Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include "audit.h"
   3#include <linux/fsnotify_backend.h>
   4#include <linux/namei.h>
   5#include <linux/mount.h>
   6#include <linux/kthread.h>
   7#include <linux/refcount.h>
   8#include <linux/slab.h>
   9
  10struct audit_tree;
  11struct audit_chunk;
  12
  13struct audit_tree {
  14	refcount_t count;
  15	int goner;
  16	struct audit_chunk *root;
  17	struct list_head chunks;
  18	struct list_head rules;
  19	struct list_head list;
  20	struct list_head same_root;
  21	struct rcu_head head;
  22	char pathname[];
  23};
  24
  25struct audit_chunk {
  26	struct list_head hash;
  27	unsigned long key;
  28	struct fsnotify_mark *mark;
  29	struct list_head trees;		/* with root here */
  30	int count;
  31	atomic_long_t refs;
  32	struct rcu_head head;
  33	struct node {
  34		struct list_head list;
  35		struct audit_tree *owner;
  36		unsigned index;		/* index; upper bit indicates 'will prune' */
  37	} owners[];
  38};
  39
  40struct audit_tree_mark {
  41	struct fsnotify_mark mark;
  42	struct audit_chunk *chunk;
  43};
  44
  45static LIST_HEAD(tree_list);
  46static LIST_HEAD(prune_list);
  47static struct task_struct *prune_thread;
  48
  49/*
  50 * One struct chunk is attached to each inode of interest through
  51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
  52 * untagging, the mark is stable as long as there is chunk attached. The
  53 * association between mark and chunk is protected by hash_lock and
  54 * audit_tree_group->mark_mutex. Thus as long as we hold
  55 * audit_tree_group->mark_mutex and check that the mark is alive by
  56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
  57 * the current chunk.
  58 *
  59 * Rules have pointer to struct audit_tree.
  60 * Rules have struct list_head rlist forming a list of rules over
  61 * the same tree.
  62 * References to struct chunk are collected at audit_inode{,_child}()
  63 * time and used in AUDIT_TREE rule matching.
  64 * These references are dropped at the same time we are calling
  65 * audit_free_names(), etc.
  66 *
  67 * Cyclic lists galore:
  68 * tree.chunks anchors chunk.owners[].list			hash_lock
  69 * tree.rules anchors rule.rlist				audit_filter_mutex
  70 * chunk.trees anchors tree.same_root				hash_lock
  71 * chunk.hash is a hash with middle bits of watch.inode as
  72 * a hash function.						RCU, hash_lock
  73 *
  74 * tree is refcounted; one reference for "some rules on rules_list refer to
  75 * it", one for each chunk with pointer to it.
  76 *
  77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
  78 * one chunk reference. This reference is dropped either when a mark is going
  79 * to be freed (corresponding inode goes away) or when chunk attached to the
  80 * mark gets replaced. This reference must be dropped using
  81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
  82 * grace period as it protects RCU readers of the hash table.
  83 *
  84 * node.index allows to get from node.list to containing chunk.
  85 * MSB of that sucker is stolen to mark taggings that we might have to
  86 * revert - several operations have very unpleasant cleanup logics and
  87 * that makes a difference.  Some.
  88 */
  89
  90static struct fsnotify_group *audit_tree_group;
  91static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
  92
  93static struct audit_tree *alloc_tree(const char *s)
  94{
  95	struct audit_tree *tree;
  96
  97	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
  98	if (tree) {
  99		refcount_set(&tree->count, 1);
 100		tree->goner = 0;
 101		INIT_LIST_HEAD(&tree->chunks);
 102		INIT_LIST_HEAD(&tree->rules);
 103		INIT_LIST_HEAD(&tree->list);
 104		INIT_LIST_HEAD(&tree->same_root);
 105		tree->root = NULL;
 106		strcpy(tree->pathname, s);
 107	}
 108	return tree;
 109}
 110
 111static inline void get_tree(struct audit_tree *tree)
 112{
 113	refcount_inc(&tree->count);
 114}
 115
 116static inline void put_tree(struct audit_tree *tree)
 117{
 118	if (refcount_dec_and_test(&tree->count))
 119		kfree_rcu(tree, head);
 120}
 121
 122/* to avoid bringing the entire thing in audit.h */
 123const char *audit_tree_path(struct audit_tree *tree)
 124{
 125	return tree->pathname;
 126}
 127
 128static void free_chunk(struct audit_chunk *chunk)
 129{
 130	int i;
 131
 132	for (i = 0; i < chunk->count; i++) {
 133		if (chunk->owners[i].owner)
 134			put_tree(chunk->owners[i].owner);
 135	}
 136	kfree(chunk);
 137}
 138
 139void audit_put_chunk(struct audit_chunk *chunk)
 140{
 141	if (atomic_long_dec_and_test(&chunk->refs))
 142		free_chunk(chunk);
 143}
 144
 145static void __put_chunk(struct rcu_head *rcu)
 146{
 147	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
 148	audit_put_chunk(chunk);
 149}
 150
 151/*
 152 * Drop reference to the chunk that was held by the mark. This is the reference
 153 * that gets dropped after we've removed the chunk from the hash table and we
 154 * use it to make sure chunk cannot be freed before RCU grace period expires.
 155 */
 156static void audit_mark_put_chunk(struct audit_chunk *chunk)
 157{
 158	call_rcu(&chunk->head, __put_chunk);
 159}
 160
 161static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
 162{
 163	return container_of(mark, struct audit_tree_mark, mark);
 164}
 165
 166static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
 167{
 168	return audit_mark(mark)->chunk;
 169}
 170
 171static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
 172{
 173	kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
 174}
 175
 176static struct fsnotify_mark *alloc_mark(void)
 177{
 178	struct audit_tree_mark *amark;
 179
 180	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
 181	if (!amark)
 182		return NULL;
 183	fsnotify_init_mark(&amark->mark, audit_tree_group);
 184	amark->mark.mask = FS_IN_IGNORED;
 185	return &amark->mark;
 186}
 187
 188static struct audit_chunk *alloc_chunk(int count)
 189{
 190	struct audit_chunk *chunk;
 191	size_t size;
 192	int i;
 193
 194	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
 195	chunk = kzalloc(size, GFP_KERNEL);
 196	if (!chunk)
 197		return NULL;
 198
 199	INIT_LIST_HEAD(&chunk->hash);
 200	INIT_LIST_HEAD(&chunk->trees);
 201	chunk->count = count;
 202	atomic_long_set(&chunk->refs, 1);
 203	for (i = 0; i < count; i++) {
 204		INIT_LIST_HEAD(&chunk->owners[i].list);
 205		chunk->owners[i].index = i;
 206	}
 207	return chunk;
 208}
 209
 210enum {HASH_SIZE = 128};
 211static struct list_head chunk_hash_heads[HASH_SIZE];
 212static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
 213
 214/* Function to return search key in our hash from inode. */
 215static unsigned long inode_to_key(const struct inode *inode)
 216{
 217	/* Use address pointed to by connector->obj as the key */
 218	return (unsigned long)&inode->i_fsnotify_marks;
 219}
 220
 221static inline struct list_head *chunk_hash(unsigned long key)
 222{
 223	unsigned long n = key / L1_CACHE_BYTES;
 224	return chunk_hash_heads + n % HASH_SIZE;
 225}
 226
 227/* hash_lock & mark->group->mark_mutex is held by caller */
 228static void insert_hash(struct audit_chunk *chunk)
 229{
 230	struct list_head *list;
 231
 232	/*
 233	 * Make sure chunk is fully initialized before making it visible in the
 234	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
 235	 * audit_tree_lookup().
 236	 */
 237	smp_wmb();
 238	WARN_ON_ONCE(!chunk->key);
 239	list = chunk_hash(chunk->key);
 240	list_add_rcu(&chunk->hash, list);
 241}
 242
 243/* called under rcu_read_lock */
 244struct audit_chunk *audit_tree_lookup(const struct inode *inode)
 245{
 246	unsigned long key = inode_to_key(inode);
 247	struct list_head *list = chunk_hash(key);
 248	struct audit_chunk *p;
 249
 250	list_for_each_entry_rcu(p, list, hash) {
 251		/*
 252		 * We use a data dependency barrier in READ_ONCE() to make sure
 253		 * the chunk we see is fully initialized.
 254		 */
 255		if (READ_ONCE(p->key) == key) {
 256			atomic_long_inc(&p->refs);
 257			return p;
 258		}
 259	}
 260	return NULL;
 261}
 262
 263bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
 264{
 265	int n;
 266	for (n = 0; n < chunk->count; n++)
 267		if (chunk->owners[n].owner == tree)
 268			return true;
 269	return false;
 270}
 271
 272/* tagging and untagging inodes with trees */
 273
 274static struct audit_chunk *find_chunk(struct node *p)
 275{
 276	int index = p->index & ~(1U<<31);
 277	p -= index;
 278	return container_of(p, struct audit_chunk, owners[0]);
 279}
 280
 281static void replace_mark_chunk(struct fsnotify_mark *mark,
 282			       struct audit_chunk *chunk)
 283{
 284	struct audit_chunk *old;
 285
 286	assert_spin_locked(&hash_lock);
 287	old = mark_chunk(mark);
 288	audit_mark(mark)->chunk = chunk;
 289	if (chunk)
 290		chunk->mark = mark;
 291	if (old)
 292		old->mark = NULL;
 293}
 294
 295static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
 296{
 297	struct audit_tree *owner;
 298	int i, j;
 299
 300	new->key = old->key;
 301	list_splice_init(&old->trees, &new->trees);
 302	list_for_each_entry(owner, &new->trees, same_root)
 303		owner->root = new;
 304	for (i = j = 0; j < old->count; i++, j++) {
 305		if (!old->owners[j].owner) {
 306			i--;
 307			continue;
 308		}
 309		owner = old->owners[j].owner;
 310		new->owners[i].owner = owner;
 311		new->owners[i].index = old->owners[j].index - j + i;
 312		if (!owner) /* result of earlier fallback */
 313			continue;
 314		get_tree(owner);
 315		list_replace_init(&old->owners[j].list, &new->owners[i].list);
 316	}
 317	replace_mark_chunk(old->mark, new);
 318	/*
 319	 * Make sure chunk is fully initialized before making it visible in the
 320	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
 321	 * audit_tree_lookup().
 322	 */
 323	smp_wmb();
 324	list_replace_rcu(&old->hash, &new->hash);
 325}
 326
 327static void remove_chunk_node(struct audit_chunk *chunk, struct node *p)
 328{
 329	struct audit_tree *owner = p->owner;
 330
 331	if (owner->root == chunk) {
 332		list_del_init(&owner->same_root);
 333		owner->root = NULL;
 334	}
 335	list_del_init(&p->list);
 336	p->owner = NULL;
 337	put_tree(owner);
 338}
 339
 340static int chunk_count_trees(struct audit_chunk *chunk)
 341{
 342	int i;
 343	int ret = 0;
 344
 345	for (i = 0; i < chunk->count; i++)
 346		if (chunk->owners[i].owner)
 347			ret++;
 348	return ret;
 349}
 350
 351static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
 352{
 353	struct audit_chunk *new;
 354	int size;
 355
 356	mutex_lock(&audit_tree_group->mark_mutex);
 357	/*
 358	 * mark_mutex stabilizes chunk attached to the mark so we can check
 359	 * whether it didn't change while we've dropped hash_lock.
 360	 */
 361	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
 362	    mark_chunk(mark) != chunk)
 363		goto out_mutex;
 364
 365	size = chunk_count_trees(chunk);
 366	if (!size) {
 367		spin_lock(&hash_lock);
 368		list_del_init(&chunk->trees);
 369		list_del_rcu(&chunk->hash);
 370		replace_mark_chunk(mark, NULL);
 371		spin_unlock(&hash_lock);
 372		fsnotify_detach_mark(mark);
 373		mutex_unlock(&audit_tree_group->mark_mutex);
 374		audit_mark_put_chunk(chunk);
 375		fsnotify_free_mark(mark);
 376		return;
 377	}
 378
 379	new = alloc_chunk(size);
 380	if (!new)
 381		goto out_mutex;
 382
 383	spin_lock(&hash_lock);
 384	/*
 385	 * This has to go last when updating chunk as once replace_chunk() is
 386	 * called, new RCU readers can see the new chunk.
 387	 */
 388	replace_chunk(new, chunk);
 389	spin_unlock(&hash_lock);
 390	mutex_unlock(&audit_tree_group->mark_mutex);
 391	audit_mark_put_chunk(chunk);
 392	return;
 393
 394out_mutex:
 395	mutex_unlock(&audit_tree_group->mark_mutex);
 396}
 397
 398/* Call with group->mark_mutex held, releases it */
 399static int create_chunk(struct inode *inode, struct audit_tree *tree)
 400{
 401	struct fsnotify_mark *mark;
 402	struct audit_chunk *chunk = alloc_chunk(1);
 403
 404	if (!chunk) {
 405		mutex_unlock(&audit_tree_group->mark_mutex);
 406		return -ENOMEM;
 407	}
 408
 409	mark = alloc_mark();
 410	if (!mark) {
 411		mutex_unlock(&audit_tree_group->mark_mutex);
 412		kfree(chunk);
 413		return -ENOMEM;
 414	}
 415
 416	if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
 417		mutex_unlock(&audit_tree_group->mark_mutex);
 418		fsnotify_put_mark(mark);
 419		kfree(chunk);
 420		return -ENOSPC;
 421	}
 422
 423	spin_lock(&hash_lock);
 424	if (tree->goner) {
 425		spin_unlock(&hash_lock);
 426		fsnotify_detach_mark(mark);
 427		mutex_unlock(&audit_tree_group->mark_mutex);
 428		fsnotify_free_mark(mark);
 429		fsnotify_put_mark(mark);
 430		kfree(chunk);
 431		return 0;
 432	}
 433	replace_mark_chunk(mark, chunk);
 434	chunk->owners[0].index = (1U << 31);
 435	chunk->owners[0].owner = tree;
 436	get_tree(tree);
 437	list_add(&chunk->owners[0].list, &tree->chunks);
 438	if (!tree->root) {
 439		tree->root = chunk;
 440		list_add(&tree->same_root, &chunk->trees);
 441	}
 442	chunk->key = inode_to_key(inode);
 443	/*
 444	 * Inserting into the hash table has to go last as once we do that RCU
 445	 * readers can see the chunk.
 446	 */
 447	insert_hash(chunk);
 448	spin_unlock(&hash_lock);
 449	mutex_unlock(&audit_tree_group->mark_mutex);
 450	/*
 451	 * Drop our initial reference. When mark we point to is getting freed,
 452	 * we get notification through ->freeing_mark callback and cleanup
 453	 * chunk pointing to this mark.
 454	 */
 455	fsnotify_put_mark(mark);
 456	return 0;
 457}
 458
 459/* the first tagged inode becomes root of tree */
 460static int tag_chunk(struct inode *inode, struct audit_tree *tree)
 461{
 462	struct fsnotify_mark *mark;
 463	struct audit_chunk *chunk, *old;
 464	struct node *p;
 465	int n;
 466
 467	mutex_lock(&audit_tree_group->mark_mutex);
 468	mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
 469	if (!mark)
 470		return create_chunk(inode, tree);
 471
 472	/*
 473	 * Found mark is guaranteed to be attached and mark_mutex protects mark
 474	 * from getting detached and thus it makes sure there is chunk attached
 475	 * to the mark.
 476	 */
 477	/* are we already there? */
 478	spin_lock(&hash_lock);
 479	old = mark_chunk(mark);
 480	for (n = 0; n < old->count; n++) {
 481		if (old->owners[n].owner == tree) {
 482			spin_unlock(&hash_lock);
 483			mutex_unlock(&audit_tree_group->mark_mutex);
 484			fsnotify_put_mark(mark);
 485			return 0;
 486		}
 487	}
 488	spin_unlock(&hash_lock);
 489
 490	chunk = alloc_chunk(old->count + 1);
 491	if (!chunk) {
 492		mutex_unlock(&audit_tree_group->mark_mutex);
 493		fsnotify_put_mark(mark);
 494		return -ENOMEM;
 495	}
 496
 497	spin_lock(&hash_lock);
 498	if (tree->goner) {
 499		spin_unlock(&hash_lock);
 500		mutex_unlock(&audit_tree_group->mark_mutex);
 501		fsnotify_put_mark(mark);
 502		kfree(chunk);
 503		return 0;
 504	}
 505	p = &chunk->owners[chunk->count - 1];
 506	p->index = (chunk->count - 1) | (1U<<31);
 507	p->owner = tree;
 508	get_tree(tree);
 509	list_add(&p->list, &tree->chunks);
 510	if (!tree->root) {
 511		tree->root = chunk;
 512		list_add(&tree->same_root, &chunk->trees);
 513	}
 514	/*
 515	 * This has to go last when updating chunk as once replace_chunk() is
 516	 * called, new RCU readers can see the new chunk.
 517	 */
 518	replace_chunk(chunk, old);
 519	spin_unlock(&hash_lock);
 520	mutex_unlock(&audit_tree_group->mark_mutex);
 521	fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
 522	audit_mark_put_chunk(old);
 523
 524	return 0;
 525}
 526
 527static void audit_tree_log_remove_rule(struct audit_context *context,
 528				       struct audit_krule *rule)
 529{
 530	struct audit_buffer *ab;
 531
 532	if (!audit_enabled)
 533		return;
 534	ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 535	if (unlikely(!ab))
 536		return;
 537	audit_log_format(ab, "op=remove_rule dir=");
 538	audit_log_untrustedstring(ab, rule->tree->pathname);
 539	audit_log_key(ab, rule->filterkey);
 540	audit_log_format(ab, " list=%d res=1", rule->listnr);
 541	audit_log_end(ab);
 542}
 543
 544static void kill_rules(struct audit_context *context, struct audit_tree *tree)
 545{
 546	struct audit_krule *rule, *next;
 547	struct audit_entry *entry;
 548
 549	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
 550		entry = container_of(rule, struct audit_entry, rule);
 551
 552		list_del_init(&rule->rlist);
 553		if (rule->tree) {
 554			/* not a half-baked one */
 555			audit_tree_log_remove_rule(context, rule);
 556			if (entry->rule.exe)
 557				audit_remove_mark(entry->rule.exe);
 558			rule->tree = NULL;
 559			list_del_rcu(&entry->list);
 560			list_del(&entry->rule.list);
 561			call_rcu(&entry->rcu, audit_free_rule_rcu);
 562		}
 563	}
 564}
 565
 566/*
 567 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
 568 * chunks. The function expects tagged chunks are all at the beginning of the
 569 * chunks list.
 570 */
 571static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
 572{
 573	spin_lock(&hash_lock);
 574	while (!list_empty(&victim->chunks)) {
 575		struct node *p;
 576		struct audit_chunk *chunk;
 577		struct fsnotify_mark *mark;
 578
 579		p = list_first_entry(&victim->chunks, struct node, list);
 580		/* have we run out of marked? */
 581		if (tagged && !(p->index & (1U<<31)))
 582			break;
 583		chunk = find_chunk(p);
 584		mark = chunk->mark;
 585		remove_chunk_node(chunk, p);
 586		/* Racing with audit_tree_freeing_mark()? */
 587		if (!mark)
 588			continue;
 589		fsnotify_get_mark(mark);
 590		spin_unlock(&hash_lock);
 591
 592		untag_chunk(chunk, mark);
 593		fsnotify_put_mark(mark);
 594
 595		spin_lock(&hash_lock);
 596	}
 597	spin_unlock(&hash_lock);
 598	put_tree(victim);
 599}
 600
 601/*
 602 * finish killing struct audit_tree
 603 */
 604static void prune_one(struct audit_tree *victim)
 605{
 606	prune_tree_chunks(victim, false);
 607}
 608
 609/* trim the uncommitted chunks from tree */
 610
 611static void trim_marked(struct audit_tree *tree)
 612{
 613	struct list_head *p, *q;
 614	spin_lock(&hash_lock);
 615	if (tree->goner) {
 616		spin_unlock(&hash_lock);
 617		return;
 618	}
 619	/* reorder */
 620	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
 621		struct node *node = list_entry(p, struct node, list);
 622		q = p->next;
 623		if (node->index & (1U<<31)) {
 624			list_del_init(p);
 625			list_add(p, &tree->chunks);
 626		}
 627	}
 628	spin_unlock(&hash_lock);
 629
 630	prune_tree_chunks(tree, true);
 631
 632	spin_lock(&hash_lock);
 633	if (!tree->root && !tree->goner) {
 634		tree->goner = 1;
 635		spin_unlock(&hash_lock);
 636		mutex_lock(&audit_filter_mutex);
 637		kill_rules(audit_context(), tree);
 638		list_del_init(&tree->list);
 639		mutex_unlock(&audit_filter_mutex);
 640		prune_one(tree);
 641	} else {
 642		spin_unlock(&hash_lock);
 643	}
 644}
 645
 646static void audit_schedule_prune(void);
 647
 648/* called with audit_filter_mutex */
 649int audit_remove_tree_rule(struct audit_krule *rule)
 650{
 651	struct audit_tree *tree;
 652	tree = rule->tree;
 653	if (tree) {
 654		spin_lock(&hash_lock);
 655		list_del_init(&rule->rlist);
 656		if (list_empty(&tree->rules) && !tree->goner) {
 657			tree->root = NULL;
 658			list_del_init(&tree->same_root);
 659			tree->goner = 1;
 660			list_move(&tree->list, &prune_list);
 661			rule->tree = NULL;
 662			spin_unlock(&hash_lock);
 663			audit_schedule_prune();
 664			return 1;
 665		}
 666		rule->tree = NULL;
 667		spin_unlock(&hash_lock);
 668		return 1;
 669	}
 670	return 0;
 671}
 672
 673static int compare_root(struct vfsmount *mnt, void *arg)
 674{
 675	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
 676	       (unsigned long)arg;
 677}
 678
 679void audit_trim_trees(void)
 680{
 681	struct list_head cursor;
 682
 683	mutex_lock(&audit_filter_mutex);
 684	list_add(&cursor, &tree_list);
 685	while (cursor.next != &tree_list) {
 686		struct audit_tree *tree;
 687		struct path path;
 688		struct vfsmount *root_mnt;
 689		struct node *node;
 690		int err;
 691
 692		tree = container_of(cursor.next, struct audit_tree, list);
 693		get_tree(tree);
 694		list_del(&cursor);
 695		list_add(&cursor, &tree->list);
 696		mutex_unlock(&audit_filter_mutex);
 697
 698		err = kern_path(tree->pathname, 0, &path);
 699		if (err)
 700			goto skip_it;
 701
 702		root_mnt = collect_mounts(&path);
 703		path_put(&path);
 704		if (IS_ERR(root_mnt))
 705			goto skip_it;
 706
 707		spin_lock(&hash_lock);
 708		list_for_each_entry(node, &tree->chunks, list) {
 709			struct audit_chunk *chunk = find_chunk(node);
 710			/* this could be NULL if the watch is dying else where... */
 711			node->index |= 1U<<31;
 712			if (iterate_mounts(compare_root,
 713					   (void *)(chunk->key),
 714					   root_mnt))
 715				node->index &= ~(1U<<31);
 716		}
 717		spin_unlock(&hash_lock);
 718		trim_marked(tree);
 719		drop_collected_mounts(root_mnt);
 720skip_it:
 721		put_tree(tree);
 722		mutex_lock(&audit_filter_mutex);
 723	}
 724	list_del(&cursor);
 725	mutex_unlock(&audit_filter_mutex);
 726}
 727
 728int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
 729{
 730
 731	if (pathname[0] != '/' ||
 732	    rule->listnr != AUDIT_FILTER_EXIT ||
 733	    op != Audit_equal ||
 734	    rule->inode_f || rule->watch || rule->tree)
 735		return -EINVAL;
 736	rule->tree = alloc_tree(pathname);
 737	if (!rule->tree)
 738		return -ENOMEM;
 739	return 0;
 740}
 741
 742void audit_put_tree(struct audit_tree *tree)
 743{
 744	put_tree(tree);
 745}
 746
 747static int tag_mount(struct vfsmount *mnt, void *arg)
 748{
 749	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
 750}
 751
 752/*
 753 * That gets run when evict_chunk() ends up needing to kill audit_tree.
 754 * Runs from a separate thread.
 755 */
 756static int prune_tree_thread(void *unused)
 757{
 758	for (;;) {
 759		if (list_empty(&prune_list)) {
 760			set_current_state(TASK_INTERRUPTIBLE);
 761			schedule();
 762		}
 763
 764		audit_ctl_lock();
 765		mutex_lock(&audit_filter_mutex);
 766
 767		while (!list_empty(&prune_list)) {
 768			struct audit_tree *victim;
 769
 770			victim = list_entry(prune_list.next,
 771					struct audit_tree, list);
 772			list_del_init(&victim->list);
 773
 774			mutex_unlock(&audit_filter_mutex);
 775
 776			prune_one(victim);
 777
 778			mutex_lock(&audit_filter_mutex);
 779		}
 780
 781		mutex_unlock(&audit_filter_mutex);
 782		audit_ctl_unlock();
 783	}
 784	return 0;
 785}
 786
 787static int audit_launch_prune(void)
 788{
 789	if (prune_thread)
 790		return 0;
 791	prune_thread = kthread_run(prune_tree_thread, NULL,
 792				"audit_prune_tree");
 793	if (IS_ERR(prune_thread)) {
 794		pr_err("cannot start thread audit_prune_tree");
 795		prune_thread = NULL;
 796		return -ENOMEM;
 797	}
 798	return 0;
 799}
 800
 801/* called with audit_filter_mutex */
 802int audit_add_tree_rule(struct audit_krule *rule)
 803{
 804	struct audit_tree *seed = rule->tree, *tree;
 805	struct path path;
 806	struct vfsmount *mnt;
 807	int err;
 808
 809	rule->tree = NULL;
 810	list_for_each_entry(tree, &tree_list, list) {
 811		if (!strcmp(seed->pathname, tree->pathname)) {
 812			put_tree(seed);
 813			rule->tree = tree;
 814			list_add(&rule->rlist, &tree->rules);
 815			return 0;
 816		}
 817	}
 818	tree = seed;
 819	list_add(&tree->list, &tree_list);
 820	list_add(&rule->rlist, &tree->rules);
 821	/* do not set rule->tree yet */
 822	mutex_unlock(&audit_filter_mutex);
 823
 824	if (unlikely(!prune_thread)) {
 825		err = audit_launch_prune();
 826		if (err)
 827			goto Err;
 828	}
 829
 830	err = kern_path(tree->pathname, 0, &path);
 831	if (err)
 832		goto Err;
 833	mnt = collect_mounts(&path);
 834	path_put(&path);
 835	if (IS_ERR(mnt)) {
 836		err = PTR_ERR(mnt);
 837		goto Err;
 838	}
 839
 840	get_tree(tree);
 841	err = iterate_mounts(tag_mount, tree, mnt);
 842	drop_collected_mounts(mnt);
 843
 844	if (!err) {
 845		struct node *node;
 846		spin_lock(&hash_lock);
 847		list_for_each_entry(node, &tree->chunks, list)
 848			node->index &= ~(1U<<31);
 849		spin_unlock(&hash_lock);
 850	} else {
 851		trim_marked(tree);
 852		goto Err;
 853	}
 854
 855	mutex_lock(&audit_filter_mutex);
 856	if (list_empty(&rule->rlist)) {
 857		put_tree(tree);
 858		return -ENOENT;
 859	}
 860	rule->tree = tree;
 861	put_tree(tree);
 862
 863	return 0;
 864Err:
 865	mutex_lock(&audit_filter_mutex);
 866	list_del_init(&tree->list);
 867	list_del_init(&tree->rules);
 868	put_tree(tree);
 869	return err;
 870}
 871
 872int audit_tag_tree(char *old, char *new)
 873{
 874	struct list_head cursor, barrier;
 875	int failed = 0;
 876	struct path path1, path2;
 877	struct vfsmount *tagged;
 878	int err;
 879
 880	err = kern_path(new, 0, &path2);
 881	if (err)
 882		return err;
 883	tagged = collect_mounts(&path2);
 884	path_put(&path2);
 885	if (IS_ERR(tagged))
 886		return PTR_ERR(tagged);
 887
 888	err = kern_path(old, 0, &path1);
 889	if (err) {
 890		drop_collected_mounts(tagged);
 891		return err;
 892	}
 893
 894	mutex_lock(&audit_filter_mutex);
 895	list_add(&barrier, &tree_list);
 896	list_add(&cursor, &barrier);
 897
 898	while (cursor.next != &tree_list) {
 899		struct audit_tree *tree;
 900		int good_one = 0;
 901
 902		tree = container_of(cursor.next, struct audit_tree, list);
 903		get_tree(tree);
 904		list_del(&cursor);
 905		list_add(&cursor, &tree->list);
 906		mutex_unlock(&audit_filter_mutex);
 907
 908		err = kern_path(tree->pathname, 0, &path2);
 909		if (!err) {
 910			good_one = path_is_under(&path1, &path2);
 911			path_put(&path2);
 912		}
 913
 914		if (!good_one) {
 915			put_tree(tree);
 916			mutex_lock(&audit_filter_mutex);
 917			continue;
 918		}
 919
 920		failed = iterate_mounts(tag_mount, tree, tagged);
 921		if (failed) {
 922			put_tree(tree);
 923			mutex_lock(&audit_filter_mutex);
 924			break;
 925		}
 926
 927		mutex_lock(&audit_filter_mutex);
 928		spin_lock(&hash_lock);
 929		if (!tree->goner) {
 930			list_del(&tree->list);
 931			list_add(&tree->list, &tree_list);
 932		}
 933		spin_unlock(&hash_lock);
 934		put_tree(tree);
 935	}
 936
 937	while (barrier.prev != &tree_list) {
 938		struct audit_tree *tree;
 939
 940		tree = container_of(barrier.prev, struct audit_tree, list);
 941		get_tree(tree);
 942		list_del(&tree->list);
 943		list_add(&tree->list, &barrier);
 944		mutex_unlock(&audit_filter_mutex);
 945
 946		if (!failed) {
 947			struct node *node;
 948			spin_lock(&hash_lock);
 949			list_for_each_entry(node, &tree->chunks, list)
 950				node->index &= ~(1U<<31);
 951			spin_unlock(&hash_lock);
 952		} else {
 953			trim_marked(tree);
 954		}
 955
 956		put_tree(tree);
 957		mutex_lock(&audit_filter_mutex);
 958	}
 959	list_del(&barrier);
 960	list_del(&cursor);
 961	mutex_unlock(&audit_filter_mutex);
 962	path_put(&path1);
 963	drop_collected_mounts(tagged);
 964	return failed;
 965}
 966
 967
 968static void audit_schedule_prune(void)
 969{
 970	wake_up_process(prune_thread);
 971}
 972
 973/*
 974 * ... and that one is done if evict_chunk() decides to delay until the end
 975 * of syscall.  Runs synchronously.
 976 */
 977void audit_kill_trees(struct audit_context *context)
 978{
 979	struct list_head *list = &context->killed_trees;
 980
 981	audit_ctl_lock();
 982	mutex_lock(&audit_filter_mutex);
 983
 984	while (!list_empty(list)) {
 985		struct audit_tree *victim;
 986
 987		victim = list_entry(list->next, struct audit_tree, list);
 988		kill_rules(context, victim);
 989		list_del_init(&victim->list);
 990
 991		mutex_unlock(&audit_filter_mutex);
 992
 993		prune_one(victim);
 994
 995		mutex_lock(&audit_filter_mutex);
 996	}
 997
 998	mutex_unlock(&audit_filter_mutex);
 999	audit_ctl_unlock();
1000}
1001
1002/*
1003 *  Here comes the stuff asynchronous to auditctl operations
1004 */
1005
1006static void evict_chunk(struct audit_chunk *chunk)
1007{
1008	struct audit_tree *owner;
1009	struct list_head *postponed = audit_killed_trees();
1010	int need_prune = 0;
1011	int n;
1012
1013	mutex_lock(&audit_filter_mutex);
1014	spin_lock(&hash_lock);
1015	while (!list_empty(&chunk->trees)) {
1016		owner = list_entry(chunk->trees.next,
1017				   struct audit_tree, same_root);
1018		owner->goner = 1;
1019		owner->root = NULL;
1020		list_del_init(&owner->same_root);
1021		spin_unlock(&hash_lock);
1022		if (!postponed) {
1023			kill_rules(audit_context(), owner);
1024			list_move(&owner->list, &prune_list);
1025			need_prune = 1;
1026		} else {
1027			list_move(&owner->list, postponed);
1028		}
1029		spin_lock(&hash_lock);
1030	}
1031	list_del_rcu(&chunk->hash);
1032	for (n = 0; n < chunk->count; n++)
1033		list_del_init(&chunk->owners[n].list);
1034	spin_unlock(&hash_lock);
1035	mutex_unlock(&audit_filter_mutex);
1036	if (need_prune)
1037		audit_schedule_prune();
1038}
1039
1040static int audit_tree_handle_event(struct fsnotify_group *group,
1041				   struct inode *to_tell,
1042				   u32 mask, const void *data, int data_type,
1043				   const struct qstr *file_name, u32 cookie,
1044				   struct fsnotify_iter_info *iter_info)
1045{
1046	return 0;
1047}
1048
1049static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1050				    struct fsnotify_group *group)
1051{
1052	struct audit_chunk *chunk;
1053
1054	mutex_lock(&mark->group->mark_mutex);
1055	spin_lock(&hash_lock);
1056	chunk = mark_chunk(mark);
1057	replace_mark_chunk(mark, NULL);
1058	spin_unlock(&hash_lock);
1059	mutex_unlock(&mark->group->mark_mutex);
1060	if (chunk) {
1061		evict_chunk(chunk);
1062		audit_mark_put_chunk(chunk);
1063	}
1064
1065	/*
1066	 * We are guaranteed to have at least one reference to the mark from
1067	 * either the inode or the caller of fsnotify_destroy_mark().
1068	 */
1069	BUG_ON(refcount_read(&mark->refcnt) < 1);
1070}
1071
1072static const struct fsnotify_ops audit_tree_ops = {
1073	.handle_event = audit_tree_handle_event,
1074	.freeing_mark = audit_tree_freeing_mark,
1075	.free_mark = audit_tree_destroy_watch,
1076};
1077
1078static int __init audit_tree_init(void)
1079{
1080	int i;
1081
1082	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1083
1084	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1085	if (IS_ERR(audit_tree_group))
1086		audit_panic("cannot initialize fsnotify group for rectree watches");
1087
1088	for (i = 0; i < HASH_SIZE; i++)
1089		INIT_LIST_HEAD(&chunk_hash_heads[i]);
1090
1091	return 0;
1092}
1093__initcall(audit_tree_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2#include "audit.h"
   3#include <linux/fsnotify_backend.h>
   4#include <linux/namei.h>
   5#include <linux/mount.h>
   6#include <linux/kthread.h>
   7#include <linux/refcount.h>
   8#include <linux/slab.h>
   9
  10struct audit_tree;
  11struct audit_chunk;
  12
  13struct audit_tree {
  14	refcount_t count;
  15	int goner;
  16	struct audit_chunk *root;
  17	struct list_head chunks;
  18	struct list_head rules;
  19	struct list_head list;
  20	struct list_head same_root;
  21	struct rcu_head head;
  22	char pathname[];
  23};
  24
  25struct audit_chunk {
  26	struct list_head hash;
  27	unsigned long key;
  28	struct fsnotify_mark *mark;
  29	struct list_head trees;		/* with root here */
  30	int count;
  31	atomic_long_t refs;
  32	struct rcu_head head;
  33	struct node {
  34		struct list_head list;
  35		struct audit_tree *owner;
  36		unsigned index;		/* index; upper bit indicates 'will prune' */
  37	} owners[];
  38};
  39
  40struct audit_tree_mark {
  41	struct fsnotify_mark mark;
  42	struct audit_chunk *chunk;
  43};
  44
  45static LIST_HEAD(tree_list);
  46static LIST_HEAD(prune_list);
  47static struct task_struct *prune_thread;
  48
  49/*
  50 * One struct chunk is attached to each inode of interest through
  51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
  52 * untagging, the mark is stable as long as there is chunk attached. The
  53 * association between mark and chunk is protected by hash_lock and
  54 * audit_tree_group->mark_mutex. Thus as long as we hold
  55 * audit_tree_group->mark_mutex and check that the mark is alive by
  56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
  57 * the current chunk.
  58 *
  59 * Rules have pointer to struct audit_tree.
  60 * Rules have struct list_head rlist forming a list of rules over
  61 * the same tree.
  62 * References to struct chunk are collected at audit_inode{,_child}()
  63 * time and used in AUDIT_TREE rule matching.
  64 * These references are dropped at the same time we are calling
  65 * audit_free_names(), etc.
  66 *
  67 * Cyclic lists galore:
  68 * tree.chunks anchors chunk.owners[].list			hash_lock
  69 * tree.rules anchors rule.rlist				audit_filter_mutex
  70 * chunk.trees anchors tree.same_root				hash_lock
  71 * chunk.hash is a hash with middle bits of watch.inode as
  72 * a hash function.						RCU, hash_lock
  73 *
  74 * tree is refcounted; one reference for "some rules on rules_list refer to
  75 * it", one for each chunk with pointer to it.
  76 *
  77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
  78 * one chunk reference. This reference is dropped either when a mark is going
  79 * to be freed (corresponding inode goes away) or when chunk attached to the
  80 * mark gets replaced. This reference must be dropped using
  81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
  82 * grace period as it protects RCU readers of the hash table.
  83 *
  84 * node.index allows to get from node.list to containing chunk.
  85 * MSB of that sucker is stolen to mark taggings that we might have to
  86 * revert - several operations have very unpleasant cleanup logics and
  87 * that makes a difference.  Some.
  88 */
  89
  90static struct fsnotify_group *audit_tree_group;
  91static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
  92
  93static struct audit_tree *alloc_tree(const char *s)
  94{
  95	struct audit_tree *tree;
  96
  97	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
  98	if (tree) {
  99		refcount_set(&tree->count, 1);
 100		tree->goner = 0;
 101		INIT_LIST_HEAD(&tree->chunks);
 102		INIT_LIST_HEAD(&tree->rules);
 103		INIT_LIST_HEAD(&tree->list);
 104		INIT_LIST_HEAD(&tree->same_root);
 105		tree->root = NULL;
 106		strcpy(tree->pathname, s);
 107	}
 108	return tree;
 109}
 110
 111static inline void get_tree(struct audit_tree *tree)
 112{
 113	refcount_inc(&tree->count);
 114}
 115
 116static inline void put_tree(struct audit_tree *tree)
 117{
 118	if (refcount_dec_and_test(&tree->count))
 119		kfree_rcu(tree, head);
 120}
 121
 122/* to avoid bringing the entire thing in audit.h */
 123const char *audit_tree_path(struct audit_tree *tree)
 124{
 125	return tree->pathname;
 126}
 127
 128static void free_chunk(struct audit_chunk *chunk)
 129{
 130	int i;
 131
 132	for (i = 0; i < chunk->count; i++) {
 133		if (chunk->owners[i].owner)
 134			put_tree(chunk->owners[i].owner);
 135	}
 136	kfree(chunk);
 137}
 138
 139void audit_put_chunk(struct audit_chunk *chunk)
 140{
 141	if (atomic_long_dec_and_test(&chunk->refs))
 142		free_chunk(chunk);
 143}
 144
 145static void __put_chunk(struct rcu_head *rcu)
 146{
 147	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
 148	audit_put_chunk(chunk);
 149}
 150
 151/*
 152 * Drop reference to the chunk that was held by the mark. This is the reference
 153 * that gets dropped after we've removed the chunk from the hash table and we
 154 * use it to make sure chunk cannot be freed before RCU grace period expires.
 155 */
 156static void audit_mark_put_chunk(struct audit_chunk *chunk)
 157{
 158	call_rcu(&chunk->head, __put_chunk);
 159}
 160
 161static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
 162{
 163	return container_of(mark, struct audit_tree_mark, mark);
 164}
 165
 166static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
 167{
 168	return audit_mark(mark)->chunk;
 169}
 170
 171static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
 172{
 173	kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
 174}
 175
 176static struct fsnotify_mark *alloc_mark(void)
 177{
 178	struct audit_tree_mark *amark;
 179
 180	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
 181	if (!amark)
 182		return NULL;
 183	fsnotify_init_mark(&amark->mark, audit_tree_group);
 184	amark->mark.mask = FS_IN_IGNORED;
 185	return &amark->mark;
 186}
 187
 188static struct audit_chunk *alloc_chunk(int count)
 189{
 190	struct audit_chunk *chunk;
 
 191	int i;
 192
 193	chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
 
 194	if (!chunk)
 195		return NULL;
 196
 197	INIT_LIST_HEAD(&chunk->hash);
 198	INIT_LIST_HEAD(&chunk->trees);
 199	chunk->count = count;
 200	atomic_long_set(&chunk->refs, 1);
 201	for (i = 0; i < count; i++) {
 202		INIT_LIST_HEAD(&chunk->owners[i].list);
 203		chunk->owners[i].index = i;
 204	}
 205	return chunk;
 206}
 207
 208enum {HASH_SIZE = 128};
 209static struct list_head chunk_hash_heads[HASH_SIZE];
 210static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
 211
 212/* Function to return search key in our hash from inode. */
 213static unsigned long inode_to_key(const struct inode *inode)
 214{
 215	/* Use address pointed to by connector->obj as the key */
 216	return (unsigned long)&inode->i_fsnotify_marks;
 217}
 218
 219static inline struct list_head *chunk_hash(unsigned long key)
 220{
 221	unsigned long n = key / L1_CACHE_BYTES;
 222	return chunk_hash_heads + n % HASH_SIZE;
 223}
 224
 225/* hash_lock & mark->group->mark_mutex is held by caller */
 226static void insert_hash(struct audit_chunk *chunk)
 227{
 228	struct list_head *list;
 229
 230	/*
 231	 * Make sure chunk is fully initialized before making it visible in the
 232	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
 233	 * audit_tree_lookup().
 234	 */
 235	smp_wmb();
 236	WARN_ON_ONCE(!chunk->key);
 237	list = chunk_hash(chunk->key);
 238	list_add_rcu(&chunk->hash, list);
 239}
 240
 241/* called under rcu_read_lock */
 242struct audit_chunk *audit_tree_lookup(const struct inode *inode)
 243{
 244	unsigned long key = inode_to_key(inode);
 245	struct list_head *list = chunk_hash(key);
 246	struct audit_chunk *p;
 247
 248	list_for_each_entry_rcu(p, list, hash) {
 249		/*
 250		 * We use a data dependency barrier in READ_ONCE() to make sure
 251		 * the chunk we see is fully initialized.
 252		 */
 253		if (READ_ONCE(p->key) == key) {
 254			atomic_long_inc(&p->refs);
 255			return p;
 256		}
 257	}
 258	return NULL;
 259}
 260
 261bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
 262{
 263	int n;
 264	for (n = 0; n < chunk->count; n++)
 265		if (chunk->owners[n].owner == tree)
 266			return true;
 267	return false;
 268}
 269
 270/* tagging and untagging inodes with trees */
 271
 272static struct audit_chunk *find_chunk(struct node *p)
 273{
 274	int index = p->index & ~(1U<<31);
 275	p -= index;
 276	return container_of(p, struct audit_chunk, owners[0]);
 277}
 278
 279static void replace_mark_chunk(struct fsnotify_mark *mark,
 280			       struct audit_chunk *chunk)
 281{
 282	struct audit_chunk *old;
 283
 284	assert_spin_locked(&hash_lock);
 285	old = mark_chunk(mark);
 286	audit_mark(mark)->chunk = chunk;
 287	if (chunk)
 288		chunk->mark = mark;
 289	if (old)
 290		old->mark = NULL;
 291}
 292
 293static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
 294{
 295	struct audit_tree *owner;
 296	int i, j;
 297
 298	new->key = old->key;
 299	list_splice_init(&old->trees, &new->trees);
 300	list_for_each_entry(owner, &new->trees, same_root)
 301		owner->root = new;
 302	for (i = j = 0; j < old->count; i++, j++) {
 303		if (!old->owners[j].owner) {
 304			i--;
 305			continue;
 306		}
 307		owner = old->owners[j].owner;
 308		new->owners[i].owner = owner;
 309		new->owners[i].index = old->owners[j].index - j + i;
 310		if (!owner) /* result of earlier fallback */
 311			continue;
 312		get_tree(owner);
 313		list_replace_init(&old->owners[j].list, &new->owners[i].list);
 314	}
 315	replace_mark_chunk(old->mark, new);
 316	/*
 317	 * Make sure chunk is fully initialized before making it visible in the
 318	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
 319	 * audit_tree_lookup().
 320	 */
 321	smp_wmb();
 322	list_replace_rcu(&old->hash, &new->hash);
 323}
 324
 325static void remove_chunk_node(struct audit_chunk *chunk, struct node *p)
 326{
 327	struct audit_tree *owner = p->owner;
 328
 329	if (owner->root == chunk) {
 330		list_del_init(&owner->same_root);
 331		owner->root = NULL;
 332	}
 333	list_del_init(&p->list);
 334	p->owner = NULL;
 335	put_tree(owner);
 336}
 337
 338static int chunk_count_trees(struct audit_chunk *chunk)
 339{
 340	int i;
 341	int ret = 0;
 342
 343	for (i = 0; i < chunk->count; i++)
 344		if (chunk->owners[i].owner)
 345			ret++;
 346	return ret;
 347}
 348
 349static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
 350{
 351	struct audit_chunk *new;
 352	int size;
 353
 354	mutex_lock(&audit_tree_group->mark_mutex);
 355	/*
 356	 * mark_mutex stabilizes chunk attached to the mark so we can check
 357	 * whether it didn't change while we've dropped hash_lock.
 358	 */
 359	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
 360	    mark_chunk(mark) != chunk)
 361		goto out_mutex;
 362
 363	size = chunk_count_trees(chunk);
 364	if (!size) {
 365		spin_lock(&hash_lock);
 366		list_del_init(&chunk->trees);
 367		list_del_rcu(&chunk->hash);
 368		replace_mark_chunk(mark, NULL);
 369		spin_unlock(&hash_lock);
 370		fsnotify_detach_mark(mark);
 371		mutex_unlock(&audit_tree_group->mark_mutex);
 372		audit_mark_put_chunk(chunk);
 373		fsnotify_free_mark(mark);
 374		return;
 375	}
 376
 377	new = alloc_chunk(size);
 378	if (!new)
 379		goto out_mutex;
 380
 381	spin_lock(&hash_lock);
 382	/*
 383	 * This has to go last when updating chunk as once replace_chunk() is
 384	 * called, new RCU readers can see the new chunk.
 385	 */
 386	replace_chunk(new, chunk);
 387	spin_unlock(&hash_lock);
 388	mutex_unlock(&audit_tree_group->mark_mutex);
 389	audit_mark_put_chunk(chunk);
 390	return;
 391
 392out_mutex:
 393	mutex_unlock(&audit_tree_group->mark_mutex);
 394}
 395
 396/* Call with group->mark_mutex held, releases it */
 397static int create_chunk(struct inode *inode, struct audit_tree *tree)
 398{
 399	struct fsnotify_mark *mark;
 400	struct audit_chunk *chunk = alloc_chunk(1);
 401
 402	if (!chunk) {
 403		mutex_unlock(&audit_tree_group->mark_mutex);
 404		return -ENOMEM;
 405	}
 406
 407	mark = alloc_mark();
 408	if (!mark) {
 409		mutex_unlock(&audit_tree_group->mark_mutex);
 410		kfree(chunk);
 411		return -ENOMEM;
 412	}
 413
 414	if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
 415		mutex_unlock(&audit_tree_group->mark_mutex);
 416		fsnotify_put_mark(mark);
 417		kfree(chunk);
 418		return -ENOSPC;
 419	}
 420
 421	spin_lock(&hash_lock);
 422	if (tree->goner) {
 423		spin_unlock(&hash_lock);
 424		fsnotify_detach_mark(mark);
 425		mutex_unlock(&audit_tree_group->mark_mutex);
 426		fsnotify_free_mark(mark);
 427		fsnotify_put_mark(mark);
 428		kfree(chunk);
 429		return 0;
 430	}
 431	replace_mark_chunk(mark, chunk);
 432	chunk->owners[0].index = (1U << 31);
 433	chunk->owners[0].owner = tree;
 434	get_tree(tree);
 435	list_add(&chunk->owners[0].list, &tree->chunks);
 436	if (!tree->root) {
 437		tree->root = chunk;
 438		list_add(&tree->same_root, &chunk->trees);
 439	}
 440	chunk->key = inode_to_key(inode);
 441	/*
 442	 * Inserting into the hash table has to go last as once we do that RCU
 443	 * readers can see the chunk.
 444	 */
 445	insert_hash(chunk);
 446	spin_unlock(&hash_lock);
 447	mutex_unlock(&audit_tree_group->mark_mutex);
 448	/*
 449	 * Drop our initial reference. When mark we point to is getting freed,
 450	 * we get notification through ->freeing_mark callback and cleanup
 451	 * chunk pointing to this mark.
 452	 */
 453	fsnotify_put_mark(mark);
 454	return 0;
 455}
 456
 457/* the first tagged inode becomes root of tree */
 458static int tag_chunk(struct inode *inode, struct audit_tree *tree)
 459{
 460	struct fsnotify_mark *mark;
 461	struct audit_chunk *chunk, *old;
 462	struct node *p;
 463	int n;
 464
 465	mutex_lock(&audit_tree_group->mark_mutex);
 466	mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
 467	if (!mark)
 468		return create_chunk(inode, tree);
 469
 470	/*
 471	 * Found mark is guaranteed to be attached and mark_mutex protects mark
 472	 * from getting detached and thus it makes sure there is chunk attached
 473	 * to the mark.
 474	 */
 475	/* are we already there? */
 476	spin_lock(&hash_lock);
 477	old = mark_chunk(mark);
 478	for (n = 0; n < old->count; n++) {
 479		if (old->owners[n].owner == tree) {
 480			spin_unlock(&hash_lock);
 481			mutex_unlock(&audit_tree_group->mark_mutex);
 482			fsnotify_put_mark(mark);
 483			return 0;
 484		}
 485	}
 486	spin_unlock(&hash_lock);
 487
 488	chunk = alloc_chunk(old->count + 1);
 489	if (!chunk) {
 490		mutex_unlock(&audit_tree_group->mark_mutex);
 491		fsnotify_put_mark(mark);
 492		return -ENOMEM;
 493	}
 494
 495	spin_lock(&hash_lock);
 496	if (tree->goner) {
 497		spin_unlock(&hash_lock);
 498		mutex_unlock(&audit_tree_group->mark_mutex);
 499		fsnotify_put_mark(mark);
 500		kfree(chunk);
 501		return 0;
 502	}
 503	p = &chunk->owners[chunk->count - 1];
 504	p->index = (chunk->count - 1) | (1U<<31);
 505	p->owner = tree;
 506	get_tree(tree);
 507	list_add(&p->list, &tree->chunks);
 508	if (!tree->root) {
 509		tree->root = chunk;
 510		list_add(&tree->same_root, &chunk->trees);
 511	}
 512	/*
 513	 * This has to go last when updating chunk as once replace_chunk() is
 514	 * called, new RCU readers can see the new chunk.
 515	 */
 516	replace_chunk(chunk, old);
 517	spin_unlock(&hash_lock);
 518	mutex_unlock(&audit_tree_group->mark_mutex);
 519	fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
 520	audit_mark_put_chunk(old);
 521
 522	return 0;
 523}
 524
 525static void audit_tree_log_remove_rule(struct audit_context *context,
 526				       struct audit_krule *rule)
 527{
 528	struct audit_buffer *ab;
 529
 530	if (!audit_enabled)
 531		return;
 532	ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 533	if (unlikely(!ab))
 534		return;
 535	audit_log_format(ab, "op=remove_rule dir=");
 536	audit_log_untrustedstring(ab, rule->tree->pathname);
 537	audit_log_key(ab, rule->filterkey);
 538	audit_log_format(ab, " list=%d res=1", rule->listnr);
 539	audit_log_end(ab);
 540}
 541
 542static void kill_rules(struct audit_context *context, struct audit_tree *tree)
 543{
 544	struct audit_krule *rule, *next;
 545	struct audit_entry *entry;
 546
 547	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
 548		entry = container_of(rule, struct audit_entry, rule);
 549
 550		list_del_init(&rule->rlist);
 551		if (rule->tree) {
 552			/* not a half-baked one */
 553			audit_tree_log_remove_rule(context, rule);
 554			if (entry->rule.exe)
 555				audit_remove_mark(entry->rule.exe);
 556			rule->tree = NULL;
 557			list_del_rcu(&entry->list);
 558			list_del(&entry->rule.list);
 559			call_rcu(&entry->rcu, audit_free_rule_rcu);
 560		}
 561	}
 562}
 563
 564/*
 565 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
 566 * chunks. The function expects tagged chunks are all at the beginning of the
 567 * chunks list.
 568 */
 569static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
 570{
 571	spin_lock(&hash_lock);
 572	while (!list_empty(&victim->chunks)) {
 573		struct node *p;
 574		struct audit_chunk *chunk;
 575		struct fsnotify_mark *mark;
 576
 577		p = list_first_entry(&victim->chunks, struct node, list);
 578		/* have we run out of marked? */
 579		if (tagged && !(p->index & (1U<<31)))
 580			break;
 581		chunk = find_chunk(p);
 582		mark = chunk->mark;
 583		remove_chunk_node(chunk, p);
 584		/* Racing with audit_tree_freeing_mark()? */
 585		if (!mark)
 586			continue;
 587		fsnotify_get_mark(mark);
 588		spin_unlock(&hash_lock);
 589
 590		untag_chunk(chunk, mark);
 591		fsnotify_put_mark(mark);
 592
 593		spin_lock(&hash_lock);
 594	}
 595	spin_unlock(&hash_lock);
 596	put_tree(victim);
 597}
 598
 599/*
 600 * finish killing struct audit_tree
 601 */
 602static void prune_one(struct audit_tree *victim)
 603{
 604	prune_tree_chunks(victim, false);
 605}
 606
 607/* trim the uncommitted chunks from tree */
 608
 609static void trim_marked(struct audit_tree *tree)
 610{
 611	struct list_head *p, *q;
 612	spin_lock(&hash_lock);
 613	if (tree->goner) {
 614		spin_unlock(&hash_lock);
 615		return;
 616	}
 617	/* reorder */
 618	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
 619		struct node *node = list_entry(p, struct node, list);
 620		q = p->next;
 621		if (node->index & (1U<<31)) {
 622			list_del_init(p);
 623			list_add(p, &tree->chunks);
 624		}
 625	}
 626	spin_unlock(&hash_lock);
 627
 628	prune_tree_chunks(tree, true);
 629
 630	spin_lock(&hash_lock);
 631	if (!tree->root && !tree->goner) {
 632		tree->goner = 1;
 633		spin_unlock(&hash_lock);
 634		mutex_lock(&audit_filter_mutex);
 635		kill_rules(audit_context(), tree);
 636		list_del_init(&tree->list);
 637		mutex_unlock(&audit_filter_mutex);
 638		prune_one(tree);
 639	} else {
 640		spin_unlock(&hash_lock);
 641	}
 642}
 643
 644static void audit_schedule_prune(void);
 645
 646/* called with audit_filter_mutex */
 647int audit_remove_tree_rule(struct audit_krule *rule)
 648{
 649	struct audit_tree *tree;
 650	tree = rule->tree;
 651	if (tree) {
 652		spin_lock(&hash_lock);
 653		list_del_init(&rule->rlist);
 654		if (list_empty(&tree->rules) && !tree->goner) {
 655			tree->root = NULL;
 656			list_del_init(&tree->same_root);
 657			tree->goner = 1;
 658			list_move(&tree->list, &prune_list);
 659			rule->tree = NULL;
 660			spin_unlock(&hash_lock);
 661			audit_schedule_prune();
 662			return 1;
 663		}
 664		rule->tree = NULL;
 665		spin_unlock(&hash_lock);
 666		return 1;
 667	}
 668	return 0;
 669}
 670
 671static int compare_root(struct vfsmount *mnt, void *arg)
 672{
 673	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
 674	       (unsigned long)arg;
 675}
 676
 677void audit_trim_trees(void)
 678{
 679	struct list_head cursor;
 680
 681	mutex_lock(&audit_filter_mutex);
 682	list_add(&cursor, &tree_list);
 683	while (cursor.next != &tree_list) {
 684		struct audit_tree *tree;
 685		struct path path;
 686		struct vfsmount *root_mnt;
 687		struct node *node;
 688		int err;
 689
 690		tree = container_of(cursor.next, struct audit_tree, list);
 691		get_tree(tree);
 692		list_del(&cursor);
 693		list_add(&cursor, &tree->list);
 694		mutex_unlock(&audit_filter_mutex);
 695
 696		err = kern_path(tree->pathname, 0, &path);
 697		if (err)
 698			goto skip_it;
 699
 700		root_mnt = collect_mounts(&path);
 701		path_put(&path);
 702		if (IS_ERR(root_mnt))
 703			goto skip_it;
 704
 705		spin_lock(&hash_lock);
 706		list_for_each_entry(node, &tree->chunks, list) {
 707			struct audit_chunk *chunk = find_chunk(node);
 708			/* this could be NULL if the watch is dying else where... */
 709			node->index |= 1U<<31;
 710			if (iterate_mounts(compare_root,
 711					   (void *)(chunk->key),
 712					   root_mnt))
 713				node->index &= ~(1U<<31);
 714		}
 715		spin_unlock(&hash_lock);
 716		trim_marked(tree);
 717		drop_collected_mounts(root_mnt);
 718skip_it:
 719		put_tree(tree);
 720		mutex_lock(&audit_filter_mutex);
 721	}
 722	list_del(&cursor);
 723	mutex_unlock(&audit_filter_mutex);
 724}
 725
 726int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
 727{
 728
 729	if (pathname[0] != '/' ||
 730	    rule->listnr != AUDIT_FILTER_EXIT ||
 731	    op != Audit_equal ||
 732	    rule->inode_f || rule->watch || rule->tree)
 733		return -EINVAL;
 734	rule->tree = alloc_tree(pathname);
 735	if (!rule->tree)
 736		return -ENOMEM;
 737	return 0;
 738}
 739
 740void audit_put_tree(struct audit_tree *tree)
 741{
 742	put_tree(tree);
 743}
 744
 745static int tag_mount(struct vfsmount *mnt, void *arg)
 746{
 747	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
 748}
 749
 750/*
 751 * That gets run when evict_chunk() ends up needing to kill audit_tree.
 752 * Runs from a separate thread.
 753 */
 754static int prune_tree_thread(void *unused)
 755{
 756	for (;;) {
 757		if (list_empty(&prune_list)) {
 758			set_current_state(TASK_INTERRUPTIBLE);
 759			schedule();
 760		}
 761
 762		audit_ctl_lock();
 763		mutex_lock(&audit_filter_mutex);
 764
 765		while (!list_empty(&prune_list)) {
 766			struct audit_tree *victim;
 767
 768			victim = list_entry(prune_list.next,
 769					struct audit_tree, list);
 770			list_del_init(&victim->list);
 771
 772			mutex_unlock(&audit_filter_mutex);
 773
 774			prune_one(victim);
 775
 776			mutex_lock(&audit_filter_mutex);
 777		}
 778
 779		mutex_unlock(&audit_filter_mutex);
 780		audit_ctl_unlock();
 781	}
 782	return 0;
 783}
 784
 785static int audit_launch_prune(void)
 786{
 787	if (prune_thread)
 788		return 0;
 789	prune_thread = kthread_run(prune_tree_thread, NULL,
 790				"audit_prune_tree");
 791	if (IS_ERR(prune_thread)) {
 792		pr_err("cannot start thread audit_prune_tree");
 793		prune_thread = NULL;
 794		return -ENOMEM;
 795	}
 796	return 0;
 797}
 798
 799/* called with audit_filter_mutex */
 800int audit_add_tree_rule(struct audit_krule *rule)
 801{
 802	struct audit_tree *seed = rule->tree, *tree;
 803	struct path path;
 804	struct vfsmount *mnt;
 805	int err;
 806
 807	rule->tree = NULL;
 808	list_for_each_entry(tree, &tree_list, list) {
 809		if (!strcmp(seed->pathname, tree->pathname)) {
 810			put_tree(seed);
 811			rule->tree = tree;
 812			list_add(&rule->rlist, &tree->rules);
 813			return 0;
 814		}
 815	}
 816	tree = seed;
 817	list_add(&tree->list, &tree_list);
 818	list_add(&rule->rlist, &tree->rules);
 819	/* do not set rule->tree yet */
 820	mutex_unlock(&audit_filter_mutex);
 821
 822	if (unlikely(!prune_thread)) {
 823		err = audit_launch_prune();
 824		if (err)
 825			goto Err;
 826	}
 827
 828	err = kern_path(tree->pathname, 0, &path);
 829	if (err)
 830		goto Err;
 831	mnt = collect_mounts(&path);
 832	path_put(&path);
 833	if (IS_ERR(mnt)) {
 834		err = PTR_ERR(mnt);
 835		goto Err;
 836	}
 837
 838	get_tree(tree);
 839	err = iterate_mounts(tag_mount, tree, mnt);
 840	drop_collected_mounts(mnt);
 841
 842	if (!err) {
 843		struct node *node;
 844		spin_lock(&hash_lock);
 845		list_for_each_entry(node, &tree->chunks, list)
 846			node->index &= ~(1U<<31);
 847		spin_unlock(&hash_lock);
 848	} else {
 849		trim_marked(tree);
 850		goto Err;
 851	}
 852
 853	mutex_lock(&audit_filter_mutex);
 854	if (list_empty(&rule->rlist)) {
 855		put_tree(tree);
 856		return -ENOENT;
 857	}
 858	rule->tree = tree;
 859	put_tree(tree);
 860
 861	return 0;
 862Err:
 863	mutex_lock(&audit_filter_mutex);
 864	list_del_init(&tree->list);
 865	list_del_init(&tree->rules);
 866	put_tree(tree);
 867	return err;
 868}
 869
 870int audit_tag_tree(char *old, char *new)
 871{
 872	struct list_head cursor, barrier;
 873	int failed = 0;
 874	struct path path1, path2;
 875	struct vfsmount *tagged;
 876	int err;
 877
 878	err = kern_path(new, 0, &path2);
 879	if (err)
 880		return err;
 881	tagged = collect_mounts(&path2);
 882	path_put(&path2);
 883	if (IS_ERR(tagged))
 884		return PTR_ERR(tagged);
 885
 886	err = kern_path(old, 0, &path1);
 887	if (err) {
 888		drop_collected_mounts(tagged);
 889		return err;
 890	}
 891
 892	mutex_lock(&audit_filter_mutex);
 893	list_add(&barrier, &tree_list);
 894	list_add(&cursor, &barrier);
 895
 896	while (cursor.next != &tree_list) {
 897		struct audit_tree *tree;
 898		int good_one = 0;
 899
 900		tree = container_of(cursor.next, struct audit_tree, list);
 901		get_tree(tree);
 902		list_del(&cursor);
 903		list_add(&cursor, &tree->list);
 904		mutex_unlock(&audit_filter_mutex);
 905
 906		err = kern_path(tree->pathname, 0, &path2);
 907		if (!err) {
 908			good_one = path_is_under(&path1, &path2);
 909			path_put(&path2);
 910		}
 911
 912		if (!good_one) {
 913			put_tree(tree);
 914			mutex_lock(&audit_filter_mutex);
 915			continue;
 916		}
 917
 918		failed = iterate_mounts(tag_mount, tree, tagged);
 919		if (failed) {
 920			put_tree(tree);
 921			mutex_lock(&audit_filter_mutex);
 922			break;
 923		}
 924
 925		mutex_lock(&audit_filter_mutex);
 926		spin_lock(&hash_lock);
 927		if (!tree->goner) {
 928			list_del(&tree->list);
 929			list_add(&tree->list, &tree_list);
 930		}
 931		spin_unlock(&hash_lock);
 932		put_tree(tree);
 933	}
 934
 935	while (barrier.prev != &tree_list) {
 936		struct audit_tree *tree;
 937
 938		tree = container_of(barrier.prev, struct audit_tree, list);
 939		get_tree(tree);
 940		list_del(&tree->list);
 941		list_add(&tree->list, &barrier);
 942		mutex_unlock(&audit_filter_mutex);
 943
 944		if (!failed) {
 945			struct node *node;
 946			spin_lock(&hash_lock);
 947			list_for_each_entry(node, &tree->chunks, list)
 948				node->index &= ~(1U<<31);
 949			spin_unlock(&hash_lock);
 950		} else {
 951			trim_marked(tree);
 952		}
 953
 954		put_tree(tree);
 955		mutex_lock(&audit_filter_mutex);
 956	}
 957	list_del(&barrier);
 958	list_del(&cursor);
 959	mutex_unlock(&audit_filter_mutex);
 960	path_put(&path1);
 961	drop_collected_mounts(tagged);
 962	return failed;
 963}
 964
 965
 966static void audit_schedule_prune(void)
 967{
 968	wake_up_process(prune_thread);
 969}
 970
 971/*
 972 * ... and that one is done if evict_chunk() decides to delay until the end
 973 * of syscall.  Runs synchronously.
 974 */
 975void audit_kill_trees(struct audit_context *context)
 976{
 977	struct list_head *list = &context->killed_trees;
 978
 979	audit_ctl_lock();
 980	mutex_lock(&audit_filter_mutex);
 981
 982	while (!list_empty(list)) {
 983		struct audit_tree *victim;
 984
 985		victim = list_entry(list->next, struct audit_tree, list);
 986		kill_rules(context, victim);
 987		list_del_init(&victim->list);
 988
 989		mutex_unlock(&audit_filter_mutex);
 990
 991		prune_one(victim);
 992
 993		mutex_lock(&audit_filter_mutex);
 994	}
 995
 996	mutex_unlock(&audit_filter_mutex);
 997	audit_ctl_unlock();
 998}
 999
1000/*
1001 *  Here comes the stuff asynchronous to auditctl operations
1002 */
1003
1004static void evict_chunk(struct audit_chunk *chunk)
1005{
1006	struct audit_tree *owner;
1007	struct list_head *postponed = audit_killed_trees();
1008	int need_prune = 0;
1009	int n;
1010
1011	mutex_lock(&audit_filter_mutex);
1012	spin_lock(&hash_lock);
1013	while (!list_empty(&chunk->trees)) {
1014		owner = list_entry(chunk->trees.next,
1015				   struct audit_tree, same_root);
1016		owner->goner = 1;
1017		owner->root = NULL;
1018		list_del_init(&owner->same_root);
1019		spin_unlock(&hash_lock);
1020		if (!postponed) {
1021			kill_rules(audit_context(), owner);
1022			list_move(&owner->list, &prune_list);
1023			need_prune = 1;
1024		} else {
1025			list_move(&owner->list, postponed);
1026		}
1027		spin_lock(&hash_lock);
1028	}
1029	list_del_rcu(&chunk->hash);
1030	for (n = 0; n < chunk->count; n++)
1031		list_del_init(&chunk->owners[n].list);
1032	spin_unlock(&hash_lock);
1033	mutex_unlock(&audit_filter_mutex);
1034	if (need_prune)
1035		audit_schedule_prune();
1036}
1037
1038static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
1039				   struct inode *inode, struct inode *dir,
1040				   const struct qstr *file_name)
 
 
1041{
1042	return 0;
1043}
1044
1045static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1046				    struct fsnotify_group *group)
1047{
1048	struct audit_chunk *chunk;
1049
1050	mutex_lock(&mark->group->mark_mutex);
1051	spin_lock(&hash_lock);
1052	chunk = mark_chunk(mark);
1053	replace_mark_chunk(mark, NULL);
1054	spin_unlock(&hash_lock);
1055	mutex_unlock(&mark->group->mark_mutex);
1056	if (chunk) {
1057		evict_chunk(chunk);
1058		audit_mark_put_chunk(chunk);
1059	}
1060
1061	/*
1062	 * We are guaranteed to have at least one reference to the mark from
1063	 * either the inode or the caller of fsnotify_destroy_mark().
1064	 */
1065	BUG_ON(refcount_read(&mark->refcnt) < 1);
1066}
1067
1068static const struct fsnotify_ops audit_tree_ops = {
1069	.handle_inode_event = audit_tree_handle_event,
1070	.freeing_mark = audit_tree_freeing_mark,
1071	.free_mark = audit_tree_destroy_watch,
1072};
1073
1074static int __init audit_tree_init(void)
1075{
1076	int i;
1077
1078	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1079
1080	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1081	if (IS_ERR(audit_tree_group))
1082		audit_panic("cannot initialize fsnotify group for rectree watches");
1083
1084	for (i = 0; i < HASH_SIZE; i++)
1085		INIT_LIST_HEAD(&chunk_hash_heads[i]);
1086
1087	return 0;
1088}
1089__initcall(audit_tree_init);