Linux Audio

Check our new training course

Loading...
v5.4
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
 
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/hotplug.h>
  12#include <linux/sched/isolation.h>
  13#include <linux/sched/task.h>
  14#include <linux/sched/smt.h>
  15#include <linux/unistd.h>
  16#include <linux/cpu.h>
  17#include <linux/oom.h>
  18#include <linux/rcupdate.h>
  19#include <linux/export.h>
  20#include <linux/bug.h>
  21#include <linux/kthread.h>
  22#include <linux/stop_machine.h>
  23#include <linux/mutex.h>
  24#include <linux/gfp.h>
  25#include <linux/suspend.h>
  26#include <linux/lockdep.h>
  27#include <linux/tick.h>
  28#include <linux/irq.h>
  29#include <linux/nmi.h>
  30#include <linux/smpboot.h>
  31#include <linux/relay.h>
  32#include <linux/slab.h>
  33#include <linux/percpu-rwsem.h>
  34
  35#include <trace/events/power.h>
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/cpuhp.h>
  38
  39#include "smpboot.h"
  40
  41/**
  42 * cpuhp_cpu_state - Per cpu hotplug state storage
  43 * @state:	The current cpu state
  44 * @target:	The target state
  45 * @thread:	Pointer to the hotplug thread
  46 * @should_run:	Thread should execute
  47 * @rollback:	Perform a rollback
  48 * @single:	Single callback invocation
  49 * @bringup:	Single callback bringup or teardown selector
  50 * @cb_state:	The state for a single callback (install/uninstall)
  51 * @result:	Result of the operation
  52 * @done_up:	Signal completion to the issuer of the task for cpu-up
  53 * @done_down:	Signal completion to the issuer of the task for cpu-down
  54 */
  55struct cpuhp_cpu_state {
  56	enum cpuhp_state	state;
  57	enum cpuhp_state	target;
  58	enum cpuhp_state	fail;
  59#ifdef CONFIG_SMP
  60	struct task_struct	*thread;
  61	bool			should_run;
  62	bool			rollback;
  63	bool			single;
  64	bool			bringup;
  65	struct hlist_node	*node;
  66	struct hlist_node	*last;
  67	enum cpuhp_state	cb_state;
  68	int			result;
  69	struct completion	done_up;
  70	struct completion	done_down;
  71#endif
  72};
  73
  74static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  75	.fail = CPUHP_INVALID,
  76};
  77
  78#ifdef CONFIG_SMP
  79cpumask_t cpus_booted_once_mask;
  80#endif
  81
  82#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  83static struct lockdep_map cpuhp_state_up_map =
  84	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  85static struct lockdep_map cpuhp_state_down_map =
  86	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  87
  88
  89static inline void cpuhp_lock_acquire(bool bringup)
  90{
  91	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  92}
  93
  94static inline void cpuhp_lock_release(bool bringup)
  95{
  96	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  97}
  98#else
  99
 100static inline void cpuhp_lock_acquire(bool bringup) { }
 101static inline void cpuhp_lock_release(bool bringup) { }
 102
 103#endif
 104
 105/**
 106 * cpuhp_step - Hotplug state machine step
 107 * @name:	Name of the step
 108 * @startup:	Startup function of the step
 109 * @teardown:	Teardown function of the step
 110 * @cant_stop:	Bringup/teardown can't be stopped at this step
 111 */
 112struct cpuhp_step {
 113	const char		*name;
 114	union {
 115		int		(*single)(unsigned int cpu);
 116		int		(*multi)(unsigned int cpu,
 117					 struct hlist_node *node);
 118	} startup;
 119	union {
 120		int		(*single)(unsigned int cpu);
 121		int		(*multi)(unsigned int cpu,
 122					 struct hlist_node *node);
 123	} teardown;
 124	struct hlist_head	list;
 125	bool			cant_stop;
 126	bool			multi_instance;
 127};
 128
 129static DEFINE_MUTEX(cpuhp_state_mutex);
 130static struct cpuhp_step cpuhp_hp_states[];
 131
 132static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 133{
 134	return cpuhp_hp_states + state;
 135}
 136
 137/**
 138 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 139 * @cpu:	The cpu for which the callback should be invoked
 140 * @state:	The state to do callbacks for
 141 * @bringup:	True if the bringup callback should be invoked
 142 * @node:	For multi-instance, do a single entry callback for install/remove
 143 * @lastp:	For multi-instance rollback, remember how far we got
 144 *
 145 * Called from cpu hotplug and from the state register machinery.
 146 */
 147static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 148				 bool bringup, struct hlist_node *node,
 149				 struct hlist_node **lastp)
 150{
 151	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 152	struct cpuhp_step *step = cpuhp_get_step(state);
 153	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 154	int (*cb)(unsigned int cpu);
 155	int ret, cnt;
 156
 157	if (st->fail == state) {
 158		st->fail = CPUHP_INVALID;
 159
 160		if (!(bringup ? step->startup.single : step->teardown.single))
 161			return 0;
 162
 163		return -EAGAIN;
 164	}
 165
 166	if (!step->multi_instance) {
 167		WARN_ON_ONCE(lastp && *lastp);
 168		cb = bringup ? step->startup.single : step->teardown.single;
 169		if (!cb)
 170			return 0;
 171		trace_cpuhp_enter(cpu, st->target, state, cb);
 172		ret = cb(cpu);
 173		trace_cpuhp_exit(cpu, st->state, state, ret);
 174		return ret;
 175	}
 176	cbm = bringup ? step->startup.multi : step->teardown.multi;
 177	if (!cbm)
 178		return 0;
 179
 180	/* Single invocation for instance add/remove */
 181	if (node) {
 182		WARN_ON_ONCE(lastp && *lastp);
 183		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 184		ret = cbm(cpu, node);
 185		trace_cpuhp_exit(cpu, st->state, state, ret);
 186		return ret;
 187	}
 188
 189	/* State transition. Invoke on all instances */
 190	cnt = 0;
 191	hlist_for_each(node, &step->list) {
 192		if (lastp && node == *lastp)
 193			break;
 194
 195		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 196		ret = cbm(cpu, node);
 197		trace_cpuhp_exit(cpu, st->state, state, ret);
 198		if (ret) {
 199			if (!lastp)
 200				goto err;
 201
 202			*lastp = node;
 203			return ret;
 204		}
 205		cnt++;
 206	}
 207	if (lastp)
 208		*lastp = NULL;
 209	return 0;
 210err:
 211	/* Rollback the instances if one failed */
 212	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 213	if (!cbm)
 214		return ret;
 215
 216	hlist_for_each(node, &step->list) {
 217		if (!cnt--)
 218			break;
 219
 220		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 221		ret = cbm(cpu, node);
 222		trace_cpuhp_exit(cpu, st->state, state, ret);
 223		/*
 224		 * Rollback must not fail,
 225		 */
 226		WARN_ON_ONCE(ret);
 227	}
 228	return ret;
 229}
 230
 231#ifdef CONFIG_SMP
 232static bool cpuhp_is_ap_state(enum cpuhp_state state)
 233{
 234	/*
 235	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 236	 * purposes as that state is handled explicitly in cpu_down.
 237	 */
 238	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 239}
 240
 241static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 242{
 243	struct completion *done = bringup ? &st->done_up : &st->done_down;
 244	wait_for_completion(done);
 245}
 246
 247static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 248{
 249	struct completion *done = bringup ? &st->done_up : &st->done_down;
 250	complete(done);
 251}
 252
 253/*
 254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 255 */
 256static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 257{
 258	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 259}
 260
 261/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 262static DEFINE_MUTEX(cpu_add_remove_lock);
 263bool cpuhp_tasks_frozen;
 264EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 265
 266/*
 267 * The following two APIs (cpu_maps_update_begin/done) must be used when
 268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 269 */
 270void cpu_maps_update_begin(void)
 271{
 272	mutex_lock(&cpu_add_remove_lock);
 273}
 274
 275void cpu_maps_update_done(void)
 276{
 277	mutex_unlock(&cpu_add_remove_lock);
 278}
 279
 280/*
 281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 282 * Should always be manipulated under cpu_add_remove_lock
 283 */
 284static int cpu_hotplug_disabled;
 285
 286#ifdef CONFIG_HOTPLUG_CPU
 287
 288DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 289
 290void cpus_read_lock(void)
 291{
 292	percpu_down_read(&cpu_hotplug_lock);
 293}
 294EXPORT_SYMBOL_GPL(cpus_read_lock);
 295
 296int cpus_read_trylock(void)
 297{
 298	return percpu_down_read_trylock(&cpu_hotplug_lock);
 299}
 300EXPORT_SYMBOL_GPL(cpus_read_trylock);
 301
 302void cpus_read_unlock(void)
 303{
 304	percpu_up_read(&cpu_hotplug_lock);
 305}
 306EXPORT_SYMBOL_GPL(cpus_read_unlock);
 307
 308void cpus_write_lock(void)
 309{
 310	percpu_down_write(&cpu_hotplug_lock);
 311}
 312
 313void cpus_write_unlock(void)
 314{
 315	percpu_up_write(&cpu_hotplug_lock);
 316}
 317
 318void lockdep_assert_cpus_held(void)
 319{
 320	/*
 321	 * We can't have hotplug operations before userspace starts running,
 322	 * and some init codepaths will knowingly not take the hotplug lock.
 323	 * This is all valid, so mute lockdep until it makes sense to report
 324	 * unheld locks.
 325	 */
 326	if (system_state < SYSTEM_RUNNING)
 327		return;
 328
 329	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 330}
 331
 332static void lockdep_acquire_cpus_lock(void)
 333{
 334	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
 335}
 336
 337static void lockdep_release_cpus_lock(void)
 338{
 339	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
 340}
 341
 342/*
 343 * Wait for currently running CPU hotplug operations to complete (if any) and
 344 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 345 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 346 * hotplug path before performing hotplug operations. So acquiring that lock
 347 * guarantees mutual exclusion from any currently running hotplug operations.
 348 */
 349void cpu_hotplug_disable(void)
 350{
 351	cpu_maps_update_begin();
 352	cpu_hotplug_disabled++;
 353	cpu_maps_update_done();
 354}
 355EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 356
 357static void __cpu_hotplug_enable(void)
 358{
 359	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 360		return;
 361	cpu_hotplug_disabled--;
 362}
 363
 364void cpu_hotplug_enable(void)
 365{
 366	cpu_maps_update_begin();
 367	__cpu_hotplug_enable();
 368	cpu_maps_update_done();
 369}
 370EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 371
 372#else
 373
 374static void lockdep_acquire_cpus_lock(void)
 375{
 376}
 377
 378static void lockdep_release_cpus_lock(void)
 379{
 380}
 381
 382#endif	/* CONFIG_HOTPLUG_CPU */
 383
 384/*
 385 * Architectures that need SMT-specific errata handling during SMT hotplug
 386 * should override this.
 387 */
 388void __weak arch_smt_update(void) { }
 389
 390#ifdef CONFIG_HOTPLUG_SMT
 391enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 392
 393void __init cpu_smt_disable(bool force)
 394{
 395	if (!cpu_smt_possible())
 396		return;
 397
 398	if (force) {
 399		pr_info("SMT: Force disabled\n");
 400		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 401	} else {
 402		pr_info("SMT: disabled\n");
 403		cpu_smt_control = CPU_SMT_DISABLED;
 404	}
 405}
 406
 407/*
 408 * The decision whether SMT is supported can only be done after the full
 409 * CPU identification. Called from architecture code.
 410 */
 411void __init cpu_smt_check_topology(void)
 412{
 413	if (!topology_smt_supported())
 414		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 415}
 416
 417static int __init smt_cmdline_disable(char *str)
 418{
 419	cpu_smt_disable(str && !strcmp(str, "force"));
 420	return 0;
 421}
 422early_param("nosmt", smt_cmdline_disable);
 423
 424static inline bool cpu_smt_allowed(unsigned int cpu)
 425{
 426	if (cpu_smt_control == CPU_SMT_ENABLED)
 427		return true;
 428
 429	if (topology_is_primary_thread(cpu))
 430		return true;
 431
 432	/*
 433	 * On x86 it's required to boot all logical CPUs at least once so
 434	 * that the init code can get a chance to set CR4.MCE on each
 435	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
 436	 * core will shutdown the machine.
 437	 */
 438	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
 439}
 440
 441/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
 442bool cpu_smt_possible(void)
 443{
 444	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
 445		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
 446}
 447EXPORT_SYMBOL_GPL(cpu_smt_possible);
 448#else
 449static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
 450#endif
 451
 452static inline enum cpuhp_state
 453cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 454{
 455	enum cpuhp_state prev_state = st->state;
 456
 457	st->rollback = false;
 458	st->last = NULL;
 459
 460	st->target = target;
 461	st->single = false;
 462	st->bringup = st->state < target;
 463
 464	return prev_state;
 465}
 466
 467static inline void
 468cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 469{
 470	st->rollback = true;
 471
 472	/*
 473	 * If we have st->last we need to undo partial multi_instance of this
 474	 * state first. Otherwise start undo at the previous state.
 475	 */
 476	if (!st->last) {
 477		if (st->bringup)
 478			st->state--;
 479		else
 480			st->state++;
 481	}
 482
 483	st->target = prev_state;
 484	st->bringup = !st->bringup;
 485}
 486
 487/* Regular hotplug invocation of the AP hotplug thread */
 488static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 489{
 490	if (!st->single && st->state == st->target)
 491		return;
 492
 493	st->result = 0;
 494	/*
 495	 * Make sure the above stores are visible before should_run becomes
 496	 * true. Paired with the mb() above in cpuhp_thread_fun()
 497	 */
 498	smp_mb();
 499	st->should_run = true;
 500	wake_up_process(st->thread);
 501	wait_for_ap_thread(st, st->bringup);
 502}
 503
 504static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 505{
 506	enum cpuhp_state prev_state;
 507	int ret;
 508
 509	prev_state = cpuhp_set_state(st, target);
 510	__cpuhp_kick_ap(st);
 511	if ((ret = st->result)) {
 512		cpuhp_reset_state(st, prev_state);
 513		__cpuhp_kick_ap(st);
 514	}
 515
 516	return ret;
 517}
 518
 519static int bringup_wait_for_ap(unsigned int cpu)
 520{
 521	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 522
 523	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 524	wait_for_ap_thread(st, true);
 525	if (WARN_ON_ONCE((!cpu_online(cpu))))
 526		return -ECANCELED;
 527
 528	/* Unpark the stopper thread and the hotplug thread of the target cpu */
 529	stop_machine_unpark(cpu);
 530	kthread_unpark(st->thread);
 531
 532	/*
 533	 * SMT soft disabling on X86 requires to bring the CPU out of the
 534	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 535	 * CPU marked itself as booted_once in notify_cpu_starting() so the
 536	 * cpu_smt_allowed() check will now return false if this is not the
 537	 * primary sibling.
 538	 */
 539	if (!cpu_smt_allowed(cpu))
 540		return -ECANCELED;
 541
 542	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 543		return 0;
 544
 545	return cpuhp_kick_ap(st, st->target);
 546}
 547
 548static int bringup_cpu(unsigned int cpu)
 549{
 550	struct task_struct *idle = idle_thread_get(cpu);
 551	int ret;
 552
 553	/*
 554	 * Some architectures have to walk the irq descriptors to
 555	 * setup the vector space for the cpu which comes online.
 556	 * Prevent irq alloc/free across the bringup.
 557	 */
 558	irq_lock_sparse();
 559
 560	/* Arch-specific enabling code. */
 561	ret = __cpu_up(cpu, idle);
 562	irq_unlock_sparse();
 563	if (ret)
 564		return ret;
 565	return bringup_wait_for_ap(cpu);
 566}
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568/*
 569 * Hotplug state machine related functions
 570 */
 571
 572static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 573{
 574	for (st->state--; st->state > st->target; st->state--)
 575		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 576}
 577
 578static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
 579{
 580	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
 581		return true;
 582	/*
 583	 * When CPU hotplug is disabled, then taking the CPU down is not
 584	 * possible because takedown_cpu() and the architecture and
 585	 * subsystem specific mechanisms are not available. So the CPU
 586	 * which would be completely unplugged again needs to stay around
 587	 * in the current state.
 588	 */
 589	return st->state <= CPUHP_BRINGUP_CPU;
 590}
 591
 592static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 593			      enum cpuhp_state target)
 594{
 595	enum cpuhp_state prev_state = st->state;
 596	int ret = 0;
 597
 598	while (st->state < target) {
 599		st->state++;
 600		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 601		if (ret) {
 602			if (can_rollback_cpu(st)) {
 603				st->target = prev_state;
 604				undo_cpu_up(cpu, st);
 605			}
 606			break;
 607		}
 608	}
 609	return ret;
 610}
 611
 612/*
 613 * The cpu hotplug threads manage the bringup and teardown of the cpus
 614 */
 615static void cpuhp_create(unsigned int cpu)
 616{
 617	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 618
 619	init_completion(&st->done_up);
 620	init_completion(&st->done_down);
 621}
 622
 623static int cpuhp_should_run(unsigned int cpu)
 624{
 625	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 626
 627	return st->should_run;
 628}
 629
 630/*
 631 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 632 * callbacks when a state gets [un]installed at runtime.
 633 *
 634 * Each invocation of this function by the smpboot thread does a single AP
 635 * state callback.
 636 *
 637 * It has 3 modes of operation:
 638 *  - single: runs st->cb_state
 639 *  - up:     runs ++st->state, while st->state < st->target
 640 *  - down:   runs st->state--, while st->state > st->target
 641 *
 642 * When complete or on error, should_run is cleared and the completion is fired.
 643 */
 644static void cpuhp_thread_fun(unsigned int cpu)
 645{
 646	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 647	bool bringup = st->bringup;
 648	enum cpuhp_state state;
 649
 650	if (WARN_ON_ONCE(!st->should_run))
 651		return;
 652
 653	/*
 654	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 655	 * that if we see ->should_run we also see the rest of the state.
 656	 */
 657	smp_mb();
 658
 659	/*
 660	 * The BP holds the hotplug lock, but we're now running on the AP,
 661	 * ensure that anybody asserting the lock is held, will actually find
 662	 * it so.
 663	 */
 664	lockdep_acquire_cpus_lock();
 665	cpuhp_lock_acquire(bringup);
 666
 667	if (st->single) {
 668		state = st->cb_state;
 669		st->should_run = false;
 670	} else {
 671		if (bringup) {
 672			st->state++;
 673			state = st->state;
 674			st->should_run = (st->state < st->target);
 675			WARN_ON_ONCE(st->state > st->target);
 676		} else {
 677			state = st->state;
 678			st->state--;
 679			st->should_run = (st->state > st->target);
 680			WARN_ON_ONCE(st->state < st->target);
 681		}
 682	}
 683
 684	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 685
 686	if (cpuhp_is_atomic_state(state)) {
 687		local_irq_disable();
 688		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 689		local_irq_enable();
 690
 691		/*
 692		 * STARTING/DYING must not fail!
 693		 */
 694		WARN_ON_ONCE(st->result);
 695	} else {
 696		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 697	}
 698
 699	if (st->result) {
 700		/*
 701		 * If we fail on a rollback, we're up a creek without no
 702		 * paddle, no way forward, no way back. We loose, thanks for
 703		 * playing.
 704		 */
 705		WARN_ON_ONCE(st->rollback);
 706		st->should_run = false;
 707	}
 708
 709	cpuhp_lock_release(bringup);
 710	lockdep_release_cpus_lock();
 711
 712	if (!st->should_run)
 713		complete_ap_thread(st, bringup);
 714}
 715
 716/* Invoke a single callback on a remote cpu */
 717static int
 718cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 719			 struct hlist_node *node)
 720{
 721	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 722	int ret;
 723
 724	if (!cpu_online(cpu))
 725		return 0;
 726
 727	cpuhp_lock_acquire(false);
 728	cpuhp_lock_release(false);
 729
 730	cpuhp_lock_acquire(true);
 731	cpuhp_lock_release(true);
 732
 733	/*
 734	 * If we are up and running, use the hotplug thread. For early calls
 735	 * we invoke the thread function directly.
 736	 */
 737	if (!st->thread)
 738		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 739
 740	st->rollback = false;
 741	st->last = NULL;
 742
 743	st->node = node;
 744	st->bringup = bringup;
 745	st->cb_state = state;
 746	st->single = true;
 747
 748	__cpuhp_kick_ap(st);
 749
 750	/*
 751	 * If we failed and did a partial, do a rollback.
 752	 */
 753	if ((ret = st->result) && st->last) {
 754		st->rollback = true;
 755		st->bringup = !bringup;
 756
 757		__cpuhp_kick_ap(st);
 758	}
 759
 760	/*
 761	 * Clean up the leftovers so the next hotplug operation wont use stale
 762	 * data.
 763	 */
 764	st->node = st->last = NULL;
 765	return ret;
 766}
 767
 768static int cpuhp_kick_ap_work(unsigned int cpu)
 769{
 770	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 771	enum cpuhp_state prev_state = st->state;
 772	int ret;
 773
 774	cpuhp_lock_acquire(false);
 775	cpuhp_lock_release(false);
 776
 777	cpuhp_lock_acquire(true);
 778	cpuhp_lock_release(true);
 779
 780	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 781	ret = cpuhp_kick_ap(st, st->target);
 782	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 783
 784	return ret;
 785}
 786
 787static struct smp_hotplug_thread cpuhp_threads = {
 788	.store			= &cpuhp_state.thread,
 789	.create			= &cpuhp_create,
 790	.thread_should_run	= cpuhp_should_run,
 791	.thread_fn		= cpuhp_thread_fun,
 792	.thread_comm		= "cpuhp/%u",
 793	.selfparking		= true,
 794};
 795
 796void __init cpuhp_threads_init(void)
 797{
 798	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 799	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 800}
 801
 802#ifdef CONFIG_HOTPLUG_CPU
 803/**
 804 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 805 * @cpu: a CPU id
 806 *
 807 * This function walks all processes, finds a valid mm struct for each one and
 808 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 809 * trivial, there are various non-obvious corner cases, which this function
 810 * tries to solve in a safe manner.
 811 *
 812 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 813 * be called only for an already offlined CPU.
 814 */
 815void clear_tasks_mm_cpumask(int cpu)
 816{
 817	struct task_struct *p;
 818
 819	/*
 820	 * This function is called after the cpu is taken down and marked
 821	 * offline, so its not like new tasks will ever get this cpu set in
 822	 * their mm mask. -- Peter Zijlstra
 823	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 824	 * full-fledged tasklist_lock.
 825	 */
 826	WARN_ON(cpu_online(cpu));
 827	rcu_read_lock();
 828	for_each_process(p) {
 829		struct task_struct *t;
 830
 831		/*
 832		 * Main thread might exit, but other threads may still have
 833		 * a valid mm. Find one.
 834		 */
 835		t = find_lock_task_mm(p);
 836		if (!t)
 837			continue;
 838		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 839		task_unlock(t);
 840	}
 841	rcu_read_unlock();
 842}
 843
 844/* Take this CPU down. */
 845static int take_cpu_down(void *_param)
 846{
 847	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 848	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 849	int err, cpu = smp_processor_id();
 850	int ret;
 851
 852	/* Ensure this CPU doesn't handle any more interrupts. */
 853	err = __cpu_disable();
 854	if (err < 0)
 855		return err;
 856
 857	/*
 858	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 859	 * do this step again.
 860	 */
 861	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 862	st->state--;
 863	/* Invoke the former CPU_DYING callbacks */
 864	for (; st->state > target; st->state--) {
 865		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 866		/*
 867		 * DYING must not fail!
 868		 */
 869		WARN_ON_ONCE(ret);
 870	}
 871
 872	/* Give up timekeeping duties */
 873	tick_handover_do_timer();
 874	/* Remove CPU from timer broadcasting */
 875	tick_offline_cpu(cpu);
 876	/* Park the stopper thread */
 877	stop_machine_park(cpu);
 878	return 0;
 879}
 880
 881static int takedown_cpu(unsigned int cpu)
 882{
 883	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 884	int err;
 885
 886	/* Park the smpboot threads */
 887	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 888
 889	/*
 890	 * Prevent irq alloc/free while the dying cpu reorganizes the
 891	 * interrupt affinities.
 892	 */
 893	irq_lock_sparse();
 894
 895	/*
 896	 * So now all preempt/rcu users must observe !cpu_active().
 897	 */
 898	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 899	if (err) {
 900		/* CPU refused to die */
 901		irq_unlock_sparse();
 902		/* Unpark the hotplug thread so we can rollback there */
 903		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 904		return err;
 905	}
 906	BUG_ON(cpu_online(cpu));
 907
 908	/*
 909	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 910	 * all runnable tasks from the CPU, there's only the idle task left now
 911	 * that the migration thread is done doing the stop_machine thing.
 912	 *
 913	 * Wait for the stop thread to go away.
 914	 */
 915	wait_for_ap_thread(st, false);
 916	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 917
 918	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
 919	irq_unlock_sparse();
 920
 921	hotplug_cpu__broadcast_tick_pull(cpu);
 922	/* This actually kills the CPU. */
 923	__cpu_die(cpu);
 924
 925	tick_cleanup_dead_cpu(cpu);
 926	rcutree_migrate_callbacks(cpu);
 927	return 0;
 928}
 929
 930static void cpuhp_complete_idle_dead(void *arg)
 931{
 932	struct cpuhp_cpu_state *st = arg;
 933
 934	complete_ap_thread(st, false);
 935}
 936
 937void cpuhp_report_idle_dead(void)
 938{
 939	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 940
 941	BUG_ON(st->state != CPUHP_AP_OFFLINE);
 942	rcu_report_dead(smp_processor_id());
 943	st->state = CPUHP_AP_IDLE_DEAD;
 944	/*
 945	 * We cannot call complete after rcu_report_dead() so we delegate it
 946	 * to an online cpu.
 947	 */
 948	smp_call_function_single(cpumask_first(cpu_online_mask),
 949				 cpuhp_complete_idle_dead, st, 0);
 950}
 951
 952static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 953{
 954	for (st->state++; st->state < st->target; st->state++)
 955		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 956}
 957
 958static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 959				enum cpuhp_state target)
 960{
 961	enum cpuhp_state prev_state = st->state;
 962	int ret = 0;
 963
 964	for (; st->state > target; st->state--) {
 965		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 966		if (ret) {
 967			st->target = prev_state;
 968			if (st->state < prev_state)
 969				undo_cpu_down(cpu, st);
 970			break;
 971		}
 972	}
 973	return ret;
 974}
 975
 976/* Requires cpu_add_remove_lock to be held */
 977static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 978			   enum cpuhp_state target)
 979{
 980	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 981	int prev_state, ret = 0;
 982
 983	if (num_online_cpus() == 1)
 984		return -EBUSY;
 985
 986	if (!cpu_present(cpu))
 987		return -EINVAL;
 988
 989	cpus_write_lock();
 990
 991	cpuhp_tasks_frozen = tasks_frozen;
 992
 993	prev_state = cpuhp_set_state(st, target);
 994	/*
 995	 * If the current CPU state is in the range of the AP hotplug thread,
 996	 * then we need to kick the thread.
 997	 */
 998	if (st->state > CPUHP_TEARDOWN_CPU) {
 999		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1000		ret = cpuhp_kick_ap_work(cpu);
1001		/*
1002		 * The AP side has done the error rollback already. Just
1003		 * return the error code..
1004		 */
1005		if (ret)
1006			goto out;
1007
1008		/*
1009		 * We might have stopped still in the range of the AP hotplug
1010		 * thread. Nothing to do anymore.
1011		 */
1012		if (st->state > CPUHP_TEARDOWN_CPU)
1013			goto out;
1014
1015		st->target = target;
1016	}
1017	/*
1018	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1019	 * to do the further cleanups.
1020	 */
1021	ret = cpuhp_down_callbacks(cpu, st, target);
1022	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1023		cpuhp_reset_state(st, prev_state);
1024		__cpuhp_kick_ap(st);
1025	}
1026
1027out:
1028	cpus_write_unlock();
1029	/*
1030	 * Do post unplug cleanup. This is still protected against
1031	 * concurrent CPU hotplug via cpu_add_remove_lock.
1032	 */
1033	lockup_detector_cleanup();
1034	arch_smt_update();
1035	return ret;
1036}
1037
1038static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1039{
1040	if (cpu_hotplug_disabled)
1041		return -EBUSY;
1042	return _cpu_down(cpu, 0, target);
1043}
1044
1045static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1046{
1047	int err;
1048
1049	cpu_maps_update_begin();
1050	err = cpu_down_maps_locked(cpu, target);
1051	cpu_maps_update_done();
1052	return err;
1053}
1054
1055int cpu_down(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056{
1057	return do_cpu_down(cpu, CPUHP_OFFLINE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058}
1059EXPORT_SYMBOL(cpu_down);
1060
1061#else
1062#define takedown_cpu		NULL
1063#endif /*CONFIG_HOTPLUG_CPU*/
1064
1065/**
1066 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1067 * @cpu: cpu that just started
1068 *
1069 * It must be called by the arch code on the new cpu, before the new cpu
1070 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1071 */
1072void notify_cpu_starting(unsigned int cpu)
1073{
1074	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1075	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1076	int ret;
1077
1078	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1079	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1080	while (st->state < target) {
1081		st->state++;
1082		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1083		/*
1084		 * STARTING must not fail!
1085		 */
1086		WARN_ON_ONCE(ret);
1087	}
1088}
1089
1090/*
1091 * Called from the idle task. Wake up the controlling task which brings the
1092 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1093 * the rest of the online bringup to the hotplug thread.
1094 */
1095void cpuhp_online_idle(enum cpuhp_state state)
1096{
1097	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1098
1099	/* Happens for the boot cpu */
1100	if (state != CPUHP_AP_ONLINE_IDLE)
1101		return;
1102
 
 
 
 
 
 
1103	st->state = CPUHP_AP_ONLINE_IDLE;
1104	complete_ap_thread(st, true);
1105}
1106
1107/* Requires cpu_add_remove_lock to be held */
1108static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1109{
1110	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1111	struct task_struct *idle;
1112	int ret = 0;
1113
1114	cpus_write_lock();
1115
1116	if (!cpu_present(cpu)) {
1117		ret = -EINVAL;
1118		goto out;
1119	}
1120
1121	/*
1122	 * The caller of do_cpu_up might have raced with another
1123	 * caller. Ignore it for now.
1124	 */
1125	if (st->state >= target)
1126		goto out;
1127
1128	if (st->state == CPUHP_OFFLINE) {
1129		/* Let it fail before we try to bring the cpu up */
1130		idle = idle_thread_get(cpu);
1131		if (IS_ERR(idle)) {
1132			ret = PTR_ERR(idle);
1133			goto out;
1134		}
1135	}
1136
1137	cpuhp_tasks_frozen = tasks_frozen;
1138
1139	cpuhp_set_state(st, target);
1140	/*
1141	 * If the current CPU state is in the range of the AP hotplug thread,
1142	 * then we need to kick the thread once more.
1143	 */
1144	if (st->state > CPUHP_BRINGUP_CPU) {
1145		ret = cpuhp_kick_ap_work(cpu);
1146		/*
1147		 * The AP side has done the error rollback already. Just
1148		 * return the error code..
1149		 */
1150		if (ret)
1151			goto out;
1152	}
1153
1154	/*
1155	 * Try to reach the target state. We max out on the BP at
1156	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1157	 * responsible for bringing it up to the target state.
1158	 */
1159	target = min((int)target, CPUHP_BRINGUP_CPU);
1160	ret = cpuhp_up_callbacks(cpu, st, target);
1161out:
1162	cpus_write_unlock();
1163	arch_smt_update();
1164	return ret;
1165}
1166
1167static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1168{
1169	int err = 0;
1170
1171	if (!cpu_possible(cpu)) {
1172		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1173		       cpu);
1174#if defined(CONFIG_IA64)
1175		pr_err("please check additional_cpus= boot parameter\n");
1176#endif
1177		return -EINVAL;
1178	}
1179
1180	err = try_online_node(cpu_to_node(cpu));
1181	if (err)
1182		return err;
1183
1184	cpu_maps_update_begin();
1185
1186	if (cpu_hotplug_disabled) {
1187		err = -EBUSY;
1188		goto out;
1189	}
1190	if (!cpu_smt_allowed(cpu)) {
1191		err = -EPERM;
1192		goto out;
1193	}
1194
1195	err = _cpu_up(cpu, 0, target);
1196out:
1197	cpu_maps_update_done();
1198	return err;
1199}
1200
1201int cpu_up(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202{
1203	return do_cpu_up(cpu, CPUHP_ONLINE);
 
 
 
 
 
 
 
1204}
1205EXPORT_SYMBOL_GPL(cpu_up);
1206
1207#ifdef CONFIG_PM_SLEEP_SMP
1208static cpumask_var_t frozen_cpus;
1209
1210int freeze_secondary_cpus(int primary)
1211{
1212	int cpu, error = 0;
1213
1214	cpu_maps_update_begin();
1215	if (primary == -1) {
1216		primary = cpumask_first(cpu_online_mask);
1217		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1218			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1219	} else {
1220		if (!cpu_online(primary))
1221			primary = cpumask_first(cpu_online_mask);
1222	}
1223
1224	/*
1225	 * We take down all of the non-boot CPUs in one shot to avoid races
1226	 * with the userspace trying to use the CPU hotplug at the same time
1227	 */
1228	cpumask_clear(frozen_cpus);
1229
1230	pr_info("Disabling non-boot CPUs ...\n");
1231	for_each_online_cpu(cpu) {
1232		if (cpu == primary)
1233			continue;
1234
1235		if (pm_wakeup_pending()) {
1236			pr_info("Wakeup pending. Abort CPU freeze\n");
1237			error = -EBUSY;
1238			break;
1239		}
1240
1241		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1242		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1243		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1244		if (!error)
1245			cpumask_set_cpu(cpu, frozen_cpus);
1246		else {
1247			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1248			break;
1249		}
1250	}
1251
1252	if (!error)
1253		BUG_ON(num_online_cpus() > 1);
1254	else
1255		pr_err("Non-boot CPUs are not disabled\n");
1256
1257	/*
1258	 * Make sure the CPUs won't be enabled by someone else. We need to do
1259	 * this even in case of failure as all disable_nonboot_cpus() users are
1260	 * supposed to do enable_nonboot_cpus() on the failure path.
1261	 */
1262	cpu_hotplug_disabled++;
1263
1264	cpu_maps_update_done();
1265	return error;
1266}
1267
1268void __weak arch_enable_nonboot_cpus_begin(void)
1269{
1270}
1271
1272void __weak arch_enable_nonboot_cpus_end(void)
1273{
1274}
1275
1276void enable_nonboot_cpus(void)
1277{
1278	int cpu, error;
1279
1280	/* Allow everyone to use the CPU hotplug again */
1281	cpu_maps_update_begin();
1282	__cpu_hotplug_enable();
1283	if (cpumask_empty(frozen_cpus))
1284		goto out;
1285
1286	pr_info("Enabling non-boot CPUs ...\n");
1287
1288	arch_enable_nonboot_cpus_begin();
1289
1290	for_each_cpu(cpu, frozen_cpus) {
1291		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1292		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1293		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1294		if (!error) {
1295			pr_info("CPU%d is up\n", cpu);
1296			continue;
1297		}
1298		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1299	}
1300
1301	arch_enable_nonboot_cpus_end();
1302
1303	cpumask_clear(frozen_cpus);
1304out:
1305	cpu_maps_update_done();
1306}
1307
1308static int __init alloc_frozen_cpus(void)
1309{
1310	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1311		return -ENOMEM;
1312	return 0;
1313}
1314core_initcall(alloc_frozen_cpus);
1315
1316/*
1317 * When callbacks for CPU hotplug notifications are being executed, we must
1318 * ensure that the state of the system with respect to the tasks being frozen
1319 * or not, as reported by the notification, remains unchanged *throughout the
1320 * duration* of the execution of the callbacks.
1321 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1322 *
1323 * This synchronization is implemented by mutually excluding regular CPU
1324 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1325 * Hibernate notifications.
1326 */
1327static int
1328cpu_hotplug_pm_callback(struct notifier_block *nb,
1329			unsigned long action, void *ptr)
1330{
1331	switch (action) {
1332
1333	case PM_SUSPEND_PREPARE:
1334	case PM_HIBERNATION_PREPARE:
1335		cpu_hotplug_disable();
1336		break;
1337
1338	case PM_POST_SUSPEND:
1339	case PM_POST_HIBERNATION:
1340		cpu_hotplug_enable();
1341		break;
1342
1343	default:
1344		return NOTIFY_DONE;
1345	}
1346
1347	return NOTIFY_OK;
1348}
1349
1350
1351static int __init cpu_hotplug_pm_sync_init(void)
1352{
1353	/*
1354	 * cpu_hotplug_pm_callback has higher priority than x86
1355	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1356	 * to disable cpu hotplug to avoid cpu hotplug race.
1357	 */
1358	pm_notifier(cpu_hotplug_pm_callback, 0);
1359	return 0;
1360}
1361core_initcall(cpu_hotplug_pm_sync_init);
1362
1363#endif /* CONFIG_PM_SLEEP_SMP */
1364
1365int __boot_cpu_id;
1366
1367#endif /* CONFIG_SMP */
1368
1369/* Boot processor state steps */
1370static struct cpuhp_step cpuhp_hp_states[] = {
1371	[CPUHP_OFFLINE] = {
1372		.name			= "offline",
1373		.startup.single		= NULL,
1374		.teardown.single	= NULL,
1375	},
1376#ifdef CONFIG_SMP
1377	[CPUHP_CREATE_THREADS]= {
1378		.name			= "threads:prepare",
1379		.startup.single		= smpboot_create_threads,
1380		.teardown.single	= NULL,
1381		.cant_stop		= true,
1382	},
1383	[CPUHP_PERF_PREPARE] = {
1384		.name			= "perf:prepare",
1385		.startup.single		= perf_event_init_cpu,
1386		.teardown.single	= perf_event_exit_cpu,
1387	},
1388	[CPUHP_WORKQUEUE_PREP] = {
1389		.name			= "workqueue:prepare",
1390		.startup.single		= workqueue_prepare_cpu,
1391		.teardown.single	= NULL,
1392	},
1393	[CPUHP_HRTIMERS_PREPARE] = {
1394		.name			= "hrtimers:prepare",
1395		.startup.single		= hrtimers_prepare_cpu,
1396		.teardown.single	= hrtimers_dead_cpu,
1397	},
1398	[CPUHP_SMPCFD_PREPARE] = {
1399		.name			= "smpcfd:prepare",
1400		.startup.single		= smpcfd_prepare_cpu,
1401		.teardown.single	= smpcfd_dead_cpu,
1402	},
1403	[CPUHP_RELAY_PREPARE] = {
1404		.name			= "relay:prepare",
1405		.startup.single		= relay_prepare_cpu,
1406		.teardown.single	= NULL,
1407	},
1408	[CPUHP_SLAB_PREPARE] = {
1409		.name			= "slab:prepare",
1410		.startup.single		= slab_prepare_cpu,
1411		.teardown.single	= slab_dead_cpu,
1412	},
1413	[CPUHP_RCUTREE_PREP] = {
1414		.name			= "RCU/tree:prepare",
1415		.startup.single		= rcutree_prepare_cpu,
1416		.teardown.single	= rcutree_dead_cpu,
1417	},
1418	/*
1419	 * On the tear-down path, timers_dead_cpu() must be invoked
1420	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1421	 * otherwise a RCU stall occurs.
1422	 */
1423	[CPUHP_TIMERS_PREPARE] = {
1424		.name			= "timers:prepare",
1425		.startup.single		= timers_prepare_cpu,
1426		.teardown.single	= timers_dead_cpu,
1427	},
1428	/* Kicks the plugged cpu into life */
1429	[CPUHP_BRINGUP_CPU] = {
1430		.name			= "cpu:bringup",
1431		.startup.single		= bringup_cpu,
1432		.teardown.single	= NULL,
1433		.cant_stop		= true,
1434	},
1435	/* Final state before CPU kills itself */
1436	[CPUHP_AP_IDLE_DEAD] = {
1437		.name			= "idle:dead",
1438	},
1439	/*
1440	 * Last state before CPU enters the idle loop to die. Transient state
1441	 * for synchronization.
1442	 */
1443	[CPUHP_AP_OFFLINE] = {
1444		.name			= "ap:offline",
1445		.cant_stop		= true,
1446	},
1447	/* First state is scheduler control. Interrupts are disabled */
1448	[CPUHP_AP_SCHED_STARTING] = {
1449		.name			= "sched:starting",
1450		.startup.single		= sched_cpu_starting,
1451		.teardown.single	= sched_cpu_dying,
1452	},
1453	[CPUHP_AP_RCUTREE_DYING] = {
1454		.name			= "RCU/tree:dying",
1455		.startup.single		= NULL,
1456		.teardown.single	= rcutree_dying_cpu,
1457	},
1458	[CPUHP_AP_SMPCFD_DYING] = {
1459		.name			= "smpcfd:dying",
1460		.startup.single		= NULL,
1461		.teardown.single	= smpcfd_dying_cpu,
1462	},
1463	/* Entry state on starting. Interrupts enabled from here on. Transient
1464	 * state for synchronsization */
1465	[CPUHP_AP_ONLINE] = {
1466		.name			= "ap:online",
1467	},
1468	/*
1469	 * Handled on controll processor until the plugged processor manages
1470	 * this itself.
1471	 */
1472	[CPUHP_TEARDOWN_CPU] = {
1473		.name			= "cpu:teardown",
1474		.startup.single		= NULL,
1475		.teardown.single	= takedown_cpu,
1476		.cant_stop		= true,
1477	},
1478	/* Handle smpboot threads park/unpark */
1479	[CPUHP_AP_SMPBOOT_THREADS] = {
1480		.name			= "smpboot/threads:online",
1481		.startup.single		= smpboot_unpark_threads,
1482		.teardown.single	= smpboot_park_threads,
1483	},
1484	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1485		.name			= "irq/affinity:online",
1486		.startup.single		= irq_affinity_online_cpu,
1487		.teardown.single	= NULL,
1488	},
1489	[CPUHP_AP_PERF_ONLINE] = {
1490		.name			= "perf:online",
1491		.startup.single		= perf_event_init_cpu,
1492		.teardown.single	= perf_event_exit_cpu,
1493	},
1494	[CPUHP_AP_WATCHDOG_ONLINE] = {
1495		.name			= "lockup_detector:online",
1496		.startup.single		= lockup_detector_online_cpu,
1497		.teardown.single	= lockup_detector_offline_cpu,
1498	},
1499	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1500		.name			= "workqueue:online",
1501		.startup.single		= workqueue_online_cpu,
1502		.teardown.single	= workqueue_offline_cpu,
1503	},
1504	[CPUHP_AP_RCUTREE_ONLINE] = {
1505		.name			= "RCU/tree:online",
1506		.startup.single		= rcutree_online_cpu,
1507		.teardown.single	= rcutree_offline_cpu,
1508	},
1509#endif
1510	/*
1511	 * The dynamically registered state space is here
1512	 */
1513
1514#ifdef CONFIG_SMP
1515	/* Last state is scheduler control setting the cpu active */
1516	[CPUHP_AP_ACTIVE] = {
1517		.name			= "sched:active",
1518		.startup.single		= sched_cpu_activate,
1519		.teardown.single	= sched_cpu_deactivate,
1520	},
1521#endif
1522
1523	/* CPU is fully up and running. */
1524	[CPUHP_ONLINE] = {
1525		.name			= "online",
1526		.startup.single		= NULL,
1527		.teardown.single	= NULL,
1528	},
1529};
1530
1531/* Sanity check for callbacks */
1532static int cpuhp_cb_check(enum cpuhp_state state)
1533{
1534	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1535		return -EINVAL;
1536	return 0;
1537}
1538
1539/*
1540 * Returns a free for dynamic slot assignment of the Online state. The states
1541 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1542 * by having no name assigned.
1543 */
1544static int cpuhp_reserve_state(enum cpuhp_state state)
1545{
1546	enum cpuhp_state i, end;
1547	struct cpuhp_step *step;
1548
1549	switch (state) {
1550	case CPUHP_AP_ONLINE_DYN:
1551		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1552		end = CPUHP_AP_ONLINE_DYN_END;
1553		break;
1554	case CPUHP_BP_PREPARE_DYN:
1555		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1556		end = CPUHP_BP_PREPARE_DYN_END;
1557		break;
1558	default:
1559		return -EINVAL;
1560	}
1561
1562	for (i = state; i <= end; i++, step++) {
1563		if (!step->name)
1564			return i;
1565	}
1566	WARN(1, "No more dynamic states available for CPU hotplug\n");
1567	return -ENOSPC;
1568}
1569
1570static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1571				 int (*startup)(unsigned int cpu),
1572				 int (*teardown)(unsigned int cpu),
1573				 bool multi_instance)
1574{
1575	/* (Un)Install the callbacks for further cpu hotplug operations */
1576	struct cpuhp_step *sp;
1577	int ret = 0;
1578
1579	/*
1580	 * If name is NULL, then the state gets removed.
1581	 *
1582	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1583	 * the first allocation from these dynamic ranges, so the removal
1584	 * would trigger a new allocation and clear the wrong (already
1585	 * empty) state, leaving the callbacks of the to be cleared state
1586	 * dangling, which causes wreckage on the next hotplug operation.
1587	 */
1588	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1589		     state == CPUHP_BP_PREPARE_DYN)) {
1590		ret = cpuhp_reserve_state(state);
1591		if (ret < 0)
1592			return ret;
1593		state = ret;
1594	}
1595	sp = cpuhp_get_step(state);
1596	if (name && sp->name)
1597		return -EBUSY;
1598
1599	sp->startup.single = startup;
1600	sp->teardown.single = teardown;
1601	sp->name = name;
1602	sp->multi_instance = multi_instance;
1603	INIT_HLIST_HEAD(&sp->list);
1604	return ret;
1605}
1606
1607static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1608{
1609	return cpuhp_get_step(state)->teardown.single;
1610}
1611
1612/*
1613 * Call the startup/teardown function for a step either on the AP or
1614 * on the current CPU.
1615 */
1616static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1617			    struct hlist_node *node)
1618{
1619	struct cpuhp_step *sp = cpuhp_get_step(state);
1620	int ret;
1621
1622	/*
1623	 * If there's nothing to do, we done.
1624	 * Relies on the union for multi_instance.
1625	 */
1626	if ((bringup && !sp->startup.single) ||
1627	    (!bringup && !sp->teardown.single))
1628		return 0;
1629	/*
1630	 * The non AP bound callbacks can fail on bringup. On teardown
1631	 * e.g. module removal we crash for now.
1632	 */
1633#ifdef CONFIG_SMP
1634	if (cpuhp_is_ap_state(state))
1635		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1636	else
1637		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1638#else
1639	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1640#endif
1641	BUG_ON(ret && !bringup);
1642	return ret;
1643}
1644
1645/*
1646 * Called from __cpuhp_setup_state on a recoverable failure.
1647 *
1648 * Note: The teardown callbacks for rollback are not allowed to fail!
1649 */
1650static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1651				   struct hlist_node *node)
1652{
1653	int cpu;
1654
1655	/* Roll back the already executed steps on the other cpus */
1656	for_each_present_cpu(cpu) {
1657		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658		int cpustate = st->state;
1659
1660		if (cpu >= failedcpu)
1661			break;
1662
1663		/* Did we invoke the startup call on that cpu ? */
1664		if (cpustate >= state)
1665			cpuhp_issue_call(cpu, state, false, node);
1666	}
1667}
1668
1669int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1670					  struct hlist_node *node,
1671					  bool invoke)
1672{
1673	struct cpuhp_step *sp;
1674	int cpu;
1675	int ret;
1676
1677	lockdep_assert_cpus_held();
1678
1679	sp = cpuhp_get_step(state);
1680	if (sp->multi_instance == false)
1681		return -EINVAL;
1682
1683	mutex_lock(&cpuhp_state_mutex);
1684
1685	if (!invoke || !sp->startup.multi)
1686		goto add_node;
1687
1688	/*
1689	 * Try to call the startup callback for each present cpu
1690	 * depending on the hotplug state of the cpu.
1691	 */
1692	for_each_present_cpu(cpu) {
1693		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1694		int cpustate = st->state;
1695
1696		if (cpustate < state)
1697			continue;
1698
1699		ret = cpuhp_issue_call(cpu, state, true, node);
1700		if (ret) {
1701			if (sp->teardown.multi)
1702				cpuhp_rollback_install(cpu, state, node);
1703			goto unlock;
1704		}
1705	}
1706add_node:
1707	ret = 0;
1708	hlist_add_head(node, &sp->list);
1709unlock:
1710	mutex_unlock(&cpuhp_state_mutex);
1711	return ret;
1712}
1713
1714int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1715			       bool invoke)
1716{
1717	int ret;
1718
1719	cpus_read_lock();
1720	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1721	cpus_read_unlock();
1722	return ret;
1723}
1724EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1725
1726/**
1727 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1728 * @state:		The state to setup
1729 * @invoke:		If true, the startup function is invoked for cpus where
1730 *			cpu state >= @state
1731 * @startup:		startup callback function
1732 * @teardown:		teardown callback function
1733 * @multi_instance:	State is set up for multiple instances which get
1734 *			added afterwards.
1735 *
1736 * The caller needs to hold cpus read locked while calling this function.
1737 * Returns:
1738 *   On success:
1739 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1740 *      0 for all other states
1741 *   On failure: proper (negative) error code
1742 */
1743int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1744				   const char *name, bool invoke,
1745				   int (*startup)(unsigned int cpu),
1746				   int (*teardown)(unsigned int cpu),
1747				   bool multi_instance)
1748{
1749	int cpu, ret = 0;
1750	bool dynstate;
1751
1752	lockdep_assert_cpus_held();
1753
1754	if (cpuhp_cb_check(state) || !name)
1755		return -EINVAL;
1756
1757	mutex_lock(&cpuhp_state_mutex);
1758
1759	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1760				    multi_instance);
1761
1762	dynstate = state == CPUHP_AP_ONLINE_DYN;
1763	if (ret > 0 && dynstate) {
1764		state = ret;
1765		ret = 0;
1766	}
1767
1768	if (ret || !invoke || !startup)
1769		goto out;
1770
1771	/*
1772	 * Try to call the startup callback for each present cpu
1773	 * depending on the hotplug state of the cpu.
1774	 */
1775	for_each_present_cpu(cpu) {
1776		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1777		int cpustate = st->state;
1778
1779		if (cpustate < state)
1780			continue;
1781
1782		ret = cpuhp_issue_call(cpu, state, true, NULL);
1783		if (ret) {
1784			if (teardown)
1785				cpuhp_rollback_install(cpu, state, NULL);
1786			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1787			goto out;
1788		}
1789	}
1790out:
1791	mutex_unlock(&cpuhp_state_mutex);
1792	/*
1793	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1794	 * dynamically allocated state in case of success.
1795	 */
1796	if (!ret && dynstate)
1797		return state;
1798	return ret;
1799}
1800EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1801
1802int __cpuhp_setup_state(enum cpuhp_state state,
1803			const char *name, bool invoke,
1804			int (*startup)(unsigned int cpu),
1805			int (*teardown)(unsigned int cpu),
1806			bool multi_instance)
1807{
1808	int ret;
1809
1810	cpus_read_lock();
1811	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1812					     teardown, multi_instance);
1813	cpus_read_unlock();
1814	return ret;
1815}
1816EXPORT_SYMBOL(__cpuhp_setup_state);
1817
1818int __cpuhp_state_remove_instance(enum cpuhp_state state,
1819				  struct hlist_node *node, bool invoke)
1820{
1821	struct cpuhp_step *sp = cpuhp_get_step(state);
1822	int cpu;
1823
1824	BUG_ON(cpuhp_cb_check(state));
1825
1826	if (!sp->multi_instance)
1827		return -EINVAL;
1828
1829	cpus_read_lock();
1830	mutex_lock(&cpuhp_state_mutex);
1831
1832	if (!invoke || !cpuhp_get_teardown_cb(state))
1833		goto remove;
1834	/*
1835	 * Call the teardown callback for each present cpu depending
1836	 * on the hotplug state of the cpu. This function is not
1837	 * allowed to fail currently!
1838	 */
1839	for_each_present_cpu(cpu) {
1840		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1841		int cpustate = st->state;
1842
1843		if (cpustate >= state)
1844			cpuhp_issue_call(cpu, state, false, node);
1845	}
1846
1847remove:
1848	hlist_del(node);
1849	mutex_unlock(&cpuhp_state_mutex);
1850	cpus_read_unlock();
1851
1852	return 0;
1853}
1854EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1855
1856/**
1857 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1858 * @state:	The state to remove
1859 * @invoke:	If true, the teardown function is invoked for cpus where
1860 *		cpu state >= @state
1861 *
1862 * The caller needs to hold cpus read locked while calling this function.
1863 * The teardown callback is currently not allowed to fail. Think
1864 * about module removal!
1865 */
1866void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1867{
1868	struct cpuhp_step *sp = cpuhp_get_step(state);
1869	int cpu;
1870
1871	BUG_ON(cpuhp_cb_check(state));
1872
1873	lockdep_assert_cpus_held();
1874
1875	mutex_lock(&cpuhp_state_mutex);
1876	if (sp->multi_instance) {
1877		WARN(!hlist_empty(&sp->list),
1878		     "Error: Removing state %d which has instances left.\n",
1879		     state);
1880		goto remove;
1881	}
1882
1883	if (!invoke || !cpuhp_get_teardown_cb(state))
1884		goto remove;
1885
1886	/*
1887	 * Call the teardown callback for each present cpu depending
1888	 * on the hotplug state of the cpu. This function is not
1889	 * allowed to fail currently!
1890	 */
1891	for_each_present_cpu(cpu) {
1892		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1893		int cpustate = st->state;
1894
1895		if (cpustate >= state)
1896			cpuhp_issue_call(cpu, state, false, NULL);
1897	}
1898remove:
1899	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1900	mutex_unlock(&cpuhp_state_mutex);
1901}
1902EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1903
1904void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1905{
1906	cpus_read_lock();
1907	__cpuhp_remove_state_cpuslocked(state, invoke);
1908	cpus_read_unlock();
1909}
1910EXPORT_SYMBOL(__cpuhp_remove_state);
1911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1912#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1913static ssize_t show_cpuhp_state(struct device *dev,
1914				struct device_attribute *attr, char *buf)
1915{
1916	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1917
1918	return sprintf(buf, "%d\n", st->state);
1919}
1920static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1921
1922static ssize_t write_cpuhp_target(struct device *dev,
1923				  struct device_attribute *attr,
1924				  const char *buf, size_t count)
1925{
1926	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1927	struct cpuhp_step *sp;
1928	int target, ret;
1929
1930	ret = kstrtoint(buf, 10, &target);
1931	if (ret)
1932		return ret;
1933
1934#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1935	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1936		return -EINVAL;
1937#else
1938	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1939		return -EINVAL;
1940#endif
1941
1942	ret = lock_device_hotplug_sysfs();
1943	if (ret)
1944		return ret;
1945
1946	mutex_lock(&cpuhp_state_mutex);
1947	sp = cpuhp_get_step(target);
1948	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1949	mutex_unlock(&cpuhp_state_mutex);
1950	if (ret)
1951		goto out;
1952
1953	if (st->state < target)
1954		ret = do_cpu_up(dev->id, target);
1955	else
1956		ret = do_cpu_down(dev->id, target);
1957out:
1958	unlock_device_hotplug();
1959	return ret ? ret : count;
1960}
1961
1962static ssize_t show_cpuhp_target(struct device *dev,
1963				 struct device_attribute *attr, char *buf)
1964{
1965	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1966
1967	return sprintf(buf, "%d\n", st->target);
1968}
1969static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1970
1971
1972static ssize_t write_cpuhp_fail(struct device *dev,
1973				struct device_attribute *attr,
1974				const char *buf, size_t count)
1975{
1976	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1977	struct cpuhp_step *sp;
1978	int fail, ret;
1979
1980	ret = kstrtoint(buf, 10, &fail);
1981	if (ret)
1982		return ret;
1983
1984	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
1985		return -EINVAL;
1986
1987	/*
1988	 * Cannot fail STARTING/DYING callbacks.
1989	 */
1990	if (cpuhp_is_atomic_state(fail))
1991		return -EINVAL;
1992
1993	/*
1994	 * Cannot fail anything that doesn't have callbacks.
1995	 */
1996	mutex_lock(&cpuhp_state_mutex);
1997	sp = cpuhp_get_step(fail);
1998	if (!sp->startup.single && !sp->teardown.single)
1999		ret = -EINVAL;
2000	mutex_unlock(&cpuhp_state_mutex);
2001	if (ret)
2002		return ret;
2003
2004	st->fail = fail;
2005
2006	return count;
2007}
2008
2009static ssize_t show_cpuhp_fail(struct device *dev,
2010			       struct device_attribute *attr, char *buf)
2011{
2012	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2013
2014	return sprintf(buf, "%d\n", st->fail);
2015}
2016
2017static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2018
2019static struct attribute *cpuhp_cpu_attrs[] = {
2020	&dev_attr_state.attr,
2021	&dev_attr_target.attr,
2022	&dev_attr_fail.attr,
2023	NULL
2024};
2025
2026static const struct attribute_group cpuhp_cpu_attr_group = {
2027	.attrs = cpuhp_cpu_attrs,
2028	.name = "hotplug",
2029	NULL
2030};
2031
2032static ssize_t show_cpuhp_states(struct device *dev,
2033				 struct device_attribute *attr, char *buf)
2034{
2035	ssize_t cur, res = 0;
2036	int i;
2037
2038	mutex_lock(&cpuhp_state_mutex);
2039	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2040		struct cpuhp_step *sp = cpuhp_get_step(i);
2041
2042		if (sp->name) {
2043			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2044			buf += cur;
2045			res += cur;
2046		}
2047	}
2048	mutex_unlock(&cpuhp_state_mutex);
2049	return res;
2050}
2051static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2052
2053static struct attribute *cpuhp_cpu_root_attrs[] = {
2054	&dev_attr_states.attr,
2055	NULL
2056};
2057
2058static const struct attribute_group cpuhp_cpu_root_attr_group = {
2059	.attrs = cpuhp_cpu_root_attrs,
2060	.name = "hotplug",
2061	NULL
2062};
2063
2064#ifdef CONFIG_HOTPLUG_SMT
2065
2066static void cpuhp_offline_cpu_device(unsigned int cpu)
2067{
2068	struct device *dev = get_cpu_device(cpu);
2069
2070	dev->offline = true;
2071	/* Tell user space about the state change */
2072	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2073}
2074
2075static void cpuhp_online_cpu_device(unsigned int cpu)
2076{
2077	struct device *dev = get_cpu_device(cpu);
2078
2079	dev->offline = false;
2080	/* Tell user space about the state change */
2081	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2082}
2083
2084int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2085{
2086	int cpu, ret = 0;
2087
2088	cpu_maps_update_begin();
2089	for_each_online_cpu(cpu) {
2090		if (topology_is_primary_thread(cpu))
2091			continue;
2092		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2093		if (ret)
2094			break;
2095		/*
2096		 * As this needs to hold the cpu maps lock it's impossible
2097		 * to call device_offline() because that ends up calling
2098		 * cpu_down() which takes cpu maps lock. cpu maps lock
2099		 * needs to be held as this might race against in kernel
2100		 * abusers of the hotplug machinery (thermal management).
2101		 *
2102		 * So nothing would update device:offline state. That would
2103		 * leave the sysfs entry stale and prevent onlining after
2104		 * smt control has been changed to 'off' again. This is
2105		 * called under the sysfs hotplug lock, so it is properly
2106		 * serialized against the regular offline usage.
2107		 */
2108		cpuhp_offline_cpu_device(cpu);
2109	}
2110	if (!ret)
2111		cpu_smt_control = ctrlval;
2112	cpu_maps_update_done();
2113	return ret;
2114}
2115
2116int cpuhp_smt_enable(void)
2117{
2118	int cpu, ret = 0;
2119
2120	cpu_maps_update_begin();
2121	cpu_smt_control = CPU_SMT_ENABLED;
2122	for_each_present_cpu(cpu) {
2123		/* Skip online CPUs and CPUs on offline nodes */
2124		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2125			continue;
2126		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2127		if (ret)
2128			break;
2129		/* See comment in cpuhp_smt_disable() */
2130		cpuhp_online_cpu_device(cpu);
2131	}
2132	cpu_maps_update_done();
2133	return ret;
2134}
2135
2136
2137static ssize_t
2138__store_smt_control(struct device *dev, struct device_attribute *attr,
2139		    const char *buf, size_t count)
2140{
2141	int ctrlval, ret;
2142
2143	if (sysfs_streq(buf, "on"))
2144		ctrlval = CPU_SMT_ENABLED;
2145	else if (sysfs_streq(buf, "off"))
2146		ctrlval = CPU_SMT_DISABLED;
2147	else if (sysfs_streq(buf, "forceoff"))
2148		ctrlval = CPU_SMT_FORCE_DISABLED;
2149	else
2150		return -EINVAL;
2151
2152	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2153		return -EPERM;
2154
2155	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2156		return -ENODEV;
2157
2158	ret = lock_device_hotplug_sysfs();
2159	if (ret)
2160		return ret;
2161
2162	if (ctrlval != cpu_smt_control) {
2163		switch (ctrlval) {
2164		case CPU_SMT_ENABLED:
2165			ret = cpuhp_smt_enable();
2166			break;
2167		case CPU_SMT_DISABLED:
2168		case CPU_SMT_FORCE_DISABLED:
2169			ret = cpuhp_smt_disable(ctrlval);
2170			break;
2171		}
2172	}
2173
2174	unlock_device_hotplug();
2175	return ret ? ret : count;
2176}
2177
2178#else /* !CONFIG_HOTPLUG_SMT */
2179static ssize_t
2180__store_smt_control(struct device *dev, struct device_attribute *attr,
2181		    const char *buf, size_t count)
2182{
2183	return -ENODEV;
2184}
2185#endif /* CONFIG_HOTPLUG_SMT */
2186
2187static const char *smt_states[] = {
2188	[CPU_SMT_ENABLED]		= "on",
2189	[CPU_SMT_DISABLED]		= "off",
2190	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2191	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2192	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2193};
2194
2195static ssize_t
2196show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2197{
2198	const char *state = smt_states[cpu_smt_control];
2199
2200	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2201}
2202
2203static ssize_t
2204store_smt_control(struct device *dev, struct device_attribute *attr,
2205		  const char *buf, size_t count)
2206{
2207	return __store_smt_control(dev, attr, buf, count);
2208}
2209static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2210
2211static ssize_t
2212show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2213{
2214	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2215}
2216static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2217
2218static struct attribute *cpuhp_smt_attrs[] = {
2219	&dev_attr_control.attr,
2220	&dev_attr_active.attr,
2221	NULL
2222};
2223
2224static const struct attribute_group cpuhp_smt_attr_group = {
2225	.attrs = cpuhp_smt_attrs,
2226	.name = "smt",
2227	NULL
2228};
2229
2230static int __init cpu_smt_sysfs_init(void)
2231{
2232	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2233				  &cpuhp_smt_attr_group);
2234}
2235
2236static int __init cpuhp_sysfs_init(void)
2237{
2238	int cpu, ret;
2239
2240	ret = cpu_smt_sysfs_init();
2241	if (ret)
2242		return ret;
2243
2244	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2245				 &cpuhp_cpu_root_attr_group);
2246	if (ret)
2247		return ret;
2248
2249	for_each_possible_cpu(cpu) {
2250		struct device *dev = get_cpu_device(cpu);
2251
2252		if (!dev)
2253			continue;
2254		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2255		if (ret)
2256			return ret;
2257	}
2258	return 0;
2259}
2260device_initcall(cpuhp_sysfs_init);
2261#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2262
2263/*
2264 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2265 * represents all NR_CPUS bits binary values of 1<<nr.
2266 *
2267 * It is used by cpumask_of() to get a constant address to a CPU
2268 * mask value that has a single bit set only.
2269 */
2270
2271/* cpu_bit_bitmap[0] is empty - so we can back into it */
2272#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2273#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2274#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2275#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2276
2277const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2278
2279	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2280	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2281#if BITS_PER_LONG > 32
2282	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2283	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2284#endif
2285};
2286EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2287
2288const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2289EXPORT_SYMBOL(cpu_all_bits);
2290
2291#ifdef CONFIG_INIT_ALL_POSSIBLE
2292struct cpumask __cpu_possible_mask __read_mostly
2293	= {CPU_BITS_ALL};
2294#else
2295struct cpumask __cpu_possible_mask __read_mostly;
2296#endif
2297EXPORT_SYMBOL(__cpu_possible_mask);
2298
2299struct cpumask __cpu_online_mask __read_mostly;
2300EXPORT_SYMBOL(__cpu_online_mask);
2301
2302struct cpumask __cpu_present_mask __read_mostly;
2303EXPORT_SYMBOL(__cpu_present_mask);
2304
2305struct cpumask __cpu_active_mask __read_mostly;
2306EXPORT_SYMBOL(__cpu_active_mask);
2307
2308atomic_t __num_online_cpus __read_mostly;
2309EXPORT_SYMBOL(__num_online_cpus);
2310
2311void init_cpu_present(const struct cpumask *src)
2312{
2313	cpumask_copy(&__cpu_present_mask, src);
2314}
2315
2316void init_cpu_possible(const struct cpumask *src)
2317{
2318	cpumask_copy(&__cpu_possible_mask, src);
2319}
2320
2321void init_cpu_online(const struct cpumask *src)
2322{
2323	cpumask_copy(&__cpu_online_mask, src);
2324}
2325
2326void set_cpu_online(unsigned int cpu, bool online)
2327{
2328	/*
2329	 * atomic_inc/dec() is required to handle the horrid abuse of this
2330	 * function by the reboot and kexec code which invoke it from
2331	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2332	 * regular CPU hotplug is properly serialized.
2333	 *
2334	 * Note, that the fact that __num_online_cpus is of type atomic_t
2335	 * does not protect readers which are not serialized against
2336	 * concurrent hotplug operations.
2337	 */
2338	if (online) {
2339		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2340			atomic_inc(&__num_online_cpus);
2341	} else {
2342		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2343			atomic_dec(&__num_online_cpus);
2344	}
2345}
2346
2347/*
2348 * Activate the first processor.
2349 */
2350void __init boot_cpu_init(void)
2351{
2352	int cpu = smp_processor_id();
2353
2354	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2355	set_cpu_online(cpu, true);
2356	set_cpu_active(cpu, true);
2357	set_cpu_present(cpu, true);
2358	set_cpu_possible(cpu, true);
2359
2360#ifdef CONFIG_SMP
2361	__boot_cpu_id = cpu;
2362#endif
2363}
2364
2365/*
2366 * Must be called _AFTER_ setting up the per_cpu areas
2367 */
2368void __init boot_cpu_hotplug_init(void)
2369{
2370#ifdef CONFIG_SMP
2371	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2372#endif
2373	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2374}
2375
2376/*
2377 * These are used for a global "mitigations=" cmdline option for toggling
2378 * optional CPU mitigations.
2379 */
2380enum cpu_mitigations {
2381	CPU_MITIGATIONS_OFF,
2382	CPU_MITIGATIONS_AUTO,
2383	CPU_MITIGATIONS_AUTO_NOSMT,
2384};
2385
2386static enum cpu_mitigations cpu_mitigations __ro_after_init =
2387	CPU_MITIGATIONS_AUTO;
2388
2389static int __init mitigations_parse_cmdline(char *arg)
2390{
2391	if (!strcmp(arg, "off"))
2392		cpu_mitigations = CPU_MITIGATIONS_OFF;
2393	else if (!strcmp(arg, "auto"))
2394		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2395	else if (!strcmp(arg, "auto,nosmt"))
2396		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2397	else
2398		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2399			arg);
2400
2401	return 0;
2402}
2403early_param("mitigations", mitigations_parse_cmdline);
2404
2405/* mitigations=off */
2406bool cpu_mitigations_off(void)
2407{
2408	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2409}
2410EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2411
2412/* mitigations=auto,nosmt */
2413bool cpu_mitigations_auto_nosmt(void)
2414{
2415	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2416}
2417EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
v5.9
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/sched/mm.h>
   7#include <linux/proc_fs.h>
   8#include <linux/smp.h>
   9#include <linux/init.h>
  10#include <linux/notifier.h>
  11#include <linux/sched/signal.h>
  12#include <linux/sched/hotplug.h>
  13#include <linux/sched/isolation.h>
  14#include <linux/sched/task.h>
  15#include <linux/sched/smt.h>
  16#include <linux/unistd.h>
  17#include <linux/cpu.h>
  18#include <linux/oom.h>
  19#include <linux/rcupdate.h>
  20#include <linux/export.h>
  21#include <linux/bug.h>
  22#include <linux/kthread.h>
  23#include <linux/stop_machine.h>
  24#include <linux/mutex.h>
  25#include <linux/gfp.h>
  26#include <linux/suspend.h>
  27#include <linux/lockdep.h>
  28#include <linux/tick.h>
  29#include <linux/irq.h>
  30#include <linux/nmi.h>
  31#include <linux/smpboot.h>
  32#include <linux/relay.h>
  33#include <linux/slab.h>
  34#include <linux/percpu-rwsem.h>
  35
  36#include <trace/events/power.h>
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/cpuhp.h>
  39
  40#include "smpboot.h"
  41
  42/**
  43 * cpuhp_cpu_state - Per cpu hotplug state storage
  44 * @state:	The current cpu state
  45 * @target:	The target state
  46 * @thread:	Pointer to the hotplug thread
  47 * @should_run:	Thread should execute
  48 * @rollback:	Perform a rollback
  49 * @single:	Single callback invocation
  50 * @bringup:	Single callback bringup or teardown selector
  51 * @cb_state:	The state for a single callback (install/uninstall)
  52 * @result:	Result of the operation
  53 * @done_up:	Signal completion to the issuer of the task for cpu-up
  54 * @done_down:	Signal completion to the issuer of the task for cpu-down
  55 */
  56struct cpuhp_cpu_state {
  57	enum cpuhp_state	state;
  58	enum cpuhp_state	target;
  59	enum cpuhp_state	fail;
  60#ifdef CONFIG_SMP
  61	struct task_struct	*thread;
  62	bool			should_run;
  63	bool			rollback;
  64	bool			single;
  65	bool			bringup;
  66	struct hlist_node	*node;
  67	struct hlist_node	*last;
  68	enum cpuhp_state	cb_state;
  69	int			result;
  70	struct completion	done_up;
  71	struct completion	done_down;
  72#endif
  73};
  74
  75static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  76	.fail = CPUHP_INVALID,
  77};
  78
  79#ifdef CONFIG_SMP
  80cpumask_t cpus_booted_once_mask;
  81#endif
  82
  83#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  84static struct lockdep_map cpuhp_state_up_map =
  85	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  86static struct lockdep_map cpuhp_state_down_map =
  87	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  88
  89
  90static inline void cpuhp_lock_acquire(bool bringup)
  91{
  92	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  93}
  94
  95static inline void cpuhp_lock_release(bool bringup)
  96{
  97	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  98}
  99#else
 100
 101static inline void cpuhp_lock_acquire(bool bringup) { }
 102static inline void cpuhp_lock_release(bool bringup) { }
 103
 104#endif
 105
 106/**
 107 * cpuhp_step - Hotplug state machine step
 108 * @name:	Name of the step
 109 * @startup:	Startup function of the step
 110 * @teardown:	Teardown function of the step
 111 * @cant_stop:	Bringup/teardown can't be stopped at this step
 112 */
 113struct cpuhp_step {
 114	const char		*name;
 115	union {
 116		int		(*single)(unsigned int cpu);
 117		int		(*multi)(unsigned int cpu,
 118					 struct hlist_node *node);
 119	} startup;
 120	union {
 121		int		(*single)(unsigned int cpu);
 122		int		(*multi)(unsigned int cpu,
 123					 struct hlist_node *node);
 124	} teardown;
 125	struct hlist_head	list;
 126	bool			cant_stop;
 127	bool			multi_instance;
 128};
 129
 130static DEFINE_MUTEX(cpuhp_state_mutex);
 131static struct cpuhp_step cpuhp_hp_states[];
 132
 133static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 134{
 135	return cpuhp_hp_states + state;
 136}
 137
 138/**
 139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 140 * @cpu:	The cpu for which the callback should be invoked
 141 * @state:	The state to do callbacks for
 142 * @bringup:	True if the bringup callback should be invoked
 143 * @node:	For multi-instance, do a single entry callback for install/remove
 144 * @lastp:	For multi-instance rollback, remember how far we got
 145 *
 146 * Called from cpu hotplug and from the state register machinery.
 147 */
 148static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 149				 bool bringup, struct hlist_node *node,
 150				 struct hlist_node **lastp)
 151{
 152	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 153	struct cpuhp_step *step = cpuhp_get_step(state);
 154	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 155	int (*cb)(unsigned int cpu);
 156	int ret, cnt;
 157
 158	if (st->fail == state) {
 159		st->fail = CPUHP_INVALID;
 160
 161		if (!(bringup ? step->startup.single : step->teardown.single))
 162			return 0;
 163
 164		return -EAGAIN;
 165	}
 166
 167	if (!step->multi_instance) {
 168		WARN_ON_ONCE(lastp && *lastp);
 169		cb = bringup ? step->startup.single : step->teardown.single;
 170		if (!cb)
 171			return 0;
 172		trace_cpuhp_enter(cpu, st->target, state, cb);
 173		ret = cb(cpu);
 174		trace_cpuhp_exit(cpu, st->state, state, ret);
 175		return ret;
 176	}
 177	cbm = bringup ? step->startup.multi : step->teardown.multi;
 178	if (!cbm)
 179		return 0;
 180
 181	/* Single invocation for instance add/remove */
 182	if (node) {
 183		WARN_ON_ONCE(lastp && *lastp);
 184		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 185		ret = cbm(cpu, node);
 186		trace_cpuhp_exit(cpu, st->state, state, ret);
 187		return ret;
 188	}
 189
 190	/* State transition. Invoke on all instances */
 191	cnt = 0;
 192	hlist_for_each(node, &step->list) {
 193		if (lastp && node == *lastp)
 194			break;
 195
 196		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 197		ret = cbm(cpu, node);
 198		trace_cpuhp_exit(cpu, st->state, state, ret);
 199		if (ret) {
 200			if (!lastp)
 201				goto err;
 202
 203			*lastp = node;
 204			return ret;
 205		}
 206		cnt++;
 207	}
 208	if (lastp)
 209		*lastp = NULL;
 210	return 0;
 211err:
 212	/* Rollback the instances if one failed */
 213	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 214	if (!cbm)
 215		return ret;
 216
 217	hlist_for_each(node, &step->list) {
 218		if (!cnt--)
 219			break;
 220
 221		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 222		ret = cbm(cpu, node);
 223		trace_cpuhp_exit(cpu, st->state, state, ret);
 224		/*
 225		 * Rollback must not fail,
 226		 */
 227		WARN_ON_ONCE(ret);
 228	}
 229	return ret;
 230}
 231
 232#ifdef CONFIG_SMP
 233static bool cpuhp_is_ap_state(enum cpuhp_state state)
 234{
 235	/*
 236	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 237	 * purposes as that state is handled explicitly in cpu_down.
 238	 */
 239	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 240}
 241
 242static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 243{
 244	struct completion *done = bringup ? &st->done_up : &st->done_down;
 245	wait_for_completion(done);
 246}
 247
 248static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 249{
 250	struct completion *done = bringup ? &st->done_up : &st->done_down;
 251	complete(done);
 252}
 253
 254/*
 255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 256 */
 257static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 258{
 259	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 260}
 261
 262/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 263static DEFINE_MUTEX(cpu_add_remove_lock);
 264bool cpuhp_tasks_frozen;
 265EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 266
 267/*
 268 * The following two APIs (cpu_maps_update_begin/done) must be used when
 269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 270 */
 271void cpu_maps_update_begin(void)
 272{
 273	mutex_lock(&cpu_add_remove_lock);
 274}
 275
 276void cpu_maps_update_done(void)
 277{
 278	mutex_unlock(&cpu_add_remove_lock);
 279}
 280
 281/*
 282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 283 * Should always be manipulated under cpu_add_remove_lock
 284 */
 285static int cpu_hotplug_disabled;
 286
 287#ifdef CONFIG_HOTPLUG_CPU
 288
 289DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 290
 291void cpus_read_lock(void)
 292{
 293	percpu_down_read(&cpu_hotplug_lock);
 294}
 295EXPORT_SYMBOL_GPL(cpus_read_lock);
 296
 297int cpus_read_trylock(void)
 298{
 299	return percpu_down_read_trylock(&cpu_hotplug_lock);
 300}
 301EXPORT_SYMBOL_GPL(cpus_read_trylock);
 302
 303void cpus_read_unlock(void)
 304{
 305	percpu_up_read(&cpu_hotplug_lock);
 306}
 307EXPORT_SYMBOL_GPL(cpus_read_unlock);
 308
 309void cpus_write_lock(void)
 310{
 311	percpu_down_write(&cpu_hotplug_lock);
 312}
 313
 314void cpus_write_unlock(void)
 315{
 316	percpu_up_write(&cpu_hotplug_lock);
 317}
 318
 319void lockdep_assert_cpus_held(void)
 320{
 321	/*
 322	 * We can't have hotplug operations before userspace starts running,
 323	 * and some init codepaths will knowingly not take the hotplug lock.
 324	 * This is all valid, so mute lockdep until it makes sense to report
 325	 * unheld locks.
 326	 */
 327	if (system_state < SYSTEM_RUNNING)
 328		return;
 329
 330	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 331}
 332
 333static void lockdep_acquire_cpus_lock(void)
 334{
 335	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
 336}
 337
 338static void lockdep_release_cpus_lock(void)
 339{
 340	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
 341}
 342
 343/*
 344 * Wait for currently running CPU hotplug operations to complete (if any) and
 345 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 346 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 347 * hotplug path before performing hotplug operations. So acquiring that lock
 348 * guarantees mutual exclusion from any currently running hotplug operations.
 349 */
 350void cpu_hotplug_disable(void)
 351{
 352	cpu_maps_update_begin();
 353	cpu_hotplug_disabled++;
 354	cpu_maps_update_done();
 355}
 356EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 357
 358static void __cpu_hotplug_enable(void)
 359{
 360	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 361		return;
 362	cpu_hotplug_disabled--;
 363}
 364
 365void cpu_hotplug_enable(void)
 366{
 367	cpu_maps_update_begin();
 368	__cpu_hotplug_enable();
 369	cpu_maps_update_done();
 370}
 371EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 372
 373#else
 374
 375static void lockdep_acquire_cpus_lock(void)
 376{
 377}
 378
 379static void lockdep_release_cpus_lock(void)
 380{
 381}
 382
 383#endif	/* CONFIG_HOTPLUG_CPU */
 384
 385/*
 386 * Architectures that need SMT-specific errata handling during SMT hotplug
 387 * should override this.
 388 */
 389void __weak arch_smt_update(void) { }
 390
 391#ifdef CONFIG_HOTPLUG_SMT
 392enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 393
 394void __init cpu_smt_disable(bool force)
 395{
 396	if (!cpu_smt_possible())
 397		return;
 398
 399	if (force) {
 400		pr_info("SMT: Force disabled\n");
 401		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 402	} else {
 403		pr_info("SMT: disabled\n");
 404		cpu_smt_control = CPU_SMT_DISABLED;
 405	}
 406}
 407
 408/*
 409 * The decision whether SMT is supported can only be done after the full
 410 * CPU identification. Called from architecture code.
 411 */
 412void __init cpu_smt_check_topology(void)
 413{
 414	if (!topology_smt_supported())
 415		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 416}
 417
 418static int __init smt_cmdline_disable(char *str)
 419{
 420	cpu_smt_disable(str && !strcmp(str, "force"));
 421	return 0;
 422}
 423early_param("nosmt", smt_cmdline_disable);
 424
 425static inline bool cpu_smt_allowed(unsigned int cpu)
 426{
 427	if (cpu_smt_control == CPU_SMT_ENABLED)
 428		return true;
 429
 430	if (topology_is_primary_thread(cpu))
 431		return true;
 432
 433	/*
 434	 * On x86 it's required to boot all logical CPUs at least once so
 435	 * that the init code can get a chance to set CR4.MCE on each
 436	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
 437	 * core will shutdown the machine.
 438	 */
 439	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
 440}
 441
 442/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
 443bool cpu_smt_possible(void)
 444{
 445	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
 446		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
 447}
 448EXPORT_SYMBOL_GPL(cpu_smt_possible);
 449#else
 450static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
 451#endif
 452
 453static inline enum cpuhp_state
 454cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 455{
 456	enum cpuhp_state prev_state = st->state;
 457
 458	st->rollback = false;
 459	st->last = NULL;
 460
 461	st->target = target;
 462	st->single = false;
 463	st->bringup = st->state < target;
 464
 465	return prev_state;
 466}
 467
 468static inline void
 469cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 470{
 471	st->rollback = true;
 472
 473	/*
 474	 * If we have st->last we need to undo partial multi_instance of this
 475	 * state first. Otherwise start undo at the previous state.
 476	 */
 477	if (!st->last) {
 478		if (st->bringup)
 479			st->state--;
 480		else
 481			st->state++;
 482	}
 483
 484	st->target = prev_state;
 485	st->bringup = !st->bringup;
 486}
 487
 488/* Regular hotplug invocation of the AP hotplug thread */
 489static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 490{
 491	if (!st->single && st->state == st->target)
 492		return;
 493
 494	st->result = 0;
 495	/*
 496	 * Make sure the above stores are visible before should_run becomes
 497	 * true. Paired with the mb() above in cpuhp_thread_fun()
 498	 */
 499	smp_mb();
 500	st->should_run = true;
 501	wake_up_process(st->thread);
 502	wait_for_ap_thread(st, st->bringup);
 503}
 504
 505static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 506{
 507	enum cpuhp_state prev_state;
 508	int ret;
 509
 510	prev_state = cpuhp_set_state(st, target);
 511	__cpuhp_kick_ap(st);
 512	if ((ret = st->result)) {
 513		cpuhp_reset_state(st, prev_state);
 514		__cpuhp_kick_ap(st);
 515	}
 516
 517	return ret;
 518}
 519
 520static int bringup_wait_for_ap(unsigned int cpu)
 521{
 522	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 523
 524	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 525	wait_for_ap_thread(st, true);
 526	if (WARN_ON_ONCE((!cpu_online(cpu))))
 527		return -ECANCELED;
 528
 529	/* Unpark the hotplug thread of the target cpu */
 
 530	kthread_unpark(st->thread);
 531
 532	/*
 533	 * SMT soft disabling on X86 requires to bring the CPU out of the
 534	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 535	 * CPU marked itself as booted_once in notify_cpu_starting() so the
 536	 * cpu_smt_allowed() check will now return false if this is not the
 537	 * primary sibling.
 538	 */
 539	if (!cpu_smt_allowed(cpu))
 540		return -ECANCELED;
 541
 542	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 543		return 0;
 544
 545	return cpuhp_kick_ap(st, st->target);
 546}
 547
 548static int bringup_cpu(unsigned int cpu)
 549{
 550	struct task_struct *idle = idle_thread_get(cpu);
 551	int ret;
 552
 553	/*
 554	 * Some architectures have to walk the irq descriptors to
 555	 * setup the vector space for the cpu which comes online.
 556	 * Prevent irq alloc/free across the bringup.
 557	 */
 558	irq_lock_sparse();
 559
 560	/* Arch-specific enabling code. */
 561	ret = __cpu_up(cpu, idle);
 562	irq_unlock_sparse();
 563	if (ret)
 564		return ret;
 565	return bringup_wait_for_ap(cpu);
 566}
 567
 568static int finish_cpu(unsigned int cpu)
 569{
 570	struct task_struct *idle = idle_thread_get(cpu);
 571	struct mm_struct *mm = idle->active_mm;
 572
 573	/*
 574	 * idle_task_exit() will have switched to &init_mm, now
 575	 * clean up any remaining active_mm state.
 576	 */
 577	if (mm != &init_mm)
 578		idle->active_mm = &init_mm;
 579	mmdrop(mm);
 580	return 0;
 581}
 582
 583/*
 584 * Hotplug state machine related functions
 585 */
 586
 587static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 588{
 589	for (st->state--; st->state > st->target; st->state--)
 590		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 591}
 592
 593static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
 594{
 595	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
 596		return true;
 597	/*
 598	 * When CPU hotplug is disabled, then taking the CPU down is not
 599	 * possible because takedown_cpu() and the architecture and
 600	 * subsystem specific mechanisms are not available. So the CPU
 601	 * which would be completely unplugged again needs to stay around
 602	 * in the current state.
 603	 */
 604	return st->state <= CPUHP_BRINGUP_CPU;
 605}
 606
 607static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 608			      enum cpuhp_state target)
 609{
 610	enum cpuhp_state prev_state = st->state;
 611	int ret = 0;
 612
 613	while (st->state < target) {
 614		st->state++;
 615		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 616		if (ret) {
 617			if (can_rollback_cpu(st)) {
 618				st->target = prev_state;
 619				undo_cpu_up(cpu, st);
 620			}
 621			break;
 622		}
 623	}
 624	return ret;
 625}
 626
 627/*
 628 * The cpu hotplug threads manage the bringup and teardown of the cpus
 629 */
 630static void cpuhp_create(unsigned int cpu)
 631{
 632	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 633
 634	init_completion(&st->done_up);
 635	init_completion(&st->done_down);
 636}
 637
 638static int cpuhp_should_run(unsigned int cpu)
 639{
 640	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 641
 642	return st->should_run;
 643}
 644
 645/*
 646 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 647 * callbacks when a state gets [un]installed at runtime.
 648 *
 649 * Each invocation of this function by the smpboot thread does a single AP
 650 * state callback.
 651 *
 652 * It has 3 modes of operation:
 653 *  - single: runs st->cb_state
 654 *  - up:     runs ++st->state, while st->state < st->target
 655 *  - down:   runs st->state--, while st->state > st->target
 656 *
 657 * When complete or on error, should_run is cleared and the completion is fired.
 658 */
 659static void cpuhp_thread_fun(unsigned int cpu)
 660{
 661	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 662	bool bringup = st->bringup;
 663	enum cpuhp_state state;
 664
 665	if (WARN_ON_ONCE(!st->should_run))
 666		return;
 667
 668	/*
 669	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 670	 * that if we see ->should_run we also see the rest of the state.
 671	 */
 672	smp_mb();
 673
 674	/*
 675	 * The BP holds the hotplug lock, but we're now running on the AP,
 676	 * ensure that anybody asserting the lock is held, will actually find
 677	 * it so.
 678	 */
 679	lockdep_acquire_cpus_lock();
 680	cpuhp_lock_acquire(bringup);
 681
 682	if (st->single) {
 683		state = st->cb_state;
 684		st->should_run = false;
 685	} else {
 686		if (bringup) {
 687			st->state++;
 688			state = st->state;
 689			st->should_run = (st->state < st->target);
 690			WARN_ON_ONCE(st->state > st->target);
 691		} else {
 692			state = st->state;
 693			st->state--;
 694			st->should_run = (st->state > st->target);
 695			WARN_ON_ONCE(st->state < st->target);
 696		}
 697	}
 698
 699	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 700
 701	if (cpuhp_is_atomic_state(state)) {
 702		local_irq_disable();
 703		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 704		local_irq_enable();
 705
 706		/*
 707		 * STARTING/DYING must not fail!
 708		 */
 709		WARN_ON_ONCE(st->result);
 710	} else {
 711		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 712	}
 713
 714	if (st->result) {
 715		/*
 716		 * If we fail on a rollback, we're up a creek without no
 717		 * paddle, no way forward, no way back. We loose, thanks for
 718		 * playing.
 719		 */
 720		WARN_ON_ONCE(st->rollback);
 721		st->should_run = false;
 722	}
 723
 724	cpuhp_lock_release(bringup);
 725	lockdep_release_cpus_lock();
 726
 727	if (!st->should_run)
 728		complete_ap_thread(st, bringup);
 729}
 730
 731/* Invoke a single callback on a remote cpu */
 732static int
 733cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 734			 struct hlist_node *node)
 735{
 736	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 737	int ret;
 738
 739	if (!cpu_online(cpu))
 740		return 0;
 741
 742	cpuhp_lock_acquire(false);
 743	cpuhp_lock_release(false);
 744
 745	cpuhp_lock_acquire(true);
 746	cpuhp_lock_release(true);
 747
 748	/*
 749	 * If we are up and running, use the hotplug thread. For early calls
 750	 * we invoke the thread function directly.
 751	 */
 752	if (!st->thread)
 753		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 754
 755	st->rollback = false;
 756	st->last = NULL;
 757
 758	st->node = node;
 759	st->bringup = bringup;
 760	st->cb_state = state;
 761	st->single = true;
 762
 763	__cpuhp_kick_ap(st);
 764
 765	/*
 766	 * If we failed and did a partial, do a rollback.
 767	 */
 768	if ((ret = st->result) && st->last) {
 769		st->rollback = true;
 770		st->bringup = !bringup;
 771
 772		__cpuhp_kick_ap(st);
 773	}
 774
 775	/*
 776	 * Clean up the leftovers so the next hotplug operation wont use stale
 777	 * data.
 778	 */
 779	st->node = st->last = NULL;
 780	return ret;
 781}
 782
 783static int cpuhp_kick_ap_work(unsigned int cpu)
 784{
 785	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 786	enum cpuhp_state prev_state = st->state;
 787	int ret;
 788
 789	cpuhp_lock_acquire(false);
 790	cpuhp_lock_release(false);
 791
 792	cpuhp_lock_acquire(true);
 793	cpuhp_lock_release(true);
 794
 795	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 796	ret = cpuhp_kick_ap(st, st->target);
 797	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 798
 799	return ret;
 800}
 801
 802static struct smp_hotplug_thread cpuhp_threads = {
 803	.store			= &cpuhp_state.thread,
 804	.create			= &cpuhp_create,
 805	.thread_should_run	= cpuhp_should_run,
 806	.thread_fn		= cpuhp_thread_fun,
 807	.thread_comm		= "cpuhp/%u",
 808	.selfparking		= true,
 809};
 810
 811void __init cpuhp_threads_init(void)
 812{
 813	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 814	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 815}
 816
 817#ifdef CONFIG_HOTPLUG_CPU
 818/**
 819 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 820 * @cpu: a CPU id
 821 *
 822 * This function walks all processes, finds a valid mm struct for each one and
 823 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 824 * trivial, there are various non-obvious corner cases, which this function
 825 * tries to solve in a safe manner.
 826 *
 827 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 828 * be called only for an already offlined CPU.
 829 */
 830void clear_tasks_mm_cpumask(int cpu)
 831{
 832	struct task_struct *p;
 833
 834	/*
 835	 * This function is called after the cpu is taken down and marked
 836	 * offline, so its not like new tasks will ever get this cpu set in
 837	 * their mm mask. -- Peter Zijlstra
 838	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 839	 * full-fledged tasklist_lock.
 840	 */
 841	WARN_ON(cpu_online(cpu));
 842	rcu_read_lock();
 843	for_each_process(p) {
 844		struct task_struct *t;
 845
 846		/*
 847		 * Main thread might exit, but other threads may still have
 848		 * a valid mm. Find one.
 849		 */
 850		t = find_lock_task_mm(p);
 851		if (!t)
 852			continue;
 853		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 854		task_unlock(t);
 855	}
 856	rcu_read_unlock();
 857}
 858
 859/* Take this CPU down. */
 860static int take_cpu_down(void *_param)
 861{
 862	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 863	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 864	int err, cpu = smp_processor_id();
 865	int ret;
 866
 867	/* Ensure this CPU doesn't handle any more interrupts. */
 868	err = __cpu_disable();
 869	if (err < 0)
 870		return err;
 871
 872	/*
 873	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 874	 * do this step again.
 875	 */
 876	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 877	st->state--;
 878	/* Invoke the former CPU_DYING callbacks */
 879	for (; st->state > target; st->state--) {
 880		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 881		/*
 882		 * DYING must not fail!
 883		 */
 884		WARN_ON_ONCE(ret);
 885	}
 886
 887	/* Give up timekeeping duties */
 888	tick_handover_do_timer();
 889	/* Remove CPU from timer broadcasting */
 890	tick_offline_cpu(cpu);
 891	/* Park the stopper thread */
 892	stop_machine_park(cpu);
 893	return 0;
 894}
 895
 896static int takedown_cpu(unsigned int cpu)
 897{
 898	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 899	int err;
 900
 901	/* Park the smpboot threads */
 902	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 903
 904	/*
 905	 * Prevent irq alloc/free while the dying cpu reorganizes the
 906	 * interrupt affinities.
 907	 */
 908	irq_lock_sparse();
 909
 910	/*
 911	 * So now all preempt/rcu users must observe !cpu_active().
 912	 */
 913	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 914	if (err) {
 915		/* CPU refused to die */
 916		irq_unlock_sparse();
 917		/* Unpark the hotplug thread so we can rollback there */
 918		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 919		return err;
 920	}
 921	BUG_ON(cpu_online(cpu));
 922
 923	/*
 924	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 925	 * all runnable tasks from the CPU, there's only the idle task left now
 926	 * that the migration thread is done doing the stop_machine thing.
 927	 *
 928	 * Wait for the stop thread to go away.
 929	 */
 930	wait_for_ap_thread(st, false);
 931	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 932
 933	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
 934	irq_unlock_sparse();
 935
 936	hotplug_cpu__broadcast_tick_pull(cpu);
 937	/* This actually kills the CPU. */
 938	__cpu_die(cpu);
 939
 940	tick_cleanup_dead_cpu(cpu);
 941	rcutree_migrate_callbacks(cpu);
 942	return 0;
 943}
 944
 945static void cpuhp_complete_idle_dead(void *arg)
 946{
 947	struct cpuhp_cpu_state *st = arg;
 948
 949	complete_ap_thread(st, false);
 950}
 951
 952void cpuhp_report_idle_dead(void)
 953{
 954	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 955
 956	BUG_ON(st->state != CPUHP_AP_OFFLINE);
 957	rcu_report_dead(smp_processor_id());
 958	st->state = CPUHP_AP_IDLE_DEAD;
 959	/*
 960	 * We cannot call complete after rcu_report_dead() so we delegate it
 961	 * to an online cpu.
 962	 */
 963	smp_call_function_single(cpumask_first(cpu_online_mask),
 964				 cpuhp_complete_idle_dead, st, 0);
 965}
 966
 967static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 968{
 969	for (st->state++; st->state < st->target; st->state++)
 970		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 971}
 972
 973static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 974				enum cpuhp_state target)
 975{
 976	enum cpuhp_state prev_state = st->state;
 977	int ret = 0;
 978
 979	for (; st->state > target; st->state--) {
 980		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 981		if (ret) {
 982			st->target = prev_state;
 983			if (st->state < prev_state)
 984				undo_cpu_down(cpu, st);
 985			break;
 986		}
 987	}
 988	return ret;
 989}
 990
 991/* Requires cpu_add_remove_lock to be held */
 992static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 993			   enum cpuhp_state target)
 994{
 995	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 996	int prev_state, ret = 0;
 997
 998	if (num_online_cpus() == 1)
 999		return -EBUSY;
1000
1001	if (!cpu_present(cpu))
1002		return -EINVAL;
1003
1004	cpus_write_lock();
1005
1006	cpuhp_tasks_frozen = tasks_frozen;
1007
1008	prev_state = cpuhp_set_state(st, target);
1009	/*
1010	 * If the current CPU state is in the range of the AP hotplug thread,
1011	 * then we need to kick the thread.
1012	 */
1013	if (st->state > CPUHP_TEARDOWN_CPU) {
1014		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1015		ret = cpuhp_kick_ap_work(cpu);
1016		/*
1017		 * The AP side has done the error rollback already. Just
1018		 * return the error code..
1019		 */
1020		if (ret)
1021			goto out;
1022
1023		/*
1024		 * We might have stopped still in the range of the AP hotplug
1025		 * thread. Nothing to do anymore.
1026		 */
1027		if (st->state > CPUHP_TEARDOWN_CPU)
1028			goto out;
1029
1030		st->target = target;
1031	}
1032	/*
1033	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1034	 * to do the further cleanups.
1035	 */
1036	ret = cpuhp_down_callbacks(cpu, st, target);
1037	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1038		cpuhp_reset_state(st, prev_state);
1039		__cpuhp_kick_ap(st);
1040	}
1041
1042out:
1043	cpus_write_unlock();
1044	/*
1045	 * Do post unplug cleanup. This is still protected against
1046	 * concurrent CPU hotplug via cpu_add_remove_lock.
1047	 */
1048	lockup_detector_cleanup();
1049	arch_smt_update();
1050	return ret;
1051}
1052
1053static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1054{
1055	if (cpu_hotplug_disabled)
1056		return -EBUSY;
1057	return _cpu_down(cpu, 0, target);
1058}
1059
1060static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1061{
1062	int err;
1063
1064	cpu_maps_update_begin();
1065	err = cpu_down_maps_locked(cpu, target);
1066	cpu_maps_update_done();
1067	return err;
1068}
1069
1070/**
1071 * cpu_device_down - Bring down a cpu device
1072 * @dev: Pointer to the cpu device to offline
1073 *
1074 * This function is meant to be used by device core cpu subsystem only.
1075 *
1076 * Other subsystems should use remove_cpu() instead.
1077 */
1078int cpu_device_down(struct device *dev)
1079{
1080	return cpu_down(dev->id, CPUHP_OFFLINE);
1081}
1082
1083int remove_cpu(unsigned int cpu)
1084{
1085	int ret;
1086
1087	lock_device_hotplug();
1088	ret = device_offline(get_cpu_device(cpu));
1089	unlock_device_hotplug();
1090
1091	return ret;
1092}
1093EXPORT_SYMBOL_GPL(remove_cpu);
1094
1095void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1096{
1097	unsigned int cpu;
1098	int error;
1099
1100	cpu_maps_update_begin();
1101
1102	/*
1103	 * Make certain the cpu I'm about to reboot on is online.
1104	 *
1105	 * This is inline to what migrate_to_reboot_cpu() already do.
1106	 */
1107	if (!cpu_online(primary_cpu))
1108		primary_cpu = cpumask_first(cpu_online_mask);
1109
1110	for_each_online_cpu(cpu) {
1111		if (cpu == primary_cpu)
1112			continue;
1113
1114		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1115		if (error) {
1116			pr_err("Failed to offline CPU%d - error=%d",
1117				cpu, error);
1118			break;
1119		}
1120	}
1121
1122	/*
1123	 * Ensure all but the reboot CPU are offline.
1124	 */
1125	BUG_ON(num_online_cpus() > 1);
1126
1127	/*
1128	 * Make sure the CPUs won't be enabled by someone else after this
1129	 * point. Kexec will reboot to a new kernel shortly resetting
1130	 * everything along the way.
1131	 */
1132	cpu_hotplug_disabled++;
1133
1134	cpu_maps_update_done();
1135}
 
1136
1137#else
1138#define takedown_cpu		NULL
1139#endif /*CONFIG_HOTPLUG_CPU*/
1140
1141/**
1142 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1143 * @cpu: cpu that just started
1144 *
1145 * It must be called by the arch code on the new cpu, before the new cpu
1146 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1147 */
1148void notify_cpu_starting(unsigned int cpu)
1149{
1150	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1151	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1152	int ret;
1153
1154	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1155	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1156	while (st->state < target) {
1157		st->state++;
1158		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1159		/*
1160		 * STARTING must not fail!
1161		 */
1162		WARN_ON_ONCE(ret);
1163	}
1164}
1165
1166/*
1167 * Called from the idle task. Wake up the controlling task which brings the
1168 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1169 * online bringup to the hotplug thread.
1170 */
1171void cpuhp_online_idle(enum cpuhp_state state)
1172{
1173	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1174
1175	/* Happens for the boot cpu */
1176	if (state != CPUHP_AP_ONLINE_IDLE)
1177		return;
1178
1179	/*
1180	 * Unpart the stopper thread before we start the idle loop (and start
1181	 * scheduling); this ensures the stopper task is always available.
1182	 */
1183	stop_machine_unpark(smp_processor_id());
1184
1185	st->state = CPUHP_AP_ONLINE_IDLE;
1186	complete_ap_thread(st, true);
1187}
1188
1189/* Requires cpu_add_remove_lock to be held */
1190static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1191{
1192	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1193	struct task_struct *idle;
1194	int ret = 0;
1195
1196	cpus_write_lock();
1197
1198	if (!cpu_present(cpu)) {
1199		ret = -EINVAL;
1200		goto out;
1201	}
1202
1203	/*
1204	 * The caller of cpu_up() might have raced with another
1205	 * caller. Nothing to do.
1206	 */
1207	if (st->state >= target)
1208		goto out;
1209
1210	if (st->state == CPUHP_OFFLINE) {
1211		/* Let it fail before we try to bring the cpu up */
1212		idle = idle_thread_get(cpu);
1213		if (IS_ERR(idle)) {
1214			ret = PTR_ERR(idle);
1215			goto out;
1216		}
1217	}
1218
1219	cpuhp_tasks_frozen = tasks_frozen;
1220
1221	cpuhp_set_state(st, target);
1222	/*
1223	 * If the current CPU state is in the range of the AP hotplug thread,
1224	 * then we need to kick the thread once more.
1225	 */
1226	if (st->state > CPUHP_BRINGUP_CPU) {
1227		ret = cpuhp_kick_ap_work(cpu);
1228		/*
1229		 * The AP side has done the error rollback already. Just
1230		 * return the error code..
1231		 */
1232		if (ret)
1233			goto out;
1234	}
1235
1236	/*
1237	 * Try to reach the target state. We max out on the BP at
1238	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1239	 * responsible for bringing it up to the target state.
1240	 */
1241	target = min((int)target, CPUHP_BRINGUP_CPU);
1242	ret = cpuhp_up_callbacks(cpu, st, target);
1243out:
1244	cpus_write_unlock();
1245	arch_smt_update();
1246	return ret;
1247}
1248
1249static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1250{
1251	int err = 0;
1252
1253	if (!cpu_possible(cpu)) {
1254		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1255		       cpu);
1256#if defined(CONFIG_IA64)
1257		pr_err("please check additional_cpus= boot parameter\n");
1258#endif
1259		return -EINVAL;
1260	}
1261
1262	err = try_online_node(cpu_to_node(cpu));
1263	if (err)
1264		return err;
1265
1266	cpu_maps_update_begin();
1267
1268	if (cpu_hotplug_disabled) {
1269		err = -EBUSY;
1270		goto out;
1271	}
1272	if (!cpu_smt_allowed(cpu)) {
1273		err = -EPERM;
1274		goto out;
1275	}
1276
1277	err = _cpu_up(cpu, 0, target);
1278out:
1279	cpu_maps_update_done();
1280	return err;
1281}
1282
1283/**
1284 * cpu_device_up - Bring up a cpu device
1285 * @dev: Pointer to the cpu device to online
1286 *
1287 * This function is meant to be used by device core cpu subsystem only.
1288 *
1289 * Other subsystems should use add_cpu() instead.
1290 */
1291int cpu_device_up(struct device *dev)
1292{
1293	return cpu_up(dev->id, CPUHP_ONLINE);
1294}
1295
1296int add_cpu(unsigned int cpu)
1297{
1298	int ret;
1299
1300	lock_device_hotplug();
1301	ret = device_online(get_cpu_device(cpu));
1302	unlock_device_hotplug();
1303
1304	return ret;
1305}
1306EXPORT_SYMBOL_GPL(add_cpu);
1307
1308/**
1309 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1310 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1311 *
1312 * On some architectures like arm64, we can hibernate on any CPU, but on
1313 * wake up the CPU we hibernated on might be offline as a side effect of
1314 * using maxcpus= for example.
1315 */
1316int bringup_hibernate_cpu(unsigned int sleep_cpu)
1317{
1318	int ret;
1319
1320	if (!cpu_online(sleep_cpu)) {
1321		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1322		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1323		if (ret) {
1324			pr_err("Failed to bring hibernate-CPU up!\n");
1325			return ret;
1326		}
1327	}
1328	return 0;
1329}
1330
1331void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1332{
1333	unsigned int cpu;
1334
1335	for_each_present_cpu(cpu) {
1336		if (num_online_cpus() >= setup_max_cpus)
1337			break;
1338		if (!cpu_online(cpu))
1339			cpu_up(cpu, CPUHP_ONLINE);
1340	}
1341}
 
1342
1343#ifdef CONFIG_PM_SLEEP_SMP
1344static cpumask_var_t frozen_cpus;
1345
1346int freeze_secondary_cpus(int primary)
1347{
1348	int cpu, error = 0;
1349
1350	cpu_maps_update_begin();
1351	if (primary == -1) {
1352		primary = cpumask_first(cpu_online_mask);
1353		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1354			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1355	} else {
1356		if (!cpu_online(primary))
1357			primary = cpumask_first(cpu_online_mask);
1358	}
1359
1360	/*
1361	 * We take down all of the non-boot CPUs in one shot to avoid races
1362	 * with the userspace trying to use the CPU hotplug at the same time
1363	 */
1364	cpumask_clear(frozen_cpus);
1365
1366	pr_info("Disabling non-boot CPUs ...\n");
1367	for_each_online_cpu(cpu) {
1368		if (cpu == primary)
1369			continue;
1370
1371		if (pm_wakeup_pending()) {
1372			pr_info("Wakeup pending. Abort CPU freeze\n");
1373			error = -EBUSY;
1374			break;
1375		}
1376
1377		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1378		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1379		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1380		if (!error)
1381			cpumask_set_cpu(cpu, frozen_cpus);
1382		else {
1383			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1384			break;
1385		}
1386	}
1387
1388	if (!error)
1389		BUG_ON(num_online_cpus() > 1);
1390	else
1391		pr_err("Non-boot CPUs are not disabled\n");
1392
1393	/*
1394	 * Make sure the CPUs won't be enabled by someone else. We need to do
1395	 * this even in case of failure as all freeze_secondary_cpus() users are
1396	 * supposed to do thaw_secondary_cpus() on the failure path.
1397	 */
1398	cpu_hotplug_disabled++;
1399
1400	cpu_maps_update_done();
1401	return error;
1402}
1403
1404void __weak arch_thaw_secondary_cpus_begin(void)
1405{
1406}
1407
1408void __weak arch_thaw_secondary_cpus_end(void)
1409{
1410}
1411
1412void thaw_secondary_cpus(void)
1413{
1414	int cpu, error;
1415
1416	/* Allow everyone to use the CPU hotplug again */
1417	cpu_maps_update_begin();
1418	__cpu_hotplug_enable();
1419	if (cpumask_empty(frozen_cpus))
1420		goto out;
1421
1422	pr_info("Enabling non-boot CPUs ...\n");
1423
1424	arch_thaw_secondary_cpus_begin();
1425
1426	for_each_cpu(cpu, frozen_cpus) {
1427		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1428		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1429		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1430		if (!error) {
1431			pr_info("CPU%d is up\n", cpu);
1432			continue;
1433		}
1434		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1435	}
1436
1437	arch_thaw_secondary_cpus_end();
1438
1439	cpumask_clear(frozen_cpus);
1440out:
1441	cpu_maps_update_done();
1442}
1443
1444static int __init alloc_frozen_cpus(void)
1445{
1446	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1447		return -ENOMEM;
1448	return 0;
1449}
1450core_initcall(alloc_frozen_cpus);
1451
1452/*
1453 * When callbacks for CPU hotplug notifications are being executed, we must
1454 * ensure that the state of the system with respect to the tasks being frozen
1455 * or not, as reported by the notification, remains unchanged *throughout the
1456 * duration* of the execution of the callbacks.
1457 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1458 *
1459 * This synchronization is implemented by mutually excluding regular CPU
1460 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1461 * Hibernate notifications.
1462 */
1463static int
1464cpu_hotplug_pm_callback(struct notifier_block *nb,
1465			unsigned long action, void *ptr)
1466{
1467	switch (action) {
1468
1469	case PM_SUSPEND_PREPARE:
1470	case PM_HIBERNATION_PREPARE:
1471		cpu_hotplug_disable();
1472		break;
1473
1474	case PM_POST_SUSPEND:
1475	case PM_POST_HIBERNATION:
1476		cpu_hotplug_enable();
1477		break;
1478
1479	default:
1480		return NOTIFY_DONE;
1481	}
1482
1483	return NOTIFY_OK;
1484}
1485
1486
1487static int __init cpu_hotplug_pm_sync_init(void)
1488{
1489	/*
1490	 * cpu_hotplug_pm_callback has higher priority than x86
1491	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1492	 * to disable cpu hotplug to avoid cpu hotplug race.
1493	 */
1494	pm_notifier(cpu_hotplug_pm_callback, 0);
1495	return 0;
1496}
1497core_initcall(cpu_hotplug_pm_sync_init);
1498
1499#endif /* CONFIG_PM_SLEEP_SMP */
1500
1501int __boot_cpu_id;
1502
1503#endif /* CONFIG_SMP */
1504
1505/* Boot processor state steps */
1506static struct cpuhp_step cpuhp_hp_states[] = {
1507	[CPUHP_OFFLINE] = {
1508		.name			= "offline",
1509		.startup.single		= NULL,
1510		.teardown.single	= NULL,
1511	},
1512#ifdef CONFIG_SMP
1513	[CPUHP_CREATE_THREADS]= {
1514		.name			= "threads:prepare",
1515		.startup.single		= smpboot_create_threads,
1516		.teardown.single	= NULL,
1517		.cant_stop		= true,
1518	},
1519	[CPUHP_PERF_PREPARE] = {
1520		.name			= "perf:prepare",
1521		.startup.single		= perf_event_init_cpu,
1522		.teardown.single	= perf_event_exit_cpu,
1523	},
1524	[CPUHP_WORKQUEUE_PREP] = {
1525		.name			= "workqueue:prepare",
1526		.startup.single		= workqueue_prepare_cpu,
1527		.teardown.single	= NULL,
1528	},
1529	[CPUHP_HRTIMERS_PREPARE] = {
1530		.name			= "hrtimers:prepare",
1531		.startup.single		= hrtimers_prepare_cpu,
1532		.teardown.single	= hrtimers_dead_cpu,
1533	},
1534	[CPUHP_SMPCFD_PREPARE] = {
1535		.name			= "smpcfd:prepare",
1536		.startup.single		= smpcfd_prepare_cpu,
1537		.teardown.single	= smpcfd_dead_cpu,
1538	},
1539	[CPUHP_RELAY_PREPARE] = {
1540		.name			= "relay:prepare",
1541		.startup.single		= relay_prepare_cpu,
1542		.teardown.single	= NULL,
1543	},
1544	[CPUHP_SLAB_PREPARE] = {
1545		.name			= "slab:prepare",
1546		.startup.single		= slab_prepare_cpu,
1547		.teardown.single	= slab_dead_cpu,
1548	},
1549	[CPUHP_RCUTREE_PREP] = {
1550		.name			= "RCU/tree:prepare",
1551		.startup.single		= rcutree_prepare_cpu,
1552		.teardown.single	= rcutree_dead_cpu,
1553	},
1554	/*
1555	 * On the tear-down path, timers_dead_cpu() must be invoked
1556	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1557	 * otherwise a RCU stall occurs.
1558	 */
1559	[CPUHP_TIMERS_PREPARE] = {
1560		.name			= "timers:prepare",
1561		.startup.single		= timers_prepare_cpu,
1562		.teardown.single	= timers_dead_cpu,
1563	},
1564	/* Kicks the plugged cpu into life */
1565	[CPUHP_BRINGUP_CPU] = {
1566		.name			= "cpu:bringup",
1567		.startup.single		= bringup_cpu,
1568		.teardown.single	= finish_cpu,
1569		.cant_stop		= true,
1570	},
1571	/* Final state before CPU kills itself */
1572	[CPUHP_AP_IDLE_DEAD] = {
1573		.name			= "idle:dead",
1574	},
1575	/*
1576	 * Last state before CPU enters the idle loop to die. Transient state
1577	 * for synchronization.
1578	 */
1579	[CPUHP_AP_OFFLINE] = {
1580		.name			= "ap:offline",
1581		.cant_stop		= true,
1582	},
1583	/* First state is scheduler control. Interrupts are disabled */
1584	[CPUHP_AP_SCHED_STARTING] = {
1585		.name			= "sched:starting",
1586		.startup.single		= sched_cpu_starting,
1587		.teardown.single	= sched_cpu_dying,
1588	},
1589	[CPUHP_AP_RCUTREE_DYING] = {
1590		.name			= "RCU/tree:dying",
1591		.startup.single		= NULL,
1592		.teardown.single	= rcutree_dying_cpu,
1593	},
1594	[CPUHP_AP_SMPCFD_DYING] = {
1595		.name			= "smpcfd:dying",
1596		.startup.single		= NULL,
1597		.teardown.single	= smpcfd_dying_cpu,
1598	},
1599	/* Entry state on starting. Interrupts enabled from here on. Transient
1600	 * state for synchronsization */
1601	[CPUHP_AP_ONLINE] = {
1602		.name			= "ap:online",
1603	},
1604	/*
1605	 * Handled on controll processor until the plugged processor manages
1606	 * this itself.
1607	 */
1608	[CPUHP_TEARDOWN_CPU] = {
1609		.name			= "cpu:teardown",
1610		.startup.single		= NULL,
1611		.teardown.single	= takedown_cpu,
1612		.cant_stop		= true,
1613	},
1614	/* Handle smpboot threads park/unpark */
1615	[CPUHP_AP_SMPBOOT_THREADS] = {
1616		.name			= "smpboot/threads:online",
1617		.startup.single		= smpboot_unpark_threads,
1618		.teardown.single	= smpboot_park_threads,
1619	},
1620	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1621		.name			= "irq/affinity:online",
1622		.startup.single		= irq_affinity_online_cpu,
1623		.teardown.single	= NULL,
1624	},
1625	[CPUHP_AP_PERF_ONLINE] = {
1626		.name			= "perf:online",
1627		.startup.single		= perf_event_init_cpu,
1628		.teardown.single	= perf_event_exit_cpu,
1629	},
1630	[CPUHP_AP_WATCHDOG_ONLINE] = {
1631		.name			= "lockup_detector:online",
1632		.startup.single		= lockup_detector_online_cpu,
1633		.teardown.single	= lockup_detector_offline_cpu,
1634	},
1635	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1636		.name			= "workqueue:online",
1637		.startup.single		= workqueue_online_cpu,
1638		.teardown.single	= workqueue_offline_cpu,
1639	},
1640	[CPUHP_AP_RCUTREE_ONLINE] = {
1641		.name			= "RCU/tree:online",
1642		.startup.single		= rcutree_online_cpu,
1643		.teardown.single	= rcutree_offline_cpu,
1644	},
1645#endif
1646	/*
1647	 * The dynamically registered state space is here
1648	 */
1649
1650#ifdef CONFIG_SMP
1651	/* Last state is scheduler control setting the cpu active */
1652	[CPUHP_AP_ACTIVE] = {
1653		.name			= "sched:active",
1654		.startup.single		= sched_cpu_activate,
1655		.teardown.single	= sched_cpu_deactivate,
1656	},
1657#endif
1658
1659	/* CPU is fully up and running. */
1660	[CPUHP_ONLINE] = {
1661		.name			= "online",
1662		.startup.single		= NULL,
1663		.teardown.single	= NULL,
1664	},
1665};
1666
1667/* Sanity check for callbacks */
1668static int cpuhp_cb_check(enum cpuhp_state state)
1669{
1670	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1671		return -EINVAL;
1672	return 0;
1673}
1674
1675/*
1676 * Returns a free for dynamic slot assignment of the Online state. The states
1677 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1678 * by having no name assigned.
1679 */
1680static int cpuhp_reserve_state(enum cpuhp_state state)
1681{
1682	enum cpuhp_state i, end;
1683	struct cpuhp_step *step;
1684
1685	switch (state) {
1686	case CPUHP_AP_ONLINE_DYN:
1687		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1688		end = CPUHP_AP_ONLINE_DYN_END;
1689		break;
1690	case CPUHP_BP_PREPARE_DYN:
1691		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1692		end = CPUHP_BP_PREPARE_DYN_END;
1693		break;
1694	default:
1695		return -EINVAL;
1696	}
1697
1698	for (i = state; i <= end; i++, step++) {
1699		if (!step->name)
1700			return i;
1701	}
1702	WARN(1, "No more dynamic states available for CPU hotplug\n");
1703	return -ENOSPC;
1704}
1705
1706static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1707				 int (*startup)(unsigned int cpu),
1708				 int (*teardown)(unsigned int cpu),
1709				 bool multi_instance)
1710{
1711	/* (Un)Install the callbacks for further cpu hotplug operations */
1712	struct cpuhp_step *sp;
1713	int ret = 0;
1714
1715	/*
1716	 * If name is NULL, then the state gets removed.
1717	 *
1718	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1719	 * the first allocation from these dynamic ranges, so the removal
1720	 * would trigger a new allocation and clear the wrong (already
1721	 * empty) state, leaving the callbacks of the to be cleared state
1722	 * dangling, which causes wreckage on the next hotplug operation.
1723	 */
1724	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1725		     state == CPUHP_BP_PREPARE_DYN)) {
1726		ret = cpuhp_reserve_state(state);
1727		if (ret < 0)
1728			return ret;
1729		state = ret;
1730	}
1731	sp = cpuhp_get_step(state);
1732	if (name && sp->name)
1733		return -EBUSY;
1734
1735	sp->startup.single = startup;
1736	sp->teardown.single = teardown;
1737	sp->name = name;
1738	sp->multi_instance = multi_instance;
1739	INIT_HLIST_HEAD(&sp->list);
1740	return ret;
1741}
1742
1743static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1744{
1745	return cpuhp_get_step(state)->teardown.single;
1746}
1747
1748/*
1749 * Call the startup/teardown function for a step either on the AP or
1750 * on the current CPU.
1751 */
1752static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1753			    struct hlist_node *node)
1754{
1755	struct cpuhp_step *sp = cpuhp_get_step(state);
1756	int ret;
1757
1758	/*
1759	 * If there's nothing to do, we done.
1760	 * Relies on the union for multi_instance.
1761	 */
1762	if ((bringup && !sp->startup.single) ||
1763	    (!bringup && !sp->teardown.single))
1764		return 0;
1765	/*
1766	 * The non AP bound callbacks can fail on bringup. On teardown
1767	 * e.g. module removal we crash for now.
1768	 */
1769#ifdef CONFIG_SMP
1770	if (cpuhp_is_ap_state(state))
1771		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1772	else
1773		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1774#else
1775	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1776#endif
1777	BUG_ON(ret && !bringup);
1778	return ret;
1779}
1780
1781/*
1782 * Called from __cpuhp_setup_state on a recoverable failure.
1783 *
1784 * Note: The teardown callbacks for rollback are not allowed to fail!
1785 */
1786static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1787				   struct hlist_node *node)
1788{
1789	int cpu;
1790
1791	/* Roll back the already executed steps on the other cpus */
1792	for_each_present_cpu(cpu) {
1793		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1794		int cpustate = st->state;
1795
1796		if (cpu >= failedcpu)
1797			break;
1798
1799		/* Did we invoke the startup call on that cpu ? */
1800		if (cpustate >= state)
1801			cpuhp_issue_call(cpu, state, false, node);
1802	}
1803}
1804
1805int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1806					  struct hlist_node *node,
1807					  bool invoke)
1808{
1809	struct cpuhp_step *sp;
1810	int cpu;
1811	int ret;
1812
1813	lockdep_assert_cpus_held();
1814
1815	sp = cpuhp_get_step(state);
1816	if (sp->multi_instance == false)
1817		return -EINVAL;
1818
1819	mutex_lock(&cpuhp_state_mutex);
1820
1821	if (!invoke || !sp->startup.multi)
1822		goto add_node;
1823
1824	/*
1825	 * Try to call the startup callback for each present cpu
1826	 * depending on the hotplug state of the cpu.
1827	 */
1828	for_each_present_cpu(cpu) {
1829		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1830		int cpustate = st->state;
1831
1832		if (cpustate < state)
1833			continue;
1834
1835		ret = cpuhp_issue_call(cpu, state, true, node);
1836		if (ret) {
1837			if (sp->teardown.multi)
1838				cpuhp_rollback_install(cpu, state, node);
1839			goto unlock;
1840		}
1841	}
1842add_node:
1843	ret = 0;
1844	hlist_add_head(node, &sp->list);
1845unlock:
1846	mutex_unlock(&cpuhp_state_mutex);
1847	return ret;
1848}
1849
1850int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1851			       bool invoke)
1852{
1853	int ret;
1854
1855	cpus_read_lock();
1856	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1857	cpus_read_unlock();
1858	return ret;
1859}
1860EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1861
1862/**
1863 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1864 * @state:		The state to setup
1865 * @invoke:		If true, the startup function is invoked for cpus where
1866 *			cpu state >= @state
1867 * @startup:		startup callback function
1868 * @teardown:		teardown callback function
1869 * @multi_instance:	State is set up for multiple instances which get
1870 *			added afterwards.
1871 *
1872 * The caller needs to hold cpus read locked while calling this function.
1873 * Returns:
1874 *   On success:
1875 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1876 *      0 for all other states
1877 *   On failure: proper (negative) error code
1878 */
1879int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1880				   const char *name, bool invoke,
1881				   int (*startup)(unsigned int cpu),
1882				   int (*teardown)(unsigned int cpu),
1883				   bool multi_instance)
1884{
1885	int cpu, ret = 0;
1886	bool dynstate;
1887
1888	lockdep_assert_cpus_held();
1889
1890	if (cpuhp_cb_check(state) || !name)
1891		return -EINVAL;
1892
1893	mutex_lock(&cpuhp_state_mutex);
1894
1895	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1896				    multi_instance);
1897
1898	dynstate = state == CPUHP_AP_ONLINE_DYN;
1899	if (ret > 0 && dynstate) {
1900		state = ret;
1901		ret = 0;
1902	}
1903
1904	if (ret || !invoke || !startup)
1905		goto out;
1906
1907	/*
1908	 * Try to call the startup callback for each present cpu
1909	 * depending on the hotplug state of the cpu.
1910	 */
1911	for_each_present_cpu(cpu) {
1912		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1913		int cpustate = st->state;
1914
1915		if (cpustate < state)
1916			continue;
1917
1918		ret = cpuhp_issue_call(cpu, state, true, NULL);
1919		if (ret) {
1920			if (teardown)
1921				cpuhp_rollback_install(cpu, state, NULL);
1922			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1923			goto out;
1924		}
1925	}
1926out:
1927	mutex_unlock(&cpuhp_state_mutex);
1928	/*
1929	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1930	 * dynamically allocated state in case of success.
1931	 */
1932	if (!ret && dynstate)
1933		return state;
1934	return ret;
1935}
1936EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1937
1938int __cpuhp_setup_state(enum cpuhp_state state,
1939			const char *name, bool invoke,
1940			int (*startup)(unsigned int cpu),
1941			int (*teardown)(unsigned int cpu),
1942			bool multi_instance)
1943{
1944	int ret;
1945
1946	cpus_read_lock();
1947	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1948					     teardown, multi_instance);
1949	cpus_read_unlock();
1950	return ret;
1951}
1952EXPORT_SYMBOL(__cpuhp_setup_state);
1953
1954int __cpuhp_state_remove_instance(enum cpuhp_state state,
1955				  struct hlist_node *node, bool invoke)
1956{
1957	struct cpuhp_step *sp = cpuhp_get_step(state);
1958	int cpu;
1959
1960	BUG_ON(cpuhp_cb_check(state));
1961
1962	if (!sp->multi_instance)
1963		return -EINVAL;
1964
1965	cpus_read_lock();
1966	mutex_lock(&cpuhp_state_mutex);
1967
1968	if (!invoke || !cpuhp_get_teardown_cb(state))
1969		goto remove;
1970	/*
1971	 * Call the teardown callback for each present cpu depending
1972	 * on the hotplug state of the cpu. This function is not
1973	 * allowed to fail currently!
1974	 */
1975	for_each_present_cpu(cpu) {
1976		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1977		int cpustate = st->state;
1978
1979		if (cpustate >= state)
1980			cpuhp_issue_call(cpu, state, false, node);
1981	}
1982
1983remove:
1984	hlist_del(node);
1985	mutex_unlock(&cpuhp_state_mutex);
1986	cpus_read_unlock();
1987
1988	return 0;
1989}
1990EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1991
1992/**
1993 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1994 * @state:	The state to remove
1995 * @invoke:	If true, the teardown function is invoked for cpus where
1996 *		cpu state >= @state
1997 *
1998 * The caller needs to hold cpus read locked while calling this function.
1999 * The teardown callback is currently not allowed to fail. Think
2000 * about module removal!
2001 */
2002void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2003{
2004	struct cpuhp_step *sp = cpuhp_get_step(state);
2005	int cpu;
2006
2007	BUG_ON(cpuhp_cb_check(state));
2008
2009	lockdep_assert_cpus_held();
2010
2011	mutex_lock(&cpuhp_state_mutex);
2012	if (sp->multi_instance) {
2013		WARN(!hlist_empty(&sp->list),
2014		     "Error: Removing state %d which has instances left.\n",
2015		     state);
2016		goto remove;
2017	}
2018
2019	if (!invoke || !cpuhp_get_teardown_cb(state))
2020		goto remove;
2021
2022	/*
2023	 * Call the teardown callback for each present cpu depending
2024	 * on the hotplug state of the cpu. This function is not
2025	 * allowed to fail currently!
2026	 */
2027	for_each_present_cpu(cpu) {
2028		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2029		int cpustate = st->state;
2030
2031		if (cpustate >= state)
2032			cpuhp_issue_call(cpu, state, false, NULL);
2033	}
2034remove:
2035	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2036	mutex_unlock(&cpuhp_state_mutex);
2037}
2038EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2039
2040void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2041{
2042	cpus_read_lock();
2043	__cpuhp_remove_state_cpuslocked(state, invoke);
2044	cpus_read_unlock();
2045}
2046EXPORT_SYMBOL(__cpuhp_remove_state);
2047
2048#ifdef CONFIG_HOTPLUG_SMT
2049static void cpuhp_offline_cpu_device(unsigned int cpu)
2050{
2051	struct device *dev = get_cpu_device(cpu);
2052
2053	dev->offline = true;
2054	/* Tell user space about the state change */
2055	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2056}
2057
2058static void cpuhp_online_cpu_device(unsigned int cpu)
2059{
2060	struct device *dev = get_cpu_device(cpu);
2061
2062	dev->offline = false;
2063	/* Tell user space about the state change */
2064	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2065}
2066
2067int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2068{
2069	int cpu, ret = 0;
2070
2071	cpu_maps_update_begin();
2072	for_each_online_cpu(cpu) {
2073		if (topology_is_primary_thread(cpu))
2074			continue;
2075		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2076		if (ret)
2077			break;
2078		/*
2079		 * As this needs to hold the cpu maps lock it's impossible
2080		 * to call device_offline() because that ends up calling
2081		 * cpu_down() which takes cpu maps lock. cpu maps lock
2082		 * needs to be held as this might race against in kernel
2083		 * abusers of the hotplug machinery (thermal management).
2084		 *
2085		 * So nothing would update device:offline state. That would
2086		 * leave the sysfs entry stale and prevent onlining after
2087		 * smt control has been changed to 'off' again. This is
2088		 * called under the sysfs hotplug lock, so it is properly
2089		 * serialized against the regular offline usage.
2090		 */
2091		cpuhp_offline_cpu_device(cpu);
2092	}
2093	if (!ret)
2094		cpu_smt_control = ctrlval;
2095	cpu_maps_update_done();
2096	return ret;
2097}
2098
2099int cpuhp_smt_enable(void)
2100{
2101	int cpu, ret = 0;
2102
2103	cpu_maps_update_begin();
2104	cpu_smt_control = CPU_SMT_ENABLED;
2105	for_each_present_cpu(cpu) {
2106		/* Skip online CPUs and CPUs on offline nodes */
2107		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2108			continue;
2109		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2110		if (ret)
2111			break;
2112		/* See comment in cpuhp_smt_disable() */
2113		cpuhp_online_cpu_device(cpu);
2114	}
2115	cpu_maps_update_done();
2116	return ret;
2117}
2118#endif
2119
2120#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2121static ssize_t show_cpuhp_state(struct device *dev,
2122				struct device_attribute *attr, char *buf)
2123{
2124	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2125
2126	return sprintf(buf, "%d\n", st->state);
2127}
2128static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2129
2130static ssize_t write_cpuhp_target(struct device *dev,
2131				  struct device_attribute *attr,
2132				  const char *buf, size_t count)
2133{
2134	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2135	struct cpuhp_step *sp;
2136	int target, ret;
2137
2138	ret = kstrtoint(buf, 10, &target);
2139	if (ret)
2140		return ret;
2141
2142#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2143	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2144		return -EINVAL;
2145#else
2146	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2147		return -EINVAL;
2148#endif
2149
2150	ret = lock_device_hotplug_sysfs();
2151	if (ret)
2152		return ret;
2153
2154	mutex_lock(&cpuhp_state_mutex);
2155	sp = cpuhp_get_step(target);
2156	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2157	mutex_unlock(&cpuhp_state_mutex);
2158	if (ret)
2159		goto out;
2160
2161	if (st->state < target)
2162		ret = cpu_up(dev->id, target);
2163	else
2164		ret = cpu_down(dev->id, target);
2165out:
2166	unlock_device_hotplug();
2167	return ret ? ret : count;
2168}
2169
2170static ssize_t show_cpuhp_target(struct device *dev,
2171				 struct device_attribute *attr, char *buf)
2172{
2173	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2174
2175	return sprintf(buf, "%d\n", st->target);
2176}
2177static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2178
2179
2180static ssize_t write_cpuhp_fail(struct device *dev,
2181				struct device_attribute *attr,
2182				const char *buf, size_t count)
2183{
2184	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2185	struct cpuhp_step *sp;
2186	int fail, ret;
2187
2188	ret = kstrtoint(buf, 10, &fail);
2189	if (ret)
2190		return ret;
2191
2192	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2193		return -EINVAL;
2194
2195	/*
2196	 * Cannot fail STARTING/DYING callbacks.
2197	 */
2198	if (cpuhp_is_atomic_state(fail))
2199		return -EINVAL;
2200
2201	/*
2202	 * Cannot fail anything that doesn't have callbacks.
2203	 */
2204	mutex_lock(&cpuhp_state_mutex);
2205	sp = cpuhp_get_step(fail);
2206	if (!sp->startup.single && !sp->teardown.single)
2207		ret = -EINVAL;
2208	mutex_unlock(&cpuhp_state_mutex);
2209	if (ret)
2210		return ret;
2211
2212	st->fail = fail;
2213
2214	return count;
2215}
2216
2217static ssize_t show_cpuhp_fail(struct device *dev,
2218			       struct device_attribute *attr, char *buf)
2219{
2220	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2221
2222	return sprintf(buf, "%d\n", st->fail);
2223}
2224
2225static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2226
2227static struct attribute *cpuhp_cpu_attrs[] = {
2228	&dev_attr_state.attr,
2229	&dev_attr_target.attr,
2230	&dev_attr_fail.attr,
2231	NULL
2232};
2233
2234static const struct attribute_group cpuhp_cpu_attr_group = {
2235	.attrs = cpuhp_cpu_attrs,
2236	.name = "hotplug",
2237	NULL
2238};
2239
2240static ssize_t show_cpuhp_states(struct device *dev,
2241				 struct device_attribute *attr, char *buf)
2242{
2243	ssize_t cur, res = 0;
2244	int i;
2245
2246	mutex_lock(&cpuhp_state_mutex);
2247	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2248		struct cpuhp_step *sp = cpuhp_get_step(i);
2249
2250		if (sp->name) {
2251			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2252			buf += cur;
2253			res += cur;
2254		}
2255	}
2256	mutex_unlock(&cpuhp_state_mutex);
2257	return res;
2258}
2259static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2260
2261static struct attribute *cpuhp_cpu_root_attrs[] = {
2262	&dev_attr_states.attr,
2263	NULL
2264};
2265
2266static const struct attribute_group cpuhp_cpu_root_attr_group = {
2267	.attrs = cpuhp_cpu_root_attrs,
2268	.name = "hotplug",
2269	NULL
2270};
2271
2272#ifdef CONFIG_HOTPLUG_SMT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2273
2274static ssize_t
2275__store_smt_control(struct device *dev, struct device_attribute *attr,
2276		    const char *buf, size_t count)
2277{
2278	int ctrlval, ret;
2279
2280	if (sysfs_streq(buf, "on"))
2281		ctrlval = CPU_SMT_ENABLED;
2282	else if (sysfs_streq(buf, "off"))
2283		ctrlval = CPU_SMT_DISABLED;
2284	else if (sysfs_streq(buf, "forceoff"))
2285		ctrlval = CPU_SMT_FORCE_DISABLED;
2286	else
2287		return -EINVAL;
2288
2289	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2290		return -EPERM;
2291
2292	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2293		return -ENODEV;
2294
2295	ret = lock_device_hotplug_sysfs();
2296	if (ret)
2297		return ret;
2298
2299	if (ctrlval != cpu_smt_control) {
2300		switch (ctrlval) {
2301		case CPU_SMT_ENABLED:
2302			ret = cpuhp_smt_enable();
2303			break;
2304		case CPU_SMT_DISABLED:
2305		case CPU_SMT_FORCE_DISABLED:
2306			ret = cpuhp_smt_disable(ctrlval);
2307			break;
2308		}
2309	}
2310
2311	unlock_device_hotplug();
2312	return ret ? ret : count;
2313}
2314
2315#else /* !CONFIG_HOTPLUG_SMT */
2316static ssize_t
2317__store_smt_control(struct device *dev, struct device_attribute *attr,
2318		    const char *buf, size_t count)
2319{
2320	return -ENODEV;
2321}
2322#endif /* CONFIG_HOTPLUG_SMT */
2323
2324static const char *smt_states[] = {
2325	[CPU_SMT_ENABLED]		= "on",
2326	[CPU_SMT_DISABLED]		= "off",
2327	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2328	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2329	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2330};
2331
2332static ssize_t
2333show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2334{
2335	const char *state = smt_states[cpu_smt_control];
2336
2337	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2338}
2339
2340static ssize_t
2341store_smt_control(struct device *dev, struct device_attribute *attr,
2342		  const char *buf, size_t count)
2343{
2344	return __store_smt_control(dev, attr, buf, count);
2345}
2346static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2347
2348static ssize_t
2349show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2350{
2351	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2352}
2353static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2354
2355static struct attribute *cpuhp_smt_attrs[] = {
2356	&dev_attr_control.attr,
2357	&dev_attr_active.attr,
2358	NULL
2359};
2360
2361static const struct attribute_group cpuhp_smt_attr_group = {
2362	.attrs = cpuhp_smt_attrs,
2363	.name = "smt",
2364	NULL
2365};
2366
2367static int __init cpu_smt_sysfs_init(void)
2368{
2369	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2370				  &cpuhp_smt_attr_group);
2371}
2372
2373static int __init cpuhp_sysfs_init(void)
2374{
2375	int cpu, ret;
2376
2377	ret = cpu_smt_sysfs_init();
2378	if (ret)
2379		return ret;
2380
2381	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2382				 &cpuhp_cpu_root_attr_group);
2383	if (ret)
2384		return ret;
2385
2386	for_each_possible_cpu(cpu) {
2387		struct device *dev = get_cpu_device(cpu);
2388
2389		if (!dev)
2390			continue;
2391		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2392		if (ret)
2393			return ret;
2394	}
2395	return 0;
2396}
2397device_initcall(cpuhp_sysfs_init);
2398#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2399
2400/*
2401 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2402 * represents all NR_CPUS bits binary values of 1<<nr.
2403 *
2404 * It is used by cpumask_of() to get a constant address to a CPU
2405 * mask value that has a single bit set only.
2406 */
2407
2408/* cpu_bit_bitmap[0] is empty - so we can back into it */
2409#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2410#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2411#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2412#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2413
2414const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2415
2416	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2417	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2418#if BITS_PER_LONG > 32
2419	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2420	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2421#endif
2422};
2423EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2424
2425const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2426EXPORT_SYMBOL(cpu_all_bits);
2427
2428#ifdef CONFIG_INIT_ALL_POSSIBLE
2429struct cpumask __cpu_possible_mask __read_mostly
2430	= {CPU_BITS_ALL};
2431#else
2432struct cpumask __cpu_possible_mask __read_mostly;
2433#endif
2434EXPORT_SYMBOL(__cpu_possible_mask);
2435
2436struct cpumask __cpu_online_mask __read_mostly;
2437EXPORT_SYMBOL(__cpu_online_mask);
2438
2439struct cpumask __cpu_present_mask __read_mostly;
2440EXPORT_SYMBOL(__cpu_present_mask);
2441
2442struct cpumask __cpu_active_mask __read_mostly;
2443EXPORT_SYMBOL(__cpu_active_mask);
2444
2445atomic_t __num_online_cpus __read_mostly;
2446EXPORT_SYMBOL(__num_online_cpus);
2447
2448void init_cpu_present(const struct cpumask *src)
2449{
2450	cpumask_copy(&__cpu_present_mask, src);
2451}
2452
2453void init_cpu_possible(const struct cpumask *src)
2454{
2455	cpumask_copy(&__cpu_possible_mask, src);
2456}
2457
2458void init_cpu_online(const struct cpumask *src)
2459{
2460	cpumask_copy(&__cpu_online_mask, src);
2461}
2462
2463void set_cpu_online(unsigned int cpu, bool online)
2464{
2465	/*
2466	 * atomic_inc/dec() is required to handle the horrid abuse of this
2467	 * function by the reboot and kexec code which invoke it from
2468	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2469	 * regular CPU hotplug is properly serialized.
2470	 *
2471	 * Note, that the fact that __num_online_cpus is of type atomic_t
2472	 * does not protect readers which are not serialized against
2473	 * concurrent hotplug operations.
2474	 */
2475	if (online) {
2476		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2477			atomic_inc(&__num_online_cpus);
2478	} else {
2479		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2480			atomic_dec(&__num_online_cpus);
2481	}
2482}
2483
2484/*
2485 * Activate the first processor.
2486 */
2487void __init boot_cpu_init(void)
2488{
2489	int cpu = smp_processor_id();
2490
2491	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2492	set_cpu_online(cpu, true);
2493	set_cpu_active(cpu, true);
2494	set_cpu_present(cpu, true);
2495	set_cpu_possible(cpu, true);
2496
2497#ifdef CONFIG_SMP
2498	__boot_cpu_id = cpu;
2499#endif
2500}
2501
2502/*
2503 * Must be called _AFTER_ setting up the per_cpu areas
2504 */
2505void __init boot_cpu_hotplug_init(void)
2506{
2507#ifdef CONFIG_SMP
2508	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2509#endif
2510	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2511}
2512
2513/*
2514 * These are used for a global "mitigations=" cmdline option for toggling
2515 * optional CPU mitigations.
2516 */
2517enum cpu_mitigations {
2518	CPU_MITIGATIONS_OFF,
2519	CPU_MITIGATIONS_AUTO,
2520	CPU_MITIGATIONS_AUTO_NOSMT,
2521};
2522
2523static enum cpu_mitigations cpu_mitigations __ro_after_init =
2524	CPU_MITIGATIONS_AUTO;
2525
2526static int __init mitigations_parse_cmdline(char *arg)
2527{
2528	if (!strcmp(arg, "off"))
2529		cpu_mitigations = CPU_MITIGATIONS_OFF;
2530	else if (!strcmp(arg, "auto"))
2531		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2532	else if (!strcmp(arg, "auto,nosmt"))
2533		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2534	else
2535		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2536			arg);
2537
2538	return 0;
2539}
2540early_param("mitigations", mitigations_parse_cmdline);
2541
2542/* mitigations=off */
2543bool cpu_mitigations_off(void)
2544{
2545	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2546}
2547EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2548
2549/* mitigations=auto,nosmt */
2550bool cpu_mitigations_auto_nosmt(void)
2551{
2552	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2553}
2554EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);