx_power;
1325 }
1326
1327 /* Provide Tx Power only if we can provide a valid value for it */
1328 if (adv_tx_power != HCI_TX_POWER_INVALID) {
1329 ptr[0] = 0x02;
1330 ptr[1] = EIR_TX_POWER;
1331 ptr[2] = (u8)adv_tx_power;
1332
1333 ad_len += 3;
1334 ptr += 3;
1335 }
1336 }
1337
1338 return ad_len;
1339}
1340
1341void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1342{
1343 struct hci_dev *hdev = req->hdev;
1344 u8 len;
1345
1346 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1347 return;
1348
1349 if (ext_adv_capable(hdev)) {
1350 struct hci_cp_le_set_ext_adv_data cp;
1351
1352 memset(&cp, 0, sizeof(cp));
1353
1354 len = create_instance_adv_data(hdev, instance, cp.data);
1355
1356 /* There's nothing to do if the data hasn't changed */
1357 if (hdev->adv_data_len == len &&
1358 memcmp(cp.data, hdev->adv_data, len) == 0)
1359 return;
1360
1361 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1362 hdev->adv_data_len = len;
1363
1364 cp.length = len;
1365 cp.handle = 0;
1366 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1367 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1368
1369 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1370 } else {
1371 struct hci_cp_le_set_adv_data cp;
1372
1373 memset(&cp, 0, sizeof(cp));
1374
1375 len = create_instance_adv_data(hdev, instance, cp.data);
1376
1377 /* There's nothing to do if the data hasn't changed */
1378 if (hdev->adv_data_len == len &&
1379 memcmp(cp.data, hdev->adv_data, len) == 0)
1380 return;
1381
1382 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1383 hdev->adv_data_len = len;
1384
1385 cp.length = len;
1386
1387 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1388 }
1389}
1390
1391int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1392{
1393 struct hci_request req;
1394
1395 hci_req_init(&req, hdev);
1396 __hci_req_update_adv_data(&req, instance);
1397
1398 return hci_req_run(&req, NULL);
1399}
1400
1401static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1402{
1403 BT_DBG("%s status %u", hdev->name, status);
1404}
1405
1406void hci_req_reenable_advertising(struct hci_dev *hdev)
1407{
1408 struct hci_request req;
1409
1410 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1411 list_empty(&hdev->adv_instances))
1412 return;
1413
1414 hci_req_init(&req, hdev);
1415
1416 if (hdev->cur_adv_instance) {
1417 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1418 true);
1419 } else {
1420 if (ext_adv_capable(hdev)) {
1421 __hci_req_start_ext_adv(&req, 0x00);
1422 } else {
1423 __hci_req_update_adv_data(&req, 0x00);
1424 __hci_req_update_scan_rsp_data(&req, 0x00);
1425 __hci_req_enable_advertising(&req);
1426 }
1427 }
1428
1429 hci_req_run(&req, adv_enable_complete);
1430}
1431
1432static void adv_timeout_expire(struct work_struct *work)
1433{
1434 struct hci_dev *hdev = container_of(work, struct hci_dev,
1435 adv_instance_expire.work);
1436
1437 struct hci_request req;
1438 u8 instance;
1439
1440 BT_DBG("%s", hdev->name);
1441
1442 hci_dev_lock(hdev);
1443
1444 hdev->adv_instance_timeout = 0;
1445
1446 instance = hdev->cur_adv_instance;
1447 if (instance == 0x00)
1448 goto unlock;
1449
1450 hci_req_init(&req, hdev);
1451
1452 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1453
1454 if (list_empty(&hdev->adv_instances))
1455 __hci_req_disable_advertising(&req);
1456
1457 hci_req_run(&req, NULL);
1458
1459unlock:
1460 hci_dev_unlock(hdev);
1461}
1462
1463int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1464 bool use_rpa, struct adv_info *adv_instance,
1465 u8 *own_addr_type, bdaddr_t *rand_addr)
1466{
1467 int err;
1468
1469 bacpy(rand_addr, BDADDR_ANY);
1470
1471 /* If privacy is enabled use a resolvable private address. If
1472 * current RPA has expired then generate a new one.
1473 */
1474 if (use_rpa) {
1475 int to;
1476
1477 *own_addr_type = ADDR_LE_DEV_RANDOM;
1478
1479 if (adv_instance) {
1480 if (!adv_instance->rpa_expired &&
1481 !bacmp(&adv_instance->random_addr, &hdev->rpa))
1482 return 0;
1483
1484 adv_instance->rpa_expired = false;
1485 } else {
1486 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1487 !bacmp(&hdev->random_addr, &hdev->rpa))
1488 return 0;
1489 }
1490
1491 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1492 if (err < 0) {
1493 BT_ERR("%s failed to generate new RPA", hdev->name);
1494 return err;
1495 }
1496
1497 bacpy(rand_addr, &hdev->rpa);
1498
1499 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1500 if (adv_instance)
1501 queue_delayed_work(hdev->workqueue,
1502 &adv_instance->rpa_expired_cb, to);
1503 else
1504 queue_delayed_work(hdev->workqueue,
1505 &hdev->rpa_expired, to);
1506
1507 return 0;
1508 }
1509
1510 /* In case of required privacy without resolvable private address,
1511 * use an non-resolvable private address. This is useful for
1512 * non-connectable advertising.
1513 */
1514 if (require_privacy) {
1515 bdaddr_t nrpa;
1516
1517 while (true) {
1518 /* The non-resolvable private address is generated
1519 * from random six bytes with the two most significant
1520 * bits cleared.
1521 */
1522 get_random_bytes(&nrpa, 6);
1523 nrpa.b[5] &= 0x3f;
1524
1525 /* The non-resolvable private address shall not be
1526 * equal to the public address.
1527 */
1528 if (bacmp(&hdev->bdaddr, &nrpa))
1529 break;
1530 }
1531
1532 *own_addr_type = ADDR_LE_DEV_RANDOM;
1533 bacpy(rand_addr, &nrpa);
1534
1535 return 0;
1536 }
1537
1538 /* No privacy so use a public address. */
1539 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1540
1541 return 0;
1542}
1543
1544void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1545{
1546 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1547}
1548
1549int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1550{
1551 struct hci_cp_le_set_ext_adv_params cp;
1552 struct hci_dev *hdev = req->hdev;
1553 bool connectable;
1554 u32 flags;
1555 bdaddr_t random_addr;
1556 u8 own_addr_type;
1557 int err;
1558 struct adv_info *adv_instance;
1559 bool secondary_adv;
1560 /* In ext adv set param interval is 3 octets */
1561 const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };
1562
1563 if (instance > 0) {
1564 adv_instance = hci_find_adv_instance(hdev, instance);
1565 if (!adv_instance)
1566 return -EINVAL;
1567 } else {
1568 adv_instance = NULL;
1569 }
1570
1571 flags = get_adv_instance_flags(hdev, instance);
1572
1573 /* If the "connectable" instance flag was not set, then choose between
1574 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1575 */
1576 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1577 mgmt_get_connectable(hdev);
1578
1579 if (!is_advertising_allowed(hdev, connectable))
1580 return -EPERM;
1581
1582 /* Set require_privacy to true only when non-connectable
1583 * advertising is used. In that case it is fine to use a
1584 * non-resolvable private address.
1585 */
1586 err = hci_get_random_address(hdev, !connectable,
1587 adv_use_rpa(hdev, flags), adv_instance,
1588 &own_addr_type, &random_addr);
1589 if (err < 0)
1590 return err;
1591
1592 memset(&cp, 0, sizeof(cp));
1593
1594 memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
1595 memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));
1596
1597 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1598
1599 if (connectable) {
1600 if (secondary_adv)
1601 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1602 else
1603 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1604 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1605 if (secondary_adv)
1606 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1607 else
1608 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1609 } else {
1610 if (secondary_adv)
1611 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1612 else
1613 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1614 }
1615
1616 cp.own_addr_type = own_addr_type;
1617 cp.channel_map = hdev->le_adv_channel_map;
1618 cp.tx_power = 127;
1619 cp.handle = instance;
1620
1621 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1622 cp.primary_phy = HCI_ADV_PHY_1M;
1623 cp.secondary_phy = HCI_ADV_PHY_2M;
1624 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1625 cp.primary_phy = HCI_ADV_PHY_CODED;
1626 cp.secondary_phy = HCI_ADV_PHY_CODED;
1627 } else {
1628 /* In all other cases use 1M */
1629 cp.primary_phy = HCI_ADV_PHY_1M;
1630 cp.secondary_phy = HCI_ADV_PHY_1M;
1631 }
1632
1633 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1634
1635 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1636 bacmp(&random_addr, BDADDR_ANY)) {
1637 struct hci_cp_le_set_adv_set_rand_addr cp;
1638
1639 /* Check if random address need to be updated */
1640 if (adv_instance) {
1641 if (!bacmp(&random_addr, &adv_instance->random_addr))
1642 return 0;
1643 } else {
1644 if (!bacmp(&random_addr, &hdev->random_addr))
1645 return 0;
1646 }
1647
1648 memset(&cp, 0, sizeof(cp));
1649
1650 cp.handle = 0;
1651 bacpy(&cp.bdaddr, &random_addr);
1652
1653 hci_req_add(req,
1654 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1655 sizeof(cp), &cp);
1656 }
1657
1658 return 0;
1659}
1660
1661int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1662{
1663 struct hci_dev *hdev = req->hdev;
1664 struct hci_cp_le_set_ext_adv_enable *cp;
1665 struct hci_cp_ext_adv_set *adv_set;
1666 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1667 struct adv_info *adv_instance;
1668
1669 if (instance > 0) {
1670 adv_instance = hci_find_adv_instance(hdev, instance);
1671 if (!adv_instance)
1672 return -EINVAL;
1673 } else {
1674 adv_instance = NULL;
1675 }
1676
1677 cp = (void *) data;
1678 adv_set = (void *) cp->data;
1679
1680 memset(cp, 0, sizeof(*cp));
1681
1682 cp->enable = 0x01;
1683 cp->num_of_sets = 0x01;
1684
1685 memset(adv_set, 0, sizeof(*adv_set));
1686
1687 adv_set->handle = instance;
1688
1689 /* Set duration per instance since controller is responsible for
1690 * scheduling it.
1691 */
1692 if (adv_instance && adv_instance->duration) {
1693 u16 duration = adv_instance->duration * MSEC_PER_SEC;
1694
1695 /* Time = N * 10 ms */
1696 adv_set->duration = cpu_to_le16(duration / 10);
1697 }
1698
1699 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1700 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
1701 data);
1702
1703 return 0;
1704}
1705
1706int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
1707{
1708 struct hci_dev *hdev = req->hdev;
1709 int err;
1710
1711 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1712 __hci_req_disable_advertising(req);
1713
1714 err = __hci_req_setup_ext_adv_instance(req, instance);
1715 if (err < 0)
1716 return err;
1717
1718 __hci_req_update_scan_rsp_data(req, instance);
1719 __hci_req_enable_ext_advertising(req, instance);
1720
1721 return 0;
1722}
1723
1724int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1725 bool force)
1726{
1727 struct hci_dev *hdev = req->hdev;
1728 struct adv_info *adv_instance = NULL;
1729 u16 timeout;
1730
1731 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1732 list_empty(&hdev->adv_instances))
1733 return -EPERM;
1734
1735 if (hdev->adv_instance_timeout)
1736 return -EBUSY;
1737
1738 adv_instance = hci_find_adv_instance(hdev, instance);
1739 if (!adv_instance)
1740 return -ENOENT;
1741
1742 /* A zero timeout means unlimited advertising. As long as there is
1743 * only one instance, duration should be ignored. We still set a timeout
1744 * in case further instances are being added later on.
1745 *
1746 * If the remaining lifetime of the instance is more than the duration
1747 * then the timeout corresponds to the duration, otherwise it will be
1748 * reduced to the remaining instance lifetime.
1749 */
1750 if (adv_instance->timeout == 0 ||
1751 adv_instance->duration <= adv_instance->remaining_time)
1752 timeout = adv_instance->duration;
1753 else
1754 timeout = adv_instance->remaining_time;
1755
1756 /* The remaining time is being reduced unless the instance is being
1757 * advertised without time limit.
1758 */
1759 if (adv_instance->timeout)
1760 adv_instance->remaining_time =
1761 adv_instance->remaining_time - timeout;
1762
1763 /* Only use work for scheduling instances with legacy advertising */
1764 if (!ext_adv_capable(hdev)) {
1765 hdev->adv_instance_timeout = timeout;
1766 queue_delayed_work(hdev->req_workqueue,
1767 &hdev->adv_instance_expire,
1768 msecs_to_jiffies(timeout * 1000));
1769 }
1770
1771 /* If we're just re-scheduling the same instance again then do not
1772 * execute any HCI commands. This happens when a single instance is
1773 * being advertised.
1774 */
1775 if (!force && hdev->cur_adv_instance == instance &&
1776 hci_dev_test_flag(hdev, HCI_LE_ADV))
1777 return 0;
1778
1779 hdev->cur_adv_instance = instance;
1780 if (ext_adv_capable(hdev)) {
1781 __hci_req_start_ext_adv(req, instance);
1782 } else {
1783 __hci_req_update_adv_data(req, instance);
1784 __hci_req_update_scan_rsp_data(req, instance);
1785 __hci_req_enable_advertising(req);
1786 }
1787
1788 return 0;
1789}
1790
1791static void cancel_adv_timeout(struct hci_dev *hdev)
1792{
1793 if (hdev->adv_instance_timeout) {
1794 hdev->adv_instance_timeout = 0;
1795 cancel_delayed_work(&hdev->adv_instance_expire);
1796 }
1797}
1798
1799/* For a single instance:
1800 * - force == true: The instance will be removed even when its remaining
1801 * lifetime is not zero.
1802 * - force == false: the instance will be deactivated but kept stored unless
1803 * the remaining lifetime is zero.
1804 *
1805 * For instance == 0x00:
1806 * - force == true: All instances will be removed regardless of their timeout
1807 * setting.
1808 * - force == false: Only instances that have a timeout will be removed.
1809 */
1810void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1811 struct hci_request *req, u8 instance,
1812 bool force)
1813{
1814 struct adv_info *adv_instance, *n, *next_instance = NULL;
1815 int err;
1816 u8 rem_inst;
1817
1818 /* Cancel any timeout concerning the removed instance(s). */
1819 if (!instance || hdev->cur_adv_instance == instance)
1820 cancel_adv_timeout(hdev);
1821
1822 /* Get the next instance to advertise BEFORE we remove
1823 * the current one. This can be the same instance again
1824 * if there is only one instance.
1825 */
1826 if (instance && hdev->cur_adv_instance == instance)
1827 next_instance = hci_get_next_instance(hdev, instance);
1828
1829 if (instance == 0x00) {
1830 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1831 list) {
1832 if (!(force || adv_instance->timeout))
1833 continue;
1834
1835 rem_inst = adv_instance->instance;
1836 err = hci_remove_adv_instance(hdev, rem_inst);
1837 if (!err)
1838 mgmt_advertising_removed(sk, hdev, rem_inst);
1839 }
1840 } else {
1841 adv_instance = hci_find_adv_instance(hdev, instance);
1842
1843 if (force || (adv_instance && adv_instance->timeout &&
1844 !adv_instance->remaining_time)) {
1845 /* Don't advertise a removed instance. */
1846 if (next_instance &&
1847 next_instance->instance == instance)
1848 next_instance = NULL;
1849
1850 err = hci_remove_adv_instance(hdev, instance);
1851 if (!err)
1852 mgmt_advertising_removed(sk, hdev, instance);
1853 }
1854 }
1855
1856 if (!req || !hdev_is_powered(hdev) ||
1857 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1858 return;
1859
1860 if (next_instance)
1861 __hci_req_schedule_adv_instance(req, next_instance->instance,
1862 false);
1863}
1864
1865static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1866{
1867 struct hci_dev *hdev = req->hdev;
1868
1869 /* If we're advertising or initiating an LE connection we can't
1870 * go ahead and change the random address at this time. This is
1871 * because the eventual initiator address used for the
1872 * subsequently created connection will be undefined (some
1873 * controllers use the new address and others the one we had
1874 * when the operation started).
1875 *
1876 * In this kind of scenario skip the update and let the random
1877 * address be updated at the next cycle.
1878 */
1879 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1880 hci_lookup_le_connect(hdev)) {
1881 BT_DBG("Deferring random address update");
1882 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1883 return;
1884 }
1885
1886 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1887}
1888
1889int hci_update_random_address(struct hci_request *req, bool require_privacy,
1890 bool use_rpa, u8 *own_addr_type)
1891{
1892 struct hci_dev *hdev = req->hdev;
1893 int err;
1894
1895 /* If privacy is enabled use a resolvable private address. If
1896 * current RPA has expired or there is something else than
1897 * the current RPA in use, then generate a new one.
1898 */
1899 if (use_rpa) {
1900 int to;
1901
1902 *own_addr_type = ADDR_LE_DEV_RANDOM;
1903
1904 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1905 !bacmp(&hdev->random_addr, &hdev->rpa))
1906 return 0;
1907
1908 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1909 if (err < 0) {
1910 bt_dev_err(hdev, "failed to generate new RPA");
1911 return err;
1912 }
1913
1914 set_random_addr(req, &hdev->rpa);
1915
1916 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1917 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1918
1919 return 0;
1920 }
1921
1922 /* In case of required privacy without resolvable private address,
1923 * use an non-resolvable private address. This is useful for active
1924 * scanning and non-connectable advertising.
1925 */
1926 if (require_privacy) {
1927 bdaddr_t nrpa;
1928
1929 while (true) {
1930 /* The non-resolvable private address is generated
1931 * from random six bytes with the two most significant
1932 * bits cleared.
1933 */
1934 get_random_bytes(&nrpa, 6);
1935 nrpa.b[5] &= 0x3f;
1936
1937 /* The non-resolvable private address shall not be
1938 * equal to the public address.
1939 */
1940 if (bacmp(&hdev->bdaddr, &nrpa))
1941 break;
1942 }
1943
1944 *own_addr_type = ADDR_LE_DEV_RANDOM;
1945 set_random_addr(req, &nrpa);
1946 return 0;
1947 }
1948
1949 /* If forcing static address is in use or there is no public
1950 * address use the static address as random address (but skip
1951 * the HCI command if the current random address is already the
1952 * static one.
1953 *
1954 * In case BR/EDR has been disabled on a dual-mode controller
1955 * and a static address has been configured, then use that
1956 * address instead of the public BR/EDR address.
1957 */
1958 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1959 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1960 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1961 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1962 *own_addr_type = ADDR_LE_DEV_RANDOM;
1963 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1964 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1965 &hdev->static_addr);
1966 return 0;
1967 }
1968
1969 /* Neither privacy nor static address is being used so use a
1970 * public address.
1971 */
1972 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1973
1974 return 0;
1975}
1976
1977static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1978{
1979 struct bdaddr_list *b;
1980
1981 list_for_each_entry(b, &hdev->whitelist, list) {
1982 struct hci_conn *conn;
1983
1984 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1985 if (!conn)
1986 return true;
1987
1988 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1989 return true;
1990 }
1991
1992 return false;
1993}
1994
1995void __hci_req_update_scan(struct hci_request *req)
1996{
1997 struct hci_dev *hdev = req->hdev;
1998 u8 scan;
1999
2000 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2001 return;
2002
2003 if (!hdev_is_powered(hdev))
2004 return;
2005
2006 if (mgmt_powering_down(hdev))
2007 return;
2008
2009 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2010 disconnected_whitelist_entries(hdev))
2011 scan = SCAN_PAGE;
2012 else
2013 scan = SCAN_DISABLED;
2014
2015 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2016 scan |= SCAN_INQUIRY;
2017
2018 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2019 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2020 return;
2021
2022 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2023}
2024
2025static int update_scan(struct hci_request *req, unsigned long opt)
2026{
2027 hci_dev_lock(req->hdev);
2028 __hci_req_update_scan(req);
2029 hci_dev_unlock(req->hdev);
2030 return 0;
2031}
2032
2033static void scan_update_work(struct work_struct *work)
2034{
2035 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2036
2037 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2038}
2039
2040static int connectable_update(struct hci_request *req, unsigned long opt)
2041{
2042 struct hci_dev *hdev = req->hdev;
2043
2044 hci_dev_lock(hdev);
2045
2046 __hci_req_update_scan(req);
2047
2048 /* If BR/EDR is not enabled and we disable advertising as a
2049 * by-product of disabling connectable, we need to update the
2050 * advertising flags.
2051 */
2052 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2053 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
2054
2055 /* Update the advertising parameters if necessary */
2056 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2057 !list_empty(&hdev->adv_instances)) {
2058 if (ext_adv_capable(hdev))
2059 __hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2060 else
2061 __hci_req_enable_advertising(req);
2062 }
2063
2064 __hci_update_background_scan(req);
2065
2066 hci_dev_unlock(hdev);
2067
2068 return 0;
2069}
2070
2071static void connectable_update_work(struct work_struct *work)
2072{
2073 struct hci_dev *hdev = container_of(work, struct hci_dev,
2074 connectable_update);
2075 u8 status;
2076
2077 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2078 mgmt_set_connectable_complete(hdev, status);
2079}
2080
2081static u8 get_service_classes(struct hci_dev *hdev)
2082{
2083 struct bt_uuid *uuid;
2084 u8 val = 0;
2085
2086 list_for_each_entry(uuid, &hdev->uuids, list)
2087 val |= uuid->svc_hint;
2088
2089 return val;
2090}
2091
2092void __hci_req_update_class(struct hci_request *req)
2093{
2094 struct hci_dev *hdev = req->hdev;
2095 u8 cod[3];
2096
2097 BT_DBG("%s", hdev->name);
2098
2099 if (!hdev_is_powered(hdev))
2100 return;
2101
2102 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2103 return;
2104
2105 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2106 return;
2107
2108 cod[0] = hdev->minor_class;
2109 cod[1] = hdev->major_class;
2110 cod[2] = get_service_classes(hdev);
2111
2112 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2113 cod[1] |= 0x20;
2114
2115 if (memcmp(cod, hdev->dev_class, 3) == 0)
2116 return;
2117
2118 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2119}
2120
2121static void write_iac(struct hci_request *req)
2122{
2123 struct hci_dev *hdev = req->hdev;
2124 struct hci_cp_write_current_iac_lap cp;
2125
2126 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2127 return;
2128
2129 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2130 /* Limited discoverable mode */
2131 cp.num_iac = min_t(u8, hdev->num_iac, 2);
2132 cp.iac_lap[0] = 0x00; /* LIAC */
2133 cp.iac_lap[1] = 0x8b;
2134 cp.iac_lap[2] = 0x9e;
2135 cp.iac_lap[3] = 0x33; /* GIAC */
2136 cp.iac_lap[4] = 0x8b;
2137 cp.iac_lap[5] = 0x9e;
2138 } else {
2139 /* General discoverable mode */
2140 cp.num_iac = 1;
2141 cp.iac_lap[0] = 0x33; /* GIAC */
2142 cp.iac_lap[1] = 0x8b;
2143 cp.iac_lap[2] = 0x9e;
2144 }
2145
2146 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2147 (cp.num_iac * 3) + 1, &cp);
2148}
2149
2150static int discoverable_update(struct hci_request *req, unsigned long opt)
2151{
2152 struct hci_dev *hdev = req->hdev;
2153
2154 hci_dev_lock(hdev);
2155
2156 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2157 write_iac(req);
2158 __hci_req_update_scan(req);
2159 __hci_req_update_class(req);
2160 }
2161
2162 /* Advertising instances don't use the global discoverable setting, so
2163 * only update AD if advertising was enabled using Set Advertising.
2164 */
2165 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2166 __hci_req_update_adv_data(req, 0x00);
2167
2168 /* Discoverable mode affects the local advertising
2169 * address in limited privacy mode.
2170 */
2171 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2172 if (ext_adv_capable(hdev))
2173 __hci_req_start_ext_adv(req, 0x00);
2174 else
2175 __hci_req_enable_advertising(req);
2176 }
2177 }
2178
2179 hci_dev_unlock(hdev);
2180
2181 return 0;
2182}
2183
2184static void discoverable_update_work(struct work_struct *work)
2185{
2186 struct hci_dev *hdev = container_of(work, struct hci_dev,
2187 discoverable_update);
2188 u8 status;
2189
2190 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2191 mgmt_set_discoverable_complete(hdev, status);
2192}
2193
2194void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2195 u8 reason)
2196{
2197 switch (conn->state) {
2198 case BT_CONNECTED:
2199 case BT_CONFIG:
2200 if (conn->type == AMP_LINK) {
2201 struct hci_cp_disconn_phy_link cp;
2202
2203 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2204 cp.reason = reason;
2205 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2206 &cp);
2207 } else {
2208 struct hci_cp_disconnect dc;
2209
2210 dc.handle = cpu_to_le16(conn->handle);
2211 dc.reason = reason;
2212 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2213 }
2214
2215 conn->state = BT_DISCONN;
2216
2217 break;
2218 case BT_CONNECT:
2219 if (conn->type == LE_LINK) {
2220 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2221 break;
2222 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2223 0, NULL);
2224 } else if (conn->type == ACL_LINK) {
2225 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2226 break;
2227 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2228 6, &conn->dst);
2229 }
2230 break;
2231 case BT_CONNECT2:
2232 if (conn->type == ACL_LINK) {
2233 struct hci_cp_reject_conn_req rej;
2234
2235 bacpy(&rej.bdaddr, &conn->dst);
2236 rej.reason = reason;
2237
2238 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2239 sizeof(rej), &rej);
2240 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2241 struct hci_cp_reject_sync_conn_req rej;
2242
2243 bacpy(&rej.bdaddr, &conn->dst);
2244
2245 /* SCO rejection has its own limited set of
2246 * allowed error values (0x0D-0x0F) which isn't
2247 * compatible with most values passed to this
2248 * function. To be safe hard-code one of the
2249 * values that's suitable for SCO.
2250 */
2251 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2252
2253 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2254 sizeof(rej), &rej);
2255 }
2256 break;
2257 default:
2258 conn->state = BT_CLOSED;
2259 break;
2260 }
2261}
2262
2263static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2264{
2265 if (status)
2266 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2267}
2268
2269int hci_abort_conn(struct hci_conn *conn, u8 reason)
2270{
2271 struct hci_request req;
2272 int err;
2273
2274 hci_req_init(&req, conn->hdev);
2275
2276 __hci_abort_conn(&req, conn, reason);
2277
2278 err = hci_req_run(&req, abort_conn_complete);
2279 if (err && err != -ENODATA) {
2280 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2281 return err;
2282 }
2283
2284 return 0;
2285}
2286
2287static int update_bg_scan(struct hci_request *req, unsigned long opt)
2288{
2289 hci_dev_lock(req->hdev);
2290 __hci_update_background_scan(req);
2291 hci_dev_unlock(req->hdev);
2292 return 0;
2293}
2294
2295static void bg_scan_update(struct work_struct *work)
2296{
2297 struct hci_dev *hdev = container_of(work, struct hci_dev,
2298 bg_scan_update);
2299 struct hci_conn *conn;
2300 u8 status;
2301 int err;
2302
2303 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2304 if (!err)
2305 return;
2306
2307 hci_dev_lock(hdev);
2308
2309 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2310 if (conn)
2311 hci_le_conn_failed(conn, status);
2312
2313 hci_dev_unlock(hdev);
2314}
2315
2316static int le_scan_disable(struct hci_request *req, unsigned long opt)
2317{
2318 hci_req_add_le_scan_disable(req);
2319 return 0;
2320}
2321
2322static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2323{
2324 u8 length = opt;
2325 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2326 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2327 struct hci_cp_inquiry cp;
2328
2329 BT_DBG("%s", req->hdev->name);
2330
2331 hci_dev_lock(req->hdev);
2332 hci_inquiry_cache_flush(req->hdev);
2333 hci_dev_unlock(req->hdev);
2334
2335 memset(&cp, 0, sizeof(cp));
2336
2337 if (req->hdev->discovery.limited)
2338 memcpy(&cp.lap, liac, sizeof(cp.lap));
2339 else
2340 memcpy(&cp.lap, giac, sizeof(cp.lap));
2341
2342 cp.length = length;
2343
2344 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2345
2346 return 0;
2347}
2348
2349static void le_scan_disable_work(struct work_struct *work)
2350{
2351 struct hci_dev *hdev = container_of(work, struct hci_dev,
2352 le_scan_disable.work);
2353 u8 status;
2354
2355 BT_DBG("%s", hdev->name);
2356
2357 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2358 return;
2359
2360 cancel_delayed_work(&hdev->le_scan_restart);
2361
2362 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2363 if (status) {
2364 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2365 status);
2366 return;
2367 }
2368
2369 hdev->discovery.scan_start = 0;
2370
2371 /* If we were running LE only scan, change discovery state. If
2372 * we were running both LE and BR/EDR inquiry simultaneously,
2373 * and BR/EDR inquiry is already finished, stop discovery,
2374 * otherwise BR/EDR inquiry will stop discovery when finished.
2375 * If we will resolve remote device name, do not change
2376 * discovery state.
2377 */
2378
2379 if (hdev->discovery.type == DISCOV_TYPE_LE)
2380 goto discov_stopped;
2381
2382 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2383 return;
2384
2385 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2386 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2387 hdev->discovery.state != DISCOVERY_RESOLVING)
2388 goto discov_stopped;
2389
2390 return;
2391 }
2392
2393 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2394 HCI_CMD_TIMEOUT, &status);
2395 if (status) {
2396 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2397 goto discov_stopped;
2398 }
2399
2400 return;
2401
2402discov_stopped:
2403 hci_dev_lock(hdev);
2404 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2405 hci_dev_unlock(hdev);
2406}
2407
2408static int le_scan_restart(struct hci_request *req, unsigned long opt)
2409{
2410 struct hci_dev *hdev = req->hdev;
2411
2412 /* If controller is not scanning we are done. */
2413 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2414 return 0;
2415
2416 hci_req_add_le_scan_disable(req);
2417
2418 if (use_ext_scan(hdev)) {
2419 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2420
2421 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2422 ext_enable_cp.enable = LE_SCAN_ENABLE;
2423 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2424
2425 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2426 sizeof(ext_enable_cp), &ext_enable_cp);
2427 } else {
2428 struct hci_cp_le_set_scan_enable cp;
2429
2430 memset(&cp, 0, sizeof(cp));
2431 cp.enable = LE_SCAN_ENABLE;
2432 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2433 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2434 }
2435
2436 return 0;
2437}
2438
2439static void le_scan_restart_work(struct work_struct *work)
2440{
2441 struct hci_dev *hdev = container_of(work, struct hci_dev,
2442 le_scan_restart.work);
2443 unsigned long timeout, duration, scan_start, now;
2444 u8 status;
2445
2446 BT_DBG("%s", hdev->name);
2447
2448 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2449 if (status) {
2450 bt_dev_err(hdev, "failed to restart LE scan: status %d",
2451 status);
2452 return;
2453 }
2454
2455 hci_dev_lock(hdev);
2456
2457 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2458 !hdev->discovery.scan_start)
2459 goto unlock;
2460
2461 /* When the scan was started, hdev->le_scan_disable has been queued
2462 * after duration from scan_start. During scan restart this job
2463 * has been canceled, and we need to queue it again after proper
2464 * timeout, to make sure that scan does not run indefinitely.
2465 */
2466 duration = hdev->discovery.scan_duration;
2467 scan_start = hdev->discovery.scan_start;
2468 now = jiffies;
2469 if (now - scan_start <= duration) {
2470 int elapsed;
2471
2472 if (now >= scan_start)
2473 elapsed = now - scan_start;
2474 else
2475 elapsed = ULONG_MAX - scan_start + now;
2476
2477 timeout = duration - elapsed;
2478 } else {
2479 timeout = 0;
2480 }
2481
2482 queue_delayed_work(hdev->req_workqueue,
2483 &hdev->le_scan_disable, timeout);
2484
2485unlock:
2486 hci_dev_unlock(hdev);
2487}
2488
2489static int active_scan(struct hci_request *req, unsigned long opt)
2490{
2491 uint16_t interval = opt;
2492 struct hci_dev *hdev = req->hdev;
2493 u8 own_addr_type;
2494 int err;
2495
2496 BT_DBG("%s", hdev->name);
2497
2498 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2499 hci_dev_lock(hdev);
2500
2501 /* Don't let discovery abort an outgoing connection attempt
2502 * that's using directed advertising.
2503 */
2504 if (hci_lookup_le_connect(hdev)) {
2505 hci_dev_unlock(hdev);
2506 return -EBUSY;
2507 }
2508
2509 cancel_adv_timeout(hdev);
2510 hci_dev_unlock(hdev);
2511
2512 __hci_req_disable_advertising(req);
2513 }
2514
2515 /* If controller is scanning, it means the background scanning is
2516 * running. Thus, we should temporarily stop it in order to set the
2517 * discovery scanning parameters.
2518 */
2519 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2520 hci_req_add_le_scan_disable(req);
2521
2522 /* All active scans will be done with either a resolvable private
2523 * address (when privacy feature has been enabled) or non-resolvable
2524 * private address.
2525 */
2526 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2527 &own_addr_type);
2528 if (err < 0)
2529 own_addr_type = ADDR_LE_DEV_PUBLIC;
2530
2531 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2532 own_addr_type, 0);
2533 return 0;
2534}
2535
2536static int interleaved_discov(struct hci_request *req, unsigned long opt)
2537{
2538 int err;
2539
2540 BT_DBG("%s", req->hdev->name);
2541
2542 err = active_scan(req, opt);
2543 if (err)
2544 return err;
2545
2546 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2547}
2548
2549static void start_discovery(struct hci_dev *hdev, u8 *status)
2550{
2551 unsigned long timeout;
2552
2553 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2554
2555 switch (hdev->discovery.type) {
2556 case DISCOV_TYPE_BREDR:
2557 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2558 hci_req_sync(hdev, bredr_inquiry,
2559 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2560 status);
2561 return;
2562 case DISCOV_TYPE_INTERLEAVED:
2563 /* When running simultaneous discovery, the LE scanning time
2564 * should occupy the whole discovery time sine BR/EDR inquiry
2565 * and LE scanning are scheduled by the controller.
2566 *
2567 * For interleaving discovery in comparison, BR/EDR inquiry
2568 * and LE scanning are done sequentially with separate
2569 * timeouts.
2570 */
2571 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2572 &hdev->quirks)) {
2573 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2574 /* During simultaneous discovery, we double LE scan
2575 * interval. We must leave some time for the controller
2576 * to do BR/EDR inquiry.
2577 */
2578 hci_req_sync(hdev, interleaved_discov,
2579 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2580 status);
2581 break;
2582 }
2583
2584 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2585 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2586 HCI_CMD_TIMEOUT, status);
2587 break;
2588 case DISCOV_TYPE_LE:
2589 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2590 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2591 HCI_CMD_TIMEOUT, status);
2592 break;
2593 default:
2594 *status = HCI_ERROR_UNSPECIFIED;
2595 return;
2596 }
2597
2598 if (*status)
2599 return;
2600
2601 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2602
2603 /* When service discovery is used and the controller has a
2604 * strict duplicate filter, it is important to remember the
2605 * start and duration of the scan. This is required for
2606 * restarting scanning during the discovery phase.
2607 */
2608 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2609 hdev->discovery.result_filtering) {
2610 hdev->discovery.scan_start = jiffies;
2611 hdev->discovery.scan_duration = timeout;
2612 }
2613
2614 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2615 timeout);
2616}
2617
2618bool hci_req_stop_discovery(struct hci_request *req)
2619{
2620 struct hci_dev *hdev = req->hdev;
2621 struct discovery_state *d = &hdev->discovery;
2622 struct hci_cp_remote_name_req_cancel cp;
2623 struct inquiry_entry *e;
2624 bool ret = false;
2625
2626 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2627
2628 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2629 if (test_bit(HCI_INQUIRY, &hdev->flags))
2630 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2631
2632 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2633 cancel_delayed_work(&hdev->le_scan_disable);
2634 hci_req_add_le_scan_disable(req);
2635 }
2636
2637 ret = true;
2638 } else {
2639 /* Passive scanning */
2640 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2641 hci_req_add_le_scan_disable(req);
2642 ret = true;
2643 }
2644 }
2645
2646 /* No further actions needed for LE-only discovery */
2647 if (d->type == DISCOV_TYPE_LE)
2648 return ret;
2649
2650 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2651 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2652 NAME_PENDING);
2653 if (!e)
2654 return ret;
2655
2656 bacpy(&cp.bdaddr, &e->data.bdaddr);
2657 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2658 &cp);
2659 ret = true;
2660 }
2661
2662 return ret;
2663}
2664
2665static int stop_discovery(struct hci_request *req, unsigned long opt)
2666{
2667 hci_dev_lock(req->hdev);
2668 hci_req_stop_discovery(req);
2669 hci_dev_unlock(req->hdev);
2670
2671 return 0;
2672}
2673
2674static void discov_update(struct work_struct *work)
2675{
2676 struct hci_dev *hdev = container_of(work, struct hci_dev,
2677 discov_update);
2678 u8 status = 0;
2679
2680 switch (hdev->discovery.state) {
2681 case DISCOVERY_STARTING:
2682 start_discovery(hdev, &status);
2683 mgmt_start_discovery_complete(hdev, status);
2684 if (status)
2685 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2686 else
2687 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2688 break;
2689 case DISCOVERY_STOPPING:
2690 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2691 mgmt_stop_discovery_complete(hdev, status);
2692 if (!status)
2693 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2694 break;
2695 case DISCOVERY_STOPPED:
2696 default:
2697 return;
2698 }
2699}
2700
2701static void discov_off(struct work_struct *work)
2702{
2703 struct hci_dev *hdev = container_of(work, struct hci_dev,
2704 discov_off.work);
2705
2706 BT_DBG("%s", hdev->name);
2707
2708 hci_dev_lock(hdev);
2709
2710 /* When discoverable timeout triggers, then just make sure
2711 * the limited discoverable flag is cleared. Even in the case
2712 * of a timeout triggered from general discoverable, it is
2713 * safe to unconditionally clear the flag.
2714 */
2715 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2716 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2717 hdev->discov_timeout = 0;
2718
2719 hci_dev_unlock(hdev);
2720
2721 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2722 mgmt_new_settings(hdev);
2723}
2724
2725static int powered_update_hci(struct hci_request *req, unsigned long opt)
2726{
2727 struct hci_dev *hdev = req->hdev;
2728 u8 link_sec;
2729
2730 hci_dev_lock(hdev);
2731
2732 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2733 !lmp_host_ssp_capable(hdev)) {
2734 u8 mode = 0x01;
2735
2736 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2737
2738 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2739 u8 support = 0x01;
2740
2741 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2742 sizeof(support), &support);
2743 }
2744 }
2745
2746 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2747 lmp_bredr_capable(hdev)) {
2748 struct hci_cp_write_le_host_supported cp;
2749
2750 cp.le = 0x01;
2751 cp.simul = 0x00;
2752
2753 /* Check first if we already have the right
2754 * host state (host features set)
2755 */
2756 if (cp.le != lmp_host_le_capable(hdev) ||
2757 cp.simul != lmp_host_le_br_capable(hdev))
2758 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2759 sizeof(cp), &cp);
2760 }
2761
2762 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2763 /* Make sure the controller has a good default for
2764 * advertising data. This also applies to the case
2765 * where BR/EDR was toggled during the AUTO_OFF phase.
2766 */
2767 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2768 list_empty(&hdev->adv_instances)) {
2769 int err;
2770
2771 if (ext_adv_capable(hdev)) {
2772 err = __hci_req_setup_ext_adv_instance(req,
2773 0x00);
2774 if (!err)
2775 __hci_req_update_scan_rsp_data(req,
2776 0x00);
2777 } else {
2778 err = 0;
2779 __hci_req_update_adv_data(req, 0x00);
2780 __hci_req_update_scan_rsp_data(req, 0x00);
2781 }
2782
2783 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2784 if (!ext_adv_capable(hdev))
2785 __hci_req_enable_advertising(req);
2786 else if (!err)
2787 __hci_req_enable_ext_advertising(req,
2788 0x00);
2789 }
2790 } else if (!list_empty(&hdev->adv_instances)) {
2791 struct adv_info *adv_instance;
2792
2793 adv_instance = list_first_entry(&hdev->adv_instances,
2794 struct adv_info, list);
2795 __hci_req_schedule_adv_instance(req,
2796 adv_instance->instance,
2797 true);
2798 }
2799 }
2800
2801 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2802 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2803 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2804 sizeof(link_sec), &link_sec);
2805
2806 if (lmp_bredr_capable(hdev)) {
2807 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2808 __hci_req_write_fast_connectable(req, true);
2809 else
2810 __hci_req_write_fast_connectable(req, false);
2811 __hci_req_update_scan(req);
2812 __hci_req_update_class(req);
2813 __hci_req_update_name(req);
2814 __hci_req_update_eir(req);
2815 }
2816
2817 hci_dev_unlock(hdev);
2818 return 0;
2819}
2820
2821int __hci_req_hci_power_on(struct hci_dev *hdev)
2822{
2823 /* Register the available SMP channels (BR/EDR and LE) only when
2824 * successfully powering on the controller. This late
2825 * registration is required so that LE SMP can clearly decide if
2826 * the public address or static address is used.
2827 */
2828 smp_register(hdev);
2829
2830 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2831 NULL);
2832}
2833
2834void hci_request_setup(struct hci_dev *hdev)
2835{
2836 INIT_WORK(&hdev->discov_update, discov_update);
2837 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2838 INIT_WORK(&hdev->scan_update, scan_update_work);
2839 INIT_WORK(&hdev->connectable_update, connectable_update_work);
2840 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2841 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2842 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2843 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2844 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2845}
2846
2847void hci_request_cancel_all(struct hci_dev *hdev)
2848{
2849 hci_req_sync_cancel(hdev, ENODEV);
2850
2851 cancel_work_sync(&hdev->discov_update);
2852 cancel_work_sync(&hdev->bg_scan_update);
2853 cancel_work_sync(&hdev->scan_update);
2854 cancel_work_sync(&hdev->connectable_update);
2855 cancel_work_sync(&hdev->discoverable_update);
2856 cancel_delayed_work_sync(&hdev->discov_off);
2857 cancel_delayed_work_sync(&hdev->le_scan_disable);
2858 cancel_delayed_work_sync(&hdev->le_scan_restart);
2859
2860 if (hdev->adv_instance_timeout) {
2861 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2862 hdev->adv_instance_timeout = 0;
2863 }
2864}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22*/
23
24#include <linux/sched/signal.h>
25
26#include <net/bluetooth/bluetooth.h>
27#include <net/bluetooth/hci_core.h>
28#include <net/bluetooth/mgmt.h>
29
30#include "smp.h"
31#include "hci_request.h"
32
33#define HCI_REQ_DONE 0
34#define HCI_REQ_PEND 1
35#define HCI_REQ_CANCELED 2
36
37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38{
39 skb_queue_head_init(&req->cmd_q);
40 req->hdev = hdev;
41 req->err = 0;
42}
43
44void hci_req_purge(struct hci_request *req)
45{
46 skb_queue_purge(&req->cmd_q);
47}
48
49bool hci_req_status_pend(struct hci_dev *hdev)
50{
51 return hdev->req_status == HCI_REQ_PEND;
52}
53
54static int req_run(struct hci_request *req, hci_req_complete_t complete,
55 hci_req_complete_skb_t complete_skb)
56{
57 struct hci_dev *hdev = req->hdev;
58 struct sk_buff *skb;
59 unsigned long flags;
60
61 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
62
63 /* If an error occurred during request building, remove all HCI
64 * commands queued on the HCI request queue.
65 */
66 if (req->err) {
67 skb_queue_purge(&req->cmd_q);
68 return req->err;
69 }
70
71 /* Do not allow empty requests */
72 if (skb_queue_empty(&req->cmd_q))
73 return -ENODATA;
74
75 skb = skb_peek_tail(&req->cmd_q);
76 if (complete) {
77 bt_cb(skb)->hci.req_complete = complete;
78 } else if (complete_skb) {
79 bt_cb(skb)->hci.req_complete_skb = complete_skb;
80 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
81 }
82
83 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
84 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
85 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
86
87 queue_work(hdev->workqueue, &hdev->cmd_work);
88
89 return 0;
90}
91
92int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
93{
94 return req_run(req, complete, NULL);
95}
96
97int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
98{
99 return req_run(req, NULL, complete);
100}
101
102static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
103 struct sk_buff *skb)
104{
105 BT_DBG("%s result 0x%2.2x", hdev->name, result);
106
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 if (skb)
111 hdev->req_skb = skb_get(skb);
112 wake_up_interruptible(&hdev->req_wait_q);
113 }
114}
115
116void hci_req_sync_cancel(struct hci_dev *hdev, int err)
117{
118 BT_DBG("%s err 0x%2.2x", hdev->name, err);
119
120 if (hdev->req_status == HCI_REQ_PEND) {
121 hdev->req_result = err;
122 hdev->req_status = HCI_REQ_CANCELED;
123 wake_up_interruptible(&hdev->req_wait_q);
124 }
125}
126
127struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
128 const void *param, u8 event, u32 timeout)
129{
130 struct hci_request req;
131 struct sk_buff *skb;
132 int err = 0;
133
134 BT_DBG("%s", hdev->name);
135
136 hci_req_init(&req, hdev);
137
138 hci_req_add_ev(&req, opcode, plen, param, event);
139
140 hdev->req_status = HCI_REQ_PEND;
141
142 err = hci_req_run_skb(&req, hci_req_sync_complete);
143 if (err < 0)
144 return ERR_PTR(err);
145
146 err = wait_event_interruptible_timeout(hdev->req_wait_q,
147 hdev->req_status != HCI_REQ_PEND, timeout);
148
149 if (err == -ERESTARTSYS)
150 return ERR_PTR(-EINTR);
151
152 switch (hdev->req_status) {
153 case HCI_REQ_DONE:
154 err = -bt_to_errno(hdev->req_result);
155 break;
156
157 case HCI_REQ_CANCELED:
158 err = -hdev->req_result;
159 break;
160
161 default:
162 err = -ETIMEDOUT;
163 break;
164 }
165
166 hdev->req_status = hdev->req_result = 0;
167 skb = hdev->req_skb;
168 hdev->req_skb = NULL;
169
170 BT_DBG("%s end: err %d", hdev->name, err);
171
172 if (err < 0) {
173 kfree_skb(skb);
174 return ERR_PTR(err);
175 }
176
177 if (!skb)
178 return ERR_PTR(-ENODATA);
179
180 return skb;
181}
182EXPORT_SYMBOL(__hci_cmd_sync_ev);
183
184struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
185 const void *param, u32 timeout)
186{
187 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
188}
189EXPORT_SYMBOL(__hci_cmd_sync);
190
191/* Execute request and wait for completion. */
192int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
193 unsigned long opt),
194 unsigned long opt, u32 timeout, u8 *hci_status)
195{
196 struct hci_request req;
197 int err = 0;
198
199 BT_DBG("%s start", hdev->name);
200
201 hci_req_init(&req, hdev);
202
203 hdev->req_status = HCI_REQ_PEND;
204
205 err = func(&req, opt);
206 if (err) {
207 if (hci_status)
208 *hci_status = HCI_ERROR_UNSPECIFIED;
209 return err;
210 }
211
212 err = hci_req_run_skb(&req, hci_req_sync_complete);
213 if (err < 0) {
214 hdev->req_status = 0;
215
216 /* ENODATA means the HCI request command queue is empty.
217 * This can happen when a request with conditionals doesn't
218 * trigger any commands to be sent. This is normal behavior
219 * and should not trigger an error return.
220 */
221 if (err == -ENODATA) {
222 if (hci_status)
223 *hci_status = 0;
224 return 0;
225 }
226
227 if (hci_status)
228 *hci_status = HCI_ERROR_UNSPECIFIED;
229
230 return err;
231 }
232
233 err = wait_event_interruptible_timeout(hdev->req_wait_q,
234 hdev->req_status != HCI_REQ_PEND, timeout);
235
236 if (err == -ERESTARTSYS)
237 return -EINTR;
238
239 switch (hdev->req_status) {
240 case HCI_REQ_DONE:
241 err = -bt_to_errno(hdev->req_result);
242 if (hci_status)
243 *hci_status = hdev->req_result;
244 break;
245
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
248 if (hci_status)
249 *hci_status = HCI_ERROR_UNSPECIFIED;
250 break;
251
252 default:
253 err = -ETIMEDOUT;
254 if (hci_status)
255 *hci_status = HCI_ERROR_UNSPECIFIED;
256 break;
257 }
258
259 kfree_skb(hdev->req_skb);
260 hdev->req_skb = NULL;
261 hdev->req_status = hdev->req_result = 0;
262
263 BT_DBG("%s end: err %d", hdev->name, err);
264
265 return err;
266}
267
268int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
269 unsigned long opt),
270 unsigned long opt, u32 timeout, u8 *hci_status)
271{
272 int ret;
273
274 if (!test_bit(HCI_UP, &hdev->flags))
275 return -ENETDOWN;
276
277 /* Serialize all requests */
278 hci_req_sync_lock(hdev);
279 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
280 hci_req_sync_unlock(hdev);
281
282 return ret;
283}
284
285struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
286 const void *param)
287{
288 int len = HCI_COMMAND_HDR_SIZE + plen;
289 struct hci_command_hdr *hdr;
290 struct sk_buff *skb;
291
292 skb = bt_skb_alloc(len, GFP_ATOMIC);
293 if (!skb)
294 return NULL;
295
296 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
297 hdr->opcode = cpu_to_le16(opcode);
298 hdr->plen = plen;
299
300 if (plen)
301 skb_put_data(skb, param, plen);
302
303 BT_DBG("skb len %d", skb->len);
304
305 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
306 hci_skb_opcode(skb) = opcode;
307
308 return skb;
309}
310
311/* Queue a command to an asynchronous HCI request */
312void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
313 const void *param, u8 event)
314{
315 struct hci_dev *hdev = req->hdev;
316 struct sk_buff *skb;
317
318 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
319
320 /* If an error occurred during request building, there is no point in
321 * queueing the HCI command. We can simply return.
322 */
323 if (req->err)
324 return;
325
326 skb = hci_prepare_cmd(hdev, opcode, plen, param);
327 if (!skb) {
328 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
329 opcode);
330 req->err = -ENOMEM;
331 return;
332 }
333
334 if (skb_queue_empty(&req->cmd_q))
335 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
336
337 bt_cb(skb)->hci.req_event = event;
338
339 skb_queue_tail(&req->cmd_q, skb);
340}
341
342void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
343 const void *param)
344{
345 hci_req_add_ev(req, opcode, plen, param, 0);
346}
347
348void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
349{
350 struct hci_dev *hdev = req->hdev;
351 struct hci_cp_write_page_scan_activity acp;
352 u8 type;
353
354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
355 return;
356
357 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
358 return;
359
360 if (enable) {
361 type = PAGE_SCAN_TYPE_INTERLACED;
362
363 /* 160 msec page scan interval */
364 acp.interval = cpu_to_le16(0x0100);
365 } else {
366 type = hdev->def_page_scan_type;
367 acp.interval = cpu_to_le16(hdev->def_page_scan_int);
368 }
369
370 acp.window = cpu_to_le16(hdev->def_page_scan_window);
371
372 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
373 __cpu_to_le16(hdev->page_scan_window) != acp.window)
374 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
375 sizeof(acp), &acp);
376
377 if (hdev->page_scan_type != type)
378 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
379}
380
381/* This function controls the background scanning based on hdev->pend_le_conns
382 * list. If there are pending LE connection we start the background scanning,
383 * otherwise we stop it.
384 *
385 * This function requires the caller holds hdev->lock.
386 */
387static void __hci_update_background_scan(struct hci_request *req)
388{
389 struct hci_dev *hdev = req->hdev;
390
391 if (!test_bit(HCI_UP, &hdev->flags) ||
392 test_bit(HCI_INIT, &hdev->flags) ||
393 hci_dev_test_flag(hdev, HCI_SETUP) ||
394 hci_dev_test_flag(hdev, HCI_CONFIG) ||
395 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
396 hci_dev_test_flag(hdev, HCI_UNREGISTER))
397 return;
398
399 /* No point in doing scanning if LE support hasn't been enabled */
400 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
401 return;
402
403 /* If discovery is active don't interfere with it */
404 if (hdev->discovery.state != DISCOVERY_STOPPED)
405 return;
406
407 /* Reset RSSI and UUID filters when starting background scanning
408 * since these filters are meant for service discovery only.
409 *
410 * The Start Discovery and Start Service Discovery operations
411 * ensure to set proper values for RSSI threshold and UUID
412 * filter list. So it is safe to just reset them here.
413 */
414 hci_discovery_filter_clear(hdev);
415
416 BT_DBG("%s ADV monitoring is %s", hdev->name,
417 hci_is_adv_monitoring(hdev) ? "on" : "off");
418
419 if (list_empty(&hdev->pend_le_conns) &&
420 list_empty(&hdev->pend_le_reports) &&
421 !hci_is_adv_monitoring(hdev)) {
422 /* If there is no pending LE connections or devices
423 * to be scanned for or no ADV monitors, we should stop the
424 * background scanning.
425 */
426
427 /* If controller is not scanning we are done. */
428 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
429 return;
430
431 hci_req_add_le_scan_disable(req, false);
432
433 BT_DBG("%s stopping background scanning", hdev->name);
434 } else {
435 /* If there is at least one pending LE connection, we should
436 * keep the background scan running.
437 */
438
439 /* If controller is connecting, we should not start scanning
440 * since some controllers are not able to scan and connect at
441 * the same time.
442 */
443 if (hci_lookup_le_connect(hdev))
444 return;
445
446 /* If controller is currently scanning, we stop it to ensure we
447 * don't miss any advertising (due to duplicates filter).
448 */
449 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
450 hci_req_add_le_scan_disable(req, false);
451
452 hci_req_add_le_passive_scan(req);
453
454 BT_DBG("%s starting background scanning", hdev->name);
455 }
456}
457
458void __hci_req_update_name(struct hci_request *req)
459{
460 struct hci_dev *hdev = req->hdev;
461 struct hci_cp_write_local_name cp;
462
463 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
464
465 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
466}
467
468#define PNP_INFO_SVCLASS_ID 0x1200
469
470static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
471{
472 u8 *ptr = data, *uuids_start = NULL;
473 struct bt_uuid *uuid;
474
475 if (len < 4)
476 return ptr;
477
478 list_for_each_entry(uuid, &hdev->uuids, list) {
479 u16 uuid16;
480
481 if (uuid->size != 16)
482 continue;
483
484 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
485 if (uuid16 < 0x1100)
486 continue;
487
488 if (uuid16 == PNP_INFO_SVCLASS_ID)
489 continue;
490
491 if (!uuids_start) {
492 uuids_start = ptr;
493 uuids_start[0] = 1;
494 uuids_start[1] = EIR_UUID16_ALL;
495 ptr += 2;
496 }
497
498 /* Stop if not enough space to put next UUID */
499 if ((ptr - data) + sizeof(u16) > len) {
500 uuids_start[1] = EIR_UUID16_SOME;
501 break;
502 }
503
504 *ptr++ = (uuid16 & 0x00ff);
505 *ptr++ = (uuid16 & 0xff00) >> 8;
506 uuids_start[0] += sizeof(uuid16);
507 }
508
509 return ptr;
510}
511
512static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
513{
514 u8 *ptr = data, *uuids_start = NULL;
515 struct bt_uuid *uuid;
516
517 if (len < 6)
518 return ptr;
519
520 list_for_each_entry(uuid, &hdev->uuids, list) {
521 if (uuid->size != 32)
522 continue;
523
524 if (!uuids_start) {
525 uuids_start = ptr;
526 uuids_start[0] = 1;
527 uuids_start[1] = EIR_UUID32_ALL;
528 ptr += 2;
529 }
530
531 /* Stop if not enough space to put next UUID */
532 if ((ptr - data) + sizeof(u32) > len) {
533 uuids_start[1] = EIR_UUID32_SOME;
534 break;
535 }
536
537 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
538 ptr += sizeof(u32);
539 uuids_start[0] += sizeof(u32);
540 }
541
542 return ptr;
543}
544
545static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
546{
547 u8 *ptr = data, *uuids_start = NULL;
548 struct bt_uuid *uuid;
549
550 if (len < 18)
551 return ptr;
552
553 list_for_each_entry(uuid, &hdev->uuids, list) {
554 if (uuid->size != 128)
555 continue;
556
557 if (!uuids_start) {
558 uuids_start = ptr;
559 uuids_start[0] = 1;
560 uuids_start[1] = EIR_UUID128_ALL;
561 ptr += 2;
562 }
563
564 /* Stop if not enough space to put next UUID */
565 if ((ptr - data) + 16 > len) {
566 uuids_start[1] = EIR_UUID128_SOME;
567 break;
568 }
569
570 memcpy(ptr, uuid->uuid, 16);
571 ptr += 16;
572 uuids_start[0] += 16;
573 }
574
575 return ptr;
576}
577
578static void create_eir(struct hci_dev *hdev, u8 *data)
579{
580 u8 *ptr = data;
581 size_t name_len;
582
583 name_len = strlen(hdev->dev_name);
584
585 if (name_len > 0) {
586 /* EIR Data type */
587 if (name_len > 48) {
588 name_len = 48;
589 ptr[1] = EIR_NAME_SHORT;
590 } else
591 ptr[1] = EIR_NAME_COMPLETE;
592
593 /* EIR Data length */
594 ptr[0] = name_len + 1;
595
596 memcpy(ptr + 2, hdev->dev_name, name_len);
597
598 ptr += (name_len + 2);
599 }
600
601 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
602 ptr[0] = 2;
603 ptr[1] = EIR_TX_POWER;
604 ptr[2] = (u8) hdev->inq_tx_power;
605
606 ptr += 3;
607 }
608
609 if (hdev->devid_source > 0) {
610 ptr[0] = 9;
611 ptr[1] = EIR_DEVICE_ID;
612
613 put_unaligned_le16(hdev->devid_source, ptr + 2);
614 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
615 put_unaligned_le16(hdev->devid_product, ptr + 6);
616 put_unaligned_le16(hdev->devid_version, ptr + 8);
617
618 ptr += 10;
619 }
620
621 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
622 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
623 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
624}
625
626void __hci_req_update_eir(struct hci_request *req)
627{
628 struct hci_dev *hdev = req->hdev;
629 struct hci_cp_write_eir cp;
630
631 if (!hdev_is_powered(hdev))
632 return;
633
634 if (!lmp_ext_inq_capable(hdev))
635 return;
636
637 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
638 return;
639
640 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
641 return;
642
643 memset(&cp, 0, sizeof(cp));
644
645 create_eir(hdev, cp.data);
646
647 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
648 return;
649
650 memcpy(hdev->eir, cp.data, sizeof(cp.data));
651
652 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
653}
654
655void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
656{
657 struct hci_dev *hdev = req->hdev;
658
659 if (hdev->scanning_paused) {
660 bt_dev_dbg(hdev, "Scanning is paused for suspend");
661 return;
662 }
663
664 if (use_ext_scan(hdev)) {
665 struct hci_cp_le_set_ext_scan_enable cp;
666
667 memset(&cp, 0, sizeof(cp));
668 cp.enable = LE_SCAN_DISABLE;
669 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
670 &cp);
671 } else {
672 struct hci_cp_le_set_scan_enable cp;
673
674 memset(&cp, 0, sizeof(cp));
675 cp.enable = LE_SCAN_DISABLE;
676 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
677 }
678
679 /* Disable address resolution */
680 if (use_ll_privacy(hdev) &&
681 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
682 hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
683 __u8 enable = 0x00;
684
685 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
686 }
687}
688
689static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
690 u8 bdaddr_type)
691{
692 struct hci_cp_le_del_from_white_list cp;
693
694 cp.bdaddr_type = bdaddr_type;
695 bacpy(&cp.bdaddr, bdaddr);
696
697 bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
698 cp.bdaddr_type);
699 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
700
701 if (use_ll_privacy(req->hdev)) {
702 struct smp_irk *irk;
703
704 irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
705 if (irk) {
706 struct hci_cp_le_del_from_resolv_list cp;
707
708 cp.bdaddr_type = bdaddr_type;
709 bacpy(&cp.bdaddr, bdaddr);
710
711 hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
712 sizeof(cp), &cp);
713 }
714 }
715}
716
717/* Adds connection to white list if needed. On error, returns -1. */
718static int add_to_white_list(struct hci_request *req,
719 struct hci_conn_params *params, u8 *num_entries,
720 bool allow_rpa)
721{
722 struct hci_cp_le_add_to_white_list cp;
723 struct hci_dev *hdev = req->hdev;
724
725 /* Already in white list */
726 if (hci_bdaddr_list_lookup(&hdev->le_white_list, ¶ms->addr,
727 params->addr_type))
728 return 0;
729
730 /* Select filter policy to accept all advertising */
731 if (*num_entries >= hdev->le_white_list_size)
732 return -1;
733
734 /* White list can not be used with RPAs */
735 if (!allow_rpa && !use_ll_privacy(hdev) &&
736 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) {
737 return -1;
738 }
739
740 /* During suspend, only wakeable devices can be in whitelist */
741 if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
742 params->current_flags))
743 return 0;
744
745 *num_entries += 1;
746 cp.bdaddr_type = params->addr_type;
747 bacpy(&cp.bdaddr, ¶ms->addr);
748
749 bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
750 cp.bdaddr_type);
751 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
752
753 if (use_ll_privacy(hdev)) {
754 struct smp_irk *irk;
755
756 irk = hci_find_irk_by_addr(hdev, ¶ms->addr,
757 params->addr_type);
758 if (irk) {
759 struct hci_cp_le_add_to_resolv_list cp;
760
761 cp.bdaddr_type = params->addr_type;
762 bacpy(&cp.bdaddr, ¶ms->addr);
763 memcpy(cp.peer_irk, irk->val, 16);
764
765 if (hci_dev_test_flag(hdev, HCI_PRIVACY))
766 memcpy(cp.local_irk, hdev->irk, 16);
767 else
768 memset(cp.local_irk, 0, 16);
769
770 hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
771 sizeof(cp), &cp);
772 }
773 }
774
775 return 0;
776}
777
778static u8 update_white_list(struct hci_request *req)
779{
780 struct hci_dev *hdev = req->hdev;
781 struct hci_conn_params *params;
782 struct bdaddr_list *b;
783 u8 num_entries = 0;
784 bool pend_conn, pend_report;
785 /* We allow whitelisting even with RPAs in suspend. In the worst case,
786 * we won't be able to wake from devices that use the privacy1.2
787 * features. Additionally, once we support privacy1.2 and IRK
788 * offloading, we can update this to also check for those conditions.
789 */
790 bool allow_rpa = hdev->suspended;
791
792 /* Go through the current white list programmed into the
793 * controller one by one and check if that address is still
794 * in the list of pending connections or list of devices to
795 * report. If not present in either list, then queue the
796 * command to remove it from the controller.
797 */
798 list_for_each_entry(b, &hdev->le_white_list, list) {
799 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
800 &b->bdaddr,
801 b->bdaddr_type);
802 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
803 &b->bdaddr,
804 b->bdaddr_type);
805
806 /* If the device is not likely to connect or report,
807 * remove it from the whitelist.
808 */
809 if (!pend_conn && !pend_report) {
810 del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
811 continue;
812 }
813
814 /* White list can not be used with RPAs */
815 if (!allow_rpa && !use_ll_privacy(hdev) &&
816 hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
817 return 0x00;
818 }
819
820 num_entries++;
821 }
822
823 /* Since all no longer valid white list entries have been
824 * removed, walk through the list of pending connections
825 * and ensure that any new device gets programmed into
826 * the controller.
827 *
828 * If the list of the devices is larger than the list of
829 * available white list entries in the controller, then
830 * just abort and return filer policy value to not use the
831 * white list.
832 */
833 list_for_each_entry(params, &hdev->pend_le_conns, action) {
834 if (add_to_white_list(req, params, &num_entries, allow_rpa))
835 return 0x00;
836 }
837
838 /* After adding all new pending connections, walk through
839 * the list of pending reports and also add these to the
840 * white list if there is still space. Abort if space runs out.
841 */
842 list_for_each_entry(params, &hdev->pend_le_reports, action) {
843 if (add_to_white_list(req, params, &num_entries, allow_rpa))
844 return 0x00;
845 }
846
847 /* Once the controller offloading of advertisement monitor is in place,
848 * the if condition should include the support of MSFT extension
849 * support. If suspend is ongoing, whitelist should be the default to
850 * prevent waking by random advertisements.
851 */
852 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended)
853 return 0x00;
854
855 /* Select filter policy to use white list */
856 return 0x01;
857}
858
859static bool scan_use_rpa(struct hci_dev *hdev)
860{
861 return hci_dev_test_flag(hdev, HCI_PRIVACY);
862}
863
864static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
865 u16 window, u8 own_addr_type, u8 filter_policy,
866 bool addr_resolv)
867{
868 struct hci_dev *hdev = req->hdev;
869
870 if (hdev->scanning_paused) {
871 bt_dev_dbg(hdev, "Scanning is paused for suspend");
872 return;
873 }
874
875 if (use_ll_privacy(hdev) &&
876 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
877 addr_resolv) {
878 u8 enable = 0x01;
879
880 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
881 }
882
883 /* Use ext scanning if set ext scan param and ext scan enable is
884 * supported
885 */
886 if (use_ext_scan(hdev)) {
887 struct hci_cp_le_set_ext_scan_params *ext_param_cp;
888 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
889 struct hci_cp_le_scan_phy_params *phy_params;
890 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
891 u32 plen;
892
893 ext_param_cp = (void *)data;
894 phy_params = (void *)ext_param_cp->data;
895
896 memset(ext_param_cp, 0, sizeof(*ext_param_cp));
897 ext_param_cp->own_addr_type = own_addr_type;
898 ext_param_cp->filter_policy = filter_policy;
899
900 plen = sizeof(*ext_param_cp);
901
902 if (scan_1m(hdev) || scan_2m(hdev)) {
903 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
904
905 memset(phy_params, 0, sizeof(*phy_params));
906 phy_params->type = type;
907 phy_params->interval = cpu_to_le16(interval);
908 phy_params->window = cpu_to_le16(window);
909
910 plen += sizeof(*phy_params);
911 phy_params++;
912 }
913
914 if (scan_coded(hdev)) {
915 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
916
917 memset(phy_params, 0, sizeof(*phy_params));
918 phy_params->type = type;
919 phy_params->interval = cpu_to_le16(interval);
920 phy_params->window = cpu_to_le16(window);
921
922 plen += sizeof(*phy_params);
923 phy_params++;
924 }
925
926 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
927 plen, ext_param_cp);
928
929 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
930 ext_enable_cp.enable = LE_SCAN_ENABLE;
931 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
932
933 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
934 sizeof(ext_enable_cp), &ext_enable_cp);
935 } else {
936 struct hci_cp_le_set_scan_param param_cp;
937 struct hci_cp_le_set_scan_enable enable_cp;
938
939 memset(¶m_cp, 0, sizeof(param_cp));
940 param_cp.type = type;
941 param_cp.interval = cpu_to_le16(interval);
942 param_cp.window = cpu_to_le16(window);
943 param_cp.own_address_type = own_addr_type;
944 param_cp.filter_policy = filter_policy;
945 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
946 ¶m_cp);
947
948 memset(&enable_cp, 0, sizeof(enable_cp));
949 enable_cp.enable = LE_SCAN_ENABLE;
950 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
951 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
952 &enable_cp);
953 }
954}
955
956/* Returns true if an le connection is in the scanning state */
957static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
958{
959 struct hci_conn_hash *h = &hdev->conn_hash;
960 struct hci_conn *c;
961
962 rcu_read_lock();
963
964 list_for_each_entry_rcu(c, &h->list, list) {
965 if (c->type == LE_LINK && c->state == BT_CONNECT &&
966 test_bit(HCI_CONN_SCANNING, &c->flags)) {
967 rcu_read_unlock();
968 return true;
969 }
970 }
971
972 rcu_read_unlock();
973
974 return false;
975}
976
977/* Ensure to call hci_req_add_le_scan_disable() first to disable the
978 * controller based address resolution to be able to reconfigure
979 * resolving list.
980 */
981void hci_req_add_le_passive_scan(struct hci_request *req)
982{
983 struct hci_dev *hdev = req->hdev;
984 u8 own_addr_type;
985 u8 filter_policy;
986 u16 window, interval;
987 /* Background scanning should run with address resolution */
988 bool addr_resolv = true;
989
990 if (hdev->scanning_paused) {
991 bt_dev_dbg(hdev, "Scanning is paused for suspend");
992 return;
993 }
994
995 /* Set require_privacy to false since no SCAN_REQ are send
996 * during passive scanning. Not using an non-resolvable address
997 * here is important so that peer devices using direct
998 * advertising with our address will be correctly reported
999 * by the controller.
1000 */
1001 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
1002 &own_addr_type))
1003 return;
1004
1005 /* Adding or removing entries from the white list must
1006 * happen before enabling scanning. The controller does
1007 * not allow white list modification while scanning.
1008 */
1009 filter_policy = update_white_list(req);
1010
1011 /* When the controller is using random resolvable addresses and
1012 * with that having LE privacy enabled, then controllers with
1013 * Extended Scanner Filter Policies support can now enable support
1014 * for handling directed advertising.
1015 *
1016 * So instead of using filter polices 0x00 (no whitelist)
1017 * and 0x01 (whitelist enabled) use the new filter policies
1018 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
1019 */
1020 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
1021 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
1022 filter_policy |= 0x02;
1023
1024 if (hdev->suspended) {
1025 window = hdev->le_scan_window_suspend;
1026 interval = hdev->le_scan_int_suspend;
1027 } else if (hci_is_le_conn_scanning(hdev)) {
1028 window = hdev->le_scan_window_connect;
1029 interval = hdev->le_scan_int_connect;
1030 } else {
1031 window = hdev->le_scan_window;
1032 interval = hdev->le_scan_interval;
1033 }
1034
1035 bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
1036 hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
1037 own_addr_type, filter_policy, addr_resolv);
1038}
1039
1040static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
1041{
1042 struct adv_info *adv_instance;
1043
1044 /* Instance 0x00 always set local name */
1045 if (instance == 0x00)
1046 return 1;
1047
1048 adv_instance = hci_find_adv_instance(hdev, instance);
1049 if (!adv_instance)
1050 return 0;
1051
1052 /* TODO: Take into account the "appearance" and "local-name" flags here.
1053 * These are currently being ignored as they are not supported.
1054 */
1055 return adv_instance->scan_rsp_len;
1056}
1057
1058static void hci_req_clear_event_filter(struct hci_request *req)
1059{
1060 struct hci_cp_set_event_filter f;
1061
1062 memset(&f, 0, sizeof(f));
1063 f.flt_type = HCI_FLT_CLEAR_ALL;
1064 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
1065
1066 /* Update page scan state (since we may have modified it when setting
1067 * the event filter).
1068 */
1069 __hci_req_update_scan(req);
1070}
1071
1072static void hci_req_set_event_filter(struct hci_request *req)
1073{
1074 struct bdaddr_list_with_flags *b;
1075 struct hci_cp_set_event_filter f;
1076 struct hci_dev *hdev = req->hdev;
1077 u8 scan = SCAN_DISABLED;
1078
1079 /* Always clear event filter when starting */
1080 hci_req_clear_event_filter(req);
1081
1082 list_for_each_entry(b, &hdev->whitelist, list) {
1083 if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
1084 b->current_flags))
1085 continue;
1086
1087 memset(&f, 0, sizeof(f));
1088 bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
1089 f.flt_type = HCI_FLT_CONN_SETUP;
1090 f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
1091 f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;
1092
1093 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
1094 hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
1095 scan = SCAN_PAGE;
1096 }
1097
1098 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1099}
1100
1101static void hci_req_config_le_suspend_scan(struct hci_request *req)
1102{
1103 /* Before changing params disable scan if enabled */
1104 if (hci_dev_test_flag(req->hdev, HCI_LE_SCAN))
1105 hci_req_add_le_scan_disable(req, false);
1106
1107 /* Configure params and enable scanning */
1108 hci_req_add_le_passive_scan(req);
1109
1110 /* Block suspend notifier on response */
1111 set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks);
1112}
1113
1114static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1115{
1116 bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
1117 status);
1118 if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
1119 test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
1120 wake_up(&hdev->suspend_wait_q);
1121 }
1122}
1123
1124/* Call with hci_dev_lock */
1125void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
1126{
1127 int old_state;
1128 struct hci_conn *conn;
1129 struct hci_request req;
1130 u8 page_scan;
1131 int disconnect_counter;
1132
1133 if (next == hdev->suspend_state) {
1134 bt_dev_dbg(hdev, "Same state before and after: %d", next);
1135 goto done;
1136 }
1137
1138 hdev->suspend_state = next;
1139 hci_req_init(&req, hdev);
1140
1141 if (next == BT_SUSPEND_DISCONNECT) {
1142 /* Mark device as suspended */
1143 hdev->suspended = true;
1144
1145 /* Pause discovery if not already stopped */
1146 old_state = hdev->discovery.state;
1147 if (old_state != DISCOVERY_STOPPED) {
1148 set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
1149 hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
1150 queue_work(hdev->req_workqueue, &hdev->discov_update);
1151 }
1152
1153 hdev->discovery_paused = true;
1154 hdev->discovery_old_state = old_state;
1155
1156 /* Stop advertising */
1157 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1158 if (old_state) {
1159 set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
1160 cancel_delayed_work(&hdev->discov_off);
1161 queue_delayed_work(hdev->req_workqueue,
1162 &hdev->discov_off, 0);
1163 }
1164
1165 hdev->advertising_paused = true;
1166 hdev->advertising_old_state = old_state;
1167 /* Disable page scan */
1168 page_scan = SCAN_DISABLED;
1169 hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan);
1170
1171 /* Disable LE passive scan if enabled */
1172 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1173 hci_req_add_le_scan_disable(&req, false);
1174
1175 /* Mark task needing completion */
1176 set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1177
1178 /* Prevent disconnects from causing scanning to be re-enabled */
1179 hdev->scanning_paused = true;
1180
1181 /* Run commands before disconnecting */
1182 hci_req_run(&req, suspend_req_complete);
1183
1184 disconnect_counter = 0;
1185 /* Soft disconnect everything (power off) */
1186 list_for_each_entry(conn, &hdev->conn_hash.list, list) {
1187 hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
1188 disconnect_counter++;
1189 }
1190
1191 if (disconnect_counter > 0) {
1192 bt_dev_dbg(hdev,
1193 "Had %d disconnects. Will wait on them",
1194 disconnect_counter);
1195 set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
1196 }
1197 } else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1198 /* Unpause to take care of updating scanning params */
1199 hdev->scanning_paused = false;
1200 /* Enable event filter for paired devices */
1201 hci_req_set_event_filter(&req);
1202 /* Enable passive scan at lower duty cycle */
1203 hci_req_config_le_suspend_scan(&req);
1204 /* Pause scan changes again. */
1205 hdev->scanning_paused = true;
1206 hci_req_run(&req, suspend_req_complete);
1207 } else {
1208 hdev->suspended = false;
1209 hdev->scanning_paused = false;
1210
1211 hci_req_clear_event_filter(&req);
1212 /* Reset passive/background scanning to normal */
1213 hci_req_config_le_suspend_scan(&req);
1214
1215 /* Unpause advertising */
1216 hdev->advertising_paused = false;
1217 if (hdev->advertising_old_state) {
1218 set_bit(SUSPEND_UNPAUSE_ADVERTISING,
1219 hdev->suspend_tasks);
1220 hci_dev_set_flag(hdev, HCI_ADVERTISING);
1221 queue_work(hdev->req_workqueue,
1222 &hdev->discoverable_update);
1223 hdev->advertising_old_state = 0;
1224 }
1225
1226 /* Unpause discovery */
1227 hdev->discovery_paused = false;
1228 if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
1229 hdev->discovery_old_state != DISCOVERY_STOPPING) {
1230 set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
1231 hci_discovery_set_state(hdev, DISCOVERY_STARTING);
1232 queue_work(hdev->req_workqueue, &hdev->discov_update);
1233 }
1234
1235 hci_req_run(&req, suspend_req_complete);
1236 }
1237
1238 hdev->suspend_state = next;
1239
1240done:
1241 clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
1242 wake_up(&hdev->suspend_wait_q);
1243}
1244
1245static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
1246{
1247 u8 instance = hdev->cur_adv_instance;
1248 struct adv_info *adv_instance;
1249
1250 /* Instance 0x00 always set local name */
1251 if (instance == 0x00)
1252 return 1;
1253
1254 adv_instance = hci_find_adv_instance(hdev, instance);
1255 if (!adv_instance)
1256 return 0;
1257
1258 /* TODO: Take into account the "appearance" and "local-name" flags here.
1259 * These are currently being ignored as they are not supported.
1260 */
1261 return adv_instance->scan_rsp_len;
1262}
1263
1264void __hci_req_disable_advertising(struct hci_request *req)
1265{
1266 if (ext_adv_capable(req->hdev)) {
1267 __hci_req_disable_ext_adv_instance(req, 0x00);
1268
1269 } else {
1270 u8 enable = 0x00;
1271
1272 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1273 }
1274}
1275
1276static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1277{
1278 u32 flags;
1279 struct adv_info *adv_instance;
1280
1281 if (instance == 0x00) {
1282 /* Instance 0 always manages the "Tx Power" and "Flags"
1283 * fields
1284 */
1285 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1286
1287 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1288 * corresponds to the "connectable" instance flag.
1289 */
1290 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1291 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1292
1293 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1294 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1295 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1296 flags |= MGMT_ADV_FLAG_DISCOV;
1297
1298 return flags;
1299 }
1300
1301 adv_instance = hci_find_adv_instance(hdev, instance);
1302
1303 /* Return 0 when we got an invalid instance identifier. */
1304 if (!adv_instance)
1305 return 0;
1306
1307 return adv_instance->flags;
1308}
1309
1310static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1311{
1312 /* If privacy is not enabled don't use RPA */
1313 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1314 return false;
1315
1316 /* If basic privacy mode is enabled use RPA */
1317 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1318 return true;
1319
1320 /* If limited privacy mode is enabled don't use RPA if we're
1321 * both discoverable and bondable.
1322 */
1323 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1324 hci_dev_test_flag(hdev, HCI_BONDABLE))
1325 return false;
1326
1327 /* We're neither bondable nor discoverable in the limited
1328 * privacy mode, therefore use RPA.
1329 */
1330 return true;
1331}
1332
1333static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1334{
1335 /* If there is no connection we are OK to advertise. */
1336 if (hci_conn_num(hdev, LE_LINK) == 0)
1337 return true;
1338
1339 /* Check le_states if there is any connection in slave role. */
1340 if (hdev->conn_hash.le_num_slave > 0) {
1341 /* Slave connection state and non connectable mode bit 20. */
1342 if (!connectable && !(hdev->le_states[2] & 0x10))
1343 return false;
1344
1345 /* Slave connection state and connectable mode bit 38
1346 * and scannable bit 21.
1347 */
1348 if (connectable && (!(hdev->le_states[4] & 0x40) ||
1349 !(hdev->le_states[2] & 0x20)))
1350 return false;
1351 }
1352
1353 /* Check le_states if there is any connection in master role. */
1354 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1355 /* Master connection state and non connectable mode bit 18. */
1356 if (!connectable && !(hdev->le_states[2] & 0x02))
1357 return false;
1358
1359 /* Master connection state and connectable mode bit 35 and
1360 * scannable 19.
1361 */
1362 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1363 !(hdev->le_states[2] & 0x08)))
1364 return false;
1365 }
1366
1367 return true;
1368}
1369
1370void __hci_req_enable_advertising(struct hci_request *req)
1371{
1372 struct hci_dev *hdev = req->hdev;
1373 struct hci_cp_le_set_adv_param cp;
1374 u8 own_addr_type, enable = 0x01;
1375 bool connectable;
1376 u16 adv_min_interval, adv_max_interval;
1377 u32 flags;
1378
1379 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1380
1381 /* If the "connectable" instance flag was not set, then choose between
1382 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1383 */
1384 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1385 mgmt_get_connectable(hdev);
1386
1387 if (!is_advertising_allowed(hdev, connectable))
1388 return;
1389
1390 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1391 __hci_req_disable_advertising(req);
1392
1393 /* Clear the HCI_LE_ADV bit temporarily so that the
1394 * hci_update_random_address knows that it's safe to go ahead
1395 * and write a new random address. The flag will be set back on
1396 * as soon as the SET_ADV_ENABLE HCI command completes.
1397 */
1398 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1399
1400 /* Set require_privacy to true only when non-connectable
1401 * advertising is used. In that case it is fine to use a
1402 * non-resolvable private address.
1403 */
1404 if (hci_update_random_address(req, !connectable,
1405 adv_use_rpa(hdev, flags),
1406 &own_addr_type) < 0)
1407 return;
1408
1409 memset(&cp, 0, sizeof(cp));
1410
1411 if (connectable) {
1412 cp.type = LE_ADV_IND;
1413
1414 adv_min_interval = hdev->le_adv_min_interval;
1415 adv_max_interval = hdev->le_adv_max_interval;
1416 } else {
1417 if (get_cur_adv_instance_scan_rsp_len(hdev))
1418 cp.type = LE_ADV_SCAN_IND;
1419 else
1420 cp.type = LE_ADV_NONCONN_IND;
1421
1422 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1423 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1424 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1425 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1426 } else {
1427 adv_min_interval = hdev->le_adv_min_interval;
1428 adv_max_interval = hdev->le_adv_max_interval;
1429 }
1430 }
1431
1432 cp.min_interval = cpu_to_le16(adv_min_interval);
1433 cp.max_interval = cpu_to_le16(adv_max_interval);
1434 cp.own_address_type = own_addr_type;
1435 cp.channel_map = hdev->le_adv_channel_map;
1436
1437 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1438
1439 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1440}
1441
1442u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1443{
1444 size_t short_len;
1445 size_t complete_len;
1446
1447 /* no space left for name (+ NULL + type + len) */
1448 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1449 return ad_len;
1450
1451 /* use complete name if present and fits */
1452 complete_len = strlen(hdev->dev_name);
1453 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1454 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1455 hdev->dev_name, complete_len + 1);
1456
1457 /* use short name if present */
1458 short_len = strlen(hdev->short_name);
1459 if (short_len)
1460 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1461 hdev->short_name, short_len + 1);
1462
1463 /* use shortened full name if present, we already know that name
1464 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1465 */
1466 if (complete_len) {
1467 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1468
1469 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1470 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1471
1472 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1473 sizeof(name));
1474 }
1475
1476 return ad_len;
1477}
1478
1479static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1480{
1481 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1482}
1483
1484static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1485{
1486 u8 scan_rsp_len = 0;
1487
1488 if (hdev->appearance) {
1489 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1490 }
1491
1492 return append_local_name(hdev, ptr, scan_rsp_len);
1493}
1494
1495static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1496 u8 *ptr)
1497{
1498 struct adv_info *adv_instance;
1499 u32 instance_flags;
1500 u8 scan_rsp_len = 0;
1501
1502 adv_instance = hci_find_adv_instance(hdev, instance);
1503 if (!adv_instance)
1504 return 0;
1505
1506 instance_flags = adv_instance->flags;
1507
1508 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1509 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1510 }
1511
1512 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1513 adv_instance->scan_rsp_len);
1514
1515 scan_rsp_len += adv_instance->scan_rsp_len;
1516
1517 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1518 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1519
1520 return scan_rsp_len;
1521}
1522
1523void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1524{
1525 struct hci_dev *hdev = req->hdev;
1526 u8 len;
1527
1528 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1529 return;
1530
1531 if (ext_adv_capable(hdev)) {
1532 struct hci_cp_le_set_ext_scan_rsp_data cp;
1533
1534 memset(&cp, 0, sizeof(cp));
1535
1536 if (instance)
1537 len = create_instance_scan_rsp_data(hdev, instance,
1538 cp.data);
1539 else
1540 len = create_default_scan_rsp_data(hdev, cp.data);
1541
1542 if (hdev->scan_rsp_data_len == len &&
1543 !memcmp(cp.data, hdev->scan_rsp_data, len))
1544 return;
1545
1546 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1547 hdev->scan_rsp_data_len = len;
1548
1549 cp.handle = instance;
1550 cp.length = len;
1551 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1552 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1553
1554 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1555 &cp);
1556 } else {
1557 struct hci_cp_le_set_scan_rsp_data cp;
1558
1559 memset(&cp, 0, sizeof(cp));
1560
1561 if (instance)
1562 len = create_instance_scan_rsp_data(hdev, instance,
1563 cp.data);
1564 else
1565 len = create_default_scan_rsp_data(hdev, cp.data);
1566
1567 if (hdev->scan_rsp_data_len == len &&
1568 !memcmp(cp.data, hdev->scan_rsp_data, len))
1569 return;
1570
1571 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1572 hdev->scan_rsp_data_len = len;
1573
1574 cp.length = len;
1575
1576 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1577 }
1578}
1579
1580static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1581{
1582 struct adv_info *adv_instance = NULL;
1583 u8 ad_len = 0, flags = 0;
1584 u32 instance_flags;
1585
1586 /* Return 0 when the current instance identifier is invalid. */
1587 if (instance) {
1588 adv_instance = hci_find_adv_instance(hdev, instance);
1589 if (!adv_instance)
1590 return 0;
1591 }
1592
1593 instance_flags = get_adv_instance_flags(hdev, instance);
1594
1595 /* If instance already has the flags set skip adding it once
1596 * again.
1597 */
1598 if (adv_instance && eir_get_data(adv_instance->adv_data,
1599 adv_instance->adv_data_len, EIR_FLAGS,
1600 NULL))
1601 goto skip_flags;
1602
1603 /* The Add Advertising command allows userspace to set both the general
1604 * and limited discoverable flags.
1605 */
1606 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1607 flags |= LE_AD_GENERAL;
1608
1609 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1610 flags |= LE_AD_LIMITED;
1611
1612 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1613 flags |= LE_AD_NO_BREDR;
1614
1615 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1616 /* If a discovery flag wasn't provided, simply use the global
1617 * settings.
1618 */
1619 if (!flags)
1620 flags |= mgmt_get_adv_discov_flags(hdev);
1621
1622 /* If flags would still be empty, then there is no need to
1623 * include the "Flags" AD field".
1624 */
1625 if (flags) {
1626 ptr[0] = 0x02;
1627 ptr[1] = EIR_FLAGS;
1628 ptr[2] = flags;
1629
1630 ad_len += 3;
1631 ptr += 3;
1632 }
1633 }
1634
1635skip_flags:
1636 if (adv_instance) {
1637 memcpy(ptr, adv_instance->adv_data,
1638 adv_instance->adv_data_len);
1639 ad_len += adv_instance->adv_data_len;
1640 ptr += adv_instance->adv_data_len;
1641 }
1642
1643 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1644 s8 adv_tx_power;
1645
1646 if (ext_adv_capable(hdev)) {
1647 if (adv_instance)
1648 adv_tx_power = adv_instance->tx_power;
1649 else
1650 adv_tx_power = hdev->adv_tx_power;
1651 } else {
1652 adv_tx_power = hdev->adv_tx_power;
1653 }
1654
1655 /* Provide Tx Power only if we can provide a valid value for it */
1656 if (adv_tx_power != HCI_TX_POWER_INVALID) {
1657 ptr[0] = 0x02;
1658 ptr[1] = EIR_TX_POWER;
1659 ptr[2] = (u8)adv_tx_power;
1660
1661 ad_len += 3;
1662 ptr += 3;
1663 }
1664 }
1665
1666 return ad_len;
1667}
1668
1669void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1670{
1671 struct hci_dev *hdev = req->hdev;
1672 u8 len;
1673
1674 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1675 return;
1676
1677 if (ext_adv_capable(hdev)) {
1678 struct hci_cp_le_set_ext_adv_data cp;
1679
1680 memset(&cp, 0, sizeof(cp));
1681
1682 len = create_instance_adv_data(hdev, instance, cp.data);
1683
1684 /* There's nothing to do if the data hasn't changed */
1685 if (hdev->adv_data_len == len &&
1686 memcmp(cp.data, hdev->adv_data, len) == 0)
1687 return;
1688
1689 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1690 hdev->adv_data_len = len;
1691
1692 cp.length = len;
1693 cp.handle = instance;
1694 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1695 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1696
1697 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1698 } else {
1699 struct hci_cp_le_set_adv_data cp;
1700
1701 memset(&cp, 0, sizeof(cp));
1702
1703 len = create_instance_adv_data(hdev, instance, cp.data);
1704
1705 /* There's nothing to do if the data hasn't changed */
1706 if (hdev->adv_data_len == len &&
1707 memcmp(cp.data, hdev->adv_data, len) == 0)
1708 return;
1709
1710 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1711 hdev->adv_data_len = len;
1712
1713 cp.length = len;
1714
1715 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1716 }
1717}
1718
1719int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1720{
1721 struct hci_request req;
1722
1723 hci_req_init(&req, hdev);
1724 __hci_req_update_adv_data(&req, instance);
1725
1726 return hci_req_run(&req, NULL);
1727}
1728
1729static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
1730 u16 opcode)
1731{
1732 BT_DBG("%s status %u", hdev->name, status);
1733}
1734
1735void hci_req_disable_address_resolution(struct hci_dev *hdev)
1736{
1737 struct hci_request req;
1738 __u8 enable = 0x00;
1739
1740 if (!use_ll_privacy(hdev) &&
1741 !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1742 return;
1743
1744 hci_req_init(&req, hdev);
1745
1746 hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
1747
1748 hci_req_run(&req, enable_addr_resolution_complete);
1749}
1750
1751static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1752{
1753 BT_DBG("%s status %u", hdev->name, status);
1754}
1755
1756void hci_req_reenable_advertising(struct hci_dev *hdev)
1757{
1758 struct hci_request req;
1759
1760 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1761 list_empty(&hdev->adv_instances))
1762 return;
1763
1764 hci_req_init(&req, hdev);
1765
1766 if (hdev->cur_adv_instance) {
1767 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1768 true);
1769 } else {
1770 if (ext_adv_capable(hdev)) {
1771 __hci_req_start_ext_adv(&req, 0x00);
1772 } else {
1773 __hci_req_update_adv_data(&req, 0x00);
1774 __hci_req_update_scan_rsp_data(&req, 0x00);
1775 __hci_req_enable_advertising(&req);
1776 }
1777 }
1778
1779 hci_req_run(&req, adv_enable_complete);
1780}
1781
1782static void adv_timeout_expire(struct work_struct *work)
1783{
1784 struct hci_dev *hdev = container_of(work, struct hci_dev,
1785 adv_instance_expire.work);
1786
1787 struct hci_request req;
1788 u8 instance;
1789
1790 BT_DBG("%s", hdev->name);
1791
1792 hci_dev_lock(hdev);
1793
1794 hdev->adv_instance_timeout = 0;
1795
1796 instance = hdev->cur_adv_instance;
1797 if (instance == 0x00)
1798 goto unlock;
1799
1800 hci_req_init(&req, hdev);
1801
1802 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1803
1804 if (list_empty(&hdev->adv_instances))
1805 __hci_req_disable_advertising(&req);
1806
1807 hci_req_run(&req, NULL);
1808
1809unlock:
1810 hci_dev_unlock(hdev);
1811}
1812
1813int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1814 bool use_rpa, struct adv_info *adv_instance,
1815 u8 *own_addr_type, bdaddr_t *rand_addr)
1816{
1817 int err;
1818
1819 bacpy(rand_addr, BDADDR_ANY);
1820
1821 /* If privacy is enabled use a resolvable private address. If
1822 * current RPA has expired then generate a new one.
1823 */
1824 if (use_rpa) {
1825 int to;
1826
1827 *own_addr_type = ADDR_LE_DEV_RANDOM;
1828
1829 if (adv_instance) {
1830 if (!adv_instance->rpa_expired &&
1831 !bacmp(&adv_instance->random_addr, &hdev->rpa))
1832 return 0;
1833
1834 adv_instance->rpa_expired = false;
1835 } else {
1836 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1837 !bacmp(&hdev->random_addr, &hdev->rpa))
1838 return 0;
1839 }
1840
1841 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1842 if (err < 0) {
1843 bt_dev_err(hdev, "failed to generate new RPA");
1844 return err;
1845 }
1846
1847 bacpy(rand_addr, &hdev->rpa);
1848
1849 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1850 if (adv_instance)
1851 queue_delayed_work(hdev->workqueue,
1852 &adv_instance->rpa_expired_cb, to);
1853 else
1854 queue_delayed_work(hdev->workqueue,
1855 &hdev->rpa_expired, to);
1856
1857 return 0;
1858 }
1859
1860 /* In case of required privacy without resolvable private address,
1861 * use an non-resolvable private address. This is useful for
1862 * non-connectable advertising.
1863 */
1864 if (require_privacy) {
1865 bdaddr_t nrpa;
1866
1867 while (true) {
1868 /* The non-resolvable private address is generated
1869 * from random six bytes with the two most significant
1870 * bits cleared.
1871 */
1872 get_random_bytes(&nrpa, 6);
1873 nrpa.b[5] &= 0x3f;
1874
1875 /* The non-resolvable private address shall not be
1876 * equal to the public address.
1877 */
1878 if (bacmp(&hdev->bdaddr, &nrpa))
1879 break;
1880 }
1881
1882 *own_addr_type = ADDR_LE_DEV_RANDOM;
1883 bacpy(rand_addr, &nrpa);
1884
1885 return 0;
1886 }
1887
1888 /* No privacy so use a public address. */
1889 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1890
1891 return 0;
1892}
1893
1894void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1895{
1896 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1897}
1898
1899int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1900{
1901 struct hci_cp_le_set_ext_adv_params cp;
1902 struct hci_dev *hdev = req->hdev;
1903 bool connectable;
1904 u32 flags;
1905 bdaddr_t random_addr;
1906 u8 own_addr_type;
1907 int err;
1908 struct adv_info *adv_instance;
1909 bool secondary_adv;
1910
1911 if (instance > 0) {
1912 adv_instance = hci_find_adv_instance(hdev, instance);
1913 if (!adv_instance)
1914 return -EINVAL;
1915 } else {
1916 adv_instance = NULL;
1917 }
1918
1919 flags = get_adv_instance_flags(hdev, instance);
1920
1921 /* If the "connectable" instance flag was not set, then choose between
1922 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1923 */
1924 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1925 mgmt_get_connectable(hdev);
1926
1927 if (!is_advertising_allowed(hdev, connectable))
1928 return -EPERM;
1929
1930 /* Set require_privacy to true only when non-connectable
1931 * advertising is used. In that case it is fine to use a
1932 * non-resolvable private address.
1933 */
1934 err = hci_get_random_address(hdev, !connectable,
1935 adv_use_rpa(hdev, flags), adv_instance,
1936 &own_addr_type, &random_addr);
1937 if (err < 0)
1938 return err;
1939
1940 memset(&cp, 0, sizeof(cp));
1941
1942 /* In ext adv set param interval is 3 octets */
1943 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1944 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1945
1946 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1947
1948 if (connectable) {
1949 if (secondary_adv)
1950 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1951 else
1952 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1953 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1954 if (secondary_adv)
1955 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1956 else
1957 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1958 } else {
1959 if (secondary_adv)
1960 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1961 else
1962 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1963 }
1964
1965 cp.own_addr_type = own_addr_type;
1966 cp.channel_map = hdev->le_adv_channel_map;
1967 cp.tx_power = 127;
1968 cp.handle = instance;
1969
1970 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1971 cp.primary_phy = HCI_ADV_PHY_1M;
1972 cp.secondary_phy = HCI_ADV_PHY_2M;
1973 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1974 cp.primary_phy = HCI_ADV_PHY_CODED;
1975 cp.secondary_phy = HCI_ADV_PHY_CODED;
1976 } else {
1977 /* In all other cases use 1M */
1978 cp.primary_phy = HCI_ADV_PHY_1M;
1979 cp.secondary_phy = HCI_ADV_PHY_1M;
1980 }
1981
1982 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1983
1984 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1985 bacmp(&random_addr, BDADDR_ANY)) {
1986 struct hci_cp_le_set_adv_set_rand_addr cp;
1987
1988 /* Check if random address need to be updated */
1989 if (adv_instance) {
1990 if (!bacmp(&random_addr, &adv_instance->random_addr))
1991 return 0;
1992 } else {
1993 if (!bacmp(&random_addr, &hdev->random_addr))
1994 return 0;
1995 }
1996
1997 memset(&cp, 0, sizeof(cp));
1998
1999 cp.handle = instance;
2000 bacpy(&cp.bdaddr, &random_addr);
2001
2002 hci_req_add(req,
2003 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
2004 sizeof(cp), &cp);
2005 }
2006
2007 return 0;
2008}
2009
2010int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
2011{
2012 struct hci_dev *hdev = req->hdev;
2013 struct hci_cp_le_set_ext_adv_enable *cp;
2014 struct hci_cp_ext_adv_set *adv_set;
2015 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2016 struct adv_info *adv_instance;
2017
2018 if (instance > 0) {
2019 adv_instance = hci_find_adv_instance(hdev, instance);
2020 if (!adv_instance)
2021 return -EINVAL;
2022 } else {
2023 adv_instance = NULL;
2024 }
2025
2026 cp = (void *) data;
2027 adv_set = (void *) cp->data;
2028
2029 memset(cp, 0, sizeof(*cp));
2030
2031 cp->enable = 0x01;
2032 cp->num_of_sets = 0x01;
2033
2034 memset(adv_set, 0, sizeof(*adv_set));
2035
2036 adv_set->handle = instance;
2037
2038 /* Set duration per instance since controller is responsible for
2039 * scheduling it.
2040 */
2041 if (adv_instance && adv_instance->duration) {
2042 u16 duration = adv_instance->timeout * MSEC_PER_SEC;
2043
2044 /* Time = N * 10 ms */
2045 adv_set->duration = cpu_to_le16(duration / 10);
2046 }
2047
2048 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
2049 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
2050 data);
2051
2052 return 0;
2053}
2054
2055int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
2056{
2057 struct hci_dev *hdev = req->hdev;
2058 struct hci_cp_le_set_ext_adv_enable *cp;
2059 struct hci_cp_ext_adv_set *adv_set;
2060 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2061 u8 req_size;
2062
2063 /* If request specifies an instance that doesn't exist, fail */
2064 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2065 return -EINVAL;
2066
2067 memset(data, 0, sizeof(data));
2068
2069 cp = (void *)data;
2070 adv_set = (void *)cp->data;
2071
2072 /* Instance 0x00 indicates all advertising instances will be disabled */
2073 cp->num_of_sets = !!instance;
2074 cp->enable = 0x00;
2075
2076 adv_set->handle = instance;
2077
2078 req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
2079 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);
2080
2081 return 0;
2082}
2083
2084int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
2085{
2086 struct hci_dev *hdev = req->hdev;
2087
2088 /* If request specifies an instance that doesn't exist, fail */
2089 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2090 return -EINVAL;
2091
2092 hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);
2093
2094 return 0;
2095}
2096
2097int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
2098{
2099 struct hci_dev *hdev = req->hdev;
2100 struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
2101 int err;
2102
2103 /* If instance isn't pending, the chip knows about it, and it's safe to
2104 * disable
2105 */
2106 if (adv_instance && !adv_instance->pending)
2107 __hci_req_disable_ext_adv_instance(req, instance);
2108
2109 err = __hci_req_setup_ext_adv_instance(req, instance);
2110 if (err < 0)
2111 return err;
2112
2113 __hci_req_update_scan_rsp_data(req, instance);
2114 __hci_req_enable_ext_advertising(req, instance);
2115
2116 return 0;
2117}
2118
2119int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
2120 bool force)
2121{
2122 struct hci_dev *hdev = req->hdev;
2123 struct adv_info *adv_instance = NULL;
2124 u16 timeout;
2125
2126 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2127 list_empty(&hdev->adv_instances))
2128 return -EPERM;
2129
2130 if (hdev->adv_instance_timeout)
2131 return -EBUSY;
2132
2133 adv_instance = hci_find_adv_instance(hdev, instance);
2134 if (!adv_instance)
2135 return -ENOENT;
2136
2137 /* A zero timeout means unlimited advertising. As long as there is
2138 * only one instance, duration should be ignored. We still set a timeout
2139 * in case further instances are being added later on.
2140 *
2141 * If the remaining lifetime of the instance is more than the duration
2142 * then the timeout corresponds to the duration, otherwise it will be
2143 * reduced to the remaining instance lifetime.
2144 */
2145 if (adv_instance->timeout == 0 ||
2146 adv_instance->duration <= adv_instance->remaining_time)
2147 timeout = adv_instance->duration;
2148 else
2149 timeout = adv_instance->remaining_time;
2150
2151 /* The remaining time is being reduced unless the instance is being
2152 * advertised without time limit.
2153 */
2154 if (adv_instance->timeout)
2155 adv_instance->remaining_time =
2156 adv_instance->remaining_time - timeout;
2157
2158 /* Only use work for scheduling instances with legacy advertising */
2159 if (!ext_adv_capable(hdev)) {
2160 hdev->adv_instance_timeout = timeout;
2161 queue_delayed_work(hdev->req_workqueue,
2162 &hdev->adv_instance_expire,
2163 msecs_to_jiffies(timeout * 1000));
2164 }
2165
2166 /* If we're just re-scheduling the same instance again then do not
2167 * execute any HCI commands. This happens when a single instance is
2168 * being advertised.
2169 */
2170 if (!force && hdev->cur_adv_instance == instance &&
2171 hci_dev_test_flag(hdev, HCI_LE_ADV))
2172 return 0;
2173
2174 hdev->cur_adv_instance = instance;
2175 if (ext_adv_capable(hdev)) {
2176 __hci_req_start_ext_adv(req, instance);
2177 } else {
2178 __hci_req_update_adv_data(req, instance);
2179 __hci_req_update_scan_rsp_data(req, instance);
2180 __hci_req_enable_advertising(req);
2181 }
2182
2183 return 0;
2184}
2185
2186static void cancel_adv_timeout(struct hci_dev *hdev)
2187{
2188 if (hdev->adv_instance_timeout) {
2189 hdev->adv_instance_timeout = 0;
2190 cancel_delayed_work(&hdev->adv_instance_expire);
2191 }
2192}
2193
2194/* For a single instance:
2195 * - force == true: The instance will be removed even when its remaining
2196 * lifetime is not zero.
2197 * - force == false: the instance will be deactivated but kept stored unless
2198 * the remaining lifetime is zero.
2199 *
2200 * For instance == 0x00:
2201 * - force == true: All instances will be removed regardless of their timeout
2202 * setting.
2203 * - force == false: Only instances that have a timeout will be removed.
2204 */
2205void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
2206 struct hci_request *req, u8 instance,
2207 bool force)
2208{
2209 struct adv_info *adv_instance, *n, *next_instance = NULL;
2210 int err;
2211 u8 rem_inst;
2212
2213 /* Cancel any timeout concerning the removed instance(s). */
2214 if (!instance || hdev->cur_adv_instance == instance)
2215 cancel_adv_timeout(hdev);
2216
2217 /* Get the next instance to advertise BEFORE we remove
2218 * the current one. This can be the same instance again
2219 * if there is only one instance.
2220 */
2221 if (instance && hdev->cur_adv_instance == instance)
2222 next_instance = hci_get_next_instance(hdev, instance);
2223
2224 if (instance == 0x00) {
2225 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
2226 list) {
2227 if (!(force || adv_instance->timeout))
2228 continue;
2229
2230 rem_inst = adv_instance->instance;
2231 err = hci_remove_adv_instance(hdev, rem_inst);
2232 if (!err)
2233 mgmt_advertising_removed(sk, hdev, rem_inst);
2234 }
2235 } else {
2236 adv_instance = hci_find_adv_instance(hdev, instance);
2237
2238 if (force || (adv_instance && adv_instance->timeout &&
2239 !adv_instance->remaining_time)) {
2240 /* Don't advertise a removed instance. */
2241 if (next_instance &&
2242 next_instance->instance == instance)
2243 next_instance = NULL;
2244
2245 err = hci_remove_adv_instance(hdev, instance);
2246 if (!err)
2247 mgmt_advertising_removed(sk, hdev, instance);
2248 }
2249 }
2250
2251 if (!req || !hdev_is_powered(hdev) ||
2252 hci_dev_test_flag(hdev, HCI_ADVERTISING))
2253 return;
2254
2255 if (next_instance && !ext_adv_capable(hdev))
2256 __hci_req_schedule_adv_instance(req, next_instance->instance,
2257 false);
2258}
2259
2260static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
2261{
2262 struct hci_dev *hdev = req->hdev;
2263
2264 /* If we're advertising or initiating an LE connection we can't
2265 * go ahead and change the random address at this time. This is
2266 * because the eventual initiator address used for the
2267 * subsequently created connection will be undefined (some
2268 * controllers use the new address and others the one we had
2269 * when the operation started).
2270 *
2271 * In this kind of scenario skip the update and let the random
2272 * address be updated at the next cycle.
2273 */
2274 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2275 hci_lookup_le_connect(hdev)) {
2276 BT_DBG("Deferring random address update");
2277 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2278 return;
2279 }
2280
2281 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
2282}
2283
2284int hci_update_random_address(struct hci_request *req, bool require_privacy,
2285 bool use_rpa, u8 *own_addr_type)
2286{
2287 struct hci_dev *hdev = req->hdev;
2288 int err;
2289
2290 /* If privacy is enabled use a resolvable private address. If
2291 * current RPA has expired or there is something else than
2292 * the current RPA in use, then generate a new one.
2293 */
2294 if (use_rpa) {
2295 int to;
2296
2297 /* If Controller supports LL Privacy use own address type is
2298 * 0x03
2299 */
2300 if (use_ll_privacy(hdev))
2301 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
2302 else
2303 *own_addr_type = ADDR_LE_DEV_RANDOM;
2304
2305 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2306 !bacmp(&hdev->random_addr, &hdev->rpa))
2307 return 0;
2308
2309 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
2310 if (err < 0) {
2311 bt_dev_err(hdev, "failed to generate new RPA");
2312 return err;
2313 }
2314
2315 set_random_addr(req, &hdev->rpa);
2316
2317 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
2318 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
2319
2320 return 0;
2321 }
2322
2323 /* In case of required privacy without resolvable private address,
2324 * use an non-resolvable private address. This is useful for active
2325 * scanning and non-connectable advertising.
2326 */
2327 if (require_privacy) {
2328 bdaddr_t nrpa;
2329
2330 while (true) {
2331 /* The non-resolvable private address is generated
2332 * from random six bytes with the two most significant
2333 * bits cleared.
2334 */
2335 get_random_bytes(&nrpa, 6);
2336 nrpa.b[5] &= 0x3f;
2337
2338 /* The non-resolvable private address shall not be
2339 * equal to the public address.
2340 */
2341 if (bacmp(&hdev->bdaddr, &nrpa))
2342 break;
2343 }
2344
2345 *own_addr_type = ADDR_LE_DEV_RANDOM;
2346 set_random_addr(req, &nrpa);
2347 return 0;
2348 }
2349
2350 /* If forcing static address is in use or there is no public
2351 * address use the static address as random address (but skip
2352 * the HCI command if the current random address is already the
2353 * static one.
2354 *
2355 * In case BR/EDR has been disabled on a dual-mode controller
2356 * and a static address has been configured, then use that
2357 * address instead of the public BR/EDR address.
2358 */
2359 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2360 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2361 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2362 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2363 *own_addr_type = ADDR_LE_DEV_RANDOM;
2364 if (bacmp(&hdev->static_addr, &hdev->random_addr))
2365 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
2366 &hdev->static_addr);
2367 return 0;
2368 }
2369
2370 /* Neither privacy nor static address is being used so use a
2371 * public address.
2372 */
2373 *own_addr_type = ADDR_LE_DEV_PUBLIC;
2374
2375 return 0;
2376}
2377
2378static bool disconnected_whitelist_entries(struct hci_dev *hdev)
2379{
2380 struct bdaddr_list *b;
2381
2382 list_for_each_entry(b, &hdev->whitelist, list) {
2383 struct hci_conn *conn;
2384
2385 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2386 if (!conn)
2387 return true;
2388
2389 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2390 return true;
2391 }
2392
2393 return false;
2394}
2395
2396void __hci_req_update_scan(struct hci_request *req)
2397{
2398 struct hci_dev *hdev = req->hdev;
2399 u8 scan;
2400
2401 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2402 return;
2403
2404 if (!hdev_is_powered(hdev))
2405 return;
2406
2407 if (mgmt_powering_down(hdev))
2408 return;
2409
2410 if (hdev->scanning_paused)
2411 return;
2412
2413 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2414 disconnected_whitelist_entries(hdev))
2415 scan = SCAN_PAGE;
2416 else
2417 scan = SCAN_DISABLED;
2418
2419 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2420 scan |= SCAN_INQUIRY;
2421
2422 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2423 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2424 return;
2425
2426 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2427}
2428
2429static int update_scan(struct hci_request *req, unsigned long opt)
2430{
2431 hci_dev_lock(req->hdev);
2432 __hci_req_update_scan(req);
2433 hci_dev_unlock(req->hdev);
2434 return 0;
2435}
2436
2437static void scan_update_work(struct work_struct *work)
2438{
2439 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2440
2441 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2442}
2443
2444static int connectable_update(struct hci_request *req, unsigned long opt)
2445{
2446 struct hci_dev *hdev = req->hdev;
2447
2448 hci_dev_lock(hdev);
2449
2450 __hci_req_update_scan(req);
2451
2452 /* If BR/EDR is not enabled and we disable advertising as a
2453 * by-product of disabling connectable, we need to update the
2454 * advertising flags.
2455 */
2456 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2457 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
2458
2459 /* Update the advertising parameters if necessary */
2460 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2461 !list_empty(&hdev->adv_instances)) {
2462 if (ext_adv_capable(hdev))
2463 __hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2464 else
2465 __hci_req_enable_advertising(req);
2466 }
2467
2468 __hci_update_background_scan(req);
2469
2470 hci_dev_unlock(hdev);
2471
2472 return 0;
2473}
2474
2475static void connectable_update_work(struct work_struct *work)
2476{
2477 struct hci_dev *hdev = container_of(work, struct hci_dev,
2478 connectable_update);
2479 u8 status;
2480
2481 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2482 mgmt_set_connectable_complete(hdev, status);
2483}
2484
2485static u8 get_service_classes(struct hci_dev *hdev)
2486{
2487 struct bt_uuid *uuid;
2488 u8 val = 0;
2489
2490 list_for_each_entry(uuid, &hdev->uuids, list)
2491 val |= uuid->svc_hint;
2492
2493 return val;
2494}
2495
2496void __hci_req_update_class(struct hci_request *req)
2497{
2498 struct hci_dev *hdev = req->hdev;
2499 u8 cod[3];
2500
2501 BT_DBG("%s", hdev->name);
2502
2503 if (!hdev_is_powered(hdev))
2504 return;
2505
2506 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2507 return;
2508
2509 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2510 return;
2511
2512 cod[0] = hdev->minor_class;
2513 cod[1] = hdev->major_class;
2514 cod[2] = get_service_classes(hdev);
2515
2516 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2517 cod[1] |= 0x20;
2518
2519 if (memcmp(cod, hdev->dev_class, 3) == 0)
2520 return;
2521
2522 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2523}
2524
2525static void write_iac(struct hci_request *req)
2526{
2527 struct hci_dev *hdev = req->hdev;
2528 struct hci_cp_write_current_iac_lap cp;
2529
2530 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2531 return;
2532
2533 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2534 /* Limited discoverable mode */
2535 cp.num_iac = min_t(u8, hdev->num_iac, 2);
2536 cp.iac_lap[0] = 0x00; /* LIAC */
2537 cp.iac_lap[1] = 0x8b;
2538 cp.iac_lap[2] = 0x9e;
2539 cp.iac_lap[3] = 0x33; /* GIAC */
2540 cp.iac_lap[4] = 0x8b;
2541 cp.iac_lap[5] = 0x9e;
2542 } else {
2543 /* General discoverable mode */
2544 cp.num_iac = 1;
2545 cp.iac_lap[0] = 0x33; /* GIAC */
2546 cp.iac_lap[1] = 0x8b;
2547 cp.iac_lap[2] = 0x9e;
2548 }
2549
2550 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2551 (cp.num_iac * 3) + 1, &cp);
2552}
2553
2554static int discoverable_update(struct hci_request *req, unsigned long opt)
2555{
2556 struct hci_dev *hdev = req->hdev;
2557
2558 hci_dev_lock(hdev);
2559
2560 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2561 write_iac(req);
2562 __hci_req_update_scan(req);
2563 __hci_req_update_class(req);
2564 }
2565
2566 /* Advertising instances don't use the global discoverable setting, so
2567 * only update AD if advertising was enabled using Set Advertising.
2568 */
2569 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2570 __hci_req_update_adv_data(req, 0x00);
2571
2572 /* Discoverable mode affects the local advertising
2573 * address in limited privacy mode.
2574 */
2575 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2576 if (ext_adv_capable(hdev))
2577 __hci_req_start_ext_adv(req, 0x00);
2578 else
2579 __hci_req_enable_advertising(req);
2580 }
2581 }
2582
2583 hci_dev_unlock(hdev);
2584
2585 return 0;
2586}
2587
2588static void discoverable_update_work(struct work_struct *work)
2589{
2590 struct hci_dev *hdev = container_of(work, struct hci_dev,
2591 discoverable_update);
2592 u8 status;
2593
2594 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2595 mgmt_set_discoverable_complete(hdev, status);
2596}
2597
2598void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2599 u8 reason)
2600{
2601 switch (conn->state) {
2602 case BT_CONNECTED:
2603 case BT_CONFIG:
2604 if (conn->type == AMP_LINK) {
2605 struct hci_cp_disconn_phy_link cp;
2606
2607 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2608 cp.reason = reason;
2609 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2610 &cp);
2611 } else {
2612 struct hci_cp_disconnect dc;
2613
2614 dc.handle = cpu_to_le16(conn->handle);
2615 dc.reason = reason;
2616 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2617 }
2618
2619 conn->state = BT_DISCONN;
2620
2621 break;
2622 case BT_CONNECT:
2623 if (conn->type == LE_LINK) {
2624 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2625 break;
2626 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2627 0, NULL);
2628 } else if (conn->type == ACL_LINK) {
2629 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2630 break;
2631 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2632 6, &conn->dst);
2633 }
2634 break;
2635 case BT_CONNECT2:
2636 if (conn->type == ACL_LINK) {
2637 struct hci_cp_reject_conn_req rej;
2638
2639 bacpy(&rej.bdaddr, &conn->dst);
2640 rej.reason = reason;
2641
2642 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2643 sizeof(rej), &rej);
2644 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2645 struct hci_cp_reject_sync_conn_req rej;
2646
2647 bacpy(&rej.bdaddr, &conn->dst);
2648
2649 /* SCO rejection has its own limited set of
2650 * allowed error values (0x0D-0x0F) which isn't
2651 * compatible with most values passed to this
2652 * function. To be safe hard-code one of the
2653 * values that's suitable for SCO.
2654 */
2655 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2656
2657 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2658 sizeof(rej), &rej);
2659 }
2660 break;
2661 default:
2662 conn->state = BT_CLOSED;
2663 break;
2664 }
2665}
2666
2667static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2668{
2669 if (status)
2670 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2671}
2672
2673int hci_abort_conn(struct hci_conn *conn, u8 reason)
2674{
2675 struct hci_request req;
2676 int err;
2677
2678 hci_req_init(&req, conn->hdev);
2679
2680 __hci_abort_conn(&req, conn, reason);
2681
2682 err = hci_req_run(&req, abort_conn_complete);
2683 if (err && err != -ENODATA) {
2684 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2685 return err;
2686 }
2687
2688 return 0;
2689}
2690
2691static int update_bg_scan(struct hci_request *req, unsigned long opt)
2692{
2693 hci_dev_lock(req->hdev);
2694 __hci_update_background_scan(req);
2695 hci_dev_unlock(req->hdev);
2696 return 0;
2697}
2698
2699static void bg_scan_update(struct work_struct *work)
2700{
2701 struct hci_dev *hdev = container_of(work, struct hci_dev,
2702 bg_scan_update);
2703 struct hci_conn *conn;
2704 u8 status;
2705 int err;
2706
2707 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2708 if (!err)
2709 return;
2710
2711 hci_dev_lock(hdev);
2712
2713 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2714 if (conn)
2715 hci_le_conn_failed(conn, status);
2716
2717 hci_dev_unlock(hdev);
2718}
2719
2720static int le_scan_disable(struct hci_request *req, unsigned long opt)
2721{
2722 hci_req_add_le_scan_disable(req, false);
2723 return 0;
2724}
2725
2726static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2727{
2728 u8 length = opt;
2729 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2730 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2731 struct hci_cp_inquiry cp;
2732
2733 BT_DBG("%s", req->hdev->name);
2734
2735 hci_dev_lock(req->hdev);
2736 hci_inquiry_cache_flush(req->hdev);
2737 hci_dev_unlock(req->hdev);
2738
2739 memset(&cp, 0, sizeof(cp));
2740
2741 if (req->hdev->discovery.limited)
2742 memcpy(&cp.lap, liac, sizeof(cp.lap));
2743 else
2744 memcpy(&cp.lap, giac, sizeof(cp.lap));
2745
2746 cp.length = length;
2747
2748 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2749
2750 return 0;
2751}
2752
2753static void le_scan_disable_work(struct work_struct *work)
2754{
2755 struct hci_dev *hdev = container_of(work, struct hci_dev,
2756 le_scan_disable.work);
2757 u8 status;
2758
2759 BT_DBG("%s", hdev->name);
2760
2761 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2762 return;
2763
2764 cancel_delayed_work(&hdev->le_scan_restart);
2765
2766 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2767 if (status) {
2768 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2769 status);
2770 return;
2771 }
2772
2773 hdev->discovery.scan_start = 0;
2774
2775 /* If we were running LE only scan, change discovery state. If
2776 * we were running both LE and BR/EDR inquiry simultaneously,
2777 * and BR/EDR inquiry is already finished, stop discovery,
2778 * otherwise BR/EDR inquiry will stop discovery when finished.
2779 * If we will resolve remote device name, do not change
2780 * discovery state.
2781 */
2782
2783 if (hdev->discovery.type == DISCOV_TYPE_LE)
2784 goto discov_stopped;
2785
2786 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2787 return;
2788
2789 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2790 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2791 hdev->discovery.state != DISCOVERY_RESOLVING)
2792 goto discov_stopped;
2793
2794 return;
2795 }
2796
2797 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2798 HCI_CMD_TIMEOUT, &status);
2799 if (status) {
2800 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2801 goto discov_stopped;
2802 }
2803
2804 return;
2805
2806discov_stopped:
2807 hci_dev_lock(hdev);
2808 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2809 hci_dev_unlock(hdev);
2810}
2811
2812static int le_scan_restart(struct hci_request *req, unsigned long opt)
2813{
2814 struct hci_dev *hdev = req->hdev;
2815
2816 /* If controller is not scanning we are done. */
2817 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2818 return 0;
2819
2820 if (hdev->scanning_paused) {
2821 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2822 return 0;
2823 }
2824
2825 hci_req_add_le_scan_disable(req, false);
2826
2827 if (use_ext_scan(hdev)) {
2828 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2829
2830 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2831 ext_enable_cp.enable = LE_SCAN_ENABLE;
2832 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2833
2834 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2835 sizeof(ext_enable_cp), &ext_enable_cp);
2836 } else {
2837 struct hci_cp_le_set_scan_enable cp;
2838
2839 memset(&cp, 0, sizeof(cp));
2840 cp.enable = LE_SCAN_ENABLE;
2841 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2842 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2843 }
2844
2845 return 0;
2846}
2847
2848static void le_scan_restart_work(struct work_struct *work)
2849{
2850 struct hci_dev *hdev = container_of(work, struct hci_dev,
2851 le_scan_restart.work);
2852 unsigned long timeout, duration, scan_start, now;
2853 u8 status;
2854
2855 BT_DBG("%s", hdev->name);
2856
2857 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2858 if (status) {
2859 bt_dev_err(hdev, "failed to restart LE scan: status %d",
2860 status);
2861 return;
2862 }
2863
2864 hci_dev_lock(hdev);
2865
2866 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2867 !hdev->discovery.scan_start)
2868 goto unlock;
2869
2870 /* When the scan was started, hdev->le_scan_disable has been queued
2871 * after duration from scan_start. During scan restart this job
2872 * has been canceled, and we need to queue it again after proper
2873 * timeout, to make sure that scan does not run indefinitely.
2874 */
2875 duration = hdev->discovery.scan_duration;
2876 scan_start = hdev->discovery.scan_start;
2877 now = jiffies;
2878 if (now - scan_start <= duration) {
2879 int elapsed;
2880
2881 if (now >= scan_start)
2882 elapsed = now - scan_start;
2883 else
2884 elapsed = ULONG_MAX - scan_start + now;
2885
2886 timeout = duration - elapsed;
2887 } else {
2888 timeout = 0;
2889 }
2890
2891 queue_delayed_work(hdev->req_workqueue,
2892 &hdev->le_scan_disable, timeout);
2893
2894unlock:
2895 hci_dev_unlock(hdev);
2896}
2897
2898static int active_scan(struct hci_request *req, unsigned long opt)
2899{
2900 uint16_t interval = opt;
2901 struct hci_dev *hdev = req->hdev;
2902 u8 own_addr_type;
2903 /* White list is not used for discovery */
2904 u8 filter_policy = 0x00;
2905 /* Discovery doesn't require controller address resolution */
2906 bool addr_resolv = false;
2907 int err;
2908
2909 BT_DBG("%s", hdev->name);
2910
2911 /* If controller is scanning, it means the background scanning is
2912 * running. Thus, we should temporarily stop it in order to set the
2913 * discovery scanning parameters.
2914 */
2915 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2916 hci_req_add_le_scan_disable(req, false);
2917
2918 /* All active scans will be done with either a resolvable private
2919 * address (when privacy feature has been enabled) or non-resolvable
2920 * private address.
2921 */
2922 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2923 &own_addr_type);
2924 if (err < 0)
2925 own_addr_type = ADDR_LE_DEV_PUBLIC;
2926
2927 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
2928 hdev->le_scan_window_discovery, own_addr_type,
2929 filter_policy, addr_resolv);
2930 return 0;
2931}
2932
2933static int interleaved_discov(struct hci_request *req, unsigned long opt)
2934{
2935 int err;
2936
2937 BT_DBG("%s", req->hdev->name);
2938
2939 err = active_scan(req, opt);
2940 if (err)
2941 return err;
2942
2943 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2944}
2945
2946static void start_discovery(struct hci_dev *hdev, u8 *status)
2947{
2948 unsigned long timeout;
2949
2950 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2951
2952 switch (hdev->discovery.type) {
2953 case DISCOV_TYPE_BREDR:
2954 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2955 hci_req_sync(hdev, bredr_inquiry,
2956 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2957 status);
2958 return;
2959 case DISCOV_TYPE_INTERLEAVED:
2960 /* When running simultaneous discovery, the LE scanning time
2961 * should occupy the whole discovery time sine BR/EDR inquiry
2962 * and LE scanning are scheduled by the controller.
2963 *
2964 * For interleaving discovery in comparison, BR/EDR inquiry
2965 * and LE scanning are done sequentially with separate
2966 * timeouts.
2967 */
2968 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2969 &hdev->quirks)) {
2970 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2971 /* During simultaneous discovery, we double LE scan
2972 * interval. We must leave some time for the controller
2973 * to do BR/EDR inquiry.
2974 */
2975 hci_req_sync(hdev, interleaved_discov,
2976 hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2977 status);
2978 break;
2979 }
2980
2981 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2982 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2983 HCI_CMD_TIMEOUT, status);
2984 break;
2985 case DISCOV_TYPE_LE:
2986 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2987 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2988 HCI_CMD_TIMEOUT, status);
2989 break;
2990 default:
2991 *status = HCI_ERROR_UNSPECIFIED;
2992 return;
2993 }
2994
2995 if (*status)
2996 return;
2997
2998 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2999
3000 /* When service discovery is used and the controller has a
3001 * strict duplicate filter, it is important to remember the
3002 * start and duration of the scan. This is required for
3003 * restarting scanning during the discovery phase.
3004 */
3005 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
3006 hdev->discovery.result_filtering) {
3007 hdev->discovery.scan_start = jiffies;
3008 hdev->discovery.scan_duration = timeout;
3009 }
3010
3011 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
3012 timeout);
3013}
3014
3015bool hci_req_stop_discovery(struct hci_request *req)
3016{
3017 struct hci_dev *hdev = req->hdev;
3018 struct discovery_state *d = &hdev->discovery;
3019 struct hci_cp_remote_name_req_cancel cp;
3020 struct inquiry_entry *e;
3021 bool ret = false;
3022
3023 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
3024
3025 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
3026 if (test_bit(HCI_INQUIRY, &hdev->flags))
3027 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3028
3029 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3030 cancel_delayed_work(&hdev->le_scan_disable);
3031 hci_req_add_le_scan_disable(req, false);
3032 }
3033
3034 ret = true;
3035 } else {
3036 /* Passive scanning */
3037 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3038 hci_req_add_le_scan_disable(req, false);
3039 ret = true;
3040 }
3041 }
3042
3043 /* No further actions needed for LE-only discovery */
3044 if (d->type == DISCOV_TYPE_LE)
3045 return ret;
3046
3047 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
3048 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
3049 NAME_PENDING);
3050 if (!e)
3051 return ret;
3052
3053 bacpy(&cp.bdaddr, &e->data.bdaddr);
3054 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
3055 &cp);
3056 ret = true;
3057 }
3058
3059 return ret;
3060}
3061
3062static int stop_discovery(struct hci_request *req, unsigned long opt)
3063{
3064 hci_dev_lock(req->hdev);
3065 hci_req_stop_discovery(req);
3066 hci_dev_unlock(req->hdev);
3067
3068 return 0;
3069}
3070
3071static void discov_update(struct work_struct *work)
3072{
3073 struct hci_dev *hdev = container_of(work, struct hci_dev,
3074 discov_update);
3075 u8 status = 0;
3076
3077 switch (hdev->discovery.state) {
3078 case DISCOVERY_STARTING:
3079 start_discovery(hdev, &status);
3080 mgmt_start_discovery_complete(hdev, status);
3081 if (status)
3082 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3083 else
3084 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
3085 break;
3086 case DISCOVERY_STOPPING:
3087 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
3088 mgmt_stop_discovery_complete(hdev, status);
3089 if (!status)
3090 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3091 break;
3092 case DISCOVERY_STOPPED:
3093 default:
3094 return;
3095 }
3096}
3097
3098static void discov_off(struct work_struct *work)
3099{
3100 struct hci_dev *hdev = container_of(work, struct hci_dev,
3101 discov_off.work);
3102
3103 BT_DBG("%s", hdev->name);
3104
3105 hci_dev_lock(hdev);
3106
3107 /* When discoverable timeout triggers, then just make sure
3108 * the limited discoverable flag is cleared. Even in the case
3109 * of a timeout triggered from general discoverable, it is
3110 * safe to unconditionally clear the flag.
3111 */
3112 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
3113 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
3114 hdev->discov_timeout = 0;
3115
3116 hci_dev_unlock(hdev);
3117
3118 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
3119 mgmt_new_settings(hdev);
3120}
3121
3122static int powered_update_hci(struct hci_request *req, unsigned long opt)
3123{
3124 struct hci_dev *hdev = req->hdev;
3125 u8 link_sec;
3126
3127 hci_dev_lock(hdev);
3128
3129 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
3130 !lmp_host_ssp_capable(hdev)) {
3131 u8 mode = 0x01;
3132
3133 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
3134
3135 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
3136 u8 support = 0x01;
3137
3138 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
3139 sizeof(support), &support);
3140 }
3141 }
3142
3143 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
3144 lmp_bredr_capable(hdev)) {
3145 struct hci_cp_write_le_host_supported cp;
3146
3147 cp.le = 0x01;
3148 cp.simul = 0x00;
3149
3150 /* Check first if we already have the right
3151 * host state (host features set)
3152 */
3153 if (cp.le != lmp_host_le_capable(hdev) ||
3154 cp.simul != lmp_host_le_br_capable(hdev))
3155 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3156 sizeof(cp), &cp);
3157 }
3158
3159 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3160 /* Make sure the controller has a good default for
3161 * advertising data. This also applies to the case
3162 * where BR/EDR was toggled during the AUTO_OFF phase.
3163 */
3164 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3165 list_empty(&hdev->adv_instances)) {
3166 int err;
3167
3168 if (ext_adv_capable(hdev)) {
3169 err = __hci_req_setup_ext_adv_instance(req,
3170 0x00);
3171 if (!err)
3172 __hci_req_update_scan_rsp_data(req,
3173 0x00);
3174 } else {
3175 err = 0;
3176 __hci_req_update_adv_data(req, 0x00);
3177 __hci_req_update_scan_rsp_data(req, 0x00);
3178 }
3179
3180 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3181 if (!ext_adv_capable(hdev))
3182 __hci_req_enable_advertising(req);
3183 else if (!err)
3184 __hci_req_enable_ext_advertising(req,
3185 0x00);
3186 }
3187 } else if (!list_empty(&hdev->adv_instances)) {
3188 struct adv_info *adv_instance;
3189
3190 adv_instance = list_first_entry(&hdev->adv_instances,
3191 struct adv_info, list);
3192 __hci_req_schedule_adv_instance(req,
3193 adv_instance->instance,
3194 true);
3195 }
3196 }
3197
3198 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3199 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
3200 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
3201 sizeof(link_sec), &link_sec);
3202
3203 if (lmp_bredr_capable(hdev)) {
3204 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3205 __hci_req_write_fast_connectable(req, true);
3206 else
3207 __hci_req_write_fast_connectable(req, false);
3208 __hci_req_update_scan(req);
3209 __hci_req_update_class(req);
3210 __hci_req_update_name(req);
3211 __hci_req_update_eir(req);
3212 }
3213
3214 hci_dev_unlock(hdev);
3215 return 0;
3216}
3217
3218int __hci_req_hci_power_on(struct hci_dev *hdev)
3219{
3220 /* Register the available SMP channels (BR/EDR and LE) only when
3221 * successfully powering on the controller. This late
3222 * registration is required so that LE SMP can clearly decide if
3223 * the public address or static address is used.
3224 */
3225 smp_register(hdev);
3226
3227 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
3228 NULL);
3229}
3230
3231void hci_request_setup(struct hci_dev *hdev)
3232{
3233 INIT_WORK(&hdev->discov_update, discov_update);
3234 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3235 INIT_WORK(&hdev->scan_update, scan_update_work);
3236 INIT_WORK(&hdev->connectable_update, connectable_update_work);
3237 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3238 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3239 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3240 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3241 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3242}
3243
3244void hci_request_cancel_all(struct hci_dev *hdev)
3245{
3246 hci_req_sync_cancel(hdev, ENODEV);
3247
3248 cancel_work_sync(&hdev->discov_update);
3249 cancel_work_sync(&hdev->bg_scan_update);
3250 cancel_work_sync(&hdev->scan_update);
3251 cancel_work_sync(&hdev->connectable_update);
3252 cancel_work_sync(&hdev->discoverable_update);
3253 cancel_delayed_work_sync(&hdev->discov_off);
3254 cancel_delayed_work_sync(&hdev->le_scan_disable);
3255 cancel_delayed_work_sync(&hdev->le_scan_restart);
3256
3257 if (hdev->adv_instance_timeout) {
3258 cancel_delayed_work_sync(&hdev->adv_instance_expire);
3259 hdev->adv_instance_timeout = 0;
3260 }
3261}