Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  13 * the UBIFS B-tree.
  14 *
  15 * At the moment the locking rules of the TNC tree are quite simple and
  16 * straightforward. We just have a mutex and lock it when we traverse the
  17 * tree. If a znode is not in memory, we read it from flash while still having
  18 * the mutex locked.
  19 */
  20
  21#include <linux/crc32.h>
  22#include <linux/slab.h>
  23#include "ubifs.h"
  24
  25static int try_read_node(const struct ubifs_info *c, void *buf, int type,
  26			 struct ubifs_zbranch *zbr);
  27static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
  28			      struct ubifs_zbranch *zbr, void *node);
  29
  30/*
  31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  32 * @NAME_LESS: name corresponding to the first argument is less than second
  33 * @NAME_MATCHES: names match
  34 * @NAME_GREATER: name corresponding to the second argument is greater than
  35 *                first
  36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  37 *
  38 * These constants were introduce to improve readability.
  39 */
  40enum {
  41	NAME_LESS    = 0,
  42	NAME_MATCHES = 1,
  43	NAME_GREATER = 2,
  44	NOT_ON_MEDIA = 3,
  45};
  46
  47/**
  48 * insert_old_idx - record an index node obsoleted since the last commit start.
  49 * @c: UBIFS file-system description object
  50 * @lnum: LEB number of obsoleted index node
  51 * @offs: offset of obsoleted index node
  52 *
  53 * Returns %0 on success, and a negative error code on failure.
  54 *
  55 * For recovery, there must always be a complete intact version of the index on
  56 * flash at all times. That is called the "old index". It is the index as at the
  57 * time of the last successful commit. Many of the index nodes in the old index
  58 * may be dirty, but they must not be erased until the next successful commit
  59 * (at which point that index becomes the old index).
  60 *
  61 * That means that the garbage collection and the in-the-gaps method of
  62 * committing must be able to determine if an index node is in the old index.
  63 * Most of the old index nodes can be found by looking up the TNC using the
  64 * 'lookup_znode()' function. However, some of the old index nodes may have
  65 * been deleted from the current index or may have been changed so much that
  66 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  67 * That is what this function does. The RB-tree is ordered by LEB number and
  68 * offset because they uniquely identify the old index node.
  69 */
  70static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  71{
  72	struct ubifs_old_idx *old_idx, *o;
  73	struct rb_node **p, *parent = NULL;
  74
  75	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  76	if (unlikely(!old_idx))
  77		return -ENOMEM;
  78	old_idx->lnum = lnum;
  79	old_idx->offs = offs;
  80
  81	p = &c->old_idx.rb_node;
  82	while (*p) {
  83		parent = *p;
  84		o = rb_entry(parent, struct ubifs_old_idx, rb);
  85		if (lnum < o->lnum)
  86			p = &(*p)->rb_left;
  87		else if (lnum > o->lnum)
  88			p = &(*p)->rb_right;
  89		else if (offs < o->offs)
  90			p = &(*p)->rb_left;
  91		else if (offs > o->offs)
  92			p = &(*p)->rb_right;
  93		else {
  94			ubifs_err(c, "old idx added twice!");
  95			kfree(old_idx);
  96			return 0;
  97		}
  98	}
  99	rb_link_node(&old_idx->rb, parent, p);
 100	rb_insert_color(&old_idx->rb, &c->old_idx);
 101	return 0;
 102}
 103
 104/**
 105 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 106 * @c: UBIFS file-system description object
 107 * @znode: znode of obsoleted index node
 108 *
 109 * Returns %0 on success, and a negative error code on failure.
 110 */
 111int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 112{
 113	if (znode->parent) {
 114		struct ubifs_zbranch *zbr;
 115
 116		zbr = &znode->parent->zbranch[znode->iip];
 117		if (zbr->len)
 118			return insert_old_idx(c, zbr->lnum, zbr->offs);
 119	} else
 120		if (c->zroot.len)
 121			return insert_old_idx(c, c->zroot.lnum,
 122					      c->zroot.offs);
 123	return 0;
 124}
 125
 126/**
 127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 128 * @c: UBIFS file-system description object
 129 * @znode: znode of obsoleted index node
 130 *
 131 * Returns %0 on success, and a negative error code on failure.
 132 */
 133static int ins_clr_old_idx_znode(struct ubifs_info *c,
 134				 struct ubifs_znode *znode)
 135{
 136	int err;
 137
 138	if (znode->parent) {
 139		struct ubifs_zbranch *zbr;
 140
 141		zbr = &znode->parent->zbranch[znode->iip];
 142		if (zbr->len) {
 143			err = insert_old_idx(c, zbr->lnum, zbr->offs);
 144			if (err)
 145				return err;
 146			zbr->lnum = 0;
 147			zbr->offs = 0;
 148			zbr->len = 0;
 149		}
 150	} else
 151		if (c->zroot.len) {
 152			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 153			if (err)
 154				return err;
 155			c->zroot.lnum = 0;
 156			c->zroot.offs = 0;
 157			c->zroot.len = 0;
 158		}
 159	return 0;
 160}
 161
 162/**
 163 * destroy_old_idx - destroy the old_idx RB-tree.
 164 * @c: UBIFS file-system description object
 165 *
 166 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 167 * nodes that were in the index last commit but have since been deleted.  This
 168 * is necessary for recovery i.e. the old index must be kept intact until the
 169 * new index is successfully written.  The old-idx RB-tree is used for the
 170 * in-the-gaps method of writing index nodes and is destroyed every commit.
 171 */
 172void destroy_old_idx(struct ubifs_info *c)
 173{
 174	struct ubifs_old_idx *old_idx, *n;
 175
 176	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
 177		kfree(old_idx);
 178
 179	c->old_idx = RB_ROOT;
 180}
 181
 182/**
 183 * copy_znode - copy a dirty znode.
 184 * @c: UBIFS file-system description object
 185 * @znode: znode to copy
 186 *
 187 * A dirty znode being committed may not be changed, so it is copied.
 188 */
 189static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 190				      struct ubifs_znode *znode)
 191{
 192	struct ubifs_znode *zn;
 193
 194	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
 195	if (unlikely(!zn))
 196		return ERR_PTR(-ENOMEM);
 197
 198	zn->cnext = NULL;
 199	__set_bit(DIRTY_ZNODE, &zn->flags);
 200	__clear_bit(COW_ZNODE, &zn->flags);
 201
 202	ubifs_assert(c, !ubifs_zn_obsolete(znode));
 203	__set_bit(OBSOLETE_ZNODE, &znode->flags);
 204
 205	if (znode->level != 0) {
 206		int i;
 207		const int n = zn->child_cnt;
 208
 209		/* The children now have new parent */
 210		for (i = 0; i < n; i++) {
 211			struct ubifs_zbranch *zbr = &zn->zbranch[i];
 212
 213			if (zbr->znode)
 214				zbr->znode->parent = zn;
 215		}
 216	}
 217
 218	atomic_long_inc(&c->dirty_zn_cnt);
 219	return zn;
 220}
 221
 222/**
 223 * add_idx_dirt - add dirt due to a dirty znode.
 224 * @c: UBIFS file-system description object
 225 * @lnum: LEB number of index node
 226 * @dirt: size of index node
 227 *
 228 * This function updates lprops dirty space and the new size of the index.
 229 */
 230static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 231{
 232	c->calc_idx_sz -= ALIGN(dirt, 8);
 233	return ubifs_add_dirt(c, lnum, dirt);
 234}
 235
 236/**
 237 * dirty_cow_znode - ensure a znode is not being committed.
 238 * @c: UBIFS file-system description object
 239 * @zbr: branch of znode to check
 240 *
 241 * Returns dirtied znode on success or negative error code on failure.
 242 */
 243static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 244					   struct ubifs_zbranch *zbr)
 245{
 246	struct ubifs_znode *znode = zbr->znode;
 247	struct ubifs_znode *zn;
 248	int err;
 249
 250	if (!ubifs_zn_cow(znode)) {
 251		/* znode is not being committed */
 252		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 253			atomic_long_inc(&c->dirty_zn_cnt);
 254			atomic_long_dec(&c->clean_zn_cnt);
 255			atomic_long_dec(&ubifs_clean_zn_cnt);
 256			err = add_idx_dirt(c, zbr->lnum, zbr->len);
 257			if (unlikely(err))
 258				return ERR_PTR(err);
 259		}
 260		return znode;
 261	}
 262
 263	zn = copy_znode(c, znode);
 264	if (IS_ERR(zn))
 265		return zn;
 266
 267	if (zbr->len) {
 268		err = insert_old_idx(c, zbr->lnum, zbr->offs);
 269		if (unlikely(err))
 270			return ERR_PTR(err);
 271		err = add_idx_dirt(c, zbr->lnum, zbr->len);
 272	} else
 273		err = 0;
 274
 275	zbr->znode = zn;
 276	zbr->lnum = 0;
 277	zbr->offs = 0;
 278	zbr->len = 0;
 279
 280	if (unlikely(err))
 281		return ERR_PTR(err);
 282	return zn;
 283}
 284
 285/**
 286 * lnc_add - add a leaf node to the leaf node cache.
 287 * @c: UBIFS file-system description object
 288 * @zbr: zbranch of leaf node
 289 * @node: leaf node
 290 *
 291 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 292 * purpose of the leaf node cache is to save re-reading the same leaf node over
 293 * and over again. Most things are cached by VFS, however the file system must
 294 * cache directory entries for readdir and for resolving hash collisions. The
 295 * present implementation of the leaf node cache is extremely simple, and
 296 * allows for error returns that are not used but that may be needed if a more
 297 * complex implementation is created.
 298 *
 299 * Note, this function does not add the @node object to LNC directly, but
 300 * allocates a copy of the object and adds the copy to LNC. The reason for this
 301 * is that @node has been allocated outside of the TNC subsystem and will be
 302 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 303 * may be changed at any time, e.g. freed by the shrinker.
 304 */
 305static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 306		   const void *node)
 307{
 308	int err;
 309	void *lnc_node;
 310	const struct ubifs_dent_node *dent = node;
 311
 312	ubifs_assert(c, !zbr->leaf);
 313	ubifs_assert(c, zbr->len != 0);
 314	ubifs_assert(c, is_hash_key(c, &zbr->key));
 315
 316	err = ubifs_validate_entry(c, dent);
 317	if (err) {
 318		dump_stack();
 319		ubifs_dump_node(c, dent);
 320		return err;
 321	}
 322
 323	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
 324	if (!lnc_node)
 325		/* We don't have to have the cache, so no error */
 326		return 0;
 327
 328	zbr->leaf = lnc_node;
 329	return 0;
 330}
 331
 332 /**
 333 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 334 * @c: UBIFS file-system description object
 335 * @zbr: zbranch of leaf node
 336 * @node: leaf node
 337 *
 338 * This function is similar to 'lnc_add()', but it does not create a copy of
 339 * @node but inserts @node to TNC directly.
 340 */
 341static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 342			    void *node)
 343{
 344	int err;
 345
 346	ubifs_assert(c, !zbr->leaf);
 347	ubifs_assert(c, zbr->len != 0);
 348
 349	err = ubifs_validate_entry(c, node);
 350	if (err) {
 351		dump_stack();
 352		ubifs_dump_node(c, node);
 353		return err;
 354	}
 355
 356	zbr->leaf = node;
 357	return 0;
 358}
 359
 360/**
 361 * lnc_free - remove a leaf node from the leaf node cache.
 362 * @zbr: zbranch of leaf node
 363 * @node: leaf node
 364 */
 365static void lnc_free(struct ubifs_zbranch *zbr)
 366{
 367	if (!zbr->leaf)
 368		return;
 369	kfree(zbr->leaf);
 370	zbr->leaf = NULL;
 371}
 372
 373/**
 374 * tnc_read_hashed_node - read a "hashed" leaf node.
 375 * @c: UBIFS file-system description object
 376 * @zbr: key and position of the node
 377 * @node: node is returned here
 378 *
 379 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 380 * (in it is there) or from the hash media, in which case the node is also
 381 * added to LNC. Returns zero in case of success or a negative negative error
 382 * code in case of failure.
 383 */
 384static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 385				void *node)
 386{
 387	int err;
 388
 389	ubifs_assert(c, is_hash_key(c, &zbr->key));
 390
 391	if (zbr->leaf) {
 392		/* Read from the leaf node cache */
 393		ubifs_assert(c, zbr->len != 0);
 394		memcpy(node, zbr->leaf, zbr->len);
 395		return 0;
 396	}
 397
 398	if (c->replaying) {
 399		err = fallible_read_node(c, &zbr->key, zbr, node);
 400		/*
 401		 * When the node was not found, return -ENOENT, 0 otherwise.
 402		 * Negative return codes stay as-is.
 403		 */
 404		if (err == 0)
 405			err = -ENOENT;
 406		else if (err == 1)
 407			err = 0;
 408	} else {
 409		err = ubifs_tnc_read_node(c, zbr, node);
 410	}
 411	if (err)
 412		return err;
 413
 414	/* Add the node to the leaf node cache */
 415	err = lnc_add(c, zbr, node);
 416	return err;
 417}
 418
 419/**
 420 * try_read_node - read a node if it is a node.
 421 * @c: UBIFS file-system description object
 422 * @buf: buffer to read to
 423 * @type: node type
 424 * @zbr: the zbranch describing the node to read
 425 *
 426 * This function tries to read a node of known type and length, checks it and
 427 * stores it in @buf. This function returns %1 if a node is present and %0 if
 428 * a node is not present. A negative error code is returned for I/O errors.
 429 * This function performs that same function as ubifs_read_node except that
 430 * it does not require that there is actually a node present and instead
 431 * the return code indicates if a node was read.
 432 *
 433 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 434 * is true (it is controlled by corresponding mount option). However, if
 435 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 436 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 437 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 438 * journal nodes (when replying the journal or doing the recovery) and the
 439 * journal nodes may potentially be corrupted, so checking is required.
 440 */
 441static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 442			 struct ubifs_zbranch *zbr)
 443{
 444	int len = zbr->len;
 445	int lnum = zbr->lnum;
 446	int offs = zbr->offs;
 447	int err, node_len;
 448	struct ubifs_ch *ch = buf;
 449	uint32_t crc, node_crc;
 450
 451	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 452
 453	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 454	if (err) {
 455		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
 456			  type, lnum, offs, err);
 457		return err;
 458	}
 459
 460	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 461		return 0;
 462
 463	if (ch->node_type != type)
 464		return 0;
 465
 466	node_len = le32_to_cpu(ch->len);
 467	if (node_len != len)
 468		return 0;
 469
 470	if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
 471	    c->remounting_rw) {
 472		crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 473		node_crc = le32_to_cpu(ch->crc);
 474		if (crc != node_crc)
 475			return 0;
 476	}
 477
 478	err = ubifs_node_check_hash(c, buf, zbr->hash);
 479	if (err) {
 480		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
 481		return 0;
 482	}
 483
 484	return 1;
 485}
 486
 487/**
 488 * fallible_read_node - try to read a leaf node.
 489 * @c: UBIFS file-system description object
 490 * @key:  key of node to read
 491 * @zbr:  position of node
 492 * @node: node returned
 493 *
 494 * This function tries to read a node and returns %1 if the node is read, %0
 495 * if the node is not present, and a negative error code in the case of error.
 496 */
 497static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 498			      struct ubifs_zbranch *zbr, void *node)
 499{
 500	int ret;
 501
 502	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
 503
 504	ret = try_read_node(c, node, key_type(c, key), zbr);
 505	if (ret == 1) {
 506		union ubifs_key node_key;
 507		struct ubifs_dent_node *dent = node;
 508
 509		/* All nodes have key in the same place */
 510		key_read(c, &dent->key, &node_key);
 511		if (keys_cmp(c, key, &node_key) != 0)
 512			ret = 0;
 513	}
 514	if (ret == 0 && c->replaying)
 515		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
 516			zbr->lnum, zbr->offs, zbr->len);
 517	return ret;
 518}
 519
 520/**
 521 * matches_name - determine if a direntry or xattr entry matches a given name.
 522 * @c: UBIFS file-system description object
 523 * @zbr: zbranch of dent
 524 * @nm: name to match
 525 *
 526 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 527 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 528 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 529 * of failure, a negative error code is returned.
 530 */
 531static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 532			const struct fscrypt_name *nm)
 533{
 534	struct ubifs_dent_node *dent;
 535	int nlen, err;
 536
 537	/* If possible, match against the dent in the leaf node cache */
 538	if (!zbr->leaf) {
 539		dent = kmalloc(zbr->len, GFP_NOFS);
 540		if (!dent)
 541			return -ENOMEM;
 542
 543		err = ubifs_tnc_read_node(c, zbr, dent);
 544		if (err)
 545			goto out_free;
 546
 547		/* Add the node to the leaf node cache */
 548		err = lnc_add_directly(c, zbr, dent);
 549		if (err)
 550			goto out_free;
 551	} else
 552		dent = zbr->leaf;
 553
 554	nlen = le16_to_cpu(dent->nlen);
 555	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
 556	if (err == 0) {
 557		if (nlen == fname_len(nm))
 558			return NAME_MATCHES;
 559		else if (nlen < fname_len(nm))
 560			return NAME_LESS;
 561		else
 562			return NAME_GREATER;
 563	} else if (err < 0)
 564		return NAME_LESS;
 565	else
 566		return NAME_GREATER;
 567
 568out_free:
 569	kfree(dent);
 570	return err;
 571}
 572
 573/**
 574 * get_znode - get a TNC znode that may not be loaded yet.
 575 * @c: UBIFS file-system description object
 576 * @znode: parent znode
 577 * @n: znode branch slot number
 578 *
 579 * This function returns the znode or a negative error code.
 580 */
 581static struct ubifs_znode *get_znode(struct ubifs_info *c,
 582				     struct ubifs_znode *znode, int n)
 583{
 584	struct ubifs_zbranch *zbr;
 585
 586	zbr = &znode->zbranch[n];
 587	if (zbr->znode)
 588		znode = zbr->znode;
 589	else
 590		znode = ubifs_load_znode(c, zbr, znode, n);
 591	return znode;
 592}
 593
 594/**
 595 * tnc_next - find next TNC entry.
 596 * @c: UBIFS file-system description object
 597 * @zn: znode is passed and returned here
 598 * @n: znode branch slot number is passed and returned here
 599 *
 600 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 601 * no next entry, or a negative error code otherwise.
 602 */
 603static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 604{
 605	struct ubifs_znode *znode = *zn;
 606	int nn = *n;
 607
 608	nn += 1;
 609	if (nn < znode->child_cnt) {
 610		*n = nn;
 611		return 0;
 612	}
 613	while (1) {
 614		struct ubifs_znode *zp;
 615
 616		zp = znode->parent;
 617		if (!zp)
 618			return -ENOENT;
 619		nn = znode->iip + 1;
 620		znode = zp;
 621		if (nn < znode->child_cnt) {
 622			znode = get_znode(c, znode, nn);
 623			if (IS_ERR(znode))
 624				return PTR_ERR(znode);
 625			while (znode->level != 0) {
 626				znode = get_znode(c, znode, 0);
 627				if (IS_ERR(znode))
 628					return PTR_ERR(znode);
 629			}
 630			nn = 0;
 631			break;
 632		}
 633	}
 634	*zn = znode;
 635	*n = nn;
 636	return 0;
 637}
 638
 639/**
 640 * tnc_prev - find previous TNC entry.
 641 * @c: UBIFS file-system description object
 642 * @zn: znode is returned here
 643 * @n: znode branch slot number is passed and returned here
 644 *
 645 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 646 * there is no next entry, or a negative error code otherwise.
 647 */
 648static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 649{
 650	struct ubifs_znode *znode = *zn;
 651	int nn = *n;
 652
 653	if (nn > 0) {
 654		*n = nn - 1;
 655		return 0;
 656	}
 657	while (1) {
 658		struct ubifs_znode *zp;
 659
 660		zp = znode->parent;
 661		if (!zp)
 662			return -ENOENT;
 663		nn = znode->iip - 1;
 664		znode = zp;
 665		if (nn >= 0) {
 666			znode = get_znode(c, znode, nn);
 667			if (IS_ERR(znode))
 668				return PTR_ERR(znode);
 669			while (znode->level != 0) {
 670				nn = znode->child_cnt - 1;
 671				znode = get_znode(c, znode, nn);
 672				if (IS_ERR(znode))
 673					return PTR_ERR(znode);
 674			}
 675			nn = znode->child_cnt - 1;
 676			break;
 677		}
 678	}
 679	*zn = znode;
 680	*n = nn;
 681	return 0;
 682}
 683
 684/**
 685 * resolve_collision - resolve a collision.
 686 * @c: UBIFS file-system description object
 687 * @key: key of a directory or extended attribute entry
 688 * @zn: znode is returned here
 689 * @n: zbranch number is passed and returned here
 690 * @nm: name of the entry
 691 *
 692 * This function is called for "hashed" keys to make sure that the found key
 693 * really corresponds to the looked up node (directory or extended attribute
 694 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 695 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 696 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 697 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 698 * previous one. A negative error code is returned on failures.
 699 */
 700static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 701			     struct ubifs_znode **zn, int *n,
 702			     const struct fscrypt_name *nm)
 703{
 704	int err;
 705
 706	err = matches_name(c, &(*zn)->zbranch[*n], nm);
 707	if (unlikely(err < 0))
 708		return err;
 709	if (err == NAME_MATCHES)
 710		return 1;
 711
 712	if (err == NAME_GREATER) {
 713		/* Look left */
 714		while (1) {
 715			err = tnc_prev(c, zn, n);
 716			if (err == -ENOENT) {
 717				ubifs_assert(c, *n == 0);
 718				*n = -1;
 719				return 0;
 720			}
 721			if (err < 0)
 722				return err;
 723			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 724				/*
 725				 * We have found the branch after which we would
 726				 * like to insert, but inserting in this znode
 727				 * may still be wrong. Consider the following 3
 728				 * znodes, in the case where we are resolving a
 729				 * collision with Key2.
 730				 *
 731				 *                  znode zp
 732				 *            ----------------------
 733				 * level 1     |  Key0  |  Key1  |
 734				 *            -----------------------
 735				 *                 |            |
 736				 *       znode za  |            |  znode zb
 737				 *          ------------      ------------
 738				 * level 0  |  Key0  |        |  Key2  |
 739				 *          ------------      ------------
 740				 *
 741				 * The lookup finds Key2 in znode zb. Lets say
 742				 * there is no match and the name is greater so
 743				 * we look left. When we find Key0, we end up
 744				 * here. If we return now, we will insert into
 745				 * znode za at slot n = 1.  But that is invalid
 746				 * according to the parent's keys.  Key2 must
 747				 * be inserted into znode zb.
 748				 *
 749				 * Note, this problem is not relevant for the
 750				 * case when we go right, because
 751				 * 'tnc_insert()' would correct the parent key.
 752				 */
 753				if (*n == (*zn)->child_cnt - 1) {
 754					err = tnc_next(c, zn, n);
 755					if (err) {
 756						/* Should be impossible */
 757						ubifs_assert(c, 0);
 758						if (err == -ENOENT)
 759							err = -EINVAL;
 760						return err;
 761					}
 762					ubifs_assert(c, *n == 0);
 763					*n = -1;
 764				}
 765				return 0;
 766			}
 767			err = matches_name(c, &(*zn)->zbranch[*n], nm);
 768			if (err < 0)
 769				return err;
 770			if (err == NAME_LESS)
 771				return 0;
 772			if (err == NAME_MATCHES)
 773				return 1;
 774			ubifs_assert(c, err == NAME_GREATER);
 775		}
 776	} else {
 777		int nn = *n;
 778		struct ubifs_znode *znode = *zn;
 779
 780		/* Look right */
 781		while (1) {
 782			err = tnc_next(c, &znode, &nn);
 783			if (err == -ENOENT)
 784				return 0;
 785			if (err < 0)
 786				return err;
 787			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 788				return 0;
 789			err = matches_name(c, &znode->zbranch[nn], nm);
 790			if (err < 0)
 791				return err;
 792			if (err == NAME_GREATER)
 793				return 0;
 794			*zn = znode;
 795			*n = nn;
 796			if (err == NAME_MATCHES)
 797				return 1;
 798			ubifs_assert(c, err == NAME_LESS);
 799		}
 800	}
 801}
 802
 803/**
 804 * fallible_matches_name - determine if a dent matches a given name.
 805 * @c: UBIFS file-system description object
 806 * @zbr: zbranch of dent
 807 * @nm: name to match
 808 *
 809 * This is a "fallible" version of 'matches_name()' function which does not
 810 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 811 *
 812 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 813 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 814 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 815 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 816 * error code is returned in case of failure.
 817 */
 818static int fallible_matches_name(struct ubifs_info *c,
 819				 struct ubifs_zbranch *zbr,
 820				 const struct fscrypt_name *nm)
 821{
 822	struct ubifs_dent_node *dent;
 823	int nlen, err;
 824
 825	/* If possible, match against the dent in the leaf node cache */
 826	if (!zbr->leaf) {
 827		dent = kmalloc(zbr->len, GFP_NOFS);
 828		if (!dent)
 829			return -ENOMEM;
 830
 831		err = fallible_read_node(c, &zbr->key, zbr, dent);
 832		if (err < 0)
 833			goto out_free;
 834		if (err == 0) {
 835			/* The node was not present */
 836			err = NOT_ON_MEDIA;
 837			goto out_free;
 838		}
 839		ubifs_assert(c, err == 1);
 840
 841		err = lnc_add_directly(c, zbr, dent);
 842		if (err)
 843			goto out_free;
 844	} else
 845		dent = zbr->leaf;
 846
 847	nlen = le16_to_cpu(dent->nlen);
 848	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
 849	if (err == 0) {
 850		if (nlen == fname_len(nm))
 851			return NAME_MATCHES;
 852		else if (nlen < fname_len(nm))
 853			return NAME_LESS;
 854		else
 855			return NAME_GREATER;
 856	} else if (err < 0)
 857		return NAME_LESS;
 858	else
 859		return NAME_GREATER;
 860
 861out_free:
 862	kfree(dent);
 863	return err;
 864}
 865
 866/**
 867 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 868 * @c: UBIFS file-system description object
 869 * @key: key
 870 * @zn: znode is returned here
 871 * @n: branch number is passed and returned here
 872 * @nm: name of directory entry
 873 * @adding: indicates caller is adding a key to the TNC
 874 *
 875 * This is a "fallible" version of the 'resolve_collision()' function which
 876 * does not panic if one of the nodes referred to by TNC does not exist on the
 877 * media. This may happen when replaying the journal if a deleted node was
 878 * Garbage-collected and the commit was not done. A branch that refers to a node
 879 * that is not present is called a dangling branch. The following are the return
 880 * codes for this function:
 881 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 882 *    branch;
 883 *  o if we are @adding and @nm was not found, %0 is returned;
 884 *  o if we are not @adding and @nm was not found, but a dangling branch was
 885 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 886 *  o a negative error code is returned in case of failure.
 887 */
 888static int fallible_resolve_collision(struct ubifs_info *c,
 889				      const union ubifs_key *key,
 890				      struct ubifs_znode **zn, int *n,
 891				      const struct fscrypt_name *nm,
 892				      int adding)
 893{
 894	struct ubifs_znode *o_znode = NULL, *znode = *zn;
 895	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 896
 897	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 898	if (unlikely(cmp < 0))
 899		return cmp;
 900	if (cmp == NAME_MATCHES)
 901		return 1;
 902	if (cmp == NOT_ON_MEDIA) {
 903		o_znode = znode;
 904		o_n = nn;
 905		/*
 906		 * We are unlucky and hit a dangling branch straight away.
 907		 * Now we do not really know where to go to find the needed
 908		 * branch - to the left or to the right. Well, let's try left.
 909		 */
 910		unsure = 1;
 911	} else if (!adding)
 912		unsure = 1; /* Remove a dangling branch wherever it is */
 913
 914	if (cmp == NAME_GREATER || unsure) {
 915		/* Look left */
 916		while (1) {
 917			err = tnc_prev(c, zn, n);
 918			if (err == -ENOENT) {
 919				ubifs_assert(c, *n == 0);
 920				*n = -1;
 921				break;
 922			}
 923			if (err < 0)
 924				return err;
 925			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 926				/* See comments in 'resolve_collision()' */
 927				if (*n == (*zn)->child_cnt - 1) {
 928					err = tnc_next(c, zn, n);
 929					if (err) {
 930						/* Should be impossible */
 931						ubifs_assert(c, 0);
 932						if (err == -ENOENT)
 933							err = -EINVAL;
 934						return err;
 935					}
 936					ubifs_assert(c, *n == 0);
 937					*n = -1;
 938				}
 939				break;
 940			}
 941			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 942			if (err < 0)
 943				return err;
 944			if (err == NAME_MATCHES)
 945				return 1;
 946			if (err == NOT_ON_MEDIA) {
 947				o_znode = *zn;
 948				o_n = *n;
 949				continue;
 950			}
 951			if (!adding)
 952				continue;
 953			if (err == NAME_LESS)
 954				break;
 955			else
 956				unsure = 0;
 957		}
 958	}
 959
 960	if (cmp == NAME_LESS || unsure) {
 961		/* Look right */
 962		*zn = znode;
 963		*n = nn;
 964		while (1) {
 965			err = tnc_next(c, &znode, &nn);
 966			if (err == -ENOENT)
 967				break;
 968			if (err < 0)
 969				return err;
 970			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 971				break;
 972			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 973			if (err < 0)
 974				return err;
 975			if (err == NAME_GREATER)
 976				break;
 977			*zn = znode;
 978			*n = nn;
 979			if (err == NAME_MATCHES)
 980				return 1;
 981			if (err == NOT_ON_MEDIA) {
 982				o_znode = znode;
 983				o_n = nn;
 984			}
 985		}
 986	}
 987
 988	/* Never match a dangling branch when adding */
 989	if (adding || !o_znode)
 990		return 0;
 991
 992	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
 993		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 994		o_znode->zbranch[o_n].len);
 995	*zn = o_znode;
 996	*n = o_n;
 997	return 1;
 998}
 999
1000/**
1001 * matches_position - determine if a zbranch matches a given position.
1002 * @zbr: zbranch of dent
1003 * @lnum: LEB number of dent to match
1004 * @offs: offset of dent to match
1005 *
1006 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1007 */
1008static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1009{
1010	if (zbr->lnum == lnum && zbr->offs == offs)
1011		return 1;
1012	else
1013		return 0;
1014}
1015
1016/**
1017 * resolve_collision_directly - resolve a collision directly.
1018 * @c: UBIFS file-system description object
1019 * @key: key of directory entry
1020 * @zn: znode is passed and returned here
1021 * @n: zbranch number is passed and returned here
1022 * @lnum: LEB number of dent node to match
1023 * @offs: offset of dent node to match
1024 *
1025 * This function is used for "hashed" keys to make sure the found directory or
1026 * extended attribute entry node is what was looked for. It is used when the
1027 * flash address of the right node is known (@lnum:@offs) which makes it much
1028 * easier to resolve collisions (no need to read entries and match full
1029 * names). This function returns %1 and sets @zn and @n if the collision is
1030 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1031 * previous directory entry. Otherwise a negative error code is returned.
1032 */
1033static int resolve_collision_directly(struct ubifs_info *c,
1034				      const union ubifs_key *key,
1035				      struct ubifs_znode **zn, int *n,
1036				      int lnum, int offs)
1037{
1038	struct ubifs_znode *znode;
1039	int nn, err;
1040
1041	znode = *zn;
1042	nn = *n;
1043	if (matches_position(&znode->zbranch[nn], lnum, offs))
1044		return 1;
1045
1046	/* Look left */
1047	while (1) {
1048		err = tnc_prev(c, &znode, &nn);
1049		if (err == -ENOENT)
1050			break;
1051		if (err < 0)
1052			return err;
1053		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1054			break;
1055		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1056			*zn = znode;
1057			*n = nn;
1058			return 1;
1059		}
1060	}
1061
1062	/* Look right */
1063	znode = *zn;
1064	nn = *n;
1065	while (1) {
1066		err = tnc_next(c, &znode, &nn);
1067		if (err == -ENOENT)
1068			return 0;
1069		if (err < 0)
1070			return err;
1071		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1072			return 0;
1073		*zn = znode;
1074		*n = nn;
1075		if (matches_position(&znode->zbranch[nn], lnum, offs))
1076			return 1;
1077	}
1078}
1079
1080/**
1081 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1082 * @c: UBIFS file-system description object
1083 * @znode: znode to dirty
1084 *
1085 * If we do not have a unique key that resides in a znode, then we cannot
1086 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1087 * This function records the path back to the last dirty ancestor, and then
1088 * dirties the znodes on that path.
1089 */
1090static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1091					       struct ubifs_znode *znode)
1092{
1093	struct ubifs_znode *zp;
1094	int *path = c->bottom_up_buf, p = 0;
1095
1096	ubifs_assert(c, c->zroot.znode);
1097	ubifs_assert(c, znode);
1098	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1099		kfree(c->bottom_up_buf);
1100		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1101						 sizeof(int),
1102						 GFP_NOFS);
1103		if (!c->bottom_up_buf)
1104			return ERR_PTR(-ENOMEM);
1105		path = c->bottom_up_buf;
1106	}
1107	if (c->zroot.znode->level) {
1108		/* Go up until parent is dirty */
1109		while (1) {
1110			int n;
1111
1112			zp = znode->parent;
1113			if (!zp)
1114				break;
1115			n = znode->iip;
1116			ubifs_assert(c, p < c->zroot.znode->level);
1117			path[p++] = n;
1118			if (!zp->cnext && ubifs_zn_dirty(znode))
1119				break;
1120			znode = zp;
1121		}
1122	}
1123
1124	/* Come back down, dirtying as we go */
1125	while (1) {
1126		struct ubifs_zbranch *zbr;
1127
1128		zp = znode->parent;
1129		if (zp) {
1130			ubifs_assert(c, path[p - 1] >= 0);
1131			ubifs_assert(c, path[p - 1] < zp->child_cnt);
1132			zbr = &zp->zbranch[path[--p]];
1133			znode = dirty_cow_znode(c, zbr);
1134		} else {
1135			ubifs_assert(c, znode == c->zroot.znode);
1136			znode = dirty_cow_znode(c, &c->zroot);
1137		}
1138		if (IS_ERR(znode) || !p)
1139			break;
1140		ubifs_assert(c, path[p - 1] >= 0);
1141		ubifs_assert(c, path[p - 1] < znode->child_cnt);
1142		znode = znode->zbranch[path[p - 1]].znode;
1143	}
1144
1145	return znode;
1146}
1147
1148/**
1149 * ubifs_lookup_level0 - search for zero-level znode.
1150 * @c: UBIFS file-system description object
1151 * @key:  key to lookup
1152 * @zn: znode is returned here
1153 * @n: znode branch slot number is returned here
1154 *
1155 * This function looks up the TNC tree and search for zero-level znode which
1156 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1157 * cases:
1158 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1159 *     is returned and slot number of the matched branch is stored in @n;
1160 *   o not exact match, which means that zero-level znode does not contain
1161 *     @key, then %0 is returned and slot number of the closest branch or %-1
1162 *     is stored in @n; In this case calling tnc_next() is mandatory.
1163 *   o @key is so small that it is even less than the lowest key of the
1164 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1165 *
1166 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1167 * function reads corresponding indexing nodes and inserts them to TNC. In
1168 * case of failure, a negative error code is returned.
1169 */
1170int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1171			struct ubifs_znode **zn, int *n)
1172{
1173	int err, exact;
1174	struct ubifs_znode *znode;
1175	time64_t time = ktime_get_seconds();
1176
1177	dbg_tnck(key, "search key ");
1178	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1179
1180	znode = c->zroot.znode;
1181	if (unlikely(!znode)) {
1182		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1183		if (IS_ERR(znode))
1184			return PTR_ERR(znode);
1185	}
1186
1187	znode->time = time;
1188
1189	while (1) {
1190		struct ubifs_zbranch *zbr;
1191
1192		exact = ubifs_search_zbranch(c, znode, key, n);
1193
1194		if (znode->level == 0)
1195			break;
1196
1197		if (*n < 0)
1198			*n = 0;
1199		zbr = &znode->zbranch[*n];
1200
1201		if (zbr->znode) {
1202			znode->time = time;
1203			znode = zbr->znode;
1204			continue;
1205		}
1206
1207		/* znode is not in TNC cache, load it from the media */
1208		znode = ubifs_load_znode(c, zbr, znode, *n);
1209		if (IS_ERR(znode))
1210			return PTR_ERR(znode);
1211	}
1212
1213	*zn = znode;
1214	if (exact || !is_hash_key(c, key) || *n != -1) {
1215		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1216		return exact;
1217	}
1218
1219	/*
1220	 * Here is a tricky place. We have not found the key and this is a
1221	 * "hashed" key, which may collide. The rest of the code deals with
1222	 * situations like this:
1223	 *
1224	 *                  | 3 | 5 |
1225	 *                  /       \
1226	 *          | 3 | 5 |      | 6 | 7 | (x)
1227	 *
1228	 * Or more a complex example:
1229	 *
1230	 *                | 1 | 5 |
1231	 *                /       \
1232	 *       | 1 | 3 |         | 5 | 8 |
1233	 *              \           /
1234	 *          | 5 | 5 |   | 6 | 7 | (x)
1235	 *
1236	 * In the examples, if we are looking for key "5", we may reach nodes
1237	 * marked with "(x)". In this case what we have do is to look at the
1238	 * left and see if there is "5" key there. If there is, we have to
1239	 * return it.
1240	 *
1241	 * Note, this whole situation is possible because we allow to have
1242	 * elements which are equivalent to the next key in the parent in the
1243	 * children of current znode. For example, this happens if we split a
1244	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1245	 * like this:
1246	 *                      | 3 | 5 |
1247	 *                       /     \
1248	 *                | 3 | 5 |   | 5 | 6 | 7 |
1249	 *                              ^
1250	 * And this becomes what is at the first "picture" after key "5" marked
1251	 * with "^" is removed. What could be done is we could prohibit
1252	 * splitting in the middle of the colliding sequence. Also, when
1253	 * removing the leftmost key, we would have to correct the key of the
1254	 * parent node, which would introduce additional complications. Namely,
1255	 * if we changed the leftmost key of the parent znode, the garbage
1256	 * collector would be unable to find it (GC is doing this when GC'ing
1257	 * indexing LEBs). Although we already have an additional RB-tree where
1258	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1259	 * after the commit. But anyway, this does not look easy to implement
1260	 * so we did not try this.
1261	 */
1262	err = tnc_prev(c, &znode, n);
1263	if (err == -ENOENT) {
1264		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1265		*n = -1;
1266		return 0;
1267	}
1268	if (unlikely(err < 0))
1269		return err;
1270	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1271		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1272		*n = -1;
1273		return 0;
1274	}
1275
1276	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1277	*zn = znode;
1278	return 1;
1279}
1280
1281/**
1282 * lookup_level0_dirty - search for zero-level znode dirtying.
1283 * @c: UBIFS file-system description object
1284 * @key:  key to lookup
1285 * @zn: znode is returned here
1286 * @n: znode branch slot number is returned here
1287 *
1288 * This function looks up the TNC tree and search for zero-level znode which
1289 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1290 * cases:
1291 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1292 *     is returned and slot number of the matched branch is stored in @n;
1293 *   o not exact match, which means that zero-level znode does not contain @key
1294 *     then %0 is returned and slot number of the closed branch is stored in
1295 *     @n;
1296 *   o @key is so small that it is even less than the lowest key of the
1297 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1298 *
1299 * Additionally all znodes in the path from the root to the located zero-level
1300 * znode are marked as dirty.
1301 *
1302 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1303 * function reads corresponding indexing nodes and inserts them to TNC. In
1304 * case of failure, a negative error code is returned.
1305 */
1306static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1307			       struct ubifs_znode **zn, int *n)
1308{
1309	int err, exact;
1310	struct ubifs_znode *znode;
1311	time64_t time = ktime_get_seconds();
1312
1313	dbg_tnck(key, "search and dirty key ");
1314
1315	znode = c->zroot.znode;
1316	if (unlikely(!znode)) {
1317		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1318		if (IS_ERR(znode))
1319			return PTR_ERR(znode);
1320	}
1321
1322	znode = dirty_cow_znode(c, &c->zroot);
1323	if (IS_ERR(znode))
1324		return PTR_ERR(znode);
1325
1326	znode->time = time;
1327
1328	while (1) {
1329		struct ubifs_zbranch *zbr;
1330
1331		exact = ubifs_search_zbranch(c, znode, key, n);
1332
1333		if (znode->level == 0)
1334			break;
1335
1336		if (*n < 0)
1337			*n = 0;
1338		zbr = &znode->zbranch[*n];
1339
1340		if (zbr->znode) {
1341			znode->time = time;
1342			znode = dirty_cow_znode(c, zbr);
1343			if (IS_ERR(znode))
1344				return PTR_ERR(znode);
1345			continue;
1346		}
1347
1348		/* znode is not in TNC cache, load it from the media */
1349		znode = ubifs_load_znode(c, zbr, znode, *n);
1350		if (IS_ERR(znode))
1351			return PTR_ERR(znode);
1352		znode = dirty_cow_znode(c, zbr);
1353		if (IS_ERR(znode))
1354			return PTR_ERR(znode);
1355	}
1356
1357	*zn = znode;
1358	if (exact || !is_hash_key(c, key) || *n != -1) {
1359		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1360		return exact;
1361	}
1362
1363	/*
1364	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1365	 * code.
1366	 */
1367	err = tnc_prev(c, &znode, n);
1368	if (err == -ENOENT) {
1369		*n = -1;
1370		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1371		return 0;
1372	}
1373	if (unlikely(err < 0))
1374		return err;
1375	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1376		*n = -1;
1377		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1378		return 0;
1379	}
1380
1381	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1382		znode = dirty_cow_bottom_up(c, znode);
1383		if (IS_ERR(znode))
1384			return PTR_ERR(znode);
1385	}
1386
1387	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1388	*zn = znode;
1389	return 1;
1390}
1391
1392/**
1393 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1394 * @c: UBIFS file-system description object
1395 * @lnum: LEB number
1396 * @gc_seq1: garbage collection sequence number
1397 *
1398 * This function determines if @lnum may have been garbage collected since
1399 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1400 * %0 is returned.
1401 */
1402static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1403{
1404	int gc_seq2, gced_lnum;
1405
1406	gced_lnum = c->gced_lnum;
1407	smp_rmb();
1408	gc_seq2 = c->gc_seq;
1409	/* Same seq means no GC */
1410	if (gc_seq1 == gc_seq2)
1411		return 0;
1412	/* Different by more than 1 means we don't know */
1413	if (gc_seq1 + 1 != gc_seq2)
1414		return 1;
1415	/*
1416	 * We have seen the sequence number has increased by 1. Now we need to
1417	 * be sure we read the right LEB number, so read it again.
1418	 */
1419	smp_rmb();
1420	if (gced_lnum != c->gced_lnum)
1421		return 1;
1422	/* Finally we can check lnum */
1423	if (gced_lnum == lnum)
1424		return 1;
1425	return 0;
1426}
1427
1428/**
1429 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1430 * @c: UBIFS file-system description object
1431 * @key: node key to lookup
1432 * @node: the node is returned here
1433 * @lnum: LEB number is returned here
1434 * @offs: offset is returned here
1435 *
1436 * This function looks up and reads node with key @key. The caller has to make
1437 * sure the @node buffer is large enough to fit the node. Returns zero in case
1438 * of success, %-ENOENT if the node was not found, and a negative error code in
1439 * case of failure. The node location can be returned in @lnum and @offs.
1440 */
1441int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1442		     void *node, int *lnum, int *offs)
1443{
1444	int found, n, err, safely = 0, gc_seq1;
1445	struct ubifs_znode *znode;
1446	struct ubifs_zbranch zbr, *zt;
1447
1448again:
1449	mutex_lock(&c->tnc_mutex);
1450	found = ubifs_lookup_level0(c, key, &znode, &n);
1451	if (!found) {
1452		err = -ENOENT;
1453		goto out;
1454	} else if (found < 0) {
1455		err = found;
1456		goto out;
1457	}
1458	zt = &znode->zbranch[n];
1459	if (lnum) {
1460		*lnum = zt->lnum;
1461		*offs = zt->offs;
1462	}
1463	if (is_hash_key(c, key)) {
1464		/*
1465		 * In this case the leaf node cache gets used, so we pass the
1466		 * address of the zbranch and keep the mutex locked
1467		 */
1468		err = tnc_read_hashed_node(c, zt, node);
1469		goto out;
1470	}
1471	if (safely) {
1472		err = ubifs_tnc_read_node(c, zt, node);
1473		goto out;
1474	}
1475	/* Drop the TNC mutex prematurely and race with garbage collection */
1476	zbr = znode->zbranch[n];
1477	gc_seq1 = c->gc_seq;
1478	mutex_unlock(&c->tnc_mutex);
1479
1480	if (ubifs_get_wbuf(c, zbr.lnum)) {
1481		/* We do not GC journal heads */
1482		err = ubifs_tnc_read_node(c, &zbr, node);
1483		return err;
1484	}
1485
1486	err = fallible_read_node(c, key, &zbr, node);
1487	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1488		/*
1489		 * The node may have been GC'ed out from under us so try again
1490		 * while keeping the TNC mutex locked.
1491		 */
1492		safely = 1;
1493		goto again;
1494	}
1495	return 0;
1496
1497out:
1498	mutex_unlock(&c->tnc_mutex);
1499	return err;
1500}
1501
1502/**
1503 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1504 * @c: UBIFS file-system description object
1505 * @bu: bulk-read parameters and results
1506 *
1507 * Lookup consecutive data node keys for the same inode that reside
1508 * consecutively in the same LEB. This function returns zero in case of success
1509 * and a negative error code in case of failure.
1510 *
1511 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1512 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1513 * maximum possible amount of nodes for bulk-read.
1514 */
1515int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1516{
1517	int n, err = 0, lnum = -1, uninitialized_var(offs);
1518	int uninitialized_var(len);
1519	unsigned int block = key_block(c, &bu->key);
1520	struct ubifs_znode *znode;
1521
1522	bu->cnt = 0;
1523	bu->blk_cnt = 0;
1524	bu->eof = 0;
1525
1526	mutex_lock(&c->tnc_mutex);
1527	/* Find first key */
1528	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1529	if (err < 0)
1530		goto out;
1531	if (err) {
1532		/* Key found */
1533		len = znode->zbranch[n].len;
1534		/* The buffer must be big enough for at least 1 node */
1535		if (len > bu->buf_len) {
1536			err = -EINVAL;
1537			goto out;
1538		}
1539		/* Add this key */
1540		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1541		bu->blk_cnt += 1;
1542		lnum = znode->zbranch[n].lnum;
1543		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1544	}
1545	while (1) {
1546		struct ubifs_zbranch *zbr;
1547		union ubifs_key *key;
1548		unsigned int next_block;
1549
1550		/* Find next key */
1551		err = tnc_next(c, &znode, &n);
1552		if (err)
1553			goto out;
1554		zbr = &znode->zbranch[n];
1555		key = &zbr->key;
1556		/* See if there is another data key for this file */
1557		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1558		    key_type(c, key) != UBIFS_DATA_KEY) {
1559			err = -ENOENT;
1560			goto out;
1561		}
1562		if (lnum < 0) {
1563			/* First key found */
1564			lnum = zbr->lnum;
1565			offs = ALIGN(zbr->offs + zbr->len, 8);
1566			len = zbr->len;
1567			if (len > bu->buf_len) {
1568				err = -EINVAL;
1569				goto out;
1570			}
1571		} else {
1572			/*
1573			 * The data nodes must be in consecutive positions in
1574			 * the same LEB.
1575			 */
1576			if (zbr->lnum != lnum || zbr->offs != offs)
1577				goto out;
1578			offs += ALIGN(zbr->len, 8);
1579			len = ALIGN(len, 8) + zbr->len;
1580			/* Must not exceed buffer length */
1581			if (len > bu->buf_len)
1582				goto out;
1583		}
1584		/* Allow for holes */
1585		next_block = key_block(c, key);
1586		bu->blk_cnt += (next_block - block - 1);
1587		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1588			goto out;
1589		block = next_block;
1590		/* Add this key */
1591		bu->zbranch[bu->cnt++] = *zbr;
1592		bu->blk_cnt += 1;
1593		/* See if we have room for more */
1594		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1595			goto out;
1596		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1597			goto out;
1598	}
1599out:
1600	if (err == -ENOENT) {
1601		bu->eof = 1;
1602		err = 0;
1603	}
1604	bu->gc_seq = c->gc_seq;
1605	mutex_unlock(&c->tnc_mutex);
1606	if (err)
1607		return err;
1608	/*
1609	 * An enormous hole could cause bulk-read to encompass too many
1610	 * page cache pages, so limit the number here.
1611	 */
1612	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1613		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1614	/*
1615	 * Ensure that bulk-read covers a whole number of page cache
1616	 * pages.
1617	 */
1618	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1619	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1620		return 0;
1621	if (bu->eof) {
1622		/* At the end of file we can round up */
1623		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1624		return 0;
1625	}
1626	/* Exclude data nodes that do not make up a whole page cache page */
1627	block = key_block(c, &bu->key) + bu->blk_cnt;
1628	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1629	while (bu->cnt) {
1630		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1631			break;
1632		bu->cnt -= 1;
1633	}
1634	return 0;
1635}
1636
1637/**
1638 * read_wbuf - bulk-read from a LEB with a wbuf.
1639 * @wbuf: wbuf that may overlap the read
1640 * @buf: buffer into which to read
1641 * @len: read length
1642 * @lnum: LEB number from which to read
1643 * @offs: offset from which to read
1644 *
1645 * This functions returns %0 on success or a negative error code on failure.
1646 */
1647static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1648		     int offs)
1649{
1650	const struct ubifs_info *c = wbuf->c;
1651	int rlen, overlap;
1652
1653	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1654	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1655	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1656	ubifs_assert(c, offs + len <= c->leb_size);
1657
1658	spin_lock(&wbuf->lock);
1659	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1660	if (!overlap) {
1661		/* We may safely unlock the write-buffer and read the data */
1662		spin_unlock(&wbuf->lock);
1663		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1664	}
1665
1666	/* Don't read under wbuf */
1667	rlen = wbuf->offs - offs;
1668	if (rlen < 0)
1669		rlen = 0;
1670
1671	/* Copy the rest from the write-buffer */
1672	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1673	spin_unlock(&wbuf->lock);
1674
1675	if (rlen > 0)
1676		/* Read everything that goes before write-buffer */
1677		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1678
1679	return 0;
1680}
1681
1682/**
1683 * validate_data_node - validate data nodes for bulk-read.
1684 * @c: UBIFS file-system description object
1685 * @buf: buffer containing data node to validate
1686 * @zbr: zbranch of data node to validate
1687 *
1688 * This functions returns %0 on success or a negative error code on failure.
1689 */
1690static int validate_data_node(struct ubifs_info *c, void *buf,
1691			      struct ubifs_zbranch *zbr)
1692{
1693	union ubifs_key key1;
1694	struct ubifs_ch *ch = buf;
1695	int err, len;
1696
1697	if (ch->node_type != UBIFS_DATA_NODE) {
1698		ubifs_err(c, "bad node type (%d but expected %d)",
1699			  ch->node_type, UBIFS_DATA_NODE);
1700		goto out_err;
1701	}
1702
1703	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1704	if (err) {
1705		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1706		goto out;
1707	}
1708
1709	err = ubifs_node_check_hash(c, buf, zbr->hash);
1710	if (err) {
1711		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1712		return err;
1713	}
1714
1715	len = le32_to_cpu(ch->len);
1716	if (len != zbr->len) {
1717		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1718		goto out_err;
1719	}
1720
1721	/* Make sure the key of the read node is correct */
1722	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723	if (!keys_eq(c, &zbr->key, &key1)) {
1724		ubifs_err(c, "bad key in node at LEB %d:%d",
1725			  zbr->lnum, zbr->offs);
1726		dbg_tnck(&zbr->key, "looked for key ");
1727		dbg_tnck(&key1, "found node's key ");
1728		goto out_err;
1729	}
1730
1731	return 0;
1732
1733out_err:
1734	err = -EINVAL;
1735out:
1736	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737	ubifs_dump_node(c, buf);
1738	dump_stack();
1739	return err;
1740}
1741
1742/**
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1746 *
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1750 * failure.
1751 */
1752int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753{
1754	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755	struct ubifs_wbuf *wbuf;
1756	void *buf;
1757
1758	len = bu->zbranch[bu->cnt - 1].offs;
1759	len += bu->zbranch[bu->cnt - 1].len - offs;
1760	if (len > bu->buf_len) {
1761		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1762		return -EINVAL;
1763	}
1764
1765	/* Do the read */
1766	wbuf = ubifs_get_wbuf(c, lnum);
1767	if (wbuf)
1768		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769	else
1770		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771
1772	/* Check for a race with GC */
1773	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774		return -EAGAIN;
1775
1776	if (err && err != -EBADMSG) {
1777		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1778			  lnum, offs, err);
1779		dump_stack();
1780		dbg_tnck(&bu->key, "key ");
1781		return err;
1782	}
1783
1784	/* Validate the nodes read */
1785	buf = bu->buf;
1786	for (i = 0; i < bu->cnt; i++) {
1787		err = validate_data_node(c, buf, &bu->zbranch[i]);
1788		if (err)
1789			return err;
1790		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791	}
1792
1793	return 0;
1794}
1795
1796/**
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1801 * @nm: node name
1802 *
1803 * This function looks up and reads a node which contains name hash in the key.
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1808 */
1809static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810			void *node, const struct fscrypt_name *nm)
1811{
1812	int found, n, err;
1813	struct ubifs_znode *znode;
1814
1815	dbg_tnck(key, "key ");
1816	mutex_lock(&c->tnc_mutex);
1817	found = ubifs_lookup_level0(c, key, &znode, &n);
1818	if (!found) {
1819		err = -ENOENT;
1820		goto out_unlock;
1821	} else if (found < 0) {
1822		err = found;
1823		goto out_unlock;
1824	}
1825
1826	ubifs_assert(c, n >= 0);
1827
1828	err = resolve_collision(c, key, &znode, &n, nm);
1829	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830	if (unlikely(err < 0))
1831		goto out_unlock;
1832	if (err == 0) {
1833		err = -ENOENT;
1834		goto out_unlock;
1835	}
1836
1837	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1838
1839out_unlock:
1840	mutex_unlock(&c->tnc_mutex);
1841	return err;
1842}
1843
1844/**
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1849 * @nm: node name
1850 *
1851 * This function looks up and reads a node which contains name hash in the key.
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1856 */
1857int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858			void *node, const struct fscrypt_name *nm)
1859{
1860	int err, len;
1861	const struct ubifs_dent_node *dent = node;
1862
1863	/*
1864	 * We assume that in most of the cases there are no name collisions and
1865	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866	 */
1867	err = ubifs_tnc_lookup(c, key, node);
1868	if (err)
1869		return err;
1870
1871	len = le16_to_cpu(dent->nlen);
1872	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1873		return 0;
1874
1875	/*
1876	 * Unluckily, there are hash collisions and we have to iterate over
1877	 * them look at each direntry with colliding name hash sequentially.
1878	 */
1879
1880	return do_lookup_nm(c, key, node, nm);
1881}
1882
1883static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1884			    struct ubifs_dent_node *dent, uint32_t cookie,
1885			    struct ubifs_znode **zn, int *n, int exact)
1886{
1887	int err;
1888	struct ubifs_znode *znode = *zn;
1889	struct ubifs_zbranch *zbr;
1890	union ubifs_key *dkey;
1891
1892	if (!exact) {
1893		err = tnc_next(c, &znode, n);
1894		if (err)
1895			return err;
1896	}
1897
1898	for (;;) {
1899		zbr = &znode->zbranch[*n];
1900		dkey = &zbr->key;
1901
1902		if (key_inum(c, dkey) != key_inum(c, key) ||
1903		    key_type(c, dkey) != key_type(c, key)) {
1904			return -ENOENT;
1905		}
1906
1907		err = tnc_read_hashed_node(c, zbr, dent);
1908		if (err)
1909			return err;
1910
1911		if (key_hash(c, key) == key_hash(c, dkey) &&
1912		    le32_to_cpu(dent->cookie) == cookie) {
1913			*zn = znode;
1914			return 0;
1915		}
1916
1917		err = tnc_next(c, &znode, n);
1918		if (err)
1919			return err;
1920	}
1921}
1922
1923static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1924			struct ubifs_dent_node *dent, uint32_t cookie)
1925{
1926	int n, err;
1927	struct ubifs_znode *znode;
1928	union ubifs_key start_key;
1929
1930	ubifs_assert(c, is_hash_key(c, key));
1931
1932	lowest_dent_key(c, &start_key, key_inum(c, key));
1933
1934	mutex_lock(&c->tnc_mutex);
1935	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1936	if (unlikely(err < 0))
1937		goto out_unlock;
1938
1939	err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1940
1941out_unlock:
1942	mutex_unlock(&c->tnc_mutex);
1943	return err;
1944}
1945
1946/**
1947 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1948 * @c: UBIFS file-system description object
1949 * @key: node key to lookup
1950 * @node: the node is returned here
1951 * @cookie: node cookie for collision resolution
1952 *
1953 * This function looks up and reads a node which contains name hash in the key.
1954 * Since the hash may have collisions, there may be many nodes with the same
1955 * key, so we have to sequentially look to all of them until the needed one
1956 * with the same cookie value is found.
1957 * This function returns zero in case of success, %-ENOENT if the node
1958 * was not found, and a negative error code in case of failure.
1959 */
1960int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1961			void *node, uint32_t cookie)
1962{
1963	int err;
1964	const struct ubifs_dent_node *dent = node;
1965
1966	if (!c->double_hash)
1967		return -EOPNOTSUPP;
1968
1969	/*
1970	 * We assume that in most of the cases there are no name collisions and
1971	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1972	 */
1973	err = ubifs_tnc_lookup(c, key, node);
1974	if (err)
1975		return err;
1976
1977	if (le32_to_cpu(dent->cookie) == cookie)
1978		return 0;
1979
1980	/*
1981	 * Unluckily, there are hash collisions and we have to iterate over
1982	 * them look at each direntry with colliding name hash sequentially.
1983	 */
1984	return do_lookup_dh(c, key, node, cookie);
1985}
1986
1987/**
1988 * correct_parent_keys - correct parent znodes' keys.
1989 * @c: UBIFS file-system description object
1990 * @znode: znode to correct parent znodes for
1991 *
1992 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1993 * zbranch changes, keys of parent znodes have to be corrected. This helper
1994 * function is called in such situations and corrects the keys if needed.
1995 */
1996static void correct_parent_keys(const struct ubifs_info *c,
1997				struct ubifs_znode *znode)
1998{
1999	union ubifs_key *key, *key1;
2000
2001	ubifs_assert(c, znode->parent);
2002	ubifs_assert(c, znode->iip == 0);
2003
2004	key = &znode->zbranch[0].key;
2005	key1 = &znode->parent->zbranch[0].key;
2006
2007	while (keys_cmp(c, key, key1) < 0) {
2008		key_copy(c, key, key1);
2009		znode = znode->parent;
2010		znode->alt = 1;
2011		if (!znode->parent || znode->iip)
2012			break;
2013		key1 = &znode->parent->zbranch[0].key;
2014	}
2015}
2016
2017/**
2018 * insert_zbranch - insert a zbranch into a znode.
2019 * @c: UBIFS file-system description object
2020 * @znode: znode into which to insert
2021 * @zbr: zbranch to insert
2022 * @n: slot number to insert to
2023 *
2024 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2025 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2026 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2027 * slot, zbranches starting from @n have to be moved right.
2028 */
2029static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2030			   const struct ubifs_zbranch *zbr, int n)
2031{
2032	int i;
2033
2034	ubifs_assert(c, ubifs_zn_dirty(znode));
2035
2036	if (znode->level) {
2037		for (i = znode->child_cnt; i > n; i--) {
2038			znode->zbranch[i] = znode->zbranch[i - 1];
2039			if (znode->zbranch[i].znode)
2040				znode->zbranch[i].znode->iip = i;
2041		}
2042		if (zbr->znode)
2043			zbr->znode->iip = n;
2044	} else
2045		for (i = znode->child_cnt; i > n; i--)
2046			znode->zbranch[i] = znode->zbranch[i - 1];
2047
2048	znode->zbranch[n] = *zbr;
2049	znode->child_cnt += 1;
2050
2051	/*
2052	 * After inserting at slot zero, the lower bound of the key range of
2053	 * this znode may have changed. If this znode is subsequently split
2054	 * then the upper bound of the key range may change, and furthermore
2055	 * it could change to be lower than the original lower bound. If that
2056	 * happens, then it will no longer be possible to find this znode in the
2057	 * TNC using the key from the index node on flash. That is bad because
2058	 * if it is not found, we will assume it is obsolete and may overwrite
2059	 * it. Then if there is an unclean unmount, we will start using the
2060	 * old index which will be broken.
2061	 *
2062	 * So we first mark znodes that have insertions at slot zero, and then
2063	 * if they are split we add their lnum/offs to the old_idx tree.
2064	 */
2065	if (n == 0)
2066		znode->alt = 1;
2067}
2068
2069/**
2070 * tnc_insert - insert a node into TNC.
2071 * @c: UBIFS file-system description object
2072 * @znode: znode to insert into
2073 * @zbr: branch to insert
2074 * @n: slot number to insert new zbranch to
2075 *
2076 * This function inserts a new node described by @zbr into znode @znode. If
2077 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2078 * are splat as well if needed. Returns zero in case of success or a negative
2079 * error code in case of failure.
2080 */
2081static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2082		      struct ubifs_zbranch *zbr, int n)
2083{
2084	struct ubifs_znode *zn, *zi, *zp;
2085	int i, keep, move, appending = 0;
2086	union ubifs_key *key = &zbr->key, *key1;
2087
2088	ubifs_assert(c, n >= 0 && n <= c->fanout);
2089
2090	/* Implement naive insert for now */
2091again:
2092	zp = znode->parent;
2093	if (znode->child_cnt < c->fanout) {
2094		ubifs_assert(c, n != c->fanout);
2095		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2096
2097		insert_zbranch(c, znode, zbr, n);
2098
2099		/* Ensure parent's key is correct */
2100		if (n == 0 && zp && znode->iip == 0)
2101			correct_parent_keys(c, znode);
2102
2103		return 0;
2104	}
2105
2106	/*
2107	 * Unfortunately, @znode does not have more empty slots and we have to
2108	 * split it.
2109	 */
2110	dbg_tnck(key, "splitting level %d, key ", znode->level);
2111
2112	if (znode->alt)
2113		/*
2114		 * We can no longer be sure of finding this znode by key, so we
2115		 * record it in the old_idx tree.
2116		 */
2117		ins_clr_old_idx_znode(c, znode);
2118
2119	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2120	if (!zn)
2121		return -ENOMEM;
2122	zn->parent = zp;
2123	zn->level = znode->level;
2124
2125	/* Decide where to split */
2126	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2127		/* Try not to split consecutive data keys */
2128		if (n == c->fanout) {
2129			key1 = &znode->zbranch[n - 1].key;
2130			if (key_inum(c, key1) == key_inum(c, key) &&
2131			    key_type(c, key1) == UBIFS_DATA_KEY)
2132				appending = 1;
2133		} else
2134			goto check_split;
2135	} else if (appending && n != c->fanout) {
2136		/* Try not to split consecutive data keys */
2137		appending = 0;
2138check_split:
2139		if (n >= (c->fanout + 1) / 2) {
2140			key1 = &znode->zbranch[0].key;
2141			if (key_inum(c, key1) == key_inum(c, key) &&
2142			    key_type(c, key1) == UBIFS_DATA_KEY) {
2143				key1 = &znode->zbranch[n].key;
2144				if (key_inum(c, key1) != key_inum(c, key) ||
2145				    key_type(c, key1) != UBIFS_DATA_KEY) {
2146					keep = n;
2147					move = c->fanout - keep;
2148					zi = znode;
2149					goto do_split;
2150				}
2151			}
2152		}
2153	}
2154
2155	if (appending) {
2156		keep = c->fanout;
2157		move = 0;
2158	} else {
2159		keep = (c->fanout + 1) / 2;
2160		move = c->fanout - keep;
2161	}
2162
2163	/*
2164	 * Although we don't at present, we could look at the neighbors and see
2165	 * if we can move some zbranches there.
2166	 */
2167
2168	if (n < keep) {
2169		/* Insert into existing znode */
2170		zi = znode;
2171		move += 1;
2172		keep -= 1;
2173	} else {
2174		/* Insert into new znode */
2175		zi = zn;
2176		n -= keep;
2177		/* Re-parent */
2178		if (zn->level != 0)
2179			zbr->znode->parent = zn;
2180	}
2181
2182do_split:
2183
2184	__set_bit(DIRTY_ZNODE, &zn->flags);
2185	atomic_long_inc(&c->dirty_zn_cnt);
2186
2187	zn->child_cnt = move;
2188	znode->child_cnt = keep;
2189
2190	dbg_tnc("moving %d, keeping %d", move, keep);
2191
2192	/* Move zbranch */
2193	for (i = 0; i < move; i++) {
2194		zn->zbranch[i] = znode->zbranch[keep + i];
2195		/* Re-parent */
2196		if (zn->level != 0)
2197			if (zn->zbranch[i].znode) {
2198				zn->zbranch[i].znode->parent = zn;
2199				zn->zbranch[i].znode->iip = i;
2200			}
2201	}
2202
2203	/* Insert new key and branch */
2204	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2205
2206	insert_zbranch(c, zi, zbr, n);
2207
2208	/* Insert new znode (produced by spitting) into the parent */
2209	if (zp) {
2210		if (n == 0 && zi == znode && znode->iip == 0)
2211			correct_parent_keys(c, znode);
2212
2213		/* Locate insertion point */
2214		n = znode->iip + 1;
2215
2216		/* Tail recursion */
2217		zbr->key = zn->zbranch[0].key;
2218		zbr->znode = zn;
2219		zbr->lnum = 0;
2220		zbr->offs = 0;
2221		zbr->len = 0;
2222		znode = zp;
2223
2224		goto again;
2225	}
2226
2227	/* We have to split root znode */
2228	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2229
2230	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2231	if (!zi)
2232		return -ENOMEM;
2233
2234	zi->child_cnt = 2;
2235	zi->level = znode->level + 1;
2236
2237	__set_bit(DIRTY_ZNODE, &zi->flags);
2238	atomic_long_inc(&c->dirty_zn_cnt);
2239
2240	zi->zbranch[0].key = znode->zbranch[0].key;
2241	zi->zbranch[0].znode = znode;
2242	zi->zbranch[0].lnum = c->zroot.lnum;
2243	zi->zbranch[0].offs = c->zroot.offs;
2244	zi->zbranch[0].len = c->zroot.len;
2245	zi->zbranch[1].key = zn->zbranch[0].key;
2246	zi->zbranch[1].znode = zn;
2247
2248	c->zroot.lnum = 0;
2249	c->zroot.offs = 0;
2250	c->zroot.len = 0;
2251	c->zroot.znode = zi;
2252
2253	zn->parent = zi;
2254	zn->iip = 1;
2255	znode->parent = zi;
2256	znode->iip = 0;
2257
2258	return 0;
2259}
2260
2261/**
2262 * ubifs_tnc_add - add a node to TNC.
2263 * @c: UBIFS file-system description object
2264 * @key: key to add
2265 * @lnum: LEB number of node
2266 * @offs: node offset
2267 * @len: node length
2268 * @hash: The hash over the node
2269 *
2270 * This function adds a node with key @key to TNC. The node may be new or it may
2271 * obsolete some existing one. Returns %0 on success or negative error code on
2272 * failure.
2273 */
2274int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2275		  int offs, int len, const u8 *hash)
2276{
2277	int found, n, err = 0;
2278	struct ubifs_znode *znode;
2279
2280	mutex_lock(&c->tnc_mutex);
2281	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2282	found = lookup_level0_dirty(c, key, &znode, &n);
2283	if (!found) {
2284		struct ubifs_zbranch zbr;
2285
2286		zbr.znode = NULL;
2287		zbr.lnum = lnum;
2288		zbr.offs = offs;
2289		zbr.len = len;
2290		ubifs_copy_hash(c, hash, zbr.hash);
2291		key_copy(c, key, &zbr.key);
2292		err = tnc_insert(c, znode, &zbr, n + 1);
2293	} else if (found == 1) {
2294		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2295
2296		lnc_free(zbr);
2297		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2298		zbr->lnum = lnum;
2299		zbr->offs = offs;
2300		zbr->len = len;
2301		ubifs_copy_hash(c, hash, zbr->hash);
2302	} else
2303		err = found;
2304	if (!err)
2305		err = dbg_check_tnc(c, 0);
2306	mutex_unlock(&c->tnc_mutex);
2307
2308	return err;
2309}
2310
2311/**
2312 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2313 * @c: UBIFS file-system description object
2314 * @key: key to add
2315 * @old_lnum: LEB number of old node
2316 * @old_offs: old node offset
2317 * @lnum: LEB number of node
2318 * @offs: node offset
2319 * @len: node length
2320 *
2321 * This function replaces a node with key @key in the TNC only if the old node
2322 * is found.  This function is called by garbage collection when node are moved.
2323 * Returns %0 on success or negative error code on failure.
2324 */
2325int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2326		      int old_lnum, int old_offs, int lnum, int offs, int len)
2327{
2328	int found, n, err = 0;
2329	struct ubifs_znode *znode;
2330
2331	mutex_lock(&c->tnc_mutex);
2332	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2333		 old_offs, lnum, offs, len);
2334	found = lookup_level0_dirty(c, key, &znode, &n);
2335	if (found < 0) {
2336		err = found;
2337		goto out_unlock;
2338	}
2339
2340	if (found == 1) {
2341		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2342
2343		found = 0;
2344		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2345			lnc_free(zbr);
2346			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2347			if (err)
2348				goto out_unlock;
2349			zbr->lnum = lnum;
2350			zbr->offs = offs;
2351			zbr->len = len;
2352			found = 1;
2353		} else if (is_hash_key(c, key)) {
2354			found = resolve_collision_directly(c, key, &znode, &n,
2355							   old_lnum, old_offs);
2356			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2357				found, znode, n, old_lnum, old_offs);
2358			if (found < 0) {
2359				err = found;
2360				goto out_unlock;
2361			}
2362
2363			if (found) {
2364				/* Ensure the znode is dirtied */
2365				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2366					znode = dirty_cow_bottom_up(c, znode);
2367					if (IS_ERR(znode)) {
2368						err = PTR_ERR(znode);
2369						goto out_unlock;
2370					}
2371				}
2372				zbr = &znode->zbranch[n];
2373				lnc_free(zbr);
2374				err = ubifs_add_dirt(c, zbr->lnum,
2375						     zbr->len);
2376				if (err)
2377					goto out_unlock;
2378				zbr->lnum = lnum;
2379				zbr->offs = offs;
2380				zbr->len = len;
2381			}
2382		}
2383	}
2384
2385	if (!found)
2386		err = ubifs_add_dirt(c, lnum, len);
2387
2388	if (!err)
2389		err = dbg_check_tnc(c, 0);
2390
2391out_unlock:
2392	mutex_unlock(&c->tnc_mutex);
2393	return err;
2394}
2395
2396/**
2397 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2398 * @c: UBIFS file-system description object
2399 * @key: key to add
2400 * @lnum: LEB number of node
2401 * @offs: node offset
2402 * @len: node length
2403 * @hash: The hash over the node
2404 * @nm: node name
2405 *
2406 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2407 * may have collisions, like directory entry keys.
2408 */
2409int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2410		     int lnum, int offs, int len, const u8 *hash,
2411		     const struct fscrypt_name *nm)
2412{
2413	int found, n, err = 0;
2414	struct ubifs_znode *znode;
2415
2416	mutex_lock(&c->tnc_mutex);
2417	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2418	found = lookup_level0_dirty(c, key, &znode, &n);
2419	if (found < 0) {
2420		err = found;
2421		goto out_unlock;
2422	}
2423
2424	if (found == 1) {
2425		if (c->replaying)
2426			found = fallible_resolve_collision(c, key, &znode, &n,
2427							   nm, 1);
2428		else
2429			found = resolve_collision(c, key, &znode, &n, nm);
2430		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2431		if (found < 0) {
2432			err = found;
2433			goto out_unlock;
2434		}
2435
2436		/* Ensure the znode is dirtied */
2437		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2438			znode = dirty_cow_bottom_up(c, znode);
2439			if (IS_ERR(znode)) {
2440				err = PTR_ERR(znode);
2441				goto out_unlock;
2442			}
2443		}
2444
2445		if (found == 1) {
2446			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2447
2448			lnc_free(zbr);
2449			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2450			zbr->lnum = lnum;
2451			zbr->offs = offs;
2452			zbr->len = len;
2453			ubifs_copy_hash(c, hash, zbr->hash);
2454			goto out_unlock;
2455		}
2456	}
2457
2458	if (!found) {
2459		struct ubifs_zbranch zbr;
2460
2461		zbr.znode = NULL;
2462		zbr.lnum = lnum;
2463		zbr.offs = offs;
2464		zbr.len = len;
2465		ubifs_copy_hash(c, hash, zbr.hash);
2466		key_copy(c, key, &zbr.key);
2467		err = tnc_insert(c, znode, &zbr, n + 1);
2468		if (err)
2469			goto out_unlock;
2470		if (c->replaying) {
2471			/*
2472			 * We did not find it in the index so there may be a
2473			 * dangling branch still in the index. So we remove it
2474			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2475			 * an unmatchable name.
2476			 */
2477			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2478
2479			err = dbg_check_tnc(c, 0);
2480			mutex_unlock(&c->tnc_mutex);
2481			if (err)
2482				return err;
2483			return ubifs_tnc_remove_nm(c, key, &noname);
2484		}
2485	}
2486
2487out_unlock:
2488	if (!err)
2489		err = dbg_check_tnc(c, 0);
2490	mutex_unlock(&c->tnc_mutex);
2491	return err;
2492}
2493
2494/**
2495 * tnc_delete - delete a znode form TNC.
2496 * @c: UBIFS file-system description object
2497 * @znode: znode to delete from
2498 * @n: zbranch slot number to delete
2499 *
2500 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2501 * case of success and a negative error code in case of failure.
2502 */
2503static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2504{
2505	struct ubifs_zbranch *zbr;
2506	struct ubifs_znode *zp;
2507	int i, err;
2508
2509	/* Delete without merge for now */
2510	ubifs_assert(c, znode->level == 0);
2511	ubifs_assert(c, n >= 0 && n < c->fanout);
2512	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2513
2514	zbr = &znode->zbranch[n];
2515	lnc_free(zbr);
2516
2517	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2518	if (err) {
2519		ubifs_dump_znode(c, znode);
2520		return err;
2521	}
2522
2523	/* We do not "gap" zbranch slots */
2524	for (i = n; i < znode->child_cnt - 1; i++)
2525		znode->zbranch[i] = znode->zbranch[i + 1];
2526	znode->child_cnt -= 1;
2527
2528	if (znode->child_cnt > 0)
2529		return 0;
2530
2531	/*
2532	 * This was the last zbranch, we have to delete this znode from the
2533	 * parent.
2534	 */
2535
2536	do {
2537		ubifs_assert(c, !ubifs_zn_obsolete(znode));
2538		ubifs_assert(c, ubifs_zn_dirty(znode));
2539
2540		zp = znode->parent;
2541		n = znode->iip;
2542
2543		atomic_long_dec(&c->dirty_zn_cnt);
2544
2545		err = insert_old_idx_znode(c, znode);
2546		if (err)
2547			return err;
2548
2549		if (znode->cnext) {
2550			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2551			atomic_long_inc(&c->clean_zn_cnt);
2552			atomic_long_inc(&ubifs_clean_zn_cnt);
2553		} else
2554			kfree(znode);
2555		znode = zp;
2556	} while (znode->child_cnt == 1); /* while removing last child */
2557
2558	/* Remove from znode, entry n - 1 */
2559	znode->child_cnt -= 1;
2560	ubifs_assert(c, znode->level != 0);
2561	for (i = n; i < znode->child_cnt; i++) {
2562		znode->zbranch[i] = znode->zbranch[i + 1];
2563		if (znode->zbranch[i].znode)
2564			znode->zbranch[i].znode->iip = i;
2565	}
2566
2567	/*
2568	 * If this is the root and it has only 1 child then
2569	 * collapse the tree.
2570	 */
2571	if (!znode->parent) {
2572		while (znode->child_cnt == 1 && znode->level != 0) {
2573			zp = znode;
2574			zbr = &znode->zbranch[0];
2575			znode = get_znode(c, znode, 0);
2576			if (IS_ERR(znode))
2577				return PTR_ERR(znode);
2578			znode = dirty_cow_znode(c, zbr);
2579			if (IS_ERR(znode))
2580				return PTR_ERR(znode);
2581			znode->parent = NULL;
2582			znode->iip = 0;
2583			if (c->zroot.len) {
2584				err = insert_old_idx(c, c->zroot.lnum,
2585						     c->zroot.offs);
2586				if (err)
2587					return err;
2588			}
2589			c->zroot.lnum = zbr->lnum;
2590			c->zroot.offs = zbr->offs;
2591			c->zroot.len = zbr->len;
2592			c->zroot.znode = znode;
2593			ubifs_assert(c, !ubifs_zn_obsolete(zp));
2594			ubifs_assert(c, ubifs_zn_dirty(zp));
2595			atomic_long_dec(&c->dirty_zn_cnt);
2596
2597			if (zp->cnext) {
2598				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2599				atomic_long_inc(&c->clean_zn_cnt);
2600				atomic_long_inc(&ubifs_clean_zn_cnt);
2601			} else
2602				kfree(zp);
2603		}
2604	}
2605
2606	return 0;
2607}
2608
2609/**
2610 * ubifs_tnc_remove - remove an index entry of a node.
2611 * @c: UBIFS file-system description object
2612 * @key: key of node
2613 *
2614 * Returns %0 on success or negative error code on failure.
2615 */
2616int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2617{
2618	int found, n, err = 0;
2619	struct ubifs_znode *znode;
2620
2621	mutex_lock(&c->tnc_mutex);
2622	dbg_tnck(key, "key ");
2623	found = lookup_level0_dirty(c, key, &znode, &n);
2624	if (found < 0) {
2625		err = found;
2626		goto out_unlock;
2627	}
2628	if (found == 1)
2629		err = tnc_delete(c, znode, n);
2630	if (!err)
2631		err = dbg_check_tnc(c, 0);
2632
2633out_unlock:
2634	mutex_unlock(&c->tnc_mutex);
2635	return err;
2636}
2637
2638/**
2639 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2640 * @c: UBIFS file-system description object
2641 * @key: key of node
2642 * @nm: directory entry name
2643 *
2644 * Returns %0 on success or negative error code on failure.
2645 */
2646int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2647			const struct fscrypt_name *nm)
2648{
2649	int n, err;
2650	struct ubifs_znode *znode;
2651
2652	mutex_lock(&c->tnc_mutex);
2653	dbg_tnck(key, "key ");
2654	err = lookup_level0_dirty(c, key, &znode, &n);
2655	if (err < 0)
2656		goto out_unlock;
2657
2658	if (err) {
2659		if (c->replaying)
2660			err = fallible_resolve_collision(c, key, &znode, &n,
2661							 nm, 0);
2662		else
2663			err = resolve_collision(c, key, &znode, &n, nm);
2664		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2665		if (err < 0)
2666			goto out_unlock;
2667		if (err) {
2668			/* Ensure the znode is dirtied */
2669			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2670				znode = dirty_cow_bottom_up(c, znode);
2671				if (IS_ERR(znode)) {
2672					err = PTR_ERR(znode);
2673					goto out_unlock;
2674				}
2675			}
2676			err = tnc_delete(c, znode, n);
2677		}
2678	}
2679
2680out_unlock:
2681	if (!err)
2682		err = dbg_check_tnc(c, 0);
2683	mutex_unlock(&c->tnc_mutex);
2684	return err;
2685}
2686
2687/**
2688 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2689 * @c: UBIFS file-system description object
2690 * @key: key of node
2691 * @cookie: node cookie for collision resolution
2692 *
2693 * Returns %0 on success or negative error code on failure.
2694 */
2695int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2696			uint32_t cookie)
2697{
2698	int n, err;
2699	struct ubifs_znode *znode;
2700	struct ubifs_dent_node *dent;
2701	struct ubifs_zbranch *zbr;
2702
2703	if (!c->double_hash)
2704		return -EOPNOTSUPP;
2705
2706	mutex_lock(&c->tnc_mutex);
2707	err = lookup_level0_dirty(c, key, &znode, &n);
2708	if (err <= 0)
2709		goto out_unlock;
2710
2711	zbr = &znode->zbranch[n];
2712	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2713	if (!dent) {
2714		err = -ENOMEM;
2715		goto out_unlock;
2716	}
2717
2718	err = tnc_read_hashed_node(c, zbr, dent);
2719	if (err)
2720		goto out_free;
2721
2722	/* If the cookie does not match, we're facing a hash collision. */
2723	if (le32_to_cpu(dent->cookie) != cookie) {
2724		union ubifs_key start_key;
2725
2726		lowest_dent_key(c, &start_key, key_inum(c, key));
2727
2728		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2729		if (unlikely(err < 0))
2730			goto out_free;
2731
2732		err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2733		if (err)
2734			goto out_free;
2735	}
2736
2737	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2738		znode = dirty_cow_bottom_up(c, znode);
2739		if (IS_ERR(znode)) {
2740			err = PTR_ERR(znode);
2741			goto out_free;
2742		}
2743	}
2744	err = tnc_delete(c, znode, n);
2745
2746out_free:
2747	kfree(dent);
2748out_unlock:
2749	if (!err)
2750		err = dbg_check_tnc(c, 0);
2751	mutex_unlock(&c->tnc_mutex);
2752	return err;
2753}
2754
2755/**
2756 * key_in_range - determine if a key falls within a range of keys.
2757 * @c: UBIFS file-system description object
2758 * @key: key to check
2759 * @from_key: lowest key in range
2760 * @to_key: highest key in range
2761 *
2762 * This function returns %1 if the key is in range and %0 otherwise.
2763 */
2764static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2765			union ubifs_key *from_key, union ubifs_key *to_key)
2766{
2767	if (keys_cmp(c, key, from_key) < 0)
2768		return 0;
2769	if (keys_cmp(c, key, to_key) > 0)
2770		return 0;
2771	return 1;
2772}
2773
2774/**
2775 * ubifs_tnc_remove_range - remove index entries in range.
2776 * @c: UBIFS file-system description object
2777 * @from_key: lowest key to remove
2778 * @to_key: highest key to remove
2779 *
2780 * This function removes index entries starting at @from_key and ending at
2781 * @to_key.  This function returns zero in case of success and a negative error
2782 * code in case of failure.
2783 */
2784int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2785			   union ubifs_key *to_key)
2786{
2787	int i, n, k, err = 0;
2788	struct ubifs_znode *znode;
2789	union ubifs_key *key;
2790
2791	mutex_lock(&c->tnc_mutex);
2792	while (1) {
2793		/* Find first level 0 znode that contains keys to remove */
2794		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2795		if (err < 0)
2796			goto out_unlock;
2797
2798		if (err)
2799			key = from_key;
2800		else {
2801			err = tnc_next(c, &znode, &n);
2802			if (err == -ENOENT) {
2803				err = 0;
2804				goto out_unlock;
2805			}
2806			if (err < 0)
2807				goto out_unlock;
2808			key = &znode->zbranch[n].key;
2809			if (!key_in_range(c, key, from_key, to_key)) {
2810				err = 0;
2811				goto out_unlock;
2812			}
2813		}
2814
2815		/* Ensure the znode is dirtied */
2816		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2817			znode = dirty_cow_bottom_up(c, znode);
2818			if (IS_ERR(znode)) {
2819				err = PTR_ERR(znode);
2820				goto out_unlock;
2821			}
2822		}
2823
2824		/* Remove all keys in range except the first */
2825		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2826			key = &znode->zbranch[i].key;
2827			if (!key_in_range(c, key, from_key, to_key))
2828				break;
2829			lnc_free(&znode->zbranch[i]);
2830			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2831					     znode->zbranch[i].len);
2832			if (err) {
2833				ubifs_dump_znode(c, znode);
2834				goto out_unlock;
2835			}
2836			dbg_tnck(key, "removing key ");
2837		}
2838		if (k) {
2839			for (i = n + 1 + k; i < znode->child_cnt; i++)
2840				znode->zbranch[i - k] = znode->zbranch[i];
2841			znode->child_cnt -= k;
2842		}
2843
2844		/* Now delete the first */
2845		err = tnc_delete(c, znode, n);
2846		if (err)
2847			goto out_unlock;
2848	}
2849
2850out_unlock:
2851	if (!err)
2852		err = dbg_check_tnc(c, 0);
2853	mutex_unlock(&c->tnc_mutex);
2854	return err;
2855}
2856
2857/**
2858 * ubifs_tnc_remove_ino - remove an inode from TNC.
2859 * @c: UBIFS file-system description object
2860 * @inum: inode number to remove
2861 *
2862 * This function remove inode @inum and all the extended attributes associated
2863 * with the anode from TNC and returns zero in case of success or a negative
2864 * error code in case of failure.
2865 */
2866int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2867{
2868	union ubifs_key key1, key2;
2869	struct ubifs_dent_node *xent, *pxent = NULL;
2870	struct fscrypt_name nm = {0};
2871
2872	dbg_tnc("ino %lu", (unsigned long)inum);
2873
2874	/*
2875	 * Walk all extended attribute entries and remove them together with
2876	 * corresponding extended attribute inodes.
2877	 */
2878	lowest_xent_key(c, &key1, inum);
2879	while (1) {
2880		ino_t xattr_inum;
2881		int err;
2882
2883		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2884		if (IS_ERR(xent)) {
2885			err = PTR_ERR(xent);
2886			if (err == -ENOENT)
2887				break;
2888			return err;
2889		}
2890
2891		xattr_inum = le64_to_cpu(xent->inum);
2892		dbg_tnc("xent '%s', ino %lu", xent->name,
2893			(unsigned long)xattr_inum);
2894
2895		ubifs_evict_xattr_inode(c, xattr_inum);
2896
2897		fname_name(&nm) = xent->name;
2898		fname_len(&nm) = le16_to_cpu(xent->nlen);
2899		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2900		if (err) {
2901			kfree(xent);
2902			return err;
2903		}
2904
2905		lowest_ino_key(c, &key1, xattr_inum);
2906		highest_ino_key(c, &key2, xattr_inum);
2907		err = ubifs_tnc_remove_range(c, &key1, &key2);
2908		if (err) {
2909			kfree(xent);
2910			return err;
2911		}
2912
2913		kfree(pxent);
2914		pxent = xent;
2915		key_read(c, &xent->key, &key1);
2916	}
2917
2918	kfree(pxent);
2919	lowest_ino_key(c, &key1, inum);
2920	highest_ino_key(c, &key2, inum);
2921
2922	return ubifs_tnc_remove_range(c, &key1, &key2);
2923}
2924
2925/**
2926 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2927 * @c: UBIFS file-system description object
2928 * @key: key of last entry
2929 * @nm: name of last entry found or %NULL
2930 *
2931 * This function finds and reads the next directory or extended attribute entry
2932 * after the given key (@key) if there is one. @nm is used to resolve
2933 * collisions.
2934 *
2935 * If the name of the current entry is not known and only the key is known,
2936 * @nm->name has to be %NULL. In this case the semantics of this function is a
2937 * little bit different and it returns the entry corresponding to this key, not
2938 * the next one. If the key was not found, the closest "right" entry is
2939 * returned.
2940 *
2941 * If the fist entry has to be found, @key has to contain the lowest possible
2942 * key value for this inode and @name has to be %NULL.
2943 *
2944 * This function returns the found directory or extended attribute entry node
2945 * in case of success, %-ENOENT is returned if no entry was found, and a
2946 * negative error code is returned in case of failure.
2947 */
2948struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2949					   union ubifs_key *key,
2950					   const struct fscrypt_name *nm)
2951{
2952	int n, err, type = key_type(c, key);
2953	struct ubifs_znode *znode;
2954	struct ubifs_dent_node *dent;
2955	struct ubifs_zbranch *zbr;
2956	union ubifs_key *dkey;
2957
2958	dbg_tnck(key, "key ");
2959	ubifs_assert(c, is_hash_key(c, key));
2960
2961	mutex_lock(&c->tnc_mutex);
2962	err = ubifs_lookup_level0(c, key, &znode, &n);
2963	if (unlikely(err < 0))
2964		goto out_unlock;
2965
2966	if (fname_len(nm) > 0) {
2967		if (err) {
2968			/* Handle collisions */
2969			if (c->replaying)
2970				err = fallible_resolve_collision(c, key, &znode, &n,
2971							 nm, 0);
2972			else
2973				err = resolve_collision(c, key, &znode, &n, nm);
2974			dbg_tnc("rc returned %d, znode %p, n %d",
2975				err, znode, n);
2976			if (unlikely(err < 0))
2977				goto out_unlock;
2978		}
2979
2980		/* Now find next entry */
2981		err = tnc_next(c, &znode, &n);
2982		if (unlikely(err))
2983			goto out_unlock;
2984	} else {
2985		/*
2986		 * The full name of the entry was not given, in which case the
2987		 * behavior of this function is a little different and it
2988		 * returns current entry, not the next one.
2989		 */
2990		if (!err) {
2991			/*
2992			 * However, the given key does not exist in the TNC
2993			 * tree and @znode/@n variables contain the closest
2994			 * "preceding" element. Switch to the next one.
2995			 */
2996			err = tnc_next(c, &znode, &n);
2997			if (err)
2998				goto out_unlock;
2999		}
3000	}
3001
3002	zbr = &znode->zbranch[n];
3003	dent = kmalloc(zbr->len, GFP_NOFS);
3004	if (unlikely(!dent)) {
3005		err = -ENOMEM;
3006		goto out_unlock;
3007	}
3008
3009	/*
3010	 * The above 'tnc_next()' call could lead us to the next inode, check
3011	 * this.
3012	 */
3013	dkey = &zbr->key;
3014	if (key_inum(c, dkey) != key_inum(c, key) ||
3015	    key_type(c, dkey) != type) {
3016		err = -ENOENT;
3017		goto out_free;
3018	}
3019
3020	err = tnc_read_hashed_node(c, zbr, dent);
3021	if (unlikely(err))
3022		goto out_free;
3023
3024	mutex_unlock(&c->tnc_mutex);
3025	return dent;
3026
3027out_free:
3028	kfree(dent);
3029out_unlock:
3030	mutex_unlock(&c->tnc_mutex);
3031	return ERR_PTR(err);
3032}
3033
3034/**
3035 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3036 * @c: UBIFS file-system description object
3037 *
3038 * Destroy left-over obsolete znodes from a failed commit.
3039 */
3040static void tnc_destroy_cnext(struct ubifs_info *c)
3041{
3042	struct ubifs_znode *cnext;
3043
3044	if (!c->cnext)
3045		return;
3046	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3047	cnext = c->cnext;
3048	do {
3049		struct ubifs_znode *znode = cnext;
3050
3051		cnext = cnext->cnext;
3052		if (ubifs_zn_obsolete(znode))
3053			kfree(znode);
3054	} while (cnext && cnext != c->cnext);
3055}
3056
3057/**
3058 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3059 * @c: UBIFS file-system description object
3060 */
3061void ubifs_tnc_close(struct ubifs_info *c)
3062{
3063	tnc_destroy_cnext(c);
3064	if (c->zroot.znode) {
3065		long n, freed;
3066
3067		n = atomic_long_read(&c->clean_zn_cnt);
3068		freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3069		ubifs_assert(c, freed == n);
3070		atomic_long_sub(n, &ubifs_clean_zn_cnt);
3071	}
3072	kfree(c->gap_lebs);
3073	kfree(c->ilebs);
3074	destroy_old_idx(c);
3075}
3076
3077/**
3078 * left_znode - get the znode to the left.
3079 * @c: UBIFS file-system description object
3080 * @znode: znode
3081 *
3082 * This function returns a pointer to the znode to the left of @znode or NULL if
3083 * there is not one. A negative error code is returned on failure.
3084 */
3085static struct ubifs_znode *left_znode(struct ubifs_info *c,
3086				      struct ubifs_znode *znode)
3087{
3088	int level = znode->level;
3089
3090	while (1) {
3091		int n = znode->iip - 1;
3092
3093		/* Go up until we can go left */
3094		znode = znode->parent;
3095		if (!znode)
3096			return NULL;
3097		if (n >= 0) {
3098			/* Now go down the rightmost branch to 'level' */
3099			znode = get_znode(c, znode, n);
3100			if (IS_ERR(znode))
3101				return znode;
3102			while (znode->level != level) {
3103				n = znode->child_cnt - 1;
3104				znode = get_znode(c, znode, n);
3105				if (IS_ERR(znode))
3106					return znode;
3107			}
3108			break;
3109		}
3110	}
3111	return znode;
3112}
3113
3114/**
3115 * right_znode - get the znode to the right.
3116 * @c: UBIFS file-system description object
3117 * @znode: znode
3118 *
3119 * This function returns a pointer to the znode to the right of @znode or NULL
3120 * if there is not one. A negative error code is returned on failure.
3121 */
3122static struct ubifs_znode *right_znode(struct ubifs_info *c,
3123				       struct ubifs_znode *znode)
3124{
3125	int level = znode->level;
3126
3127	while (1) {
3128		int n = znode->iip + 1;
3129
3130		/* Go up until we can go right */
3131		znode = znode->parent;
3132		if (!znode)
3133			return NULL;
3134		if (n < znode->child_cnt) {
3135			/* Now go down the leftmost branch to 'level' */
3136			znode = get_znode(c, znode, n);
3137			if (IS_ERR(znode))
3138				return znode;
3139			while (znode->level != level) {
3140				znode = get_znode(c, znode, 0);
3141				if (IS_ERR(znode))
3142					return znode;
3143			}
3144			break;
3145		}
3146	}
3147	return znode;
3148}
3149
3150/**
3151 * lookup_znode - find a particular indexing node from TNC.
3152 * @c: UBIFS file-system description object
3153 * @key: index node key to lookup
3154 * @level: index node level
3155 * @lnum: index node LEB number
3156 * @offs: index node offset
3157 *
3158 * This function searches an indexing node by its first key @key and its
3159 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3160 * nodes it traverses to TNC. This function is called for indexing nodes which
3161 * were found on the media by scanning, for example when garbage-collecting or
3162 * when doing in-the-gaps commit. This means that the indexing node which is
3163 * looked for does not have to have exactly the same leftmost key @key, because
3164 * the leftmost key may have been changed, in which case TNC will contain a
3165 * dirty znode which still refers the same @lnum:@offs. This function is clever
3166 * enough to recognize such indexing nodes.
3167 *
3168 * Note, if a znode was deleted or changed too much, then this function will
3169 * not find it. For situations like this UBIFS has the old index RB-tree
3170 * (indexed by @lnum:@offs).
3171 *
3172 * This function returns a pointer to the znode found or %NULL if it is not
3173 * found. A negative error code is returned on failure.
3174 */
3175static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3176					union ubifs_key *key, int level,
3177					int lnum, int offs)
3178{
3179	struct ubifs_znode *znode, *zn;
3180	int n, nn;
3181
3182	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3183
3184	/*
3185	 * The arguments have probably been read off flash, so don't assume
3186	 * they are valid.
3187	 */
3188	if (level < 0)
3189		return ERR_PTR(-EINVAL);
3190
3191	/* Get the root znode */
3192	znode = c->zroot.znode;
3193	if (!znode) {
3194		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3195		if (IS_ERR(znode))
3196			return znode;
3197	}
3198	/* Check if it is the one we are looking for */
3199	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3200		return znode;
3201	/* Descend to the parent level i.e. (level + 1) */
3202	if (level >= znode->level)
3203		return NULL;
3204	while (1) {
3205		ubifs_search_zbranch(c, znode, key, &n);
3206		if (n < 0) {
3207			/*
3208			 * We reached a znode where the leftmost key is greater
3209			 * than the key we are searching for. This is the same
3210			 * situation as the one described in a huge comment at
3211			 * the end of the 'ubifs_lookup_level0()' function. And
3212			 * for exactly the same reasons we have to try to look
3213			 * left before giving up.
3214			 */
3215			znode = left_znode(c, znode);
3216			if (!znode)
3217				return NULL;
3218			if (IS_ERR(znode))
3219				return znode;
3220			ubifs_search_zbranch(c, znode, key, &n);
3221			ubifs_assert(c, n >= 0);
3222		}
3223		if (znode->level == level + 1)
3224			break;
3225		znode = get_znode(c, znode, n);
3226		if (IS_ERR(znode))
3227			return znode;
3228	}
3229	/* Check if the child is the one we are looking for */
3230	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3231		return get_znode(c, znode, n);
3232	/* If the key is unique, there is nowhere else to look */
3233	if (!is_hash_key(c, key))
3234		return NULL;
3235	/*
3236	 * The key is not unique and so may be also in the znodes to either
3237	 * side.
3238	 */
3239	zn = znode;
3240	nn = n;
3241	/* Look left */
3242	while (1) {
3243		/* Move one branch to the left */
3244		if (n)
3245			n -= 1;
3246		else {
3247			znode = left_znode(c, znode);
3248			if (!znode)
3249				break;
3250			if (IS_ERR(znode))
3251				return znode;
3252			n = znode->child_cnt - 1;
3253		}
3254		/* Check it */
3255		if (znode->zbranch[n].lnum == lnum &&
3256		    znode->zbranch[n].offs == offs)
3257			return get_znode(c, znode, n);
3258		/* Stop if the key is less than the one we are looking for */
3259		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3260			break;
3261	}
3262	/* Back to the middle */
3263	znode = zn;
3264	n = nn;
3265	/* Look right */
3266	while (1) {
3267		/* Move one branch to the right */
3268		if (++n >= znode->child_cnt) {
3269			znode = right_znode(c, znode);
3270			if (!znode)
3271				break;
3272			if (IS_ERR(znode))
3273				return znode;
3274			n = 0;
3275		}
3276		/* Check it */
3277		if (znode->zbranch[n].lnum == lnum &&
3278		    znode->zbranch[n].offs == offs)
3279			return get_znode(c, znode, n);
3280		/* Stop if the key is greater than the one we are looking for */
3281		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3282			break;
3283	}
3284	return NULL;
3285}
3286
3287/**
3288 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3289 * @c: UBIFS file-system description object
3290 * @key: key of index node
3291 * @level: index node level
3292 * @lnum: LEB number of index node
3293 * @offs: offset of index node
3294 *
3295 * This function returns %0 if the index node is not referred to in the TNC, %1
3296 * if the index node is referred to in the TNC and the corresponding znode is
3297 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3298 * znode is clean, and a negative error code in case of failure.
3299 *
3300 * Note, the @key argument has to be the key of the first child. Also note,
3301 * this function relies on the fact that 0:0 is never a valid LEB number and
3302 * offset for a main-area node.
3303 */
3304int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3305		       int lnum, int offs)
3306{
3307	struct ubifs_znode *znode;
3308
3309	znode = lookup_znode(c, key, level, lnum, offs);
3310	if (!znode)
3311		return 0;
3312	if (IS_ERR(znode))
3313		return PTR_ERR(znode);
3314
3315	return ubifs_zn_dirty(znode) ? 1 : 2;
3316}
3317
3318/**
3319 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3320 * @c: UBIFS file-system description object
3321 * @key: node key
3322 * @lnum: node LEB number
3323 * @offs: node offset
3324 *
3325 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3326 * not, and a negative error code in case of failure.
3327 *
3328 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3329 * and offset for a main-area node.
3330 */
3331static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3332			       int lnum, int offs)
3333{
3334	struct ubifs_zbranch *zbr;
3335	struct ubifs_znode *znode, *zn;
3336	int n, found, err, nn;
3337	const int unique = !is_hash_key(c, key);
3338
3339	found = ubifs_lookup_level0(c, key, &znode, &n);
3340	if (found < 0)
3341		return found; /* Error code */
3342	if (!found)
3343		return 0;
3344	zbr = &znode->zbranch[n];
3345	if (lnum == zbr->lnum && offs == zbr->offs)
3346		return 1; /* Found it */
3347	if (unique)
3348		return 0;
3349	/*
3350	 * Because the key is not unique, we have to look left
3351	 * and right as well
3352	 */
3353	zn = znode;
3354	nn = n;
3355	/* Look left */
3356	while (1) {
3357		err = tnc_prev(c, &znode, &n);
3358		if (err == -ENOENT)
3359			break;
3360		if (err)
3361			return err;
3362		if (keys_cmp(c, key, &znode->zbranch[n].key))
3363			break;
3364		zbr = &znode->zbranch[n];
3365		if (lnum == zbr->lnum && offs == zbr->offs)
3366			return 1; /* Found it */
3367	}
3368	/* Look right */
3369	znode = zn;
3370	n = nn;
3371	while (1) {
3372		err = tnc_next(c, &znode, &n);
3373		if (err) {
3374			if (err == -ENOENT)
3375				return 0;
3376			return err;
3377		}
3378		if (keys_cmp(c, key, &znode->zbranch[n].key))
3379			break;
3380		zbr = &znode->zbranch[n];
3381		if (lnum == zbr->lnum && offs == zbr->offs)
3382			return 1; /* Found it */
3383	}
3384	return 0;
3385}
3386
3387/**
3388 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3389 * @c: UBIFS file-system description object
3390 * @key: node key
3391 * @level: index node level (if it is an index node)
3392 * @lnum: node LEB number
3393 * @offs: node offset
3394 * @is_idx: non-zero if the node is an index node
3395 *
3396 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3397 * negative error code in case of failure. For index nodes, @key has to be the
3398 * key of the first child. An index node is considered to be in the TNC only if
3399 * the corresponding znode is clean or has not been loaded.
3400 */
3401int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3402		       int lnum, int offs, int is_idx)
3403{
3404	int err;
3405
3406	mutex_lock(&c->tnc_mutex);
3407	if (is_idx) {
3408		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3409		if (err < 0)
3410			goto out_unlock;
3411		if (err == 1)
3412			/* The index node was found but it was dirty */
3413			err = 0;
3414		else if (err == 2)
3415			/* The index node was found and it was clean */
3416			err = 1;
3417		else
3418			BUG_ON(err != 0);
3419	} else
3420		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3421
3422out_unlock:
3423	mutex_unlock(&c->tnc_mutex);
3424	return err;
3425}
3426
3427/**
3428 * ubifs_dirty_idx_node - dirty an index node.
3429 * @c: UBIFS file-system description object
3430 * @key: index node key
3431 * @level: index node level
3432 * @lnum: index node LEB number
3433 * @offs: index node offset
3434 *
3435 * This function loads and dirties an index node so that it can be garbage
3436 * collected. The @key argument has to be the key of the first child. This
3437 * function relies on the fact that 0:0 is never a valid LEB number and offset
3438 * for a main-area node. Returns %0 on success and a negative error code on
3439 * failure.
3440 */
3441int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3442			 int lnum, int offs)
3443{
3444	struct ubifs_znode *znode;
3445	int err = 0;
3446
3447	mutex_lock(&c->tnc_mutex);
3448	znode = lookup_znode(c, key, level, lnum, offs);
3449	if (!znode)
3450		goto out_unlock;
3451	if (IS_ERR(znode)) {
3452		err = PTR_ERR(znode);
3453		goto out_unlock;
3454	}
3455	znode = dirty_cow_bottom_up(c, znode);
3456	if (IS_ERR(znode)) {
3457		err = PTR_ERR(znode);
3458		goto out_unlock;
3459	}
3460
3461out_unlock:
3462	mutex_unlock(&c->tnc_mutex);
3463	return err;
3464}
3465
3466/**
3467 * dbg_check_inode_size - check if inode size is correct.
3468 * @c: UBIFS file-system description object
3469 * @inum: inode number
3470 * @size: inode size
3471 *
3472 * This function makes sure that the inode size (@size) is correct and it does
3473 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3474 * if it has a data page beyond @size, and other negative error code in case of
3475 * other errors.
3476 */
3477int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3478			 loff_t size)
3479{
3480	int err, n;
3481	union ubifs_key from_key, to_key, *key;
3482	struct ubifs_znode *znode;
3483	unsigned int block;
3484
3485	if (!S_ISREG(inode->i_mode))
3486		return 0;
3487	if (!dbg_is_chk_gen(c))
3488		return 0;
3489
3490	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3491	data_key_init(c, &from_key, inode->i_ino, block);
3492	highest_data_key(c, &to_key, inode->i_ino);
3493
3494	mutex_lock(&c->tnc_mutex);
3495	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3496	if (err < 0)
3497		goto out_unlock;
3498
3499	if (err) {
3500		key = &from_key;
3501		goto out_dump;
3502	}
3503
3504	err = tnc_next(c, &znode, &n);
3505	if (err == -ENOENT) {
3506		err = 0;
3507		goto out_unlock;
3508	}
3509	if (err < 0)
3510		goto out_unlock;
3511
3512	ubifs_assert(c, err == 0);
3513	key = &znode->zbranch[n].key;
3514	if (!key_in_range(c, key, &from_key, &to_key))
3515		goto out_unlock;
3516
3517out_dump:
3518	block = key_block(c, key);
3519	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3520		  (unsigned long)inode->i_ino, size,
3521		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3522	mutex_unlock(&c->tnc_mutex);
3523	ubifs_dump_inode(c, inode);
3524	dump_stack();
3525	return -EINVAL;
3526
3527out_unlock:
3528	mutex_unlock(&c->tnc_mutex);
3529	return err;
3530}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  13 * the UBIFS B-tree.
  14 *
  15 * At the moment the locking rules of the TNC tree are quite simple and
  16 * straightforward. We just have a mutex and lock it when we traverse the
  17 * tree. If a znode is not in memory, we read it from flash while still having
  18 * the mutex locked.
  19 */
  20
  21#include <linux/crc32.h>
  22#include <linux/slab.h>
  23#include "ubifs.h"
  24
  25static int try_read_node(const struct ubifs_info *c, void *buf, int type,
  26			 struct ubifs_zbranch *zbr);
  27static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
  28			      struct ubifs_zbranch *zbr, void *node);
  29
  30/*
  31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  32 * @NAME_LESS: name corresponding to the first argument is less than second
  33 * @NAME_MATCHES: names match
  34 * @NAME_GREATER: name corresponding to the second argument is greater than
  35 *                first
  36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  37 *
  38 * These constants were introduce to improve readability.
  39 */
  40enum {
  41	NAME_LESS    = 0,
  42	NAME_MATCHES = 1,
  43	NAME_GREATER = 2,
  44	NOT_ON_MEDIA = 3,
  45};
  46
  47/**
  48 * insert_old_idx - record an index node obsoleted since the last commit start.
  49 * @c: UBIFS file-system description object
  50 * @lnum: LEB number of obsoleted index node
  51 * @offs: offset of obsoleted index node
  52 *
  53 * Returns %0 on success, and a negative error code on failure.
  54 *
  55 * For recovery, there must always be a complete intact version of the index on
  56 * flash at all times. That is called the "old index". It is the index as at the
  57 * time of the last successful commit. Many of the index nodes in the old index
  58 * may be dirty, but they must not be erased until the next successful commit
  59 * (at which point that index becomes the old index).
  60 *
  61 * That means that the garbage collection and the in-the-gaps method of
  62 * committing must be able to determine if an index node is in the old index.
  63 * Most of the old index nodes can be found by looking up the TNC using the
  64 * 'lookup_znode()' function. However, some of the old index nodes may have
  65 * been deleted from the current index or may have been changed so much that
  66 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  67 * That is what this function does. The RB-tree is ordered by LEB number and
  68 * offset because they uniquely identify the old index node.
  69 */
  70static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  71{
  72	struct ubifs_old_idx *old_idx, *o;
  73	struct rb_node **p, *parent = NULL;
  74
  75	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  76	if (unlikely(!old_idx))
  77		return -ENOMEM;
  78	old_idx->lnum = lnum;
  79	old_idx->offs = offs;
  80
  81	p = &c->old_idx.rb_node;
  82	while (*p) {
  83		parent = *p;
  84		o = rb_entry(parent, struct ubifs_old_idx, rb);
  85		if (lnum < o->lnum)
  86			p = &(*p)->rb_left;
  87		else if (lnum > o->lnum)
  88			p = &(*p)->rb_right;
  89		else if (offs < o->offs)
  90			p = &(*p)->rb_left;
  91		else if (offs > o->offs)
  92			p = &(*p)->rb_right;
  93		else {
  94			ubifs_err(c, "old idx added twice!");
  95			kfree(old_idx);
  96			return 0;
  97		}
  98	}
  99	rb_link_node(&old_idx->rb, parent, p);
 100	rb_insert_color(&old_idx->rb, &c->old_idx);
 101	return 0;
 102}
 103
 104/**
 105 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 106 * @c: UBIFS file-system description object
 107 * @znode: znode of obsoleted index node
 108 *
 109 * Returns %0 on success, and a negative error code on failure.
 110 */
 111int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 112{
 113	if (znode->parent) {
 114		struct ubifs_zbranch *zbr;
 115
 116		zbr = &znode->parent->zbranch[znode->iip];
 117		if (zbr->len)
 118			return insert_old_idx(c, zbr->lnum, zbr->offs);
 119	} else
 120		if (c->zroot.len)
 121			return insert_old_idx(c, c->zroot.lnum,
 122					      c->zroot.offs);
 123	return 0;
 124}
 125
 126/**
 127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 128 * @c: UBIFS file-system description object
 129 * @znode: znode of obsoleted index node
 130 *
 131 * Returns %0 on success, and a negative error code on failure.
 132 */
 133static int ins_clr_old_idx_znode(struct ubifs_info *c,
 134				 struct ubifs_znode *znode)
 135{
 136	int err;
 137
 138	if (znode->parent) {
 139		struct ubifs_zbranch *zbr;
 140
 141		zbr = &znode->parent->zbranch[znode->iip];
 142		if (zbr->len) {
 143			err = insert_old_idx(c, zbr->lnum, zbr->offs);
 144			if (err)
 145				return err;
 146			zbr->lnum = 0;
 147			zbr->offs = 0;
 148			zbr->len = 0;
 149		}
 150	} else
 151		if (c->zroot.len) {
 152			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 153			if (err)
 154				return err;
 155			c->zroot.lnum = 0;
 156			c->zroot.offs = 0;
 157			c->zroot.len = 0;
 158		}
 159	return 0;
 160}
 161
 162/**
 163 * destroy_old_idx - destroy the old_idx RB-tree.
 164 * @c: UBIFS file-system description object
 165 *
 166 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 167 * nodes that were in the index last commit but have since been deleted.  This
 168 * is necessary for recovery i.e. the old index must be kept intact until the
 169 * new index is successfully written.  The old-idx RB-tree is used for the
 170 * in-the-gaps method of writing index nodes and is destroyed every commit.
 171 */
 172void destroy_old_idx(struct ubifs_info *c)
 173{
 174	struct ubifs_old_idx *old_idx, *n;
 175
 176	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
 177		kfree(old_idx);
 178
 179	c->old_idx = RB_ROOT;
 180}
 181
 182/**
 183 * copy_znode - copy a dirty znode.
 184 * @c: UBIFS file-system description object
 185 * @znode: znode to copy
 186 *
 187 * A dirty znode being committed may not be changed, so it is copied.
 188 */
 189static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 190				      struct ubifs_znode *znode)
 191{
 192	struct ubifs_znode *zn;
 193
 194	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
 195	if (unlikely(!zn))
 196		return ERR_PTR(-ENOMEM);
 197
 198	zn->cnext = NULL;
 199	__set_bit(DIRTY_ZNODE, &zn->flags);
 200	__clear_bit(COW_ZNODE, &zn->flags);
 201
 202	ubifs_assert(c, !ubifs_zn_obsolete(znode));
 203	__set_bit(OBSOLETE_ZNODE, &znode->flags);
 204
 205	if (znode->level != 0) {
 206		int i;
 207		const int n = zn->child_cnt;
 208
 209		/* The children now have new parent */
 210		for (i = 0; i < n; i++) {
 211			struct ubifs_zbranch *zbr = &zn->zbranch[i];
 212
 213			if (zbr->znode)
 214				zbr->znode->parent = zn;
 215		}
 216	}
 217
 218	atomic_long_inc(&c->dirty_zn_cnt);
 219	return zn;
 220}
 221
 222/**
 223 * add_idx_dirt - add dirt due to a dirty znode.
 224 * @c: UBIFS file-system description object
 225 * @lnum: LEB number of index node
 226 * @dirt: size of index node
 227 *
 228 * This function updates lprops dirty space and the new size of the index.
 229 */
 230static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 231{
 232	c->calc_idx_sz -= ALIGN(dirt, 8);
 233	return ubifs_add_dirt(c, lnum, dirt);
 234}
 235
 236/**
 237 * dirty_cow_znode - ensure a znode is not being committed.
 238 * @c: UBIFS file-system description object
 239 * @zbr: branch of znode to check
 240 *
 241 * Returns dirtied znode on success or negative error code on failure.
 242 */
 243static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 244					   struct ubifs_zbranch *zbr)
 245{
 246	struct ubifs_znode *znode = zbr->znode;
 247	struct ubifs_znode *zn;
 248	int err;
 249
 250	if (!ubifs_zn_cow(znode)) {
 251		/* znode is not being committed */
 252		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 253			atomic_long_inc(&c->dirty_zn_cnt);
 254			atomic_long_dec(&c->clean_zn_cnt);
 255			atomic_long_dec(&ubifs_clean_zn_cnt);
 256			err = add_idx_dirt(c, zbr->lnum, zbr->len);
 257			if (unlikely(err))
 258				return ERR_PTR(err);
 259		}
 260		return znode;
 261	}
 262
 263	zn = copy_znode(c, znode);
 264	if (IS_ERR(zn))
 265		return zn;
 266
 267	if (zbr->len) {
 268		err = insert_old_idx(c, zbr->lnum, zbr->offs);
 269		if (unlikely(err))
 270			return ERR_PTR(err);
 271		err = add_idx_dirt(c, zbr->lnum, zbr->len);
 272	} else
 273		err = 0;
 274
 275	zbr->znode = zn;
 276	zbr->lnum = 0;
 277	zbr->offs = 0;
 278	zbr->len = 0;
 279
 280	if (unlikely(err))
 281		return ERR_PTR(err);
 282	return zn;
 283}
 284
 285/**
 286 * lnc_add - add a leaf node to the leaf node cache.
 287 * @c: UBIFS file-system description object
 288 * @zbr: zbranch of leaf node
 289 * @node: leaf node
 290 *
 291 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 292 * purpose of the leaf node cache is to save re-reading the same leaf node over
 293 * and over again. Most things are cached by VFS, however the file system must
 294 * cache directory entries for readdir and for resolving hash collisions. The
 295 * present implementation of the leaf node cache is extremely simple, and
 296 * allows for error returns that are not used but that may be needed if a more
 297 * complex implementation is created.
 298 *
 299 * Note, this function does not add the @node object to LNC directly, but
 300 * allocates a copy of the object and adds the copy to LNC. The reason for this
 301 * is that @node has been allocated outside of the TNC subsystem and will be
 302 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 303 * may be changed at any time, e.g. freed by the shrinker.
 304 */
 305static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 306		   const void *node)
 307{
 308	int err;
 309	void *lnc_node;
 310	const struct ubifs_dent_node *dent = node;
 311
 312	ubifs_assert(c, !zbr->leaf);
 313	ubifs_assert(c, zbr->len != 0);
 314	ubifs_assert(c, is_hash_key(c, &zbr->key));
 315
 316	err = ubifs_validate_entry(c, dent);
 317	if (err) {
 318		dump_stack();
 319		ubifs_dump_node(c, dent);
 320		return err;
 321	}
 322
 323	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
 324	if (!lnc_node)
 325		/* We don't have to have the cache, so no error */
 326		return 0;
 327
 328	zbr->leaf = lnc_node;
 329	return 0;
 330}
 331
 332 /**
 333 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 334 * @c: UBIFS file-system description object
 335 * @zbr: zbranch of leaf node
 336 * @node: leaf node
 337 *
 338 * This function is similar to 'lnc_add()', but it does not create a copy of
 339 * @node but inserts @node to TNC directly.
 340 */
 341static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 342			    void *node)
 343{
 344	int err;
 345
 346	ubifs_assert(c, !zbr->leaf);
 347	ubifs_assert(c, zbr->len != 0);
 348
 349	err = ubifs_validate_entry(c, node);
 350	if (err) {
 351		dump_stack();
 352		ubifs_dump_node(c, node);
 353		return err;
 354	}
 355
 356	zbr->leaf = node;
 357	return 0;
 358}
 359
 360/**
 361 * lnc_free - remove a leaf node from the leaf node cache.
 362 * @zbr: zbranch of leaf node
 363 * @node: leaf node
 364 */
 365static void lnc_free(struct ubifs_zbranch *zbr)
 366{
 367	if (!zbr->leaf)
 368		return;
 369	kfree(zbr->leaf);
 370	zbr->leaf = NULL;
 371}
 372
 373/**
 374 * tnc_read_hashed_node - read a "hashed" leaf node.
 375 * @c: UBIFS file-system description object
 376 * @zbr: key and position of the node
 377 * @node: node is returned here
 378 *
 379 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 380 * (in it is there) or from the hash media, in which case the node is also
 381 * added to LNC. Returns zero in case of success or a negative negative error
 382 * code in case of failure.
 383 */
 384static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 385				void *node)
 386{
 387	int err;
 388
 389	ubifs_assert(c, is_hash_key(c, &zbr->key));
 390
 391	if (zbr->leaf) {
 392		/* Read from the leaf node cache */
 393		ubifs_assert(c, zbr->len != 0);
 394		memcpy(node, zbr->leaf, zbr->len);
 395		return 0;
 396	}
 397
 398	if (c->replaying) {
 399		err = fallible_read_node(c, &zbr->key, zbr, node);
 400		/*
 401		 * When the node was not found, return -ENOENT, 0 otherwise.
 402		 * Negative return codes stay as-is.
 403		 */
 404		if (err == 0)
 405			err = -ENOENT;
 406		else if (err == 1)
 407			err = 0;
 408	} else {
 409		err = ubifs_tnc_read_node(c, zbr, node);
 410	}
 411	if (err)
 412		return err;
 413
 414	/* Add the node to the leaf node cache */
 415	err = lnc_add(c, zbr, node);
 416	return err;
 417}
 418
 419/**
 420 * try_read_node - read a node if it is a node.
 421 * @c: UBIFS file-system description object
 422 * @buf: buffer to read to
 423 * @type: node type
 424 * @zbr: the zbranch describing the node to read
 425 *
 426 * This function tries to read a node of known type and length, checks it and
 427 * stores it in @buf. This function returns %1 if a node is present and %0 if
 428 * a node is not present. A negative error code is returned for I/O errors.
 429 * This function performs that same function as ubifs_read_node except that
 430 * it does not require that there is actually a node present and instead
 431 * the return code indicates if a node was read.
 432 *
 433 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 434 * is true (it is controlled by corresponding mount option). However, if
 435 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 436 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 437 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 438 * journal nodes (when replying the journal or doing the recovery) and the
 439 * journal nodes may potentially be corrupted, so checking is required.
 440 */
 441static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 442			 struct ubifs_zbranch *zbr)
 443{
 444	int len = zbr->len;
 445	int lnum = zbr->lnum;
 446	int offs = zbr->offs;
 447	int err, node_len;
 448	struct ubifs_ch *ch = buf;
 449	uint32_t crc, node_crc;
 450
 451	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 452
 453	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 454	if (err) {
 455		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
 456			  type, lnum, offs, err);
 457		return err;
 458	}
 459
 460	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 461		return 0;
 462
 463	if (ch->node_type != type)
 464		return 0;
 465
 466	node_len = le32_to_cpu(ch->len);
 467	if (node_len != len)
 468		return 0;
 469
 470	if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
 471	    c->remounting_rw) {
 472		crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 473		node_crc = le32_to_cpu(ch->crc);
 474		if (crc != node_crc)
 475			return 0;
 476	}
 477
 478	err = ubifs_node_check_hash(c, buf, zbr->hash);
 479	if (err) {
 480		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
 481		return 0;
 482	}
 483
 484	return 1;
 485}
 486
 487/**
 488 * fallible_read_node - try to read a leaf node.
 489 * @c: UBIFS file-system description object
 490 * @key:  key of node to read
 491 * @zbr:  position of node
 492 * @node: node returned
 493 *
 494 * This function tries to read a node and returns %1 if the node is read, %0
 495 * if the node is not present, and a negative error code in the case of error.
 496 */
 497static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 498			      struct ubifs_zbranch *zbr, void *node)
 499{
 500	int ret;
 501
 502	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
 503
 504	ret = try_read_node(c, node, key_type(c, key), zbr);
 505	if (ret == 1) {
 506		union ubifs_key node_key;
 507		struct ubifs_dent_node *dent = node;
 508
 509		/* All nodes have key in the same place */
 510		key_read(c, &dent->key, &node_key);
 511		if (keys_cmp(c, key, &node_key) != 0)
 512			ret = 0;
 513	}
 514	if (ret == 0 && c->replaying)
 515		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
 516			zbr->lnum, zbr->offs, zbr->len);
 517	return ret;
 518}
 519
 520/**
 521 * matches_name - determine if a direntry or xattr entry matches a given name.
 522 * @c: UBIFS file-system description object
 523 * @zbr: zbranch of dent
 524 * @nm: name to match
 525 *
 526 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 527 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 528 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 529 * of failure, a negative error code is returned.
 530 */
 531static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 532			const struct fscrypt_name *nm)
 533{
 534	struct ubifs_dent_node *dent;
 535	int nlen, err;
 536
 537	/* If possible, match against the dent in the leaf node cache */
 538	if (!zbr->leaf) {
 539		dent = kmalloc(zbr->len, GFP_NOFS);
 540		if (!dent)
 541			return -ENOMEM;
 542
 543		err = ubifs_tnc_read_node(c, zbr, dent);
 544		if (err)
 545			goto out_free;
 546
 547		/* Add the node to the leaf node cache */
 548		err = lnc_add_directly(c, zbr, dent);
 549		if (err)
 550			goto out_free;
 551	} else
 552		dent = zbr->leaf;
 553
 554	nlen = le16_to_cpu(dent->nlen);
 555	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
 556	if (err == 0) {
 557		if (nlen == fname_len(nm))
 558			return NAME_MATCHES;
 559		else if (nlen < fname_len(nm))
 560			return NAME_LESS;
 561		else
 562			return NAME_GREATER;
 563	} else if (err < 0)
 564		return NAME_LESS;
 565	else
 566		return NAME_GREATER;
 567
 568out_free:
 569	kfree(dent);
 570	return err;
 571}
 572
 573/**
 574 * get_znode - get a TNC znode that may not be loaded yet.
 575 * @c: UBIFS file-system description object
 576 * @znode: parent znode
 577 * @n: znode branch slot number
 578 *
 579 * This function returns the znode or a negative error code.
 580 */
 581static struct ubifs_znode *get_znode(struct ubifs_info *c,
 582				     struct ubifs_znode *znode, int n)
 583{
 584	struct ubifs_zbranch *zbr;
 585
 586	zbr = &znode->zbranch[n];
 587	if (zbr->znode)
 588		znode = zbr->znode;
 589	else
 590		znode = ubifs_load_znode(c, zbr, znode, n);
 591	return znode;
 592}
 593
 594/**
 595 * tnc_next - find next TNC entry.
 596 * @c: UBIFS file-system description object
 597 * @zn: znode is passed and returned here
 598 * @n: znode branch slot number is passed and returned here
 599 *
 600 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 601 * no next entry, or a negative error code otherwise.
 602 */
 603static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 604{
 605	struct ubifs_znode *znode = *zn;
 606	int nn = *n;
 607
 608	nn += 1;
 609	if (nn < znode->child_cnt) {
 610		*n = nn;
 611		return 0;
 612	}
 613	while (1) {
 614		struct ubifs_znode *zp;
 615
 616		zp = znode->parent;
 617		if (!zp)
 618			return -ENOENT;
 619		nn = znode->iip + 1;
 620		znode = zp;
 621		if (nn < znode->child_cnt) {
 622			znode = get_znode(c, znode, nn);
 623			if (IS_ERR(znode))
 624				return PTR_ERR(znode);
 625			while (znode->level != 0) {
 626				znode = get_znode(c, znode, 0);
 627				if (IS_ERR(znode))
 628					return PTR_ERR(znode);
 629			}
 630			nn = 0;
 631			break;
 632		}
 633	}
 634	*zn = znode;
 635	*n = nn;
 636	return 0;
 637}
 638
 639/**
 640 * tnc_prev - find previous TNC entry.
 641 * @c: UBIFS file-system description object
 642 * @zn: znode is returned here
 643 * @n: znode branch slot number is passed and returned here
 644 *
 645 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 646 * there is no next entry, or a negative error code otherwise.
 647 */
 648static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 649{
 650	struct ubifs_znode *znode = *zn;
 651	int nn = *n;
 652
 653	if (nn > 0) {
 654		*n = nn - 1;
 655		return 0;
 656	}
 657	while (1) {
 658		struct ubifs_znode *zp;
 659
 660		zp = znode->parent;
 661		if (!zp)
 662			return -ENOENT;
 663		nn = znode->iip - 1;
 664		znode = zp;
 665		if (nn >= 0) {
 666			znode = get_znode(c, znode, nn);
 667			if (IS_ERR(znode))
 668				return PTR_ERR(znode);
 669			while (znode->level != 0) {
 670				nn = znode->child_cnt - 1;
 671				znode = get_znode(c, znode, nn);
 672				if (IS_ERR(znode))
 673					return PTR_ERR(znode);
 674			}
 675			nn = znode->child_cnt - 1;
 676			break;
 677		}
 678	}
 679	*zn = znode;
 680	*n = nn;
 681	return 0;
 682}
 683
 684/**
 685 * resolve_collision - resolve a collision.
 686 * @c: UBIFS file-system description object
 687 * @key: key of a directory or extended attribute entry
 688 * @zn: znode is returned here
 689 * @n: zbranch number is passed and returned here
 690 * @nm: name of the entry
 691 *
 692 * This function is called for "hashed" keys to make sure that the found key
 693 * really corresponds to the looked up node (directory or extended attribute
 694 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 695 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 696 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 697 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 698 * previous one. A negative error code is returned on failures.
 699 */
 700static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 701			     struct ubifs_znode **zn, int *n,
 702			     const struct fscrypt_name *nm)
 703{
 704	int err;
 705
 706	err = matches_name(c, &(*zn)->zbranch[*n], nm);
 707	if (unlikely(err < 0))
 708		return err;
 709	if (err == NAME_MATCHES)
 710		return 1;
 711
 712	if (err == NAME_GREATER) {
 713		/* Look left */
 714		while (1) {
 715			err = tnc_prev(c, zn, n);
 716			if (err == -ENOENT) {
 717				ubifs_assert(c, *n == 0);
 718				*n = -1;
 719				return 0;
 720			}
 721			if (err < 0)
 722				return err;
 723			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 724				/*
 725				 * We have found the branch after which we would
 726				 * like to insert, but inserting in this znode
 727				 * may still be wrong. Consider the following 3
 728				 * znodes, in the case where we are resolving a
 729				 * collision with Key2.
 730				 *
 731				 *                  znode zp
 732				 *            ----------------------
 733				 * level 1     |  Key0  |  Key1  |
 734				 *            -----------------------
 735				 *                 |            |
 736				 *       znode za  |            |  znode zb
 737				 *          ------------      ------------
 738				 * level 0  |  Key0  |        |  Key2  |
 739				 *          ------------      ------------
 740				 *
 741				 * The lookup finds Key2 in znode zb. Lets say
 742				 * there is no match and the name is greater so
 743				 * we look left. When we find Key0, we end up
 744				 * here. If we return now, we will insert into
 745				 * znode za at slot n = 1.  But that is invalid
 746				 * according to the parent's keys.  Key2 must
 747				 * be inserted into znode zb.
 748				 *
 749				 * Note, this problem is not relevant for the
 750				 * case when we go right, because
 751				 * 'tnc_insert()' would correct the parent key.
 752				 */
 753				if (*n == (*zn)->child_cnt - 1) {
 754					err = tnc_next(c, zn, n);
 755					if (err) {
 756						/* Should be impossible */
 757						ubifs_assert(c, 0);
 758						if (err == -ENOENT)
 759							err = -EINVAL;
 760						return err;
 761					}
 762					ubifs_assert(c, *n == 0);
 763					*n = -1;
 764				}
 765				return 0;
 766			}
 767			err = matches_name(c, &(*zn)->zbranch[*n], nm);
 768			if (err < 0)
 769				return err;
 770			if (err == NAME_LESS)
 771				return 0;
 772			if (err == NAME_MATCHES)
 773				return 1;
 774			ubifs_assert(c, err == NAME_GREATER);
 775		}
 776	} else {
 777		int nn = *n;
 778		struct ubifs_znode *znode = *zn;
 779
 780		/* Look right */
 781		while (1) {
 782			err = tnc_next(c, &znode, &nn);
 783			if (err == -ENOENT)
 784				return 0;
 785			if (err < 0)
 786				return err;
 787			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 788				return 0;
 789			err = matches_name(c, &znode->zbranch[nn], nm);
 790			if (err < 0)
 791				return err;
 792			if (err == NAME_GREATER)
 793				return 0;
 794			*zn = znode;
 795			*n = nn;
 796			if (err == NAME_MATCHES)
 797				return 1;
 798			ubifs_assert(c, err == NAME_LESS);
 799		}
 800	}
 801}
 802
 803/**
 804 * fallible_matches_name - determine if a dent matches a given name.
 805 * @c: UBIFS file-system description object
 806 * @zbr: zbranch of dent
 807 * @nm: name to match
 808 *
 809 * This is a "fallible" version of 'matches_name()' function which does not
 810 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 811 *
 812 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 813 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 814 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 815 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 816 * error code is returned in case of failure.
 817 */
 818static int fallible_matches_name(struct ubifs_info *c,
 819				 struct ubifs_zbranch *zbr,
 820				 const struct fscrypt_name *nm)
 821{
 822	struct ubifs_dent_node *dent;
 823	int nlen, err;
 824
 825	/* If possible, match against the dent in the leaf node cache */
 826	if (!zbr->leaf) {
 827		dent = kmalloc(zbr->len, GFP_NOFS);
 828		if (!dent)
 829			return -ENOMEM;
 830
 831		err = fallible_read_node(c, &zbr->key, zbr, dent);
 832		if (err < 0)
 833			goto out_free;
 834		if (err == 0) {
 835			/* The node was not present */
 836			err = NOT_ON_MEDIA;
 837			goto out_free;
 838		}
 839		ubifs_assert(c, err == 1);
 840
 841		err = lnc_add_directly(c, zbr, dent);
 842		if (err)
 843			goto out_free;
 844	} else
 845		dent = zbr->leaf;
 846
 847	nlen = le16_to_cpu(dent->nlen);
 848	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
 849	if (err == 0) {
 850		if (nlen == fname_len(nm))
 851			return NAME_MATCHES;
 852		else if (nlen < fname_len(nm))
 853			return NAME_LESS;
 854		else
 855			return NAME_GREATER;
 856	} else if (err < 0)
 857		return NAME_LESS;
 858	else
 859		return NAME_GREATER;
 860
 861out_free:
 862	kfree(dent);
 863	return err;
 864}
 865
 866/**
 867 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 868 * @c: UBIFS file-system description object
 869 * @key: key
 870 * @zn: znode is returned here
 871 * @n: branch number is passed and returned here
 872 * @nm: name of directory entry
 873 * @adding: indicates caller is adding a key to the TNC
 874 *
 875 * This is a "fallible" version of the 'resolve_collision()' function which
 876 * does not panic if one of the nodes referred to by TNC does not exist on the
 877 * media. This may happen when replaying the journal if a deleted node was
 878 * Garbage-collected and the commit was not done. A branch that refers to a node
 879 * that is not present is called a dangling branch. The following are the return
 880 * codes for this function:
 881 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 882 *    branch;
 883 *  o if we are @adding and @nm was not found, %0 is returned;
 884 *  o if we are not @adding and @nm was not found, but a dangling branch was
 885 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 886 *  o a negative error code is returned in case of failure.
 887 */
 888static int fallible_resolve_collision(struct ubifs_info *c,
 889				      const union ubifs_key *key,
 890				      struct ubifs_znode **zn, int *n,
 891				      const struct fscrypt_name *nm,
 892				      int adding)
 893{
 894	struct ubifs_znode *o_znode = NULL, *znode = *zn;
 895	int o_n, err, cmp, unsure = 0, nn = *n;
 896
 897	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 898	if (unlikely(cmp < 0))
 899		return cmp;
 900	if (cmp == NAME_MATCHES)
 901		return 1;
 902	if (cmp == NOT_ON_MEDIA) {
 903		o_znode = znode;
 904		o_n = nn;
 905		/*
 906		 * We are unlucky and hit a dangling branch straight away.
 907		 * Now we do not really know where to go to find the needed
 908		 * branch - to the left or to the right. Well, let's try left.
 909		 */
 910		unsure = 1;
 911	} else if (!adding)
 912		unsure = 1; /* Remove a dangling branch wherever it is */
 913
 914	if (cmp == NAME_GREATER || unsure) {
 915		/* Look left */
 916		while (1) {
 917			err = tnc_prev(c, zn, n);
 918			if (err == -ENOENT) {
 919				ubifs_assert(c, *n == 0);
 920				*n = -1;
 921				break;
 922			}
 923			if (err < 0)
 924				return err;
 925			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 926				/* See comments in 'resolve_collision()' */
 927				if (*n == (*zn)->child_cnt - 1) {
 928					err = tnc_next(c, zn, n);
 929					if (err) {
 930						/* Should be impossible */
 931						ubifs_assert(c, 0);
 932						if (err == -ENOENT)
 933							err = -EINVAL;
 934						return err;
 935					}
 936					ubifs_assert(c, *n == 0);
 937					*n = -1;
 938				}
 939				break;
 940			}
 941			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 942			if (err < 0)
 943				return err;
 944			if (err == NAME_MATCHES)
 945				return 1;
 946			if (err == NOT_ON_MEDIA) {
 947				o_znode = *zn;
 948				o_n = *n;
 949				continue;
 950			}
 951			if (!adding)
 952				continue;
 953			if (err == NAME_LESS)
 954				break;
 955			else
 956				unsure = 0;
 957		}
 958	}
 959
 960	if (cmp == NAME_LESS || unsure) {
 961		/* Look right */
 962		*zn = znode;
 963		*n = nn;
 964		while (1) {
 965			err = tnc_next(c, &znode, &nn);
 966			if (err == -ENOENT)
 967				break;
 968			if (err < 0)
 969				return err;
 970			if (keys_cmp(c, &znode->zbranch[nn].key, key))
 971				break;
 972			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 973			if (err < 0)
 974				return err;
 975			if (err == NAME_GREATER)
 976				break;
 977			*zn = znode;
 978			*n = nn;
 979			if (err == NAME_MATCHES)
 980				return 1;
 981			if (err == NOT_ON_MEDIA) {
 982				o_znode = znode;
 983				o_n = nn;
 984			}
 985		}
 986	}
 987
 988	/* Never match a dangling branch when adding */
 989	if (adding || !o_znode)
 990		return 0;
 991
 992	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
 993		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 994		o_znode->zbranch[o_n].len);
 995	*zn = o_znode;
 996	*n = o_n;
 997	return 1;
 998}
 999
1000/**
1001 * matches_position - determine if a zbranch matches a given position.
1002 * @zbr: zbranch of dent
1003 * @lnum: LEB number of dent to match
1004 * @offs: offset of dent to match
1005 *
1006 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1007 */
1008static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1009{
1010	if (zbr->lnum == lnum && zbr->offs == offs)
1011		return 1;
1012	else
1013		return 0;
1014}
1015
1016/**
1017 * resolve_collision_directly - resolve a collision directly.
1018 * @c: UBIFS file-system description object
1019 * @key: key of directory entry
1020 * @zn: znode is passed and returned here
1021 * @n: zbranch number is passed and returned here
1022 * @lnum: LEB number of dent node to match
1023 * @offs: offset of dent node to match
1024 *
1025 * This function is used for "hashed" keys to make sure the found directory or
1026 * extended attribute entry node is what was looked for. It is used when the
1027 * flash address of the right node is known (@lnum:@offs) which makes it much
1028 * easier to resolve collisions (no need to read entries and match full
1029 * names). This function returns %1 and sets @zn and @n if the collision is
1030 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1031 * previous directory entry. Otherwise a negative error code is returned.
1032 */
1033static int resolve_collision_directly(struct ubifs_info *c,
1034				      const union ubifs_key *key,
1035				      struct ubifs_znode **zn, int *n,
1036				      int lnum, int offs)
1037{
1038	struct ubifs_znode *znode;
1039	int nn, err;
1040
1041	znode = *zn;
1042	nn = *n;
1043	if (matches_position(&znode->zbranch[nn], lnum, offs))
1044		return 1;
1045
1046	/* Look left */
1047	while (1) {
1048		err = tnc_prev(c, &znode, &nn);
1049		if (err == -ENOENT)
1050			break;
1051		if (err < 0)
1052			return err;
1053		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1054			break;
1055		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1056			*zn = znode;
1057			*n = nn;
1058			return 1;
1059		}
1060	}
1061
1062	/* Look right */
1063	znode = *zn;
1064	nn = *n;
1065	while (1) {
1066		err = tnc_next(c, &znode, &nn);
1067		if (err == -ENOENT)
1068			return 0;
1069		if (err < 0)
1070			return err;
1071		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1072			return 0;
1073		*zn = znode;
1074		*n = nn;
1075		if (matches_position(&znode->zbranch[nn], lnum, offs))
1076			return 1;
1077	}
1078}
1079
1080/**
1081 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1082 * @c: UBIFS file-system description object
1083 * @znode: znode to dirty
1084 *
1085 * If we do not have a unique key that resides in a znode, then we cannot
1086 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1087 * This function records the path back to the last dirty ancestor, and then
1088 * dirties the znodes on that path.
1089 */
1090static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1091					       struct ubifs_znode *znode)
1092{
1093	struct ubifs_znode *zp;
1094	int *path = c->bottom_up_buf, p = 0;
1095
1096	ubifs_assert(c, c->zroot.znode);
1097	ubifs_assert(c, znode);
1098	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1099		kfree(c->bottom_up_buf);
1100		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1101						 sizeof(int),
1102						 GFP_NOFS);
1103		if (!c->bottom_up_buf)
1104			return ERR_PTR(-ENOMEM);
1105		path = c->bottom_up_buf;
1106	}
1107	if (c->zroot.znode->level) {
1108		/* Go up until parent is dirty */
1109		while (1) {
1110			int n;
1111
1112			zp = znode->parent;
1113			if (!zp)
1114				break;
1115			n = znode->iip;
1116			ubifs_assert(c, p < c->zroot.znode->level);
1117			path[p++] = n;
1118			if (!zp->cnext && ubifs_zn_dirty(znode))
1119				break;
1120			znode = zp;
1121		}
1122	}
1123
1124	/* Come back down, dirtying as we go */
1125	while (1) {
1126		struct ubifs_zbranch *zbr;
1127
1128		zp = znode->parent;
1129		if (zp) {
1130			ubifs_assert(c, path[p - 1] >= 0);
1131			ubifs_assert(c, path[p - 1] < zp->child_cnt);
1132			zbr = &zp->zbranch[path[--p]];
1133			znode = dirty_cow_znode(c, zbr);
1134		} else {
1135			ubifs_assert(c, znode == c->zroot.znode);
1136			znode = dirty_cow_znode(c, &c->zroot);
1137		}
1138		if (IS_ERR(znode) || !p)
1139			break;
1140		ubifs_assert(c, path[p - 1] >= 0);
1141		ubifs_assert(c, path[p - 1] < znode->child_cnt);
1142		znode = znode->zbranch[path[p - 1]].znode;
1143	}
1144
1145	return znode;
1146}
1147
1148/**
1149 * ubifs_lookup_level0 - search for zero-level znode.
1150 * @c: UBIFS file-system description object
1151 * @key:  key to lookup
1152 * @zn: znode is returned here
1153 * @n: znode branch slot number is returned here
1154 *
1155 * This function looks up the TNC tree and search for zero-level znode which
1156 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1157 * cases:
1158 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1159 *     is returned and slot number of the matched branch is stored in @n;
1160 *   o not exact match, which means that zero-level znode does not contain
1161 *     @key, then %0 is returned and slot number of the closest branch or %-1
1162 *     is stored in @n; In this case calling tnc_next() is mandatory.
1163 *   o @key is so small that it is even less than the lowest key of the
1164 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1165 *
1166 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1167 * function reads corresponding indexing nodes and inserts them to TNC. In
1168 * case of failure, a negative error code is returned.
1169 */
1170int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1171			struct ubifs_znode **zn, int *n)
1172{
1173	int err, exact;
1174	struct ubifs_znode *znode;
1175	time64_t time = ktime_get_seconds();
1176
1177	dbg_tnck(key, "search key ");
1178	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1179
1180	znode = c->zroot.znode;
1181	if (unlikely(!znode)) {
1182		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1183		if (IS_ERR(znode))
1184			return PTR_ERR(znode);
1185	}
1186
1187	znode->time = time;
1188
1189	while (1) {
1190		struct ubifs_zbranch *zbr;
1191
1192		exact = ubifs_search_zbranch(c, znode, key, n);
1193
1194		if (znode->level == 0)
1195			break;
1196
1197		if (*n < 0)
1198			*n = 0;
1199		zbr = &znode->zbranch[*n];
1200
1201		if (zbr->znode) {
1202			znode->time = time;
1203			znode = zbr->znode;
1204			continue;
1205		}
1206
1207		/* znode is not in TNC cache, load it from the media */
1208		znode = ubifs_load_znode(c, zbr, znode, *n);
1209		if (IS_ERR(znode))
1210			return PTR_ERR(znode);
1211	}
1212
1213	*zn = znode;
1214	if (exact || !is_hash_key(c, key) || *n != -1) {
1215		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1216		return exact;
1217	}
1218
1219	/*
1220	 * Here is a tricky place. We have not found the key and this is a
1221	 * "hashed" key, which may collide. The rest of the code deals with
1222	 * situations like this:
1223	 *
1224	 *                  | 3 | 5 |
1225	 *                  /       \
1226	 *          | 3 | 5 |      | 6 | 7 | (x)
1227	 *
1228	 * Or more a complex example:
1229	 *
1230	 *                | 1 | 5 |
1231	 *                /       \
1232	 *       | 1 | 3 |         | 5 | 8 |
1233	 *              \           /
1234	 *          | 5 | 5 |   | 6 | 7 | (x)
1235	 *
1236	 * In the examples, if we are looking for key "5", we may reach nodes
1237	 * marked with "(x)". In this case what we have do is to look at the
1238	 * left and see if there is "5" key there. If there is, we have to
1239	 * return it.
1240	 *
1241	 * Note, this whole situation is possible because we allow to have
1242	 * elements which are equivalent to the next key in the parent in the
1243	 * children of current znode. For example, this happens if we split a
1244	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1245	 * like this:
1246	 *                      | 3 | 5 |
1247	 *                       /     \
1248	 *                | 3 | 5 |   | 5 | 6 | 7 |
1249	 *                              ^
1250	 * And this becomes what is at the first "picture" after key "5" marked
1251	 * with "^" is removed. What could be done is we could prohibit
1252	 * splitting in the middle of the colliding sequence. Also, when
1253	 * removing the leftmost key, we would have to correct the key of the
1254	 * parent node, which would introduce additional complications. Namely,
1255	 * if we changed the leftmost key of the parent znode, the garbage
1256	 * collector would be unable to find it (GC is doing this when GC'ing
1257	 * indexing LEBs). Although we already have an additional RB-tree where
1258	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1259	 * after the commit. But anyway, this does not look easy to implement
1260	 * so we did not try this.
1261	 */
1262	err = tnc_prev(c, &znode, n);
1263	if (err == -ENOENT) {
1264		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1265		*n = -1;
1266		return 0;
1267	}
1268	if (unlikely(err < 0))
1269		return err;
1270	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1271		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1272		*n = -1;
1273		return 0;
1274	}
1275
1276	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1277	*zn = znode;
1278	return 1;
1279}
1280
1281/**
1282 * lookup_level0_dirty - search for zero-level znode dirtying.
1283 * @c: UBIFS file-system description object
1284 * @key:  key to lookup
1285 * @zn: znode is returned here
1286 * @n: znode branch slot number is returned here
1287 *
1288 * This function looks up the TNC tree and search for zero-level znode which
1289 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1290 * cases:
1291 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1292 *     is returned and slot number of the matched branch is stored in @n;
1293 *   o not exact match, which means that zero-level znode does not contain @key
1294 *     then %0 is returned and slot number of the closed branch is stored in
1295 *     @n;
1296 *   o @key is so small that it is even less than the lowest key of the
1297 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1298 *
1299 * Additionally all znodes in the path from the root to the located zero-level
1300 * znode are marked as dirty.
1301 *
1302 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1303 * function reads corresponding indexing nodes and inserts them to TNC. In
1304 * case of failure, a negative error code is returned.
1305 */
1306static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1307			       struct ubifs_znode **zn, int *n)
1308{
1309	int err, exact;
1310	struct ubifs_znode *znode;
1311	time64_t time = ktime_get_seconds();
1312
1313	dbg_tnck(key, "search and dirty key ");
1314
1315	znode = c->zroot.znode;
1316	if (unlikely(!znode)) {
1317		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1318		if (IS_ERR(znode))
1319			return PTR_ERR(znode);
1320	}
1321
1322	znode = dirty_cow_znode(c, &c->zroot);
1323	if (IS_ERR(znode))
1324		return PTR_ERR(znode);
1325
1326	znode->time = time;
1327
1328	while (1) {
1329		struct ubifs_zbranch *zbr;
1330
1331		exact = ubifs_search_zbranch(c, znode, key, n);
1332
1333		if (znode->level == 0)
1334			break;
1335
1336		if (*n < 0)
1337			*n = 0;
1338		zbr = &znode->zbranch[*n];
1339
1340		if (zbr->znode) {
1341			znode->time = time;
1342			znode = dirty_cow_znode(c, zbr);
1343			if (IS_ERR(znode))
1344				return PTR_ERR(znode);
1345			continue;
1346		}
1347
1348		/* znode is not in TNC cache, load it from the media */
1349		znode = ubifs_load_znode(c, zbr, znode, *n);
1350		if (IS_ERR(znode))
1351			return PTR_ERR(znode);
1352		znode = dirty_cow_znode(c, zbr);
1353		if (IS_ERR(znode))
1354			return PTR_ERR(znode);
1355	}
1356
1357	*zn = znode;
1358	if (exact || !is_hash_key(c, key) || *n != -1) {
1359		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1360		return exact;
1361	}
1362
1363	/*
1364	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1365	 * code.
1366	 */
1367	err = tnc_prev(c, &znode, n);
1368	if (err == -ENOENT) {
1369		*n = -1;
1370		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1371		return 0;
1372	}
1373	if (unlikely(err < 0))
1374		return err;
1375	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1376		*n = -1;
1377		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1378		return 0;
1379	}
1380
1381	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1382		znode = dirty_cow_bottom_up(c, znode);
1383		if (IS_ERR(znode))
1384			return PTR_ERR(znode);
1385	}
1386
1387	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1388	*zn = znode;
1389	return 1;
1390}
1391
1392/**
1393 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1394 * @c: UBIFS file-system description object
1395 * @lnum: LEB number
1396 * @gc_seq1: garbage collection sequence number
1397 *
1398 * This function determines if @lnum may have been garbage collected since
1399 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1400 * %0 is returned.
1401 */
1402static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1403{
1404	int gc_seq2, gced_lnum;
1405
1406	gced_lnum = c->gced_lnum;
1407	smp_rmb();
1408	gc_seq2 = c->gc_seq;
1409	/* Same seq means no GC */
1410	if (gc_seq1 == gc_seq2)
1411		return 0;
1412	/* Different by more than 1 means we don't know */
1413	if (gc_seq1 + 1 != gc_seq2)
1414		return 1;
1415	/*
1416	 * We have seen the sequence number has increased by 1. Now we need to
1417	 * be sure we read the right LEB number, so read it again.
1418	 */
1419	smp_rmb();
1420	if (gced_lnum != c->gced_lnum)
1421		return 1;
1422	/* Finally we can check lnum */
1423	if (gced_lnum == lnum)
1424		return 1;
1425	return 0;
1426}
1427
1428/**
1429 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1430 * @c: UBIFS file-system description object
1431 * @key: node key to lookup
1432 * @node: the node is returned here
1433 * @lnum: LEB number is returned here
1434 * @offs: offset is returned here
1435 *
1436 * This function looks up and reads node with key @key. The caller has to make
1437 * sure the @node buffer is large enough to fit the node. Returns zero in case
1438 * of success, %-ENOENT if the node was not found, and a negative error code in
1439 * case of failure. The node location can be returned in @lnum and @offs.
1440 */
1441int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1442		     void *node, int *lnum, int *offs)
1443{
1444	int found, n, err, safely = 0, gc_seq1;
1445	struct ubifs_znode *znode;
1446	struct ubifs_zbranch zbr, *zt;
1447
1448again:
1449	mutex_lock(&c->tnc_mutex);
1450	found = ubifs_lookup_level0(c, key, &znode, &n);
1451	if (!found) {
1452		err = -ENOENT;
1453		goto out;
1454	} else if (found < 0) {
1455		err = found;
1456		goto out;
1457	}
1458	zt = &znode->zbranch[n];
1459	if (lnum) {
1460		*lnum = zt->lnum;
1461		*offs = zt->offs;
1462	}
1463	if (is_hash_key(c, key)) {
1464		/*
1465		 * In this case the leaf node cache gets used, so we pass the
1466		 * address of the zbranch and keep the mutex locked
1467		 */
1468		err = tnc_read_hashed_node(c, zt, node);
1469		goto out;
1470	}
1471	if (safely) {
1472		err = ubifs_tnc_read_node(c, zt, node);
1473		goto out;
1474	}
1475	/* Drop the TNC mutex prematurely and race with garbage collection */
1476	zbr = znode->zbranch[n];
1477	gc_seq1 = c->gc_seq;
1478	mutex_unlock(&c->tnc_mutex);
1479
1480	if (ubifs_get_wbuf(c, zbr.lnum)) {
1481		/* We do not GC journal heads */
1482		err = ubifs_tnc_read_node(c, &zbr, node);
1483		return err;
1484	}
1485
1486	err = fallible_read_node(c, key, &zbr, node);
1487	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1488		/*
1489		 * The node may have been GC'ed out from under us so try again
1490		 * while keeping the TNC mutex locked.
1491		 */
1492		safely = 1;
1493		goto again;
1494	}
1495	return 0;
1496
1497out:
1498	mutex_unlock(&c->tnc_mutex);
1499	return err;
1500}
1501
1502/**
1503 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1504 * @c: UBIFS file-system description object
1505 * @bu: bulk-read parameters and results
1506 *
1507 * Lookup consecutive data node keys for the same inode that reside
1508 * consecutively in the same LEB. This function returns zero in case of success
1509 * and a negative error code in case of failure.
1510 *
1511 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1512 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1513 * maximum possible amount of nodes for bulk-read.
1514 */
1515int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1516{
1517	int n, err = 0, lnum = -1, offs;
1518	int len;
1519	unsigned int block = key_block(c, &bu->key);
1520	struct ubifs_znode *znode;
1521
1522	bu->cnt = 0;
1523	bu->blk_cnt = 0;
1524	bu->eof = 0;
1525
1526	mutex_lock(&c->tnc_mutex);
1527	/* Find first key */
1528	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1529	if (err < 0)
1530		goto out;
1531	if (err) {
1532		/* Key found */
1533		len = znode->zbranch[n].len;
1534		/* The buffer must be big enough for at least 1 node */
1535		if (len > bu->buf_len) {
1536			err = -EINVAL;
1537			goto out;
1538		}
1539		/* Add this key */
1540		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1541		bu->blk_cnt += 1;
1542		lnum = znode->zbranch[n].lnum;
1543		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1544	}
1545	while (1) {
1546		struct ubifs_zbranch *zbr;
1547		union ubifs_key *key;
1548		unsigned int next_block;
1549
1550		/* Find next key */
1551		err = tnc_next(c, &znode, &n);
1552		if (err)
1553			goto out;
1554		zbr = &znode->zbranch[n];
1555		key = &zbr->key;
1556		/* See if there is another data key for this file */
1557		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1558		    key_type(c, key) != UBIFS_DATA_KEY) {
1559			err = -ENOENT;
1560			goto out;
1561		}
1562		if (lnum < 0) {
1563			/* First key found */
1564			lnum = zbr->lnum;
1565			offs = ALIGN(zbr->offs + zbr->len, 8);
1566			len = zbr->len;
1567			if (len > bu->buf_len) {
1568				err = -EINVAL;
1569				goto out;
1570			}
1571		} else {
1572			/*
1573			 * The data nodes must be in consecutive positions in
1574			 * the same LEB.
1575			 */
1576			if (zbr->lnum != lnum || zbr->offs != offs)
1577				goto out;
1578			offs += ALIGN(zbr->len, 8);
1579			len = ALIGN(len, 8) + zbr->len;
1580			/* Must not exceed buffer length */
1581			if (len > bu->buf_len)
1582				goto out;
1583		}
1584		/* Allow for holes */
1585		next_block = key_block(c, key);
1586		bu->blk_cnt += (next_block - block - 1);
1587		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1588			goto out;
1589		block = next_block;
1590		/* Add this key */
1591		bu->zbranch[bu->cnt++] = *zbr;
1592		bu->blk_cnt += 1;
1593		/* See if we have room for more */
1594		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1595			goto out;
1596		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1597			goto out;
1598	}
1599out:
1600	if (err == -ENOENT) {
1601		bu->eof = 1;
1602		err = 0;
1603	}
1604	bu->gc_seq = c->gc_seq;
1605	mutex_unlock(&c->tnc_mutex);
1606	if (err)
1607		return err;
1608	/*
1609	 * An enormous hole could cause bulk-read to encompass too many
1610	 * page cache pages, so limit the number here.
1611	 */
1612	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1613		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1614	/*
1615	 * Ensure that bulk-read covers a whole number of page cache
1616	 * pages.
1617	 */
1618	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1619	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1620		return 0;
1621	if (bu->eof) {
1622		/* At the end of file we can round up */
1623		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1624		return 0;
1625	}
1626	/* Exclude data nodes that do not make up a whole page cache page */
1627	block = key_block(c, &bu->key) + bu->blk_cnt;
1628	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1629	while (bu->cnt) {
1630		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1631			break;
1632		bu->cnt -= 1;
1633	}
1634	return 0;
1635}
1636
1637/**
1638 * read_wbuf - bulk-read from a LEB with a wbuf.
1639 * @wbuf: wbuf that may overlap the read
1640 * @buf: buffer into which to read
1641 * @len: read length
1642 * @lnum: LEB number from which to read
1643 * @offs: offset from which to read
1644 *
1645 * This functions returns %0 on success or a negative error code on failure.
1646 */
1647static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1648		     int offs)
1649{
1650	const struct ubifs_info *c = wbuf->c;
1651	int rlen, overlap;
1652
1653	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1654	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1655	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1656	ubifs_assert(c, offs + len <= c->leb_size);
1657
1658	spin_lock(&wbuf->lock);
1659	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1660	if (!overlap) {
1661		/* We may safely unlock the write-buffer and read the data */
1662		spin_unlock(&wbuf->lock);
1663		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1664	}
1665
1666	/* Don't read under wbuf */
1667	rlen = wbuf->offs - offs;
1668	if (rlen < 0)
1669		rlen = 0;
1670
1671	/* Copy the rest from the write-buffer */
1672	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1673	spin_unlock(&wbuf->lock);
1674
1675	if (rlen > 0)
1676		/* Read everything that goes before write-buffer */
1677		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1678
1679	return 0;
1680}
1681
1682/**
1683 * validate_data_node - validate data nodes for bulk-read.
1684 * @c: UBIFS file-system description object
1685 * @buf: buffer containing data node to validate
1686 * @zbr: zbranch of data node to validate
1687 *
1688 * This functions returns %0 on success or a negative error code on failure.
1689 */
1690static int validate_data_node(struct ubifs_info *c, void *buf,
1691			      struct ubifs_zbranch *zbr)
1692{
1693	union ubifs_key key1;
1694	struct ubifs_ch *ch = buf;
1695	int err, len;
1696
1697	if (ch->node_type != UBIFS_DATA_NODE) {
1698		ubifs_err(c, "bad node type (%d but expected %d)",
1699			  ch->node_type, UBIFS_DATA_NODE);
1700		goto out_err;
1701	}
1702
1703	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1704	if (err) {
1705		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1706		goto out;
1707	}
1708
1709	err = ubifs_node_check_hash(c, buf, zbr->hash);
1710	if (err) {
1711		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1712		return err;
1713	}
1714
1715	len = le32_to_cpu(ch->len);
1716	if (len != zbr->len) {
1717		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1718		goto out_err;
1719	}
1720
1721	/* Make sure the key of the read node is correct */
1722	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723	if (!keys_eq(c, &zbr->key, &key1)) {
1724		ubifs_err(c, "bad key in node at LEB %d:%d",
1725			  zbr->lnum, zbr->offs);
1726		dbg_tnck(&zbr->key, "looked for key ");
1727		dbg_tnck(&key1, "found node's key ");
1728		goto out_err;
1729	}
1730
1731	return 0;
1732
1733out_err:
1734	err = -EINVAL;
1735out:
1736	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737	ubifs_dump_node(c, buf);
1738	dump_stack();
1739	return err;
1740}
1741
1742/**
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1746 *
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1750 * failure.
1751 */
1752int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753{
1754	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755	struct ubifs_wbuf *wbuf;
1756	void *buf;
1757
1758	len = bu->zbranch[bu->cnt - 1].offs;
1759	len += bu->zbranch[bu->cnt - 1].len - offs;
1760	if (len > bu->buf_len) {
1761		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1762		return -EINVAL;
1763	}
1764
1765	/* Do the read */
1766	wbuf = ubifs_get_wbuf(c, lnum);
1767	if (wbuf)
1768		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769	else
1770		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771
1772	/* Check for a race with GC */
1773	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774		return -EAGAIN;
1775
1776	if (err && err != -EBADMSG) {
1777		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1778			  lnum, offs, err);
1779		dump_stack();
1780		dbg_tnck(&bu->key, "key ");
1781		return err;
1782	}
1783
1784	/* Validate the nodes read */
1785	buf = bu->buf;
1786	for (i = 0; i < bu->cnt; i++) {
1787		err = validate_data_node(c, buf, &bu->zbranch[i]);
1788		if (err)
1789			return err;
1790		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791	}
1792
1793	return 0;
1794}
1795
1796/**
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1801 * @nm: node name
1802 *
1803 * This function looks up and reads a node which contains name hash in the key.
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1808 */
1809static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810			void *node, const struct fscrypt_name *nm)
1811{
1812	int found, n, err;
1813	struct ubifs_znode *znode;
1814
1815	dbg_tnck(key, "key ");
1816	mutex_lock(&c->tnc_mutex);
1817	found = ubifs_lookup_level0(c, key, &znode, &n);
1818	if (!found) {
1819		err = -ENOENT;
1820		goto out_unlock;
1821	} else if (found < 0) {
1822		err = found;
1823		goto out_unlock;
1824	}
1825
1826	ubifs_assert(c, n >= 0);
1827
1828	err = resolve_collision(c, key, &znode, &n, nm);
1829	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830	if (unlikely(err < 0))
1831		goto out_unlock;
1832	if (err == 0) {
1833		err = -ENOENT;
1834		goto out_unlock;
1835	}
1836
1837	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1838
1839out_unlock:
1840	mutex_unlock(&c->tnc_mutex);
1841	return err;
1842}
1843
1844/**
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1849 * @nm: node name
1850 *
1851 * This function looks up and reads a node which contains name hash in the key.
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1856 */
1857int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858			void *node, const struct fscrypt_name *nm)
1859{
1860	int err, len;
1861	const struct ubifs_dent_node *dent = node;
1862
1863	/*
1864	 * We assume that in most of the cases there are no name collisions and
1865	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866	 */
1867	err = ubifs_tnc_lookup(c, key, node);
1868	if (err)
1869		return err;
1870
1871	len = le16_to_cpu(dent->nlen);
1872	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1873		return 0;
1874
1875	/*
1876	 * Unluckily, there are hash collisions and we have to iterate over
1877	 * them look at each direntry with colliding name hash sequentially.
1878	 */
1879
1880	return do_lookup_nm(c, key, node, nm);
1881}
1882
1883static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1884			    struct ubifs_dent_node *dent, uint32_t cookie,
1885			    struct ubifs_znode **zn, int *n, int exact)
1886{
1887	int err;
1888	struct ubifs_znode *znode = *zn;
1889	struct ubifs_zbranch *zbr;
1890	union ubifs_key *dkey;
1891
1892	if (!exact) {
1893		err = tnc_next(c, &znode, n);
1894		if (err)
1895			return err;
1896	}
1897
1898	for (;;) {
1899		zbr = &znode->zbranch[*n];
1900		dkey = &zbr->key;
1901
1902		if (key_inum(c, dkey) != key_inum(c, key) ||
1903		    key_type(c, dkey) != key_type(c, key)) {
1904			return -ENOENT;
1905		}
1906
1907		err = tnc_read_hashed_node(c, zbr, dent);
1908		if (err)
1909			return err;
1910
1911		if (key_hash(c, key) == key_hash(c, dkey) &&
1912		    le32_to_cpu(dent->cookie) == cookie) {
1913			*zn = znode;
1914			return 0;
1915		}
1916
1917		err = tnc_next(c, &znode, n);
1918		if (err)
1919			return err;
1920	}
1921}
1922
1923static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1924			struct ubifs_dent_node *dent, uint32_t cookie)
1925{
1926	int n, err;
1927	struct ubifs_znode *znode;
1928	union ubifs_key start_key;
1929
1930	ubifs_assert(c, is_hash_key(c, key));
1931
1932	lowest_dent_key(c, &start_key, key_inum(c, key));
1933
1934	mutex_lock(&c->tnc_mutex);
1935	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1936	if (unlikely(err < 0))
1937		goto out_unlock;
1938
1939	err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1940
1941out_unlock:
1942	mutex_unlock(&c->tnc_mutex);
1943	return err;
1944}
1945
1946/**
1947 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1948 * @c: UBIFS file-system description object
1949 * @key: node key to lookup
1950 * @node: the node is returned here
1951 * @cookie: node cookie for collision resolution
1952 *
1953 * This function looks up and reads a node which contains name hash in the key.
1954 * Since the hash may have collisions, there may be many nodes with the same
1955 * key, so we have to sequentially look to all of them until the needed one
1956 * with the same cookie value is found.
1957 * This function returns zero in case of success, %-ENOENT if the node
1958 * was not found, and a negative error code in case of failure.
1959 */
1960int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1961			void *node, uint32_t cookie)
1962{
1963	int err;
1964	const struct ubifs_dent_node *dent = node;
1965
1966	if (!c->double_hash)
1967		return -EOPNOTSUPP;
1968
1969	/*
1970	 * We assume that in most of the cases there are no name collisions and
1971	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1972	 */
1973	err = ubifs_tnc_lookup(c, key, node);
1974	if (err)
1975		return err;
1976
1977	if (le32_to_cpu(dent->cookie) == cookie)
1978		return 0;
1979
1980	/*
1981	 * Unluckily, there are hash collisions and we have to iterate over
1982	 * them look at each direntry with colliding name hash sequentially.
1983	 */
1984	return do_lookup_dh(c, key, node, cookie);
1985}
1986
1987/**
1988 * correct_parent_keys - correct parent znodes' keys.
1989 * @c: UBIFS file-system description object
1990 * @znode: znode to correct parent znodes for
1991 *
1992 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1993 * zbranch changes, keys of parent znodes have to be corrected. This helper
1994 * function is called in such situations and corrects the keys if needed.
1995 */
1996static void correct_parent_keys(const struct ubifs_info *c,
1997				struct ubifs_znode *znode)
1998{
1999	union ubifs_key *key, *key1;
2000
2001	ubifs_assert(c, znode->parent);
2002	ubifs_assert(c, znode->iip == 0);
2003
2004	key = &znode->zbranch[0].key;
2005	key1 = &znode->parent->zbranch[0].key;
2006
2007	while (keys_cmp(c, key, key1) < 0) {
2008		key_copy(c, key, key1);
2009		znode = znode->parent;
2010		znode->alt = 1;
2011		if (!znode->parent || znode->iip)
2012			break;
2013		key1 = &znode->parent->zbranch[0].key;
2014	}
2015}
2016
2017/**
2018 * insert_zbranch - insert a zbranch into a znode.
2019 * @c: UBIFS file-system description object
2020 * @znode: znode into which to insert
2021 * @zbr: zbranch to insert
2022 * @n: slot number to insert to
2023 *
2024 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2025 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2026 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2027 * slot, zbranches starting from @n have to be moved right.
2028 */
2029static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2030			   const struct ubifs_zbranch *zbr, int n)
2031{
2032	int i;
2033
2034	ubifs_assert(c, ubifs_zn_dirty(znode));
2035
2036	if (znode->level) {
2037		for (i = znode->child_cnt; i > n; i--) {
2038			znode->zbranch[i] = znode->zbranch[i - 1];
2039			if (znode->zbranch[i].znode)
2040				znode->zbranch[i].znode->iip = i;
2041		}
2042		if (zbr->znode)
2043			zbr->znode->iip = n;
2044	} else
2045		for (i = znode->child_cnt; i > n; i--)
2046			znode->zbranch[i] = znode->zbranch[i - 1];
2047
2048	znode->zbranch[n] = *zbr;
2049	znode->child_cnt += 1;
2050
2051	/*
2052	 * After inserting at slot zero, the lower bound of the key range of
2053	 * this znode may have changed. If this znode is subsequently split
2054	 * then the upper bound of the key range may change, and furthermore
2055	 * it could change to be lower than the original lower bound. If that
2056	 * happens, then it will no longer be possible to find this znode in the
2057	 * TNC using the key from the index node on flash. That is bad because
2058	 * if it is not found, we will assume it is obsolete and may overwrite
2059	 * it. Then if there is an unclean unmount, we will start using the
2060	 * old index which will be broken.
2061	 *
2062	 * So we first mark znodes that have insertions at slot zero, and then
2063	 * if they are split we add their lnum/offs to the old_idx tree.
2064	 */
2065	if (n == 0)
2066		znode->alt = 1;
2067}
2068
2069/**
2070 * tnc_insert - insert a node into TNC.
2071 * @c: UBIFS file-system description object
2072 * @znode: znode to insert into
2073 * @zbr: branch to insert
2074 * @n: slot number to insert new zbranch to
2075 *
2076 * This function inserts a new node described by @zbr into znode @znode. If
2077 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2078 * are splat as well if needed. Returns zero in case of success or a negative
2079 * error code in case of failure.
2080 */
2081static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2082		      struct ubifs_zbranch *zbr, int n)
2083{
2084	struct ubifs_znode *zn, *zi, *zp;
2085	int i, keep, move, appending = 0;
2086	union ubifs_key *key = &zbr->key, *key1;
2087
2088	ubifs_assert(c, n >= 0 && n <= c->fanout);
2089
2090	/* Implement naive insert for now */
2091again:
2092	zp = znode->parent;
2093	if (znode->child_cnt < c->fanout) {
2094		ubifs_assert(c, n != c->fanout);
2095		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2096
2097		insert_zbranch(c, znode, zbr, n);
2098
2099		/* Ensure parent's key is correct */
2100		if (n == 0 && zp && znode->iip == 0)
2101			correct_parent_keys(c, znode);
2102
2103		return 0;
2104	}
2105
2106	/*
2107	 * Unfortunately, @znode does not have more empty slots and we have to
2108	 * split it.
2109	 */
2110	dbg_tnck(key, "splitting level %d, key ", znode->level);
2111
2112	if (znode->alt)
2113		/*
2114		 * We can no longer be sure of finding this znode by key, so we
2115		 * record it in the old_idx tree.
2116		 */
2117		ins_clr_old_idx_znode(c, znode);
2118
2119	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2120	if (!zn)
2121		return -ENOMEM;
2122	zn->parent = zp;
2123	zn->level = znode->level;
2124
2125	/* Decide where to split */
2126	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2127		/* Try not to split consecutive data keys */
2128		if (n == c->fanout) {
2129			key1 = &znode->zbranch[n - 1].key;
2130			if (key_inum(c, key1) == key_inum(c, key) &&
2131			    key_type(c, key1) == UBIFS_DATA_KEY)
2132				appending = 1;
2133		} else
2134			goto check_split;
2135	} else if (appending && n != c->fanout) {
2136		/* Try not to split consecutive data keys */
2137		appending = 0;
2138check_split:
2139		if (n >= (c->fanout + 1) / 2) {
2140			key1 = &znode->zbranch[0].key;
2141			if (key_inum(c, key1) == key_inum(c, key) &&
2142			    key_type(c, key1) == UBIFS_DATA_KEY) {
2143				key1 = &znode->zbranch[n].key;
2144				if (key_inum(c, key1) != key_inum(c, key) ||
2145				    key_type(c, key1) != UBIFS_DATA_KEY) {
2146					keep = n;
2147					move = c->fanout - keep;
2148					zi = znode;
2149					goto do_split;
2150				}
2151			}
2152		}
2153	}
2154
2155	if (appending) {
2156		keep = c->fanout;
2157		move = 0;
2158	} else {
2159		keep = (c->fanout + 1) / 2;
2160		move = c->fanout - keep;
2161	}
2162
2163	/*
2164	 * Although we don't at present, we could look at the neighbors and see
2165	 * if we can move some zbranches there.
2166	 */
2167
2168	if (n < keep) {
2169		/* Insert into existing znode */
2170		zi = znode;
2171		move += 1;
2172		keep -= 1;
2173	} else {
2174		/* Insert into new znode */
2175		zi = zn;
2176		n -= keep;
2177		/* Re-parent */
2178		if (zn->level != 0)
2179			zbr->znode->parent = zn;
2180	}
2181
2182do_split:
2183
2184	__set_bit(DIRTY_ZNODE, &zn->flags);
2185	atomic_long_inc(&c->dirty_zn_cnt);
2186
2187	zn->child_cnt = move;
2188	znode->child_cnt = keep;
2189
2190	dbg_tnc("moving %d, keeping %d", move, keep);
2191
2192	/* Move zbranch */
2193	for (i = 0; i < move; i++) {
2194		zn->zbranch[i] = znode->zbranch[keep + i];
2195		/* Re-parent */
2196		if (zn->level != 0)
2197			if (zn->zbranch[i].znode) {
2198				zn->zbranch[i].znode->parent = zn;
2199				zn->zbranch[i].znode->iip = i;
2200			}
2201	}
2202
2203	/* Insert new key and branch */
2204	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2205
2206	insert_zbranch(c, zi, zbr, n);
2207
2208	/* Insert new znode (produced by spitting) into the parent */
2209	if (zp) {
2210		if (n == 0 && zi == znode && znode->iip == 0)
2211			correct_parent_keys(c, znode);
2212
2213		/* Locate insertion point */
2214		n = znode->iip + 1;
2215
2216		/* Tail recursion */
2217		zbr->key = zn->zbranch[0].key;
2218		zbr->znode = zn;
2219		zbr->lnum = 0;
2220		zbr->offs = 0;
2221		zbr->len = 0;
2222		znode = zp;
2223
2224		goto again;
2225	}
2226
2227	/* We have to split root znode */
2228	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2229
2230	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2231	if (!zi)
2232		return -ENOMEM;
2233
2234	zi->child_cnt = 2;
2235	zi->level = znode->level + 1;
2236
2237	__set_bit(DIRTY_ZNODE, &zi->flags);
2238	atomic_long_inc(&c->dirty_zn_cnt);
2239
2240	zi->zbranch[0].key = znode->zbranch[0].key;
2241	zi->zbranch[0].znode = znode;
2242	zi->zbranch[0].lnum = c->zroot.lnum;
2243	zi->zbranch[0].offs = c->zroot.offs;
2244	zi->zbranch[0].len = c->zroot.len;
2245	zi->zbranch[1].key = zn->zbranch[0].key;
2246	zi->zbranch[1].znode = zn;
2247
2248	c->zroot.lnum = 0;
2249	c->zroot.offs = 0;
2250	c->zroot.len = 0;
2251	c->zroot.znode = zi;
2252
2253	zn->parent = zi;
2254	zn->iip = 1;
2255	znode->parent = zi;
2256	znode->iip = 0;
2257
2258	return 0;
2259}
2260
2261/**
2262 * ubifs_tnc_add - add a node to TNC.
2263 * @c: UBIFS file-system description object
2264 * @key: key to add
2265 * @lnum: LEB number of node
2266 * @offs: node offset
2267 * @len: node length
2268 * @hash: The hash over the node
2269 *
2270 * This function adds a node with key @key to TNC. The node may be new or it may
2271 * obsolete some existing one. Returns %0 on success or negative error code on
2272 * failure.
2273 */
2274int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2275		  int offs, int len, const u8 *hash)
2276{
2277	int found, n, err = 0;
2278	struct ubifs_znode *znode;
2279
2280	mutex_lock(&c->tnc_mutex);
2281	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2282	found = lookup_level0_dirty(c, key, &znode, &n);
2283	if (!found) {
2284		struct ubifs_zbranch zbr;
2285
2286		zbr.znode = NULL;
2287		zbr.lnum = lnum;
2288		zbr.offs = offs;
2289		zbr.len = len;
2290		ubifs_copy_hash(c, hash, zbr.hash);
2291		key_copy(c, key, &zbr.key);
2292		err = tnc_insert(c, znode, &zbr, n + 1);
2293	} else if (found == 1) {
2294		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2295
2296		lnc_free(zbr);
2297		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2298		zbr->lnum = lnum;
2299		zbr->offs = offs;
2300		zbr->len = len;
2301		ubifs_copy_hash(c, hash, zbr->hash);
2302	} else
2303		err = found;
2304	if (!err)
2305		err = dbg_check_tnc(c, 0);
2306	mutex_unlock(&c->tnc_mutex);
2307
2308	return err;
2309}
2310
2311/**
2312 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2313 * @c: UBIFS file-system description object
2314 * @key: key to add
2315 * @old_lnum: LEB number of old node
2316 * @old_offs: old node offset
2317 * @lnum: LEB number of node
2318 * @offs: node offset
2319 * @len: node length
2320 *
2321 * This function replaces a node with key @key in the TNC only if the old node
2322 * is found.  This function is called by garbage collection when node are moved.
2323 * Returns %0 on success or negative error code on failure.
2324 */
2325int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2326		      int old_lnum, int old_offs, int lnum, int offs, int len)
2327{
2328	int found, n, err = 0;
2329	struct ubifs_znode *znode;
2330
2331	mutex_lock(&c->tnc_mutex);
2332	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2333		 old_offs, lnum, offs, len);
2334	found = lookup_level0_dirty(c, key, &znode, &n);
2335	if (found < 0) {
2336		err = found;
2337		goto out_unlock;
2338	}
2339
2340	if (found == 1) {
2341		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2342
2343		found = 0;
2344		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2345			lnc_free(zbr);
2346			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2347			if (err)
2348				goto out_unlock;
2349			zbr->lnum = lnum;
2350			zbr->offs = offs;
2351			zbr->len = len;
2352			found = 1;
2353		} else if (is_hash_key(c, key)) {
2354			found = resolve_collision_directly(c, key, &znode, &n,
2355							   old_lnum, old_offs);
2356			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2357				found, znode, n, old_lnum, old_offs);
2358			if (found < 0) {
2359				err = found;
2360				goto out_unlock;
2361			}
2362
2363			if (found) {
2364				/* Ensure the znode is dirtied */
2365				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2366					znode = dirty_cow_bottom_up(c, znode);
2367					if (IS_ERR(znode)) {
2368						err = PTR_ERR(znode);
2369						goto out_unlock;
2370					}
2371				}
2372				zbr = &znode->zbranch[n];
2373				lnc_free(zbr);
2374				err = ubifs_add_dirt(c, zbr->lnum,
2375						     zbr->len);
2376				if (err)
2377					goto out_unlock;
2378				zbr->lnum = lnum;
2379				zbr->offs = offs;
2380				zbr->len = len;
2381			}
2382		}
2383	}
2384
2385	if (!found)
2386		err = ubifs_add_dirt(c, lnum, len);
2387
2388	if (!err)
2389		err = dbg_check_tnc(c, 0);
2390
2391out_unlock:
2392	mutex_unlock(&c->tnc_mutex);
2393	return err;
2394}
2395
2396/**
2397 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2398 * @c: UBIFS file-system description object
2399 * @key: key to add
2400 * @lnum: LEB number of node
2401 * @offs: node offset
2402 * @len: node length
2403 * @hash: The hash over the node
2404 * @nm: node name
2405 *
2406 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2407 * may have collisions, like directory entry keys.
2408 */
2409int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2410		     int lnum, int offs, int len, const u8 *hash,
2411		     const struct fscrypt_name *nm)
2412{
2413	int found, n, err = 0;
2414	struct ubifs_znode *znode;
2415
2416	mutex_lock(&c->tnc_mutex);
2417	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2418	found = lookup_level0_dirty(c, key, &znode, &n);
2419	if (found < 0) {
2420		err = found;
2421		goto out_unlock;
2422	}
2423
2424	if (found == 1) {
2425		if (c->replaying)
2426			found = fallible_resolve_collision(c, key, &znode, &n,
2427							   nm, 1);
2428		else
2429			found = resolve_collision(c, key, &znode, &n, nm);
2430		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2431		if (found < 0) {
2432			err = found;
2433			goto out_unlock;
2434		}
2435
2436		/* Ensure the znode is dirtied */
2437		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2438			znode = dirty_cow_bottom_up(c, znode);
2439			if (IS_ERR(znode)) {
2440				err = PTR_ERR(znode);
2441				goto out_unlock;
2442			}
2443		}
2444
2445		if (found == 1) {
2446			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2447
2448			lnc_free(zbr);
2449			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2450			zbr->lnum = lnum;
2451			zbr->offs = offs;
2452			zbr->len = len;
2453			ubifs_copy_hash(c, hash, zbr->hash);
2454			goto out_unlock;
2455		}
2456	}
2457
2458	if (!found) {
2459		struct ubifs_zbranch zbr;
2460
2461		zbr.znode = NULL;
2462		zbr.lnum = lnum;
2463		zbr.offs = offs;
2464		zbr.len = len;
2465		ubifs_copy_hash(c, hash, zbr.hash);
2466		key_copy(c, key, &zbr.key);
2467		err = tnc_insert(c, znode, &zbr, n + 1);
2468		if (err)
2469			goto out_unlock;
2470		if (c->replaying) {
2471			/*
2472			 * We did not find it in the index so there may be a
2473			 * dangling branch still in the index. So we remove it
2474			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2475			 * an unmatchable name.
2476			 */
2477			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2478
2479			err = dbg_check_tnc(c, 0);
2480			mutex_unlock(&c->tnc_mutex);
2481			if (err)
2482				return err;
2483			return ubifs_tnc_remove_nm(c, key, &noname);
2484		}
2485	}
2486
2487out_unlock:
2488	if (!err)
2489		err = dbg_check_tnc(c, 0);
2490	mutex_unlock(&c->tnc_mutex);
2491	return err;
2492}
2493
2494/**
2495 * tnc_delete - delete a znode form TNC.
2496 * @c: UBIFS file-system description object
2497 * @znode: znode to delete from
2498 * @n: zbranch slot number to delete
2499 *
2500 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2501 * case of success and a negative error code in case of failure.
2502 */
2503static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2504{
2505	struct ubifs_zbranch *zbr;
2506	struct ubifs_znode *zp;
2507	int i, err;
2508
2509	/* Delete without merge for now */
2510	ubifs_assert(c, znode->level == 0);
2511	ubifs_assert(c, n >= 0 && n < c->fanout);
2512	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2513
2514	zbr = &znode->zbranch[n];
2515	lnc_free(zbr);
2516
2517	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2518	if (err) {
2519		ubifs_dump_znode(c, znode);
2520		return err;
2521	}
2522
2523	/* We do not "gap" zbranch slots */
2524	for (i = n; i < znode->child_cnt - 1; i++)
2525		znode->zbranch[i] = znode->zbranch[i + 1];
2526	znode->child_cnt -= 1;
2527
2528	if (znode->child_cnt > 0)
2529		return 0;
2530
2531	/*
2532	 * This was the last zbranch, we have to delete this znode from the
2533	 * parent.
2534	 */
2535
2536	do {
2537		ubifs_assert(c, !ubifs_zn_obsolete(znode));
2538		ubifs_assert(c, ubifs_zn_dirty(znode));
2539
2540		zp = znode->parent;
2541		n = znode->iip;
2542
2543		atomic_long_dec(&c->dirty_zn_cnt);
2544
2545		err = insert_old_idx_znode(c, znode);
2546		if (err)
2547			return err;
2548
2549		if (znode->cnext) {
2550			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2551			atomic_long_inc(&c->clean_zn_cnt);
2552			atomic_long_inc(&ubifs_clean_zn_cnt);
2553		} else
2554			kfree(znode);
2555		znode = zp;
2556	} while (znode->child_cnt == 1); /* while removing last child */
2557
2558	/* Remove from znode, entry n - 1 */
2559	znode->child_cnt -= 1;
2560	ubifs_assert(c, znode->level != 0);
2561	for (i = n; i < znode->child_cnt; i++) {
2562		znode->zbranch[i] = znode->zbranch[i + 1];
2563		if (znode->zbranch[i].znode)
2564			znode->zbranch[i].znode->iip = i;
2565	}
2566
2567	/*
2568	 * If this is the root and it has only 1 child then
2569	 * collapse the tree.
2570	 */
2571	if (!znode->parent) {
2572		while (znode->child_cnt == 1 && znode->level != 0) {
2573			zp = znode;
2574			zbr = &znode->zbranch[0];
2575			znode = get_znode(c, znode, 0);
2576			if (IS_ERR(znode))
2577				return PTR_ERR(znode);
2578			znode = dirty_cow_znode(c, zbr);
2579			if (IS_ERR(znode))
2580				return PTR_ERR(znode);
2581			znode->parent = NULL;
2582			znode->iip = 0;
2583			if (c->zroot.len) {
2584				err = insert_old_idx(c, c->zroot.lnum,
2585						     c->zroot.offs);
2586				if (err)
2587					return err;
2588			}
2589			c->zroot.lnum = zbr->lnum;
2590			c->zroot.offs = zbr->offs;
2591			c->zroot.len = zbr->len;
2592			c->zroot.znode = znode;
2593			ubifs_assert(c, !ubifs_zn_obsolete(zp));
2594			ubifs_assert(c, ubifs_zn_dirty(zp));
2595			atomic_long_dec(&c->dirty_zn_cnt);
2596
2597			if (zp->cnext) {
2598				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2599				atomic_long_inc(&c->clean_zn_cnt);
2600				atomic_long_inc(&ubifs_clean_zn_cnt);
2601			} else
2602				kfree(zp);
2603		}
2604	}
2605
2606	return 0;
2607}
2608
2609/**
2610 * ubifs_tnc_remove - remove an index entry of a node.
2611 * @c: UBIFS file-system description object
2612 * @key: key of node
2613 *
2614 * Returns %0 on success or negative error code on failure.
2615 */
2616int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2617{
2618	int found, n, err = 0;
2619	struct ubifs_znode *znode;
2620
2621	mutex_lock(&c->tnc_mutex);
2622	dbg_tnck(key, "key ");
2623	found = lookup_level0_dirty(c, key, &znode, &n);
2624	if (found < 0) {
2625		err = found;
2626		goto out_unlock;
2627	}
2628	if (found == 1)
2629		err = tnc_delete(c, znode, n);
2630	if (!err)
2631		err = dbg_check_tnc(c, 0);
2632
2633out_unlock:
2634	mutex_unlock(&c->tnc_mutex);
2635	return err;
2636}
2637
2638/**
2639 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2640 * @c: UBIFS file-system description object
2641 * @key: key of node
2642 * @nm: directory entry name
2643 *
2644 * Returns %0 on success or negative error code on failure.
2645 */
2646int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2647			const struct fscrypt_name *nm)
2648{
2649	int n, err;
2650	struct ubifs_znode *znode;
2651
2652	mutex_lock(&c->tnc_mutex);
2653	dbg_tnck(key, "key ");
2654	err = lookup_level0_dirty(c, key, &znode, &n);
2655	if (err < 0)
2656		goto out_unlock;
2657
2658	if (err) {
2659		if (c->replaying)
2660			err = fallible_resolve_collision(c, key, &znode, &n,
2661							 nm, 0);
2662		else
2663			err = resolve_collision(c, key, &znode, &n, nm);
2664		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2665		if (err < 0)
2666			goto out_unlock;
2667		if (err) {
2668			/* Ensure the znode is dirtied */
2669			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2670				znode = dirty_cow_bottom_up(c, znode);
2671				if (IS_ERR(znode)) {
2672					err = PTR_ERR(znode);
2673					goto out_unlock;
2674				}
2675			}
2676			err = tnc_delete(c, znode, n);
2677		}
2678	}
2679
2680out_unlock:
2681	if (!err)
2682		err = dbg_check_tnc(c, 0);
2683	mutex_unlock(&c->tnc_mutex);
2684	return err;
2685}
2686
2687/**
2688 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2689 * @c: UBIFS file-system description object
2690 * @key: key of node
2691 * @cookie: node cookie for collision resolution
2692 *
2693 * Returns %0 on success or negative error code on failure.
2694 */
2695int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2696			uint32_t cookie)
2697{
2698	int n, err;
2699	struct ubifs_znode *znode;
2700	struct ubifs_dent_node *dent;
2701	struct ubifs_zbranch *zbr;
2702
2703	if (!c->double_hash)
2704		return -EOPNOTSUPP;
2705
2706	mutex_lock(&c->tnc_mutex);
2707	err = lookup_level0_dirty(c, key, &znode, &n);
2708	if (err <= 0)
2709		goto out_unlock;
2710
2711	zbr = &znode->zbranch[n];
2712	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2713	if (!dent) {
2714		err = -ENOMEM;
2715		goto out_unlock;
2716	}
2717
2718	err = tnc_read_hashed_node(c, zbr, dent);
2719	if (err)
2720		goto out_free;
2721
2722	/* If the cookie does not match, we're facing a hash collision. */
2723	if (le32_to_cpu(dent->cookie) != cookie) {
2724		union ubifs_key start_key;
2725
2726		lowest_dent_key(c, &start_key, key_inum(c, key));
2727
2728		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2729		if (unlikely(err < 0))
2730			goto out_free;
2731
2732		err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2733		if (err)
2734			goto out_free;
2735	}
2736
2737	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2738		znode = dirty_cow_bottom_up(c, znode);
2739		if (IS_ERR(znode)) {
2740			err = PTR_ERR(znode);
2741			goto out_free;
2742		}
2743	}
2744	err = tnc_delete(c, znode, n);
2745
2746out_free:
2747	kfree(dent);
2748out_unlock:
2749	if (!err)
2750		err = dbg_check_tnc(c, 0);
2751	mutex_unlock(&c->tnc_mutex);
2752	return err;
2753}
2754
2755/**
2756 * key_in_range - determine if a key falls within a range of keys.
2757 * @c: UBIFS file-system description object
2758 * @key: key to check
2759 * @from_key: lowest key in range
2760 * @to_key: highest key in range
2761 *
2762 * This function returns %1 if the key is in range and %0 otherwise.
2763 */
2764static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2765			union ubifs_key *from_key, union ubifs_key *to_key)
2766{
2767	if (keys_cmp(c, key, from_key) < 0)
2768		return 0;
2769	if (keys_cmp(c, key, to_key) > 0)
2770		return 0;
2771	return 1;
2772}
2773
2774/**
2775 * ubifs_tnc_remove_range - remove index entries in range.
2776 * @c: UBIFS file-system description object
2777 * @from_key: lowest key to remove
2778 * @to_key: highest key to remove
2779 *
2780 * This function removes index entries starting at @from_key and ending at
2781 * @to_key.  This function returns zero in case of success and a negative error
2782 * code in case of failure.
2783 */
2784int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2785			   union ubifs_key *to_key)
2786{
2787	int i, n, k, err = 0;
2788	struct ubifs_znode *znode;
2789	union ubifs_key *key;
2790
2791	mutex_lock(&c->tnc_mutex);
2792	while (1) {
2793		/* Find first level 0 znode that contains keys to remove */
2794		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2795		if (err < 0)
2796			goto out_unlock;
2797
2798		if (err)
2799			key = from_key;
2800		else {
2801			err = tnc_next(c, &znode, &n);
2802			if (err == -ENOENT) {
2803				err = 0;
2804				goto out_unlock;
2805			}
2806			if (err < 0)
2807				goto out_unlock;
2808			key = &znode->zbranch[n].key;
2809			if (!key_in_range(c, key, from_key, to_key)) {
2810				err = 0;
2811				goto out_unlock;
2812			}
2813		}
2814
2815		/* Ensure the znode is dirtied */
2816		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2817			znode = dirty_cow_bottom_up(c, znode);
2818			if (IS_ERR(znode)) {
2819				err = PTR_ERR(znode);
2820				goto out_unlock;
2821			}
2822		}
2823
2824		/* Remove all keys in range except the first */
2825		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2826			key = &znode->zbranch[i].key;
2827			if (!key_in_range(c, key, from_key, to_key))
2828				break;
2829			lnc_free(&znode->zbranch[i]);
2830			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2831					     znode->zbranch[i].len);
2832			if (err) {
2833				ubifs_dump_znode(c, znode);
2834				goto out_unlock;
2835			}
2836			dbg_tnck(key, "removing key ");
2837		}
2838		if (k) {
2839			for (i = n + 1 + k; i < znode->child_cnt; i++)
2840				znode->zbranch[i - k] = znode->zbranch[i];
2841			znode->child_cnt -= k;
2842		}
2843
2844		/* Now delete the first */
2845		err = tnc_delete(c, znode, n);
2846		if (err)
2847			goto out_unlock;
2848	}
2849
2850out_unlock:
2851	if (!err)
2852		err = dbg_check_tnc(c, 0);
2853	mutex_unlock(&c->tnc_mutex);
2854	return err;
2855}
2856
2857/**
2858 * ubifs_tnc_remove_ino - remove an inode from TNC.
2859 * @c: UBIFS file-system description object
2860 * @inum: inode number to remove
2861 *
2862 * This function remove inode @inum and all the extended attributes associated
2863 * with the anode from TNC and returns zero in case of success or a negative
2864 * error code in case of failure.
2865 */
2866int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2867{
2868	union ubifs_key key1, key2;
2869	struct ubifs_dent_node *xent, *pxent = NULL;
2870	struct fscrypt_name nm = {0};
2871
2872	dbg_tnc("ino %lu", (unsigned long)inum);
2873
2874	/*
2875	 * Walk all extended attribute entries and remove them together with
2876	 * corresponding extended attribute inodes.
2877	 */
2878	lowest_xent_key(c, &key1, inum);
2879	while (1) {
2880		ino_t xattr_inum;
2881		int err;
2882
2883		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2884		if (IS_ERR(xent)) {
2885			err = PTR_ERR(xent);
2886			if (err == -ENOENT)
2887				break;
2888			return err;
2889		}
2890
2891		xattr_inum = le64_to_cpu(xent->inum);
2892		dbg_tnc("xent '%s', ino %lu", xent->name,
2893			(unsigned long)xattr_inum);
2894
2895		ubifs_evict_xattr_inode(c, xattr_inum);
2896
2897		fname_name(&nm) = xent->name;
2898		fname_len(&nm) = le16_to_cpu(xent->nlen);
2899		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2900		if (err) {
2901			kfree(xent);
2902			return err;
2903		}
2904
2905		lowest_ino_key(c, &key1, xattr_inum);
2906		highest_ino_key(c, &key2, xattr_inum);
2907		err = ubifs_tnc_remove_range(c, &key1, &key2);
2908		if (err) {
2909			kfree(xent);
2910			return err;
2911		}
2912
2913		kfree(pxent);
2914		pxent = xent;
2915		key_read(c, &xent->key, &key1);
2916	}
2917
2918	kfree(pxent);
2919	lowest_ino_key(c, &key1, inum);
2920	highest_ino_key(c, &key2, inum);
2921
2922	return ubifs_tnc_remove_range(c, &key1, &key2);
2923}
2924
2925/**
2926 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2927 * @c: UBIFS file-system description object
2928 * @key: key of last entry
2929 * @nm: name of last entry found or %NULL
2930 *
2931 * This function finds and reads the next directory or extended attribute entry
2932 * after the given key (@key) if there is one. @nm is used to resolve
2933 * collisions.
2934 *
2935 * If the name of the current entry is not known and only the key is known,
2936 * @nm->name has to be %NULL. In this case the semantics of this function is a
2937 * little bit different and it returns the entry corresponding to this key, not
2938 * the next one. If the key was not found, the closest "right" entry is
2939 * returned.
2940 *
2941 * If the fist entry has to be found, @key has to contain the lowest possible
2942 * key value for this inode and @name has to be %NULL.
2943 *
2944 * This function returns the found directory or extended attribute entry node
2945 * in case of success, %-ENOENT is returned if no entry was found, and a
2946 * negative error code is returned in case of failure.
2947 */
2948struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2949					   union ubifs_key *key,
2950					   const struct fscrypt_name *nm)
2951{
2952	int n, err, type = key_type(c, key);
2953	struct ubifs_znode *znode;
2954	struct ubifs_dent_node *dent;
2955	struct ubifs_zbranch *zbr;
2956	union ubifs_key *dkey;
2957
2958	dbg_tnck(key, "key ");
2959	ubifs_assert(c, is_hash_key(c, key));
2960
2961	mutex_lock(&c->tnc_mutex);
2962	err = ubifs_lookup_level0(c, key, &znode, &n);
2963	if (unlikely(err < 0))
2964		goto out_unlock;
2965
2966	if (fname_len(nm) > 0) {
2967		if (err) {
2968			/* Handle collisions */
2969			if (c->replaying)
2970				err = fallible_resolve_collision(c, key, &znode, &n,
2971							 nm, 0);
2972			else
2973				err = resolve_collision(c, key, &znode, &n, nm);
2974			dbg_tnc("rc returned %d, znode %p, n %d",
2975				err, znode, n);
2976			if (unlikely(err < 0))
2977				goto out_unlock;
2978		}
2979
2980		/* Now find next entry */
2981		err = tnc_next(c, &znode, &n);
2982		if (unlikely(err))
2983			goto out_unlock;
2984	} else {
2985		/*
2986		 * The full name of the entry was not given, in which case the
2987		 * behavior of this function is a little different and it
2988		 * returns current entry, not the next one.
2989		 */
2990		if (!err) {
2991			/*
2992			 * However, the given key does not exist in the TNC
2993			 * tree and @znode/@n variables contain the closest
2994			 * "preceding" element. Switch to the next one.
2995			 */
2996			err = tnc_next(c, &znode, &n);
2997			if (err)
2998				goto out_unlock;
2999		}
3000	}
3001
3002	zbr = &znode->zbranch[n];
3003	dent = kmalloc(zbr->len, GFP_NOFS);
3004	if (unlikely(!dent)) {
3005		err = -ENOMEM;
3006		goto out_unlock;
3007	}
3008
3009	/*
3010	 * The above 'tnc_next()' call could lead us to the next inode, check
3011	 * this.
3012	 */
3013	dkey = &zbr->key;
3014	if (key_inum(c, dkey) != key_inum(c, key) ||
3015	    key_type(c, dkey) != type) {
3016		err = -ENOENT;
3017		goto out_free;
3018	}
3019
3020	err = tnc_read_hashed_node(c, zbr, dent);
3021	if (unlikely(err))
3022		goto out_free;
3023
3024	mutex_unlock(&c->tnc_mutex);
3025	return dent;
3026
3027out_free:
3028	kfree(dent);
3029out_unlock:
3030	mutex_unlock(&c->tnc_mutex);
3031	return ERR_PTR(err);
3032}
3033
3034/**
3035 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3036 * @c: UBIFS file-system description object
3037 *
3038 * Destroy left-over obsolete znodes from a failed commit.
3039 */
3040static void tnc_destroy_cnext(struct ubifs_info *c)
3041{
3042	struct ubifs_znode *cnext;
3043
3044	if (!c->cnext)
3045		return;
3046	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3047	cnext = c->cnext;
3048	do {
3049		struct ubifs_znode *znode = cnext;
3050
3051		cnext = cnext->cnext;
3052		if (ubifs_zn_obsolete(znode))
3053			kfree(znode);
3054	} while (cnext && cnext != c->cnext);
3055}
3056
3057/**
3058 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3059 * @c: UBIFS file-system description object
3060 */
3061void ubifs_tnc_close(struct ubifs_info *c)
3062{
3063	tnc_destroy_cnext(c);
3064	if (c->zroot.znode) {
3065		long n, freed;
3066
3067		n = atomic_long_read(&c->clean_zn_cnt);
3068		freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3069		ubifs_assert(c, freed == n);
3070		atomic_long_sub(n, &ubifs_clean_zn_cnt);
3071	}
3072	kfree(c->gap_lebs);
3073	kfree(c->ilebs);
3074	destroy_old_idx(c);
3075}
3076
3077/**
3078 * left_znode - get the znode to the left.
3079 * @c: UBIFS file-system description object
3080 * @znode: znode
3081 *
3082 * This function returns a pointer to the znode to the left of @znode or NULL if
3083 * there is not one. A negative error code is returned on failure.
3084 */
3085static struct ubifs_znode *left_znode(struct ubifs_info *c,
3086				      struct ubifs_znode *znode)
3087{
3088	int level = znode->level;
3089
3090	while (1) {
3091		int n = znode->iip - 1;
3092
3093		/* Go up until we can go left */
3094		znode = znode->parent;
3095		if (!znode)
3096			return NULL;
3097		if (n >= 0) {
3098			/* Now go down the rightmost branch to 'level' */
3099			znode = get_znode(c, znode, n);
3100			if (IS_ERR(znode))
3101				return znode;
3102			while (znode->level != level) {
3103				n = znode->child_cnt - 1;
3104				znode = get_znode(c, znode, n);
3105				if (IS_ERR(znode))
3106					return znode;
3107			}
3108			break;
3109		}
3110	}
3111	return znode;
3112}
3113
3114/**
3115 * right_znode - get the znode to the right.
3116 * @c: UBIFS file-system description object
3117 * @znode: znode
3118 *
3119 * This function returns a pointer to the znode to the right of @znode or NULL
3120 * if there is not one. A negative error code is returned on failure.
3121 */
3122static struct ubifs_znode *right_znode(struct ubifs_info *c,
3123				       struct ubifs_znode *znode)
3124{
3125	int level = znode->level;
3126
3127	while (1) {
3128		int n = znode->iip + 1;
3129
3130		/* Go up until we can go right */
3131		znode = znode->parent;
3132		if (!znode)
3133			return NULL;
3134		if (n < znode->child_cnt) {
3135			/* Now go down the leftmost branch to 'level' */
3136			znode = get_znode(c, znode, n);
3137			if (IS_ERR(znode))
3138				return znode;
3139			while (znode->level != level) {
3140				znode = get_znode(c, znode, 0);
3141				if (IS_ERR(znode))
3142					return znode;
3143			}
3144			break;
3145		}
3146	}
3147	return znode;
3148}
3149
3150/**
3151 * lookup_znode - find a particular indexing node from TNC.
3152 * @c: UBIFS file-system description object
3153 * @key: index node key to lookup
3154 * @level: index node level
3155 * @lnum: index node LEB number
3156 * @offs: index node offset
3157 *
3158 * This function searches an indexing node by its first key @key and its
3159 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3160 * nodes it traverses to TNC. This function is called for indexing nodes which
3161 * were found on the media by scanning, for example when garbage-collecting or
3162 * when doing in-the-gaps commit. This means that the indexing node which is
3163 * looked for does not have to have exactly the same leftmost key @key, because
3164 * the leftmost key may have been changed, in which case TNC will contain a
3165 * dirty znode which still refers the same @lnum:@offs. This function is clever
3166 * enough to recognize such indexing nodes.
3167 *
3168 * Note, if a znode was deleted or changed too much, then this function will
3169 * not find it. For situations like this UBIFS has the old index RB-tree
3170 * (indexed by @lnum:@offs).
3171 *
3172 * This function returns a pointer to the znode found or %NULL if it is not
3173 * found. A negative error code is returned on failure.
3174 */
3175static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3176					union ubifs_key *key, int level,
3177					int lnum, int offs)
3178{
3179	struct ubifs_znode *znode, *zn;
3180	int n, nn;
3181
3182	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3183
3184	/*
3185	 * The arguments have probably been read off flash, so don't assume
3186	 * they are valid.
3187	 */
3188	if (level < 0)
3189		return ERR_PTR(-EINVAL);
3190
3191	/* Get the root znode */
3192	znode = c->zroot.znode;
3193	if (!znode) {
3194		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3195		if (IS_ERR(znode))
3196			return znode;
3197	}
3198	/* Check if it is the one we are looking for */
3199	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3200		return znode;
3201	/* Descend to the parent level i.e. (level + 1) */
3202	if (level >= znode->level)
3203		return NULL;
3204	while (1) {
3205		ubifs_search_zbranch(c, znode, key, &n);
3206		if (n < 0) {
3207			/*
3208			 * We reached a znode where the leftmost key is greater
3209			 * than the key we are searching for. This is the same
3210			 * situation as the one described in a huge comment at
3211			 * the end of the 'ubifs_lookup_level0()' function. And
3212			 * for exactly the same reasons we have to try to look
3213			 * left before giving up.
3214			 */
3215			znode = left_znode(c, znode);
3216			if (!znode)
3217				return NULL;
3218			if (IS_ERR(znode))
3219				return znode;
3220			ubifs_search_zbranch(c, znode, key, &n);
3221			ubifs_assert(c, n >= 0);
3222		}
3223		if (znode->level == level + 1)
3224			break;
3225		znode = get_znode(c, znode, n);
3226		if (IS_ERR(znode))
3227			return znode;
3228	}
3229	/* Check if the child is the one we are looking for */
3230	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3231		return get_znode(c, znode, n);
3232	/* If the key is unique, there is nowhere else to look */
3233	if (!is_hash_key(c, key))
3234		return NULL;
3235	/*
3236	 * The key is not unique and so may be also in the znodes to either
3237	 * side.
3238	 */
3239	zn = znode;
3240	nn = n;
3241	/* Look left */
3242	while (1) {
3243		/* Move one branch to the left */
3244		if (n)
3245			n -= 1;
3246		else {
3247			znode = left_znode(c, znode);
3248			if (!znode)
3249				break;
3250			if (IS_ERR(znode))
3251				return znode;
3252			n = znode->child_cnt - 1;
3253		}
3254		/* Check it */
3255		if (znode->zbranch[n].lnum == lnum &&
3256		    znode->zbranch[n].offs == offs)
3257			return get_znode(c, znode, n);
3258		/* Stop if the key is less than the one we are looking for */
3259		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3260			break;
3261	}
3262	/* Back to the middle */
3263	znode = zn;
3264	n = nn;
3265	/* Look right */
3266	while (1) {
3267		/* Move one branch to the right */
3268		if (++n >= znode->child_cnt) {
3269			znode = right_znode(c, znode);
3270			if (!znode)
3271				break;
3272			if (IS_ERR(znode))
3273				return znode;
3274			n = 0;
3275		}
3276		/* Check it */
3277		if (znode->zbranch[n].lnum == lnum &&
3278		    znode->zbranch[n].offs == offs)
3279			return get_znode(c, znode, n);
3280		/* Stop if the key is greater than the one we are looking for */
3281		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3282			break;
3283	}
3284	return NULL;
3285}
3286
3287/**
3288 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3289 * @c: UBIFS file-system description object
3290 * @key: key of index node
3291 * @level: index node level
3292 * @lnum: LEB number of index node
3293 * @offs: offset of index node
3294 *
3295 * This function returns %0 if the index node is not referred to in the TNC, %1
3296 * if the index node is referred to in the TNC and the corresponding znode is
3297 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3298 * znode is clean, and a negative error code in case of failure.
3299 *
3300 * Note, the @key argument has to be the key of the first child. Also note,
3301 * this function relies on the fact that 0:0 is never a valid LEB number and
3302 * offset for a main-area node.
3303 */
3304int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3305		       int lnum, int offs)
3306{
3307	struct ubifs_znode *znode;
3308
3309	znode = lookup_znode(c, key, level, lnum, offs);
3310	if (!znode)
3311		return 0;
3312	if (IS_ERR(znode))
3313		return PTR_ERR(znode);
3314
3315	return ubifs_zn_dirty(znode) ? 1 : 2;
3316}
3317
3318/**
3319 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3320 * @c: UBIFS file-system description object
3321 * @key: node key
3322 * @lnum: node LEB number
3323 * @offs: node offset
3324 *
3325 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3326 * not, and a negative error code in case of failure.
3327 *
3328 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3329 * and offset for a main-area node.
3330 */
3331static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3332			       int lnum, int offs)
3333{
3334	struct ubifs_zbranch *zbr;
3335	struct ubifs_znode *znode, *zn;
3336	int n, found, err, nn;
3337	const int unique = !is_hash_key(c, key);
3338
3339	found = ubifs_lookup_level0(c, key, &znode, &n);
3340	if (found < 0)
3341		return found; /* Error code */
3342	if (!found)
3343		return 0;
3344	zbr = &znode->zbranch[n];
3345	if (lnum == zbr->lnum && offs == zbr->offs)
3346		return 1; /* Found it */
3347	if (unique)
3348		return 0;
3349	/*
3350	 * Because the key is not unique, we have to look left
3351	 * and right as well
3352	 */
3353	zn = znode;
3354	nn = n;
3355	/* Look left */
3356	while (1) {
3357		err = tnc_prev(c, &znode, &n);
3358		if (err == -ENOENT)
3359			break;
3360		if (err)
3361			return err;
3362		if (keys_cmp(c, key, &znode->zbranch[n].key))
3363			break;
3364		zbr = &znode->zbranch[n];
3365		if (lnum == zbr->lnum && offs == zbr->offs)
3366			return 1; /* Found it */
3367	}
3368	/* Look right */
3369	znode = zn;
3370	n = nn;
3371	while (1) {
3372		err = tnc_next(c, &znode, &n);
3373		if (err) {
3374			if (err == -ENOENT)
3375				return 0;
3376			return err;
3377		}
3378		if (keys_cmp(c, key, &znode->zbranch[n].key))
3379			break;
3380		zbr = &znode->zbranch[n];
3381		if (lnum == zbr->lnum && offs == zbr->offs)
3382			return 1; /* Found it */
3383	}
3384	return 0;
3385}
3386
3387/**
3388 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3389 * @c: UBIFS file-system description object
3390 * @key: node key
3391 * @level: index node level (if it is an index node)
3392 * @lnum: node LEB number
3393 * @offs: node offset
3394 * @is_idx: non-zero if the node is an index node
3395 *
3396 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3397 * negative error code in case of failure. For index nodes, @key has to be the
3398 * key of the first child. An index node is considered to be in the TNC only if
3399 * the corresponding znode is clean or has not been loaded.
3400 */
3401int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3402		       int lnum, int offs, int is_idx)
3403{
3404	int err;
3405
3406	mutex_lock(&c->tnc_mutex);
3407	if (is_idx) {
3408		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3409		if (err < 0)
3410			goto out_unlock;
3411		if (err == 1)
3412			/* The index node was found but it was dirty */
3413			err = 0;
3414		else if (err == 2)
3415			/* The index node was found and it was clean */
3416			err = 1;
3417		else
3418			BUG_ON(err != 0);
3419	} else
3420		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3421
3422out_unlock:
3423	mutex_unlock(&c->tnc_mutex);
3424	return err;
3425}
3426
3427/**
3428 * ubifs_dirty_idx_node - dirty an index node.
3429 * @c: UBIFS file-system description object
3430 * @key: index node key
3431 * @level: index node level
3432 * @lnum: index node LEB number
3433 * @offs: index node offset
3434 *
3435 * This function loads and dirties an index node so that it can be garbage
3436 * collected. The @key argument has to be the key of the first child. This
3437 * function relies on the fact that 0:0 is never a valid LEB number and offset
3438 * for a main-area node. Returns %0 on success and a negative error code on
3439 * failure.
3440 */
3441int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3442			 int lnum, int offs)
3443{
3444	struct ubifs_znode *znode;
3445	int err = 0;
3446
3447	mutex_lock(&c->tnc_mutex);
3448	znode = lookup_znode(c, key, level, lnum, offs);
3449	if (!znode)
3450		goto out_unlock;
3451	if (IS_ERR(znode)) {
3452		err = PTR_ERR(znode);
3453		goto out_unlock;
3454	}
3455	znode = dirty_cow_bottom_up(c, znode);
3456	if (IS_ERR(znode)) {
3457		err = PTR_ERR(znode);
3458		goto out_unlock;
3459	}
3460
3461out_unlock:
3462	mutex_unlock(&c->tnc_mutex);
3463	return err;
3464}
3465
3466/**
3467 * dbg_check_inode_size - check if inode size is correct.
3468 * @c: UBIFS file-system description object
3469 * @inum: inode number
3470 * @size: inode size
3471 *
3472 * This function makes sure that the inode size (@size) is correct and it does
3473 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3474 * if it has a data page beyond @size, and other negative error code in case of
3475 * other errors.
3476 */
3477int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3478			 loff_t size)
3479{
3480	int err, n;
3481	union ubifs_key from_key, to_key, *key;
3482	struct ubifs_znode *znode;
3483	unsigned int block;
3484
3485	if (!S_ISREG(inode->i_mode))
3486		return 0;
3487	if (!dbg_is_chk_gen(c))
3488		return 0;
3489
3490	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3491	data_key_init(c, &from_key, inode->i_ino, block);
3492	highest_data_key(c, &to_key, inode->i_ino);
3493
3494	mutex_lock(&c->tnc_mutex);
3495	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3496	if (err < 0)
3497		goto out_unlock;
3498
3499	if (err) {
3500		key = &from_key;
3501		goto out_dump;
3502	}
3503
3504	err = tnc_next(c, &znode, &n);
3505	if (err == -ENOENT) {
3506		err = 0;
3507		goto out_unlock;
3508	}
3509	if (err < 0)
3510		goto out_unlock;
3511
3512	ubifs_assert(c, err == 0);
3513	key = &znode->zbranch[n].key;
3514	if (!key_in_range(c, key, &from_key, &to_key))
3515		goto out_unlock;
3516
3517out_dump:
3518	block = key_block(c, key);
3519	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3520		  (unsigned long)inode->i_ino, size,
3521		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3522	mutex_unlock(&c->tnc_mutex);
3523	ubifs_dump_inode(c, inode);
3524	dump_stack();
3525	return -EINVAL;
3526
3527out_unlock:
3528	mutex_unlock(&c->tnc_mutex);
3529	return err;
3530}