Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <linux/sched/signal.h>
  25
  26#include <net/bluetooth/bluetooth.h>
  27#include <net/bluetooth/hci_core.h>
  28#include <net/bluetooth/mgmt.h>
  29
  30#include "smp.h"
  31#include "hci_request.h"
  32
  33#define HCI_REQ_DONE	  0
  34#define HCI_REQ_PEND	  1
  35#define HCI_REQ_CANCELED  2
  36
  37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  38{
  39	skb_queue_head_init(&req->cmd_q);
  40	req->hdev = hdev;
  41	req->err = 0;
  42}
  43
  44void hci_req_purge(struct hci_request *req)
  45{
  46	skb_queue_purge(&req->cmd_q);
  47}
  48
  49bool hci_req_status_pend(struct hci_dev *hdev)
  50{
  51	return hdev->req_status == HCI_REQ_PEND;
  52}
  53
  54static int req_run(struct hci_request *req, hci_req_complete_t complete,
  55		   hci_req_complete_skb_t complete_skb)
  56{
  57	struct hci_dev *hdev = req->hdev;
  58	struct sk_buff *skb;
  59	unsigned long flags;
  60
  61	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  62
  63	/* If an error occurred during request building, remove all HCI
  64	 * commands queued on the HCI request queue.
  65	 */
  66	if (req->err) {
  67		skb_queue_purge(&req->cmd_q);
  68		return req->err;
  69	}
  70
  71	/* Do not allow empty requests */
  72	if (skb_queue_empty(&req->cmd_q))
  73		return -ENODATA;
  74
  75	skb = skb_peek_tail(&req->cmd_q);
  76	if (complete) {
  77		bt_cb(skb)->hci.req_complete = complete;
  78	} else if (complete_skb) {
  79		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  80		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  81	}
  82
  83	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  84	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  85	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  86
  87	queue_work(hdev->workqueue, &hdev->cmd_work);
  88
  89	return 0;
  90}
  91
  92int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  93{
  94	return req_run(req, complete, NULL);
  95}
  96
  97int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  98{
  99	return req_run(req, NULL, complete);
 100}
 101
 102static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
 103				  struct sk_buff *skb)
 104{
 105	BT_DBG("%s result 0x%2.2x", hdev->name, result);
 106
 107	if (hdev->req_status == HCI_REQ_PEND) {
 108		hdev->req_result = result;
 109		hdev->req_status = HCI_REQ_DONE;
 110		if (skb)
 111			hdev->req_skb = skb_get(skb);
 112		wake_up_interruptible(&hdev->req_wait_q);
 113	}
 114}
 115
 116void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 117{
 118	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 119
 120	if (hdev->req_status == HCI_REQ_PEND) {
 121		hdev->req_result = err;
 122		hdev->req_status = HCI_REQ_CANCELED;
 123		wake_up_interruptible(&hdev->req_wait_q);
 124	}
 125}
 126
 127struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 128				  const void *param, u8 event, u32 timeout)
 129{
 130	struct hci_request req;
 131	struct sk_buff *skb;
 132	int err = 0;
 133
 134	BT_DBG("%s", hdev->name);
 135
 136	hci_req_init(&req, hdev);
 137
 138	hci_req_add_ev(&req, opcode, plen, param, event);
 139
 140	hdev->req_status = HCI_REQ_PEND;
 141
 142	err = hci_req_run_skb(&req, hci_req_sync_complete);
 143	if (err < 0)
 144		return ERR_PTR(err);
 145
 146	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 147			hdev->req_status != HCI_REQ_PEND, timeout);
 148
 149	if (err == -ERESTARTSYS)
 150		return ERR_PTR(-EINTR);
 151
 152	switch (hdev->req_status) {
 153	case HCI_REQ_DONE:
 154		err = -bt_to_errno(hdev->req_result);
 155		break;
 156
 157	case HCI_REQ_CANCELED:
 158		err = -hdev->req_result;
 159		break;
 160
 161	default:
 162		err = -ETIMEDOUT;
 163		break;
 164	}
 165
 166	hdev->req_status = hdev->req_result = 0;
 167	skb = hdev->req_skb;
 168	hdev->req_skb = NULL;
 169
 170	BT_DBG("%s end: err %d", hdev->name, err);
 171
 172	if (err < 0) {
 173		kfree_skb(skb);
 174		return ERR_PTR(err);
 175	}
 176
 177	if (!skb)
 178		return ERR_PTR(-ENODATA);
 179
 180	return skb;
 181}
 182EXPORT_SYMBOL(__hci_cmd_sync_ev);
 183
 184struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 185			       const void *param, u32 timeout)
 186{
 187	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 188}
 189EXPORT_SYMBOL(__hci_cmd_sync);
 190
 191/* Execute request and wait for completion. */
 192int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 193						     unsigned long opt),
 194		   unsigned long opt, u32 timeout, u8 *hci_status)
 195{
 196	struct hci_request req;
 197	int err = 0;
 198
 199	BT_DBG("%s start", hdev->name);
 200
 201	hci_req_init(&req, hdev);
 202
 203	hdev->req_status = HCI_REQ_PEND;
 204
 205	err = func(&req, opt);
 206	if (err) {
 207		if (hci_status)
 208			*hci_status = HCI_ERROR_UNSPECIFIED;
 209		return err;
 210	}
 211
 212	err = hci_req_run_skb(&req, hci_req_sync_complete);
 213	if (err < 0) {
 214		hdev->req_status = 0;
 215
 216		/* ENODATA means the HCI request command queue is empty.
 217		 * This can happen when a request with conditionals doesn't
 218		 * trigger any commands to be sent. This is normal behavior
 219		 * and should not trigger an error return.
 220		 */
 221		if (err == -ENODATA) {
 222			if (hci_status)
 223				*hci_status = 0;
 224			return 0;
 225		}
 226
 227		if (hci_status)
 228			*hci_status = HCI_ERROR_UNSPECIFIED;
 229
 230		return err;
 231	}
 232
 233	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 234			hdev->req_status != HCI_REQ_PEND, timeout);
 235
 236	if (err == -ERESTARTSYS)
 237		return -EINTR;
 238
 239	switch (hdev->req_status) {
 240	case HCI_REQ_DONE:
 241		err = -bt_to_errno(hdev->req_result);
 242		if (hci_status)
 243			*hci_status = hdev->req_result;
 244		break;
 245
 246	case HCI_REQ_CANCELED:
 247		err = -hdev->req_result;
 248		if (hci_status)
 249			*hci_status = HCI_ERROR_UNSPECIFIED;
 250		break;
 251
 252	default:
 253		err = -ETIMEDOUT;
 254		if (hci_status)
 255			*hci_status = HCI_ERROR_UNSPECIFIED;
 256		break;
 257	}
 258
 259	kfree_skb(hdev->req_skb);
 260	hdev->req_skb = NULL;
 261	hdev->req_status = hdev->req_result = 0;
 262
 263	BT_DBG("%s end: err %d", hdev->name, err);
 264
 265	return err;
 266}
 267
 268int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 269						  unsigned long opt),
 270		 unsigned long opt, u32 timeout, u8 *hci_status)
 271{
 272	int ret;
 273
 274	if (!test_bit(HCI_UP, &hdev->flags))
 275		return -ENETDOWN;
 276
 277	/* Serialize all requests */
 278	hci_req_sync_lock(hdev);
 279	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 280	hci_req_sync_unlock(hdev);
 281
 282	return ret;
 283}
 284
 285struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 286				const void *param)
 287{
 288	int len = HCI_COMMAND_HDR_SIZE + plen;
 289	struct hci_command_hdr *hdr;
 290	struct sk_buff *skb;
 291
 292	skb = bt_skb_alloc(len, GFP_ATOMIC);
 293	if (!skb)
 294		return NULL;
 295
 296	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
 297	hdr->opcode = cpu_to_le16(opcode);
 298	hdr->plen   = plen;
 299
 300	if (plen)
 301		skb_put_data(skb, param, plen);
 302
 303	BT_DBG("skb len %d", skb->len);
 304
 305	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 306	hci_skb_opcode(skb) = opcode;
 307
 308	return skb;
 309}
 310
 311/* Queue a command to an asynchronous HCI request */
 312void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 313		    const void *param, u8 event)
 314{
 315	struct hci_dev *hdev = req->hdev;
 316	struct sk_buff *skb;
 317
 318	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 319
 320	/* If an error occurred during request building, there is no point in
 321	 * queueing the HCI command. We can simply return.
 322	 */
 323	if (req->err)
 324		return;
 325
 326	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 327	if (!skb) {
 328		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
 329			   opcode);
 330		req->err = -ENOMEM;
 331		return;
 332	}
 333
 334	if (skb_queue_empty(&req->cmd_q))
 335		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 336
 337	bt_cb(skb)->hci.req_event = event;
 338
 339	skb_queue_tail(&req->cmd_q, skb);
 340}
 341
 342void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 343		 const void *param)
 344{
 345	hci_req_add_ev(req, opcode, plen, param, 0);
 346}
 347
 348void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 349{
 350	struct hci_dev *hdev = req->hdev;
 351	struct hci_cp_write_page_scan_activity acp;
 352	u8 type;
 353
 354	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 355		return;
 356
 357	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 358		return;
 359
 360	if (enable) {
 361		type = PAGE_SCAN_TYPE_INTERLACED;
 362
 363		/* 160 msec page scan interval */
 364		acp.interval = cpu_to_le16(0x0100);
 365	} else {
 366		type = PAGE_SCAN_TYPE_STANDARD;	/* default */
 367
 368		/* default 1.28 sec page scan */
 369		acp.interval = cpu_to_le16(0x0800);
 370	}
 371
 372	acp.window = cpu_to_le16(0x0012);
 373
 374	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 375	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 376		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 377			    sizeof(acp), &acp);
 378
 379	if (hdev->page_scan_type != type)
 380		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 381}
 382
 383/* This function controls the background scanning based on hdev->pend_le_conns
 384 * list. If there are pending LE connection we start the background scanning,
 385 * otherwise we stop it.
 386 *
 387 * This function requires the caller holds hdev->lock.
 388 */
 389static void __hci_update_background_scan(struct hci_request *req)
 390{
 391	struct hci_dev *hdev = req->hdev;
 392
 393	if (!test_bit(HCI_UP, &hdev->flags) ||
 394	    test_bit(HCI_INIT, &hdev->flags) ||
 395	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 396	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 397	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 398	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 399		return;
 400
 401	/* No point in doing scanning if LE support hasn't been enabled */
 402	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 403		return;
 404
 405	/* If discovery is active don't interfere with it */
 406	if (hdev->discovery.state != DISCOVERY_STOPPED)
 407		return;
 408
 409	/* Reset RSSI and UUID filters when starting background scanning
 410	 * since these filters are meant for service discovery only.
 411	 *
 412	 * The Start Discovery and Start Service Discovery operations
 413	 * ensure to set proper values for RSSI threshold and UUID
 414	 * filter list. So it is safe to just reset them here.
 415	 */
 416	hci_discovery_filter_clear(hdev);
 417
 
 
 
 418	if (list_empty(&hdev->pend_le_conns) &&
 419	    list_empty(&hdev->pend_le_reports)) {
 
 420		/* If there is no pending LE connections or devices
 421		 * to be scanned for, we should stop the background
 422		 * scanning.
 423		 */
 424
 425		/* If controller is not scanning we are done. */
 426		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 427			return;
 428
 429		hci_req_add_le_scan_disable(req);
 430
 431		BT_DBG("%s stopping background scanning", hdev->name);
 432	} else {
 433		/* If there is at least one pending LE connection, we should
 434		 * keep the background scan running.
 435		 */
 436
 437		/* If controller is connecting, we should not start scanning
 438		 * since some controllers are not able to scan and connect at
 439		 * the same time.
 440		 */
 441		if (hci_lookup_le_connect(hdev))
 442			return;
 443
 444		/* If controller is currently scanning, we stop it to ensure we
 445		 * don't miss any advertising (due to duplicates filter).
 446		 */
 447		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 448			hci_req_add_le_scan_disable(req);
 449
 450		hci_req_add_le_passive_scan(req);
 451
 452		BT_DBG("%s starting background scanning", hdev->name);
 453	}
 454}
 455
 456void __hci_req_update_name(struct hci_request *req)
 457{
 458	struct hci_dev *hdev = req->hdev;
 459	struct hci_cp_write_local_name cp;
 460
 461	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 462
 463	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 464}
 465
 466#define PNP_INFO_SVCLASS_ID		0x1200
 467
 468static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 469{
 470	u8 *ptr = data, *uuids_start = NULL;
 471	struct bt_uuid *uuid;
 472
 473	if (len < 4)
 474		return ptr;
 475
 476	list_for_each_entry(uuid, &hdev->uuids, list) {
 477		u16 uuid16;
 478
 479		if (uuid->size != 16)
 480			continue;
 481
 482		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 483		if (uuid16 < 0x1100)
 484			continue;
 485
 486		if (uuid16 == PNP_INFO_SVCLASS_ID)
 487			continue;
 488
 489		if (!uuids_start) {
 490			uuids_start = ptr;
 491			uuids_start[0] = 1;
 492			uuids_start[1] = EIR_UUID16_ALL;
 493			ptr += 2;
 494		}
 495
 496		/* Stop if not enough space to put next UUID */
 497		if ((ptr - data) + sizeof(u16) > len) {
 498			uuids_start[1] = EIR_UUID16_SOME;
 499			break;
 500		}
 501
 502		*ptr++ = (uuid16 & 0x00ff);
 503		*ptr++ = (uuid16 & 0xff00) >> 8;
 504		uuids_start[0] += sizeof(uuid16);
 505	}
 506
 507	return ptr;
 508}
 509
 510static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 511{
 512	u8 *ptr = data, *uuids_start = NULL;
 513	struct bt_uuid *uuid;
 514
 515	if (len < 6)
 516		return ptr;
 517
 518	list_for_each_entry(uuid, &hdev->uuids, list) {
 519		if (uuid->size != 32)
 520			continue;
 521
 522		if (!uuids_start) {
 523			uuids_start = ptr;
 524			uuids_start[0] = 1;
 525			uuids_start[1] = EIR_UUID32_ALL;
 526			ptr += 2;
 527		}
 528
 529		/* Stop if not enough space to put next UUID */
 530		if ((ptr - data) + sizeof(u32) > len) {
 531			uuids_start[1] = EIR_UUID32_SOME;
 532			break;
 533		}
 534
 535		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 536		ptr += sizeof(u32);
 537		uuids_start[0] += sizeof(u32);
 538	}
 539
 540	return ptr;
 541}
 542
 543static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 544{
 545	u8 *ptr = data, *uuids_start = NULL;
 546	struct bt_uuid *uuid;
 547
 548	if (len < 18)
 549		return ptr;
 550
 551	list_for_each_entry(uuid, &hdev->uuids, list) {
 552		if (uuid->size != 128)
 553			continue;
 554
 555		if (!uuids_start) {
 556			uuids_start = ptr;
 557			uuids_start[0] = 1;
 558			uuids_start[1] = EIR_UUID128_ALL;
 559			ptr += 2;
 560		}
 561
 562		/* Stop if not enough space to put next UUID */
 563		if ((ptr - data) + 16 > len) {
 564			uuids_start[1] = EIR_UUID128_SOME;
 565			break;
 566		}
 567
 568		memcpy(ptr, uuid->uuid, 16);
 569		ptr += 16;
 570		uuids_start[0] += 16;
 571	}
 572
 573	return ptr;
 574}
 575
 576static void create_eir(struct hci_dev *hdev, u8 *data)
 577{
 578	u8 *ptr = data;
 579	size_t name_len;
 580
 581	name_len = strlen(hdev->dev_name);
 582
 583	if (name_len > 0) {
 584		/* EIR Data type */
 585		if (name_len > 48) {
 586			name_len = 48;
 587			ptr[1] = EIR_NAME_SHORT;
 588		} else
 589			ptr[1] = EIR_NAME_COMPLETE;
 590
 591		/* EIR Data length */
 592		ptr[0] = name_len + 1;
 593
 594		memcpy(ptr + 2, hdev->dev_name, name_len);
 595
 596		ptr += (name_len + 2);
 597	}
 598
 599	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 600		ptr[0] = 2;
 601		ptr[1] = EIR_TX_POWER;
 602		ptr[2] = (u8) hdev->inq_tx_power;
 603
 604		ptr += 3;
 605	}
 606
 607	if (hdev->devid_source > 0) {
 608		ptr[0] = 9;
 609		ptr[1] = EIR_DEVICE_ID;
 610
 611		put_unaligned_le16(hdev->devid_source, ptr + 2);
 612		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 613		put_unaligned_le16(hdev->devid_product, ptr + 6);
 614		put_unaligned_le16(hdev->devid_version, ptr + 8);
 615
 616		ptr += 10;
 617	}
 618
 619	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 620	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 621	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 622}
 623
 624void __hci_req_update_eir(struct hci_request *req)
 625{
 626	struct hci_dev *hdev = req->hdev;
 627	struct hci_cp_write_eir cp;
 628
 629	if (!hdev_is_powered(hdev))
 630		return;
 631
 632	if (!lmp_ext_inq_capable(hdev))
 633		return;
 634
 635	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 636		return;
 637
 638	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 639		return;
 640
 641	memset(&cp, 0, sizeof(cp));
 642
 643	create_eir(hdev, cp.data);
 644
 645	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 646		return;
 647
 648	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 649
 650	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 651}
 652
 653void hci_req_add_le_scan_disable(struct hci_request *req)
 654{
 655	struct hci_dev *hdev = req->hdev;
 656
 
 
 
 
 
 657	if (use_ext_scan(hdev)) {
 658		struct hci_cp_le_set_ext_scan_enable cp;
 659
 660		memset(&cp, 0, sizeof(cp));
 661		cp.enable = LE_SCAN_DISABLE;
 662		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
 663			    &cp);
 664	} else {
 665		struct hci_cp_le_set_scan_enable cp;
 666
 667		memset(&cp, 0, sizeof(cp));
 668		cp.enable = LE_SCAN_DISABLE;
 669		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 670	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672
 673static void add_to_white_list(struct hci_request *req,
 674			      struct hci_conn_params *params)
 
 
 675{
 676	struct hci_cp_le_add_to_white_list cp;
 
 
 
 
 
 
 677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678	cp.bdaddr_type = params->addr_type;
 679	bacpy(&cp.bdaddr, &params->addr);
 680
 
 
 681	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682}
 683
 684static u8 update_white_list(struct hci_request *req)
 685{
 686	struct hci_dev *hdev = req->hdev;
 687	struct hci_conn_params *params;
 688	struct bdaddr_list *b;
 689	uint8_t white_list_entries = 0;
 
 
 
 
 
 
 
 690
 691	/* Go through the current white list programmed into the
 692	 * controller one by one and check if that address is still
 693	 * in the list of pending connections or list of devices to
 694	 * report. If not present in either list, then queue the
 695	 * command to remove it from the controller.
 696	 */
 697	list_for_each_entry(b, &hdev->le_white_list, list) {
 698		/* If the device is neither in pend_le_conns nor
 699		 * pend_le_reports then remove it from the whitelist.
 700		 */
 701		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
 702					       &b->bdaddr, b->bdaddr_type) &&
 703		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
 704					       &b->bdaddr, b->bdaddr_type)) {
 705			struct hci_cp_le_del_from_white_list cp;
 706
 707			cp.bdaddr_type = b->bdaddr_type;
 708			bacpy(&cp.bdaddr, &b->bdaddr);
 709
 710			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
 711				    sizeof(cp), &cp);
 712			continue;
 713		}
 714
 715		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 716			/* White list can not be used with RPAs */
 
 717			return 0x00;
 718		}
 719
 720		white_list_entries++;
 721	}
 722
 723	/* Since all no longer valid white list entries have been
 724	 * removed, walk through the list of pending connections
 725	 * and ensure that any new device gets programmed into
 726	 * the controller.
 727	 *
 728	 * If the list of the devices is larger than the list of
 729	 * available white list entries in the controller, then
 730	 * just abort and return filer policy value to not use the
 731	 * white list.
 732	 */
 733	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 734		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 735					   &params->addr, params->addr_type))
 736			continue;
 737
 738		if (white_list_entries >= hdev->le_white_list_size) {
 739			/* Select filter policy to accept all advertising */
 740			return 0x00;
 741		}
 742
 743		if (hci_find_irk_by_addr(hdev, &params->addr,
 744					 params->addr_type)) {
 745			/* White list can not be used with RPAs */
 746			return 0x00;
 747		}
 748
 749		white_list_entries++;
 750		add_to_white_list(req, params);
 751	}
 752
 753	/* After adding all new pending connections, walk through
 754	 * the list of pending reports and also add these to the
 755	 * white list if there is still space.
 756	 */
 757	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 758		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 759					   &params->addr, params->addr_type))
 760			continue;
 761
 762		if (white_list_entries >= hdev->le_white_list_size) {
 763			/* Select filter policy to accept all advertising */
 764			return 0x00;
 765		}
 766
 767		if (hci_find_irk_by_addr(hdev, &params->addr,
 768					 params->addr_type)) {
 769			/* White list can not be used with RPAs */
 770			return 0x00;
 771		}
 772
 773		white_list_entries++;
 774		add_to_white_list(req, params);
 775	}
 776
 
 
 
 
 
 
 
 
 777	/* Select filter policy to use white list */
 778	return 0x01;
 779}
 780
 781static bool scan_use_rpa(struct hci_dev *hdev)
 782{
 783	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 784}
 785
 786static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
 787			       u16 window, u8 own_addr_type, u8 filter_policy)
 
 788{
 789	struct hci_dev *hdev = req->hdev;
 790
 
 
 
 
 
 
 
 
 
 
 
 
 
 791	/* Use ext scanning if set ext scan param and ext scan enable is
 792	 * supported
 793	 */
 794	if (use_ext_scan(hdev)) {
 795		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
 796		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
 797		struct hci_cp_le_scan_phy_params *phy_params;
 798		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
 799		u32 plen;
 800
 801		ext_param_cp = (void *)data;
 802		phy_params = (void *)ext_param_cp->data;
 803
 804		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
 805		ext_param_cp->own_addr_type = own_addr_type;
 806		ext_param_cp->filter_policy = filter_policy;
 807
 808		plen = sizeof(*ext_param_cp);
 809
 810		if (scan_1m(hdev) || scan_2m(hdev)) {
 811			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
 812
 813			memset(phy_params, 0, sizeof(*phy_params));
 814			phy_params->type = type;
 815			phy_params->interval = cpu_to_le16(interval);
 816			phy_params->window = cpu_to_le16(window);
 817
 818			plen += sizeof(*phy_params);
 819			phy_params++;
 820		}
 821
 822		if (scan_coded(hdev)) {
 823			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
 824
 825			memset(phy_params, 0, sizeof(*phy_params));
 826			phy_params->type = type;
 827			phy_params->interval = cpu_to_le16(interval);
 828			phy_params->window = cpu_to_le16(window);
 829
 830			plen += sizeof(*phy_params);
 831			phy_params++;
 832		}
 833
 834		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
 835			    plen, ext_param_cp);
 836
 837		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
 838		ext_enable_cp.enable = LE_SCAN_ENABLE;
 839		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 840
 841		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
 842			    sizeof(ext_enable_cp), &ext_enable_cp);
 843	} else {
 844		struct hci_cp_le_set_scan_param param_cp;
 845		struct hci_cp_le_set_scan_enable enable_cp;
 846
 847		memset(&param_cp, 0, sizeof(param_cp));
 848		param_cp.type = type;
 849		param_cp.interval = cpu_to_le16(interval);
 850		param_cp.window = cpu_to_le16(window);
 851		param_cp.own_address_type = own_addr_type;
 852		param_cp.filter_policy = filter_policy;
 853		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 854			    &param_cp);
 855
 856		memset(&enable_cp, 0, sizeof(enable_cp));
 857		enable_cp.enable = LE_SCAN_ENABLE;
 858		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 859		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 860			    &enable_cp);
 861	}
 862}
 863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864void hci_req_add_le_passive_scan(struct hci_request *req)
 865{
 866	struct hci_dev *hdev = req->hdev;
 867	u8 own_addr_type;
 868	u8 filter_policy;
 
 
 
 
 
 
 
 
 869
 870	/* Set require_privacy to false since no SCAN_REQ are send
 871	 * during passive scanning. Not using an non-resolvable address
 872	 * here is important so that peer devices using direct
 873	 * advertising with our address will be correctly reported
 874	 * by the controller.
 875	 */
 876	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
 877				      &own_addr_type))
 878		return;
 879
 880	/* Adding or removing entries from the white list must
 881	 * happen before enabling scanning. The controller does
 882	 * not allow white list modification while scanning.
 883	 */
 884	filter_policy = update_white_list(req);
 885
 886	/* When the controller is using random resolvable addresses and
 887	 * with that having LE privacy enabled, then controllers with
 888	 * Extended Scanner Filter Policies support can now enable support
 889	 * for handling directed advertising.
 890	 *
 891	 * So instead of using filter polices 0x00 (no whitelist)
 892	 * and 0x01 (whitelist enabled) use the new filter policies
 893	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
 894	 */
 895	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 896	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 897		filter_policy |= 0x02;
 898
 899	hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval,
 900			   hdev->le_scan_window, own_addr_type, filter_policy);
 
 
 
 
 
 
 
 
 
 
 
 
 901}
 902
 903static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
 904{
 905	struct adv_info *adv_instance;
 906
 907	/* Ignore instance 0 */
 908	if (instance == 0x00)
 909		return 0;
 910
 911	adv_instance = hci_find_adv_instance(hdev, instance);
 912	if (!adv_instance)
 913		return 0;
 914
 915	/* TODO: Take into account the "appearance" and "local-name" flags here.
 916	 * These are currently being ignored as they are not supported.
 917	 */
 918	return adv_instance->scan_rsp_len;
 919}
 920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
 922{
 923	u8 instance = hdev->cur_adv_instance;
 924	struct adv_info *adv_instance;
 925
 926	/* Ignore instance 0 */
 927	if (instance == 0x00)
 928		return 0;
 929
 930	adv_instance = hci_find_adv_instance(hdev, instance);
 931	if (!adv_instance)
 932		return 0;
 933
 934	/* TODO: Take into account the "appearance" and "local-name" flags here.
 935	 * These are currently being ignored as they are not supported.
 936	 */
 937	return adv_instance->scan_rsp_len;
 938}
 939
 940void __hci_req_disable_advertising(struct hci_request *req)
 941{
 942	if (ext_adv_capable(req->hdev)) {
 943		struct hci_cp_le_set_ext_adv_enable cp;
 944
 945		cp.enable = 0x00;
 946		/* Disable all sets since we only support one set at the moment */
 947		cp.num_of_sets = 0x00;
 948
 949		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
 950	} else {
 951		u8 enable = 0x00;
 952
 953		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 954	}
 955}
 956
 957static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
 958{
 959	u32 flags;
 960	struct adv_info *adv_instance;
 961
 962	if (instance == 0x00) {
 963		/* Instance 0 always manages the "Tx Power" and "Flags"
 964		 * fields
 965		 */
 966		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
 967
 968		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
 969		 * corresponds to the "connectable" instance flag.
 970		 */
 971		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
 972			flags |= MGMT_ADV_FLAG_CONNECTABLE;
 973
 974		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 975			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
 976		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 977			flags |= MGMT_ADV_FLAG_DISCOV;
 978
 979		return flags;
 980	}
 981
 982	adv_instance = hci_find_adv_instance(hdev, instance);
 983
 984	/* Return 0 when we got an invalid instance identifier. */
 985	if (!adv_instance)
 986		return 0;
 987
 988	return adv_instance->flags;
 989}
 990
 991static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 992{
 993	/* If privacy is not enabled don't use RPA */
 994	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 995		return false;
 996
 997	/* If basic privacy mode is enabled use RPA */
 998	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 999		return true;
1000
1001	/* If limited privacy mode is enabled don't use RPA if we're
1002	 * both discoverable and bondable.
1003	 */
1004	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1005	    hci_dev_test_flag(hdev, HCI_BONDABLE))
1006		return false;
1007
1008	/* We're neither bondable nor discoverable in the limited
1009	 * privacy mode, therefore use RPA.
1010	 */
1011	return true;
1012}
1013
1014static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1015{
1016	/* If there is no connection we are OK to advertise. */
1017	if (hci_conn_num(hdev, LE_LINK) == 0)
1018		return true;
1019
1020	/* Check le_states if there is any connection in slave role. */
1021	if (hdev->conn_hash.le_num_slave > 0) {
1022		/* Slave connection state and non connectable mode bit 20. */
1023		if (!connectable && !(hdev->le_states[2] & 0x10))
1024			return false;
1025
1026		/* Slave connection state and connectable mode bit 38
1027		 * and scannable bit 21.
1028		 */
1029		if (connectable && (!(hdev->le_states[4] & 0x40) ||
1030				    !(hdev->le_states[2] & 0x20)))
1031			return false;
1032	}
1033
1034	/* Check le_states if there is any connection in master role. */
1035	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1036		/* Master connection state and non connectable mode bit 18. */
1037		if (!connectable && !(hdev->le_states[2] & 0x02))
1038			return false;
1039
1040		/* Master connection state and connectable mode bit 35 and
1041		 * scannable 19.
1042		 */
1043		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1044				    !(hdev->le_states[2] & 0x08)))
1045			return false;
1046	}
1047
1048	return true;
1049}
1050
1051void __hci_req_enable_advertising(struct hci_request *req)
1052{
1053	struct hci_dev *hdev = req->hdev;
1054	struct hci_cp_le_set_adv_param cp;
1055	u8 own_addr_type, enable = 0x01;
1056	bool connectable;
1057	u16 adv_min_interval, adv_max_interval;
1058	u32 flags;
1059
1060	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1061
1062	/* If the "connectable" instance flag was not set, then choose between
1063	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1064	 */
1065	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1066		      mgmt_get_connectable(hdev);
1067
1068	if (!is_advertising_allowed(hdev, connectable))
1069		return;
1070
1071	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1072		__hci_req_disable_advertising(req);
1073
1074	/* Clear the HCI_LE_ADV bit temporarily so that the
1075	 * hci_update_random_address knows that it's safe to go ahead
1076	 * and write a new random address. The flag will be set back on
1077	 * as soon as the SET_ADV_ENABLE HCI command completes.
1078	 */
1079	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1080
1081	/* Set require_privacy to true only when non-connectable
1082	 * advertising is used. In that case it is fine to use a
1083	 * non-resolvable private address.
1084	 */
1085	if (hci_update_random_address(req, !connectable,
1086				      adv_use_rpa(hdev, flags),
1087				      &own_addr_type) < 0)
1088		return;
1089
1090	memset(&cp, 0, sizeof(cp));
1091
1092	if (connectable) {
1093		cp.type = LE_ADV_IND;
1094
1095		adv_min_interval = hdev->le_adv_min_interval;
1096		adv_max_interval = hdev->le_adv_max_interval;
1097	} else {
1098		if (get_cur_adv_instance_scan_rsp_len(hdev))
1099			cp.type = LE_ADV_SCAN_IND;
1100		else
1101			cp.type = LE_ADV_NONCONN_IND;
1102
1103		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1104		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1105			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1106			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1107		} else {
1108			adv_min_interval = hdev->le_adv_min_interval;
1109			adv_max_interval = hdev->le_adv_max_interval;
1110		}
1111	}
1112
1113	cp.min_interval = cpu_to_le16(adv_min_interval);
1114	cp.max_interval = cpu_to_le16(adv_max_interval);
1115	cp.own_address_type = own_addr_type;
1116	cp.channel_map = hdev->le_adv_channel_map;
1117
1118	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1119
1120	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1121}
1122
1123u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1124{
1125	size_t short_len;
1126	size_t complete_len;
1127
1128	/* no space left for name (+ NULL + type + len) */
1129	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1130		return ad_len;
1131
1132	/* use complete name if present and fits */
1133	complete_len = strlen(hdev->dev_name);
1134	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1135		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1136				       hdev->dev_name, complete_len + 1);
1137
1138	/* use short name if present */
1139	short_len = strlen(hdev->short_name);
1140	if (short_len)
1141		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1142				       hdev->short_name, short_len + 1);
1143
1144	/* use shortened full name if present, we already know that name
1145	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1146	 */
1147	if (complete_len) {
1148		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1149
1150		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1151		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1152
1153		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1154				       sizeof(name));
1155	}
1156
1157	return ad_len;
1158}
1159
1160static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1161{
1162	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1163}
1164
1165static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1166{
1167	u8 scan_rsp_len = 0;
1168
1169	if (hdev->appearance) {
1170		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1171	}
1172
1173	return append_local_name(hdev, ptr, scan_rsp_len);
1174}
1175
1176static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1177					u8 *ptr)
1178{
1179	struct adv_info *adv_instance;
1180	u32 instance_flags;
1181	u8 scan_rsp_len = 0;
1182
1183	adv_instance = hci_find_adv_instance(hdev, instance);
1184	if (!adv_instance)
1185		return 0;
1186
1187	instance_flags = adv_instance->flags;
1188
1189	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1190		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1191	}
1192
1193	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1194	       adv_instance->scan_rsp_len);
1195
1196	scan_rsp_len += adv_instance->scan_rsp_len;
1197
1198	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1199		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1200
1201	return scan_rsp_len;
1202}
1203
1204void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1205{
1206	struct hci_dev *hdev = req->hdev;
1207	u8 len;
1208
1209	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1210		return;
1211
1212	if (ext_adv_capable(hdev)) {
1213		struct hci_cp_le_set_ext_scan_rsp_data cp;
1214
1215		memset(&cp, 0, sizeof(cp));
1216
1217		if (instance)
1218			len = create_instance_scan_rsp_data(hdev, instance,
1219							    cp.data);
1220		else
1221			len = create_default_scan_rsp_data(hdev, cp.data);
1222
1223		if (hdev->scan_rsp_data_len == len &&
1224		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1225			return;
1226
1227		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1228		hdev->scan_rsp_data_len = len;
1229
1230		cp.handle = 0;
1231		cp.length = len;
1232		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1233		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1234
1235		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1236			    &cp);
1237	} else {
1238		struct hci_cp_le_set_scan_rsp_data cp;
1239
1240		memset(&cp, 0, sizeof(cp));
1241
1242		if (instance)
1243			len = create_instance_scan_rsp_data(hdev, instance,
1244							    cp.data);
1245		else
1246			len = create_default_scan_rsp_data(hdev, cp.data);
1247
1248		if (hdev->scan_rsp_data_len == len &&
1249		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1250			return;
1251
1252		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1253		hdev->scan_rsp_data_len = len;
1254
1255		cp.length = len;
1256
1257		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1258	}
1259}
1260
1261static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1262{
1263	struct adv_info *adv_instance = NULL;
1264	u8 ad_len = 0, flags = 0;
1265	u32 instance_flags;
1266
1267	/* Return 0 when the current instance identifier is invalid. */
1268	if (instance) {
1269		adv_instance = hci_find_adv_instance(hdev, instance);
1270		if (!adv_instance)
1271			return 0;
1272	}
1273
1274	instance_flags = get_adv_instance_flags(hdev, instance);
1275
 
 
 
 
 
 
 
 
1276	/* The Add Advertising command allows userspace to set both the general
1277	 * and limited discoverable flags.
1278	 */
1279	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1280		flags |= LE_AD_GENERAL;
1281
1282	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1283		flags |= LE_AD_LIMITED;
1284
1285	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1286		flags |= LE_AD_NO_BREDR;
1287
1288	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1289		/* If a discovery flag wasn't provided, simply use the global
1290		 * settings.
1291		 */
1292		if (!flags)
1293			flags |= mgmt_get_adv_discov_flags(hdev);
1294
1295		/* If flags would still be empty, then there is no need to
1296		 * include the "Flags" AD field".
1297		 */
1298		if (flags) {
1299			ptr[0] = 0x02;
1300			ptr[1] = EIR_FLAGS;
1301			ptr[2] = flags;
1302
1303			ad_len += 3;
1304			ptr += 3;
1305		}
1306	}
1307
 
1308	if (adv_instance) {
1309		memcpy(ptr, adv_instance->adv_data,
1310		       adv_instance->adv_data_len);
1311		ad_len += adv_instance->adv_data_len;
1312		ptr += adv_instance->adv_data_len;
1313	}
1314
1315	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1316		s8 adv_tx_power;
1317
1318		if (ext_adv_capable(hdev)) {
1319			if (adv_instance)
1320				adv_tx_power = adv_instance->tx_power;
1321			else
1322				adv_tx_power = hdev->adv_tx_power;
1323		} else {
1324			adv_tx_power = hdev->adv_tx_power;
1325		}
1326
1327		/* Provide Tx Power only if we can provide a valid value for it */
1328		if (adv_tx_power != HCI_TX_POWER_INVALID) {
1329			ptr[0] = 0x02;
1330			ptr[1] = EIR_TX_POWER;
1331			ptr[2] = (u8)adv_tx_power;
1332
1333			ad_len += 3;
1334			ptr += 3;
1335		}
1336	}
1337
1338	return ad_len;
1339}
1340
1341void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1342{
1343	struct hci_dev *hdev = req->hdev;
1344	u8 len;
1345
1346	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1347		return;
1348
1349	if (ext_adv_capable(hdev)) {
1350		struct hci_cp_le_set_ext_adv_data cp;
1351
1352		memset(&cp, 0, sizeof(cp));
1353
1354		len = create_instance_adv_data(hdev, instance, cp.data);
1355
1356		/* There's nothing to do if the data hasn't changed */
1357		if (hdev->adv_data_len == len &&
1358		    memcmp(cp.data, hdev->adv_data, len) == 0)
1359			return;
1360
1361		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1362		hdev->adv_data_len = len;
1363
1364		cp.length = len;
1365		cp.handle = 0;
1366		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1367		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1368
1369		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1370	} else {
1371		struct hci_cp_le_set_adv_data cp;
1372
1373		memset(&cp, 0, sizeof(cp));
1374
1375		len = create_instance_adv_data(hdev, instance, cp.data);
1376
1377		/* There's nothing to do if the data hasn't changed */
1378		if (hdev->adv_data_len == len &&
1379		    memcmp(cp.data, hdev->adv_data, len) == 0)
1380			return;
1381
1382		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1383		hdev->adv_data_len = len;
1384
1385		cp.length = len;
1386
1387		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1388	}
1389}
1390
1391int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1392{
1393	struct hci_request req;
1394
1395	hci_req_init(&req, hdev);
1396	__hci_req_update_adv_data(&req, instance);
1397
1398	return hci_req_run(&req, NULL);
1399}
1400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1402{
1403	BT_DBG("%s status %u", hdev->name, status);
1404}
1405
1406void hci_req_reenable_advertising(struct hci_dev *hdev)
1407{
1408	struct hci_request req;
1409
1410	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1411	    list_empty(&hdev->adv_instances))
1412		return;
1413
1414	hci_req_init(&req, hdev);
1415
1416	if (hdev->cur_adv_instance) {
1417		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1418						true);
1419	} else {
1420		if (ext_adv_capable(hdev)) {
1421			__hci_req_start_ext_adv(&req, 0x00);
1422		} else {
1423			__hci_req_update_adv_data(&req, 0x00);
1424			__hci_req_update_scan_rsp_data(&req, 0x00);
1425			__hci_req_enable_advertising(&req);
1426		}
1427	}
1428
1429	hci_req_run(&req, adv_enable_complete);
1430}
1431
1432static void adv_timeout_expire(struct work_struct *work)
1433{
1434	struct hci_dev *hdev = container_of(work, struct hci_dev,
1435					    adv_instance_expire.work);
1436
1437	struct hci_request req;
1438	u8 instance;
1439
1440	BT_DBG("%s", hdev->name);
1441
1442	hci_dev_lock(hdev);
1443
1444	hdev->adv_instance_timeout = 0;
1445
1446	instance = hdev->cur_adv_instance;
1447	if (instance == 0x00)
1448		goto unlock;
1449
1450	hci_req_init(&req, hdev);
1451
1452	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1453
1454	if (list_empty(&hdev->adv_instances))
1455		__hci_req_disable_advertising(&req);
1456
1457	hci_req_run(&req, NULL);
1458
1459unlock:
1460	hci_dev_unlock(hdev);
1461}
1462
1463int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1464			   bool use_rpa, struct adv_info *adv_instance,
1465			   u8 *own_addr_type, bdaddr_t *rand_addr)
1466{
1467	int err;
1468
1469	bacpy(rand_addr, BDADDR_ANY);
1470
1471	/* If privacy is enabled use a resolvable private address. If
1472	 * current RPA has expired then generate a new one.
1473	 */
1474	if (use_rpa) {
1475		int to;
1476
1477		*own_addr_type = ADDR_LE_DEV_RANDOM;
1478
1479		if (adv_instance) {
1480			if (!adv_instance->rpa_expired &&
1481			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
1482				return 0;
1483
1484			adv_instance->rpa_expired = false;
1485		} else {
1486			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1487			    !bacmp(&hdev->random_addr, &hdev->rpa))
1488				return 0;
1489		}
1490
1491		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1492		if (err < 0) {
1493			BT_ERR("%s failed to generate new RPA", hdev->name);
1494			return err;
1495		}
1496
1497		bacpy(rand_addr, &hdev->rpa);
1498
1499		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1500		if (adv_instance)
1501			queue_delayed_work(hdev->workqueue,
1502					   &adv_instance->rpa_expired_cb, to);
1503		else
1504			queue_delayed_work(hdev->workqueue,
1505					   &hdev->rpa_expired, to);
1506
1507		return 0;
1508	}
1509
1510	/* In case of required privacy without resolvable private address,
1511	 * use an non-resolvable private address. This is useful for
1512	 * non-connectable advertising.
1513	 */
1514	if (require_privacy) {
1515		bdaddr_t nrpa;
1516
1517		while (true) {
1518			/* The non-resolvable private address is generated
1519			 * from random six bytes with the two most significant
1520			 * bits cleared.
1521			 */
1522			get_random_bytes(&nrpa, 6);
1523			nrpa.b[5] &= 0x3f;
1524
1525			/* The non-resolvable private address shall not be
1526			 * equal to the public address.
1527			 */
1528			if (bacmp(&hdev->bdaddr, &nrpa))
1529				break;
1530		}
1531
1532		*own_addr_type = ADDR_LE_DEV_RANDOM;
1533		bacpy(rand_addr, &nrpa);
1534
1535		return 0;
1536	}
1537
1538	/* No privacy so use a public address. */
1539	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1540
1541	return 0;
1542}
1543
1544void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1545{
1546	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1547}
1548
1549int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1550{
1551	struct hci_cp_le_set_ext_adv_params cp;
1552	struct hci_dev *hdev = req->hdev;
1553	bool connectable;
1554	u32 flags;
1555	bdaddr_t random_addr;
1556	u8 own_addr_type;
1557	int err;
1558	struct adv_info *adv_instance;
1559	bool secondary_adv;
1560	/* In ext adv set param interval is 3 octets */
1561	const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };
1562
1563	if (instance > 0) {
1564		adv_instance = hci_find_adv_instance(hdev, instance);
1565		if (!adv_instance)
1566			return -EINVAL;
1567	} else {
1568		adv_instance = NULL;
1569	}
1570
1571	flags = get_adv_instance_flags(hdev, instance);
1572
1573	/* If the "connectable" instance flag was not set, then choose between
1574	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1575	 */
1576	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1577		      mgmt_get_connectable(hdev);
1578
1579	if (!is_advertising_allowed(hdev, connectable))
1580		return -EPERM;
1581
1582	/* Set require_privacy to true only when non-connectable
1583	 * advertising is used. In that case it is fine to use a
1584	 * non-resolvable private address.
1585	 */
1586	err = hci_get_random_address(hdev, !connectable,
1587				     adv_use_rpa(hdev, flags), adv_instance,
1588				     &own_addr_type, &random_addr);
1589	if (err < 0)
1590		return err;
1591
1592	memset(&cp, 0, sizeof(cp));
1593
1594	memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
1595	memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));
 
1596
1597	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1598
1599	if (connectable) {
1600		if (secondary_adv)
1601			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1602		else
1603			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1604	} else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1605		if (secondary_adv)
1606			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1607		else
1608			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1609	} else {
1610		if (secondary_adv)
1611			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1612		else
1613			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1614	}
1615
1616	cp.own_addr_type = own_addr_type;
1617	cp.channel_map = hdev->le_adv_channel_map;
1618	cp.tx_power = 127;
1619	cp.handle = instance;
1620
1621	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1622		cp.primary_phy = HCI_ADV_PHY_1M;
1623		cp.secondary_phy = HCI_ADV_PHY_2M;
1624	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1625		cp.primary_phy = HCI_ADV_PHY_CODED;
1626		cp.secondary_phy = HCI_ADV_PHY_CODED;
1627	} else {
1628		/* In all other cases use 1M */
1629		cp.primary_phy = HCI_ADV_PHY_1M;
1630		cp.secondary_phy = HCI_ADV_PHY_1M;
1631	}
1632
1633	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1634
1635	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1636	    bacmp(&random_addr, BDADDR_ANY)) {
1637		struct hci_cp_le_set_adv_set_rand_addr cp;
1638
1639		/* Check if random address need to be updated */
1640		if (adv_instance) {
1641			if (!bacmp(&random_addr, &adv_instance->random_addr))
1642				return 0;
1643		} else {
1644			if (!bacmp(&random_addr, &hdev->random_addr))
1645				return 0;
1646		}
1647
1648		memset(&cp, 0, sizeof(cp));
1649
1650		cp.handle = 0;
1651		bacpy(&cp.bdaddr, &random_addr);
1652
1653		hci_req_add(req,
1654			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1655			    sizeof(cp), &cp);
1656	}
1657
1658	return 0;
1659}
1660
1661int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1662{
1663	struct hci_dev *hdev = req->hdev;
1664	struct hci_cp_le_set_ext_adv_enable *cp;
1665	struct hci_cp_ext_adv_set *adv_set;
1666	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1667	struct adv_info *adv_instance;
1668
1669	if (instance > 0) {
1670		adv_instance = hci_find_adv_instance(hdev, instance);
1671		if (!adv_instance)
1672			return -EINVAL;
1673	} else {
1674		adv_instance = NULL;
1675	}
1676
1677	cp = (void *) data;
1678	adv_set = (void *) cp->data;
1679
1680	memset(cp, 0, sizeof(*cp));
1681
1682	cp->enable = 0x01;
1683	cp->num_of_sets = 0x01;
1684
1685	memset(adv_set, 0, sizeof(*adv_set));
1686
1687	adv_set->handle = instance;
1688
1689	/* Set duration per instance since controller is responsible for
1690	 * scheduling it.
1691	 */
1692	if (adv_instance && adv_instance->duration) {
1693		u16 duration = adv_instance->duration * MSEC_PER_SEC;
1694
1695		/* Time = N * 10 ms */
1696		adv_set->duration = cpu_to_le16(duration / 10);
1697	}
1698
1699	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1700		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
1701		    data);
1702
1703	return 0;
1704}
1705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
1707{
1708	struct hci_dev *hdev = req->hdev;
 
1709	int err;
1710
1711	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1712		__hci_req_disable_advertising(req);
 
 
 
1713
1714	err = __hci_req_setup_ext_adv_instance(req, instance);
1715	if (err < 0)
1716		return err;
1717
1718	__hci_req_update_scan_rsp_data(req, instance);
1719	__hci_req_enable_ext_advertising(req, instance);
1720
1721	return 0;
1722}
1723
1724int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1725				    bool force)
1726{
1727	struct hci_dev *hdev = req->hdev;
1728	struct adv_info *adv_instance = NULL;
1729	u16 timeout;
1730
1731	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1732	    list_empty(&hdev->adv_instances))
1733		return -EPERM;
1734
1735	if (hdev->adv_instance_timeout)
1736		return -EBUSY;
1737
1738	adv_instance = hci_find_adv_instance(hdev, instance);
1739	if (!adv_instance)
1740		return -ENOENT;
1741
1742	/* A zero timeout means unlimited advertising. As long as there is
1743	 * only one instance, duration should be ignored. We still set a timeout
1744	 * in case further instances are being added later on.
1745	 *
1746	 * If the remaining lifetime of the instance is more than the duration
1747	 * then the timeout corresponds to the duration, otherwise it will be
1748	 * reduced to the remaining instance lifetime.
1749	 */
1750	if (adv_instance->timeout == 0 ||
1751	    adv_instance->duration <= adv_instance->remaining_time)
1752		timeout = adv_instance->duration;
1753	else
1754		timeout = adv_instance->remaining_time;
1755
1756	/* The remaining time is being reduced unless the instance is being
1757	 * advertised without time limit.
1758	 */
1759	if (adv_instance->timeout)
1760		adv_instance->remaining_time =
1761				adv_instance->remaining_time - timeout;
1762
1763	/* Only use work for scheduling instances with legacy advertising */
1764	if (!ext_adv_capable(hdev)) {
1765		hdev->adv_instance_timeout = timeout;
1766		queue_delayed_work(hdev->req_workqueue,
1767			   &hdev->adv_instance_expire,
1768			   msecs_to_jiffies(timeout * 1000));
1769	}
1770
1771	/* If we're just re-scheduling the same instance again then do not
1772	 * execute any HCI commands. This happens when a single instance is
1773	 * being advertised.
1774	 */
1775	if (!force && hdev->cur_adv_instance == instance &&
1776	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1777		return 0;
1778
1779	hdev->cur_adv_instance = instance;
1780	if (ext_adv_capable(hdev)) {
1781		__hci_req_start_ext_adv(req, instance);
1782	} else {
1783		__hci_req_update_adv_data(req, instance);
1784		__hci_req_update_scan_rsp_data(req, instance);
1785		__hci_req_enable_advertising(req);
1786	}
1787
1788	return 0;
1789}
1790
1791static void cancel_adv_timeout(struct hci_dev *hdev)
1792{
1793	if (hdev->adv_instance_timeout) {
1794		hdev->adv_instance_timeout = 0;
1795		cancel_delayed_work(&hdev->adv_instance_expire);
1796	}
1797}
1798
1799/* For a single instance:
1800 * - force == true: The instance will be removed even when its remaining
1801 *   lifetime is not zero.
1802 * - force == false: the instance will be deactivated but kept stored unless
1803 *   the remaining lifetime is zero.
1804 *
1805 * For instance == 0x00:
1806 * - force == true: All instances will be removed regardless of their timeout
1807 *   setting.
1808 * - force == false: Only instances that have a timeout will be removed.
1809 */
1810void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1811				struct hci_request *req, u8 instance,
1812				bool force)
1813{
1814	struct adv_info *adv_instance, *n, *next_instance = NULL;
1815	int err;
1816	u8 rem_inst;
1817
1818	/* Cancel any timeout concerning the removed instance(s). */
1819	if (!instance || hdev->cur_adv_instance == instance)
1820		cancel_adv_timeout(hdev);
1821
1822	/* Get the next instance to advertise BEFORE we remove
1823	 * the current one. This can be the same instance again
1824	 * if there is only one instance.
1825	 */
1826	if (instance && hdev->cur_adv_instance == instance)
1827		next_instance = hci_get_next_instance(hdev, instance);
1828
1829	if (instance == 0x00) {
1830		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1831					 list) {
1832			if (!(force || adv_instance->timeout))
1833				continue;
1834
1835			rem_inst = adv_instance->instance;
1836			err = hci_remove_adv_instance(hdev, rem_inst);
1837			if (!err)
1838				mgmt_advertising_removed(sk, hdev, rem_inst);
1839		}
1840	} else {
1841		adv_instance = hci_find_adv_instance(hdev, instance);
1842
1843		if (force || (adv_instance && adv_instance->timeout &&
1844			      !adv_instance->remaining_time)) {
1845			/* Don't advertise a removed instance. */
1846			if (next_instance &&
1847			    next_instance->instance == instance)
1848				next_instance = NULL;
1849
1850			err = hci_remove_adv_instance(hdev, instance);
1851			if (!err)
1852				mgmt_advertising_removed(sk, hdev, instance);
1853		}
1854	}
1855
1856	if (!req || !hdev_is_powered(hdev) ||
1857	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
1858		return;
1859
1860	if (next_instance)
1861		__hci_req_schedule_adv_instance(req, next_instance->instance,
1862						false);
1863}
1864
1865static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1866{
1867	struct hci_dev *hdev = req->hdev;
1868
1869	/* If we're advertising or initiating an LE connection we can't
1870	 * go ahead and change the random address at this time. This is
1871	 * because the eventual initiator address used for the
1872	 * subsequently created connection will be undefined (some
1873	 * controllers use the new address and others the one we had
1874	 * when the operation started).
1875	 *
1876	 * In this kind of scenario skip the update and let the random
1877	 * address be updated at the next cycle.
1878	 */
1879	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1880	    hci_lookup_le_connect(hdev)) {
1881		BT_DBG("Deferring random address update");
1882		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1883		return;
1884	}
1885
1886	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1887}
1888
1889int hci_update_random_address(struct hci_request *req, bool require_privacy,
1890			      bool use_rpa, u8 *own_addr_type)
1891{
1892	struct hci_dev *hdev = req->hdev;
1893	int err;
1894
1895	/* If privacy is enabled use a resolvable private address. If
1896	 * current RPA has expired or there is something else than
1897	 * the current RPA in use, then generate a new one.
1898	 */
1899	if (use_rpa) {
1900		int to;
1901
1902		*own_addr_type = ADDR_LE_DEV_RANDOM;
 
 
 
 
 
 
1903
1904		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1905		    !bacmp(&hdev->random_addr, &hdev->rpa))
1906			return 0;
1907
1908		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1909		if (err < 0) {
1910			bt_dev_err(hdev, "failed to generate new RPA");
1911			return err;
1912		}
1913
1914		set_random_addr(req, &hdev->rpa);
1915
1916		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1917		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1918
1919		return 0;
1920	}
1921
1922	/* In case of required privacy without resolvable private address,
1923	 * use an non-resolvable private address. This is useful for active
1924	 * scanning and non-connectable advertising.
1925	 */
1926	if (require_privacy) {
1927		bdaddr_t nrpa;
1928
1929		while (true) {
1930			/* The non-resolvable private address is generated
1931			 * from random six bytes with the two most significant
1932			 * bits cleared.
1933			 */
1934			get_random_bytes(&nrpa, 6);
1935			nrpa.b[5] &= 0x3f;
1936
1937			/* The non-resolvable private address shall not be
1938			 * equal to the public address.
1939			 */
1940			if (bacmp(&hdev->bdaddr, &nrpa))
1941				break;
1942		}
1943
1944		*own_addr_type = ADDR_LE_DEV_RANDOM;
1945		set_random_addr(req, &nrpa);
1946		return 0;
1947	}
1948
1949	/* If forcing static address is in use or there is no public
1950	 * address use the static address as random address (but skip
1951	 * the HCI command if the current random address is already the
1952	 * static one.
1953	 *
1954	 * In case BR/EDR has been disabled on a dual-mode controller
1955	 * and a static address has been configured, then use that
1956	 * address instead of the public BR/EDR address.
1957	 */
1958	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1959	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1960	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1961	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1962		*own_addr_type = ADDR_LE_DEV_RANDOM;
1963		if (bacmp(&hdev->static_addr, &hdev->random_addr))
1964			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1965				    &hdev->static_addr);
1966		return 0;
1967	}
1968
1969	/* Neither privacy nor static address is being used so use a
1970	 * public address.
1971	 */
1972	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1973
1974	return 0;
1975}
1976
1977static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1978{
1979	struct bdaddr_list *b;
1980
1981	list_for_each_entry(b, &hdev->whitelist, list) {
1982		struct hci_conn *conn;
1983
1984		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1985		if (!conn)
1986			return true;
1987
1988		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1989			return true;
1990	}
1991
1992	return false;
1993}
1994
1995void __hci_req_update_scan(struct hci_request *req)
1996{
1997	struct hci_dev *hdev = req->hdev;
1998	u8 scan;
1999
2000	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2001		return;
2002
2003	if (!hdev_is_powered(hdev))
2004		return;
2005
2006	if (mgmt_powering_down(hdev))
2007		return;
2008
 
 
 
2009	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2010	    disconnected_whitelist_entries(hdev))
2011		scan = SCAN_PAGE;
2012	else
2013		scan = SCAN_DISABLED;
2014
2015	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2016		scan |= SCAN_INQUIRY;
2017
2018	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2019	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2020		return;
2021
2022	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2023}
2024
2025static int update_scan(struct hci_request *req, unsigned long opt)
2026{
2027	hci_dev_lock(req->hdev);
2028	__hci_req_update_scan(req);
2029	hci_dev_unlock(req->hdev);
2030	return 0;
2031}
2032
2033static void scan_update_work(struct work_struct *work)
2034{
2035	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2036
2037	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2038}
2039
2040static int connectable_update(struct hci_request *req, unsigned long opt)
2041{
2042	struct hci_dev *hdev = req->hdev;
2043
2044	hci_dev_lock(hdev);
2045
2046	__hci_req_update_scan(req);
2047
2048	/* If BR/EDR is not enabled and we disable advertising as a
2049	 * by-product of disabling connectable, we need to update the
2050	 * advertising flags.
2051	 */
2052	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2053		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2054
2055	/* Update the advertising parameters if necessary */
2056	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2057	    !list_empty(&hdev->adv_instances)) {
2058		if (ext_adv_capable(hdev))
2059			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2060		else
2061			__hci_req_enable_advertising(req);
2062	}
2063
2064	__hci_update_background_scan(req);
2065
2066	hci_dev_unlock(hdev);
2067
2068	return 0;
2069}
2070
2071static void connectable_update_work(struct work_struct *work)
2072{
2073	struct hci_dev *hdev = container_of(work, struct hci_dev,
2074					    connectable_update);
2075	u8 status;
2076
2077	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2078	mgmt_set_connectable_complete(hdev, status);
2079}
2080
2081static u8 get_service_classes(struct hci_dev *hdev)
2082{
2083	struct bt_uuid *uuid;
2084	u8 val = 0;
2085
2086	list_for_each_entry(uuid, &hdev->uuids, list)
2087		val |= uuid->svc_hint;
2088
2089	return val;
2090}
2091
2092void __hci_req_update_class(struct hci_request *req)
2093{
2094	struct hci_dev *hdev = req->hdev;
2095	u8 cod[3];
2096
2097	BT_DBG("%s", hdev->name);
2098
2099	if (!hdev_is_powered(hdev))
2100		return;
2101
2102	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2103		return;
2104
2105	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2106		return;
2107
2108	cod[0] = hdev->minor_class;
2109	cod[1] = hdev->major_class;
2110	cod[2] = get_service_classes(hdev);
2111
2112	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2113		cod[1] |= 0x20;
2114
2115	if (memcmp(cod, hdev->dev_class, 3) == 0)
2116		return;
2117
2118	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2119}
2120
2121static void write_iac(struct hci_request *req)
2122{
2123	struct hci_dev *hdev = req->hdev;
2124	struct hci_cp_write_current_iac_lap cp;
2125
2126	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2127		return;
2128
2129	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2130		/* Limited discoverable mode */
2131		cp.num_iac = min_t(u8, hdev->num_iac, 2);
2132		cp.iac_lap[0] = 0x00;	/* LIAC */
2133		cp.iac_lap[1] = 0x8b;
2134		cp.iac_lap[2] = 0x9e;
2135		cp.iac_lap[3] = 0x33;	/* GIAC */
2136		cp.iac_lap[4] = 0x8b;
2137		cp.iac_lap[5] = 0x9e;
2138	} else {
2139		/* General discoverable mode */
2140		cp.num_iac = 1;
2141		cp.iac_lap[0] = 0x33;	/* GIAC */
2142		cp.iac_lap[1] = 0x8b;
2143		cp.iac_lap[2] = 0x9e;
2144	}
2145
2146	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2147		    (cp.num_iac * 3) + 1, &cp);
2148}
2149
2150static int discoverable_update(struct hci_request *req, unsigned long opt)
2151{
2152	struct hci_dev *hdev = req->hdev;
2153
2154	hci_dev_lock(hdev);
2155
2156	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2157		write_iac(req);
2158		__hci_req_update_scan(req);
2159		__hci_req_update_class(req);
2160	}
2161
2162	/* Advertising instances don't use the global discoverable setting, so
2163	 * only update AD if advertising was enabled using Set Advertising.
2164	 */
2165	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2166		__hci_req_update_adv_data(req, 0x00);
2167
2168		/* Discoverable mode affects the local advertising
2169		 * address in limited privacy mode.
2170		 */
2171		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2172			if (ext_adv_capable(hdev))
2173				__hci_req_start_ext_adv(req, 0x00);
2174			else
2175				__hci_req_enable_advertising(req);
2176		}
2177	}
2178
2179	hci_dev_unlock(hdev);
2180
2181	return 0;
2182}
2183
2184static void discoverable_update_work(struct work_struct *work)
2185{
2186	struct hci_dev *hdev = container_of(work, struct hci_dev,
2187					    discoverable_update);
2188	u8 status;
2189
2190	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2191	mgmt_set_discoverable_complete(hdev, status);
2192}
2193
2194void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2195		      u8 reason)
2196{
2197	switch (conn->state) {
2198	case BT_CONNECTED:
2199	case BT_CONFIG:
2200		if (conn->type == AMP_LINK) {
2201			struct hci_cp_disconn_phy_link cp;
2202
2203			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2204			cp.reason = reason;
2205			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2206				    &cp);
2207		} else {
2208			struct hci_cp_disconnect dc;
2209
2210			dc.handle = cpu_to_le16(conn->handle);
2211			dc.reason = reason;
2212			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2213		}
2214
2215		conn->state = BT_DISCONN;
2216
2217		break;
2218	case BT_CONNECT:
2219		if (conn->type == LE_LINK) {
2220			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2221				break;
2222			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2223				    0, NULL);
2224		} else if (conn->type == ACL_LINK) {
2225			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2226				break;
2227			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2228				    6, &conn->dst);
2229		}
2230		break;
2231	case BT_CONNECT2:
2232		if (conn->type == ACL_LINK) {
2233			struct hci_cp_reject_conn_req rej;
2234
2235			bacpy(&rej.bdaddr, &conn->dst);
2236			rej.reason = reason;
2237
2238			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2239				    sizeof(rej), &rej);
2240		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2241			struct hci_cp_reject_sync_conn_req rej;
2242
2243			bacpy(&rej.bdaddr, &conn->dst);
2244
2245			/* SCO rejection has its own limited set of
2246			 * allowed error values (0x0D-0x0F) which isn't
2247			 * compatible with most values passed to this
2248			 * function. To be safe hard-code one of the
2249			 * values that's suitable for SCO.
2250			 */
2251			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2252
2253			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2254				    sizeof(rej), &rej);
2255		}
2256		break;
2257	default:
2258		conn->state = BT_CLOSED;
2259		break;
2260	}
2261}
2262
2263static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2264{
2265	if (status)
2266		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2267}
2268
2269int hci_abort_conn(struct hci_conn *conn, u8 reason)
2270{
2271	struct hci_request req;
2272	int err;
2273
2274	hci_req_init(&req, conn->hdev);
2275
2276	__hci_abort_conn(&req, conn, reason);
2277
2278	err = hci_req_run(&req, abort_conn_complete);
2279	if (err && err != -ENODATA) {
2280		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2281		return err;
2282	}
2283
2284	return 0;
2285}
2286
2287static int update_bg_scan(struct hci_request *req, unsigned long opt)
2288{
2289	hci_dev_lock(req->hdev);
2290	__hci_update_background_scan(req);
2291	hci_dev_unlock(req->hdev);
2292	return 0;
2293}
2294
2295static void bg_scan_update(struct work_struct *work)
2296{
2297	struct hci_dev *hdev = container_of(work, struct hci_dev,
2298					    bg_scan_update);
2299	struct hci_conn *conn;
2300	u8 status;
2301	int err;
2302
2303	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2304	if (!err)
2305		return;
2306
2307	hci_dev_lock(hdev);
2308
2309	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2310	if (conn)
2311		hci_le_conn_failed(conn, status);
2312
2313	hci_dev_unlock(hdev);
2314}
2315
2316static int le_scan_disable(struct hci_request *req, unsigned long opt)
2317{
2318	hci_req_add_le_scan_disable(req);
2319	return 0;
2320}
2321
2322static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2323{
2324	u8 length = opt;
2325	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2326	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2327	struct hci_cp_inquiry cp;
2328
2329	BT_DBG("%s", req->hdev->name);
2330
2331	hci_dev_lock(req->hdev);
2332	hci_inquiry_cache_flush(req->hdev);
2333	hci_dev_unlock(req->hdev);
2334
2335	memset(&cp, 0, sizeof(cp));
2336
2337	if (req->hdev->discovery.limited)
2338		memcpy(&cp.lap, liac, sizeof(cp.lap));
2339	else
2340		memcpy(&cp.lap, giac, sizeof(cp.lap));
2341
2342	cp.length = length;
2343
2344	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2345
2346	return 0;
2347}
2348
2349static void le_scan_disable_work(struct work_struct *work)
2350{
2351	struct hci_dev *hdev = container_of(work, struct hci_dev,
2352					    le_scan_disable.work);
2353	u8 status;
2354
2355	BT_DBG("%s", hdev->name);
2356
2357	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2358		return;
2359
2360	cancel_delayed_work(&hdev->le_scan_restart);
2361
2362	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2363	if (status) {
2364		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2365			   status);
2366		return;
2367	}
2368
2369	hdev->discovery.scan_start = 0;
2370
2371	/* If we were running LE only scan, change discovery state. If
2372	 * we were running both LE and BR/EDR inquiry simultaneously,
2373	 * and BR/EDR inquiry is already finished, stop discovery,
2374	 * otherwise BR/EDR inquiry will stop discovery when finished.
2375	 * If we will resolve remote device name, do not change
2376	 * discovery state.
2377	 */
2378
2379	if (hdev->discovery.type == DISCOV_TYPE_LE)
2380		goto discov_stopped;
2381
2382	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2383		return;
2384
2385	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2386		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2387		    hdev->discovery.state != DISCOVERY_RESOLVING)
2388			goto discov_stopped;
2389
2390		return;
2391	}
2392
2393	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2394		     HCI_CMD_TIMEOUT, &status);
2395	if (status) {
2396		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2397		goto discov_stopped;
2398	}
2399
2400	return;
2401
2402discov_stopped:
2403	hci_dev_lock(hdev);
2404	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2405	hci_dev_unlock(hdev);
2406}
2407
2408static int le_scan_restart(struct hci_request *req, unsigned long opt)
2409{
2410	struct hci_dev *hdev = req->hdev;
2411
2412	/* If controller is not scanning we are done. */
2413	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2414		return 0;
2415
2416	hci_req_add_le_scan_disable(req);
 
 
 
 
 
2417
2418	if (use_ext_scan(hdev)) {
2419		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2420
2421		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2422		ext_enable_cp.enable = LE_SCAN_ENABLE;
2423		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2424
2425		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2426			    sizeof(ext_enable_cp), &ext_enable_cp);
2427	} else {
2428		struct hci_cp_le_set_scan_enable cp;
2429
2430		memset(&cp, 0, sizeof(cp));
2431		cp.enable = LE_SCAN_ENABLE;
2432		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2433		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2434	}
2435
2436	return 0;
2437}
2438
2439static void le_scan_restart_work(struct work_struct *work)
2440{
2441	struct hci_dev *hdev = container_of(work, struct hci_dev,
2442					    le_scan_restart.work);
2443	unsigned long timeout, duration, scan_start, now;
2444	u8 status;
2445
2446	BT_DBG("%s", hdev->name);
2447
2448	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2449	if (status) {
2450		bt_dev_err(hdev, "failed to restart LE scan: status %d",
2451			   status);
2452		return;
2453	}
2454
2455	hci_dev_lock(hdev);
2456
2457	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2458	    !hdev->discovery.scan_start)
2459		goto unlock;
2460
2461	/* When the scan was started, hdev->le_scan_disable has been queued
2462	 * after duration from scan_start. During scan restart this job
2463	 * has been canceled, and we need to queue it again after proper
2464	 * timeout, to make sure that scan does not run indefinitely.
2465	 */
2466	duration = hdev->discovery.scan_duration;
2467	scan_start = hdev->discovery.scan_start;
2468	now = jiffies;
2469	if (now - scan_start <= duration) {
2470		int elapsed;
2471
2472		if (now >= scan_start)
2473			elapsed = now - scan_start;
2474		else
2475			elapsed = ULONG_MAX - scan_start + now;
2476
2477		timeout = duration - elapsed;
2478	} else {
2479		timeout = 0;
2480	}
2481
2482	queue_delayed_work(hdev->req_workqueue,
2483			   &hdev->le_scan_disable, timeout);
2484
2485unlock:
2486	hci_dev_unlock(hdev);
2487}
2488
2489static int active_scan(struct hci_request *req, unsigned long opt)
2490{
2491	uint16_t interval = opt;
2492	struct hci_dev *hdev = req->hdev;
2493	u8 own_addr_type;
 
 
 
 
2494	int err;
2495
2496	BT_DBG("%s", hdev->name);
2497
2498	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2499		hci_dev_lock(hdev);
2500
2501		/* Don't let discovery abort an outgoing connection attempt
2502		 * that's using directed advertising.
2503		 */
2504		if (hci_lookup_le_connect(hdev)) {
2505			hci_dev_unlock(hdev);
2506			return -EBUSY;
2507		}
2508
2509		cancel_adv_timeout(hdev);
2510		hci_dev_unlock(hdev);
2511
2512		__hci_req_disable_advertising(req);
2513	}
2514
2515	/* If controller is scanning, it means the background scanning is
2516	 * running. Thus, we should temporarily stop it in order to set the
2517	 * discovery scanning parameters.
2518	 */
2519	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2520		hci_req_add_le_scan_disable(req);
2521
2522	/* All active scans will be done with either a resolvable private
2523	 * address (when privacy feature has been enabled) or non-resolvable
2524	 * private address.
2525	 */
2526	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2527					&own_addr_type);
2528	if (err < 0)
2529		own_addr_type = ADDR_LE_DEV_PUBLIC;
2530
2531	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2532			   own_addr_type, 0);
 
2533	return 0;
2534}
2535
2536static int interleaved_discov(struct hci_request *req, unsigned long opt)
2537{
2538	int err;
2539
2540	BT_DBG("%s", req->hdev->name);
2541
2542	err = active_scan(req, opt);
2543	if (err)
2544		return err;
2545
2546	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2547}
2548
2549static void start_discovery(struct hci_dev *hdev, u8 *status)
2550{
2551	unsigned long timeout;
2552
2553	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2554
2555	switch (hdev->discovery.type) {
2556	case DISCOV_TYPE_BREDR:
2557		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2558			hci_req_sync(hdev, bredr_inquiry,
2559				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2560				     status);
2561		return;
2562	case DISCOV_TYPE_INTERLEAVED:
2563		/* When running simultaneous discovery, the LE scanning time
2564		 * should occupy the whole discovery time sine BR/EDR inquiry
2565		 * and LE scanning are scheduled by the controller.
2566		 *
2567		 * For interleaving discovery in comparison, BR/EDR inquiry
2568		 * and LE scanning are done sequentially with separate
2569		 * timeouts.
2570		 */
2571		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2572			     &hdev->quirks)) {
2573			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2574			/* During simultaneous discovery, we double LE scan
2575			 * interval. We must leave some time for the controller
2576			 * to do BR/EDR inquiry.
2577			 */
2578			hci_req_sync(hdev, interleaved_discov,
2579				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2580				     status);
2581			break;
2582		}
2583
2584		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2585		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2586			     HCI_CMD_TIMEOUT, status);
2587		break;
2588	case DISCOV_TYPE_LE:
2589		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2590		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2591			     HCI_CMD_TIMEOUT, status);
2592		break;
2593	default:
2594		*status = HCI_ERROR_UNSPECIFIED;
2595		return;
2596	}
2597
2598	if (*status)
2599		return;
2600
2601	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2602
2603	/* When service discovery is used and the controller has a
2604	 * strict duplicate filter, it is important to remember the
2605	 * start and duration of the scan. This is required for
2606	 * restarting scanning during the discovery phase.
2607	 */
2608	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2609		     hdev->discovery.result_filtering) {
2610		hdev->discovery.scan_start = jiffies;
2611		hdev->discovery.scan_duration = timeout;
2612	}
2613
2614	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2615			   timeout);
2616}
2617
2618bool hci_req_stop_discovery(struct hci_request *req)
2619{
2620	struct hci_dev *hdev = req->hdev;
2621	struct discovery_state *d = &hdev->discovery;
2622	struct hci_cp_remote_name_req_cancel cp;
2623	struct inquiry_entry *e;
2624	bool ret = false;
2625
2626	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2627
2628	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2629		if (test_bit(HCI_INQUIRY, &hdev->flags))
2630			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2631
2632		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2633			cancel_delayed_work(&hdev->le_scan_disable);
2634			hci_req_add_le_scan_disable(req);
2635		}
2636
2637		ret = true;
2638	} else {
2639		/* Passive scanning */
2640		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2641			hci_req_add_le_scan_disable(req);
2642			ret = true;
2643		}
2644	}
2645
2646	/* No further actions needed for LE-only discovery */
2647	if (d->type == DISCOV_TYPE_LE)
2648		return ret;
2649
2650	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2651		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2652						     NAME_PENDING);
2653		if (!e)
2654			return ret;
2655
2656		bacpy(&cp.bdaddr, &e->data.bdaddr);
2657		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2658			    &cp);
2659		ret = true;
2660	}
2661
2662	return ret;
2663}
2664
2665static int stop_discovery(struct hci_request *req, unsigned long opt)
2666{
2667	hci_dev_lock(req->hdev);
2668	hci_req_stop_discovery(req);
2669	hci_dev_unlock(req->hdev);
2670
2671	return 0;
2672}
2673
2674static void discov_update(struct work_struct *work)
2675{
2676	struct hci_dev *hdev = container_of(work, struct hci_dev,
2677					    discov_update);
2678	u8 status = 0;
2679
2680	switch (hdev->discovery.state) {
2681	case DISCOVERY_STARTING:
2682		start_discovery(hdev, &status);
2683		mgmt_start_discovery_complete(hdev, status);
2684		if (status)
2685			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2686		else
2687			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2688		break;
2689	case DISCOVERY_STOPPING:
2690		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2691		mgmt_stop_discovery_complete(hdev, status);
2692		if (!status)
2693			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2694		break;
2695	case DISCOVERY_STOPPED:
2696	default:
2697		return;
2698	}
2699}
2700
2701static void discov_off(struct work_struct *work)
2702{
2703	struct hci_dev *hdev = container_of(work, struct hci_dev,
2704					    discov_off.work);
2705
2706	BT_DBG("%s", hdev->name);
2707
2708	hci_dev_lock(hdev);
2709
2710	/* When discoverable timeout triggers, then just make sure
2711	 * the limited discoverable flag is cleared. Even in the case
2712	 * of a timeout triggered from general discoverable, it is
2713	 * safe to unconditionally clear the flag.
2714	 */
2715	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2716	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2717	hdev->discov_timeout = 0;
2718
2719	hci_dev_unlock(hdev);
2720
2721	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2722	mgmt_new_settings(hdev);
2723}
2724
2725static int powered_update_hci(struct hci_request *req, unsigned long opt)
2726{
2727	struct hci_dev *hdev = req->hdev;
2728	u8 link_sec;
2729
2730	hci_dev_lock(hdev);
2731
2732	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2733	    !lmp_host_ssp_capable(hdev)) {
2734		u8 mode = 0x01;
2735
2736		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2737
2738		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2739			u8 support = 0x01;
2740
2741			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2742				    sizeof(support), &support);
2743		}
2744	}
2745
2746	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2747	    lmp_bredr_capable(hdev)) {
2748		struct hci_cp_write_le_host_supported cp;
2749
2750		cp.le = 0x01;
2751		cp.simul = 0x00;
2752
2753		/* Check first if we already have the right
2754		 * host state (host features set)
2755		 */
2756		if (cp.le != lmp_host_le_capable(hdev) ||
2757		    cp.simul != lmp_host_le_br_capable(hdev))
2758			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2759				    sizeof(cp), &cp);
2760	}
2761
2762	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2763		/* Make sure the controller has a good default for
2764		 * advertising data. This also applies to the case
2765		 * where BR/EDR was toggled during the AUTO_OFF phase.
2766		 */
2767		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2768		    list_empty(&hdev->adv_instances)) {
2769			int err;
2770
2771			if (ext_adv_capable(hdev)) {
2772				err = __hci_req_setup_ext_adv_instance(req,
2773								       0x00);
2774				if (!err)
2775					__hci_req_update_scan_rsp_data(req,
2776								       0x00);
2777			} else {
2778				err = 0;
2779				__hci_req_update_adv_data(req, 0x00);
2780				__hci_req_update_scan_rsp_data(req, 0x00);
2781			}
2782
2783			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2784				if (!ext_adv_capable(hdev))
2785					__hci_req_enable_advertising(req);
2786				else if (!err)
2787					__hci_req_enable_ext_advertising(req,
2788									 0x00);
2789			}
2790		} else if (!list_empty(&hdev->adv_instances)) {
2791			struct adv_info *adv_instance;
2792
2793			adv_instance = list_first_entry(&hdev->adv_instances,
2794							struct adv_info, list);
2795			__hci_req_schedule_adv_instance(req,
2796							adv_instance->instance,
2797							true);
2798		}
2799	}
2800
2801	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2802	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2803		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2804			    sizeof(link_sec), &link_sec);
2805
2806	if (lmp_bredr_capable(hdev)) {
2807		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2808			__hci_req_write_fast_connectable(req, true);
2809		else
2810			__hci_req_write_fast_connectable(req, false);
2811		__hci_req_update_scan(req);
2812		__hci_req_update_class(req);
2813		__hci_req_update_name(req);
2814		__hci_req_update_eir(req);
2815	}
2816
2817	hci_dev_unlock(hdev);
2818	return 0;
2819}
2820
2821int __hci_req_hci_power_on(struct hci_dev *hdev)
2822{
2823	/* Register the available SMP channels (BR/EDR and LE) only when
2824	 * successfully powering on the controller. This late
2825	 * registration is required so that LE SMP can clearly decide if
2826	 * the public address or static address is used.
2827	 */
2828	smp_register(hdev);
2829
2830	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2831			      NULL);
2832}
2833
2834void hci_request_setup(struct hci_dev *hdev)
2835{
2836	INIT_WORK(&hdev->discov_update, discov_update);
2837	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2838	INIT_WORK(&hdev->scan_update, scan_update_work);
2839	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2840	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2841	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2842	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2843	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2844	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2845}
2846
2847void hci_request_cancel_all(struct hci_dev *hdev)
2848{
2849	hci_req_sync_cancel(hdev, ENODEV);
2850
2851	cancel_work_sync(&hdev->discov_update);
2852	cancel_work_sync(&hdev->bg_scan_update);
2853	cancel_work_sync(&hdev->scan_update);
2854	cancel_work_sync(&hdev->connectable_update);
2855	cancel_work_sync(&hdev->discoverable_update);
2856	cancel_delayed_work_sync(&hdev->discov_off);
2857	cancel_delayed_work_sync(&hdev->le_scan_disable);
2858	cancel_delayed_work_sync(&hdev->le_scan_restart);
2859
2860	if (hdev->adv_instance_timeout) {
2861		cancel_delayed_work_sync(&hdev->adv_instance_expire);
2862		hdev->adv_instance_timeout = 0;
2863	}
2864}
v5.9
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <linux/sched/signal.h>
  25
  26#include <net/bluetooth/bluetooth.h>
  27#include <net/bluetooth/hci_core.h>
  28#include <net/bluetooth/mgmt.h>
  29
  30#include "smp.h"
  31#include "hci_request.h"
  32
  33#define HCI_REQ_DONE	  0
  34#define HCI_REQ_PEND	  1
  35#define HCI_REQ_CANCELED  2
  36
  37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  38{
  39	skb_queue_head_init(&req->cmd_q);
  40	req->hdev = hdev;
  41	req->err = 0;
  42}
  43
  44void hci_req_purge(struct hci_request *req)
  45{
  46	skb_queue_purge(&req->cmd_q);
  47}
  48
  49bool hci_req_status_pend(struct hci_dev *hdev)
  50{
  51	return hdev->req_status == HCI_REQ_PEND;
  52}
  53
  54static int req_run(struct hci_request *req, hci_req_complete_t complete,
  55		   hci_req_complete_skb_t complete_skb)
  56{
  57	struct hci_dev *hdev = req->hdev;
  58	struct sk_buff *skb;
  59	unsigned long flags;
  60
  61	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  62
  63	/* If an error occurred during request building, remove all HCI
  64	 * commands queued on the HCI request queue.
  65	 */
  66	if (req->err) {
  67		skb_queue_purge(&req->cmd_q);
  68		return req->err;
  69	}
  70
  71	/* Do not allow empty requests */
  72	if (skb_queue_empty(&req->cmd_q))
  73		return -ENODATA;
  74
  75	skb = skb_peek_tail(&req->cmd_q);
  76	if (complete) {
  77		bt_cb(skb)->hci.req_complete = complete;
  78	} else if (complete_skb) {
  79		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  80		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  81	}
  82
  83	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  84	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  85	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  86
  87	queue_work(hdev->workqueue, &hdev->cmd_work);
  88
  89	return 0;
  90}
  91
  92int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  93{
  94	return req_run(req, complete, NULL);
  95}
  96
  97int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  98{
  99	return req_run(req, NULL, complete);
 100}
 101
 102static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
 103				  struct sk_buff *skb)
 104{
 105	BT_DBG("%s result 0x%2.2x", hdev->name, result);
 106
 107	if (hdev->req_status == HCI_REQ_PEND) {
 108		hdev->req_result = result;
 109		hdev->req_status = HCI_REQ_DONE;
 110		if (skb)
 111			hdev->req_skb = skb_get(skb);
 112		wake_up_interruptible(&hdev->req_wait_q);
 113	}
 114}
 115
 116void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 117{
 118	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 119
 120	if (hdev->req_status == HCI_REQ_PEND) {
 121		hdev->req_result = err;
 122		hdev->req_status = HCI_REQ_CANCELED;
 123		wake_up_interruptible(&hdev->req_wait_q);
 124	}
 125}
 126
 127struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 128				  const void *param, u8 event, u32 timeout)
 129{
 130	struct hci_request req;
 131	struct sk_buff *skb;
 132	int err = 0;
 133
 134	BT_DBG("%s", hdev->name);
 135
 136	hci_req_init(&req, hdev);
 137
 138	hci_req_add_ev(&req, opcode, plen, param, event);
 139
 140	hdev->req_status = HCI_REQ_PEND;
 141
 142	err = hci_req_run_skb(&req, hci_req_sync_complete);
 143	if (err < 0)
 144		return ERR_PTR(err);
 145
 146	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 147			hdev->req_status != HCI_REQ_PEND, timeout);
 148
 149	if (err == -ERESTARTSYS)
 150		return ERR_PTR(-EINTR);
 151
 152	switch (hdev->req_status) {
 153	case HCI_REQ_DONE:
 154		err = -bt_to_errno(hdev->req_result);
 155		break;
 156
 157	case HCI_REQ_CANCELED:
 158		err = -hdev->req_result;
 159		break;
 160
 161	default:
 162		err = -ETIMEDOUT;
 163		break;
 164	}
 165
 166	hdev->req_status = hdev->req_result = 0;
 167	skb = hdev->req_skb;
 168	hdev->req_skb = NULL;
 169
 170	BT_DBG("%s end: err %d", hdev->name, err);
 171
 172	if (err < 0) {
 173		kfree_skb(skb);
 174		return ERR_PTR(err);
 175	}
 176
 177	if (!skb)
 178		return ERR_PTR(-ENODATA);
 179
 180	return skb;
 181}
 182EXPORT_SYMBOL(__hci_cmd_sync_ev);
 183
 184struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 185			       const void *param, u32 timeout)
 186{
 187	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 188}
 189EXPORT_SYMBOL(__hci_cmd_sync);
 190
 191/* Execute request and wait for completion. */
 192int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 193						     unsigned long opt),
 194		   unsigned long opt, u32 timeout, u8 *hci_status)
 195{
 196	struct hci_request req;
 197	int err = 0;
 198
 199	BT_DBG("%s start", hdev->name);
 200
 201	hci_req_init(&req, hdev);
 202
 203	hdev->req_status = HCI_REQ_PEND;
 204
 205	err = func(&req, opt);
 206	if (err) {
 207		if (hci_status)
 208			*hci_status = HCI_ERROR_UNSPECIFIED;
 209		return err;
 210	}
 211
 212	err = hci_req_run_skb(&req, hci_req_sync_complete);
 213	if (err < 0) {
 214		hdev->req_status = 0;
 215
 216		/* ENODATA means the HCI request command queue is empty.
 217		 * This can happen when a request with conditionals doesn't
 218		 * trigger any commands to be sent. This is normal behavior
 219		 * and should not trigger an error return.
 220		 */
 221		if (err == -ENODATA) {
 222			if (hci_status)
 223				*hci_status = 0;
 224			return 0;
 225		}
 226
 227		if (hci_status)
 228			*hci_status = HCI_ERROR_UNSPECIFIED;
 229
 230		return err;
 231	}
 232
 233	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 234			hdev->req_status != HCI_REQ_PEND, timeout);
 235
 236	if (err == -ERESTARTSYS)
 237		return -EINTR;
 238
 239	switch (hdev->req_status) {
 240	case HCI_REQ_DONE:
 241		err = -bt_to_errno(hdev->req_result);
 242		if (hci_status)
 243			*hci_status = hdev->req_result;
 244		break;
 245
 246	case HCI_REQ_CANCELED:
 247		err = -hdev->req_result;
 248		if (hci_status)
 249			*hci_status = HCI_ERROR_UNSPECIFIED;
 250		break;
 251
 252	default:
 253		err = -ETIMEDOUT;
 254		if (hci_status)
 255			*hci_status = HCI_ERROR_UNSPECIFIED;
 256		break;
 257	}
 258
 259	kfree_skb(hdev->req_skb);
 260	hdev->req_skb = NULL;
 261	hdev->req_status = hdev->req_result = 0;
 262
 263	BT_DBG("%s end: err %d", hdev->name, err);
 264
 265	return err;
 266}
 267
 268int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 269						  unsigned long opt),
 270		 unsigned long opt, u32 timeout, u8 *hci_status)
 271{
 272	int ret;
 273
 274	if (!test_bit(HCI_UP, &hdev->flags))
 275		return -ENETDOWN;
 276
 277	/* Serialize all requests */
 278	hci_req_sync_lock(hdev);
 279	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 280	hci_req_sync_unlock(hdev);
 281
 282	return ret;
 283}
 284
 285struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 286				const void *param)
 287{
 288	int len = HCI_COMMAND_HDR_SIZE + plen;
 289	struct hci_command_hdr *hdr;
 290	struct sk_buff *skb;
 291
 292	skb = bt_skb_alloc(len, GFP_ATOMIC);
 293	if (!skb)
 294		return NULL;
 295
 296	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
 297	hdr->opcode = cpu_to_le16(opcode);
 298	hdr->plen   = plen;
 299
 300	if (plen)
 301		skb_put_data(skb, param, plen);
 302
 303	BT_DBG("skb len %d", skb->len);
 304
 305	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 306	hci_skb_opcode(skb) = opcode;
 307
 308	return skb;
 309}
 310
 311/* Queue a command to an asynchronous HCI request */
 312void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 313		    const void *param, u8 event)
 314{
 315	struct hci_dev *hdev = req->hdev;
 316	struct sk_buff *skb;
 317
 318	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 319
 320	/* If an error occurred during request building, there is no point in
 321	 * queueing the HCI command. We can simply return.
 322	 */
 323	if (req->err)
 324		return;
 325
 326	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 327	if (!skb) {
 328		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
 329			   opcode);
 330		req->err = -ENOMEM;
 331		return;
 332	}
 333
 334	if (skb_queue_empty(&req->cmd_q))
 335		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 336
 337	bt_cb(skb)->hci.req_event = event;
 338
 339	skb_queue_tail(&req->cmd_q, skb);
 340}
 341
 342void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 343		 const void *param)
 344{
 345	hci_req_add_ev(req, opcode, plen, param, 0);
 346}
 347
 348void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 349{
 350	struct hci_dev *hdev = req->hdev;
 351	struct hci_cp_write_page_scan_activity acp;
 352	u8 type;
 353
 354	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 355		return;
 356
 357	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 358		return;
 359
 360	if (enable) {
 361		type = PAGE_SCAN_TYPE_INTERLACED;
 362
 363		/* 160 msec page scan interval */
 364		acp.interval = cpu_to_le16(0x0100);
 365	} else {
 366		type = hdev->def_page_scan_type;
 367		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
 
 
 368	}
 369
 370	acp.window = cpu_to_le16(hdev->def_page_scan_window);
 371
 372	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 373	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 374		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 375			    sizeof(acp), &acp);
 376
 377	if (hdev->page_scan_type != type)
 378		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 379}
 380
 381/* This function controls the background scanning based on hdev->pend_le_conns
 382 * list. If there are pending LE connection we start the background scanning,
 383 * otherwise we stop it.
 384 *
 385 * This function requires the caller holds hdev->lock.
 386 */
 387static void __hci_update_background_scan(struct hci_request *req)
 388{
 389	struct hci_dev *hdev = req->hdev;
 390
 391	if (!test_bit(HCI_UP, &hdev->flags) ||
 392	    test_bit(HCI_INIT, &hdev->flags) ||
 393	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 394	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 395	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 396	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 397		return;
 398
 399	/* No point in doing scanning if LE support hasn't been enabled */
 400	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 401		return;
 402
 403	/* If discovery is active don't interfere with it */
 404	if (hdev->discovery.state != DISCOVERY_STOPPED)
 405		return;
 406
 407	/* Reset RSSI and UUID filters when starting background scanning
 408	 * since these filters are meant for service discovery only.
 409	 *
 410	 * The Start Discovery and Start Service Discovery operations
 411	 * ensure to set proper values for RSSI threshold and UUID
 412	 * filter list. So it is safe to just reset them here.
 413	 */
 414	hci_discovery_filter_clear(hdev);
 415
 416	BT_DBG("%s ADV monitoring is %s", hdev->name,
 417	       hci_is_adv_monitoring(hdev) ? "on" : "off");
 418
 419	if (list_empty(&hdev->pend_le_conns) &&
 420	    list_empty(&hdev->pend_le_reports) &&
 421	    !hci_is_adv_monitoring(hdev)) {
 422		/* If there is no pending LE connections or devices
 423		 * to be scanned for or no ADV monitors, we should stop the
 424		 * background scanning.
 425		 */
 426
 427		/* If controller is not scanning we are done. */
 428		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 429			return;
 430
 431		hci_req_add_le_scan_disable(req, false);
 432
 433		BT_DBG("%s stopping background scanning", hdev->name);
 434	} else {
 435		/* If there is at least one pending LE connection, we should
 436		 * keep the background scan running.
 437		 */
 438
 439		/* If controller is connecting, we should not start scanning
 440		 * since some controllers are not able to scan and connect at
 441		 * the same time.
 442		 */
 443		if (hci_lookup_le_connect(hdev))
 444			return;
 445
 446		/* If controller is currently scanning, we stop it to ensure we
 447		 * don't miss any advertising (due to duplicates filter).
 448		 */
 449		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 450			hci_req_add_le_scan_disable(req, false);
 451
 452		hci_req_add_le_passive_scan(req);
 453
 454		BT_DBG("%s starting background scanning", hdev->name);
 455	}
 456}
 457
 458void __hci_req_update_name(struct hci_request *req)
 459{
 460	struct hci_dev *hdev = req->hdev;
 461	struct hci_cp_write_local_name cp;
 462
 463	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 464
 465	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 466}
 467
 468#define PNP_INFO_SVCLASS_ID		0x1200
 469
 470static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 471{
 472	u8 *ptr = data, *uuids_start = NULL;
 473	struct bt_uuid *uuid;
 474
 475	if (len < 4)
 476		return ptr;
 477
 478	list_for_each_entry(uuid, &hdev->uuids, list) {
 479		u16 uuid16;
 480
 481		if (uuid->size != 16)
 482			continue;
 483
 484		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 485		if (uuid16 < 0x1100)
 486			continue;
 487
 488		if (uuid16 == PNP_INFO_SVCLASS_ID)
 489			continue;
 490
 491		if (!uuids_start) {
 492			uuids_start = ptr;
 493			uuids_start[0] = 1;
 494			uuids_start[1] = EIR_UUID16_ALL;
 495			ptr += 2;
 496		}
 497
 498		/* Stop if not enough space to put next UUID */
 499		if ((ptr - data) + sizeof(u16) > len) {
 500			uuids_start[1] = EIR_UUID16_SOME;
 501			break;
 502		}
 503
 504		*ptr++ = (uuid16 & 0x00ff);
 505		*ptr++ = (uuid16 & 0xff00) >> 8;
 506		uuids_start[0] += sizeof(uuid16);
 507	}
 508
 509	return ptr;
 510}
 511
 512static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 513{
 514	u8 *ptr = data, *uuids_start = NULL;
 515	struct bt_uuid *uuid;
 516
 517	if (len < 6)
 518		return ptr;
 519
 520	list_for_each_entry(uuid, &hdev->uuids, list) {
 521		if (uuid->size != 32)
 522			continue;
 523
 524		if (!uuids_start) {
 525			uuids_start = ptr;
 526			uuids_start[0] = 1;
 527			uuids_start[1] = EIR_UUID32_ALL;
 528			ptr += 2;
 529		}
 530
 531		/* Stop if not enough space to put next UUID */
 532		if ((ptr - data) + sizeof(u32) > len) {
 533			uuids_start[1] = EIR_UUID32_SOME;
 534			break;
 535		}
 536
 537		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 538		ptr += sizeof(u32);
 539		uuids_start[0] += sizeof(u32);
 540	}
 541
 542	return ptr;
 543}
 544
 545static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 546{
 547	u8 *ptr = data, *uuids_start = NULL;
 548	struct bt_uuid *uuid;
 549
 550	if (len < 18)
 551		return ptr;
 552
 553	list_for_each_entry(uuid, &hdev->uuids, list) {
 554		if (uuid->size != 128)
 555			continue;
 556
 557		if (!uuids_start) {
 558			uuids_start = ptr;
 559			uuids_start[0] = 1;
 560			uuids_start[1] = EIR_UUID128_ALL;
 561			ptr += 2;
 562		}
 563
 564		/* Stop if not enough space to put next UUID */
 565		if ((ptr - data) + 16 > len) {
 566			uuids_start[1] = EIR_UUID128_SOME;
 567			break;
 568		}
 569
 570		memcpy(ptr, uuid->uuid, 16);
 571		ptr += 16;
 572		uuids_start[0] += 16;
 573	}
 574
 575	return ptr;
 576}
 577
 578static void create_eir(struct hci_dev *hdev, u8 *data)
 579{
 580	u8 *ptr = data;
 581	size_t name_len;
 582
 583	name_len = strlen(hdev->dev_name);
 584
 585	if (name_len > 0) {
 586		/* EIR Data type */
 587		if (name_len > 48) {
 588			name_len = 48;
 589			ptr[1] = EIR_NAME_SHORT;
 590		} else
 591			ptr[1] = EIR_NAME_COMPLETE;
 592
 593		/* EIR Data length */
 594		ptr[0] = name_len + 1;
 595
 596		memcpy(ptr + 2, hdev->dev_name, name_len);
 597
 598		ptr += (name_len + 2);
 599	}
 600
 601	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 602		ptr[0] = 2;
 603		ptr[1] = EIR_TX_POWER;
 604		ptr[2] = (u8) hdev->inq_tx_power;
 605
 606		ptr += 3;
 607	}
 608
 609	if (hdev->devid_source > 0) {
 610		ptr[0] = 9;
 611		ptr[1] = EIR_DEVICE_ID;
 612
 613		put_unaligned_le16(hdev->devid_source, ptr + 2);
 614		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 615		put_unaligned_le16(hdev->devid_product, ptr + 6);
 616		put_unaligned_le16(hdev->devid_version, ptr + 8);
 617
 618		ptr += 10;
 619	}
 620
 621	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 622	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 623	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 624}
 625
 626void __hci_req_update_eir(struct hci_request *req)
 627{
 628	struct hci_dev *hdev = req->hdev;
 629	struct hci_cp_write_eir cp;
 630
 631	if (!hdev_is_powered(hdev))
 632		return;
 633
 634	if (!lmp_ext_inq_capable(hdev))
 635		return;
 636
 637	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 638		return;
 639
 640	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 641		return;
 642
 643	memset(&cp, 0, sizeof(cp));
 644
 645	create_eir(hdev, cp.data);
 646
 647	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 648		return;
 649
 650	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 651
 652	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 653}
 654
 655void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
 656{
 657	struct hci_dev *hdev = req->hdev;
 658
 659	if (hdev->scanning_paused) {
 660		bt_dev_dbg(hdev, "Scanning is paused for suspend");
 661		return;
 662	}
 663
 664	if (use_ext_scan(hdev)) {
 665		struct hci_cp_le_set_ext_scan_enable cp;
 666
 667		memset(&cp, 0, sizeof(cp));
 668		cp.enable = LE_SCAN_DISABLE;
 669		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
 670			    &cp);
 671	} else {
 672		struct hci_cp_le_set_scan_enable cp;
 673
 674		memset(&cp, 0, sizeof(cp));
 675		cp.enable = LE_SCAN_DISABLE;
 676		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 677	}
 678
 679	/* Disable address resolution */
 680	if (use_ll_privacy(hdev) &&
 681	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
 682	    hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
 683		__u8 enable = 0x00;
 684
 685		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
 686	}
 687}
 688
 689static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
 690				u8 bdaddr_type)
 691{
 692	struct hci_cp_le_del_from_white_list cp;
 693
 694	cp.bdaddr_type = bdaddr_type;
 695	bacpy(&cp.bdaddr, bdaddr);
 696
 697	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
 698		   cp.bdaddr_type);
 699	hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
 700
 701	if (use_ll_privacy(req->hdev)) {
 702		struct smp_irk *irk;
 703
 704		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
 705		if (irk) {
 706			struct hci_cp_le_del_from_resolv_list cp;
 707
 708			cp.bdaddr_type = bdaddr_type;
 709			bacpy(&cp.bdaddr, bdaddr);
 710
 711			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
 712				    sizeof(cp), &cp);
 713		}
 714	}
 715}
 716
 717/* Adds connection to white list if needed. On error, returns -1. */
 718static int add_to_white_list(struct hci_request *req,
 719			     struct hci_conn_params *params, u8 *num_entries,
 720			     bool allow_rpa)
 721{
 722	struct hci_cp_le_add_to_white_list cp;
 723	struct hci_dev *hdev = req->hdev;
 724
 725	/* Already in white list */
 726	if (hci_bdaddr_list_lookup(&hdev->le_white_list, &params->addr,
 727				   params->addr_type))
 728		return 0;
 729
 730	/* Select filter policy to accept all advertising */
 731	if (*num_entries >= hdev->le_white_list_size)
 732		return -1;
 733
 734	/* White list can not be used with RPAs */
 735	if (!allow_rpa && !use_ll_privacy(hdev) &&
 736	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
 737		return -1;
 738	}
 739
 740	/* During suspend, only wakeable devices can be in whitelist */
 741	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
 742						   params->current_flags))
 743		return 0;
 744
 745	*num_entries += 1;
 746	cp.bdaddr_type = params->addr_type;
 747	bacpy(&cp.bdaddr, &params->addr);
 748
 749	bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
 750		   cp.bdaddr_type);
 751	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 752
 753	if (use_ll_privacy(hdev)) {
 754		struct smp_irk *irk;
 755
 756		irk = hci_find_irk_by_addr(hdev, &params->addr,
 757					   params->addr_type);
 758		if (irk) {
 759			struct hci_cp_le_add_to_resolv_list cp;
 760
 761			cp.bdaddr_type = params->addr_type;
 762			bacpy(&cp.bdaddr, &params->addr);
 763			memcpy(cp.peer_irk, irk->val, 16);
 764
 765			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
 766				memcpy(cp.local_irk, hdev->irk, 16);
 767			else
 768				memset(cp.local_irk, 0, 16);
 769
 770			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
 771				    sizeof(cp), &cp);
 772		}
 773	}
 774
 775	return 0;
 776}
 777
 778static u8 update_white_list(struct hci_request *req)
 779{
 780	struct hci_dev *hdev = req->hdev;
 781	struct hci_conn_params *params;
 782	struct bdaddr_list *b;
 783	u8 num_entries = 0;
 784	bool pend_conn, pend_report;
 785	/* We allow whitelisting even with RPAs in suspend. In the worst case,
 786	 * we won't be able to wake from devices that use the privacy1.2
 787	 * features. Additionally, once we support privacy1.2 and IRK
 788	 * offloading, we can update this to also check for those conditions.
 789	 */
 790	bool allow_rpa = hdev->suspended;
 791
 792	/* Go through the current white list programmed into the
 793	 * controller one by one and check if that address is still
 794	 * in the list of pending connections or list of devices to
 795	 * report. If not present in either list, then queue the
 796	 * command to remove it from the controller.
 797	 */
 798	list_for_each_entry(b, &hdev->le_white_list, list) {
 799		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
 800						      &b->bdaddr,
 801						      b->bdaddr_type);
 802		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
 803							&b->bdaddr,
 804							b->bdaddr_type);
 
 
 805
 806		/* If the device is not likely to connect or report,
 807		 * remove it from the whitelist.
 808		 */
 809		if (!pend_conn && !pend_report) {
 810			del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
 811			continue;
 812		}
 813
 814		/* White list can not be used with RPAs */
 815		if (!allow_rpa && !use_ll_privacy(hdev) &&
 816		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 817			return 0x00;
 818		}
 819
 820		num_entries++;
 821	}
 822
 823	/* Since all no longer valid white list entries have been
 824	 * removed, walk through the list of pending connections
 825	 * and ensure that any new device gets programmed into
 826	 * the controller.
 827	 *
 828	 * If the list of the devices is larger than the list of
 829	 * available white list entries in the controller, then
 830	 * just abort and return filer policy value to not use the
 831	 * white list.
 832	 */
 833	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 834		if (add_to_white_list(req, params, &num_entries, allow_rpa))
 
 
 
 
 
 
 
 
 
 
 
 835			return 0x00;
 
 
 
 
 836	}
 837
 838	/* After adding all new pending connections, walk through
 839	 * the list of pending reports and also add these to the
 840	 * white list if there is still space. Abort if space runs out.
 841	 */
 842	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 843		if (add_to_white_list(req, params, &num_entries, allow_rpa))
 
 
 
 
 
 844			return 0x00;
 
 
 
 
 
 
 
 
 
 
 845	}
 846
 847	/* Once the controller offloading of advertisement monitor is in place,
 848	 * the if condition should include the support of MSFT extension
 849	 * support. If suspend is ongoing, whitelist should be the default to
 850	 * prevent waking by random advertisements.
 851	 */
 852	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended)
 853		return 0x00;
 854
 855	/* Select filter policy to use white list */
 856	return 0x01;
 857}
 858
 859static bool scan_use_rpa(struct hci_dev *hdev)
 860{
 861	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 862}
 863
 864static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
 865			       u16 window, u8 own_addr_type, u8 filter_policy,
 866			       bool addr_resolv)
 867{
 868	struct hci_dev *hdev = req->hdev;
 869
 870	if (hdev->scanning_paused) {
 871		bt_dev_dbg(hdev, "Scanning is paused for suspend");
 872		return;
 873	}
 874
 875	if (use_ll_privacy(hdev) &&
 876	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
 877	    addr_resolv) {
 878		u8 enable = 0x01;
 879
 880		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
 881	}
 882
 883	/* Use ext scanning if set ext scan param and ext scan enable is
 884	 * supported
 885	 */
 886	if (use_ext_scan(hdev)) {
 887		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
 888		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
 889		struct hci_cp_le_scan_phy_params *phy_params;
 890		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
 891		u32 plen;
 892
 893		ext_param_cp = (void *)data;
 894		phy_params = (void *)ext_param_cp->data;
 895
 896		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
 897		ext_param_cp->own_addr_type = own_addr_type;
 898		ext_param_cp->filter_policy = filter_policy;
 899
 900		plen = sizeof(*ext_param_cp);
 901
 902		if (scan_1m(hdev) || scan_2m(hdev)) {
 903			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
 904
 905			memset(phy_params, 0, sizeof(*phy_params));
 906			phy_params->type = type;
 907			phy_params->interval = cpu_to_le16(interval);
 908			phy_params->window = cpu_to_le16(window);
 909
 910			plen += sizeof(*phy_params);
 911			phy_params++;
 912		}
 913
 914		if (scan_coded(hdev)) {
 915			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
 916
 917			memset(phy_params, 0, sizeof(*phy_params));
 918			phy_params->type = type;
 919			phy_params->interval = cpu_to_le16(interval);
 920			phy_params->window = cpu_to_le16(window);
 921
 922			plen += sizeof(*phy_params);
 923			phy_params++;
 924		}
 925
 926		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
 927			    plen, ext_param_cp);
 928
 929		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
 930		ext_enable_cp.enable = LE_SCAN_ENABLE;
 931		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 932
 933		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
 934			    sizeof(ext_enable_cp), &ext_enable_cp);
 935	} else {
 936		struct hci_cp_le_set_scan_param param_cp;
 937		struct hci_cp_le_set_scan_enable enable_cp;
 938
 939		memset(&param_cp, 0, sizeof(param_cp));
 940		param_cp.type = type;
 941		param_cp.interval = cpu_to_le16(interval);
 942		param_cp.window = cpu_to_le16(window);
 943		param_cp.own_address_type = own_addr_type;
 944		param_cp.filter_policy = filter_policy;
 945		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 946			    &param_cp);
 947
 948		memset(&enable_cp, 0, sizeof(enable_cp));
 949		enable_cp.enable = LE_SCAN_ENABLE;
 950		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 951		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 952			    &enable_cp);
 953	}
 954}
 955
 956/* Returns true if an le connection is in the scanning state */
 957static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
 958{
 959	struct hci_conn_hash *h = &hdev->conn_hash;
 960	struct hci_conn  *c;
 961
 962	rcu_read_lock();
 963
 964	list_for_each_entry_rcu(c, &h->list, list) {
 965		if (c->type == LE_LINK && c->state == BT_CONNECT &&
 966		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
 967			rcu_read_unlock();
 968			return true;
 969		}
 970	}
 971
 972	rcu_read_unlock();
 973
 974	return false;
 975}
 976
 977/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 978 * controller based address resolution to be able to reconfigure
 979 * resolving list.
 980 */
 981void hci_req_add_le_passive_scan(struct hci_request *req)
 982{
 983	struct hci_dev *hdev = req->hdev;
 984	u8 own_addr_type;
 985	u8 filter_policy;
 986	u16 window, interval;
 987	/* Background scanning should run with address resolution */
 988	bool addr_resolv = true;
 989
 990	if (hdev->scanning_paused) {
 991		bt_dev_dbg(hdev, "Scanning is paused for suspend");
 992		return;
 993	}
 994
 995	/* Set require_privacy to false since no SCAN_REQ are send
 996	 * during passive scanning. Not using an non-resolvable address
 997	 * here is important so that peer devices using direct
 998	 * advertising with our address will be correctly reported
 999	 * by the controller.
1000	 */
1001	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
1002				      &own_addr_type))
1003		return;
1004
1005	/* Adding or removing entries from the white list must
1006	 * happen before enabling scanning. The controller does
1007	 * not allow white list modification while scanning.
1008	 */
1009	filter_policy = update_white_list(req);
1010
1011	/* When the controller is using random resolvable addresses and
1012	 * with that having LE privacy enabled, then controllers with
1013	 * Extended Scanner Filter Policies support can now enable support
1014	 * for handling directed advertising.
1015	 *
1016	 * So instead of using filter polices 0x00 (no whitelist)
1017	 * and 0x01 (whitelist enabled) use the new filter policies
1018	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
1019	 */
1020	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
1021	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
1022		filter_policy |= 0x02;
1023
1024	if (hdev->suspended) {
1025		window = hdev->le_scan_window_suspend;
1026		interval = hdev->le_scan_int_suspend;
1027	} else if (hci_is_le_conn_scanning(hdev)) {
1028		window = hdev->le_scan_window_connect;
1029		interval = hdev->le_scan_int_connect;
1030	} else {
1031		window = hdev->le_scan_window;
1032		interval = hdev->le_scan_interval;
1033	}
1034
1035	bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
1036	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
1037			   own_addr_type, filter_policy, addr_resolv);
1038}
1039
1040static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
1041{
1042	struct adv_info *adv_instance;
1043
1044	/* Instance 0x00 always set local name */
1045	if (instance == 0x00)
1046		return 1;
1047
1048	adv_instance = hci_find_adv_instance(hdev, instance);
1049	if (!adv_instance)
1050		return 0;
1051
1052	/* TODO: Take into account the "appearance" and "local-name" flags here.
1053	 * These are currently being ignored as they are not supported.
1054	 */
1055	return adv_instance->scan_rsp_len;
1056}
1057
1058static void hci_req_clear_event_filter(struct hci_request *req)
1059{
1060	struct hci_cp_set_event_filter f;
1061
1062	memset(&f, 0, sizeof(f));
1063	f.flt_type = HCI_FLT_CLEAR_ALL;
1064	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
1065
1066	/* Update page scan state (since we may have modified it when setting
1067	 * the event filter).
1068	 */
1069	__hci_req_update_scan(req);
1070}
1071
1072static void hci_req_set_event_filter(struct hci_request *req)
1073{
1074	struct bdaddr_list_with_flags *b;
1075	struct hci_cp_set_event_filter f;
1076	struct hci_dev *hdev = req->hdev;
1077	u8 scan = SCAN_DISABLED;
1078
1079	/* Always clear event filter when starting */
1080	hci_req_clear_event_filter(req);
1081
1082	list_for_each_entry(b, &hdev->whitelist, list) {
1083		if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
1084					b->current_flags))
1085			continue;
1086
1087		memset(&f, 0, sizeof(f));
1088		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
1089		f.flt_type = HCI_FLT_CONN_SETUP;
1090		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
1091		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;
1092
1093		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
1094		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
1095		scan = SCAN_PAGE;
1096	}
1097
1098	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1099}
1100
1101static void hci_req_config_le_suspend_scan(struct hci_request *req)
1102{
1103	/* Before changing params disable scan if enabled */
1104	if (hci_dev_test_flag(req->hdev, HCI_LE_SCAN))
1105		hci_req_add_le_scan_disable(req, false);
1106
1107	/* Configure params and enable scanning */
1108	hci_req_add_le_passive_scan(req);
1109
1110	/* Block suspend notifier on response */
1111	set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks);
1112}
1113
1114static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1115{
1116	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
1117		   status);
1118	if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
1119	    test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
1120		wake_up(&hdev->suspend_wait_q);
1121	}
1122}
1123
1124/* Call with hci_dev_lock */
1125void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
1126{
1127	int old_state;
1128	struct hci_conn *conn;
1129	struct hci_request req;
1130	u8 page_scan;
1131	int disconnect_counter;
1132
1133	if (next == hdev->suspend_state) {
1134		bt_dev_dbg(hdev, "Same state before and after: %d", next);
1135		goto done;
1136	}
1137
1138	hdev->suspend_state = next;
1139	hci_req_init(&req, hdev);
1140
1141	if (next == BT_SUSPEND_DISCONNECT) {
1142		/* Mark device as suspended */
1143		hdev->suspended = true;
1144
1145		/* Pause discovery if not already stopped */
1146		old_state = hdev->discovery.state;
1147		if (old_state != DISCOVERY_STOPPED) {
1148			set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
1149			hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
1150			queue_work(hdev->req_workqueue, &hdev->discov_update);
1151		}
1152
1153		hdev->discovery_paused = true;
1154		hdev->discovery_old_state = old_state;
1155
1156		/* Stop advertising */
1157		old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1158		if (old_state) {
1159			set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
1160			cancel_delayed_work(&hdev->discov_off);
1161			queue_delayed_work(hdev->req_workqueue,
1162					   &hdev->discov_off, 0);
1163		}
1164
1165		hdev->advertising_paused = true;
1166		hdev->advertising_old_state = old_state;
1167		/* Disable page scan */
1168		page_scan = SCAN_DISABLED;
1169		hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan);
1170
1171		/* Disable LE passive scan if enabled */
1172		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1173			hci_req_add_le_scan_disable(&req, false);
1174
1175		/* Mark task needing completion */
1176		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1177
1178		/* Prevent disconnects from causing scanning to be re-enabled */
1179		hdev->scanning_paused = true;
1180
1181		/* Run commands before disconnecting */
1182		hci_req_run(&req, suspend_req_complete);
1183
1184		disconnect_counter = 0;
1185		/* Soft disconnect everything (power off) */
1186		list_for_each_entry(conn, &hdev->conn_hash.list, list) {
1187			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
1188			disconnect_counter++;
1189		}
1190
1191		if (disconnect_counter > 0) {
1192			bt_dev_dbg(hdev,
1193				   "Had %d disconnects. Will wait on them",
1194				   disconnect_counter);
1195			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
1196		}
1197	} else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1198		/* Unpause to take care of updating scanning params */
1199		hdev->scanning_paused = false;
1200		/* Enable event filter for paired devices */
1201		hci_req_set_event_filter(&req);
1202		/* Enable passive scan at lower duty cycle */
1203		hci_req_config_le_suspend_scan(&req);
1204		/* Pause scan changes again. */
1205		hdev->scanning_paused = true;
1206		hci_req_run(&req, suspend_req_complete);
1207	} else {
1208		hdev->suspended = false;
1209		hdev->scanning_paused = false;
1210
1211		hci_req_clear_event_filter(&req);
1212		/* Reset passive/background scanning to normal */
1213		hci_req_config_le_suspend_scan(&req);
1214
1215		/* Unpause advertising */
1216		hdev->advertising_paused = false;
1217		if (hdev->advertising_old_state) {
1218			set_bit(SUSPEND_UNPAUSE_ADVERTISING,
1219				hdev->suspend_tasks);
1220			hci_dev_set_flag(hdev, HCI_ADVERTISING);
1221			queue_work(hdev->req_workqueue,
1222				   &hdev->discoverable_update);
1223			hdev->advertising_old_state = 0;
1224		}
1225
1226		/* Unpause discovery */
1227		hdev->discovery_paused = false;
1228		if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
1229		    hdev->discovery_old_state != DISCOVERY_STOPPING) {
1230			set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
1231			hci_discovery_set_state(hdev, DISCOVERY_STARTING);
1232			queue_work(hdev->req_workqueue, &hdev->discov_update);
1233		}
1234
1235		hci_req_run(&req, suspend_req_complete);
1236	}
1237
1238	hdev->suspend_state = next;
1239
1240done:
1241	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
1242	wake_up(&hdev->suspend_wait_q);
1243}
1244
1245static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
1246{
1247	u8 instance = hdev->cur_adv_instance;
1248	struct adv_info *adv_instance;
1249
1250	/* Instance 0x00 always set local name */
1251	if (instance == 0x00)
1252		return 1;
1253
1254	adv_instance = hci_find_adv_instance(hdev, instance);
1255	if (!adv_instance)
1256		return 0;
1257
1258	/* TODO: Take into account the "appearance" and "local-name" flags here.
1259	 * These are currently being ignored as they are not supported.
1260	 */
1261	return adv_instance->scan_rsp_len;
1262}
1263
1264void __hci_req_disable_advertising(struct hci_request *req)
1265{
1266	if (ext_adv_capable(req->hdev)) {
1267		__hci_req_disable_ext_adv_instance(req, 0x00);
 
 
 
 
1268
 
1269	} else {
1270		u8 enable = 0x00;
1271
1272		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1273	}
1274}
1275
1276static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1277{
1278	u32 flags;
1279	struct adv_info *adv_instance;
1280
1281	if (instance == 0x00) {
1282		/* Instance 0 always manages the "Tx Power" and "Flags"
1283		 * fields
1284		 */
1285		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1286
1287		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1288		 * corresponds to the "connectable" instance flag.
1289		 */
1290		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1291			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1292
1293		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1294			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1295		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1296			flags |= MGMT_ADV_FLAG_DISCOV;
1297
1298		return flags;
1299	}
1300
1301	adv_instance = hci_find_adv_instance(hdev, instance);
1302
1303	/* Return 0 when we got an invalid instance identifier. */
1304	if (!adv_instance)
1305		return 0;
1306
1307	return adv_instance->flags;
1308}
1309
1310static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1311{
1312	/* If privacy is not enabled don't use RPA */
1313	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1314		return false;
1315
1316	/* If basic privacy mode is enabled use RPA */
1317	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1318		return true;
1319
1320	/* If limited privacy mode is enabled don't use RPA if we're
1321	 * both discoverable and bondable.
1322	 */
1323	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1324	    hci_dev_test_flag(hdev, HCI_BONDABLE))
1325		return false;
1326
1327	/* We're neither bondable nor discoverable in the limited
1328	 * privacy mode, therefore use RPA.
1329	 */
1330	return true;
1331}
1332
1333static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1334{
1335	/* If there is no connection we are OK to advertise. */
1336	if (hci_conn_num(hdev, LE_LINK) == 0)
1337		return true;
1338
1339	/* Check le_states if there is any connection in slave role. */
1340	if (hdev->conn_hash.le_num_slave > 0) {
1341		/* Slave connection state and non connectable mode bit 20. */
1342		if (!connectable && !(hdev->le_states[2] & 0x10))
1343			return false;
1344
1345		/* Slave connection state and connectable mode bit 38
1346		 * and scannable bit 21.
1347		 */
1348		if (connectable && (!(hdev->le_states[4] & 0x40) ||
1349				    !(hdev->le_states[2] & 0x20)))
1350			return false;
1351	}
1352
1353	/* Check le_states if there is any connection in master role. */
1354	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1355		/* Master connection state and non connectable mode bit 18. */
1356		if (!connectable && !(hdev->le_states[2] & 0x02))
1357			return false;
1358
1359		/* Master connection state and connectable mode bit 35 and
1360		 * scannable 19.
1361		 */
1362		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1363				    !(hdev->le_states[2] & 0x08)))
1364			return false;
1365	}
1366
1367	return true;
1368}
1369
1370void __hci_req_enable_advertising(struct hci_request *req)
1371{
1372	struct hci_dev *hdev = req->hdev;
1373	struct hci_cp_le_set_adv_param cp;
1374	u8 own_addr_type, enable = 0x01;
1375	bool connectable;
1376	u16 adv_min_interval, adv_max_interval;
1377	u32 flags;
1378
1379	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1380
1381	/* If the "connectable" instance flag was not set, then choose between
1382	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1383	 */
1384	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1385		      mgmt_get_connectable(hdev);
1386
1387	if (!is_advertising_allowed(hdev, connectable))
1388		return;
1389
1390	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1391		__hci_req_disable_advertising(req);
1392
1393	/* Clear the HCI_LE_ADV bit temporarily so that the
1394	 * hci_update_random_address knows that it's safe to go ahead
1395	 * and write a new random address. The flag will be set back on
1396	 * as soon as the SET_ADV_ENABLE HCI command completes.
1397	 */
1398	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1399
1400	/* Set require_privacy to true only when non-connectable
1401	 * advertising is used. In that case it is fine to use a
1402	 * non-resolvable private address.
1403	 */
1404	if (hci_update_random_address(req, !connectable,
1405				      adv_use_rpa(hdev, flags),
1406				      &own_addr_type) < 0)
1407		return;
1408
1409	memset(&cp, 0, sizeof(cp));
1410
1411	if (connectable) {
1412		cp.type = LE_ADV_IND;
1413
1414		adv_min_interval = hdev->le_adv_min_interval;
1415		adv_max_interval = hdev->le_adv_max_interval;
1416	} else {
1417		if (get_cur_adv_instance_scan_rsp_len(hdev))
1418			cp.type = LE_ADV_SCAN_IND;
1419		else
1420			cp.type = LE_ADV_NONCONN_IND;
1421
1422		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1423		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1424			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1425			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1426		} else {
1427			adv_min_interval = hdev->le_adv_min_interval;
1428			adv_max_interval = hdev->le_adv_max_interval;
1429		}
1430	}
1431
1432	cp.min_interval = cpu_to_le16(adv_min_interval);
1433	cp.max_interval = cpu_to_le16(adv_max_interval);
1434	cp.own_address_type = own_addr_type;
1435	cp.channel_map = hdev->le_adv_channel_map;
1436
1437	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1438
1439	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1440}
1441
1442u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1443{
1444	size_t short_len;
1445	size_t complete_len;
1446
1447	/* no space left for name (+ NULL + type + len) */
1448	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1449		return ad_len;
1450
1451	/* use complete name if present and fits */
1452	complete_len = strlen(hdev->dev_name);
1453	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1454		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1455				       hdev->dev_name, complete_len + 1);
1456
1457	/* use short name if present */
1458	short_len = strlen(hdev->short_name);
1459	if (short_len)
1460		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1461				       hdev->short_name, short_len + 1);
1462
1463	/* use shortened full name if present, we already know that name
1464	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1465	 */
1466	if (complete_len) {
1467		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1468
1469		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1470		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1471
1472		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1473				       sizeof(name));
1474	}
1475
1476	return ad_len;
1477}
1478
1479static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1480{
1481	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1482}
1483
1484static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1485{
1486	u8 scan_rsp_len = 0;
1487
1488	if (hdev->appearance) {
1489		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1490	}
1491
1492	return append_local_name(hdev, ptr, scan_rsp_len);
1493}
1494
1495static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1496					u8 *ptr)
1497{
1498	struct adv_info *adv_instance;
1499	u32 instance_flags;
1500	u8 scan_rsp_len = 0;
1501
1502	adv_instance = hci_find_adv_instance(hdev, instance);
1503	if (!adv_instance)
1504		return 0;
1505
1506	instance_flags = adv_instance->flags;
1507
1508	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1509		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1510	}
1511
1512	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1513	       adv_instance->scan_rsp_len);
1514
1515	scan_rsp_len += adv_instance->scan_rsp_len;
1516
1517	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1518		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1519
1520	return scan_rsp_len;
1521}
1522
1523void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1524{
1525	struct hci_dev *hdev = req->hdev;
1526	u8 len;
1527
1528	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1529		return;
1530
1531	if (ext_adv_capable(hdev)) {
1532		struct hci_cp_le_set_ext_scan_rsp_data cp;
1533
1534		memset(&cp, 0, sizeof(cp));
1535
1536		if (instance)
1537			len = create_instance_scan_rsp_data(hdev, instance,
1538							    cp.data);
1539		else
1540			len = create_default_scan_rsp_data(hdev, cp.data);
1541
1542		if (hdev->scan_rsp_data_len == len &&
1543		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1544			return;
1545
1546		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1547		hdev->scan_rsp_data_len = len;
1548
1549		cp.handle = instance;
1550		cp.length = len;
1551		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1552		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1553
1554		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1555			    &cp);
1556	} else {
1557		struct hci_cp_le_set_scan_rsp_data cp;
1558
1559		memset(&cp, 0, sizeof(cp));
1560
1561		if (instance)
1562			len = create_instance_scan_rsp_data(hdev, instance,
1563							    cp.data);
1564		else
1565			len = create_default_scan_rsp_data(hdev, cp.data);
1566
1567		if (hdev->scan_rsp_data_len == len &&
1568		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1569			return;
1570
1571		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1572		hdev->scan_rsp_data_len = len;
1573
1574		cp.length = len;
1575
1576		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1577	}
1578}
1579
1580static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1581{
1582	struct adv_info *adv_instance = NULL;
1583	u8 ad_len = 0, flags = 0;
1584	u32 instance_flags;
1585
1586	/* Return 0 when the current instance identifier is invalid. */
1587	if (instance) {
1588		adv_instance = hci_find_adv_instance(hdev, instance);
1589		if (!adv_instance)
1590			return 0;
1591	}
1592
1593	instance_flags = get_adv_instance_flags(hdev, instance);
1594
1595	/* If instance already has the flags set skip adding it once
1596	 * again.
1597	 */
1598	if (adv_instance && eir_get_data(adv_instance->adv_data,
1599					 adv_instance->adv_data_len, EIR_FLAGS,
1600					 NULL))
1601		goto skip_flags;
1602
1603	/* The Add Advertising command allows userspace to set both the general
1604	 * and limited discoverable flags.
1605	 */
1606	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1607		flags |= LE_AD_GENERAL;
1608
1609	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1610		flags |= LE_AD_LIMITED;
1611
1612	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1613		flags |= LE_AD_NO_BREDR;
1614
1615	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1616		/* If a discovery flag wasn't provided, simply use the global
1617		 * settings.
1618		 */
1619		if (!flags)
1620			flags |= mgmt_get_adv_discov_flags(hdev);
1621
1622		/* If flags would still be empty, then there is no need to
1623		 * include the "Flags" AD field".
1624		 */
1625		if (flags) {
1626			ptr[0] = 0x02;
1627			ptr[1] = EIR_FLAGS;
1628			ptr[2] = flags;
1629
1630			ad_len += 3;
1631			ptr += 3;
1632		}
1633	}
1634
1635skip_flags:
1636	if (adv_instance) {
1637		memcpy(ptr, adv_instance->adv_data,
1638		       adv_instance->adv_data_len);
1639		ad_len += adv_instance->adv_data_len;
1640		ptr += adv_instance->adv_data_len;
1641	}
1642
1643	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1644		s8 adv_tx_power;
1645
1646		if (ext_adv_capable(hdev)) {
1647			if (adv_instance)
1648				adv_tx_power = adv_instance->tx_power;
1649			else
1650				adv_tx_power = hdev->adv_tx_power;
1651		} else {
1652			adv_tx_power = hdev->adv_tx_power;
1653		}
1654
1655		/* Provide Tx Power only if we can provide a valid value for it */
1656		if (adv_tx_power != HCI_TX_POWER_INVALID) {
1657			ptr[0] = 0x02;
1658			ptr[1] = EIR_TX_POWER;
1659			ptr[2] = (u8)adv_tx_power;
1660
1661			ad_len += 3;
1662			ptr += 3;
1663		}
1664	}
1665
1666	return ad_len;
1667}
1668
1669void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1670{
1671	struct hci_dev *hdev = req->hdev;
1672	u8 len;
1673
1674	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1675		return;
1676
1677	if (ext_adv_capable(hdev)) {
1678		struct hci_cp_le_set_ext_adv_data cp;
1679
1680		memset(&cp, 0, sizeof(cp));
1681
1682		len = create_instance_adv_data(hdev, instance, cp.data);
1683
1684		/* There's nothing to do if the data hasn't changed */
1685		if (hdev->adv_data_len == len &&
1686		    memcmp(cp.data, hdev->adv_data, len) == 0)
1687			return;
1688
1689		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1690		hdev->adv_data_len = len;
1691
1692		cp.length = len;
1693		cp.handle = instance;
1694		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1695		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1696
1697		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1698	} else {
1699		struct hci_cp_le_set_adv_data cp;
1700
1701		memset(&cp, 0, sizeof(cp));
1702
1703		len = create_instance_adv_data(hdev, instance, cp.data);
1704
1705		/* There's nothing to do if the data hasn't changed */
1706		if (hdev->adv_data_len == len &&
1707		    memcmp(cp.data, hdev->adv_data, len) == 0)
1708			return;
1709
1710		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1711		hdev->adv_data_len = len;
1712
1713		cp.length = len;
1714
1715		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1716	}
1717}
1718
1719int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1720{
1721	struct hci_request req;
1722
1723	hci_req_init(&req, hdev);
1724	__hci_req_update_adv_data(&req, instance);
1725
1726	return hci_req_run(&req, NULL);
1727}
1728
1729static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
1730					    u16 opcode)
1731{
1732	BT_DBG("%s status %u", hdev->name, status);
1733}
1734
1735void hci_req_disable_address_resolution(struct hci_dev *hdev)
1736{
1737	struct hci_request req;
1738	__u8 enable = 0x00;
1739
1740	if (!use_ll_privacy(hdev) &&
1741	    !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1742		return;
1743
1744	hci_req_init(&req, hdev);
1745
1746	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
1747
1748	hci_req_run(&req, enable_addr_resolution_complete);
1749}
1750
1751static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1752{
1753	BT_DBG("%s status %u", hdev->name, status);
1754}
1755
1756void hci_req_reenable_advertising(struct hci_dev *hdev)
1757{
1758	struct hci_request req;
1759
1760	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1761	    list_empty(&hdev->adv_instances))
1762		return;
1763
1764	hci_req_init(&req, hdev);
1765
1766	if (hdev->cur_adv_instance) {
1767		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1768						true);
1769	} else {
1770		if (ext_adv_capable(hdev)) {
1771			__hci_req_start_ext_adv(&req, 0x00);
1772		} else {
1773			__hci_req_update_adv_data(&req, 0x00);
1774			__hci_req_update_scan_rsp_data(&req, 0x00);
1775			__hci_req_enable_advertising(&req);
1776		}
1777	}
1778
1779	hci_req_run(&req, adv_enable_complete);
1780}
1781
1782static void adv_timeout_expire(struct work_struct *work)
1783{
1784	struct hci_dev *hdev = container_of(work, struct hci_dev,
1785					    adv_instance_expire.work);
1786
1787	struct hci_request req;
1788	u8 instance;
1789
1790	BT_DBG("%s", hdev->name);
1791
1792	hci_dev_lock(hdev);
1793
1794	hdev->adv_instance_timeout = 0;
1795
1796	instance = hdev->cur_adv_instance;
1797	if (instance == 0x00)
1798		goto unlock;
1799
1800	hci_req_init(&req, hdev);
1801
1802	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1803
1804	if (list_empty(&hdev->adv_instances))
1805		__hci_req_disable_advertising(&req);
1806
1807	hci_req_run(&req, NULL);
1808
1809unlock:
1810	hci_dev_unlock(hdev);
1811}
1812
1813int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1814			   bool use_rpa, struct adv_info *adv_instance,
1815			   u8 *own_addr_type, bdaddr_t *rand_addr)
1816{
1817	int err;
1818
1819	bacpy(rand_addr, BDADDR_ANY);
1820
1821	/* If privacy is enabled use a resolvable private address. If
1822	 * current RPA has expired then generate a new one.
1823	 */
1824	if (use_rpa) {
1825		int to;
1826
1827		*own_addr_type = ADDR_LE_DEV_RANDOM;
1828
1829		if (adv_instance) {
1830			if (!adv_instance->rpa_expired &&
1831			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
1832				return 0;
1833
1834			adv_instance->rpa_expired = false;
1835		} else {
1836			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1837			    !bacmp(&hdev->random_addr, &hdev->rpa))
1838				return 0;
1839		}
1840
1841		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1842		if (err < 0) {
1843			bt_dev_err(hdev, "failed to generate new RPA");
1844			return err;
1845		}
1846
1847		bacpy(rand_addr, &hdev->rpa);
1848
1849		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1850		if (adv_instance)
1851			queue_delayed_work(hdev->workqueue,
1852					   &adv_instance->rpa_expired_cb, to);
1853		else
1854			queue_delayed_work(hdev->workqueue,
1855					   &hdev->rpa_expired, to);
1856
1857		return 0;
1858	}
1859
1860	/* In case of required privacy without resolvable private address,
1861	 * use an non-resolvable private address. This is useful for
1862	 * non-connectable advertising.
1863	 */
1864	if (require_privacy) {
1865		bdaddr_t nrpa;
1866
1867		while (true) {
1868			/* The non-resolvable private address is generated
1869			 * from random six bytes with the two most significant
1870			 * bits cleared.
1871			 */
1872			get_random_bytes(&nrpa, 6);
1873			nrpa.b[5] &= 0x3f;
1874
1875			/* The non-resolvable private address shall not be
1876			 * equal to the public address.
1877			 */
1878			if (bacmp(&hdev->bdaddr, &nrpa))
1879				break;
1880		}
1881
1882		*own_addr_type = ADDR_LE_DEV_RANDOM;
1883		bacpy(rand_addr, &nrpa);
1884
1885		return 0;
1886	}
1887
1888	/* No privacy so use a public address. */
1889	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1890
1891	return 0;
1892}
1893
1894void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1895{
1896	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1897}
1898
1899int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1900{
1901	struct hci_cp_le_set_ext_adv_params cp;
1902	struct hci_dev *hdev = req->hdev;
1903	bool connectable;
1904	u32 flags;
1905	bdaddr_t random_addr;
1906	u8 own_addr_type;
1907	int err;
1908	struct adv_info *adv_instance;
1909	bool secondary_adv;
 
 
1910
1911	if (instance > 0) {
1912		adv_instance = hci_find_adv_instance(hdev, instance);
1913		if (!adv_instance)
1914			return -EINVAL;
1915	} else {
1916		adv_instance = NULL;
1917	}
1918
1919	flags = get_adv_instance_flags(hdev, instance);
1920
1921	/* If the "connectable" instance flag was not set, then choose between
1922	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1923	 */
1924	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1925		      mgmt_get_connectable(hdev);
1926
1927	if (!is_advertising_allowed(hdev, connectable))
1928		return -EPERM;
1929
1930	/* Set require_privacy to true only when non-connectable
1931	 * advertising is used. In that case it is fine to use a
1932	 * non-resolvable private address.
1933	 */
1934	err = hci_get_random_address(hdev, !connectable,
1935				     adv_use_rpa(hdev, flags), adv_instance,
1936				     &own_addr_type, &random_addr);
1937	if (err < 0)
1938		return err;
1939
1940	memset(&cp, 0, sizeof(cp));
1941
1942	/* In ext adv set param interval is 3 octets */
1943	hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1944	hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1945
1946	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1947
1948	if (connectable) {
1949		if (secondary_adv)
1950			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1951		else
1952			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1953	} else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1954		if (secondary_adv)
1955			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1956		else
1957			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1958	} else {
1959		if (secondary_adv)
1960			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1961		else
1962			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1963	}
1964
1965	cp.own_addr_type = own_addr_type;
1966	cp.channel_map = hdev->le_adv_channel_map;
1967	cp.tx_power = 127;
1968	cp.handle = instance;
1969
1970	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1971		cp.primary_phy = HCI_ADV_PHY_1M;
1972		cp.secondary_phy = HCI_ADV_PHY_2M;
1973	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1974		cp.primary_phy = HCI_ADV_PHY_CODED;
1975		cp.secondary_phy = HCI_ADV_PHY_CODED;
1976	} else {
1977		/* In all other cases use 1M */
1978		cp.primary_phy = HCI_ADV_PHY_1M;
1979		cp.secondary_phy = HCI_ADV_PHY_1M;
1980	}
1981
1982	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1983
1984	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1985	    bacmp(&random_addr, BDADDR_ANY)) {
1986		struct hci_cp_le_set_adv_set_rand_addr cp;
1987
1988		/* Check if random address need to be updated */
1989		if (adv_instance) {
1990			if (!bacmp(&random_addr, &adv_instance->random_addr))
1991				return 0;
1992		} else {
1993			if (!bacmp(&random_addr, &hdev->random_addr))
1994				return 0;
1995		}
1996
1997		memset(&cp, 0, sizeof(cp));
1998
1999		cp.handle = instance;
2000		bacpy(&cp.bdaddr, &random_addr);
2001
2002		hci_req_add(req,
2003			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
2004			    sizeof(cp), &cp);
2005	}
2006
2007	return 0;
2008}
2009
2010int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
2011{
2012	struct hci_dev *hdev = req->hdev;
2013	struct hci_cp_le_set_ext_adv_enable *cp;
2014	struct hci_cp_ext_adv_set *adv_set;
2015	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2016	struct adv_info *adv_instance;
2017
2018	if (instance > 0) {
2019		adv_instance = hci_find_adv_instance(hdev, instance);
2020		if (!adv_instance)
2021			return -EINVAL;
2022	} else {
2023		adv_instance = NULL;
2024	}
2025
2026	cp = (void *) data;
2027	adv_set = (void *) cp->data;
2028
2029	memset(cp, 0, sizeof(*cp));
2030
2031	cp->enable = 0x01;
2032	cp->num_of_sets = 0x01;
2033
2034	memset(adv_set, 0, sizeof(*adv_set));
2035
2036	adv_set->handle = instance;
2037
2038	/* Set duration per instance since controller is responsible for
2039	 * scheduling it.
2040	 */
2041	if (adv_instance && adv_instance->duration) {
2042		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
2043
2044		/* Time = N * 10 ms */
2045		adv_set->duration = cpu_to_le16(duration / 10);
2046	}
2047
2048	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
2049		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
2050		    data);
2051
2052	return 0;
2053}
2054
2055int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
2056{
2057	struct hci_dev *hdev = req->hdev;
2058	struct hci_cp_le_set_ext_adv_enable *cp;
2059	struct hci_cp_ext_adv_set *adv_set;
2060	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2061	u8 req_size;
2062
2063	/* If request specifies an instance that doesn't exist, fail */
2064	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2065		return -EINVAL;
2066
2067	memset(data, 0, sizeof(data));
2068
2069	cp = (void *)data;
2070	adv_set = (void *)cp->data;
2071
2072	/* Instance 0x00 indicates all advertising instances will be disabled */
2073	cp->num_of_sets = !!instance;
2074	cp->enable = 0x00;
2075
2076	adv_set->handle = instance;
2077
2078	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
2079	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);
2080
2081	return 0;
2082}
2083
2084int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
2085{
2086	struct hci_dev *hdev = req->hdev;
2087
2088	/* If request specifies an instance that doesn't exist, fail */
2089	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2090		return -EINVAL;
2091
2092	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);
2093
2094	return 0;
2095}
2096
2097int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
2098{
2099	struct hci_dev *hdev = req->hdev;
2100	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
2101	int err;
2102
2103	/* If instance isn't pending, the chip knows about it, and it's safe to
2104	 * disable
2105	 */
2106	if (adv_instance && !adv_instance->pending)
2107		__hci_req_disable_ext_adv_instance(req, instance);
2108
2109	err = __hci_req_setup_ext_adv_instance(req, instance);
2110	if (err < 0)
2111		return err;
2112
2113	__hci_req_update_scan_rsp_data(req, instance);
2114	__hci_req_enable_ext_advertising(req, instance);
2115
2116	return 0;
2117}
2118
2119int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
2120				    bool force)
2121{
2122	struct hci_dev *hdev = req->hdev;
2123	struct adv_info *adv_instance = NULL;
2124	u16 timeout;
2125
2126	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2127	    list_empty(&hdev->adv_instances))
2128		return -EPERM;
2129
2130	if (hdev->adv_instance_timeout)
2131		return -EBUSY;
2132
2133	adv_instance = hci_find_adv_instance(hdev, instance);
2134	if (!adv_instance)
2135		return -ENOENT;
2136
2137	/* A zero timeout means unlimited advertising. As long as there is
2138	 * only one instance, duration should be ignored. We still set a timeout
2139	 * in case further instances are being added later on.
2140	 *
2141	 * If the remaining lifetime of the instance is more than the duration
2142	 * then the timeout corresponds to the duration, otherwise it will be
2143	 * reduced to the remaining instance lifetime.
2144	 */
2145	if (adv_instance->timeout == 0 ||
2146	    adv_instance->duration <= adv_instance->remaining_time)
2147		timeout = adv_instance->duration;
2148	else
2149		timeout = adv_instance->remaining_time;
2150
2151	/* The remaining time is being reduced unless the instance is being
2152	 * advertised without time limit.
2153	 */
2154	if (adv_instance->timeout)
2155		adv_instance->remaining_time =
2156				adv_instance->remaining_time - timeout;
2157
2158	/* Only use work for scheduling instances with legacy advertising */
2159	if (!ext_adv_capable(hdev)) {
2160		hdev->adv_instance_timeout = timeout;
2161		queue_delayed_work(hdev->req_workqueue,
2162			   &hdev->adv_instance_expire,
2163			   msecs_to_jiffies(timeout * 1000));
2164	}
2165
2166	/* If we're just re-scheduling the same instance again then do not
2167	 * execute any HCI commands. This happens when a single instance is
2168	 * being advertised.
2169	 */
2170	if (!force && hdev->cur_adv_instance == instance &&
2171	    hci_dev_test_flag(hdev, HCI_LE_ADV))
2172		return 0;
2173
2174	hdev->cur_adv_instance = instance;
2175	if (ext_adv_capable(hdev)) {
2176		__hci_req_start_ext_adv(req, instance);
2177	} else {
2178		__hci_req_update_adv_data(req, instance);
2179		__hci_req_update_scan_rsp_data(req, instance);
2180		__hci_req_enable_advertising(req);
2181	}
2182
2183	return 0;
2184}
2185
2186static void cancel_adv_timeout(struct hci_dev *hdev)
2187{
2188	if (hdev->adv_instance_timeout) {
2189		hdev->adv_instance_timeout = 0;
2190		cancel_delayed_work(&hdev->adv_instance_expire);
2191	}
2192}
2193
2194/* For a single instance:
2195 * - force == true: The instance will be removed even when its remaining
2196 *   lifetime is not zero.
2197 * - force == false: the instance will be deactivated but kept stored unless
2198 *   the remaining lifetime is zero.
2199 *
2200 * For instance == 0x00:
2201 * - force == true: All instances will be removed regardless of their timeout
2202 *   setting.
2203 * - force == false: Only instances that have a timeout will be removed.
2204 */
2205void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
2206				struct hci_request *req, u8 instance,
2207				bool force)
2208{
2209	struct adv_info *adv_instance, *n, *next_instance = NULL;
2210	int err;
2211	u8 rem_inst;
2212
2213	/* Cancel any timeout concerning the removed instance(s). */
2214	if (!instance || hdev->cur_adv_instance == instance)
2215		cancel_adv_timeout(hdev);
2216
2217	/* Get the next instance to advertise BEFORE we remove
2218	 * the current one. This can be the same instance again
2219	 * if there is only one instance.
2220	 */
2221	if (instance && hdev->cur_adv_instance == instance)
2222		next_instance = hci_get_next_instance(hdev, instance);
2223
2224	if (instance == 0x00) {
2225		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
2226					 list) {
2227			if (!(force || adv_instance->timeout))
2228				continue;
2229
2230			rem_inst = adv_instance->instance;
2231			err = hci_remove_adv_instance(hdev, rem_inst);
2232			if (!err)
2233				mgmt_advertising_removed(sk, hdev, rem_inst);
2234		}
2235	} else {
2236		adv_instance = hci_find_adv_instance(hdev, instance);
2237
2238		if (force || (adv_instance && adv_instance->timeout &&
2239			      !adv_instance->remaining_time)) {
2240			/* Don't advertise a removed instance. */
2241			if (next_instance &&
2242			    next_instance->instance == instance)
2243				next_instance = NULL;
2244
2245			err = hci_remove_adv_instance(hdev, instance);
2246			if (!err)
2247				mgmt_advertising_removed(sk, hdev, instance);
2248		}
2249	}
2250
2251	if (!req || !hdev_is_powered(hdev) ||
2252	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
2253		return;
2254
2255	if (next_instance && !ext_adv_capable(hdev))
2256		__hci_req_schedule_adv_instance(req, next_instance->instance,
2257						false);
2258}
2259
2260static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
2261{
2262	struct hci_dev *hdev = req->hdev;
2263
2264	/* If we're advertising or initiating an LE connection we can't
2265	 * go ahead and change the random address at this time. This is
2266	 * because the eventual initiator address used for the
2267	 * subsequently created connection will be undefined (some
2268	 * controllers use the new address and others the one we had
2269	 * when the operation started).
2270	 *
2271	 * In this kind of scenario skip the update and let the random
2272	 * address be updated at the next cycle.
2273	 */
2274	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2275	    hci_lookup_le_connect(hdev)) {
2276		BT_DBG("Deferring random address update");
2277		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2278		return;
2279	}
2280
2281	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
2282}
2283
2284int hci_update_random_address(struct hci_request *req, bool require_privacy,
2285			      bool use_rpa, u8 *own_addr_type)
2286{
2287	struct hci_dev *hdev = req->hdev;
2288	int err;
2289
2290	/* If privacy is enabled use a resolvable private address. If
2291	 * current RPA has expired or there is something else than
2292	 * the current RPA in use, then generate a new one.
2293	 */
2294	if (use_rpa) {
2295		int to;
2296
2297		/* If Controller supports LL Privacy use own address type is
2298		 * 0x03
2299		 */
2300		if (use_ll_privacy(hdev))
2301			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
2302		else
2303			*own_addr_type = ADDR_LE_DEV_RANDOM;
2304
2305		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2306		    !bacmp(&hdev->random_addr, &hdev->rpa))
2307			return 0;
2308
2309		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
2310		if (err < 0) {
2311			bt_dev_err(hdev, "failed to generate new RPA");
2312			return err;
2313		}
2314
2315		set_random_addr(req, &hdev->rpa);
2316
2317		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
2318		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
2319
2320		return 0;
2321	}
2322
2323	/* In case of required privacy without resolvable private address,
2324	 * use an non-resolvable private address. This is useful for active
2325	 * scanning and non-connectable advertising.
2326	 */
2327	if (require_privacy) {
2328		bdaddr_t nrpa;
2329
2330		while (true) {
2331			/* The non-resolvable private address is generated
2332			 * from random six bytes with the two most significant
2333			 * bits cleared.
2334			 */
2335			get_random_bytes(&nrpa, 6);
2336			nrpa.b[5] &= 0x3f;
2337
2338			/* The non-resolvable private address shall not be
2339			 * equal to the public address.
2340			 */
2341			if (bacmp(&hdev->bdaddr, &nrpa))
2342				break;
2343		}
2344
2345		*own_addr_type = ADDR_LE_DEV_RANDOM;
2346		set_random_addr(req, &nrpa);
2347		return 0;
2348	}
2349
2350	/* If forcing static address is in use or there is no public
2351	 * address use the static address as random address (but skip
2352	 * the HCI command if the current random address is already the
2353	 * static one.
2354	 *
2355	 * In case BR/EDR has been disabled on a dual-mode controller
2356	 * and a static address has been configured, then use that
2357	 * address instead of the public BR/EDR address.
2358	 */
2359	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2360	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2361	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2362	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2363		*own_addr_type = ADDR_LE_DEV_RANDOM;
2364		if (bacmp(&hdev->static_addr, &hdev->random_addr))
2365			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
2366				    &hdev->static_addr);
2367		return 0;
2368	}
2369
2370	/* Neither privacy nor static address is being used so use a
2371	 * public address.
2372	 */
2373	*own_addr_type = ADDR_LE_DEV_PUBLIC;
2374
2375	return 0;
2376}
2377
2378static bool disconnected_whitelist_entries(struct hci_dev *hdev)
2379{
2380	struct bdaddr_list *b;
2381
2382	list_for_each_entry(b, &hdev->whitelist, list) {
2383		struct hci_conn *conn;
2384
2385		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2386		if (!conn)
2387			return true;
2388
2389		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2390			return true;
2391	}
2392
2393	return false;
2394}
2395
2396void __hci_req_update_scan(struct hci_request *req)
2397{
2398	struct hci_dev *hdev = req->hdev;
2399	u8 scan;
2400
2401	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2402		return;
2403
2404	if (!hdev_is_powered(hdev))
2405		return;
2406
2407	if (mgmt_powering_down(hdev))
2408		return;
2409
2410	if (hdev->scanning_paused)
2411		return;
2412
2413	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2414	    disconnected_whitelist_entries(hdev))
2415		scan = SCAN_PAGE;
2416	else
2417		scan = SCAN_DISABLED;
2418
2419	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2420		scan |= SCAN_INQUIRY;
2421
2422	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2423	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2424		return;
2425
2426	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2427}
2428
2429static int update_scan(struct hci_request *req, unsigned long opt)
2430{
2431	hci_dev_lock(req->hdev);
2432	__hci_req_update_scan(req);
2433	hci_dev_unlock(req->hdev);
2434	return 0;
2435}
2436
2437static void scan_update_work(struct work_struct *work)
2438{
2439	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2440
2441	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2442}
2443
2444static int connectable_update(struct hci_request *req, unsigned long opt)
2445{
2446	struct hci_dev *hdev = req->hdev;
2447
2448	hci_dev_lock(hdev);
2449
2450	__hci_req_update_scan(req);
2451
2452	/* If BR/EDR is not enabled and we disable advertising as a
2453	 * by-product of disabling connectable, we need to update the
2454	 * advertising flags.
2455	 */
2456	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2457		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2458
2459	/* Update the advertising parameters if necessary */
2460	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2461	    !list_empty(&hdev->adv_instances)) {
2462		if (ext_adv_capable(hdev))
2463			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2464		else
2465			__hci_req_enable_advertising(req);
2466	}
2467
2468	__hci_update_background_scan(req);
2469
2470	hci_dev_unlock(hdev);
2471
2472	return 0;
2473}
2474
2475static void connectable_update_work(struct work_struct *work)
2476{
2477	struct hci_dev *hdev = container_of(work, struct hci_dev,
2478					    connectable_update);
2479	u8 status;
2480
2481	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2482	mgmt_set_connectable_complete(hdev, status);
2483}
2484
2485static u8 get_service_classes(struct hci_dev *hdev)
2486{
2487	struct bt_uuid *uuid;
2488	u8 val = 0;
2489
2490	list_for_each_entry(uuid, &hdev->uuids, list)
2491		val |= uuid->svc_hint;
2492
2493	return val;
2494}
2495
2496void __hci_req_update_class(struct hci_request *req)
2497{
2498	struct hci_dev *hdev = req->hdev;
2499	u8 cod[3];
2500
2501	BT_DBG("%s", hdev->name);
2502
2503	if (!hdev_is_powered(hdev))
2504		return;
2505
2506	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2507		return;
2508
2509	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2510		return;
2511
2512	cod[0] = hdev->minor_class;
2513	cod[1] = hdev->major_class;
2514	cod[2] = get_service_classes(hdev);
2515
2516	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2517		cod[1] |= 0x20;
2518
2519	if (memcmp(cod, hdev->dev_class, 3) == 0)
2520		return;
2521
2522	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2523}
2524
2525static void write_iac(struct hci_request *req)
2526{
2527	struct hci_dev *hdev = req->hdev;
2528	struct hci_cp_write_current_iac_lap cp;
2529
2530	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2531		return;
2532
2533	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2534		/* Limited discoverable mode */
2535		cp.num_iac = min_t(u8, hdev->num_iac, 2);
2536		cp.iac_lap[0] = 0x00;	/* LIAC */
2537		cp.iac_lap[1] = 0x8b;
2538		cp.iac_lap[2] = 0x9e;
2539		cp.iac_lap[3] = 0x33;	/* GIAC */
2540		cp.iac_lap[4] = 0x8b;
2541		cp.iac_lap[5] = 0x9e;
2542	} else {
2543		/* General discoverable mode */
2544		cp.num_iac = 1;
2545		cp.iac_lap[0] = 0x33;	/* GIAC */
2546		cp.iac_lap[1] = 0x8b;
2547		cp.iac_lap[2] = 0x9e;
2548	}
2549
2550	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2551		    (cp.num_iac * 3) + 1, &cp);
2552}
2553
2554static int discoverable_update(struct hci_request *req, unsigned long opt)
2555{
2556	struct hci_dev *hdev = req->hdev;
2557
2558	hci_dev_lock(hdev);
2559
2560	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2561		write_iac(req);
2562		__hci_req_update_scan(req);
2563		__hci_req_update_class(req);
2564	}
2565
2566	/* Advertising instances don't use the global discoverable setting, so
2567	 * only update AD if advertising was enabled using Set Advertising.
2568	 */
2569	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2570		__hci_req_update_adv_data(req, 0x00);
2571
2572		/* Discoverable mode affects the local advertising
2573		 * address in limited privacy mode.
2574		 */
2575		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2576			if (ext_adv_capable(hdev))
2577				__hci_req_start_ext_adv(req, 0x00);
2578			else
2579				__hci_req_enable_advertising(req);
2580		}
2581	}
2582
2583	hci_dev_unlock(hdev);
2584
2585	return 0;
2586}
2587
2588static void discoverable_update_work(struct work_struct *work)
2589{
2590	struct hci_dev *hdev = container_of(work, struct hci_dev,
2591					    discoverable_update);
2592	u8 status;
2593
2594	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2595	mgmt_set_discoverable_complete(hdev, status);
2596}
2597
2598void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2599		      u8 reason)
2600{
2601	switch (conn->state) {
2602	case BT_CONNECTED:
2603	case BT_CONFIG:
2604		if (conn->type == AMP_LINK) {
2605			struct hci_cp_disconn_phy_link cp;
2606
2607			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2608			cp.reason = reason;
2609			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2610				    &cp);
2611		} else {
2612			struct hci_cp_disconnect dc;
2613
2614			dc.handle = cpu_to_le16(conn->handle);
2615			dc.reason = reason;
2616			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2617		}
2618
2619		conn->state = BT_DISCONN;
2620
2621		break;
2622	case BT_CONNECT:
2623		if (conn->type == LE_LINK) {
2624			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2625				break;
2626			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2627				    0, NULL);
2628		} else if (conn->type == ACL_LINK) {
2629			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2630				break;
2631			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2632				    6, &conn->dst);
2633		}
2634		break;
2635	case BT_CONNECT2:
2636		if (conn->type == ACL_LINK) {
2637			struct hci_cp_reject_conn_req rej;
2638
2639			bacpy(&rej.bdaddr, &conn->dst);
2640			rej.reason = reason;
2641
2642			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2643				    sizeof(rej), &rej);
2644		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2645			struct hci_cp_reject_sync_conn_req rej;
2646
2647			bacpy(&rej.bdaddr, &conn->dst);
2648
2649			/* SCO rejection has its own limited set of
2650			 * allowed error values (0x0D-0x0F) which isn't
2651			 * compatible with most values passed to this
2652			 * function. To be safe hard-code one of the
2653			 * values that's suitable for SCO.
2654			 */
2655			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2656
2657			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2658				    sizeof(rej), &rej);
2659		}
2660		break;
2661	default:
2662		conn->state = BT_CLOSED;
2663		break;
2664	}
2665}
2666
2667static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2668{
2669	if (status)
2670		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2671}
2672
2673int hci_abort_conn(struct hci_conn *conn, u8 reason)
2674{
2675	struct hci_request req;
2676	int err;
2677
2678	hci_req_init(&req, conn->hdev);
2679
2680	__hci_abort_conn(&req, conn, reason);
2681
2682	err = hci_req_run(&req, abort_conn_complete);
2683	if (err && err != -ENODATA) {
2684		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2685		return err;
2686	}
2687
2688	return 0;
2689}
2690
2691static int update_bg_scan(struct hci_request *req, unsigned long opt)
2692{
2693	hci_dev_lock(req->hdev);
2694	__hci_update_background_scan(req);
2695	hci_dev_unlock(req->hdev);
2696	return 0;
2697}
2698
2699static void bg_scan_update(struct work_struct *work)
2700{
2701	struct hci_dev *hdev = container_of(work, struct hci_dev,
2702					    bg_scan_update);
2703	struct hci_conn *conn;
2704	u8 status;
2705	int err;
2706
2707	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2708	if (!err)
2709		return;
2710
2711	hci_dev_lock(hdev);
2712
2713	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2714	if (conn)
2715		hci_le_conn_failed(conn, status);
2716
2717	hci_dev_unlock(hdev);
2718}
2719
2720static int le_scan_disable(struct hci_request *req, unsigned long opt)
2721{
2722	hci_req_add_le_scan_disable(req, false);
2723	return 0;
2724}
2725
2726static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2727{
2728	u8 length = opt;
2729	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2730	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2731	struct hci_cp_inquiry cp;
2732
2733	BT_DBG("%s", req->hdev->name);
2734
2735	hci_dev_lock(req->hdev);
2736	hci_inquiry_cache_flush(req->hdev);
2737	hci_dev_unlock(req->hdev);
2738
2739	memset(&cp, 0, sizeof(cp));
2740
2741	if (req->hdev->discovery.limited)
2742		memcpy(&cp.lap, liac, sizeof(cp.lap));
2743	else
2744		memcpy(&cp.lap, giac, sizeof(cp.lap));
2745
2746	cp.length = length;
2747
2748	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2749
2750	return 0;
2751}
2752
2753static void le_scan_disable_work(struct work_struct *work)
2754{
2755	struct hci_dev *hdev = container_of(work, struct hci_dev,
2756					    le_scan_disable.work);
2757	u8 status;
2758
2759	BT_DBG("%s", hdev->name);
2760
2761	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2762		return;
2763
2764	cancel_delayed_work(&hdev->le_scan_restart);
2765
2766	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2767	if (status) {
2768		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2769			   status);
2770		return;
2771	}
2772
2773	hdev->discovery.scan_start = 0;
2774
2775	/* If we were running LE only scan, change discovery state. If
2776	 * we were running both LE and BR/EDR inquiry simultaneously,
2777	 * and BR/EDR inquiry is already finished, stop discovery,
2778	 * otherwise BR/EDR inquiry will stop discovery when finished.
2779	 * If we will resolve remote device name, do not change
2780	 * discovery state.
2781	 */
2782
2783	if (hdev->discovery.type == DISCOV_TYPE_LE)
2784		goto discov_stopped;
2785
2786	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2787		return;
2788
2789	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2790		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2791		    hdev->discovery.state != DISCOVERY_RESOLVING)
2792			goto discov_stopped;
2793
2794		return;
2795	}
2796
2797	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2798		     HCI_CMD_TIMEOUT, &status);
2799	if (status) {
2800		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2801		goto discov_stopped;
2802	}
2803
2804	return;
2805
2806discov_stopped:
2807	hci_dev_lock(hdev);
2808	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2809	hci_dev_unlock(hdev);
2810}
2811
2812static int le_scan_restart(struct hci_request *req, unsigned long opt)
2813{
2814	struct hci_dev *hdev = req->hdev;
2815
2816	/* If controller is not scanning we are done. */
2817	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2818		return 0;
2819
2820	if (hdev->scanning_paused) {
2821		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2822		return 0;
2823	}
2824
2825	hci_req_add_le_scan_disable(req, false);
2826
2827	if (use_ext_scan(hdev)) {
2828		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2829
2830		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2831		ext_enable_cp.enable = LE_SCAN_ENABLE;
2832		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2833
2834		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2835			    sizeof(ext_enable_cp), &ext_enable_cp);
2836	} else {
2837		struct hci_cp_le_set_scan_enable cp;
2838
2839		memset(&cp, 0, sizeof(cp));
2840		cp.enable = LE_SCAN_ENABLE;
2841		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2842		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2843	}
2844
2845	return 0;
2846}
2847
2848static void le_scan_restart_work(struct work_struct *work)
2849{
2850	struct hci_dev *hdev = container_of(work, struct hci_dev,
2851					    le_scan_restart.work);
2852	unsigned long timeout, duration, scan_start, now;
2853	u8 status;
2854
2855	BT_DBG("%s", hdev->name);
2856
2857	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2858	if (status) {
2859		bt_dev_err(hdev, "failed to restart LE scan: status %d",
2860			   status);
2861		return;
2862	}
2863
2864	hci_dev_lock(hdev);
2865
2866	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2867	    !hdev->discovery.scan_start)
2868		goto unlock;
2869
2870	/* When the scan was started, hdev->le_scan_disable has been queued
2871	 * after duration from scan_start. During scan restart this job
2872	 * has been canceled, and we need to queue it again after proper
2873	 * timeout, to make sure that scan does not run indefinitely.
2874	 */
2875	duration = hdev->discovery.scan_duration;
2876	scan_start = hdev->discovery.scan_start;
2877	now = jiffies;
2878	if (now - scan_start <= duration) {
2879		int elapsed;
2880
2881		if (now >= scan_start)
2882			elapsed = now - scan_start;
2883		else
2884			elapsed = ULONG_MAX - scan_start + now;
2885
2886		timeout = duration - elapsed;
2887	} else {
2888		timeout = 0;
2889	}
2890
2891	queue_delayed_work(hdev->req_workqueue,
2892			   &hdev->le_scan_disable, timeout);
2893
2894unlock:
2895	hci_dev_unlock(hdev);
2896}
2897
2898static int active_scan(struct hci_request *req, unsigned long opt)
2899{
2900	uint16_t interval = opt;
2901	struct hci_dev *hdev = req->hdev;
2902	u8 own_addr_type;
2903	/* White list is not used for discovery */
2904	u8 filter_policy = 0x00;
2905	/* Discovery doesn't require controller address resolution */
2906	bool addr_resolv = false;
2907	int err;
2908
2909	BT_DBG("%s", hdev->name);
2910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2911	/* If controller is scanning, it means the background scanning is
2912	 * running. Thus, we should temporarily stop it in order to set the
2913	 * discovery scanning parameters.
2914	 */
2915	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2916		hci_req_add_le_scan_disable(req, false);
2917
2918	/* All active scans will be done with either a resolvable private
2919	 * address (when privacy feature has been enabled) or non-resolvable
2920	 * private address.
2921	 */
2922	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2923					&own_addr_type);
2924	if (err < 0)
2925		own_addr_type = ADDR_LE_DEV_PUBLIC;
2926
2927	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
2928			   hdev->le_scan_window_discovery, own_addr_type,
2929			   filter_policy, addr_resolv);
2930	return 0;
2931}
2932
2933static int interleaved_discov(struct hci_request *req, unsigned long opt)
2934{
2935	int err;
2936
2937	BT_DBG("%s", req->hdev->name);
2938
2939	err = active_scan(req, opt);
2940	if (err)
2941		return err;
2942
2943	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2944}
2945
2946static void start_discovery(struct hci_dev *hdev, u8 *status)
2947{
2948	unsigned long timeout;
2949
2950	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2951
2952	switch (hdev->discovery.type) {
2953	case DISCOV_TYPE_BREDR:
2954		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2955			hci_req_sync(hdev, bredr_inquiry,
2956				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2957				     status);
2958		return;
2959	case DISCOV_TYPE_INTERLEAVED:
2960		/* When running simultaneous discovery, the LE scanning time
2961		 * should occupy the whole discovery time sine BR/EDR inquiry
2962		 * and LE scanning are scheduled by the controller.
2963		 *
2964		 * For interleaving discovery in comparison, BR/EDR inquiry
2965		 * and LE scanning are done sequentially with separate
2966		 * timeouts.
2967		 */
2968		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2969			     &hdev->quirks)) {
2970			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2971			/* During simultaneous discovery, we double LE scan
2972			 * interval. We must leave some time for the controller
2973			 * to do BR/EDR inquiry.
2974			 */
2975			hci_req_sync(hdev, interleaved_discov,
2976				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2977				     status);
2978			break;
2979		}
2980
2981		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2982		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2983			     HCI_CMD_TIMEOUT, status);
2984		break;
2985	case DISCOV_TYPE_LE:
2986		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2987		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2988			     HCI_CMD_TIMEOUT, status);
2989		break;
2990	default:
2991		*status = HCI_ERROR_UNSPECIFIED;
2992		return;
2993	}
2994
2995	if (*status)
2996		return;
2997
2998	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2999
3000	/* When service discovery is used and the controller has a
3001	 * strict duplicate filter, it is important to remember the
3002	 * start and duration of the scan. This is required for
3003	 * restarting scanning during the discovery phase.
3004	 */
3005	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
3006		     hdev->discovery.result_filtering) {
3007		hdev->discovery.scan_start = jiffies;
3008		hdev->discovery.scan_duration = timeout;
3009	}
3010
3011	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
3012			   timeout);
3013}
3014
3015bool hci_req_stop_discovery(struct hci_request *req)
3016{
3017	struct hci_dev *hdev = req->hdev;
3018	struct discovery_state *d = &hdev->discovery;
3019	struct hci_cp_remote_name_req_cancel cp;
3020	struct inquiry_entry *e;
3021	bool ret = false;
3022
3023	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
3024
3025	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
3026		if (test_bit(HCI_INQUIRY, &hdev->flags))
3027			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3028
3029		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3030			cancel_delayed_work(&hdev->le_scan_disable);
3031			hci_req_add_le_scan_disable(req, false);
3032		}
3033
3034		ret = true;
3035	} else {
3036		/* Passive scanning */
3037		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3038			hci_req_add_le_scan_disable(req, false);
3039			ret = true;
3040		}
3041	}
3042
3043	/* No further actions needed for LE-only discovery */
3044	if (d->type == DISCOV_TYPE_LE)
3045		return ret;
3046
3047	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
3048		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
3049						     NAME_PENDING);
3050		if (!e)
3051			return ret;
3052
3053		bacpy(&cp.bdaddr, &e->data.bdaddr);
3054		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
3055			    &cp);
3056		ret = true;
3057	}
3058
3059	return ret;
3060}
3061
3062static int stop_discovery(struct hci_request *req, unsigned long opt)
3063{
3064	hci_dev_lock(req->hdev);
3065	hci_req_stop_discovery(req);
3066	hci_dev_unlock(req->hdev);
3067
3068	return 0;
3069}
3070
3071static void discov_update(struct work_struct *work)
3072{
3073	struct hci_dev *hdev = container_of(work, struct hci_dev,
3074					    discov_update);
3075	u8 status = 0;
3076
3077	switch (hdev->discovery.state) {
3078	case DISCOVERY_STARTING:
3079		start_discovery(hdev, &status);
3080		mgmt_start_discovery_complete(hdev, status);
3081		if (status)
3082			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3083		else
3084			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
3085		break;
3086	case DISCOVERY_STOPPING:
3087		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
3088		mgmt_stop_discovery_complete(hdev, status);
3089		if (!status)
3090			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3091		break;
3092	case DISCOVERY_STOPPED:
3093	default:
3094		return;
3095	}
3096}
3097
3098static void discov_off(struct work_struct *work)
3099{
3100	struct hci_dev *hdev = container_of(work, struct hci_dev,
3101					    discov_off.work);
3102
3103	BT_DBG("%s", hdev->name);
3104
3105	hci_dev_lock(hdev);
3106
3107	/* When discoverable timeout triggers, then just make sure
3108	 * the limited discoverable flag is cleared. Even in the case
3109	 * of a timeout triggered from general discoverable, it is
3110	 * safe to unconditionally clear the flag.
3111	 */
3112	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
3113	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
3114	hdev->discov_timeout = 0;
3115
3116	hci_dev_unlock(hdev);
3117
3118	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
3119	mgmt_new_settings(hdev);
3120}
3121
3122static int powered_update_hci(struct hci_request *req, unsigned long opt)
3123{
3124	struct hci_dev *hdev = req->hdev;
3125	u8 link_sec;
3126
3127	hci_dev_lock(hdev);
3128
3129	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
3130	    !lmp_host_ssp_capable(hdev)) {
3131		u8 mode = 0x01;
3132
3133		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
3134
3135		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
3136			u8 support = 0x01;
3137
3138			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
3139				    sizeof(support), &support);
3140		}
3141	}
3142
3143	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
3144	    lmp_bredr_capable(hdev)) {
3145		struct hci_cp_write_le_host_supported cp;
3146
3147		cp.le = 0x01;
3148		cp.simul = 0x00;
3149
3150		/* Check first if we already have the right
3151		 * host state (host features set)
3152		 */
3153		if (cp.le != lmp_host_le_capable(hdev) ||
3154		    cp.simul != lmp_host_le_br_capable(hdev))
3155			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3156				    sizeof(cp), &cp);
3157	}
3158
3159	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3160		/* Make sure the controller has a good default for
3161		 * advertising data. This also applies to the case
3162		 * where BR/EDR was toggled during the AUTO_OFF phase.
3163		 */
3164		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3165		    list_empty(&hdev->adv_instances)) {
3166			int err;
3167
3168			if (ext_adv_capable(hdev)) {
3169				err = __hci_req_setup_ext_adv_instance(req,
3170								       0x00);
3171				if (!err)
3172					__hci_req_update_scan_rsp_data(req,
3173								       0x00);
3174			} else {
3175				err = 0;
3176				__hci_req_update_adv_data(req, 0x00);
3177				__hci_req_update_scan_rsp_data(req, 0x00);
3178			}
3179
3180			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3181				if (!ext_adv_capable(hdev))
3182					__hci_req_enable_advertising(req);
3183				else if (!err)
3184					__hci_req_enable_ext_advertising(req,
3185									 0x00);
3186			}
3187		} else if (!list_empty(&hdev->adv_instances)) {
3188			struct adv_info *adv_instance;
3189
3190			adv_instance = list_first_entry(&hdev->adv_instances,
3191							struct adv_info, list);
3192			__hci_req_schedule_adv_instance(req,
3193							adv_instance->instance,
3194							true);
3195		}
3196	}
3197
3198	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3199	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
3200		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
3201			    sizeof(link_sec), &link_sec);
3202
3203	if (lmp_bredr_capable(hdev)) {
3204		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3205			__hci_req_write_fast_connectable(req, true);
3206		else
3207			__hci_req_write_fast_connectable(req, false);
3208		__hci_req_update_scan(req);
3209		__hci_req_update_class(req);
3210		__hci_req_update_name(req);
3211		__hci_req_update_eir(req);
3212	}
3213
3214	hci_dev_unlock(hdev);
3215	return 0;
3216}
3217
3218int __hci_req_hci_power_on(struct hci_dev *hdev)
3219{
3220	/* Register the available SMP channels (BR/EDR and LE) only when
3221	 * successfully powering on the controller. This late
3222	 * registration is required so that LE SMP can clearly decide if
3223	 * the public address or static address is used.
3224	 */
3225	smp_register(hdev);
3226
3227	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
3228			      NULL);
3229}
3230
3231void hci_request_setup(struct hci_dev *hdev)
3232{
3233	INIT_WORK(&hdev->discov_update, discov_update);
3234	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3235	INIT_WORK(&hdev->scan_update, scan_update_work);
3236	INIT_WORK(&hdev->connectable_update, connectable_update_work);
3237	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3238	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3239	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3240	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3241	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3242}
3243
3244void hci_request_cancel_all(struct hci_dev *hdev)
3245{
3246	hci_req_sync_cancel(hdev, ENODEV);
3247
3248	cancel_work_sync(&hdev->discov_update);
3249	cancel_work_sync(&hdev->bg_scan_update);
3250	cancel_work_sync(&hdev->scan_update);
3251	cancel_work_sync(&hdev->connectable_update);
3252	cancel_work_sync(&hdev->discoverable_update);
3253	cancel_delayed_work_sync(&hdev->discov_off);
3254	cancel_delayed_work_sync(&hdev->le_scan_disable);
3255	cancel_delayed_work_sync(&hdev->le_scan_restart);
3256
3257	if (hdev->adv_instance_timeout) {
3258		cancel_delayed_work_sync(&hdev->adv_instance_expire);
3259		hdev->adv_instance_timeout = 0;
3260	}
3261}