Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2
3#ifdef CONFIG_SCHEDSTATS
4
5/*
6 * Expects runqueue lock to be held for atomicity of update
7 */
8static inline void
9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
10{
11 if (rq) {
12 rq->rq_sched_info.run_delay += delta;
13 rq->rq_sched_info.pcount++;
14 }
15}
16
17/*
18 * Expects runqueue lock to be held for atomicity of update
19 */
20static inline void
21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
22{
23 if (rq)
24 rq->rq_cpu_time += delta;
25}
26
27static inline void
28rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
29{
30 if (rq)
31 rq->rq_sched_info.run_delay += delta;
32}
33#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
34#define __schedstat_inc(var) do { var++; } while (0)
35#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
36#define __schedstat_add(var, amt) do { var += (amt); } while (0)
37#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
38#define __schedstat_set(var, val) do { var = (val); } while (0)
39#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
40#define schedstat_val(var) (var)
41#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
42
43#else /* !CONFIG_SCHEDSTATS: */
44static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { }
45static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
46static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { }
47# define schedstat_enabled() 0
48# define __schedstat_inc(var) do { } while (0)
49# define schedstat_inc(var) do { } while (0)
50# define __schedstat_add(var, amt) do { } while (0)
51# define schedstat_add(var, amt) do { } while (0)
52# define __schedstat_set(var, val) do { } while (0)
53# define schedstat_set(var, val) do { } while (0)
54# define schedstat_val(var) 0
55# define schedstat_val_or_zero(var) 0
56#endif /* CONFIG_SCHEDSTATS */
57
58#ifdef CONFIG_PSI
59/*
60 * PSI tracks state that persists across sleeps, such as iowaits and
61 * memory stalls. As a result, it has to distinguish between sleeps,
62 * where a task's runnable state changes, and requeues, where a task
63 * and its state are being moved between CPUs and runqueues.
64 */
65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
66{
67 int clear = 0, set = TSK_RUNNING;
68
69 if (static_branch_likely(&psi_disabled))
70 return;
71
72 if (!wakeup || p->sched_psi_wake_requeue) {
73 if (p->flags & PF_MEMSTALL)
74 set |= TSK_MEMSTALL;
75 if (p->sched_psi_wake_requeue)
76 p->sched_psi_wake_requeue = 0;
77 } else {
78 if (p->in_iowait)
79 clear |= TSK_IOWAIT;
80 }
81
82 psi_task_change(p, clear, set);
83}
84
85static inline void psi_dequeue(struct task_struct *p, bool sleep)
86{
87 int clear = TSK_RUNNING, set = 0;
88
89 if (static_branch_likely(&psi_disabled))
90 return;
91
92 if (!sleep) {
93 if (p->flags & PF_MEMSTALL)
94 clear |= TSK_MEMSTALL;
95 } else {
96 if (p->in_iowait)
97 set |= TSK_IOWAIT;
98 }
99
100 psi_task_change(p, clear, set);
101}
102
103static inline void psi_ttwu_dequeue(struct task_struct *p)
104{
105 if (static_branch_likely(&psi_disabled))
106 return;
107 /*
108 * Is the task being migrated during a wakeup? Make sure to
109 * deregister its sleep-persistent psi states from the old
110 * queue, and let psi_enqueue() know it has to requeue.
111 */
112 if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
113 struct rq_flags rf;
114 struct rq *rq;
115 int clear = 0;
116
117 if (p->in_iowait)
118 clear |= TSK_IOWAIT;
119 if (p->flags & PF_MEMSTALL)
120 clear |= TSK_MEMSTALL;
121
122 rq = __task_rq_lock(p, &rf);
123 psi_task_change(p, clear, 0);
124 p->sched_psi_wake_requeue = 1;
125 __task_rq_unlock(rq, &rf);
126 }
127}
128
129static inline void psi_task_tick(struct rq *rq)
130{
131 if (static_branch_likely(&psi_disabled))
132 return;
133
134 if (unlikely(rq->curr->flags & PF_MEMSTALL))
135 psi_memstall_tick(rq->curr, cpu_of(rq));
136}
137#else /* CONFIG_PSI */
138static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
139static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
140static inline void psi_ttwu_dequeue(struct task_struct *p) {}
141static inline void psi_task_tick(struct rq *rq) {}
142#endif /* CONFIG_PSI */
143
144#ifdef CONFIG_SCHED_INFO
145static inline void sched_info_reset_dequeued(struct task_struct *t)
146{
147 t->sched_info.last_queued = 0;
148}
149
150/*
151 * We are interested in knowing how long it was from the *first* time a
152 * task was queued to the time that it finally hit a CPU, we call this routine
153 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
154 * delta taken on each CPU would annul the skew.
155 */
156static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
157{
158 unsigned long long now = rq_clock(rq), delta = 0;
159
160 if (sched_info_on()) {
161 if (t->sched_info.last_queued)
162 delta = now - t->sched_info.last_queued;
163 }
164 sched_info_reset_dequeued(t);
165 t->sched_info.run_delay += delta;
166
167 rq_sched_info_dequeued(rq, delta);
168}
169
170/*
171 * Called when a task finally hits the CPU. We can now calculate how
172 * long it was waiting to run. We also note when it began so that we
173 * can keep stats on how long its timeslice is.
174 */
175static void sched_info_arrive(struct rq *rq, struct task_struct *t)
176{
177 unsigned long long now = rq_clock(rq), delta = 0;
178
179 if (t->sched_info.last_queued)
180 delta = now - t->sched_info.last_queued;
181 sched_info_reset_dequeued(t);
182 t->sched_info.run_delay += delta;
183 t->sched_info.last_arrival = now;
184 t->sched_info.pcount++;
185
186 rq_sched_info_arrive(rq, delta);
187}
188
189/*
190 * This function is only called from enqueue_task(), but also only updates
191 * the timestamp if it is already not set. It's assumed that
192 * sched_info_dequeued() will clear that stamp when appropriate.
193 */
194static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
195{
196 if (sched_info_on()) {
197 if (!t->sched_info.last_queued)
198 t->sched_info.last_queued = rq_clock(rq);
199 }
200}
201
202/*
203 * Called when a process ceases being the active-running process involuntarily
204 * due, typically, to expiring its time slice (this may also be called when
205 * switching to the idle task). Now we can calculate how long we ran.
206 * Also, if the process is still in the TASK_RUNNING state, call
207 * sched_info_queued() to mark that it has now again started waiting on
208 * the runqueue.
209 */
210static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
211{
212 unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
213
214 rq_sched_info_depart(rq, delta);
215
216 if (t->state == TASK_RUNNING)
217 sched_info_queued(rq, t);
218}
219
220/*
221 * Called when tasks are switched involuntarily due, typically, to expiring
222 * their time slice. (This may also be called when switching to or from
223 * the idle task.) We are only called when prev != next.
224 */
225static inline void
226__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
227{
228 /*
229 * prev now departs the CPU. It's not interesting to record
230 * stats about how efficient we were at scheduling the idle
231 * process, however.
232 */
233 if (prev != rq->idle)
234 sched_info_depart(rq, prev);
235
236 if (next != rq->idle)
237 sched_info_arrive(rq, next);
238}
239
240static inline void
241sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
242{
243 if (sched_info_on())
244 __sched_info_switch(rq, prev, next);
245}
246
247#else /* !CONFIG_SCHED_INFO: */
248# define sched_info_queued(rq, t) do { } while (0)
249# define sched_info_reset_dequeued(t) do { } while (0)
250# define sched_info_dequeued(rq, t) do { } while (0)
251# define sched_info_depart(rq, t) do { } while (0)
252# define sched_info_arrive(rq, next) do { } while (0)
253# define sched_info_switch(rq, t, next) do { } while (0)
254#endif /* CONFIG_SCHED_INFO */
1/* SPDX-License-Identifier: GPL-2.0 */
2
3#ifdef CONFIG_SCHEDSTATS
4
5/*
6 * Expects runqueue lock to be held for atomicity of update
7 */
8static inline void
9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
10{
11 if (rq) {
12 rq->rq_sched_info.run_delay += delta;
13 rq->rq_sched_info.pcount++;
14 }
15}
16
17/*
18 * Expects runqueue lock to be held for atomicity of update
19 */
20static inline void
21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
22{
23 if (rq)
24 rq->rq_cpu_time += delta;
25}
26
27static inline void
28rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
29{
30 if (rq)
31 rq->rq_sched_info.run_delay += delta;
32}
33#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
34#define __schedstat_inc(var) do { var++; } while (0)
35#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
36#define __schedstat_add(var, amt) do { var += (amt); } while (0)
37#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
38#define __schedstat_set(var, val) do { var = (val); } while (0)
39#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
40#define schedstat_val(var) (var)
41#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
42
43#else /* !CONFIG_SCHEDSTATS: */
44static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { }
45static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
46static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { }
47# define schedstat_enabled() 0
48# define __schedstat_inc(var) do { } while (0)
49# define schedstat_inc(var) do { } while (0)
50# define __schedstat_add(var, amt) do { } while (0)
51# define schedstat_add(var, amt) do { } while (0)
52# define __schedstat_set(var, val) do { } while (0)
53# define schedstat_set(var, val) do { } while (0)
54# define schedstat_val(var) 0
55# define schedstat_val_or_zero(var) 0
56#endif /* CONFIG_SCHEDSTATS */
57
58#ifdef CONFIG_PSI
59/*
60 * PSI tracks state that persists across sleeps, such as iowaits and
61 * memory stalls. As a result, it has to distinguish between sleeps,
62 * where a task's runnable state changes, and requeues, where a task
63 * and its state are being moved between CPUs and runqueues.
64 */
65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
66{
67 int clear = 0, set = TSK_RUNNING;
68
69 if (static_branch_likely(&psi_disabled))
70 return;
71
72 if (!wakeup || p->sched_psi_wake_requeue) {
73 if (p->in_memstall)
74 set |= TSK_MEMSTALL;
75 if (p->sched_psi_wake_requeue)
76 p->sched_psi_wake_requeue = 0;
77 } else {
78 if (p->in_iowait)
79 clear |= TSK_IOWAIT;
80 }
81
82 psi_task_change(p, clear, set);
83}
84
85static inline void psi_dequeue(struct task_struct *p, bool sleep)
86{
87 int clear = TSK_RUNNING, set = 0;
88
89 if (static_branch_likely(&psi_disabled))
90 return;
91
92 if (!sleep) {
93 if (p->in_memstall)
94 clear |= TSK_MEMSTALL;
95 } else {
96 /*
97 * When a task sleeps, schedule() dequeues it before
98 * switching to the next one. Merge the clearing of
99 * TSK_RUNNING and TSK_ONCPU to save an unnecessary
100 * psi_task_change() call in psi_sched_switch().
101 */
102 clear |= TSK_ONCPU;
103
104 if (p->in_iowait)
105 set |= TSK_IOWAIT;
106 }
107
108 psi_task_change(p, clear, set);
109}
110
111static inline void psi_ttwu_dequeue(struct task_struct *p)
112{
113 if (static_branch_likely(&psi_disabled))
114 return;
115 /*
116 * Is the task being migrated during a wakeup? Make sure to
117 * deregister its sleep-persistent psi states from the old
118 * queue, and let psi_enqueue() know it has to requeue.
119 */
120 if (unlikely(p->in_iowait || p->in_memstall)) {
121 struct rq_flags rf;
122 struct rq *rq;
123 int clear = 0;
124
125 if (p->in_iowait)
126 clear |= TSK_IOWAIT;
127 if (p->in_memstall)
128 clear |= TSK_MEMSTALL;
129
130 rq = __task_rq_lock(p, &rf);
131 psi_task_change(p, clear, 0);
132 p->sched_psi_wake_requeue = 1;
133 __task_rq_unlock(rq, &rf);
134 }
135}
136
137static inline void psi_sched_switch(struct task_struct *prev,
138 struct task_struct *next,
139 bool sleep)
140{
141 if (static_branch_likely(&psi_disabled))
142 return;
143
144 psi_task_switch(prev, next, sleep);
145}
146
147static inline void psi_task_tick(struct rq *rq)
148{
149 if (static_branch_likely(&psi_disabled))
150 return;
151
152 if (unlikely(rq->curr->in_memstall))
153 psi_memstall_tick(rq->curr, cpu_of(rq));
154}
155#else /* CONFIG_PSI */
156static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
157static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
158static inline void psi_ttwu_dequeue(struct task_struct *p) {}
159static inline void psi_sched_switch(struct task_struct *prev,
160 struct task_struct *next,
161 bool sleep) {}
162static inline void psi_task_tick(struct rq *rq) {}
163#endif /* CONFIG_PSI */
164
165#ifdef CONFIG_SCHED_INFO
166static inline void sched_info_reset_dequeued(struct task_struct *t)
167{
168 t->sched_info.last_queued = 0;
169}
170
171/*
172 * We are interested in knowing how long it was from the *first* time a
173 * task was queued to the time that it finally hit a CPU, we call this routine
174 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
175 * delta taken on each CPU would annul the skew.
176 */
177static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
178{
179 unsigned long long now = rq_clock(rq), delta = 0;
180
181 if (sched_info_on()) {
182 if (t->sched_info.last_queued)
183 delta = now - t->sched_info.last_queued;
184 }
185 sched_info_reset_dequeued(t);
186 t->sched_info.run_delay += delta;
187
188 rq_sched_info_dequeued(rq, delta);
189}
190
191/*
192 * Called when a task finally hits the CPU. We can now calculate how
193 * long it was waiting to run. We also note when it began so that we
194 * can keep stats on how long its timeslice is.
195 */
196static void sched_info_arrive(struct rq *rq, struct task_struct *t)
197{
198 unsigned long long now = rq_clock(rq), delta = 0;
199
200 if (t->sched_info.last_queued)
201 delta = now - t->sched_info.last_queued;
202 sched_info_reset_dequeued(t);
203 t->sched_info.run_delay += delta;
204 t->sched_info.last_arrival = now;
205 t->sched_info.pcount++;
206
207 rq_sched_info_arrive(rq, delta);
208}
209
210/*
211 * This function is only called from enqueue_task(), but also only updates
212 * the timestamp if it is already not set. It's assumed that
213 * sched_info_dequeued() will clear that stamp when appropriate.
214 */
215static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
216{
217 if (sched_info_on()) {
218 if (!t->sched_info.last_queued)
219 t->sched_info.last_queued = rq_clock(rq);
220 }
221}
222
223/*
224 * Called when a process ceases being the active-running process involuntarily
225 * due, typically, to expiring its time slice (this may also be called when
226 * switching to the idle task). Now we can calculate how long we ran.
227 * Also, if the process is still in the TASK_RUNNING state, call
228 * sched_info_queued() to mark that it has now again started waiting on
229 * the runqueue.
230 */
231static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
232{
233 unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
234
235 rq_sched_info_depart(rq, delta);
236
237 if (t->state == TASK_RUNNING)
238 sched_info_queued(rq, t);
239}
240
241/*
242 * Called when tasks are switched involuntarily due, typically, to expiring
243 * their time slice. (This may also be called when switching to or from
244 * the idle task.) We are only called when prev != next.
245 */
246static inline void
247__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
248{
249 /*
250 * prev now departs the CPU. It's not interesting to record
251 * stats about how efficient we were at scheduling the idle
252 * process, however.
253 */
254 if (prev != rq->idle)
255 sched_info_depart(rq, prev);
256
257 if (next != rq->idle)
258 sched_info_arrive(rq, next);
259}
260
261static inline void
262sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
263{
264 if (sched_info_on())
265 __sched_info_switch(rq, prev, next);
266}
267
268#else /* !CONFIG_SCHED_INFO: */
269# define sched_info_queued(rq, t) do { } while (0)
270# define sched_info_reset_dequeued(t) do { } while (0)
271# define sched_info_dequeued(rq, t) do { } while (0)
272# define sched_info_depart(rq, t) do { } while (0)
273# define sched_info_arrive(rq, next) do { } while (0)
274# define sched_info_switch(rq, t, next) do { } while (0)
275#endif /* CONFIG_SCHED_INFO */