Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifdef CONFIG_SCHEDSTATS
  4
  5/*
  6 * Expects runqueue lock to be held for atomicity of update
  7 */
  8static inline void
  9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 10{
 11	if (rq) {
 12		rq->rq_sched_info.run_delay += delta;
 13		rq->rq_sched_info.pcount++;
 14	}
 15}
 16
 17/*
 18 * Expects runqueue lock to be held for atomicity of update
 19 */
 20static inline void
 21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 22{
 23	if (rq)
 24		rq->rq_cpu_time += delta;
 25}
 26
 27static inline void
 28rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 29{
 30	if (rq)
 31		rq->rq_sched_info.run_delay += delta;
 32}
 33#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 34#define __schedstat_inc(var)		do { var++; } while (0)
 35#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 36#define __schedstat_add(var, amt)	do { var += (amt); } while (0)
 37#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
 38#define __schedstat_set(var, val)	do { var = (val); } while (0)
 39#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 40#define   schedstat_val(var)		(var)
 41#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 42
 43#else /* !CONFIG_SCHEDSTATS: */
 44static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
 45static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
 46static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
 47# define   schedstat_enabled()		0
 48# define __schedstat_inc(var)		do { } while (0)
 49# define   schedstat_inc(var)		do { } while (0)
 50# define __schedstat_add(var, amt)	do { } while (0)
 51# define   schedstat_add(var, amt)	do { } while (0)
 52# define __schedstat_set(var, val)	do { } while (0)
 53# define   schedstat_set(var, val)	do { } while (0)
 54# define   schedstat_val(var)		0
 55# define   schedstat_val_or_zero(var)	0
 56#endif /* CONFIG_SCHEDSTATS */
 57
 58#ifdef CONFIG_PSI
 59/*
 60 * PSI tracks state that persists across sleeps, such as iowaits and
 61 * memory stalls. As a result, it has to distinguish between sleeps,
 62 * where a task's runnable state changes, and requeues, where a task
 63 * and its state are being moved between CPUs and runqueues.
 64 */
 65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
 66{
 67	int clear = 0, set = TSK_RUNNING;
 68
 69	if (static_branch_likely(&psi_disabled))
 70		return;
 71
 72	if (!wakeup || p->sched_psi_wake_requeue) {
 73		if (p->flags & PF_MEMSTALL)
 74			set |= TSK_MEMSTALL;
 75		if (p->sched_psi_wake_requeue)
 76			p->sched_psi_wake_requeue = 0;
 77	} else {
 78		if (p->in_iowait)
 79			clear |= TSK_IOWAIT;
 80	}
 81
 82	psi_task_change(p, clear, set);
 83}
 84
 85static inline void psi_dequeue(struct task_struct *p, bool sleep)
 86{
 87	int clear = TSK_RUNNING, set = 0;
 88
 89	if (static_branch_likely(&psi_disabled))
 90		return;
 91
 92	if (!sleep) {
 93		if (p->flags & PF_MEMSTALL)
 94			clear |= TSK_MEMSTALL;
 95	} else {
 
 
 
 
 
 
 
 
 96		if (p->in_iowait)
 97			set |= TSK_IOWAIT;
 98	}
 99
100	psi_task_change(p, clear, set);
101}
102
103static inline void psi_ttwu_dequeue(struct task_struct *p)
104{
105	if (static_branch_likely(&psi_disabled))
106		return;
107	/*
108	 * Is the task being migrated during a wakeup? Make sure to
109	 * deregister its sleep-persistent psi states from the old
110	 * queue, and let psi_enqueue() know it has to requeue.
111	 */
112	if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
113		struct rq_flags rf;
114		struct rq *rq;
115		int clear = 0;
116
117		if (p->in_iowait)
118			clear |= TSK_IOWAIT;
119		if (p->flags & PF_MEMSTALL)
120			clear |= TSK_MEMSTALL;
121
122		rq = __task_rq_lock(p, &rf);
123		psi_task_change(p, clear, 0);
124		p->sched_psi_wake_requeue = 1;
125		__task_rq_unlock(rq, &rf);
126	}
127}
128
 
 
 
 
 
 
 
 
 
 
129static inline void psi_task_tick(struct rq *rq)
130{
131	if (static_branch_likely(&psi_disabled))
132		return;
133
134	if (unlikely(rq->curr->flags & PF_MEMSTALL))
135		psi_memstall_tick(rq->curr, cpu_of(rq));
136}
137#else /* CONFIG_PSI */
138static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
139static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
140static inline void psi_ttwu_dequeue(struct task_struct *p) {}
 
 
 
141static inline void psi_task_tick(struct rq *rq) {}
142#endif /* CONFIG_PSI */
143
144#ifdef CONFIG_SCHED_INFO
145static inline void sched_info_reset_dequeued(struct task_struct *t)
146{
147	t->sched_info.last_queued = 0;
148}
149
150/*
151 * We are interested in knowing how long it was from the *first* time a
152 * task was queued to the time that it finally hit a CPU, we call this routine
153 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
154 * delta taken on each CPU would annul the skew.
155 */
156static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
157{
158	unsigned long long now = rq_clock(rq), delta = 0;
159
160	if (sched_info_on()) {
161		if (t->sched_info.last_queued)
162			delta = now - t->sched_info.last_queued;
163	}
164	sched_info_reset_dequeued(t);
165	t->sched_info.run_delay += delta;
166
167	rq_sched_info_dequeued(rq, delta);
168}
169
170/*
171 * Called when a task finally hits the CPU.  We can now calculate how
172 * long it was waiting to run.  We also note when it began so that we
173 * can keep stats on how long its timeslice is.
174 */
175static void sched_info_arrive(struct rq *rq, struct task_struct *t)
176{
177	unsigned long long now = rq_clock(rq), delta = 0;
178
179	if (t->sched_info.last_queued)
180		delta = now - t->sched_info.last_queued;
181	sched_info_reset_dequeued(t);
182	t->sched_info.run_delay += delta;
183	t->sched_info.last_arrival = now;
184	t->sched_info.pcount++;
185
186	rq_sched_info_arrive(rq, delta);
187}
188
189/*
190 * This function is only called from enqueue_task(), but also only updates
191 * the timestamp if it is already not set.  It's assumed that
192 * sched_info_dequeued() will clear that stamp when appropriate.
193 */
194static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
195{
196	if (sched_info_on()) {
197		if (!t->sched_info.last_queued)
198			t->sched_info.last_queued = rq_clock(rq);
199	}
200}
201
202/*
203 * Called when a process ceases being the active-running process involuntarily
204 * due, typically, to expiring its time slice (this may also be called when
205 * switching to the idle task).  Now we can calculate how long we ran.
206 * Also, if the process is still in the TASK_RUNNING state, call
207 * sched_info_queued() to mark that it has now again started waiting on
208 * the runqueue.
209 */
210static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
211{
212	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
213
214	rq_sched_info_depart(rq, delta);
215
216	if (t->state == TASK_RUNNING)
217		sched_info_queued(rq, t);
218}
219
220/*
221 * Called when tasks are switched involuntarily due, typically, to expiring
222 * their time slice.  (This may also be called when switching to or from
223 * the idle task.)  We are only called when prev != next.
224 */
225static inline void
226__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
227{
228	/*
229	 * prev now departs the CPU.  It's not interesting to record
230	 * stats about how efficient we were at scheduling the idle
231	 * process, however.
232	 */
233	if (prev != rq->idle)
234		sched_info_depart(rq, prev);
235
236	if (next != rq->idle)
237		sched_info_arrive(rq, next);
238}
239
240static inline void
241sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
242{
243	if (sched_info_on())
244		__sched_info_switch(rq, prev, next);
245}
246
247#else /* !CONFIG_SCHED_INFO: */
248# define sched_info_queued(rq, t)	do { } while (0)
249# define sched_info_reset_dequeued(t)	do { } while (0)
250# define sched_info_dequeued(rq, t)	do { } while (0)
251# define sched_info_depart(rq, t)	do { } while (0)
252# define sched_info_arrive(rq, next)	do { } while (0)
253# define sched_info_switch(rq, t, next)	do { } while (0)
254#endif /* CONFIG_SCHED_INFO */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifdef CONFIG_SCHEDSTATS
  4
  5/*
  6 * Expects runqueue lock to be held for atomicity of update
  7 */
  8static inline void
  9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 10{
 11	if (rq) {
 12		rq->rq_sched_info.run_delay += delta;
 13		rq->rq_sched_info.pcount++;
 14	}
 15}
 16
 17/*
 18 * Expects runqueue lock to be held for atomicity of update
 19 */
 20static inline void
 21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 22{
 23	if (rq)
 24		rq->rq_cpu_time += delta;
 25}
 26
 27static inline void
 28rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 29{
 30	if (rq)
 31		rq->rq_sched_info.run_delay += delta;
 32}
 33#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 34#define __schedstat_inc(var)		do { var++; } while (0)
 35#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 36#define __schedstat_add(var, amt)	do { var += (amt); } while (0)
 37#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
 38#define __schedstat_set(var, val)	do { var = (val); } while (0)
 39#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 40#define   schedstat_val(var)		(var)
 41#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 42
 43#else /* !CONFIG_SCHEDSTATS: */
 44static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
 45static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
 46static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
 47# define   schedstat_enabled()		0
 48# define __schedstat_inc(var)		do { } while (0)
 49# define   schedstat_inc(var)		do { } while (0)
 50# define __schedstat_add(var, amt)	do { } while (0)
 51# define   schedstat_add(var, amt)	do { } while (0)
 52# define __schedstat_set(var, val)	do { } while (0)
 53# define   schedstat_set(var, val)	do { } while (0)
 54# define   schedstat_val(var)		0
 55# define   schedstat_val_or_zero(var)	0
 56#endif /* CONFIG_SCHEDSTATS */
 57
 58#ifdef CONFIG_PSI
 59/*
 60 * PSI tracks state that persists across sleeps, such as iowaits and
 61 * memory stalls. As a result, it has to distinguish between sleeps,
 62 * where a task's runnable state changes, and requeues, where a task
 63 * and its state are being moved between CPUs and runqueues.
 64 */
 65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
 66{
 67	int clear = 0, set = TSK_RUNNING;
 68
 69	if (static_branch_likely(&psi_disabled))
 70		return;
 71
 72	if (!wakeup || p->sched_psi_wake_requeue) {
 73		if (p->in_memstall)
 74			set |= TSK_MEMSTALL;
 75		if (p->sched_psi_wake_requeue)
 76			p->sched_psi_wake_requeue = 0;
 77	} else {
 78		if (p->in_iowait)
 79			clear |= TSK_IOWAIT;
 80	}
 81
 82	psi_task_change(p, clear, set);
 83}
 84
 85static inline void psi_dequeue(struct task_struct *p, bool sleep)
 86{
 87	int clear = TSK_RUNNING, set = 0;
 88
 89	if (static_branch_likely(&psi_disabled))
 90		return;
 91
 92	if (!sleep) {
 93		if (p->in_memstall)
 94			clear |= TSK_MEMSTALL;
 95	} else {
 96		/*
 97		 * When a task sleeps, schedule() dequeues it before
 98		 * switching to the next one. Merge the clearing of
 99		 * TSK_RUNNING and TSK_ONCPU to save an unnecessary
100		 * psi_task_change() call in psi_sched_switch().
101		 */
102		clear |= TSK_ONCPU;
103
104		if (p->in_iowait)
105			set |= TSK_IOWAIT;
106	}
107
108	psi_task_change(p, clear, set);
109}
110
111static inline void psi_ttwu_dequeue(struct task_struct *p)
112{
113	if (static_branch_likely(&psi_disabled))
114		return;
115	/*
116	 * Is the task being migrated during a wakeup? Make sure to
117	 * deregister its sleep-persistent psi states from the old
118	 * queue, and let psi_enqueue() know it has to requeue.
119	 */
120	if (unlikely(p->in_iowait || p->in_memstall)) {
121		struct rq_flags rf;
122		struct rq *rq;
123		int clear = 0;
124
125		if (p->in_iowait)
126			clear |= TSK_IOWAIT;
127		if (p->in_memstall)
128			clear |= TSK_MEMSTALL;
129
130		rq = __task_rq_lock(p, &rf);
131		psi_task_change(p, clear, 0);
132		p->sched_psi_wake_requeue = 1;
133		__task_rq_unlock(rq, &rf);
134	}
135}
136
137static inline void psi_sched_switch(struct task_struct *prev,
138				    struct task_struct *next,
139				    bool sleep)
140{
141	if (static_branch_likely(&psi_disabled))
142		return;
143
144	psi_task_switch(prev, next, sleep);
145}
146
147static inline void psi_task_tick(struct rq *rq)
148{
149	if (static_branch_likely(&psi_disabled))
150		return;
151
152	if (unlikely(rq->curr->in_memstall))
153		psi_memstall_tick(rq->curr, cpu_of(rq));
154}
155#else /* CONFIG_PSI */
156static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
157static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
158static inline void psi_ttwu_dequeue(struct task_struct *p) {}
159static inline void psi_sched_switch(struct task_struct *prev,
160				    struct task_struct *next,
161				    bool sleep) {}
162static inline void psi_task_tick(struct rq *rq) {}
163#endif /* CONFIG_PSI */
164
165#ifdef CONFIG_SCHED_INFO
166static inline void sched_info_reset_dequeued(struct task_struct *t)
167{
168	t->sched_info.last_queued = 0;
169}
170
171/*
172 * We are interested in knowing how long it was from the *first* time a
173 * task was queued to the time that it finally hit a CPU, we call this routine
174 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
175 * delta taken on each CPU would annul the skew.
176 */
177static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
178{
179	unsigned long long now = rq_clock(rq), delta = 0;
180
181	if (sched_info_on()) {
182		if (t->sched_info.last_queued)
183			delta = now - t->sched_info.last_queued;
184	}
185	sched_info_reset_dequeued(t);
186	t->sched_info.run_delay += delta;
187
188	rq_sched_info_dequeued(rq, delta);
189}
190
191/*
192 * Called when a task finally hits the CPU.  We can now calculate how
193 * long it was waiting to run.  We also note when it began so that we
194 * can keep stats on how long its timeslice is.
195 */
196static void sched_info_arrive(struct rq *rq, struct task_struct *t)
197{
198	unsigned long long now = rq_clock(rq), delta = 0;
199
200	if (t->sched_info.last_queued)
201		delta = now - t->sched_info.last_queued;
202	sched_info_reset_dequeued(t);
203	t->sched_info.run_delay += delta;
204	t->sched_info.last_arrival = now;
205	t->sched_info.pcount++;
206
207	rq_sched_info_arrive(rq, delta);
208}
209
210/*
211 * This function is only called from enqueue_task(), but also only updates
212 * the timestamp if it is already not set.  It's assumed that
213 * sched_info_dequeued() will clear that stamp when appropriate.
214 */
215static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
216{
217	if (sched_info_on()) {
218		if (!t->sched_info.last_queued)
219			t->sched_info.last_queued = rq_clock(rq);
220	}
221}
222
223/*
224 * Called when a process ceases being the active-running process involuntarily
225 * due, typically, to expiring its time slice (this may also be called when
226 * switching to the idle task).  Now we can calculate how long we ran.
227 * Also, if the process is still in the TASK_RUNNING state, call
228 * sched_info_queued() to mark that it has now again started waiting on
229 * the runqueue.
230 */
231static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
232{
233	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
234
235	rq_sched_info_depart(rq, delta);
236
237	if (t->state == TASK_RUNNING)
238		sched_info_queued(rq, t);
239}
240
241/*
242 * Called when tasks are switched involuntarily due, typically, to expiring
243 * their time slice.  (This may also be called when switching to or from
244 * the idle task.)  We are only called when prev != next.
245 */
246static inline void
247__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
248{
249	/*
250	 * prev now departs the CPU.  It's not interesting to record
251	 * stats about how efficient we were at scheduling the idle
252	 * process, however.
253	 */
254	if (prev != rq->idle)
255		sched_info_depart(rq, prev);
256
257	if (next != rq->idle)
258		sched_info_arrive(rq, next);
259}
260
261static inline void
262sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
263{
264	if (sched_info_on())
265		__sched_info_switch(rq, prev, next);
266}
267
268#else /* !CONFIG_SCHED_INFO: */
269# define sched_info_queued(rq, t)	do { } while (0)
270# define sched_info_reset_dequeued(t)	do { } while (0)
271# define sched_info_dequeued(rq, t)	do { } while (0)
272# define sched_info_depart(rq, t)	do { } while (0)
273# define sched_info_arrive(rq, next)	do { } while (0)
274# define sched_info_switch(rq, t, next)	do { } while (0)
275#endif /* CONFIG_SCHED_INFO */