Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_GENERIC_DIV64_H
  3#define _ASM_GENERIC_DIV64_H
  4/*
  5 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
  6 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
  7 *
  8 * Optimization for constant divisors on 32-bit machines:
  9 * Copyright (C) 2006-2015 Nicolas Pitre
 10 *
 11 * The semantics of do_div() are:
 12 *
 13 * uint32_t do_div(uint64_t *n, uint32_t base)
 14 * {
 15 * 	uint32_t remainder = *n % base;
 16 * 	*n = *n / base;
 17 * 	return remainder;
 18 * }
 19 *
 20 * NOTE: macro parameter n is evaluated multiple times,
 21 *       beware of side effects!
 22 */
 23
 24#include <linux/types.h>
 25#include <linux/compiler.h>
 26
 27#if BITS_PER_LONG == 64
 28
 29/**
 30 * do_div - returns 2 values: calculate remainder and update new dividend
 31 * @n: uint64_t dividend (will be updated)
 32 * @base: uint32_t divisor
 33 *
 34 * Summary:
 35 * ``uint32_t remainder = n % base;``
 36 * ``n = n / base;``
 37 *
 38 * Return: (uint32_t)remainder
 39 *
 40 * NOTE: macro parameter @n is evaluated multiple times,
 41 * beware of side effects!
 42 */
 43# define do_div(n,base) ({					\
 44	uint32_t __base = (base);				\
 45	uint32_t __rem;						\
 46	__rem = ((uint64_t)(n)) % __base;			\
 47	(n) = ((uint64_t)(n)) / __base;				\
 48	__rem;							\
 49 })
 50
 51#elif BITS_PER_LONG == 32
 52
 53#include <linux/log2.h>
 54
 55/*
 56 * If the divisor happens to be constant, we determine the appropriate
 57 * inverse at compile time to turn the division into a few inline
 58 * multiplications which ought to be much faster. And yet only if compiling
 59 * with a sufficiently recent gcc version to perform proper 64-bit constant
 60 * propagation.
 61 *
 62 * (It is unfortunate that gcc doesn't perform all this internally.)
 63 */
 64
 65#ifndef __div64_const32_is_OK
 66#define __div64_const32_is_OK (__GNUC__ >= 4)
 67#endif
 68
 69#define __div64_const32(n, ___b)					\
 70({									\
 71	/*								\
 72	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\
 73	 *								\
 74	 * We rely on the fact that most of this code gets optimized	\
 75	 * away at compile time due to constant propagation and only	\
 76	 * a few multiplication instructions should remain.		\
 77	 * Hence this monstrous macro (static inline doesn't always	\
 78	 * do the trick here).						\
 79	 */								\
 80	uint64_t ___res, ___x, ___t, ___m, ___n = (n);			\
 81	uint32_t ___p, ___bias;						\
 82									\
 83	/* determine MSB of b */					\
 84	___p = 1 << ilog2(___b);					\
 85									\
 86	/* compute m = ((p << 64) + b - 1) / b */			\
 87	___m = (~0ULL / ___b) * ___p;					\
 88	___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\
 89									\
 90	/* one less than the dividend with highest result */		\
 91	___x = ~0ULL / ___b * ___b - 1;					\
 92									\
 93	/* test our ___m with res = m * x / (p << 64) */		\
 94	___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;	\
 95	___t = ___res += (___m & 0xffffffff) * (___x >> 32);		\
 96	___res += (___x & 0xffffffff) * (___m >> 32);			\
 97	___t = (___res < ___t) ? (1ULL << 32) : 0;			\
 98	___res = (___res >> 32) + ___t;					\
 99	___res += (___m >> 32) * (___x >> 32);				\
100	___res /= ___p;							\
101									\
102	/* Now sanitize and optimize what we've got. */			\
103	if (~0ULL % (___b / (___b & -___b)) == 0) {			\
104		/* special case, can be simplified to ... */		\
105		___n /= (___b & -___b);					\
106		___m = ~0ULL / (___b / (___b & -___b));			\
107		___p = 1;						\
108		___bias = 1;						\
109	} else if (___res != ___x / ___b) {				\
110		/*							\
111		 * We can't get away without a bias to compensate	\
112		 * for bit truncation errors.  To avoid it we'd need an	\
113		 * additional bit to represent m which would overflow	\
114		 * a 64-bit variable.					\
115		 *							\
116		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\
117		 */							\
118		___bias = 1;						\
119		/* Compute m = (p << 64) / b */				\
120		___m = (~0ULL / ___b) * ___p;				\
121		___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\
122	} else {							\
123		/*							\
124		 * Reduce m / p, and try to clear bit 31 of m when	\
125		 * possible, otherwise that'll need extra overflow	\
126		 * handling later.					\
127		 */							\
128		uint32_t ___bits = -(___m & -___m);			\
129		___bits |= ___m >> 32;					\
130		___bits = (~___bits) << 1;				\
131		/*							\
132		 * If ___bits == 0 then setting bit 31 is  unavoidable.	\
133		 * Simply apply the maximum possible reduction in that	\
134		 * case. Otherwise the MSB of ___bits indicates the	\
135		 * best reduction we should apply.			\
136		 */							\
137		if (!___bits) {						\
138			___p /= (___m & -___m);				\
139			___m /= (___m & -___m);				\
140		} else {						\
141			___p >>= ilog2(___bits);			\
142			___m >>= ilog2(___bits);			\
143		}							\
144		/* No bias needed. */					\
145		___bias = 0;						\
146	}								\
147									\
148	/*								\
149	 * Now we have a combination of 2 conditions:			\
150	 *								\
151	 * 1) whether or not we need to apply a bias, and		\
152	 *								\
153	 * 2) whether or not there might be an overflow in the cross	\
154	 *    product determined by (___m & ((1 << 63) | (1 << 31))).	\
155	 *								\
156	 * Select the best way to do (m_bias + m * n) / (1 << 64).	\
157	 * From now on there will be actual runtime code generated.	\
158	 */								\
159	___res = __arch_xprod_64(___m, ___n, ___bias);			\
160									\
161	___res /= ___p;							\
162})
163
164#ifndef __arch_xprod_64
165/*
166 * Default C implementation for __arch_xprod_64()
167 *
168 * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
169 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
170 *
171 * The product is a 128-bit value, scaled down to 64 bits.
172 * Assuming constant propagation to optimize away unused conditional code.
173 * Architectures may provide their own optimized assembly implementation.
174 */
175static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
176{
177	uint32_t m_lo = m;
178	uint32_t m_hi = m >> 32;
179	uint32_t n_lo = n;
180	uint32_t n_hi = n >> 32;
181	uint64_t res;
182	uint32_t res_lo, res_hi, tmp;
183
184	if (!bias) {
185		res = ((uint64_t)m_lo * n_lo) >> 32;
186	} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
187		/* there can't be any overflow here */
188		res = (m + (uint64_t)m_lo * n_lo) >> 32;
189	} else {
190		res = m + (uint64_t)m_lo * n_lo;
191		res_lo = res >> 32;
192		res_hi = (res_lo < m_hi);
193		res = res_lo | ((uint64_t)res_hi << 32);
194	}
195
196	if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
197		/* there can't be any overflow here */
198		res += (uint64_t)m_lo * n_hi;
199		res += (uint64_t)m_hi * n_lo;
200		res >>= 32;
201	} else {
202		res += (uint64_t)m_lo * n_hi;
203		tmp = res >> 32;
204		res += (uint64_t)m_hi * n_lo;
205		res_lo = res >> 32;
206		res_hi = (res_lo < tmp);
207		res = res_lo | ((uint64_t)res_hi << 32);
208	}
209
210	res += (uint64_t)m_hi * n_hi;
211
212	return res;
213}
214#endif
215
216#ifndef __div64_32
217extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
218#endif
219
220/* The unnecessary pointer compare is there
221 * to check for type safety (n must be 64bit)
222 */
223# define do_div(n,base) ({				\
224	uint32_t __base = (base);			\
225	uint32_t __rem;					\
226	(void)(((typeof((n)) *)0) == ((uint64_t *)0));	\
227	if (__builtin_constant_p(__base) &&		\
228	    is_power_of_2(__base)) {			\
229		__rem = (n) & (__base - 1);		\
230		(n) >>= ilog2(__base);			\
231	} else if (__div64_const32_is_OK &&		\
232		   __builtin_constant_p(__base) &&	\
233		   __base != 0) {			\
234		uint32_t __res_lo, __n_lo = (n);	\
235		(n) = __div64_const32(n, __base);	\
236		/* the remainder can be computed with 32-bit regs */ \
237		__res_lo = (n);				\
238		__rem = __n_lo - __res_lo * __base;	\
239	} else if (likely(((n) >> 32) == 0)) {		\
240		__rem = (uint32_t)(n) % __base;		\
241		(n) = (uint32_t)(n) / __base;		\
242	} else 						\
243		__rem = __div64_32(&(n), __base);	\
244	__rem;						\
245 })
246
247#else /* BITS_PER_LONG == ?? */
248
249# error do_div() does not yet support the C64
250
251#endif /* BITS_PER_LONG */
252
253#endif /* _ASM_GENERIC_DIV64_H */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_GENERIC_DIV64_H
  3#define _ASM_GENERIC_DIV64_H
  4/*
  5 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
  6 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
  7 *
  8 * Optimization for constant divisors on 32-bit machines:
  9 * Copyright (C) 2006-2015 Nicolas Pitre
 10 *
 11 * The semantics of do_div() are:
 12 *
 13 * uint32_t do_div(uint64_t *n, uint32_t base)
 14 * {
 15 * 	uint32_t remainder = *n % base;
 16 * 	*n = *n / base;
 17 * 	return remainder;
 18 * }
 19 *
 20 * NOTE: macro parameter n is evaluated multiple times,
 21 *       beware of side effects!
 22 */
 23
 24#include <linux/types.h>
 25#include <linux/compiler.h>
 26
 27#if BITS_PER_LONG == 64
 28
 29/**
 30 * do_div - returns 2 values: calculate remainder and update new dividend
 31 * @n: uint64_t dividend (will be updated)
 32 * @base: uint32_t divisor
 33 *
 34 * Summary:
 35 * ``uint32_t remainder = n % base;``
 36 * ``n = n / base;``
 37 *
 38 * Return: (uint32_t)remainder
 39 *
 40 * NOTE: macro parameter @n is evaluated multiple times,
 41 * beware of side effects!
 42 */
 43# define do_div(n,base) ({					\
 44	uint32_t __base = (base);				\
 45	uint32_t __rem;						\
 46	__rem = ((uint64_t)(n)) % __base;			\
 47	(n) = ((uint64_t)(n)) / __base;				\
 48	__rem;							\
 49 })
 50
 51#elif BITS_PER_LONG == 32
 52
 53#include <linux/log2.h>
 54
 55/*
 56 * If the divisor happens to be constant, we determine the appropriate
 57 * inverse at compile time to turn the division into a few inline
 58 * multiplications which ought to be much faster. And yet only if compiling
 59 * with a sufficiently recent gcc version to perform proper 64-bit constant
 60 * propagation.
 61 *
 62 * (It is unfortunate that gcc doesn't perform all this internally.)
 63 */
 64
 65#ifndef __div64_const32_is_OK
 66#define __div64_const32_is_OK (__GNUC__ >= 4)
 67#endif
 68
 69#define __div64_const32(n, ___b)					\
 70({									\
 71	/*								\
 72	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\
 73	 *								\
 74	 * We rely on the fact that most of this code gets optimized	\
 75	 * away at compile time due to constant propagation and only	\
 76	 * a few multiplication instructions should remain.		\
 77	 * Hence this monstrous macro (static inline doesn't always	\
 78	 * do the trick here).						\
 79	 */								\
 80	uint64_t ___res, ___x, ___t, ___m, ___n = (n);			\
 81	uint32_t ___p, ___bias;						\
 82									\
 83	/* determine MSB of b */					\
 84	___p = 1 << ilog2(___b);					\
 85									\
 86	/* compute m = ((p << 64) + b - 1) / b */			\
 87	___m = (~0ULL / ___b) * ___p;					\
 88	___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\
 89									\
 90	/* one less than the dividend with highest result */		\
 91	___x = ~0ULL / ___b * ___b - 1;					\
 92									\
 93	/* test our ___m with res = m * x / (p << 64) */		\
 94	___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;	\
 95	___t = ___res += (___m & 0xffffffff) * (___x >> 32);		\
 96	___res += (___x & 0xffffffff) * (___m >> 32);			\
 97	___t = (___res < ___t) ? (1ULL << 32) : 0;			\
 98	___res = (___res >> 32) + ___t;					\
 99	___res += (___m >> 32) * (___x >> 32);				\
100	___res /= ___p;							\
101									\
102	/* Now sanitize and optimize what we've got. */			\
103	if (~0ULL % (___b / (___b & -___b)) == 0) {			\
104		/* special case, can be simplified to ... */		\
105		___n /= (___b & -___b);					\
106		___m = ~0ULL / (___b / (___b & -___b));			\
107		___p = 1;						\
108		___bias = 1;						\
109	} else if (___res != ___x / ___b) {				\
110		/*							\
111		 * We can't get away without a bias to compensate	\
112		 * for bit truncation errors.  To avoid it we'd need an	\
113		 * additional bit to represent m which would overflow	\
114		 * a 64-bit variable.					\
115		 *							\
116		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\
117		 */							\
118		___bias = 1;						\
119		/* Compute m = (p << 64) / b */				\
120		___m = (~0ULL / ___b) * ___p;				\
121		___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\
122	} else {							\
123		/*							\
124		 * Reduce m / p, and try to clear bit 31 of m when	\
125		 * possible, otherwise that'll need extra overflow	\
126		 * handling later.					\
127		 */							\
128		uint32_t ___bits = -(___m & -___m);			\
129		___bits |= ___m >> 32;					\
130		___bits = (~___bits) << 1;				\
131		/*							\
132		 * If ___bits == 0 then setting bit 31 is  unavoidable.	\
133		 * Simply apply the maximum possible reduction in that	\
134		 * case. Otherwise the MSB of ___bits indicates the	\
135		 * best reduction we should apply.			\
136		 */							\
137		if (!___bits) {						\
138			___p /= (___m & -___m);				\
139			___m /= (___m & -___m);				\
140		} else {						\
141			___p >>= ilog2(___bits);			\
142			___m >>= ilog2(___bits);			\
143		}							\
144		/* No bias needed. */					\
145		___bias = 0;						\
146	}								\
147									\
148	/*								\
149	 * Now we have a combination of 2 conditions:			\
150	 *								\
151	 * 1) whether or not we need to apply a bias, and		\
152	 *								\
153	 * 2) whether or not there might be an overflow in the cross	\
154	 *    product determined by (___m & ((1 << 63) | (1 << 31))).	\
155	 *								\
156	 * Select the best way to do (m_bias + m * n) / (1 << 64).	\
157	 * From now on there will be actual runtime code generated.	\
158	 */								\
159	___res = __arch_xprod_64(___m, ___n, ___bias);			\
160									\
161	___res /= ___p;							\
162})
163
164#ifndef __arch_xprod_64
165/*
166 * Default C implementation for __arch_xprod_64()
167 *
168 * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
169 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
170 *
171 * The product is a 128-bit value, scaled down to 64 bits.
172 * Assuming constant propagation to optimize away unused conditional code.
173 * Architectures may provide their own optimized assembly implementation.
174 */
175static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
176{
177	uint32_t m_lo = m;
178	uint32_t m_hi = m >> 32;
179	uint32_t n_lo = n;
180	uint32_t n_hi = n >> 32;
181	uint64_t res;
182	uint32_t res_lo, res_hi, tmp;
183
184	if (!bias) {
185		res = ((uint64_t)m_lo * n_lo) >> 32;
186	} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
187		/* there can't be any overflow here */
188		res = (m + (uint64_t)m_lo * n_lo) >> 32;
189	} else {
190		res = m + (uint64_t)m_lo * n_lo;
191		res_lo = res >> 32;
192		res_hi = (res_lo < m_hi);
193		res = res_lo | ((uint64_t)res_hi << 32);
194	}
195
196	if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
197		/* there can't be any overflow here */
198		res += (uint64_t)m_lo * n_hi;
199		res += (uint64_t)m_hi * n_lo;
200		res >>= 32;
201	} else {
202		res += (uint64_t)m_lo * n_hi;
203		tmp = res >> 32;
204		res += (uint64_t)m_hi * n_lo;
205		res_lo = res >> 32;
206		res_hi = (res_lo < tmp);
207		res = res_lo | ((uint64_t)res_hi << 32);
208	}
209
210	res += (uint64_t)m_hi * n_hi;
211
212	return res;
213}
214#endif
215
216#ifndef __div64_32
217extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
218#endif
219
220/* The unnecessary pointer compare is there
221 * to check for type safety (n must be 64bit)
222 */
223# define do_div(n,base) ({				\
224	uint32_t __base = (base);			\
225	uint32_t __rem;					\
226	(void)(((typeof((n)) *)0) == ((uint64_t *)0));	\
227	if (__builtin_constant_p(__base) &&		\
228	    is_power_of_2(__base)) {			\
229		__rem = (n) & (__base - 1);		\
230		(n) >>= ilog2(__base);			\
231	} else if (__div64_const32_is_OK &&		\
232		   __builtin_constant_p(__base) &&	\
233		   __base != 0) {			\
234		uint32_t __res_lo, __n_lo = (n);	\
235		(n) = __div64_const32(n, __base);	\
236		/* the remainder can be computed with 32-bit regs */ \
237		__res_lo = (n);				\
238		__rem = __n_lo - __res_lo * __base;	\
239	} else if (likely(((n) >> 32) == 0)) {		\
240		__rem = (uint32_t)(n) % __base;		\
241		(n) = (uint32_t)(n) / __base;		\
242	} else 						\
243		__rem = __div64_32(&(n), __base);	\
244	__rem;						\
245 })
246
247#else /* BITS_PER_LONG == ?? */
248
249# error do_div() does not yet support the C64
250
251#endif /* BITS_PER_LONG */
252
253#endif /* _ASM_GENERIC_DIV64_H */