Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * z3fold.c
4 *
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
7 *
8 * This implementation is based on zbud written by Seth Jennings.
9 *
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
17 *
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
20 *
21 * z3fold doesn't export any API and is meant to be used via zpool API.
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/atomic.h>
27#include <linux/sched.h>
28#include <linux/cpumask.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/page-flags.h>
33#include <linux/migrate.h>
34#include <linux/node.h>
35#include <linux/compaction.h>
36#include <linux/percpu.h>
37#include <linux/mount.h>
38#include <linux/pseudo_fs.h>
39#include <linux/fs.h>
40#include <linux/preempt.h>
41#include <linux/workqueue.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/zpool.h>
45#include <linux/magic.h>
46
47/*
48 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
49 * adjusting internal fragmentation. It also determines the number of
50 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
51 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
52 * in the beginning of an allocated page are occupied by z3fold header, so
53 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
54 * which shows the max number of free chunks in z3fold page, also there will
55 * be 63, or 62, respectively, freelists per pool.
56 */
57#define NCHUNKS_ORDER 6
58
59#define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
60#define CHUNK_SIZE (1 << CHUNK_SHIFT)
61#define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
62#define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
63#define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
64#define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
65
66#define BUDDY_MASK (0x3)
67#define BUDDY_SHIFT 2
68#define SLOTS_ALIGN (0x40)
69
70/*****************
71 * Structures
72*****************/
73struct z3fold_pool;
74struct z3fold_ops {
75 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
76};
77
78enum buddy {
79 HEADLESS = 0,
80 FIRST,
81 MIDDLE,
82 LAST,
83 BUDDIES_MAX = LAST
84};
85
86struct z3fold_buddy_slots {
87 /*
88 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
89 * be enough slots to hold all possible variants
90 */
91 unsigned long slot[BUDDY_MASK + 1];
92 unsigned long pool; /* back link + flags */
93};
94#define HANDLE_FLAG_MASK (0x03)
95
96/*
97 * struct z3fold_header - z3fold page metadata occupying first chunks of each
98 * z3fold page, except for HEADLESS pages
99 * @buddy: links the z3fold page into the relevant list in the
100 * pool
101 * @page_lock: per-page lock
102 * @refcount: reference count for the z3fold page
103 * @work: work_struct for page layout optimization
104 * @slots: pointer to the structure holding buddy slots
105 * @pool: pointer to the containing pool
106 * @cpu: CPU which this page "belongs" to
107 * @first_chunks: the size of the first buddy in chunks, 0 if free
108 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
109 * @last_chunks: the size of the last buddy in chunks, 0 if free
110 * @first_num: the starting number (for the first handle)
111 * @mapped_count: the number of objects currently mapped
112 */
113struct z3fold_header {
114 struct list_head buddy;
115 spinlock_t page_lock;
116 struct kref refcount;
117 struct work_struct work;
118 struct z3fold_buddy_slots *slots;
119 struct z3fold_pool *pool;
120 short cpu;
121 unsigned short first_chunks;
122 unsigned short middle_chunks;
123 unsigned short last_chunks;
124 unsigned short start_middle;
125 unsigned short first_num:2;
126 unsigned short mapped_count:2;
127};
128
129/**
130 * struct z3fold_pool - stores metadata for each z3fold pool
131 * @name: pool name
132 * @lock: protects pool unbuddied/lru lists
133 * @stale_lock: protects pool stale page list
134 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
135 * buddies; the list each z3fold page is added to depends on
136 * the size of its free region.
137 * @lru: list tracking the z3fold pages in LRU order by most recently
138 * added buddy.
139 * @stale: list of pages marked for freeing
140 * @pages_nr: number of z3fold pages in the pool.
141 * @c_handle: cache for z3fold_buddy_slots allocation
142 * @ops: pointer to a structure of user defined operations specified at
143 * pool creation time.
144 * @compact_wq: workqueue for page layout background optimization
145 * @release_wq: workqueue for safe page release
146 * @work: work_struct for safe page release
147 * @inode: inode for z3fold pseudo filesystem
148 *
149 * This structure is allocated at pool creation time and maintains metadata
150 * pertaining to a particular z3fold pool.
151 */
152struct z3fold_pool {
153 const char *name;
154 spinlock_t lock;
155 spinlock_t stale_lock;
156 struct list_head *unbuddied;
157 struct list_head lru;
158 struct list_head stale;
159 atomic64_t pages_nr;
160 struct kmem_cache *c_handle;
161 const struct z3fold_ops *ops;
162 struct zpool *zpool;
163 const struct zpool_ops *zpool_ops;
164 struct workqueue_struct *compact_wq;
165 struct workqueue_struct *release_wq;
166 struct work_struct work;
167 struct inode *inode;
168};
169
170/*
171 * Internal z3fold page flags
172 */
173enum z3fold_page_flags {
174 PAGE_HEADLESS = 0,
175 MIDDLE_CHUNK_MAPPED,
176 NEEDS_COMPACTING,
177 PAGE_STALE,
178 PAGE_CLAIMED, /* by either reclaim or free */
179};
180
181/*****************
182 * Helpers
183*****************/
184
185/* Converts an allocation size in bytes to size in z3fold chunks */
186static int size_to_chunks(size_t size)
187{
188 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
189}
190
191#define for_each_unbuddied_list(_iter, _begin) \
192 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
193
194static void compact_page_work(struct work_struct *w);
195
196static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
197 gfp_t gfp)
198{
199 struct z3fold_buddy_slots *slots;
200
201 slots = kmem_cache_alloc(pool->c_handle,
202 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
203
204 if (slots) {
205 memset(slots->slot, 0, sizeof(slots->slot));
206 slots->pool = (unsigned long)pool;
207 }
208
209 return slots;
210}
211
212static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
213{
214 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
215}
216
217static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
218{
219 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
220}
221
222static inline void free_handle(unsigned long handle)
223{
224 struct z3fold_buddy_slots *slots;
225 int i;
226 bool is_free;
227
228 if (handle & (1 << PAGE_HEADLESS))
229 return;
230
231 WARN_ON(*(unsigned long *)handle == 0);
232 *(unsigned long *)handle = 0;
233 slots = handle_to_slots(handle);
234 is_free = true;
235 for (i = 0; i <= BUDDY_MASK; i++) {
236 if (slots->slot[i]) {
237 is_free = false;
238 break;
239 }
240 }
241
242 if (is_free) {
243 struct z3fold_pool *pool = slots_to_pool(slots);
244
245 kmem_cache_free(pool->c_handle, slots);
246 }
247}
248
249static int z3fold_init_fs_context(struct fs_context *fc)
250{
251 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
252}
253
254static struct file_system_type z3fold_fs = {
255 .name = "z3fold",
256 .init_fs_context = z3fold_init_fs_context,
257 .kill_sb = kill_anon_super,
258};
259
260static struct vfsmount *z3fold_mnt;
261static int z3fold_mount(void)
262{
263 int ret = 0;
264
265 z3fold_mnt = kern_mount(&z3fold_fs);
266 if (IS_ERR(z3fold_mnt))
267 ret = PTR_ERR(z3fold_mnt);
268
269 return ret;
270}
271
272static void z3fold_unmount(void)
273{
274 kern_unmount(z3fold_mnt);
275}
276
277static const struct address_space_operations z3fold_aops;
278static int z3fold_register_migration(struct z3fold_pool *pool)
279{
280 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
281 if (IS_ERR(pool->inode)) {
282 pool->inode = NULL;
283 return 1;
284 }
285
286 pool->inode->i_mapping->private_data = pool;
287 pool->inode->i_mapping->a_ops = &z3fold_aops;
288 return 0;
289}
290
291static void z3fold_unregister_migration(struct z3fold_pool *pool)
292{
293 if (pool->inode)
294 iput(pool->inode);
295 }
296
297/* Initializes the z3fold header of a newly allocated z3fold page */
298static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
299 struct z3fold_pool *pool, gfp_t gfp)
300{
301 struct z3fold_header *zhdr = page_address(page);
302 struct z3fold_buddy_slots *slots;
303
304 INIT_LIST_HEAD(&page->lru);
305 clear_bit(PAGE_HEADLESS, &page->private);
306 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
307 clear_bit(NEEDS_COMPACTING, &page->private);
308 clear_bit(PAGE_STALE, &page->private);
309 clear_bit(PAGE_CLAIMED, &page->private);
310 if (headless)
311 return zhdr;
312
313 slots = alloc_slots(pool, gfp);
314 if (!slots)
315 return NULL;
316
317 spin_lock_init(&zhdr->page_lock);
318 kref_init(&zhdr->refcount);
319 zhdr->first_chunks = 0;
320 zhdr->middle_chunks = 0;
321 zhdr->last_chunks = 0;
322 zhdr->first_num = 0;
323 zhdr->start_middle = 0;
324 zhdr->cpu = -1;
325 zhdr->slots = slots;
326 zhdr->pool = pool;
327 INIT_LIST_HEAD(&zhdr->buddy);
328 INIT_WORK(&zhdr->work, compact_page_work);
329 return zhdr;
330}
331
332/* Resets the struct page fields and frees the page */
333static void free_z3fold_page(struct page *page, bool headless)
334{
335 if (!headless) {
336 lock_page(page);
337 __ClearPageMovable(page);
338 unlock_page(page);
339 }
340 ClearPagePrivate(page);
341 __free_page(page);
342}
343
344/* Lock a z3fold page */
345static inline void z3fold_page_lock(struct z3fold_header *zhdr)
346{
347 spin_lock(&zhdr->page_lock);
348}
349
350/* Try to lock a z3fold page */
351static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
352{
353 return spin_trylock(&zhdr->page_lock);
354}
355
356/* Unlock a z3fold page */
357static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
358{
359 spin_unlock(&zhdr->page_lock);
360}
361
362/* Helper function to build the index */
363static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
364{
365 return (bud + zhdr->first_num) & BUDDY_MASK;
366}
367
368/*
369 * Encodes the handle of a particular buddy within a z3fold page
370 * Pool lock should be held as this function accesses first_num
371 */
372static unsigned long __encode_handle(struct z3fold_header *zhdr,
373 struct z3fold_buddy_slots *slots,
374 enum buddy bud)
375{
376 unsigned long h = (unsigned long)zhdr;
377 int idx = 0;
378
379 /*
380 * For a headless page, its handle is its pointer with the extra
381 * PAGE_HEADLESS bit set
382 */
383 if (bud == HEADLESS)
384 return h | (1 << PAGE_HEADLESS);
385
386 /* otherwise, return pointer to encoded handle */
387 idx = __idx(zhdr, bud);
388 h += idx;
389 if (bud == LAST)
390 h |= (zhdr->last_chunks << BUDDY_SHIFT);
391
392 slots->slot[idx] = h;
393 return (unsigned long)&slots->slot[idx];
394}
395
396static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
397{
398 return __encode_handle(zhdr, zhdr->slots, bud);
399}
400
401/* Returns the z3fold page where a given handle is stored */
402static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
403{
404 unsigned long addr = h;
405
406 if (!(addr & (1 << PAGE_HEADLESS)))
407 addr = *(unsigned long *)h;
408
409 return (struct z3fold_header *)(addr & PAGE_MASK);
410}
411
412/* only for LAST bud, returns zero otherwise */
413static unsigned short handle_to_chunks(unsigned long handle)
414{
415 unsigned long addr = *(unsigned long *)handle;
416
417 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
418}
419
420/*
421 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
422 * but that doesn't matter. because the masking will result in the
423 * correct buddy number.
424 */
425static enum buddy handle_to_buddy(unsigned long handle)
426{
427 struct z3fold_header *zhdr;
428 unsigned long addr;
429
430 WARN_ON(handle & (1 << PAGE_HEADLESS));
431 addr = *(unsigned long *)handle;
432 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
433 return (addr - zhdr->first_num) & BUDDY_MASK;
434}
435
436static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
437{
438 return zhdr->pool;
439}
440
441static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
442{
443 struct page *page = virt_to_page(zhdr);
444 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
445
446 WARN_ON(!list_empty(&zhdr->buddy));
447 set_bit(PAGE_STALE, &page->private);
448 clear_bit(NEEDS_COMPACTING, &page->private);
449 spin_lock(&pool->lock);
450 if (!list_empty(&page->lru))
451 list_del_init(&page->lru);
452 spin_unlock(&pool->lock);
453 if (locked)
454 z3fold_page_unlock(zhdr);
455 spin_lock(&pool->stale_lock);
456 list_add(&zhdr->buddy, &pool->stale);
457 queue_work(pool->release_wq, &pool->work);
458 spin_unlock(&pool->stale_lock);
459}
460
461static void __attribute__((__unused__))
462 release_z3fold_page(struct kref *ref)
463{
464 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
465 refcount);
466 __release_z3fold_page(zhdr, false);
467}
468
469static void release_z3fold_page_locked(struct kref *ref)
470{
471 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
472 refcount);
473 WARN_ON(z3fold_page_trylock(zhdr));
474 __release_z3fold_page(zhdr, true);
475}
476
477static void release_z3fold_page_locked_list(struct kref *ref)
478{
479 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
480 refcount);
481 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
482 spin_lock(&pool->lock);
483 list_del_init(&zhdr->buddy);
484 spin_unlock(&pool->lock);
485
486 WARN_ON(z3fold_page_trylock(zhdr));
487 __release_z3fold_page(zhdr, true);
488}
489
490static void free_pages_work(struct work_struct *w)
491{
492 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
493
494 spin_lock(&pool->stale_lock);
495 while (!list_empty(&pool->stale)) {
496 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
497 struct z3fold_header, buddy);
498 struct page *page = virt_to_page(zhdr);
499
500 list_del(&zhdr->buddy);
501 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
502 continue;
503 spin_unlock(&pool->stale_lock);
504 cancel_work_sync(&zhdr->work);
505 free_z3fold_page(page, false);
506 cond_resched();
507 spin_lock(&pool->stale_lock);
508 }
509 spin_unlock(&pool->stale_lock);
510}
511
512/*
513 * Returns the number of free chunks in a z3fold page.
514 * NB: can't be used with HEADLESS pages.
515 */
516static int num_free_chunks(struct z3fold_header *zhdr)
517{
518 int nfree;
519 /*
520 * If there is a middle object, pick up the bigger free space
521 * either before or after it. Otherwise just subtract the number
522 * of chunks occupied by the first and the last objects.
523 */
524 if (zhdr->middle_chunks != 0) {
525 int nfree_before = zhdr->first_chunks ?
526 0 : zhdr->start_middle - ZHDR_CHUNKS;
527 int nfree_after = zhdr->last_chunks ?
528 0 : TOTAL_CHUNKS -
529 (zhdr->start_middle + zhdr->middle_chunks);
530 nfree = max(nfree_before, nfree_after);
531 } else
532 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
533 return nfree;
534}
535
536/* Add to the appropriate unbuddied list */
537static inline void add_to_unbuddied(struct z3fold_pool *pool,
538 struct z3fold_header *zhdr)
539{
540 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
541 zhdr->middle_chunks == 0) {
542 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
543
544 int freechunks = num_free_chunks(zhdr);
545 spin_lock(&pool->lock);
546 list_add(&zhdr->buddy, &unbuddied[freechunks]);
547 spin_unlock(&pool->lock);
548 zhdr->cpu = smp_processor_id();
549 put_cpu_ptr(pool->unbuddied);
550 }
551}
552
553static inline void *mchunk_memmove(struct z3fold_header *zhdr,
554 unsigned short dst_chunk)
555{
556 void *beg = zhdr;
557 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
558 beg + (zhdr->start_middle << CHUNK_SHIFT),
559 zhdr->middle_chunks << CHUNK_SHIFT);
560}
561
562#define BIG_CHUNK_GAP 3
563/* Has to be called with lock held */
564static int z3fold_compact_page(struct z3fold_header *zhdr)
565{
566 struct page *page = virt_to_page(zhdr);
567
568 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
569 return 0; /* can't move middle chunk, it's used */
570
571 if (unlikely(PageIsolated(page)))
572 return 0;
573
574 if (zhdr->middle_chunks == 0)
575 return 0; /* nothing to compact */
576
577 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
578 /* move to the beginning */
579 mchunk_memmove(zhdr, ZHDR_CHUNKS);
580 zhdr->first_chunks = zhdr->middle_chunks;
581 zhdr->middle_chunks = 0;
582 zhdr->start_middle = 0;
583 zhdr->first_num++;
584 return 1;
585 }
586
587 /*
588 * moving data is expensive, so let's only do that if
589 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
590 */
591 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
592 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
593 BIG_CHUNK_GAP) {
594 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
595 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
596 return 1;
597 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
598 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
599 + zhdr->middle_chunks) >=
600 BIG_CHUNK_GAP) {
601 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
602 zhdr->middle_chunks;
603 mchunk_memmove(zhdr, new_start);
604 zhdr->start_middle = new_start;
605 return 1;
606 }
607
608 return 0;
609}
610
611static void do_compact_page(struct z3fold_header *zhdr, bool locked)
612{
613 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
614 struct page *page;
615
616 page = virt_to_page(zhdr);
617 if (locked)
618 WARN_ON(z3fold_page_trylock(zhdr));
619 else
620 z3fold_page_lock(zhdr);
621 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
622 z3fold_page_unlock(zhdr);
623 return;
624 }
625 spin_lock(&pool->lock);
626 list_del_init(&zhdr->buddy);
627 spin_unlock(&pool->lock);
628
629 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
630 atomic64_dec(&pool->pages_nr);
631 return;
632 }
633
634 if (unlikely(PageIsolated(page) ||
635 test_bit(PAGE_CLAIMED, &page->private) ||
636 test_bit(PAGE_STALE, &page->private))) {
637 z3fold_page_unlock(zhdr);
638 return;
639 }
640
641 z3fold_compact_page(zhdr);
642 add_to_unbuddied(pool, zhdr);
643 z3fold_page_unlock(zhdr);
644}
645
646static void compact_page_work(struct work_struct *w)
647{
648 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
649 work);
650
651 do_compact_page(zhdr, false);
652}
653
654/* returns _locked_ z3fold page header or NULL */
655static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
656 size_t size, bool can_sleep)
657{
658 struct z3fold_header *zhdr = NULL;
659 struct page *page;
660 struct list_head *unbuddied;
661 int chunks = size_to_chunks(size), i;
662
663lookup:
664 /* First, try to find an unbuddied z3fold page. */
665 unbuddied = get_cpu_ptr(pool->unbuddied);
666 for_each_unbuddied_list(i, chunks) {
667 struct list_head *l = &unbuddied[i];
668
669 zhdr = list_first_entry_or_null(READ_ONCE(l),
670 struct z3fold_header, buddy);
671
672 if (!zhdr)
673 continue;
674
675 /* Re-check under lock. */
676 spin_lock(&pool->lock);
677 l = &unbuddied[i];
678 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
679 struct z3fold_header, buddy)) ||
680 !z3fold_page_trylock(zhdr)) {
681 spin_unlock(&pool->lock);
682 zhdr = NULL;
683 put_cpu_ptr(pool->unbuddied);
684 if (can_sleep)
685 cond_resched();
686 goto lookup;
687 }
688 list_del_init(&zhdr->buddy);
689 zhdr->cpu = -1;
690 spin_unlock(&pool->lock);
691
692 page = virt_to_page(zhdr);
693 if (test_bit(NEEDS_COMPACTING, &page->private)) {
694 z3fold_page_unlock(zhdr);
695 zhdr = NULL;
696 put_cpu_ptr(pool->unbuddied);
697 if (can_sleep)
698 cond_resched();
699 goto lookup;
700 }
701
702 /*
703 * this page could not be removed from its unbuddied
704 * list while pool lock was held, and then we've taken
705 * page lock so kref_put could not be called before
706 * we got here, so it's safe to just call kref_get()
707 */
708 kref_get(&zhdr->refcount);
709 break;
710 }
711 put_cpu_ptr(pool->unbuddied);
712
713 if (!zhdr) {
714 int cpu;
715
716 /* look for _exact_ match on other cpus' lists */
717 for_each_online_cpu(cpu) {
718 struct list_head *l;
719
720 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
721 spin_lock(&pool->lock);
722 l = &unbuddied[chunks];
723
724 zhdr = list_first_entry_or_null(READ_ONCE(l),
725 struct z3fold_header, buddy);
726
727 if (!zhdr || !z3fold_page_trylock(zhdr)) {
728 spin_unlock(&pool->lock);
729 zhdr = NULL;
730 continue;
731 }
732 list_del_init(&zhdr->buddy);
733 zhdr->cpu = -1;
734 spin_unlock(&pool->lock);
735
736 page = virt_to_page(zhdr);
737 if (test_bit(NEEDS_COMPACTING, &page->private)) {
738 z3fold_page_unlock(zhdr);
739 zhdr = NULL;
740 if (can_sleep)
741 cond_resched();
742 continue;
743 }
744 kref_get(&zhdr->refcount);
745 break;
746 }
747 }
748
749 return zhdr;
750}
751
752/*
753 * API Functions
754 */
755
756/**
757 * z3fold_create_pool() - create a new z3fold pool
758 * @name: pool name
759 * @gfp: gfp flags when allocating the z3fold pool structure
760 * @ops: user-defined operations for the z3fold pool
761 *
762 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
763 * failed.
764 */
765static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
766 const struct z3fold_ops *ops)
767{
768 struct z3fold_pool *pool = NULL;
769 int i, cpu;
770
771 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
772 if (!pool)
773 goto out;
774 pool->c_handle = kmem_cache_create("z3fold_handle",
775 sizeof(struct z3fold_buddy_slots),
776 SLOTS_ALIGN, 0, NULL);
777 if (!pool->c_handle)
778 goto out_c;
779 spin_lock_init(&pool->lock);
780 spin_lock_init(&pool->stale_lock);
781 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
782 if (!pool->unbuddied)
783 goto out_pool;
784 for_each_possible_cpu(cpu) {
785 struct list_head *unbuddied =
786 per_cpu_ptr(pool->unbuddied, cpu);
787 for_each_unbuddied_list(i, 0)
788 INIT_LIST_HEAD(&unbuddied[i]);
789 }
790 INIT_LIST_HEAD(&pool->lru);
791 INIT_LIST_HEAD(&pool->stale);
792 atomic64_set(&pool->pages_nr, 0);
793 pool->name = name;
794 pool->compact_wq = create_singlethread_workqueue(pool->name);
795 if (!pool->compact_wq)
796 goto out_unbuddied;
797 pool->release_wq = create_singlethread_workqueue(pool->name);
798 if (!pool->release_wq)
799 goto out_wq;
800 if (z3fold_register_migration(pool))
801 goto out_rwq;
802 INIT_WORK(&pool->work, free_pages_work);
803 pool->ops = ops;
804 return pool;
805
806out_rwq:
807 destroy_workqueue(pool->release_wq);
808out_wq:
809 destroy_workqueue(pool->compact_wq);
810out_unbuddied:
811 free_percpu(pool->unbuddied);
812out_pool:
813 kmem_cache_destroy(pool->c_handle);
814out_c:
815 kfree(pool);
816out:
817 return NULL;
818}
819
820/**
821 * z3fold_destroy_pool() - destroys an existing z3fold pool
822 * @pool: the z3fold pool to be destroyed
823 *
824 * The pool should be emptied before this function is called.
825 */
826static void z3fold_destroy_pool(struct z3fold_pool *pool)
827{
828 kmem_cache_destroy(pool->c_handle);
829
830 /*
831 * We need to destroy pool->compact_wq before pool->release_wq,
832 * as any pending work on pool->compact_wq will call
833 * queue_work(pool->release_wq, &pool->work).
834 *
835 * There are still outstanding pages until both workqueues are drained,
836 * so we cannot unregister migration until then.
837 */
838
839 destroy_workqueue(pool->compact_wq);
840 destroy_workqueue(pool->release_wq);
841 z3fold_unregister_migration(pool);
842 kfree(pool);
843}
844
845/**
846 * z3fold_alloc() - allocates a region of a given size
847 * @pool: z3fold pool from which to allocate
848 * @size: size in bytes of the desired allocation
849 * @gfp: gfp flags used if the pool needs to grow
850 * @handle: handle of the new allocation
851 *
852 * This function will attempt to find a free region in the pool large enough to
853 * satisfy the allocation request. A search of the unbuddied lists is
854 * performed first. If no suitable free region is found, then a new page is
855 * allocated and added to the pool to satisfy the request.
856 *
857 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
858 * as z3fold pool pages.
859 *
860 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
861 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
862 * a new page.
863 */
864static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
865 unsigned long *handle)
866{
867 int chunks = size_to_chunks(size);
868 struct z3fold_header *zhdr = NULL;
869 struct page *page = NULL;
870 enum buddy bud;
871 bool can_sleep = gfpflags_allow_blocking(gfp);
872
873 if (!size)
874 return -EINVAL;
875
876 if (size > PAGE_SIZE)
877 return -ENOSPC;
878
879 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
880 bud = HEADLESS;
881 else {
882retry:
883 zhdr = __z3fold_alloc(pool, size, can_sleep);
884 if (zhdr) {
885 if (zhdr->first_chunks == 0) {
886 if (zhdr->middle_chunks != 0 &&
887 chunks >= zhdr->start_middle)
888 bud = LAST;
889 else
890 bud = FIRST;
891 } else if (zhdr->last_chunks == 0)
892 bud = LAST;
893 else if (zhdr->middle_chunks == 0)
894 bud = MIDDLE;
895 else {
896 if (kref_put(&zhdr->refcount,
897 release_z3fold_page_locked))
898 atomic64_dec(&pool->pages_nr);
899 else
900 z3fold_page_unlock(zhdr);
901 pr_err("No free chunks in unbuddied\n");
902 WARN_ON(1);
903 goto retry;
904 }
905 page = virt_to_page(zhdr);
906 goto found;
907 }
908 bud = FIRST;
909 }
910
911 page = NULL;
912 if (can_sleep) {
913 spin_lock(&pool->stale_lock);
914 zhdr = list_first_entry_or_null(&pool->stale,
915 struct z3fold_header, buddy);
916 /*
917 * Before allocating a page, let's see if we can take one from
918 * the stale pages list. cancel_work_sync() can sleep so we
919 * limit this case to the contexts where we can sleep
920 */
921 if (zhdr) {
922 list_del(&zhdr->buddy);
923 spin_unlock(&pool->stale_lock);
924 cancel_work_sync(&zhdr->work);
925 page = virt_to_page(zhdr);
926 } else {
927 spin_unlock(&pool->stale_lock);
928 }
929 }
930 if (!page)
931 page = alloc_page(gfp);
932
933 if (!page)
934 return -ENOMEM;
935
936 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
937 if (!zhdr) {
938 __free_page(page);
939 return -ENOMEM;
940 }
941 atomic64_inc(&pool->pages_nr);
942
943 if (bud == HEADLESS) {
944 set_bit(PAGE_HEADLESS, &page->private);
945 goto headless;
946 }
947 if (can_sleep) {
948 lock_page(page);
949 __SetPageMovable(page, pool->inode->i_mapping);
950 unlock_page(page);
951 } else {
952 if (trylock_page(page)) {
953 __SetPageMovable(page, pool->inode->i_mapping);
954 unlock_page(page);
955 }
956 }
957 z3fold_page_lock(zhdr);
958
959found:
960 if (bud == FIRST)
961 zhdr->first_chunks = chunks;
962 else if (bud == LAST)
963 zhdr->last_chunks = chunks;
964 else {
965 zhdr->middle_chunks = chunks;
966 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
967 }
968 add_to_unbuddied(pool, zhdr);
969
970headless:
971 spin_lock(&pool->lock);
972 /* Add/move z3fold page to beginning of LRU */
973 if (!list_empty(&page->lru))
974 list_del(&page->lru);
975
976 list_add(&page->lru, &pool->lru);
977
978 *handle = encode_handle(zhdr, bud);
979 spin_unlock(&pool->lock);
980 if (bud != HEADLESS)
981 z3fold_page_unlock(zhdr);
982
983 return 0;
984}
985
986/**
987 * z3fold_free() - frees the allocation associated with the given handle
988 * @pool: pool in which the allocation resided
989 * @handle: handle associated with the allocation returned by z3fold_alloc()
990 *
991 * In the case that the z3fold page in which the allocation resides is under
992 * reclaim, as indicated by the PG_reclaim flag being set, this function
993 * only sets the first|last_chunks to 0. The page is actually freed
994 * once both buddies are evicted (see z3fold_reclaim_page() below).
995 */
996static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
997{
998 struct z3fold_header *zhdr;
999 struct page *page;
1000 enum buddy bud;
1001 bool page_claimed;
1002
1003 zhdr = handle_to_z3fold_header(handle);
1004 page = virt_to_page(zhdr);
1005 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1006
1007 if (test_bit(PAGE_HEADLESS, &page->private)) {
1008 /* if a headless page is under reclaim, just leave.
1009 * NB: we use test_and_set_bit for a reason: if the bit
1010 * has not been set before, we release this page
1011 * immediately so we don't care about its value any more.
1012 */
1013 if (!page_claimed) {
1014 spin_lock(&pool->lock);
1015 list_del(&page->lru);
1016 spin_unlock(&pool->lock);
1017 free_z3fold_page(page, true);
1018 atomic64_dec(&pool->pages_nr);
1019 }
1020 return;
1021 }
1022
1023 /* Non-headless case */
1024 z3fold_page_lock(zhdr);
1025 bud = handle_to_buddy(handle);
1026
1027 switch (bud) {
1028 case FIRST:
1029 zhdr->first_chunks = 0;
1030 break;
1031 case MIDDLE:
1032 zhdr->middle_chunks = 0;
1033 break;
1034 case LAST:
1035 zhdr->last_chunks = 0;
1036 break;
1037 default:
1038 pr_err("%s: unknown bud %d\n", __func__, bud);
1039 WARN_ON(1);
1040 z3fold_page_unlock(zhdr);
1041 return;
1042 }
1043
1044 free_handle(handle);
1045 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1046 atomic64_dec(&pool->pages_nr);
1047 return;
1048 }
1049 if (page_claimed) {
1050 /* the page has not been claimed by us */
1051 z3fold_page_unlock(zhdr);
1052 return;
1053 }
1054 if (unlikely(PageIsolated(page)) ||
1055 test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1056 z3fold_page_unlock(zhdr);
1057 clear_bit(PAGE_CLAIMED, &page->private);
1058 return;
1059 }
1060 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1061 spin_lock(&pool->lock);
1062 list_del_init(&zhdr->buddy);
1063 spin_unlock(&pool->lock);
1064 zhdr->cpu = -1;
1065 kref_get(&zhdr->refcount);
1066 do_compact_page(zhdr, true);
1067 clear_bit(PAGE_CLAIMED, &page->private);
1068 return;
1069 }
1070 kref_get(&zhdr->refcount);
1071 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1072 clear_bit(PAGE_CLAIMED, &page->private);
1073 z3fold_page_unlock(zhdr);
1074}
1075
1076/**
1077 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1078 * @pool: pool from which a page will attempt to be evicted
1079 * @retries: number of pages on the LRU list for which eviction will
1080 * be attempted before failing
1081 *
1082 * z3fold reclaim is different from normal system reclaim in that it is done
1083 * from the bottom, up. This is because only the bottom layer, z3fold, has
1084 * information on how the allocations are organized within each z3fold page.
1085 * This has the potential to create interesting locking situations between
1086 * z3fold and the user, however.
1087 *
1088 * To avoid these, this is how z3fold_reclaim_page() should be called:
1089 *
1090 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1091 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1092 * call the user-defined eviction handler with the pool and handle as
1093 * arguments.
1094 *
1095 * If the handle can not be evicted, the eviction handler should return
1096 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1097 * appropriate list and try the next z3fold page on the LRU up to
1098 * a user defined number of retries.
1099 *
1100 * If the handle is successfully evicted, the eviction handler should
1101 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1102 * contains logic to delay freeing the page if the page is under reclaim,
1103 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1104 *
1105 * If all buddies in the z3fold page are successfully evicted, then the
1106 * z3fold page can be freed.
1107 *
1108 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1109 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1110 * the retry limit was hit.
1111 */
1112static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1113{
1114 int i, ret = 0;
1115 struct z3fold_header *zhdr = NULL;
1116 struct page *page = NULL;
1117 struct list_head *pos;
1118 struct z3fold_buddy_slots slots;
1119 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1120
1121 spin_lock(&pool->lock);
1122 if (!pool->ops || !pool->ops->evict || retries == 0) {
1123 spin_unlock(&pool->lock);
1124 return -EINVAL;
1125 }
1126 for (i = 0; i < retries; i++) {
1127 if (list_empty(&pool->lru)) {
1128 spin_unlock(&pool->lock);
1129 return -EINVAL;
1130 }
1131 list_for_each_prev(pos, &pool->lru) {
1132 page = list_entry(pos, struct page, lru);
1133
1134 /* this bit could have been set by free, in which case
1135 * we pass over to the next page in the pool.
1136 */
1137 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1138 page = NULL;
1139 continue;
1140 }
1141
1142 if (unlikely(PageIsolated(page))) {
1143 clear_bit(PAGE_CLAIMED, &page->private);
1144 page = NULL;
1145 continue;
1146 }
1147 zhdr = page_address(page);
1148 if (test_bit(PAGE_HEADLESS, &page->private))
1149 break;
1150
1151 if (!z3fold_page_trylock(zhdr)) {
1152 clear_bit(PAGE_CLAIMED, &page->private);
1153 zhdr = NULL;
1154 continue; /* can't evict at this point */
1155 }
1156 kref_get(&zhdr->refcount);
1157 list_del_init(&zhdr->buddy);
1158 zhdr->cpu = -1;
1159 break;
1160 }
1161
1162 if (!zhdr)
1163 break;
1164
1165 list_del_init(&page->lru);
1166 spin_unlock(&pool->lock);
1167
1168 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1169 /*
1170 * We need encode the handles before unlocking, and
1171 * use our local slots structure because z3fold_free
1172 * can zero out zhdr->slots and we can't do much
1173 * about that
1174 */
1175 first_handle = 0;
1176 last_handle = 0;
1177 middle_handle = 0;
1178 if (zhdr->first_chunks)
1179 first_handle = __encode_handle(zhdr, &slots,
1180 FIRST);
1181 if (zhdr->middle_chunks)
1182 middle_handle = __encode_handle(zhdr, &slots,
1183 MIDDLE);
1184 if (zhdr->last_chunks)
1185 last_handle = __encode_handle(zhdr, &slots,
1186 LAST);
1187 /*
1188 * it's safe to unlock here because we hold a
1189 * reference to this page
1190 */
1191 z3fold_page_unlock(zhdr);
1192 } else {
1193 first_handle = __encode_handle(zhdr, &slots, HEADLESS);
1194 last_handle = middle_handle = 0;
1195 }
1196
1197 /* Issue the eviction callback(s) */
1198 if (middle_handle) {
1199 ret = pool->ops->evict(pool, middle_handle);
1200 if (ret)
1201 goto next;
1202 }
1203 if (first_handle) {
1204 ret = pool->ops->evict(pool, first_handle);
1205 if (ret)
1206 goto next;
1207 }
1208 if (last_handle) {
1209 ret = pool->ops->evict(pool, last_handle);
1210 if (ret)
1211 goto next;
1212 }
1213next:
1214 if (test_bit(PAGE_HEADLESS, &page->private)) {
1215 if (ret == 0) {
1216 free_z3fold_page(page, true);
1217 atomic64_dec(&pool->pages_nr);
1218 return 0;
1219 }
1220 spin_lock(&pool->lock);
1221 list_add(&page->lru, &pool->lru);
1222 spin_unlock(&pool->lock);
1223 clear_bit(PAGE_CLAIMED, &page->private);
1224 } else {
1225 z3fold_page_lock(zhdr);
1226 if (kref_put(&zhdr->refcount,
1227 release_z3fold_page_locked)) {
1228 atomic64_dec(&pool->pages_nr);
1229 return 0;
1230 }
1231 /*
1232 * if we are here, the page is still not completely
1233 * free. Take the global pool lock then to be able
1234 * to add it back to the lru list
1235 */
1236 spin_lock(&pool->lock);
1237 list_add(&page->lru, &pool->lru);
1238 spin_unlock(&pool->lock);
1239 z3fold_page_unlock(zhdr);
1240 clear_bit(PAGE_CLAIMED, &page->private);
1241 }
1242
1243 /* We started off locked to we need to lock the pool back */
1244 spin_lock(&pool->lock);
1245 }
1246 spin_unlock(&pool->lock);
1247 return -EAGAIN;
1248}
1249
1250/**
1251 * z3fold_map() - maps the allocation associated with the given handle
1252 * @pool: pool in which the allocation resides
1253 * @handle: handle associated with the allocation to be mapped
1254 *
1255 * Extracts the buddy number from handle and constructs the pointer to the
1256 * correct starting chunk within the page.
1257 *
1258 * Returns: a pointer to the mapped allocation
1259 */
1260static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1261{
1262 struct z3fold_header *zhdr;
1263 struct page *page;
1264 void *addr;
1265 enum buddy buddy;
1266
1267 zhdr = handle_to_z3fold_header(handle);
1268 addr = zhdr;
1269 page = virt_to_page(zhdr);
1270
1271 if (test_bit(PAGE_HEADLESS, &page->private))
1272 goto out;
1273
1274 z3fold_page_lock(zhdr);
1275 buddy = handle_to_buddy(handle);
1276 switch (buddy) {
1277 case FIRST:
1278 addr += ZHDR_SIZE_ALIGNED;
1279 break;
1280 case MIDDLE:
1281 addr += zhdr->start_middle << CHUNK_SHIFT;
1282 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1283 break;
1284 case LAST:
1285 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1286 break;
1287 default:
1288 pr_err("unknown buddy id %d\n", buddy);
1289 WARN_ON(1);
1290 addr = NULL;
1291 break;
1292 }
1293
1294 if (addr)
1295 zhdr->mapped_count++;
1296 z3fold_page_unlock(zhdr);
1297out:
1298 return addr;
1299}
1300
1301/**
1302 * z3fold_unmap() - unmaps the allocation associated with the given handle
1303 * @pool: pool in which the allocation resides
1304 * @handle: handle associated with the allocation to be unmapped
1305 */
1306static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1307{
1308 struct z3fold_header *zhdr;
1309 struct page *page;
1310 enum buddy buddy;
1311
1312 zhdr = handle_to_z3fold_header(handle);
1313 page = virt_to_page(zhdr);
1314
1315 if (test_bit(PAGE_HEADLESS, &page->private))
1316 return;
1317
1318 z3fold_page_lock(zhdr);
1319 buddy = handle_to_buddy(handle);
1320 if (buddy == MIDDLE)
1321 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1322 zhdr->mapped_count--;
1323 z3fold_page_unlock(zhdr);
1324}
1325
1326/**
1327 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1328 * @pool: pool whose size is being queried
1329 *
1330 * Returns: size in pages of the given pool.
1331 */
1332static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1333{
1334 return atomic64_read(&pool->pages_nr);
1335}
1336
1337static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1338{
1339 struct z3fold_header *zhdr;
1340 struct z3fold_pool *pool;
1341
1342 VM_BUG_ON_PAGE(!PageMovable(page), page);
1343 VM_BUG_ON_PAGE(PageIsolated(page), page);
1344
1345 if (test_bit(PAGE_HEADLESS, &page->private) ||
1346 test_bit(PAGE_CLAIMED, &page->private))
1347 return false;
1348
1349 zhdr = page_address(page);
1350 z3fold_page_lock(zhdr);
1351 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1352 test_bit(PAGE_STALE, &page->private))
1353 goto out;
1354
1355 pool = zhdr_to_pool(zhdr);
1356
1357 if (zhdr->mapped_count == 0) {
1358 kref_get(&zhdr->refcount);
1359 if (!list_empty(&zhdr->buddy))
1360 list_del_init(&zhdr->buddy);
1361 spin_lock(&pool->lock);
1362 if (!list_empty(&page->lru))
1363 list_del(&page->lru);
1364 spin_unlock(&pool->lock);
1365 z3fold_page_unlock(zhdr);
1366 return true;
1367 }
1368out:
1369 z3fold_page_unlock(zhdr);
1370 return false;
1371}
1372
1373static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1374 struct page *page, enum migrate_mode mode)
1375{
1376 struct z3fold_header *zhdr, *new_zhdr;
1377 struct z3fold_pool *pool;
1378 struct address_space *new_mapping;
1379
1380 VM_BUG_ON_PAGE(!PageMovable(page), page);
1381 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1382 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1383
1384 zhdr = page_address(page);
1385 pool = zhdr_to_pool(zhdr);
1386
1387 if (!z3fold_page_trylock(zhdr)) {
1388 return -EAGAIN;
1389 }
1390 if (zhdr->mapped_count != 0) {
1391 z3fold_page_unlock(zhdr);
1392 return -EBUSY;
1393 }
1394 if (work_pending(&zhdr->work)) {
1395 z3fold_page_unlock(zhdr);
1396 return -EAGAIN;
1397 }
1398 new_zhdr = page_address(newpage);
1399 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1400 newpage->private = page->private;
1401 page->private = 0;
1402 z3fold_page_unlock(zhdr);
1403 spin_lock_init(&new_zhdr->page_lock);
1404 INIT_WORK(&new_zhdr->work, compact_page_work);
1405 /*
1406 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1407 * so we only have to reinitialize it.
1408 */
1409 INIT_LIST_HEAD(&new_zhdr->buddy);
1410 new_mapping = page_mapping(page);
1411 __ClearPageMovable(page);
1412 ClearPagePrivate(page);
1413
1414 get_page(newpage);
1415 z3fold_page_lock(new_zhdr);
1416 if (new_zhdr->first_chunks)
1417 encode_handle(new_zhdr, FIRST);
1418 if (new_zhdr->last_chunks)
1419 encode_handle(new_zhdr, LAST);
1420 if (new_zhdr->middle_chunks)
1421 encode_handle(new_zhdr, MIDDLE);
1422 set_bit(NEEDS_COMPACTING, &newpage->private);
1423 new_zhdr->cpu = smp_processor_id();
1424 spin_lock(&pool->lock);
1425 list_add(&newpage->lru, &pool->lru);
1426 spin_unlock(&pool->lock);
1427 __SetPageMovable(newpage, new_mapping);
1428 z3fold_page_unlock(new_zhdr);
1429
1430 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1431
1432 page_mapcount_reset(page);
1433 put_page(page);
1434 return 0;
1435}
1436
1437static void z3fold_page_putback(struct page *page)
1438{
1439 struct z3fold_header *zhdr;
1440 struct z3fold_pool *pool;
1441
1442 zhdr = page_address(page);
1443 pool = zhdr_to_pool(zhdr);
1444
1445 z3fold_page_lock(zhdr);
1446 if (!list_empty(&zhdr->buddy))
1447 list_del_init(&zhdr->buddy);
1448 INIT_LIST_HEAD(&page->lru);
1449 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1450 atomic64_dec(&pool->pages_nr);
1451 return;
1452 }
1453 spin_lock(&pool->lock);
1454 list_add(&page->lru, &pool->lru);
1455 spin_unlock(&pool->lock);
1456 z3fold_page_unlock(zhdr);
1457}
1458
1459static const struct address_space_operations z3fold_aops = {
1460 .isolate_page = z3fold_page_isolate,
1461 .migratepage = z3fold_page_migrate,
1462 .putback_page = z3fold_page_putback,
1463};
1464
1465/*****************
1466 * zpool
1467 ****************/
1468
1469static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1470{
1471 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1472 return pool->zpool_ops->evict(pool->zpool, handle);
1473 else
1474 return -ENOENT;
1475}
1476
1477static const struct z3fold_ops z3fold_zpool_ops = {
1478 .evict = z3fold_zpool_evict
1479};
1480
1481static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1482 const struct zpool_ops *zpool_ops,
1483 struct zpool *zpool)
1484{
1485 struct z3fold_pool *pool;
1486
1487 pool = z3fold_create_pool(name, gfp,
1488 zpool_ops ? &z3fold_zpool_ops : NULL);
1489 if (pool) {
1490 pool->zpool = zpool;
1491 pool->zpool_ops = zpool_ops;
1492 }
1493 return pool;
1494}
1495
1496static void z3fold_zpool_destroy(void *pool)
1497{
1498 z3fold_destroy_pool(pool);
1499}
1500
1501static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1502 unsigned long *handle)
1503{
1504 return z3fold_alloc(pool, size, gfp, handle);
1505}
1506static void z3fold_zpool_free(void *pool, unsigned long handle)
1507{
1508 z3fold_free(pool, handle);
1509}
1510
1511static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1512 unsigned int *reclaimed)
1513{
1514 unsigned int total = 0;
1515 int ret = -EINVAL;
1516
1517 while (total < pages) {
1518 ret = z3fold_reclaim_page(pool, 8);
1519 if (ret < 0)
1520 break;
1521 total++;
1522 }
1523
1524 if (reclaimed)
1525 *reclaimed = total;
1526
1527 return ret;
1528}
1529
1530static void *z3fold_zpool_map(void *pool, unsigned long handle,
1531 enum zpool_mapmode mm)
1532{
1533 return z3fold_map(pool, handle);
1534}
1535static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1536{
1537 z3fold_unmap(pool, handle);
1538}
1539
1540static u64 z3fold_zpool_total_size(void *pool)
1541{
1542 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1543}
1544
1545static struct zpool_driver z3fold_zpool_driver = {
1546 .type = "z3fold",
1547 .owner = THIS_MODULE,
1548 .create = z3fold_zpool_create,
1549 .destroy = z3fold_zpool_destroy,
1550 .malloc = z3fold_zpool_malloc,
1551 .free = z3fold_zpool_free,
1552 .shrink = z3fold_zpool_shrink,
1553 .map = z3fold_zpool_map,
1554 .unmap = z3fold_zpool_unmap,
1555 .total_size = z3fold_zpool_total_size,
1556};
1557
1558MODULE_ALIAS("zpool-z3fold");
1559
1560static int __init init_z3fold(void)
1561{
1562 int ret;
1563
1564 /* Make sure the z3fold header is not larger than the page size */
1565 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1566 ret = z3fold_mount();
1567 if (ret)
1568 return ret;
1569
1570 zpool_register_driver(&z3fold_zpool_driver);
1571
1572 return 0;
1573}
1574
1575static void __exit exit_z3fold(void)
1576{
1577 z3fold_unmount();
1578 zpool_unregister_driver(&z3fold_zpool_driver);
1579}
1580
1581module_init(init_z3fold);
1582module_exit(exit_z3fold);
1583
1584MODULE_LICENSE("GPL");
1585MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1586MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * z3fold.c
4 *
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
7 *
8 * This implementation is based on zbud written by Seth Jennings.
9 *
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
17 *
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
20 *
21 * z3fold doesn't export any API and is meant to be used via zpool API.
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/atomic.h>
27#include <linux/sched.h>
28#include <linux/cpumask.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/page-flags.h>
33#include <linux/migrate.h>
34#include <linux/node.h>
35#include <linux/compaction.h>
36#include <linux/percpu.h>
37#include <linux/mount.h>
38#include <linux/pseudo_fs.h>
39#include <linux/fs.h>
40#include <linux/preempt.h>
41#include <linux/workqueue.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/zpool.h>
45#include <linux/magic.h>
46#include <linux/kmemleak.h>
47
48/*
49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50 * adjusting internal fragmentation. It also determines the number of
51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53 * in the beginning of an allocated page are occupied by z3fold header, so
54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55 * which shows the max number of free chunks in z3fold page, also there will
56 * be 63, or 62, respectively, freelists per pool.
57 */
58#define NCHUNKS_ORDER 6
59
60#define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
61#define CHUNK_SIZE (1 << CHUNK_SHIFT)
62#define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63#define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64#define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
65#define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66
67#define BUDDY_MASK (0x3)
68#define BUDDY_SHIFT 2
69#define SLOTS_ALIGN (0x40)
70
71/*****************
72 * Structures
73*****************/
74struct z3fold_pool;
75struct z3fold_ops {
76 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77};
78
79enum buddy {
80 HEADLESS = 0,
81 FIRST,
82 MIDDLE,
83 LAST,
84 BUDDIES_MAX = LAST
85};
86
87struct z3fold_buddy_slots {
88 /*
89 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 * be enough slots to hold all possible variants
91 */
92 unsigned long slot[BUDDY_MASK + 1];
93 unsigned long pool; /* back link + flags */
94 rwlock_t lock;
95};
96#define HANDLE_FLAG_MASK (0x03)
97
98/*
99 * struct z3fold_header - z3fold page metadata occupying first chunks of each
100 * z3fold page, except for HEADLESS pages
101 * @buddy: links the z3fold page into the relevant list in the
102 * pool
103 * @page_lock: per-page lock
104 * @refcount: reference count for the z3fold page
105 * @work: work_struct for page layout optimization
106 * @slots: pointer to the structure holding buddy slots
107 * @pool: pointer to the containing pool
108 * @cpu: CPU which this page "belongs" to
109 * @first_chunks: the size of the first buddy in chunks, 0 if free
110 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
111 * @last_chunks: the size of the last buddy in chunks, 0 if free
112 * @first_num: the starting number (for the first handle)
113 * @mapped_count: the number of objects currently mapped
114 */
115struct z3fold_header {
116 struct list_head buddy;
117 spinlock_t page_lock;
118 struct kref refcount;
119 struct work_struct work;
120 struct z3fold_buddy_slots *slots;
121 struct z3fold_pool *pool;
122 short cpu;
123 unsigned short first_chunks;
124 unsigned short middle_chunks;
125 unsigned short last_chunks;
126 unsigned short start_middle;
127 unsigned short first_num:2;
128 unsigned short mapped_count:2;
129 unsigned short foreign_handles:2;
130};
131
132/**
133 * struct z3fold_pool - stores metadata for each z3fold pool
134 * @name: pool name
135 * @lock: protects pool unbuddied/lru lists
136 * @stale_lock: protects pool stale page list
137 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
138 * buddies; the list each z3fold page is added to depends on
139 * the size of its free region.
140 * @lru: list tracking the z3fold pages in LRU order by most recently
141 * added buddy.
142 * @stale: list of pages marked for freeing
143 * @pages_nr: number of z3fold pages in the pool.
144 * @c_handle: cache for z3fold_buddy_slots allocation
145 * @ops: pointer to a structure of user defined operations specified at
146 * pool creation time.
147 * @compact_wq: workqueue for page layout background optimization
148 * @release_wq: workqueue for safe page release
149 * @work: work_struct for safe page release
150 * @inode: inode for z3fold pseudo filesystem
151 *
152 * This structure is allocated at pool creation time and maintains metadata
153 * pertaining to a particular z3fold pool.
154 */
155struct z3fold_pool {
156 const char *name;
157 spinlock_t lock;
158 spinlock_t stale_lock;
159 struct list_head *unbuddied;
160 struct list_head lru;
161 struct list_head stale;
162 atomic64_t pages_nr;
163 struct kmem_cache *c_handle;
164 const struct z3fold_ops *ops;
165 struct zpool *zpool;
166 const struct zpool_ops *zpool_ops;
167 struct workqueue_struct *compact_wq;
168 struct workqueue_struct *release_wq;
169 struct work_struct work;
170 struct inode *inode;
171};
172
173/*
174 * Internal z3fold page flags
175 */
176enum z3fold_page_flags {
177 PAGE_HEADLESS = 0,
178 MIDDLE_CHUNK_MAPPED,
179 NEEDS_COMPACTING,
180 PAGE_STALE,
181 PAGE_CLAIMED, /* by either reclaim or free */
182};
183
184/*
185 * handle flags, go under HANDLE_FLAG_MASK
186 */
187enum z3fold_handle_flags {
188 HANDLES_ORPHANED = 0,
189};
190
191/*
192 * Forward declarations
193 */
194static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195static void compact_page_work(struct work_struct *w);
196
197/*****************
198 * Helpers
199*****************/
200
201/* Converts an allocation size in bytes to size in z3fold chunks */
202static int size_to_chunks(size_t size)
203{
204 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205}
206
207#define for_each_unbuddied_list(_iter, _begin) \
208 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209
210static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 gfp_t gfp)
212{
213 struct z3fold_buddy_slots *slots;
214
215 slots = kmem_cache_alloc(pool->c_handle,
216 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217
218 if (slots) {
219 /* It will be freed separately in free_handle(). */
220 kmemleak_not_leak(slots);
221 memset(slots->slot, 0, sizeof(slots->slot));
222 slots->pool = (unsigned long)pool;
223 rwlock_init(&slots->lock);
224 }
225
226 return slots;
227}
228
229static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
230{
231 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
232}
233
234static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
235{
236 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
237}
238
239/* Lock a z3fold page */
240static inline void z3fold_page_lock(struct z3fold_header *zhdr)
241{
242 spin_lock(&zhdr->page_lock);
243}
244
245/* Try to lock a z3fold page */
246static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
247{
248 return spin_trylock(&zhdr->page_lock);
249}
250
251/* Unlock a z3fold page */
252static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
253{
254 spin_unlock(&zhdr->page_lock);
255}
256
257
258static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
259 bool lock)
260{
261 struct z3fold_buddy_slots *slots;
262 struct z3fold_header *zhdr;
263 int locked = 0;
264
265 if (!(handle & (1 << PAGE_HEADLESS))) {
266 slots = handle_to_slots(handle);
267 do {
268 unsigned long addr;
269
270 read_lock(&slots->lock);
271 addr = *(unsigned long *)handle;
272 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
273 if (lock)
274 locked = z3fold_page_trylock(zhdr);
275 read_unlock(&slots->lock);
276 if (locked)
277 break;
278 cpu_relax();
279 } while (lock);
280 } else {
281 zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
282 }
283
284 return zhdr;
285}
286
287/* Returns the z3fold page where a given handle is stored */
288static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
289{
290 return __get_z3fold_header(h, false);
291}
292
293/* return locked z3fold page if it's not headless */
294static inline struct z3fold_header *get_z3fold_header(unsigned long h)
295{
296 return __get_z3fold_header(h, true);
297}
298
299static inline void put_z3fold_header(struct z3fold_header *zhdr)
300{
301 struct page *page = virt_to_page(zhdr);
302
303 if (!test_bit(PAGE_HEADLESS, &page->private))
304 z3fold_page_unlock(zhdr);
305}
306
307static inline void free_handle(unsigned long handle)
308{
309 struct z3fold_buddy_slots *slots;
310 struct z3fold_header *zhdr;
311 int i;
312 bool is_free;
313
314 if (handle & (1 << PAGE_HEADLESS))
315 return;
316
317 if (WARN_ON(*(unsigned long *)handle == 0))
318 return;
319
320 zhdr = handle_to_z3fold_header(handle);
321 slots = handle_to_slots(handle);
322 write_lock(&slots->lock);
323 *(unsigned long *)handle = 0;
324 if (zhdr->slots == slots) {
325 write_unlock(&slots->lock);
326 return; /* simple case, nothing else to do */
327 }
328
329 /* we are freeing a foreign handle if we are here */
330 zhdr->foreign_handles--;
331 is_free = true;
332 if (!test_bit(HANDLES_ORPHANED, &slots->pool)) {
333 write_unlock(&slots->lock);
334 return;
335 }
336 for (i = 0; i <= BUDDY_MASK; i++) {
337 if (slots->slot[i]) {
338 is_free = false;
339 break;
340 }
341 }
342 write_unlock(&slots->lock);
343
344 if (is_free) {
345 struct z3fold_pool *pool = slots_to_pool(slots);
346
347 kmem_cache_free(pool->c_handle, slots);
348 }
349}
350
351static int z3fold_init_fs_context(struct fs_context *fc)
352{
353 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
354}
355
356static struct file_system_type z3fold_fs = {
357 .name = "z3fold",
358 .init_fs_context = z3fold_init_fs_context,
359 .kill_sb = kill_anon_super,
360};
361
362static struct vfsmount *z3fold_mnt;
363static int z3fold_mount(void)
364{
365 int ret = 0;
366
367 z3fold_mnt = kern_mount(&z3fold_fs);
368 if (IS_ERR(z3fold_mnt))
369 ret = PTR_ERR(z3fold_mnt);
370
371 return ret;
372}
373
374static void z3fold_unmount(void)
375{
376 kern_unmount(z3fold_mnt);
377}
378
379static const struct address_space_operations z3fold_aops;
380static int z3fold_register_migration(struct z3fold_pool *pool)
381{
382 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
383 if (IS_ERR(pool->inode)) {
384 pool->inode = NULL;
385 return 1;
386 }
387
388 pool->inode->i_mapping->private_data = pool;
389 pool->inode->i_mapping->a_ops = &z3fold_aops;
390 return 0;
391}
392
393static void z3fold_unregister_migration(struct z3fold_pool *pool)
394{
395 if (pool->inode)
396 iput(pool->inode);
397 }
398
399/* Initializes the z3fold header of a newly allocated z3fold page */
400static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
401 struct z3fold_pool *pool, gfp_t gfp)
402{
403 struct z3fold_header *zhdr = page_address(page);
404 struct z3fold_buddy_slots *slots;
405
406 INIT_LIST_HEAD(&page->lru);
407 clear_bit(PAGE_HEADLESS, &page->private);
408 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
409 clear_bit(NEEDS_COMPACTING, &page->private);
410 clear_bit(PAGE_STALE, &page->private);
411 clear_bit(PAGE_CLAIMED, &page->private);
412 if (headless)
413 return zhdr;
414
415 slots = alloc_slots(pool, gfp);
416 if (!slots)
417 return NULL;
418
419 spin_lock_init(&zhdr->page_lock);
420 kref_init(&zhdr->refcount);
421 zhdr->first_chunks = 0;
422 zhdr->middle_chunks = 0;
423 zhdr->last_chunks = 0;
424 zhdr->first_num = 0;
425 zhdr->start_middle = 0;
426 zhdr->cpu = -1;
427 zhdr->foreign_handles = 0;
428 zhdr->mapped_count = 0;
429 zhdr->slots = slots;
430 zhdr->pool = pool;
431 INIT_LIST_HEAD(&zhdr->buddy);
432 INIT_WORK(&zhdr->work, compact_page_work);
433 return zhdr;
434}
435
436/* Resets the struct page fields and frees the page */
437static void free_z3fold_page(struct page *page, bool headless)
438{
439 if (!headless) {
440 lock_page(page);
441 __ClearPageMovable(page);
442 unlock_page(page);
443 }
444 ClearPagePrivate(page);
445 __free_page(page);
446}
447
448/* Helper function to build the index */
449static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
450{
451 return (bud + zhdr->first_num) & BUDDY_MASK;
452}
453
454/*
455 * Encodes the handle of a particular buddy within a z3fold page
456 * Pool lock should be held as this function accesses first_num
457 */
458static unsigned long __encode_handle(struct z3fold_header *zhdr,
459 struct z3fold_buddy_slots *slots,
460 enum buddy bud)
461{
462 unsigned long h = (unsigned long)zhdr;
463 int idx = 0;
464
465 /*
466 * For a headless page, its handle is its pointer with the extra
467 * PAGE_HEADLESS bit set
468 */
469 if (bud == HEADLESS)
470 return h | (1 << PAGE_HEADLESS);
471
472 /* otherwise, return pointer to encoded handle */
473 idx = __idx(zhdr, bud);
474 h += idx;
475 if (bud == LAST)
476 h |= (zhdr->last_chunks << BUDDY_SHIFT);
477
478 write_lock(&slots->lock);
479 slots->slot[idx] = h;
480 write_unlock(&slots->lock);
481 return (unsigned long)&slots->slot[idx];
482}
483
484static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
485{
486 return __encode_handle(zhdr, zhdr->slots, bud);
487}
488
489/* only for LAST bud, returns zero otherwise */
490static unsigned short handle_to_chunks(unsigned long handle)
491{
492 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
493 unsigned long addr;
494
495 read_lock(&slots->lock);
496 addr = *(unsigned long *)handle;
497 read_unlock(&slots->lock);
498 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
499}
500
501/*
502 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
503 * but that doesn't matter. because the masking will result in the
504 * correct buddy number.
505 */
506static enum buddy handle_to_buddy(unsigned long handle)
507{
508 struct z3fold_header *zhdr;
509 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
510 unsigned long addr;
511
512 read_lock(&slots->lock);
513 WARN_ON(handle & (1 << PAGE_HEADLESS));
514 addr = *(unsigned long *)handle;
515 read_unlock(&slots->lock);
516 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
517 return (addr - zhdr->first_num) & BUDDY_MASK;
518}
519
520static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
521{
522 return zhdr->pool;
523}
524
525static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
526{
527 struct page *page = virt_to_page(zhdr);
528 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
529 bool is_free = true;
530 int i;
531
532 WARN_ON(!list_empty(&zhdr->buddy));
533 set_bit(PAGE_STALE, &page->private);
534 clear_bit(NEEDS_COMPACTING, &page->private);
535 spin_lock(&pool->lock);
536 if (!list_empty(&page->lru))
537 list_del_init(&page->lru);
538 spin_unlock(&pool->lock);
539
540 /* If there are no foreign handles, free the handles array */
541 read_lock(&zhdr->slots->lock);
542 for (i = 0; i <= BUDDY_MASK; i++) {
543 if (zhdr->slots->slot[i]) {
544 is_free = false;
545 break;
546 }
547 }
548 if (!is_free)
549 set_bit(HANDLES_ORPHANED, &zhdr->slots->pool);
550 read_unlock(&zhdr->slots->lock);
551
552 if (is_free)
553 kmem_cache_free(pool->c_handle, zhdr->slots);
554
555 if (locked)
556 z3fold_page_unlock(zhdr);
557
558 spin_lock(&pool->stale_lock);
559 list_add(&zhdr->buddy, &pool->stale);
560 queue_work(pool->release_wq, &pool->work);
561 spin_unlock(&pool->stale_lock);
562}
563
564static void __attribute__((__unused__))
565 release_z3fold_page(struct kref *ref)
566{
567 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
568 refcount);
569 __release_z3fold_page(zhdr, false);
570}
571
572static void release_z3fold_page_locked(struct kref *ref)
573{
574 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
575 refcount);
576 WARN_ON(z3fold_page_trylock(zhdr));
577 __release_z3fold_page(zhdr, true);
578}
579
580static void release_z3fold_page_locked_list(struct kref *ref)
581{
582 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
583 refcount);
584 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
585
586 spin_lock(&pool->lock);
587 list_del_init(&zhdr->buddy);
588 spin_unlock(&pool->lock);
589
590 WARN_ON(z3fold_page_trylock(zhdr));
591 __release_z3fold_page(zhdr, true);
592}
593
594static void free_pages_work(struct work_struct *w)
595{
596 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
597
598 spin_lock(&pool->stale_lock);
599 while (!list_empty(&pool->stale)) {
600 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
601 struct z3fold_header, buddy);
602 struct page *page = virt_to_page(zhdr);
603
604 list_del(&zhdr->buddy);
605 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
606 continue;
607 spin_unlock(&pool->stale_lock);
608 cancel_work_sync(&zhdr->work);
609 free_z3fold_page(page, false);
610 cond_resched();
611 spin_lock(&pool->stale_lock);
612 }
613 spin_unlock(&pool->stale_lock);
614}
615
616/*
617 * Returns the number of free chunks in a z3fold page.
618 * NB: can't be used with HEADLESS pages.
619 */
620static int num_free_chunks(struct z3fold_header *zhdr)
621{
622 int nfree;
623 /*
624 * If there is a middle object, pick up the bigger free space
625 * either before or after it. Otherwise just subtract the number
626 * of chunks occupied by the first and the last objects.
627 */
628 if (zhdr->middle_chunks != 0) {
629 int nfree_before = zhdr->first_chunks ?
630 0 : zhdr->start_middle - ZHDR_CHUNKS;
631 int nfree_after = zhdr->last_chunks ?
632 0 : TOTAL_CHUNKS -
633 (zhdr->start_middle + zhdr->middle_chunks);
634 nfree = max(nfree_before, nfree_after);
635 } else
636 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
637 return nfree;
638}
639
640/* Add to the appropriate unbuddied list */
641static inline void add_to_unbuddied(struct z3fold_pool *pool,
642 struct z3fold_header *zhdr)
643{
644 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
645 zhdr->middle_chunks == 0) {
646 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
647
648 int freechunks = num_free_chunks(zhdr);
649 spin_lock(&pool->lock);
650 list_add(&zhdr->buddy, &unbuddied[freechunks]);
651 spin_unlock(&pool->lock);
652 zhdr->cpu = smp_processor_id();
653 put_cpu_ptr(pool->unbuddied);
654 }
655}
656
657static inline void *mchunk_memmove(struct z3fold_header *zhdr,
658 unsigned short dst_chunk)
659{
660 void *beg = zhdr;
661 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
662 beg + (zhdr->start_middle << CHUNK_SHIFT),
663 zhdr->middle_chunks << CHUNK_SHIFT);
664}
665
666static inline bool buddy_single(struct z3fold_header *zhdr)
667{
668 return !((zhdr->first_chunks && zhdr->middle_chunks) ||
669 (zhdr->first_chunks && zhdr->last_chunks) ||
670 (zhdr->middle_chunks && zhdr->last_chunks));
671}
672
673static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
674{
675 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
676 void *p = zhdr;
677 unsigned long old_handle = 0;
678 size_t sz = 0;
679 struct z3fold_header *new_zhdr = NULL;
680 int first_idx = __idx(zhdr, FIRST);
681 int middle_idx = __idx(zhdr, MIDDLE);
682 int last_idx = __idx(zhdr, LAST);
683 unsigned short *moved_chunks = NULL;
684
685 /*
686 * No need to protect slots here -- all the slots are "local" and
687 * the page lock is already taken
688 */
689 if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
690 p += ZHDR_SIZE_ALIGNED;
691 sz = zhdr->first_chunks << CHUNK_SHIFT;
692 old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
693 moved_chunks = &zhdr->first_chunks;
694 } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
695 p += zhdr->start_middle << CHUNK_SHIFT;
696 sz = zhdr->middle_chunks << CHUNK_SHIFT;
697 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
698 moved_chunks = &zhdr->middle_chunks;
699 } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
700 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
701 sz = zhdr->last_chunks << CHUNK_SHIFT;
702 old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
703 moved_chunks = &zhdr->last_chunks;
704 }
705
706 if (sz > 0) {
707 enum buddy new_bud = HEADLESS;
708 short chunks = size_to_chunks(sz);
709 void *q;
710
711 new_zhdr = __z3fold_alloc(pool, sz, false);
712 if (!new_zhdr)
713 return NULL;
714
715 if (WARN_ON(new_zhdr == zhdr))
716 goto out_fail;
717
718 if (new_zhdr->first_chunks == 0) {
719 if (new_zhdr->middle_chunks != 0 &&
720 chunks >= new_zhdr->start_middle) {
721 new_bud = LAST;
722 } else {
723 new_bud = FIRST;
724 }
725 } else if (new_zhdr->last_chunks == 0) {
726 new_bud = LAST;
727 } else if (new_zhdr->middle_chunks == 0) {
728 new_bud = MIDDLE;
729 }
730 q = new_zhdr;
731 switch (new_bud) {
732 case FIRST:
733 new_zhdr->first_chunks = chunks;
734 q += ZHDR_SIZE_ALIGNED;
735 break;
736 case MIDDLE:
737 new_zhdr->middle_chunks = chunks;
738 new_zhdr->start_middle =
739 new_zhdr->first_chunks + ZHDR_CHUNKS;
740 q += new_zhdr->start_middle << CHUNK_SHIFT;
741 break;
742 case LAST:
743 new_zhdr->last_chunks = chunks;
744 q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
745 break;
746 default:
747 goto out_fail;
748 }
749 new_zhdr->foreign_handles++;
750 memcpy(q, p, sz);
751 write_lock(&zhdr->slots->lock);
752 *(unsigned long *)old_handle = (unsigned long)new_zhdr +
753 __idx(new_zhdr, new_bud);
754 if (new_bud == LAST)
755 *(unsigned long *)old_handle |=
756 (new_zhdr->last_chunks << BUDDY_SHIFT);
757 write_unlock(&zhdr->slots->lock);
758 add_to_unbuddied(pool, new_zhdr);
759 z3fold_page_unlock(new_zhdr);
760
761 *moved_chunks = 0;
762 }
763
764 return new_zhdr;
765
766out_fail:
767 if (new_zhdr) {
768 if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
769 atomic64_dec(&pool->pages_nr);
770 else {
771 add_to_unbuddied(pool, new_zhdr);
772 z3fold_page_unlock(new_zhdr);
773 }
774 }
775 return NULL;
776
777}
778
779#define BIG_CHUNK_GAP 3
780/* Has to be called with lock held */
781static int z3fold_compact_page(struct z3fold_header *zhdr)
782{
783 struct page *page = virt_to_page(zhdr);
784
785 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
786 return 0; /* can't move middle chunk, it's used */
787
788 if (unlikely(PageIsolated(page)))
789 return 0;
790
791 if (zhdr->middle_chunks == 0)
792 return 0; /* nothing to compact */
793
794 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
795 /* move to the beginning */
796 mchunk_memmove(zhdr, ZHDR_CHUNKS);
797 zhdr->first_chunks = zhdr->middle_chunks;
798 zhdr->middle_chunks = 0;
799 zhdr->start_middle = 0;
800 zhdr->first_num++;
801 return 1;
802 }
803
804 /*
805 * moving data is expensive, so let's only do that if
806 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
807 */
808 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
809 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
810 BIG_CHUNK_GAP) {
811 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
812 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
813 return 1;
814 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
815 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
816 + zhdr->middle_chunks) >=
817 BIG_CHUNK_GAP) {
818 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
819 zhdr->middle_chunks;
820 mchunk_memmove(zhdr, new_start);
821 zhdr->start_middle = new_start;
822 return 1;
823 }
824
825 return 0;
826}
827
828static void do_compact_page(struct z3fold_header *zhdr, bool locked)
829{
830 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
831 struct page *page;
832
833 page = virt_to_page(zhdr);
834 if (locked)
835 WARN_ON(z3fold_page_trylock(zhdr));
836 else
837 z3fold_page_lock(zhdr);
838 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
839 z3fold_page_unlock(zhdr);
840 return;
841 }
842 spin_lock(&pool->lock);
843 list_del_init(&zhdr->buddy);
844 spin_unlock(&pool->lock);
845
846 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
847 atomic64_dec(&pool->pages_nr);
848 return;
849 }
850
851 if (unlikely(PageIsolated(page) ||
852 test_bit(PAGE_CLAIMED, &page->private) ||
853 test_bit(PAGE_STALE, &page->private))) {
854 z3fold_page_unlock(zhdr);
855 return;
856 }
857
858 if (!zhdr->foreign_handles && buddy_single(zhdr) &&
859 zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
860 if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
861 atomic64_dec(&pool->pages_nr);
862 else
863 z3fold_page_unlock(zhdr);
864 return;
865 }
866
867 z3fold_compact_page(zhdr);
868 add_to_unbuddied(pool, zhdr);
869 z3fold_page_unlock(zhdr);
870}
871
872static void compact_page_work(struct work_struct *w)
873{
874 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
875 work);
876
877 do_compact_page(zhdr, false);
878}
879
880/* returns _locked_ z3fold page header or NULL */
881static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
882 size_t size, bool can_sleep)
883{
884 struct z3fold_header *zhdr = NULL;
885 struct page *page;
886 struct list_head *unbuddied;
887 int chunks = size_to_chunks(size), i;
888
889lookup:
890 /* First, try to find an unbuddied z3fold page. */
891 unbuddied = get_cpu_ptr(pool->unbuddied);
892 for_each_unbuddied_list(i, chunks) {
893 struct list_head *l = &unbuddied[i];
894
895 zhdr = list_first_entry_or_null(READ_ONCE(l),
896 struct z3fold_header, buddy);
897
898 if (!zhdr)
899 continue;
900
901 /* Re-check under lock. */
902 spin_lock(&pool->lock);
903 l = &unbuddied[i];
904 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
905 struct z3fold_header, buddy)) ||
906 !z3fold_page_trylock(zhdr)) {
907 spin_unlock(&pool->lock);
908 zhdr = NULL;
909 put_cpu_ptr(pool->unbuddied);
910 if (can_sleep)
911 cond_resched();
912 goto lookup;
913 }
914 list_del_init(&zhdr->buddy);
915 zhdr->cpu = -1;
916 spin_unlock(&pool->lock);
917
918 page = virt_to_page(zhdr);
919 if (test_bit(NEEDS_COMPACTING, &page->private) ||
920 test_bit(PAGE_CLAIMED, &page->private)) {
921 z3fold_page_unlock(zhdr);
922 zhdr = NULL;
923 put_cpu_ptr(pool->unbuddied);
924 if (can_sleep)
925 cond_resched();
926 goto lookup;
927 }
928
929 /*
930 * this page could not be removed from its unbuddied
931 * list while pool lock was held, and then we've taken
932 * page lock so kref_put could not be called before
933 * we got here, so it's safe to just call kref_get()
934 */
935 kref_get(&zhdr->refcount);
936 break;
937 }
938 put_cpu_ptr(pool->unbuddied);
939
940 if (!zhdr) {
941 int cpu;
942
943 /* look for _exact_ match on other cpus' lists */
944 for_each_online_cpu(cpu) {
945 struct list_head *l;
946
947 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
948 spin_lock(&pool->lock);
949 l = &unbuddied[chunks];
950
951 zhdr = list_first_entry_or_null(READ_ONCE(l),
952 struct z3fold_header, buddy);
953
954 if (!zhdr || !z3fold_page_trylock(zhdr)) {
955 spin_unlock(&pool->lock);
956 zhdr = NULL;
957 continue;
958 }
959 list_del_init(&zhdr->buddy);
960 zhdr->cpu = -1;
961 spin_unlock(&pool->lock);
962
963 page = virt_to_page(zhdr);
964 if (test_bit(NEEDS_COMPACTING, &page->private) ||
965 test_bit(PAGE_CLAIMED, &page->private)) {
966 z3fold_page_unlock(zhdr);
967 zhdr = NULL;
968 if (can_sleep)
969 cond_resched();
970 continue;
971 }
972 kref_get(&zhdr->refcount);
973 break;
974 }
975 }
976
977 return zhdr;
978}
979
980/*
981 * API Functions
982 */
983
984/**
985 * z3fold_create_pool() - create a new z3fold pool
986 * @name: pool name
987 * @gfp: gfp flags when allocating the z3fold pool structure
988 * @ops: user-defined operations for the z3fold pool
989 *
990 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
991 * failed.
992 */
993static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
994 const struct z3fold_ops *ops)
995{
996 struct z3fold_pool *pool = NULL;
997 int i, cpu;
998
999 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
1000 if (!pool)
1001 goto out;
1002 pool->c_handle = kmem_cache_create("z3fold_handle",
1003 sizeof(struct z3fold_buddy_slots),
1004 SLOTS_ALIGN, 0, NULL);
1005 if (!pool->c_handle)
1006 goto out_c;
1007 spin_lock_init(&pool->lock);
1008 spin_lock_init(&pool->stale_lock);
1009 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1010 if (!pool->unbuddied)
1011 goto out_pool;
1012 for_each_possible_cpu(cpu) {
1013 struct list_head *unbuddied =
1014 per_cpu_ptr(pool->unbuddied, cpu);
1015 for_each_unbuddied_list(i, 0)
1016 INIT_LIST_HEAD(&unbuddied[i]);
1017 }
1018 INIT_LIST_HEAD(&pool->lru);
1019 INIT_LIST_HEAD(&pool->stale);
1020 atomic64_set(&pool->pages_nr, 0);
1021 pool->name = name;
1022 pool->compact_wq = create_singlethread_workqueue(pool->name);
1023 if (!pool->compact_wq)
1024 goto out_unbuddied;
1025 pool->release_wq = create_singlethread_workqueue(pool->name);
1026 if (!pool->release_wq)
1027 goto out_wq;
1028 if (z3fold_register_migration(pool))
1029 goto out_rwq;
1030 INIT_WORK(&pool->work, free_pages_work);
1031 pool->ops = ops;
1032 return pool;
1033
1034out_rwq:
1035 destroy_workqueue(pool->release_wq);
1036out_wq:
1037 destroy_workqueue(pool->compact_wq);
1038out_unbuddied:
1039 free_percpu(pool->unbuddied);
1040out_pool:
1041 kmem_cache_destroy(pool->c_handle);
1042out_c:
1043 kfree(pool);
1044out:
1045 return NULL;
1046}
1047
1048/**
1049 * z3fold_destroy_pool() - destroys an existing z3fold pool
1050 * @pool: the z3fold pool to be destroyed
1051 *
1052 * The pool should be emptied before this function is called.
1053 */
1054static void z3fold_destroy_pool(struct z3fold_pool *pool)
1055{
1056 kmem_cache_destroy(pool->c_handle);
1057
1058 /*
1059 * We need to destroy pool->compact_wq before pool->release_wq,
1060 * as any pending work on pool->compact_wq will call
1061 * queue_work(pool->release_wq, &pool->work).
1062 *
1063 * There are still outstanding pages until both workqueues are drained,
1064 * so we cannot unregister migration until then.
1065 */
1066
1067 destroy_workqueue(pool->compact_wq);
1068 destroy_workqueue(pool->release_wq);
1069 z3fold_unregister_migration(pool);
1070 kfree(pool);
1071}
1072
1073/**
1074 * z3fold_alloc() - allocates a region of a given size
1075 * @pool: z3fold pool from which to allocate
1076 * @size: size in bytes of the desired allocation
1077 * @gfp: gfp flags used if the pool needs to grow
1078 * @handle: handle of the new allocation
1079 *
1080 * This function will attempt to find a free region in the pool large enough to
1081 * satisfy the allocation request. A search of the unbuddied lists is
1082 * performed first. If no suitable free region is found, then a new page is
1083 * allocated and added to the pool to satisfy the request.
1084 *
1085 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1086 * as z3fold pool pages.
1087 *
1088 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1089 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1090 * a new page.
1091 */
1092static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1093 unsigned long *handle)
1094{
1095 int chunks = size_to_chunks(size);
1096 struct z3fold_header *zhdr = NULL;
1097 struct page *page = NULL;
1098 enum buddy bud;
1099 bool can_sleep = gfpflags_allow_blocking(gfp);
1100
1101 if (!size)
1102 return -EINVAL;
1103
1104 if (size > PAGE_SIZE)
1105 return -ENOSPC;
1106
1107 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1108 bud = HEADLESS;
1109 else {
1110retry:
1111 zhdr = __z3fold_alloc(pool, size, can_sleep);
1112 if (zhdr) {
1113 if (zhdr->first_chunks == 0) {
1114 if (zhdr->middle_chunks != 0 &&
1115 chunks >= zhdr->start_middle)
1116 bud = LAST;
1117 else
1118 bud = FIRST;
1119 } else if (zhdr->last_chunks == 0)
1120 bud = LAST;
1121 else if (zhdr->middle_chunks == 0)
1122 bud = MIDDLE;
1123 else {
1124 if (kref_put(&zhdr->refcount,
1125 release_z3fold_page_locked))
1126 atomic64_dec(&pool->pages_nr);
1127 else
1128 z3fold_page_unlock(zhdr);
1129 pr_err("No free chunks in unbuddied\n");
1130 WARN_ON(1);
1131 goto retry;
1132 }
1133 page = virt_to_page(zhdr);
1134 goto found;
1135 }
1136 bud = FIRST;
1137 }
1138
1139 page = NULL;
1140 if (can_sleep) {
1141 spin_lock(&pool->stale_lock);
1142 zhdr = list_first_entry_or_null(&pool->stale,
1143 struct z3fold_header, buddy);
1144 /*
1145 * Before allocating a page, let's see if we can take one from
1146 * the stale pages list. cancel_work_sync() can sleep so we
1147 * limit this case to the contexts where we can sleep
1148 */
1149 if (zhdr) {
1150 list_del(&zhdr->buddy);
1151 spin_unlock(&pool->stale_lock);
1152 cancel_work_sync(&zhdr->work);
1153 page = virt_to_page(zhdr);
1154 } else {
1155 spin_unlock(&pool->stale_lock);
1156 }
1157 }
1158 if (!page)
1159 page = alloc_page(gfp);
1160
1161 if (!page)
1162 return -ENOMEM;
1163
1164 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1165 if (!zhdr) {
1166 __free_page(page);
1167 return -ENOMEM;
1168 }
1169 atomic64_inc(&pool->pages_nr);
1170
1171 if (bud == HEADLESS) {
1172 set_bit(PAGE_HEADLESS, &page->private);
1173 goto headless;
1174 }
1175 if (can_sleep) {
1176 lock_page(page);
1177 __SetPageMovable(page, pool->inode->i_mapping);
1178 unlock_page(page);
1179 } else {
1180 if (trylock_page(page)) {
1181 __SetPageMovable(page, pool->inode->i_mapping);
1182 unlock_page(page);
1183 }
1184 }
1185 z3fold_page_lock(zhdr);
1186
1187found:
1188 if (bud == FIRST)
1189 zhdr->first_chunks = chunks;
1190 else if (bud == LAST)
1191 zhdr->last_chunks = chunks;
1192 else {
1193 zhdr->middle_chunks = chunks;
1194 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1195 }
1196 add_to_unbuddied(pool, zhdr);
1197
1198headless:
1199 spin_lock(&pool->lock);
1200 /* Add/move z3fold page to beginning of LRU */
1201 if (!list_empty(&page->lru))
1202 list_del(&page->lru);
1203
1204 list_add(&page->lru, &pool->lru);
1205
1206 *handle = encode_handle(zhdr, bud);
1207 spin_unlock(&pool->lock);
1208 if (bud != HEADLESS)
1209 z3fold_page_unlock(zhdr);
1210
1211 return 0;
1212}
1213
1214/**
1215 * z3fold_free() - frees the allocation associated with the given handle
1216 * @pool: pool in which the allocation resided
1217 * @handle: handle associated with the allocation returned by z3fold_alloc()
1218 *
1219 * In the case that the z3fold page in which the allocation resides is under
1220 * reclaim, as indicated by the PG_reclaim flag being set, this function
1221 * only sets the first|last_chunks to 0. The page is actually freed
1222 * once both buddies are evicted (see z3fold_reclaim_page() below).
1223 */
1224static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1225{
1226 struct z3fold_header *zhdr;
1227 struct page *page;
1228 enum buddy bud;
1229 bool page_claimed;
1230
1231 zhdr = get_z3fold_header(handle);
1232 page = virt_to_page(zhdr);
1233 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1234
1235 if (test_bit(PAGE_HEADLESS, &page->private)) {
1236 /* if a headless page is under reclaim, just leave.
1237 * NB: we use test_and_set_bit for a reason: if the bit
1238 * has not been set before, we release this page
1239 * immediately so we don't care about its value any more.
1240 */
1241 if (!page_claimed) {
1242 spin_lock(&pool->lock);
1243 list_del(&page->lru);
1244 spin_unlock(&pool->lock);
1245 put_z3fold_header(zhdr);
1246 free_z3fold_page(page, true);
1247 atomic64_dec(&pool->pages_nr);
1248 }
1249 return;
1250 }
1251
1252 /* Non-headless case */
1253 bud = handle_to_buddy(handle);
1254
1255 switch (bud) {
1256 case FIRST:
1257 zhdr->first_chunks = 0;
1258 break;
1259 case MIDDLE:
1260 zhdr->middle_chunks = 0;
1261 break;
1262 case LAST:
1263 zhdr->last_chunks = 0;
1264 break;
1265 default:
1266 pr_err("%s: unknown bud %d\n", __func__, bud);
1267 WARN_ON(1);
1268 put_z3fold_header(zhdr);
1269 clear_bit(PAGE_CLAIMED, &page->private);
1270 return;
1271 }
1272
1273 if (!page_claimed)
1274 free_handle(handle);
1275 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1276 atomic64_dec(&pool->pages_nr);
1277 return;
1278 }
1279 if (page_claimed) {
1280 /* the page has not been claimed by us */
1281 z3fold_page_unlock(zhdr);
1282 return;
1283 }
1284 if (unlikely(PageIsolated(page)) ||
1285 test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1286 put_z3fold_header(zhdr);
1287 clear_bit(PAGE_CLAIMED, &page->private);
1288 return;
1289 }
1290 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1291 spin_lock(&pool->lock);
1292 list_del_init(&zhdr->buddy);
1293 spin_unlock(&pool->lock);
1294 zhdr->cpu = -1;
1295 kref_get(&zhdr->refcount);
1296 clear_bit(PAGE_CLAIMED, &page->private);
1297 do_compact_page(zhdr, true);
1298 return;
1299 }
1300 kref_get(&zhdr->refcount);
1301 clear_bit(PAGE_CLAIMED, &page->private);
1302 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1303 put_z3fold_header(zhdr);
1304}
1305
1306/**
1307 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1308 * @pool: pool from which a page will attempt to be evicted
1309 * @retries: number of pages on the LRU list for which eviction will
1310 * be attempted before failing
1311 *
1312 * z3fold reclaim is different from normal system reclaim in that it is done
1313 * from the bottom, up. This is because only the bottom layer, z3fold, has
1314 * information on how the allocations are organized within each z3fold page.
1315 * This has the potential to create interesting locking situations between
1316 * z3fold and the user, however.
1317 *
1318 * To avoid these, this is how z3fold_reclaim_page() should be called:
1319 *
1320 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1321 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1322 * call the user-defined eviction handler with the pool and handle as
1323 * arguments.
1324 *
1325 * If the handle can not be evicted, the eviction handler should return
1326 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1327 * appropriate list and try the next z3fold page on the LRU up to
1328 * a user defined number of retries.
1329 *
1330 * If the handle is successfully evicted, the eviction handler should
1331 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1332 * contains logic to delay freeing the page if the page is under reclaim,
1333 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1334 *
1335 * If all buddies in the z3fold page are successfully evicted, then the
1336 * z3fold page can be freed.
1337 *
1338 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1339 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1340 * the retry limit was hit.
1341 */
1342static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1343{
1344 int i, ret = -1;
1345 struct z3fold_header *zhdr = NULL;
1346 struct page *page = NULL;
1347 struct list_head *pos;
1348 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1349
1350 spin_lock(&pool->lock);
1351 if (!pool->ops || !pool->ops->evict || retries == 0) {
1352 spin_unlock(&pool->lock);
1353 return -EINVAL;
1354 }
1355 for (i = 0; i < retries; i++) {
1356 if (list_empty(&pool->lru)) {
1357 spin_unlock(&pool->lock);
1358 return -EINVAL;
1359 }
1360 list_for_each_prev(pos, &pool->lru) {
1361 page = list_entry(pos, struct page, lru);
1362
1363 /* this bit could have been set by free, in which case
1364 * we pass over to the next page in the pool.
1365 */
1366 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1367 page = NULL;
1368 continue;
1369 }
1370
1371 if (unlikely(PageIsolated(page))) {
1372 clear_bit(PAGE_CLAIMED, &page->private);
1373 page = NULL;
1374 continue;
1375 }
1376 zhdr = page_address(page);
1377 if (test_bit(PAGE_HEADLESS, &page->private))
1378 break;
1379
1380 if (!z3fold_page_trylock(zhdr)) {
1381 clear_bit(PAGE_CLAIMED, &page->private);
1382 zhdr = NULL;
1383 continue; /* can't evict at this point */
1384 }
1385 if (zhdr->foreign_handles) {
1386 clear_bit(PAGE_CLAIMED, &page->private);
1387 z3fold_page_unlock(zhdr);
1388 zhdr = NULL;
1389 continue; /* can't evict such page */
1390 }
1391 kref_get(&zhdr->refcount);
1392 list_del_init(&zhdr->buddy);
1393 zhdr->cpu = -1;
1394 break;
1395 }
1396
1397 if (!zhdr)
1398 break;
1399
1400 list_del_init(&page->lru);
1401 spin_unlock(&pool->lock);
1402
1403 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1404 /*
1405 * We need encode the handles before unlocking, and
1406 * use our local slots structure because z3fold_free
1407 * can zero out zhdr->slots and we can't do much
1408 * about that
1409 */
1410 first_handle = 0;
1411 last_handle = 0;
1412 middle_handle = 0;
1413 if (zhdr->first_chunks)
1414 first_handle = encode_handle(zhdr, FIRST);
1415 if (zhdr->middle_chunks)
1416 middle_handle = encode_handle(zhdr, MIDDLE);
1417 if (zhdr->last_chunks)
1418 last_handle = encode_handle(zhdr, LAST);
1419 /*
1420 * it's safe to unlock here because we hold a
1421 * reference to this page
1422 */
1423 z3fold_page_unlock(zhdr);
1424 } else {
1425 first_handle = encode_handle(zhdr, HEADLESS);
1426 last_handle = middle_handle = 0;
1427 }
1428 /* Issue the eviction callback(s) */
1429 if (middle_handle) {
1430 ret = pool->ops->evict(pool, middle_handle);
1431 if (ret)
1432 goto next;
1433 free_handle(middle_handle);
1434 }
1435 if (first_handle) {
1436 ret = pool->ops->evict(pool, first_handle);
1437 if (ret)
1438 goto next;
1439 free_handle(first_handle);
1440 }
1441 if (last_handle) {
1442 ret = pool->ops->evict(pool, last_handle);
1443 if (ret)
1444 goto next;
1445 free_handle(last_handle);
1446 }
1447next:
1448 if (test_bit(PAGE_HEADLESS, &page->private)) {
1449 if (ret == 0) {
1450 free_z3fold_page(page, true);
1451 atomic64_dec(&pool->pages_nr);
1452 return 0;
1453 }
1454 spin_lock(&pool->lock);
1455 list_add(&page->lru, &pool->lru);
1456 spin_unlock(&pool->lock);
1457 clear_bit(PAGE_CLAIMED, &page->private);
1458 } else {
1459 z3fold_page_lock(zhdr);
1460 if (kref_put(&zhdr->refcount,
1461 release_z3fold_page_locked)) {
1462 atomic64_dec(&pool->pages_nr);
1463 return 0;
1464 }
1465 /*
1466 * if we are here, the page is still not completely
1467 * free. Take the global pool lock then to be able
1468 * to add it back to the lru list
1469 */
1470 spin_lock(&pool->lock);
1471 list_add(&page->lru, &pool->lru);
1472 spin_unlock(&pool->lock);
1473 z3fold_page_unlock(zhdr);
1474 clear_bit(PAGE_CLAIMED, &page->private);
1475 }
1476
1477 /* We started off locked to we need to lock the pool back */
1478 spin_lock(&pool->lock);
1479 }
1480 spin_unlock(&pool->lock);
1481 return -EAGAIN;
1482}
1483
1484/**
1485 * z3fold_map() - maps the allocation associated with the given handle
1486 * @pool: pool in which the allocation resides
1487 * @handle: handle associated with the allocation to be mapped
1488 *
1489 * Extracts the buddy number from handle and constructs the pointer to the
1490 * correct starting chunk within the page.
1491 *
1492 * Returns: a pointer to the mapped allocation
1493 */
1494static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1495{
1496 struct z3fold_header *zhdr;
1497 struct page *page;
1498 void *addr;
1499 enum buddy buddy;
1500
1501 zhdr = get_z3fold_header(handle);
1502 addr = zhdr;
1503 page = virt_to_page(zhdr);
1504
1505 if (test_bit(PAGE_HEADLESS, &page->private))
1506 goto out;
1507
1508 buddy = handle_to_buddy(handle);
1509 switch (buddy) {
1510 case FIRST:
1511 addr += ZHDR_SIZE_ALIGNED;
1512 break;
1513 case MIDDLE:
1514 addr += zhdr->start_middle << CHUNK_SHIFT;
1515 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1516 break;
1517 case LAST:
1518 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1519 break;
1520 default:
1521 pr_err("unknown buddy id %d\n", buddy);
1522 WARN_ON(1);
1523 addr = NULL;
1524 break;
1525 }
1526
1527 if (addr)
1528 zhdr->mapped_count++;
1529out:
1530 put_z3fold_header(zhdr);
1531 return addr;
1532}
1533
1534/**
1535 * z3fold_unmap() - unmaps the allocation associated with the given handle
1536 * @pool: pool in which the allocation resides
1537 * @handle: handle associated with the allocation to be unmapped
1538 */
1539static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1540{
1541 struct z3fold_header *zhdr;
1542 struct page *page;
1543 enum buddy buddy;
1544
1545 zhdr = get_z3fold_header(handle);
1546 page = virt_to_page(zhdr);
1547
1548 if (test_bit(PAGE_HEADLESS, &page->private))
1549 return;
1550
1551 buddy = handle_to_buddy(handle);
1552 if (buddy == MIDDLE)
1553 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1554 zhdr->mapped_count--;
1555 put_z3fold_header(zhdr);
1556}
1557
1558/**
1559 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1560 * @pool: pool whose size is being queried
1561 *
1562 * Returns: size in pages of the given pool.
1563 */
1564static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1565{
1566 return atomic64_read(&pool->pages_nr);
1567}
1568
1569static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1570{
1571 struct z3fold_header *zhdr;
1572 struct z3fold_pool *pool;
1573
1574 VM_BUG_ON_PAGE(!PageMovable(page), page);
1575 VM_BUG_ON_PAGE(PageIsolated(page), page);
1576
1577 if (test_bit(PAGE_HEADLESS, &page->private) ||
1578 test_bit(PAGE_CLAIMED, &page->private))
1579 return false;
1580
1581 zhdr = page_address(page);
1582 z3fold_page_lock(zhdr);
1583 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1584 test_bit(PAGE_STALE, &page->private))
1585 goto out;
1586
1587 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1588 goto out;
1589
1590 pool = zhdr_to_pool(zhdr);
1591 spin_lock(&pool->lock);
1592 if (!list_empty(&zhdr->buddy))
1593 list_del_init(&zhdr->buddy);
1594 if (!list_empty(&page->lru))
1595 list_del_init(&page->lru);
1596 spin_unlock(&pool->lock);
1597
1598 kref_get(&zhdr->refcount);
1599 z3fold_page_unlock(zhdr);
1600 return true;
1601
1602out:
1603 z3fold_page_unlock(zhdr);
1604 return false;
1605}
1606
1607static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1608 struct page *page, enum migrate_mode mode)
1609{
1610 struct z3fold_header *zhdr, *new_zhdr;
1611 struct z3fold_pool *pool;
1612 struct address_space *new_mapping;
1613
1614 VM_BUG_ON_PAGE(!PageMovable(page), page);
1615 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1616 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1617
1618 zhdr = page_address(page);
1619 pool = zhdr_to_pool(zhdr);
1620
1621 if (!z3fold_page_trylock(zhdr)) {
1622 return -EAGAIN;
1623 }
1624 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1625 z3fold_page_unlock(zhdr);
1626 return -EBUSY;
1627 }
1628 if (work_pending(&zhdr->work)) {
1629 z3fold_page_unlock(zhdr);
1630 return -EAGAIN;
1631 }
1632 new_zhdr = page_address(newpage);
1633 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1634 newpage->private = page->private;
1635 page->private = 0;
1636 z3fold_page_unlock(zhdr);
1637 spin_lock_init(&new_zhdr->page_lock);
1638 INIT_WORK(&new_zhdr->work, compact_page_work);
1639 /*
1640 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1641 * so we only have to reinitialize it.
1642 */
1643 INIT_LIST_HEAD(&new_zhdr->buddy);
1644 new_mapping = page_mapping(page);
1645 __ClearPageMovable(page);
1646 ClearPagePrivate(page);
1647
1648 get_page(newpage);
1649 z3fold_page_lock(new_zhdr);
1650 if (new_zhdr->first_chunks)
1651 encode_handle(new_zhdr, FIRST);
1652 if (new_zhdr->last_chunks)
1653 encode_handle(new_zhdr, LAST);
1654 if (new_zhdr->middle_chunks)
1655 encode_handle(new_zhdr, MIDDLE);
1656 set_bit(NEEDS_COMPACTING, &newpage->private);
1657 new_zhdr->cpu = smp_processor_id();
1658 spin_lock(&pool->lock);
1659 list_add(&newpage->lru, &pool->lru);
1660 spin_unlock(&pool->lock);
1661 __SetPageMovable(newpage, new_mapping);
1662 z3fold_page_unlock(new_zhdr);
1663
1664 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1665
1666 page_mapcount_reset(page);
1667 put_page(page);
1668 return 0;
1669}
1670
1671static void z3fold_page_putback(struct page *page)
1672{
1673 struct z3fold_header *zhdr;
1674 struct z3fold_pool *pool;
1675
1676 zhdr = page_address(page);
1677 pool = zhdr_to_pool(zhdr);
1678
1679 z3fold_page_lock(zhdr);
1680 if (!list_empty(&zhdr->buddy))
1681 list_del_init(&zhdr->buddy);
1682 INIT_LIST_HEAD(&page->lru);
1683 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1684 atomic64_dec(&pool->pages_nr);
1685 return;
1686 }
1687 spin_lock(&pool->lock);
1688 list_add(&page->lru, &pool->lru);
1689 spin_unlock(&pool->lock);
1690 z3fold_page_unlock(zhdr);
1691}
1692
1693static const struct address_space_operations z3fold_aops = {
1694 .isolate_page = z3fold_page_isolate,
1695 .migratepage = z3fold_page_migrate,
1696 .putback_page = z3fold_page_putback,
1697};
1698
1699/*****************
1700 * zpool
1701 ****************/
1702
1703static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1704{
1705 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1706 return pool->zpool_ops->evict(pool->zpool, handle);
1707 else
1708 return -ENOENT;
1709}
1710
1711static const struct z3fold_ops z3fold_zpool_ops = {
1712 .evict = z3fold_zpool_evict
1713};
1714
1715static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1716 const struct zpool_ops *zpool_ops,
1717 struct zpool *zpool)
1718{
1719 struct z3fold_pool *pool;
1720
1721 pool = z3fold_create_pool(name, gfp,
1722 zpool_ops ? &z3fold_zpool_ops : NULL);
1723 if (pool) {
1724 pool->zpool = zpool;
1725 pool->zpool_ops = zpool_ops;
1726 }
1727 return pool;
1728}
1729
1730static void z3fold_zpool_destroy(void *pool)
1731{
1732 z3fold_destroy_pool(pool);
1733}
1734
1735static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1736 unsigned long *handle)
1737{
1738 return z3fold_alloc(pool, size, gfp, handle);
1739}
1740static void z3fold_zpool_free(void *pool, unsigned long handle)
1741{
1742 z3fold_free(pool, handle);
1743}
1744
1745static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1746 unsigned int *reclaimed)
1747{
1748 unsigned int total = 0;
1749 int ret = -EINVAL;
1750
1751 while (total < pages) {
1752 ret = z3fold_reclaim_page(pool, 8);
1753 if (ret < 0)
1754 break;
1755 total++;
1756 }
1757
1758 if (reclaimed)
1759 *reclaimed = total;
1760
1761 return ret;
1762}
1763
1764static void *z3fold_zpool_map(void *pool, unsigned long handle,
1765 enum zpool_mapmode mm)
1766{
1767 return z3fold_map(pool, handle);
1768}
1769static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1770{
1771 z3fold_unmap(pool, handle);
1772}
1773
1774static u64 z3fold_zpool_total_size(void *pool)
1775{
1776 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1777}
1778
1779static struct zpool_driver z3fold_zpool_driver = {
1780 .type = "z3fold",
1781 .owner = THIS_MODULE,
1782 .create = z3fold_zpool_create,
1783 .destroy = z3fold_zpool_destroy,
1784 .malloc = z3fold_zpool_malloc,
1785 .free = z3fold_zpool_free,
1786 .shrink = z3fold_zpool_shrink,
1787 .map = z3fold_zpool_map,
1788 .unmap = z3fold_zpool_unmap,
1789 .total_size = z3fold_zpool_total_size,
1790};
1791
1792MODULE_ALIAS("zpool-z3fold");
1793
1794static int __init init_z3fold(void)
1795{
1796 int ret;
1797
1798 /* Make sure the z3fold header is not larger than the page size */
1799 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1800 ret = z3fold_mount();
1801 if (ret)
1802 return ret;
1803
1804 zpool_register_driver(&z3fold_zpool_driver);
1805
1806 return 0;
1807}
1808
1809static void __exit exit_z3fold(void)
1810{
1811 z3fold_unmount();
1812 zpool_unregister_driver(&z3fold_zpool_driver);
1813}
1814
1815module_init(init_z3fold);
1816module_exit(exit_z3fold);
1817
1818MODULE_LICENSE("GPL");
1819MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1820MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");