Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Simple CPU accounting cgroup controller
  4 */
  5#include "sched.h"
  6
  7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  8
  9/*
 10 * There are no locks covering percpu hardirq/softirq time.
 11 * They are only modified in vtime_account, on corresponding CPU
 12 * with interrupts disabled. So, writes are safe.
 13 * They are read and saved off onto struct rq in update_rq_clock().
 14 * This may result in other CPU reading this CPU's irq time and can
 15 * race with irq/vtime_account on this CPU. We would either get old
 16 * or new value with a side effect of accounting a slice of irq time to wrong
 17 * task when irq is in progress while we read rq->clock. That is a worthy
 18 * compromise in place of having locks on each irq in account_system_time.
 19 */
 20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 21
 22static int sched_clock_irqtime;
 23
 24void enable_sched_clock_irqtime(void)
 25{
 26	sched_clock_irqtime = 1;
 27}
 28
 29void disable_sched_clock_irqtime(void)
 30{
 31	sched_clock_irqtime = 0;
 32}
 33
 34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
 35				  enum cpu_usage_stat idx)
 36{
 37	u64 *cpustat = kcpustat_this_cpu->cpustat;
 38
 39	u64_stats_update_begin(&irqtime->sync);
 40	cpustat[idx] += delta;
 41	irqtime->total += delta;
 42	irqtime->tick_delta += delta;
 43	u64_stats_update_end(&irqtime->sync);
 44}
 45
 46/*
 47 * Called before incrementing preempt_count on {soft,}irq_enter
 48 * and before decrementing preempt_count on {soft,}irq_exit.
 49 */
 50void irqtime_account_irq(struct task_struct *curr)
 51{
 52	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 53	s64 delta;
 54	int cpu;
 55
 56	if (!sched_clock_irqtime)
 57		return;
 58
 59	cpu = smp_processor_id();
 60	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 61	irqtime->irq_start_time += delta;
 62
 63	/*
 64	 * We do not account for softirq time from ksoftirqd here.
 65	 * We want to continue accounting softirq time to ksoftirqd thread
 66	 * in that case, so as not to confuse scheduler with a special task
 67	 * that do not consume any time, but still wants to run.
 68	 */
 69	if (hardirq_count())
 70		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
 71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 72		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
 73}
 74EXPORT_SYMBOL_GPL(irqtime_account_irq);
 75
 76static u64 irqtime_tick_accounted(u64 maxtime)
 77{
 78	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 79	u64 delta;
 80
 81	delta = min(irqtime->tick_delta, maxtime);
 82	irqtime->tick_delta -= delta;
 83
 84	return delta;
 85}
 86
 87#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 88
 89#define sched_clock_irqtime	(0)
 90
 91static u64 irqtime_tick_accounted(u64 dummy)
 92{
 93	return 0;
 94}
 95
 96#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 97
 98static inline void task_group_account_field(struct task_struct *p, int index,
 99					    u64 tmp)
100{
101	/*
102	 * Since all updates are sure to touch the root cgroup, we
103	 * get ourselves ahead and touch it first. If the root cgroup
104	 * is the only cgroup, then nothing else should be necessary.
105	 *
106	 */
107	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
108
109	cgroup_account_cputime_field(p, index, tmp);
110}
111
112/*
113 * Account user CPU time to a process.
114 * @p: the process that the CPU time gets accounted to
115 * @cputime: the CPU time spent in user space since the last update
116 */
117void account_user_time(struct task_struct *p, u64 cputime)
118{
119	int index;
120
121	/* Add user time to process. */
122	p->utime += cputime;
123	account_group_user_time(p, cputime);
124
125	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
126
127	/* Add user time to cpustat. */
128	task_group_account_field(p, index, cputime);
129
130	/* Account for user time used */
131	acct_account_cputime(p);
132}
133
134/*
135 * Account guest CPU time to a process.
136 * @p: the process that the CPU time gets accounted to
137 * @cputime: the CPU time spent in virtual machine since the last update
138 */
139void account_guest_time(struct task_struct *p, u64 cputime)
140{
141	u64 *cpustat = kcpustat_this_cpu->cpustat;
142
143	/* Add guest time to process. */
144	p->utime += cputime;
145	account_group_user_time(p, cputime);
146	p->gtime += cputime;
147
148	/* Add guest time to cpustat. */
149	if (task_nice(p) > 0) {
150		cpustat[CPUTIME_NICE] += cputime;
151		cpustat[CPUTIME_GUEST_NICE] += cputime;
152	} else {
153		cpustat[CPUTIME_USER] += cputime;
154		cpustat[CPUTIME_GUEST] += cputime;
155	}
156}
157
158/*
159 * Account system CPU time to a process and desired cpustat field
160 * @p: the process that the CPU time gets accounted to
161 * @cputime: the CPU time spent in kernel space since the last update
162 * @index: pointer to cpustat field that has to be updated
163 */
164void account_system_index_time(struct task_struct *p,
165			       u64 cputime, enum cpu_usage_stat index)
166{
167	/* Add system time to process. */
168	p->stime += cputime;
169	account_group_system_time(p, cputime);
170
171	/* Add system time to cpustat. */
172	task_group_account_field(p, index, cputime);
173
174	/* Account for system time used */
175	acct_account_cputime(p);
176}
177
178/*
179 * Account system CPU time to a process.
180 * @p: the process that the CPU time gets accounted to
181 * @hardirq_offset: the offset to subtract from hardirq_count()
182 * @cputime: the CPU time spent in kernel space since the last update
183 */
184void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
185{
186	int index;
187
188	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
189		account_guest_time(p, cputime);
190		return;
191	}
192
193	if (hardirq_count() - hardirq_offset)
194		index = CPUTIME_IRQ;
195	else if (in_serving_softirq())
196		index = CPUTIME_SOFTIRQ;
197	else
198		index = CPUTIME_SYSTEM;
199
200	account_system_index_time(p, cputime, index);
201}
202
203/*
204 * Account for involuntary wait time.
205 * @cputime: the CPU time spent in involuntary wait
206 */
207void account_steal_time(u64 cputime)
208{
209	u64 *cpustat = kcpustat_this_cpu->cpustat;
210
211	cpustat[CPUTIME_STEAL] += cputime;
212}
213
214/*
215 * Account for idle time.
216 * @cputime: the CPU time spent in idle wait
217 */
218void account_idle_time(u64 cputime)
219{
220	u64 *cpustat = kcpustat_this_cpu->cpustat;
221	struct rq *rq = this_rq();
222
223	if (atomic_read(&rq->nr_iowait) > 0)
224		cpustat[CPUTIME_IOWAIT] += cputime;
225	else
226		cpustat[CPUTIME_IDLE] += cputime;
227}
228
229/*
230 * When a guest is interrupted for a longer amount of time, missed clock
231 * ticks are not redelivered later. Due to that, this function may on
232 * occasion account more time than the calling functions think elapsed.
233 */
234static __always_inline u64 steal_account_process_time(u64 maxtime)
235{
236#ifdef CONFIG_PARAVIRT
237	if (static_key_false(&paravirt_steal_enabled)) {
238		u64 steal;
239
240		steal = paravirt_steal_clock(smp_processor_id());
241		steal -= this_rq()->prev_steal_time;
242		steal = min(steal, maxtime);
243		account_steal_time(steal);
244		this_rq()->prev_steal_time += steal;
245
246		return steal;
247	}
248#endif
249	return 0;
250}
251
252/*
253 * Account how much elapsed time was spent in steal, irq, or softirq time.
254 */
255static inline u64 account_other_time(u64 max)
256{
257	u64 accounted;
258
259	lockdep_assert_irqs_disabled();
260
261	accounted = steal_account_process_time(max);
262
263	if (accounted < max)
264		accounted += irqtime_tick_accounted(max - accounted);
265
266	return accounted;
267}
268
269#ifdef CONFIG_64BIT
270static inline u64 read_sum_exec_runtime(struct task_struct *t)
271{
272	return t->se.sum_exec_runtime;
273}
274#else
275static u64 read_sum_exec_runtime(struct task_struct *t)
276{
277	u64 ns;
278	struct rq_flags rf;
279	struct rq *rq;
280
281	rq = task_rq_lock(t, &rf);
282	ns = t->se.sum_exec_runtime;
283	task_rq_unlock(rq, t, &rf);
284
285	return ns;
286}
287#endif
288
289/*
290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
291 * tasks (sum on group iteration) belonging to @tsk's group.
292 */
293void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
294{
295	struct signal_struct *sig = tsk->signal;
296	u64 utime, stime;
297	struct task_struct *t;
298	unsigned int seq, nextseq;
299	unsigned long flags;
300
301	/*
302	 * Update current task runtime to account pending time since last
303	 * scheduler action or thread_group_cputime() call. This thread group
304	 * might have other running tasks on different CPUs, but updating
305	 * their runtime can affect syscall performance, so we skip account
306	 * those pending times and rely only on values updated on tick or
307	 * other scheduler action.
308	 */
309	if (same_thread_group(current, tsk))
310		(void) task_sched_runtime(current);
311
312	rcu_read_lock();
313	/* Attempt a lockless read on the first round. */
314	nextseq = 0;
315	do {
316		seq = nextseq;
317		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
318		times->utime = sig->utime;
319		times->stime = sig->stime;
320		times->sum_exec_runtime = sig->sum_sched_runtime;
321
322		for_each_thread(tsk, t) {
323			task_cputime(t, &utime, &stime);
324			times->utime += utime;
325			times->stime += stime;
326			times->sum_exec_runtime += read_sum_exec_runtime(t);
327		}
328		/* If lockless access failed, take the lock. */
329		nextseq = 1;
330	} while (need_seqretry(&sig->stats_lock, seq));
331	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
332	rcu_read_unlock();
333}
334
335#ifdef CONFIG_IRQ_TIME_ACCOUNTING
336/*
337 * Account a tick to a process and cpustat
338 * @p: the process that the CPU time gets accounted to
339 * @user_tick: is the tick from userspace
340 * @rq: the pointer to rq
341 *
342 * Tick demultiplexing follows the order
343 * - pending hardirq update
344 * - pending softirq update
345 * - user_time
346 * - idle_time
347 * - system time
348 *   - check for guest_time
349 *   - else account as system_time
350 *
351 * Check for hardirq is done both for system and user time as there is
352 * no timer going off while we are on hardirq and hence we may never get an
353 * opportunity to update it solely in system time.
354 * p->stime and friends are only updated on system time and not on irq
355 * softirq as those do not count in task exec_runtime any more.
356 */
357static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
358					 struct rq *rq, int ticks)
359{
360	u64 other, cputime = TICK_NSEC * ticks;
361
362	/*
363	 * When returning from idle, many ticks can get accounted at
364	 * once, including some ticks of steal, irq, and softirq time.
365	 * Subtract those ticks from the amount of time accounted to
366	 * idle, or potentially user or system time. Due to rounding,
367	 * other time can exceed ticks occasionally.
368	 */
369	other = account_other_time(ULONG_MAX);
370	if (other >= cputime)
371		return;
372
373	cputime -= other;
374
375	if (this_cpu_ksoftirqd() == p) {
376		/*
377		 * ksoftirqd time do not get accounted in cpu_softirq_time.
378		 * So, we have to handle it separately here.
379		 * Also, p->stime needs to be updated for ksoftirqd.
380		 */
381		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
382	} else if (user_tick) {
383		account_user_time(p, cputime);
384	} else if (p == rq->idle) {
385		account_idle_time(cputime);
386	} else if (p->flags & PF_VCPU) { /* System time or guest time */
387		account_guest_time(p, cputime);
388	} else {
389		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
390	}
391}
392
393static void irqtime_account_idle_ticks(int ticks)
394{
395	struct rq *rq = this_rq();
396
397	irqtime_account_process_tick(current, 0, rq, ticks);
398}
399#else /* CONFIG_IRQ_TIME_ACCOUNTING */
400static inline void irqtime_account_idle_ticks(int ticks) { }
401static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
402						struct rq *rq, int nr_ticks) { }
403#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
404
405/*
406 * Use precise platform statistics if available:
407 */
408#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 
409# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
410void vtime_common_task_switch(struct task_struct *prev)
411{
412	if (is_idle_task(prev))
413		vtime_account_idle(prev);
414	else
415		vtime_account_system(prev);
416
417	vtime_flush(prev);
418	arch_vtime_task_switch(prev);
419}
420# endif
421#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
422
423
424#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
425/*
426 * Archs that account the whole time spent in the idle task
427 * (outside irq) as idle time can rely on this and just implement
428 * vtime_account_system() and vtime_account_idle(). Archs that
429 * have other meaning of the idle time (s390 only includes the
430 * time spent by the CPU when it's in low power mode) must override
431 * vtime_account().
432 */
433#ifndef __ARCH_HAS_VTIME_ACCOUNT
434void vtime_account_irq_enter(struct task_struct *tsk)
435{
436	if (!in_interrupt() && is_idle_task(tsk))
437		vtime_account_idle(tsk);
438	else
439		vtime_account_system(tsk);
440}
441EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
442#endif /* __ARCH_HAS_VTIME_ACCOUNT */
443
444void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
445		    u64 *ut, u64 *st)
446{
447	*ut = curr->utime;
448	*st = curr->stime;
449}
450
451void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
452{
453	*ut = p->utime;
454	*st = p->stime;
455}
456EXPORT_SYMBOL_GPL(task_cputime_adjusted);
457
458void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
459{
460	struct task_cputime cputime;
461
462	thread_group_cputime(p, &cputime);
463
464	*ut = cputime.utime;
465	*st = cputime.stime;
466}
467
468#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
469
470/*
471 * Account a single tick of CPU time.
472 * @p: the process that the CPU time gets accounted to
473 * @user_tick: indicates if the tick is a user or a system tick
474 */
475void account_process_tick(struct task_struct *p, int user_tick)
476{
477	u64 cputime, steal;
478	struct rq *rq = this_rq();
479
480	if (vtime_accounting_cpu_enabled())
481		return;
482
483	if (sched_clock_irqtime) {
484		irqtime_account_process_tick(p, user_tick, rq, 1);
485		return;
486	}
487
488	cputime = TICK_NSEC;
489	steal = steal_account_process_time(ULONG_MAX);
490
491	if (steal >= cputime)
492		return;
493
494	cputime -= steal;
495
496	if (user_tick)
497		account_user_time(p, cputime);
498	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
499		account_system_time(p, HARDIRQ_OFFSET, cputime);
500	else
501		account_idle_time(cputime);
502}
503
504/*
505 * Account multiple ticks of idle time.
506 * @ticks: number of stolen ticks
507 */
508void account_idle_ticks(unsigned long ticks)
509{
510	u64 cputime, steal;
511
512	if (sched_clock_irqtime) {
513		irqtime_account_idle_ticks(ticks);
514		return;
515	}
516
517	cputime = ticks * TICK_NSEC;
518	steal = steal_account_process_time(ULONG_MAX);
519
520	if (steal >= cputime)
521		return;
522
523	cputime -= steal;
524	account_idle_time(cputime);
525}
526
527/*
528 * Perform (stime * rtime) / total, but avoid multiplication overflow by
529 * losing precision when the numbers are big.
530 */
531static u64 scale_stime(u64 stime, u64 rtime, u64 total)
532{
533	u64 scaled;
534
535	for (;;) {
536		/* Make sure "rtime" is the bigger of stime/rtime */
537		if (stime > rtime)
538			swap(rtime, stime);
539
540		/* Make sure 'total' fits in 32 bits */
541		if (total >> 32)
542			goto drop_precision;
543
544		/* Does rtime (and thus stime) fit in 32 bits? */
545		if (!(rtime >> 32))
546			break;
547
548		/* Can we just balance rtime/stime rather than dropping bits? */
549		if (stime >> 31)
550			goto drop_precision;
551
552		/* We can grow stime and shrink rtime and try to make them both fit */
553		stime <<= 1;
554		rtime >>= 1;
555		continue;
556
557drop_precision:
558		/* We drop from rtime, it has more bits than stime */
559		rtime >>= 1;
560		total >>= 1;
561	}
562
563	/*
564	 * Make sure gcc understands that this is a 32x32->64 multiply,
565	 * followed by a 64/32->64 divide.
566	 */
567	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
568	return scaled;
569}
570
571/*
572 * Adjust tick based cputime random precision against scheduler runtime
573 * accounting.
574 *
575 * Tick based cputime accounting depend on random scheduling timeslices of a
576 * task to be interrupted or not by the timer.  Depending on these
577 * circumstances, the number of these interrupts may be over or
578 * under-optimistic, matching the real user and system cputime with a variable
579 * precision.
580 *
581 * Fix this by scaling these tick based values against the total runtime
582 * accounted by the CFS scheduler.
583 *
584 * This code provides the following guarantees:
585 *
586 *   stime + utime == rtime
587 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
588 *
589 * Assuming that rtime_i+1 >= rtime_i.
590 */
591void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
592		    u64 *ut, u64 *st)
593{
594	u64 rtime, stime, utime;
595	unsigned long flags;
596
597	/* Serialize concurrent callers such that we can honour our guarantees */
598	raw_spin_lock_irqsave(&prev->lock, flags);
599	rtime = curr->sum_exec_runtime;
600
601	/*
602	 * This is possible under two circumstances:
603	 *  - rtime isn't monotonic after all (a bug);
604	 *  - we got reordered by the lock.
605	 *
606	 * In both cases this acts as a filter such that the rest of the code
607	 * can assume it is monotonic regardless of anything else.
608	 */
609	if (prev->stime + prev->utime >= rtime)
610		goto out;
611
612	stime = curr->stime;
613	utime = curr->utime;
614
615	/*
616	 * If either stime or utime are 0, assume all runtime is userspace.
617	 * Once a task gets some ticks, the monotonicy code at 'update:'
618	 * will ensure things converge to the observed ratio.
619	 */
620	if (stime == 0) {
621		utime = rtime;
622		goto update;
623	}
624
625	if (utime == 0) {
626		stime = rtime;
627		goto update;
628	}
629
630	stime = scale_stime(stime, rtime, stime + utime);
631
632update:
633	/*
634	 * Make sure stime doesn't go backwards; this preserves monotonicity
635	 * for utime because rtime is monotonic.
636	 *
637	 *  utime_i+1 = rtime_i+1 - stime_i
638	 *            = rtime_i+1 - (rtime_i - utime_i)
639	 *            = (rtime_i+1 - rtime_i) + utime_i
640	 *            >= utime_i
641	 */
642	if (stime < prev->stime)
643		stime = prev->stime;
644	utime = rtime - stime;
645
646	/*
647	 * Make sure utime doesn't go backwards; this still preserves
648	 * monotonicity for stime, analogous argument to above.
649	 */
650	if (utime < prev->utime) {
651		utime = prev->utime;
652		stime = rtime - utime;
653	}
654
655	prev->stime = stime;
656	prev->utime = utime;
657out:
658	*ut = prev->utime;
659	*st = prev->stime;
660	raw_spin_unlock_irqrestore(&prev->lock, flags);
661}
662
663void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
664{
665	struct task_cputime cputime = {
666		.sum_exec_runtime = p->se.sum_exec_runtime,
667	};
668
669	task_cputime(p, &cputime.utime, &cputime.stime);
670	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
671}
672EXPORT_SYMBOL_GPL(task_cputime_adjusted);
673
674void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
675{
676	struct task_cputime cputime;
677
678	thread_group_cputime(p, &cputime);
679	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
680}
681#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
682
683#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
684static u64 vtime_delta(struct vtime *vtime)
685{
686	unsigned long long clock;
687
688	clock = sched_clock();
689	if (clock < vtime->starttime)
690		return 0;
691
692	return clock - vtime->starttime;
693}
694
695static u64 get_vtime_delta(struct vtime *vtime)
696{
697	u64 delta = vtime_delta(vtime);
698	u64 other;
699
700	/*
701	 * Unlike tick based timing, vtime based timing never has lost
702	 * ticks, and no need for steal time accounting to make up for
703	 * lost ticks. Vtime accounts a rounded version of actual
704	 * elapsed time. Limit account_other_time to prevent rounding
705	 * errors from causing elapsed vtime to go negative.
706	 */
707	other = account_other_time(delta);
708	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
709	vtime->starttime += delta;
710
711	return delta - other;
712}
713
714static void __vtime_account_system(struct task_struct *tsk,
715				   struct vtime *vtime)
716{
717	vtime->stime += get_vtime_delta(vtime);
718	if (vtime->stime >= TICK_NSEC) {
719		account_system_time(tsk, irq_count(), vtime->stime);
720		vtime->stime = 0;
721	}
722}
723
724static void vtime_account_guest(struct task_struct *tsk,
725				struct vtime *vtime)
726{
727	vtime->gtime += get_vtime_delta(vtime);
728	if (vtime->gtime >= TICK_NSEC) {
729		account_guest_time(tsk, vtime->gtime);
730		vtime->gtime = 0;
731	}
732}
733
734void vtime_account_system(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
735{
736	struct vtime *vtime = &tsk->vtime;
737
738	if (!vtime_delta(vtime))
739		return;
740
741	write_seqcount_begin(&vtime->seqcount);
742	/* We might have scheduled out from guest path */
743	if (tsk->flags & PF_VCPU)
744		vtime_account_guest(tsk, vtime);
745	else
746		__vtime_account_system(tsk, vtime);
747	write_seqcount_end(&vtime->seqcount);
748}
749
750void vtime_user_enter(struct task_struct *tsk)
751{
752	struct vtime *vtime = &tsk->vtime;
753
754	write_seqcount_begin(&vtime->seqcount);
755	__vtime_account_system(tsk, vtime);
756	vtime->state = VTIME_USER;
757	write_seqcount_end(&vtime->seqcount);
758}
759
760void vtime_user_exit(struct task_struct *tsk)
761{
762	struct vtime *vtime = &tsk->vtime;
763
764	write_seqcount_begin(&vtime->seqcount);
765	vtime->utime += get_vtime_delta(vtime);
766	if (vtime->utime >= TICK_NSEC) {
767		account_user_time(tsk, vtime->utime);
768		vtime->utime = 0;
769	}
770	vtime->state = VTIME_SYS;
771	write_seqcount_end(&vtime->seqcount);
772}
773
774void vtime_guest_enter(struct task_struct *tsk)
775{
776	struct vtime *vtime = &tsk->vtime;
777	/*
778	 * The flags must be updated under the lock with
779	 * the vtime_starttime flush and update.
780	 * That enforces a right ordering and update sequence
781	 * synchronization against the reader (task_gtime())
782	 * that can thus safely catch up with a tickless delta.
783	 */
784	write_seqcount_begin(&vtime->seqcount);
785	__vtime_account_system(tsk, vtime);
786	tsk->flags |= PF_VCPU;
 
787	write_seqcount_end(&vtime->seqcount);
788}
789EXPORT_SYMBOL_GPL(vtime_guest_enter);
790
791void vtime_guest_exit(struct task_struct *tsk)
792{
793	struct vtime *vtime = &tsk->vtime;
794
795	write_seqcount_begin(&vtime->seqcount);
796	vtime_account_guest(tsk, vtime);
797	tsk->flags &= ~PF_VCPU;
 
798	write_seqcount_end(&vtime->seqcount);
799}
800EXPORT_SYMBOL_GPL(vtime_guest_exit);
801
802void vtime_account_idle(struct task_struct *tsk)
803{
804	account_idle_time(get_vtime_delta(&tsk->vtime));
805}
806
807void arch_vtime_task_switch(struct task_struct *prev)
808{
809	struct vtime *vtime = &prev->vtime;
810
811	write_seqcount_begin(&vtime->seqcount);
 
 
 
 
812	vtime->state = VTIME_INACTIVE;
 
813	write_seqcount_end(&vtime->seqcount);
814
815	vtime = &current->vtime;
816
817	write_seqcount_begin(&vtime->seqcount);
818	vtime->state = VTIME_SYS;
 
 
 
 
 
819	vtime->starttime = sched_clock();
 
820	write_seqcount_end(&vtime->seqcount);
821}
822
823void vtime_init_idle(struct task_struct *t, int cpu)
824{
825	struct vtime *vtime = &t->vtime;
826	unsigned long flags;
827
828	local_irq_save(flags);
829	write_seqcount_begin(&vtime->seqcount);
830	vtime->state = VTIME_SYS;
831	vtime->starttime = sched_clock();
 
832	write_seqcount_end(&vtime->seqcount);
833	local_irq_restore(flags);
834}
835
836u64 task_gtime(struct task_struct *t)
837{
838	struct vtime *vtime = &t->vtime;
839	unsigned int seq;
840	u64 gtime;
841
842	if (!vtime_accounting_enabled())
843		return t->gtime;
844
845	do {
846		seq = read_seqcount_begin(&vtime->seqcount);
847
848		gtime = t->gtime;
849		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
850			gtime += vtime->gtime + vtime_delta(vtime);
851
852	} while (read_seqcount_retry(&vtime->seqcount, seq));
853
854	return gtime;
855}
856
857/*
858 * Fetch cputime raw values from fields of task_struct and
859 * add up the pending nohz execution time since the last
860 * cputime snapshot.
861 */
862void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
863{
864	struct vtime *vtime = &t->vtime;
865	unsigned int seq;
866	u64 delta;
867
868	if (!vtime_accounting_enabled()) {
869		*utime = t->utime;
870		*stime = t->stime;
871		return;
872	}
873
874	do {
875		seq = read_seqcount_begin(&vtime->seqcount);
876
877		*utime = t->utime;
878		*stime = t->stime;
879
880		/* Task is sleeping, nothing to add */
881		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
882			continue;
883
884		delta = vtime_delta(vtime);
885
886		/*
887		 * Task runs either in user or kernel space, add pending nohz time to
888		 * the right place.
889		 */
890		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
891			*utime += vtime->utime + delta;
892		else if (vtime->state == VTIME_SYS)
893			*stime += vtime->stime + delta;
 
 
894	} while (read_seqcount_retry(&vtime->seqcount, seq));
895}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
   5#include "sched.h"
   6
   7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
   8
   9/*
  10 * There are no locks covering percpu hardirq/softirq time.
  11 * They are only modified in vtime_account, on corresponding CPU
  12 * with interrupts disabled. So, writes are safe.
  13 * They are read and saved off onto struct rq in update_rq_clock().
  14 * This may result in other CPU reading this CPU's irq time and can
  15 * race with irq/vtime_account on this CPU. We would either get old
  16 * or new value with a side effect of accounting a slice of irq time to wrong
  17 * task when irq is in progress while we read rq->clock. That is a worthy
  18 * compromise in place of having locks on each irq in account_system_time.
  19 */
  20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  21
  22static int sched_clock_irqtime;
  23
  24void enable_sched_clock_irqtime(void)
  25{
  26	sched_clock_irqtime = 1;
  27}
  28
  29void disable_sched_clock_irqtime(void)
  30{
  31	sched_clock_irqtime = 0;
  32}
  33
  34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  35				  enum cpu_usage_stat idx)
  36{
  37	u64 *cpustat = kcpustat_this_cpu->cpustat;
  38
  39	u64_stats_update_begin(&irqtime->sync);
  40	cpustat[idx] += delta;
  41	irqtime->total += delta;
  42	irqtime->tick_delta += delta;
  43	u64_stats_update_end(&irqtime->sync);
  44}
  45
  46/*
  47 * Called before incrementing preempt_count on {soft,}irq_enter
  48 * and before decrementing preempt_count on {soft,}irq_exit.
  49 */
  50void irqtime_account_irq(struct task_struct *curr)
  51{
  52	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  53	s64 delta;
  54	int cpu;
  55
  56	if (!sched_clock_irqtime)
  57		return;
  58
  59	cpu = smp_processor_id();
  60	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  61	irqtime->irq_start_time += delta;
  62
  63	/*
  64	 * We do not account for softirq time from ksoftirqd here.
  65	 * We want to continue accounting softirq time to ksoftirqd thread
  66	 * in that case, so as not to confuse scheduler with a special task
  67	 * that do not consume any time, but still wants to run.
  68	 */
  69	if (hardirq_count())
  70		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  72		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
  73}
  74EXPORT_SYMBOL_GPL(irqtime_account_irq);
  75
  76static u64 irqtime_tick_accounted(u64 maxtime)
  77{
  78	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  79	u64 delta;
  80
  81	delta = min(irqtime->tick_delta, maxtime);
  82	irqtime->tick_delta -= delta;
  83
  84	return delta;
  85}
  86
  87#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  88
  89#define sched_clock_irqtime	(0)
  90
  91static u64 irqtime_tick_accounted(u64 dummy)
  92{
  93	return 0;
  94}
  95
  96#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
  97
  98static inline void task_group_account_field(struct task_struct *p, int index,
  99					    u64 tmp)
 100{
 101	/*
 102	 * Since all updates are sure to touch the root cgroup, we
 103	 * get ourselves ahead and touch it first. If the root cgroup
 104	 * is the only cgroup, then nothing else should be necessary.
 105	 *
 106	 */
 107	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 108
 109	cgroup_account_cputime_field(p, index, tmp);
 110}
 111
 112/*
 113 * Account user CPU time to a process.
 114 * @p: the process that the CPU time gets accounted to
 115 * @cputime: the CPU time spent in user space since the last update
 116 */
 117void account_user_time(struct task_struct *p, u64 cputime)
 118{
 119	int index;
 120
 121	/* Add user time to process. */
 122	p->utime += cputime;
 123	account_group_user_time(p, cputime);
 124
 125	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 126
 127	/* Add user time to cpustat. */
 128	task_group_account_field(p, index, cputime);
 129
 130	/* Account for user time used */
 131	acct_account_cputime(p);
 132}
 133
 134/*
 135 * Account guest CPU time to a process.
 136 * @p: the process that the CPU time gets accounted to
 137 * @cputime: the CPU time spent in virtual machine since the last update
 138 */
 139void account_guest_time(struct task_struct *p, u64 cputime)
 140{
 141	u64 *cpustat = kcpustat_this_cpu->cpustat;
 142
 143	/* Add guest time to process. */
 144	p->utime += cputime;
 145	account_group_user_time(p, cputime);
 146	p->gtime += cputime;
 147
 148	/* Add guest time to cpustat. */
 149	if (task_nice(p) > 0) {
 150		cpustat[CPUTIME_NICE] += cputime;
 151		cpustat[CPUTIME_GUEST_NICE] += cputime;
 152	} else {
 153		cpustat[CPUTIME_USER] += cputime;
 154		cpustat[CPUTIME_GUEST] += cputime;
 155	}
 156}
 157
 158/*
 159 * Account system CPU time to a process and desired cpustat field
 160 * @p: the process that the CPU time gets accounted to
 161 * @cputime: the CPU time spent in kernel space since the last update
 162 * @index: pointer to cpustat field that has to be updated
 163 */
 164void account_system_index_time(struct task_struct *p,
 165			       u64 cputime, enum cpu_usage_stat index)
 166{
 167	/* Add system time to process. */
 168	p->stime += cputime;
 169	account_group_system_time(p, cputime);
 170
 171	/* Add system time to cpustat. */
 172	task_group_account_field(p, index, cputime);
 173
 174	/* Account for system time used */
 175	acct_account_cputime(p);
 176}
 177
 178/*
 179 * Account system CPU time to a process.
 180 * @p: the process that the CPU time gets accounted to
 181 * @hardirq_offset: the offset to subtract from hardirq_count()
 182 * @cputime: the CPU time spent in kernel space since the last update
 183 */
 184void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 185{
 186	int index;
 187
 188	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 189		account_guest_time(p, cputime);
 190		return;
 191	}
 192
 193	if (hardirq_count() - hardirq_offset)
 194		index = CPUTIME_IRQ;
 195	else if (in_serving_softirq())
 196		index = CPUTIME_SOFTIRQ;
 197	else
 198		index = CPUTIME_SYSTEM;
 199
 200	account_system_index_time(p, cputime, index);
 201}
 202
 203/*
 204 * Account for involuntary wait time.
 205 * @cputime: the CPU time spent in involuntary wait
 206 */
 207void account_steal_time(u64 cputime)
 208{
 209	u64 *cpustat = kcpustat_this_cpu->cpustat;
 210
 211	cpustat[CPUTIME_STEAL] += cputime;
 212}
 213
 214/*
 215 * Account for idle time.
 216 * @cputime: the CPU time spent in idle wait
 217 */
 218void account_idle_time(u64 cputime)
 219{
 220	u64 *cpustat = kcpustat_this_cpu->cpustat;
 221	struct rq *rq = this_rq();
 222
 223	if (atomic_read(&rq->nr_iowait) > 0)
 224		cpustat[CPUTIME_IOWAIT] += cputime;
 225	else
 226		cpustat[CPUTIME_IDLE] += cputime;
 227}
 228
 229/*
 230 * When a guest is interrupted for a longer amount of time, missed clock
 231 * ticks are not redelivered later. Due to that, this function may on
 232 * occasion account more time than the calling functions think elapsed.
 233 */
 234static __always_inline u64 steal_account_process_time(u64 maxtime)
 235{
 236#ifdef CONFIG_PARAVIRT
 237	if (static_key_false(&paravirt_steal_enabled)) {
 238		u64 steal;
 239
 240		steal = paravirt_steal_clock(smp_processor_id());
 241		steal -= this_rq()->prev_steal_time;
 242		steal = min(steal, maxtime);
 243		account_steal_time(steal);
 244		this_rq()->prev_steal_time += steal;
 245
 246		return steal;
 247	}
 248#endif
 249	return 0;
 250}
 251
 252/*
 253 * Account how much elapsed time was spent in steal, irq, or softirq time.
 254 */
 255static inline u64 account_other_time(u64 max)
 256{
 257	u64 accounted;
 258
 259	lockdep_assert_irqs_disabled();
 260
 261	accounted = steal_account_process_time(max);
 262
 263	if (accounted < max)
 264		accounted += irqtime_tick_accounted(max - accounted);
 265
 266	return accounted;
 267}
 268
 269#ifdef CONFIG_64BIT
 270static inline u64 read_sum_exec_runtime(struct task_struct *t)
 271{
 272	return t->se.sum_exec_runtime;
 273}
 274#else
 275static u64 read_sum_exec_runtime(struct task_struct *t)
 276{
 277	u64 ns;
 278	struct rq_flags rf;
 279	struct rq *rq;
 280
 281	rq = task_rq_lock(t, &rf);
 282	ns = t->se.sum_exec_runtime;
 283	task_rq_unlock(rq, t, &rf);
 284
 285	return ns;
 286}
 287#endif
 288
 289/*
 290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 291 * tasks (sum on group iteration) belonging to @tsk's group.
 292 */
 293void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 294{
 295	struct signal_struct *sig = tsk->signal;
 296	u64 utime, stime;
 297	struct task_struct *t;
 298	unsigned int seq, nextseq;
 299	unsigned long flags;
 300
 301	/*
 302	 * Update current task runtime to account pending time since last
 303	 * scheduler action or thread_group_cputime() call. This thread group
 304	 * might have other running tasks on different CPUs, but updating
 305	 * their runtime can affect syscall performance, so we skip account
 306	 * those pending times and rely only on values updated on tick or
 307	 * other scheduler action.
 308	 */
 309	if (same_thread_group(current, tsk))
 310		(void) task_sched_runtime(current);
 311
 312	rcu_read_lock();
 313	/* Attempt a lockless read on the first round. */
 314	nextseq = 0;
 315	do {
 316		seq = nextseq;
 317		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 318		times->utime = sig->utime;
 319		times->stime = sig->stime;
 320		times->sum_exec_runtime = sig->sum_sched_runtime;
 321
 322		for_each_thread(tsk, t) {
 323			task_cputime(t, &utime, &stime);
 324			times->utime += utime;
 325			times->stime += stime;
 326			times->sum_exec_runtime += read_sum_exec_runtime(t);
 327		}
 328		/* If lockless access failed, take the lock. */
 329		nextseq = 1;
 330	} while (need_seqretry(&sig->stats_lock, seq));
 331	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 332	rcu_read_unlock();
 333}
 334
 335#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 336/*
 337 * Account a tick to a process and cpustat
 338 * @p: the process that the CPU time gets accounted to
 339 * @user_tick: is the tick from userspace
 340 * @rq: the pointer to rq
 341 *
 342 * Tick demultiplexing follows the order
 343 * - pending hardirq update
 344 * - pending softirq update
 345 * - user_time
 346 * - idle_time
 347 * - system time
 348 *   - check for guest_time
 349 *   - else account as system_time
 350 *
 351 * Check for hardirq is done both for system and user time as there is
 352 * no timer going off while we are on hardirq and hence we may never get an
 353 * opportunity to update it solely in system time.
 354 * p->stime and friends are only updated on system time and not on irq
 355 * softirq as those do not count in task exec_runtime any more.
 356 */
 357static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 358					 int ticks)
 359{
 360	u64 other, cputime = TICK_NSEC * ticks;
 361
 362	/*
 363	 * When returning from idle, many ticks can get accounted at
 364	 * once, including some ticks of steal, irq, and softirq time.
 365	 * Subtract those ticks from the amount of time accounted to
 366	 * idle, or potentially user or system time. Due to rounding,
 367	 * other time can exceed ticks occasionally.
 368	 */
 369	other = account_other_time(ULONG_MAX);
 370	if (other >= cputime)
 371		return;
 372
 373	cputime -= other;
 374
 375	if (this_cpu_ksoftirqd() == p) {
 376		/*
 377		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 378		 * So, we have to handle it separately here.
 379		 * Also, p->stime needs to be updated for ksoftirqd.
 380		 */
 381		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 382	} else if (user_tick) {
 383		account_user_time(p, cputime);
 384	} else if (p == this_rq()->idle) {
 385		account_idle_time(cputime);
 386	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 387		account_guest_time(p, cputime);
 388	} else {
 389		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 390	}
 391}
 392
 393static void irqtime_account_idle_ticks(int ticks)
 394{
 395	irqtime_account_process_tick(current, 0, ticks);
 
 
 396}
 397#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 398static inline void irqtime_account_idle_ticks(int ticks) { }
 399static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 400						int nr_ticks) { }
 401#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 402
 403/*
 404 * Use precise platform statistics if available:
 405 */
 406#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 407
 408# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 409void vtime_task_switch(struct task_struct *prev)
 410{
 411	if (is_idle_task(prev))
 412		vtime_account_idle(prev);
 413	else
 414		vtime_account_kernel(prev);
 415
 416	vtime_flush(prev);
 417	arch_vtime_task_switch(prev);
 418}
 419# endif
 
 
 420
 
 421/*
 422 * Archs that account the whole time spent in the idle task
 423 * (outside irq) as idle time can rely on this and just implement
 424 * vtime_account_kernel() and vtime_account_idle(). Archs that
 425 * have other meaning of the idle time (s390 only includes the
 426 * time spent by the CPU when it's in low power mode) must override
 427 * vtime_account().
 428 */
 429#ifndef __ARCH_HAS_VTIME_ACCOUNT
 430void vtime_account_irq_enter(struct task_struct *tsk)
 431{
 432	if (!in_interrupt() && is_idle_task(tsk))
 433		vtime_account_idle(tsk);
 434	else
 435		vtime_account_kernel(tsk);
 436}
 437EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
 438#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 439
 440void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 441		    u64 *ut, u64 *st)
 442{
 443	*ut = curr->utime;
 444	*st = curr->stime;
 445}
 446
 447void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 448{
 449	*ut = p->utime;
 450	*st = p->stime;
 451}
 452EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 453
 454void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 455{
 456	struct task_cputime cputime;
 457
 458	thread_group_cputime(p, &cputime);
 459
 460	*ut = cputime.utime;
 461	*st = cputime.stime;
 462}
 463
 464#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 465
 466/*
 467 * Account a single tick of CPU time.
 468 * @p: the process that the CPU time gets accounted to
 469 * @user_tick: indicates if the tick is a user or a system tick
 470 */
 471void account_process_tick(struct task_struct *p, int user_tick)
 472{
 473	u64 cputime, steal;
 
 474
 475	if (vtime_accounting_enabled_this_cpu())
 476		return;
 477
 478	if (sched_clock_irqtime) {
 479		irqtime_account_process_tick(p, user_tick, 1);
 480		return;
 481	}
 482
 483	cputime = TICK_NSEC;
 484	steal = steal_account_process_time(ULONG_MAX);
 485
 486	if (steal >= cputime)
 487		return;
 488
 489	cputime -= steal;
 490
 491	if (user_tick)
 492		account_user_time(p, cputime);
 493	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 494		account_system_time(p, HARDIRQ_OFFSET, cputime);
 495	else
 496		account_idle_time(cputime);
 497}
 498
 499/*
 500 * Account multiple ticks of idle time.
 501 * @ticks: number of stolen ticks
 502 */
 503void account_idle_ticks(unsigned long ticks)
 504{
 505	u64 cputime, steal;
 506
 507	if (sched_clock_irqtime) {
 508		irqtime_account_idle_ticks(ticks);
 509		return;
 510	}
 511
 512	cputime = ticks * TICK_NSEC;
 513	steal = steal_account_process_time(ULONG_MAX);
 514
 515	if (steal >= cputime)
 516		return;
 517
 518	cputime -= steal;
 519	account_idle_time(cputime);
 520}
 521
 522/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523 * Adjust tick based cputime random precision against scheduler runtime
 524 * accounting.
 525 *
 526 * Tick based cputime accounting depend on random scheduling timeslices of a
 527 * task to be interrupted or not by the timer.  Depending on these
 528 * circumstances, the number of these interrupts may be over or
 529 * under-optimistic, matching the real user and system cputime with a variable
 530 * precision.
 531 *
 532 * Fix this by scaling these tick based values against the total runtime
 533 * accounted by the CFS scheduler.
 534 *
 535 * This code provides the following guarantees:
 536 *
 537 *   stime + utime == rtime
 538 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 539 *
 540 * Assuming that rtime_i+1 >= rtime_i.
 541 */
 542void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 543		    u64 *ut, u64 *st)
 544{
 545	u64 rtime, stime, utime;
 546	unsigned long flags;
 547
 548	/* Serialize concurrent callers such that we can honour our guarantees */
 549	raw_spin_lock_irqsave(&prev->lock, flags);
 550	rtime = curr->sum_exec_runtime;
 551
 552	/*
 553	 * This is possible under two circumstances:
 554	 *  - rtime isn't monotonic after all (a bug);
 555	 *  - we got reordered by the lock.
 556	 *
 557	 * In both cases this acts as a filter such that the rest of the code
 558	 * can assume it is monotonic regardless of anything else.
 559	 */
 560	if (prev->stime + prev->utime >= rtime)
 561		goto out;
 562
 563	stime = curr->stime;
 564	utime = curr->utime;
 565
 566	/*
 567	 * If either stime or utime are 0, assume all runtime is userspace.
 568	 * Once a task gets some ticks, the monotonicy code at 'update:'
 569	 * will ensure things converge to the observed ratio.
 570	 */
 571	if (stime == 0) {
 572		utime = rtime;
 573		goto update;
 574	}
 575
 576	if (utime == 0) {
 577		stime = rtime;
 578		goto update;
 579	}
 580
 581	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 582
 583update:
 584	/*
 585	 * Make sure stime doesn't go backwards; this preserves monotonicity
 586	 * for utime because rtime is monotonic.
 587	 *
 588	 *  utime_i+1 = rtime_i+1 - stime_i
 589	 *            = rtime_i+1 - (rtime_i - utime_i)
 590	 *            = (rtime_i+1 - rtime_i) + utime_i
 591	 *            >= utime_i
 592	 */
 593	if (stime < prev->stime)
 594		stime = prev->stime;
 595	utime = rtime - stime;
 596
 597	/*
 598	 * Make sure utime doesn't go backwards; this still preserves
 599	 * monotonicity for stime, analogous argument to above.
 600	 */
 601	if (utime < prev->utime) {
 602		utime = prev->utime;
 603		stime = rtime - utime;
 604	}
 605
 606	prev->stime = stime;
 607	prev->utime = utime;
 608out:
 609	*ut = prev->utime;
 610	*st = prev->stime;
 611	raw_spin_unlock_irqrestore(&prev->lock, flags);
 612}
 613
 614void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 615{
 616	struct task_cputime cputime = {
 617		.sum_exec_runtime = p->se.sum_exec_runtime,
 618	};
 619
 620	task_cputime(p, &cputime.utime, &cputime.stime);
 621	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 622}
 623EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 624
 625void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 626{
 627	struct task_cputime cputime;
 628
 629	thread_group_cputime(p, &cputime);
 630	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 631}
 632#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 633
 634#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 635static u64 vtime_delta(struct vtime *vtime)
 636{
 637	unsigned long long clock;
 638
 639	clock = sched_clock();
 640	if (clock < vtime->starttime)
 641		return 0;
 642
 643	return clock - vtime->starttime;
 644}
 645
 646static u64 get_vtime_delta(struct vtime *vtime)
 647{
 648	u64 delta = vtime_delta(vtime);
 649	u64 other;
 650
 651	/*
 652	 * Unlike tick based timing, vtime based timing never has lost
 653	 * ticks, and no need for steal time accounting to make up for
 654	 * lost ticks. Vtime accounts a rounded version of actual
 655	 * elapsed time. Limit account_other_time to prevent rounding
 656	 * errors from causing elapsed vtime to go negative.
 657	 */
 658	other = account_other_time(delta);
 659	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 660	vtime->starttime += delta;
 661
 662	return delta - other;
 663}
 664
 665static void vtime_account_system(struct task_struct *tsk,
 666				 struct vtime *vtime)
 667{
 668	vtime->stime += get_vtime_delta(vtime);
 669	if (vtime->stime >= TICK_NSEC) {
 670		account_system_time(tsk, irq_count(), vtime->stime);
 671		vtime->stime = 0;
 672	}
 673}
 674
 675static void vtime_account_guest(struct task_struct *tsk,
 676				struct vtime *vtime)
 677{
 678	vtime->gtime += get_vtime_delta(vtime);
 679	if (vtime->gtime >= TICK_NSEC) {
 680		account_guest_time(tsk, vtime->gtime);
 681		vtime->gtime = 0;
 682	}
 683}
 684
 685static void __vtime_account_kernel(struct task_struct *tsk,
 686				   struct vtime *vtime)
 687{
 688	/* We might have scheduled out from guest path */
 689	if (vtime->state == VTIME_GUEST)
 690		vtime_account_guest(tsk, vtime);
 691	else
 692		vtime_account_system(tsk, vtime);
 693}
 694
 695void vtime_account_kernel(struct task_struct *tsk)
 696{
 697	struct vtime *vtime = &tsk->vtime;
 698
 699	if (!vtime_delta(vtime))
 700		return;
 701
 702	write_seqcount_begin(&vtime->seqcount);
 703	__vtime_account_kernel(tsk, vtime);
 
 
 
 
 704	write_seqcount_end(&vtime->seqcount);
 705}
 706
 707void vtime_user_enter(struct task_struct *tsk)
 708{
 709	struct vtime *vtime = &tsk->vtime;
 710
 711	write_seqcount_begin(&vtime->seqcount);
 712	vtime_account_system(tsk, vtime);
 713	vtime->state = VTIME_USER;
 714	write_seqcount_end(&vtime->seqcount);
 715}
 716
 717void vtime_user_exit(struct task_struct *tsk)
 718{
 719	struct vtime *vtime = &tsk->vtime;
 720
 721	write_seqcount_begin(&vtime->seqcount);
 722	vtime->utime += get_vtime_delta(vtime);
 723	if (vtime->utime >= TICK_NSEC) {
 724		account_user_time(tsk, vtime->utime);
 725		vtime->utime = 0;
 726	}
 727	vtime->state = VTIME_SYS;
 728	write_seqcount_end(&vtime->seqcount);
 729}
 730
 731void vtime_guest_enter(struct task_struct *tsk)
 732{
 733	struct vtime *vtime = &tsk->vtime;
 734	/*
 735	 * The flags must be updated under the lock with
 736	 * the vtime_starttime flush and update.
 737	 * That enforces a right ordering and update sequence
 738	 * synchronization against the reader (task_gtime())
 739	 * that can thus safely catch up with a tickless delta.
 740	 */
 741	write_seqcount_begin(&vtime->seqcount);
 742	vtime_account_system(tsk, vtime);
 743	tsk->flags |= PF_VCPU;
 744	vtime->state = VTIME_GUEST;
 745	write_seqcount_end(&vtime->seqcount);
 746}
 747EXPORT_SYMBOL_GPL(vtime_guest_enter);
 748
 749void vtime_guest_exit(struct task_struct *tsk)
 750{
 751	struct vtime *vtime = &tsk->vtime;
 752
 753	write_seqcount_begin(&vtime->seqcount);
 754	vtime_account_guest(tsk, vtime);
 755	tsk->flags &= ~PF_VCPU;
 756	vtime->state = VTIME_SYS;
 757	write_seqcount_end(&vtime->seqcount);
 758}
 759EXPORT_SYMBOL_GPL(vtime_guest_exit);
 760
 761void vtime_account_idle(struct task_struct *tsk)
 762{
 763	account_idle_time(get_vtime_delta(&tsk->vtime));
 764}
 765
 766void vtime_task_switch_generic(struct task_struct *prev)
 767{
 768	struct vtime *vtime = &prev->vtime;
 769
 770	write_seqcount_begin(&vtime->seqcount);
 771	if (vtime->state == VTIME_IDLE)
 772		vtime_account_idle(prev);
 773	else
 774		__vtime_account_kernel(prev, vtime);
 775	vtime->state = VTIME_INACTIVE;
 776	vtime->cpu = -1;
 777	write_seqcount_end(&vtime->seqcount);
 778
 779	vtime = &current->vtime;
 780
 781	write_seqcount_begin(&vtime->seqcount);
 782	if (is_idle_task(current))
 783		vtime->state = VTIME_IDLE;
 784	else if (current->flags & PF_VCPU)
 785		vtime->state = VTIME_GUEST;
 786	else
 787		vtime->state = VTIME_SYS;
 788	vtime->starttime = sched_clock();
 789	vtime->cpu = smp_processor_id();
 790	write_seqcount_end(&vtime->seqcount);
 791}
 792
 793void vtime_init_idle(struct task_struct *t, int cpu)
 794{
 795	struct vtime *vtime = &t->vtime;
 796	unsigned long flags;
 797
 798	local_irq_save(flags);
 799	write_seqcount_begin(&vtime->seqcount);
 800	vtime->state = VTIME_IDLE;
 801	vtime->starttime = sched_clock();
 802	vtime->cpu = cpu;
 803	write_seqcount_end(&vtime->seqcount);
 804	local_irq_restore(flags);
 805}
 806
 807u64 task_gtime(struct task_struct *t)
 808{
 809	struct vtime *vtime = &t->vtime;
 810	unsigned int seq;
 811	u64 gtime;
 812
 813	if (!vtime_accounting_enabled())
 814		return t->gtime;
 815
 816	do {
 817		seq = read_seqcount_begin(&vtime->seqcount);
 818
 819		gtime = t->gtime;
 820		if (vtime->state == VTIME_GUEST)
 821			gtime += vtime->gtime + vtime_delta(vtime);
 822
 823	} while (read_seqcount_retry(&vtime->seqcount, seq));
 824
 825	return gtime;
 826}
 827
 828/*
 829 * Fetch cputime raw values from fields of task_struct and
 830 * add up the pending nohz execution time since the last
 831 * cputime snapshot.
 832 */
 833void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 834{
 835	struct vtime *vtime = &t->vtime;
 836	unsigned int seq;
 837	u64 delta;
 838
 839	if (!vtime_accounting_enabled()) {
 840		*utime = t->utime;
 841		*stime = t->stime;
 842		return;
 843	}
 844
 845	do {
 846		seq = read_seqcount_begin(&vtime->seqcount);
 847
 848		*utime = t->utime;
 849		*stime = t->stime;
 850
 851		/* Task is sleeping or idle, nothing to add */
 852		if (vtime->state < VTIME_SYS)
 853			continue;
 854
 855		delta = vtime_delta(vtime);
 856
 857		/*
 858		 * Task runs either in user (including guest) or kernel space,
 859		 * add pending nohz time to the right place.
 860		 */
 861		if (vtime->state == VTIME_SYS)
 
 
 862			*stime += vtime->stime + delta;
 863		else
 864			*utime += vtime->utime + delta;
 865	} while (read_seqcount_retry(&vtime->seqcount, seq));
 866}
 867
 868static int vtime_state_fetch(struct vtime *vtime, int cpu)
 869{
 870	int state = READ_ONCE(vtime->state);
 871
 872	/*
 873	 * We raced against a context switch, fetch the
 874	 * kcpustat task again.
 875	 */
 876	if (vtime->cpu != cpu && vtime->cpu != -1)
 877		return -EAGAIN;
 878
 879	/*
 880	 * Two possible things here:
 881	 * 1) We are seeing the scheduling out task (prev) or any past one.
 882	 * 2) We are seeing the scheduling in task (next) but it hasn't
 883	 *    passed though vtime_task_switch() yet so the pending
 884	 *    cputime of the prev task may not be flushed yet.
 885	 *
 886	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 887	 */
 888	if (state == VTIME_INACTIVE)
 889		return -EAGAIN;
 890
 891	return state;
 892}
 893
 894static u64 kcpustat_user_vtime(struct vtime *vtime)
 895{
 896	if (vtime->state == VTIME_USER)
 897		return vtime->utime + vtime_delta(vtime);
 898	else if (vtime->state == VTIME_GUEST)
 899		return vtime->gtime + vtime_delta(vtime);
 900	return 0;
 901}
 902
 903static int kcpustat_field_vtime(u64 *cpustat,
 904				struct task_struct *tsk,
 905				enum cpu_usage_stat usage,
 906				int cpu, u64 *val)
 907{
 908	struct vtime *vtime = &tsk->vtime;
 909	unsigned int seq;
 910
 911	do {
 912		int state;
 913
 914		seq = read_seqcount_begin(&vtime->seqcount);
 915
 916		state = vtime_state_fetch(vtime, cpu);
 917		if (state < 0)
 918			return state;
 919
 920		*val = cpustat[usage];
 921
 922		/*
 923		 * Nice VS unnice cputime accounting may be inaccurate if
 924		 * the nice value has changed since the last vtime update.
 925		 * But proper fix would involve interrupting target on nice
 926		 * updates which is a no go on nohz_full (although the scheduler
 927		 * may still interrupt the target if rescheduling is needed...)
 928		 */
 929		switch (usage) {
 930		case CPUTIME_SYSTEM:
 931			if (state == VTIME_SYS)
 932				*val += vtime->stime + vtime_delta(vtime);
 933			break;
 934		case CPUTIME_USER:
 935			if (task_nice(tsk) <= 0)
 936				*val += kcpustat_user_vtime(vtime);
 937			break;
 938		case CPUTIME_NICE:
 939			if (task_nice(tsk) > 0)
 940				*val += kcpustat_user_vtime(vtime);
 941			break;
 942		case CPUTIME_GUEST:
 943			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 944				*val += vtime->gtime + vtime_delta(vtime);
 945			break;
 946		case CPUTIME_GUEST_NICE:
 947			if (state == VTIME_GUEST && task_nice(tsk) > 0)
 948				*val += vtime->gtime + vtime_delta(vtime);
 949			break;
 950		default:
 951			break;
 952		}
 953	} while (read_seqcount_retry(&vtime->seqcount, seq));
 954
 955	return 0;
 956}
 957
 958u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 959		   enum cpu_usage_stat usage, int cpu)
 960{
 961	u64 *cpustat = kcpustat->cpustat;
 962	u64 val = cpustat[usage];
 963	struct rq *rq;
 964	int err;
 965
 966	if (!vtime_accounting_enabled_cpu(cpu))
 967		return val;
 968
 969	rq = cpu_rq(cpu);
 970
 971	for (;;) {
 972		struct task_struct *curr;
 973
 974		rcu_read_lock();
 975		curr = rcu_dereference(rq->curr);
 976		if (WARN_ON_ONCE(!curr)) {
 977			rcu_read_unlock();
 978			return cpustat[usage];
 979		}
 980
 981		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
 982		rcu_read_unlock();
 983
 984		if (!err)
 985			return val;
 986
 987		cpu_relax();
 988	}
 989}
 990EXPORT_SYMBOL_GPL(kcpustat_field);
 991
 992static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
 993				    const struct kernel_cpustat *src,
 994				    struct task_struct *tsk, int cpu)
 995{
 996	struct vtime *vtime = &tsk->vtime;
 997	unsigned int seq;
 998
 999	do {
1000		u64 *cpustat;
1001		u64 delta;
1002		int state;
1003
1004		seq = read_seqcount_begin(&vtime->seqcount);
1005
1006		state = vtime_state_fetch(vtime, cpu);
1007		if (state < 0)
1008			return state;
1009
1010		*dst = *src;
1011		cpustat = dst->cpustat;
1012
1013		/* Task is sleeping, dead or idle, nothing to add */
1014		if (state < VTIME_SYS)
1015			continue;
1016
1017		delta = vtime_delta(vtime);
1018
1019		/*
1020		 * Task runs either in user (including guest) or kernel space,
1021		 * add pending nohz time to the right place.
1022		 */
1023		if (state == VTIME_SYS) {
1024			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1025		} else if (state == VTIME_USER) {
1026			if (task_nice(tsk) > 0)
1027				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1028			else
1029				cpustat[CPUTIME_USER] += vtime->utime + delta;
1030		} else {
1031			WARN_ON_ONCE(state != VTIME_GUEST);
1032			if (task_nice(tsk) > 0) {
1033				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1034				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1035			} else {
1036				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1037				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1038			}
1039		}
1040	} while (read_seqcount_retry(&vtime->seqcount, seq));
1041
1042	return 0;
1043}
1044
1045void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1046{
1047	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1048	struct rq *rq;
1049	int err;
1050
1051	if (!vtime_accounting_enabled_cpu(cpu)) {
1052		*dst = *src;
1053		return;
1054	}
1055
1056	rq = cpu_rq(cpu);
1057
1058	for (;;) {
1059		struct task_struct *curr;
1060
1061		rcu_read_lock();
1062		curr = rcu_dereference(rq->curr);
1063		if (WARN_ON_ONCE(!curr)) {
1064			rcu_read_unlock();
1065			*dst = *src;
1066			return;
1067		}
1068
1069		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1070		rcu_read_unlock();
1071
1072		if (!err)
1073			return;
1074
1075		cpu_relax();
1076	}
1077}
1078EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1079
1080#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */