Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/kernfs/file.c - kernfs file implementation
   4 *
   5 * Copyright (c) 2001-3 Patrick Mochel
   6 * Copyright (c) 2007 SUSE Linux Products GmbH
   7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   8 */
   9
  10#include <linux/fs.h>
  11#include <linux/seq_file.h>
  12#include <linux/slab.h>
  13#include <linux/poll.h>
  14#include <linux/pagemap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/fsnotify.h>
  17
  18#include "kernfs-internal.h"
  19
  20/*
  21 * There's one kernfs_open_file for each open file and one kernfs_open_node
  22 * for each kernfs_node with one or more open files.
  23 *
  24 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
  25 * protected by kernfs_open_node_lock.
  26 *
  27 * filp->private_data points to seq_file whose ->private points to
  28 * kernfs_open_file.  kernfs_open_files are chained at
  29 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
  30 */
  31static DEFINE_SPINLOCK(kernfs_open_node_lock);
  32static DEFINE_MUTEX(kernfs_open_file_mutex);
  33
  34struct kernfs_open_node {
  35	atomic_t		refcnt;
  36	atomic_t		event;
  37	wait_queue_head_t	poll;
  38	struct list_head	files; /* goes through kernfs_open_file.list */
  39};
  40
  41/*
  42 * kernfs_notify() may be called from any context and bounces notifications
  43 * through a work item.  To minimize space overhead in kernfs_node, the
  44 * pending queue is implemented as a singly linked list of kernfs_nodes.
  45 * The list is terminated with the self pointer so that whether a
  46 * kernfs_node is on the list or not can be determined by testing the next
  47 * pointer for NULL.
  48 */
  49#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
  50
  51static DEFINE_SPINLOCK(kernfs_notify_lock);
  52static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
  53
  54static struct kernfs_open_file *kernfs_of(struct file *file)
  55{
  56	return ((struct seq_file *)file->private_data)->private;
  57}
  58
  59/*
  60 * Determine the kernfs_ops for the given kernfs_node.  This function must
  61 * be called while holding an active reference.
  62 */
  63static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
  64{
  65	if (kn->flags & KERNFS_LOCKDEP)
  66		lockdep_assert_held(kn);
  67	return kn->attr.ops;
  68}
  69
  70/*
  71 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
  72 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
  73 * a seq_file iteration which is fully initialized with an active reference
  74 * or an aborted kernfs_seq_start() due to get_active failure.  The
  75 * position pointer is the only context for each seq_file iteration and
  76 * thus the stop condition should be encoded in it.  As the return value is
  77 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
  78 * choice to indicate get_active failure.
  79 *
  80 * Unfortunately, this is complicated due to the optional custom seq_file
  81 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
  82 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
  83 * custom seq_file operations and thus can't decide whether put_active
  84 * should be performed or not only on ERR_PTR(-ENODEV).
  85 *
  86 * This is worked around by factoring out the custom seq_stop() and
  87 * put_active part into kernfs_seq_stop_active(), skipping it from
  88 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
  89 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
  90 * that kernfs_seq_stop_active() is skipped only after get_active failure.
  91 */
  92static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
  93{
  94	struct kernfs_open_file *of = sf->private;
  95	const struct kernfs_ops *ops = kernfs_ops(of->kn);
  96
  97	if (ops->seq_stop)
  98		ops->seq_stop(sf, v);
  99	kernfs_put_active(of->kn);
 100}
 101
 102static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 103{
 104	struct kernfs_open_file *of = sf->private;
 105	const struct kernfs_ops *ops;
 106
 107	/*
 108	 * @of->mutex nests outside active ref and is primarily to ensure that
 109	 * the ops aren't called concurrently for the same open file.
 110	 */
 111	mutex_lock(&of->mutex);
 112	if (!kernfs_get_active(of->kn))
 113		return ERR_PTR(-ENODEV);
 114
 115	ops = kernfs_ops(of->kn);
 116	if (ops->seq_start) {
 117		void *next = ops->seq_start(sf, ppos);
 118		/* see the comment above kernfs_seq_stop_active() */
 119		if (next == ERR_PTR(-ENODEV))
 120			kernfs_seq_stop_active(sf, next);
 121		return next;
 122	} else {
 123		/*
 124		 * The same behavior and code as single_open().  Returns
 125		 * !NULL if pos is at the beginning; otherwise, NULL.
 126		 */
 127		return NULL + !*ppos;
 128	}
 129}
 130
 131static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
 132{
 133	struct kernfs_open_file *of = sf->private;
 134	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 135
 136	if (ops->seq_next) {
 137		void *next = ops->seq_next(sf, v, ppos);
 138		/* see the comment above kernfs_seq_stop_active() */
 139		if (next == ERR_PTR(-ENODEV))
 140			kernfs_seq_stop_active(sf, next);
 141		return next;
 142	} else {
 143		/*
 144		 * The same behavior and code as single_open(), always
 145		 * terminate after the initial read.
 146		 */
 147		++*ppos;
 148		return NULL;
 149	}
 150}
 151
 152static void kernfs_seq_stop(struct seq_file *sf, void *v)
 153{
 154	struct kernfs_open_file *of = sf->private;
 155
 156	if (v != ERR_PTR(-ENODEV))
 157		kernfs_seq_stop_active(sf, v);
 158	mutex_unlock(&of->mutex);
 159}
 160
 161static int kernfs_seq_show(struct seq_file *sf, void *v)
 162{
 163	struct kernfs_open_file *of = sf->private;
 164
 165	of->event = atomic_read(&of->kn->attr.open->event);
 166
 167	return of->kn->attr.ops->seq_show(sf, v);
 168}
 169
 170static const struct seq_operations kernfs_seq_ops = {
 171	.start = kernfs_seq_start,
 172	.next = kernfs_seq_next,
 173	.stop = kernfs_seq_stop,
 174	.show = kernfs_seq_show,
 175};
 176
 177/*
 178 * As reading a bin file can have side-effects, the exact offset and bytes
 179 * specified in read(2) call should be passed to the read callback making
 180 * it difficult to use seq_file.  Implement simplistic custom buffering for
 181 * bin files.
 182 */
 183static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
 184				       char __user *user_buf, size_t count,
 185				       loff_t *ppos)
 186{
 187	ssize_t len = min_t(size_t, count, PAGE_SIZE);
 188	const struct kernfs_ops *ops;
 189	char *buf;
 190
 191	buf = of->prealloc_buf;
 192	if (buf)
 193		mutex_lock(&of->prealloc_mutex);
 194	else
 195		buf = kmalloc(len, GFP_KERNEL);
 196	if (!buf)
 197		return -ENOMEM;
 198
 199	/*
 200	 * @of->mutex nests outside active ref and is used both to ensure that
 201	 * the ops aren't called concurrently for the same open file.
 202	 */
 203	mutex_lock(&of->mutex);
 204	if (!kernfs_get_active(of->kn)) {
 205		len = -ENODEV;
 206		mutex_unlock(&of->mutex);
 207		goto out_free;
 208	}
 209
 210	of->event = atomic_read(&of->kn->attr.open->event);
 211	ops = kernfs_ops(of->kn);
 212	if (ops->read)
 213		len = ops->read(of, buf, len, *ppos);
 214	else
 215		len = -EINVAL;
 216
 217	kernfs_put_active(of->kn);
 218	mutex_unlock(&of->mutex);
 219
 220	if (len < 0)
 221		goto out_free;
 222
 223	if (copy_to_user(user_buf, buf, len)) {
 224		len = -EFAULT;
 225		goto out_free;
 226	}
 227
 228	*ppos += len;
 229
 230 out_free:
 231	if (buf == of->prealloc_buf)
 232		mutex_unlock(&of->prealloc_mutex);
 233	else
 234		kfree(buf);
 235	return len;
 236}
 237
 238/**
 239 * kernfs_fop_read - kernfs vfs read callback
 240 * @file: file pointer
 241 * @user_buf: data to write
 242 * @count: number of bytes
 243 * @ppos: starting offset
 244 */
 245static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
 246			       size_t count, loff_t *ppos)
 247{
 248	struct kernfs_open_file *of = kernfs_of(file);
 249
 250	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
 251		return seq_read(file, user_buf, count, ppos);
 252	else
 253		return kernfs_file_direct_read(of, user_buf, count, ppos);
 254}
 255
 256/**
 257 * kernfs_fop_write - kernfs vfs write callback
 258 * @file: file pointer
 259 * @user_buf: data to write
 260 * @count: number of bytes
 261 * @ppos: starting offset
 262 *
 263 * Copy data in from userland and pass it to the matching kernfs write
 264 * operation.
 265 *
 266 * There is no easy way for us to know if userspace is only doing a partial
 267 * write, so we don't support them. We expect the entire buffer to come on
 268 * the first write.  Hint: if you're writing a value, first read the file,
 269 * modify only the the value you're changing, then write entire buffer
 270 * back.
 271 */
 272static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
 273				size_t count, loff_t *ppos)
 274{
 275	struct kernfs_open_file *of = kernfs_of(file);
 276	const struct kernfs_ops *ops;
 277	ssize_t len;
 278	char *buf;
 279
 280	if (of->atomic_write_len) {
 281		len = count;
 282		if (len > of->atomic_write_len)
 283			return -E2BIG;
 284	} else {
 285		len = min_t(size_t, count, PAGE_SIZE);
 286	}
 287
 288	buf = of->prealloc_buf;
 289	if (buf)
 290		mutex_lock(&of->prealloc_mutex);
 291	else
 292		buf = kmalloc(len + 1, GFP_KERNEL);
 293	if (!buf)
 294		return -ENOMEM;
 295
 296	if (copy_from_user(buf, user_buf, len)) {
 297		len = -EFAULT;
 298		goto out_free;
 299	}
 300	buf[len] = '\0';	/* guarantee string termination */
 301
 302	/*
 303	 * @of->mutex nests outside active ref and is used both to ensure that
 304	 * the ops aren't called concurrently for the same open file.
 305	 */
 306	mutex_lock(&of->mutex);
 307	if (!kernfs_get_active(of->kn)) {
 308		mutex_unlock(&of->mutex);
 309		len = -ENODEV;
 310		goto out_free;
 311	}
 312
 313	ops = kernfs_ops(of->kn);
 314	if (ops->write)
 315		len = ops->write(of, buf, len, *ppos);
 316	else
 317		len = -EINVAL;
 318
 319	kernfs_put_active(of->kn);
 320	mutex_unlock(&of->mutex);
 321
 322	if (len > 0)
 323		*ppos += len;
 324
 325out_free:
 326	if (buf == of->prealloc_buf)
 327		mutex_unlock(&of->prealloc_mutex);
 328	else
 329		kfree(buf);
 330	return len;
 331}
 332
 333static void kernfs_vma_open(struct vm_area_struct *vma)
 334{
 335	struct file *file = vma->vm_file;
 336	struct kernfs_open_file *of = kernfs_of(file);
 337
 338	if (!of->vm_ops)
 339		return;
 340
 341	if (!kernfs_get_active(of->kn))
 342		return;
 343
 344	if (of->vm_ops->open)
 345		of->vm_ops->open(vma);
 346
 347	kernfs_put_active(of->kn);
 348}
 349
 350static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
 351{
 352	struct file *file = vmf->vma->vm_file;
 353	struct kernfs_open_file *of = kernfs_of(file);
 354	vm_fault_t ret;
 355
 356	if (!of->vm_ops)
 357		return VM_FAULT_SIGBUS;
 358
 359	if (!kernfs_get_active(of->kn))
 360		return VM_FAULT_SIGBUS;
 361
 362	ret = VM_FAULT_SIGBUS;
 363	if (of->vm_ops->fault)
 364		ret = of->vm_ops->fault(vmf);
 365
 366	kernfs_put_active(of->kn);
 367	return ret;
 368}
 369
 370static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
 371{
 372	struct file *file = vmf->vma->vm_file;
 373	struct kernfs_open_file *of = kernfs_of(file);
 374	vm_fault_t ret;
 375
 376	if (!of->vm_ops)
 377		return VM_FAULT_SIGBUS;
 378
 379	if (!kernfs_get_active(of->kn))
 380		return VM_FAULT_SIGBUS;
 381
 382	ret = 0;
 383	if (of->vm_ops->page_mkwrite)
 384		ret = of->vm_ops->page_mkwrite(vmf);
 385	else
 386		file_update_time(file);
 387
 388	kernfs_put_active(of->kn);
 389	return ret;
 390}
 391
 392static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
 393			     void *buf, int len, int write)
 394{
 395	struct file *file = vma->vm_file;
 396	struct kernfs_open_file *of = kernfs_of(file);
 397	int ret;
 398
 399	if (!of->vm_ops)
 400		return -EINVAL;
 401
 402	if (!kernfs_get_active(of->kn))
 403		return -EINVAL;
 404
 405	ret = -EINVAL;
 406	if (of->vm_ops->access)
 407		ret = of->vm_ops->access(vma, addr, buf, len, write);
 408
 409	kernfs_put_active(of->kn);
 410	return ret;
 411}
 412
 413#ifdef CONFIG_NUMA
 414static int kernfs_vma_set_policy(struct vm_area_struct *vma,
 415				 struct mempolicy *new)
 416{
 417	struct file *file = vma->vm_file;
 418	struct kernfs_open_file *of = kernfs_of(file);
 419	int ret;
 420
 421	if (!of->vm_ops)
 422		return 0;
 423
 424	if (!kernfs_get_active(of->kn))
 425		return -EINVAL;
 426
 427	ret = 0;
 428	if (of->vm_ops->set_policy)
 429		ret = of->vm_ops->set_policy(vma, new);
 430
 431	kernfs_put_active(of->kn);
 432	return ret;
 433}
 434
 435static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
 436					       unsigned long addr)
 437{
 438	struct file *file = vma->vm_file;
 439	struct kernfs_open_file *of = kernfs_of(file);
 440	struct mempolicy *pol;
 441
 442	if (!of->vm_ops)
 443		return vma->vm_policy;
 444
 445	if (!kernfs_get_active(of->kn))
 446		return vma->vm_policy;
 447
 448	pol = vma->vm_policy;
 449	if (of->vm_ops->get_policy)
 450		pol = of->vm_ops->get_policy(vma, addr);
 451
 452	kernfs_put_active(of->kn);
 453	return pol;
 454}
 455
 456#endif
 457
 458static const struct vm_operations_struct kernfs_vm_ops = {
 459	.open		= kernfs_vma_open,
 460	.fault		= kernfs_vma_fault,
 461	.page_mkwrite	= kernfs_vma_page_mkwrite,
 462	.access		= kernfs_vma_access,
 463#ifdef CONFIG_NUMA
 464	.set_policy	= kernfs_vma_set_policy,
 465	.get_policy	= kernfs_vma_get_policy,
 466#endif
 467};
 468
 469static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
 470{
 471	struct kernfs_open_file *of = kernfs_of(file);
 472	const struct kernfs_ops *ops;
 473	int rc;
 474
 475	/*
 476	 * mmap path and of->mutex are prone to triggering spurious lockdep
 477	 * warnings and we don't want to add spurious locking dependency
 478	 * between the two.  Check whether mmap is actually implemented
 479	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
 480	 * comment in kernfs_file_open() for more details.
 481	 */
 482	if (!(of->kn->flags & KERNFS_HAS_MMAP))
 483		return -ENODEV;
 484
 485	mutex_lock(&of->mutex);
 486
 487	rc = -ENODEV;
 488	if (!kernfs_get_active(of->kn))
 489		goto out_unlock;
 490
 491	ops = kernfs_ops(of->kn);
 492	rc = ops->mmap(of, vma);
 493	if (rc)
 494		goto out_put;
 495
 496	/*
 497	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
 498	 * to satisfy versions of X which crash if the mmap fails: that
 499	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
 500	 */
 501	if (vma->vm_file != file)
 502		goto out_put;
 503
 504	rc = -EINVAL;
 505	if (of->mmapped && of->vm_ops != vma->vm_ops)
 506		goto out_put;
 507
 508	/*
 509	 * It is not possible to successfully wrap close.
 510	 * So error if someone is trying to use close.
 511	 */
 512	rc = -EINVAL;
 513	if (vma->vm_ops && vma->vm_ops->close)
 514		goto out_put;
 515
 516	rc = 0;
 517	of->mmapped = true;
 518	of->vm_ops = vma->vm_ops;
 519	vma->vm_ops = &kernfs_vm_ops;
 520out_put:
 521	kernfs_put_active(of->kn);
 522out_unlock:
 523	mutex_unlock(&of->mutex);
 524
 525	return rc;
 526}
 527
 528/**
 529 *	kernfs_get_open_node - get or create kernfs_open_node
 530 *	@kn: target kernfs_node
 531 *	@of: kernfs_open_file for this instance of open
 532 *
 533 *	If @kn->attr.open exists, increment its reference count; otherwise,
 534 *	create one.  @of is chained to the files list.
 535 *
 536 *	LOCKING:
 537 *	Kernel thread context (may sleep).
 538 *
 539 *	RETURNS:
 540 *	0 on success, -errno on failure.
 541 */
 542static int kernfs_get_open_node(struct kernfs_node *kn,
 543				struct kernfs_open_file *of)
 544{
 545	struct kernfs_open_node *on, *new_on = NULL;
 546
 547 retry:
 548	mutex_lock(&kernfs_open_file_mutex);
 549	spin_lock_irq(&kernfs_open_node_lock);
 550
 551	if (!kn->attr.open && new_on) {
 552		kn->attr.open = new_on;
 553		new_on = NULL;
 554	}
 555
 556	on = kn->attr.open;
 557	if (on) {
 558		atomic_inc(&on->refcnt);
 559		list_add_tail(&of->list, &on->files);
 560	}
 561
 562	spin_unlock_irq(&kernfs_open_node_lock);
 563	mutex_unlock(&kernfs_open_file_mutex);
 564
 565	if (on) {
 566		kfree(new_on);
 567		return 0;
 568	}
 569
 570	/* not there, initialize a new one and retry */
 571	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
 572	if (!new_on)
 573		return -ENOMEM;
 574
 575	atomic_set(&new_on->refcnt, 0);
 576	atomic_set(&new_on->event, 1);
 577	init_waitqueue_head(&new_on->poll);
 578	INIT_LIST_HEAD(&new_on->files);
 579	goto retry;
 580}
 581
 582/**
 583 *	kernfs_put_open_node - put kernfs_open_node
 584 *	@kn: target kernfs_nodet
 585 *	@of: associated kernfs_open_file
 586 *
 587 *	Put @kn->attr.open and unlink @of from the files list.  If
 588 *	reference count reaches zero, disassociate and free it.
 589 *
 590 *	LOCKING:
 591 *	None.
 592 */
 593static void kernfs_put_open_node(struct kernfs_node *kn,
 594				 struct kernfs_open_file *of)
 595{
 596	struct kernfs_open_node *on = kn->attr.open;
 597	unsigned long flags;
 598
 599	mutex_lock(&kernfs_open_file_mutex);
 600	spin_lock_irqsave(&kernfs_open_node_lock, flags);
 601
 602	if (of)
 603		list_del(&of->list);
 604
 605	if (atomic_dec_and_test(&on->refcnt))
 606		kn->attr.open = NULL;
 607	else
 608		on = NULL;
 609
 610	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 611	mutex_unlock(&kernfs_open_file_mutex);
 612
 613	kfree(on);
 614}
 615
 616static int kernfs_fop_open(struct inode *inode, struct file *file)
 617{
 618	struct kernfs_node *kn = inode->i_private;
 619	struct kernfs_root *root = kernfs_root(kn);
 620	const struct kernfs_ops *ops;
 621	struct kernfs_open_file *of;
 622	bool has_read, has_write, has_mmap;
 623	int error = -EACCES;
 624
 625	if (!kernfs_get_active(kn))
 626		return -ENODEV;
 627
 628	ops = kernfs_ops(kn);
 629
 630	has_read = ops->seq_show || ops->read || ops->mmap;
 631	has_write = ops->write || ops->mmap;
 632	has_mmap = ops->mmap;
 633
 634	/* see the flag definition for details */
 635	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
 636		if ((file->f_mode & FMODE_WRITE) &&
 637		    (!(inode->i_mode & S_IWUGO) || !has_write))
 638			goto err_out;
 639
 640		if ((file->f_mode & FMODE_READ) &&
 641		    (!(inode->i_mode & S_IRUGO) || !has_read))
 642			goto err_out;
 643	}
 644
 645	/* allocate a kernfs_open_file for the file */
 646	error = -ENOMEM;
 647	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
 648	if (!of)
 649		goto err_out;
 650
 651	/*
 652	 * The following is done to give a different lockdep key to
 653	 * @of->mutex for files which implement mmap.  This is a rather
 654	 * crude way to avoid false positive lockdep warning around
 655	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
 656	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
 657	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
 658	 * open file has a separate mutex, it's okay as long as those don't
 659	 * happen on the same file.  At this point, we can't easily give
 660	 * each file a separate locking class.  Let's differentiate on
 661	 * whether the file has mmap or not for now.
 662	 *
 663	 * Both paths of the branch look the same.  They're supposed to
 664	 * look that way and give @of->mutex different static lockdep keys.
 665	 */
 666	if (has_mmap)
 667		mutex_init(&of->mutex);
 668	else
 669		mutex_init(&of->mutex);
 670
 671	of->kn = kn;
 672	of->file = file;
 673
 674	/*
 675	 * Write path needs to atomic_write_len outside active reference.
 676	 * Cache it in open_file.  See kernfs_fop_write() for details.
 677	 */
 678	of->atomic_write_len = ops->atomic_write_len;
 679
 680	error = -EINVAL;
 681	/*
 682	 * ->seq_show is incompatible with ->prealloc,
 683	 * as seq_read does its own allocation.
 684	 * ->read must be used instead.
 685	 */
 686	if (ops->prealloc && ops->seq_show)
 687		goto err_free;
 688	if (ops->prealloc) {
 689		int len = of->atomic_write_len ?: PAGE_SIZE;
 690		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
 691		error = -ENOMEM;
 692		if (!of->prealloc_buf)
 693			goto err_free;
 694		mutex_init(&of->prealloc_mutex);
 695	}
 696
 697	/*
 698	 * Always instantiate seq_file even if read access doesn't use
 699	 * seq_file or is not requested.  This unifies private data access
 700	 * and readable regular files are the vast majority anyway.
 701	 */
 702	if (ops->seq_show)
 703		error = seq_open(file, &kernfs_seq_ops);
 704	else
 705		error = seq_open(file, NULL);
 706	if (error)
 707		goto err_free;
 708
 709	of->seq_file = file->private_data;
 710	of->seq_file->private = of;
 711
 712	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
 713	if (file->f_mode & FMODE_WRITE)
 714		file->f_mode |= FMODE_PWRITE;
 715
 716	/* make sure we have open node struct */
 717	error = kernfs_get_open_node(kn, of);
 718	if (error)
 719		goto err_seq_release;
 720
 721	if (ops->open) {
 722		/* nobody has access to @of yet, skip @of->mutex */
 723		error = ops->open(of);
 724		if (error)
 725			goto err_put_node;
 726	}
 727
 728	/* open succeeded, put active references */
 729	kernfs_put_active(kn);
 730	return 0;
 731
 732err_put_node:
 733	kernfs_put_open_node(kn, of);
 734err_seq_release:
 735	seq_release(inode, file);
 736err_free:
 737	kfree(of->prealloc_buf);
 738	kfree(of);
 739err_out:
 740	kernfs_put_active(kn);
 741	return error;
 742}
 743
 744/* used from release/drain to ensure that ->release() is called exactly once */
 745static void kernfs_release_file(struct kernfs_node *kn,
 746				struct kernfs_open_file *of)
 747{
 748	/*
 749	 * @of is guaranteed to have no other file operations in flight and
 750	 * we just want to synchronize release and drain paths.
 751	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
 752	 * here because drain path may be called from places which can
 753	 * cause circular dependency.
 754	 */
 755	lockdep_assert_held(&kernfs_open_file_mutex);
 756
 757	if (!of->released) {
 758		/*
 759		 * A file is never detached without being released and we
 760		 * need to be able to release files which are deactivated
 761		 * and being drained.  Don't use kernfs_ops().
 762		 */
 763		kn->attr.ops->release(of);
 764		of->released = true;
 765	}
 766}
 767
 768static int kernfs_fop_release(struct inode *inode, struct file *filp)
 769{
 770	struct kernfs_node *kn = inode->i_private;
 771	struct kernfs_open_file *of = kernfs_of(filp);
 772
 773	if (kn->flags & KERNFS_HAS_RELEASE) {
 774		mutex_lock(&kernfs_open_file_mutex);
 775		kernfs_release_file(kn, of);
 776		mutex_unlock(&kernfs_open_file_mutex);
 777	}
 778
 779	kernfs_put_open_node(kn, of);
 780	seq_release(inode, filp);
 781	kfree(of->prealloc_buf);
 782	kfree(of);
 783
 784	return 0;
 785}
 786
 787void kernfs_drain_open_files(struct kernfs_node *kn)
 788{
 789	struct kernfs_open_node *on;
 790	struct kernfs_open_file *of;
 791
 792	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
 793		return;
 794
 795	spin_lock_irq(&kernfs_open_node_lock);
 796	on = kn->attr.open;
 797	if (on)
 798		atomic_inc(&on->refcnt);
 799	spin_unlock_irq(&kernfs_open_node_lock);
 800	if (!on)
 801		return;
 802
 803	mutex_lock(&kernfs_open_file_mutex);
 804
 805	list_for_each_entry(of, &on->files, list) {
 806		struct inode *inode = file_inode(of->file);
 807
 808		if (kn->flags & KERNFS_HAS_MMAP)
 809			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 810
 811		if (kn->flags & KERNFS_HAS_RELEASE)
 812			kernfs_release_file(kn, of);
 813	}
 814
 815	mutex_unlock(&kernfs_open_file_mutex);
 816
 817	kernfs_put_open_node(kn, NULL);
 818}
 819
 820/*
 821 * Kernfs attribute files are pollable.  The idea is that you read
 822 * the content and then you use 'poll' or 'select' to wait for
 823 * the content to change.  When the content changes (assuming the
 824 * manager for the kobject supports notification), poll will
 825 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
 826 * it is waiting for read, write, or exceptions.
 827 * Once poll/select indicates that the value has changed, you
 828 * need to close and re-open the file, or seek to 0 and read again.
 829 * Reminder: this only works for attributes which actively support
 830 * it, and it is not possible to test an attribute from userspace
 831 * to see if it supports poll (Neither 'poll' nor 'select' return
 832 * an appropriate error code).  When in doubt, set a suitable timeout value.
 833 */
 834__poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
 835{
 836	struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
 837	struct kernfs_open_node *on = kn->attr.open;
 838
 839	poll_wait(of->file, &on->poll, wait);
 840
 841	if (of->event != atomic_read(&on->event))
 842		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 843
 844	return DEFAULT_POLLMASK;
 845}
 846
 847static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
 848{
 849	struct kernfs_open_file *of = kernfs_of(filp);
 850	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
 851	__poll_t ret;
 852
 853	if (!kernfs_get_active(kn))
 854		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 855
 856	if (kn->attr.ops->poll)
 857		ret = kn->attr.ops->poll(of, wait);
 858	else
 859		ret = kernfs_generic_poll(of, wait);
 860
 861	kernfs_put_active(kn);
 862	return ret;
 863}
 864
 865static void kernfs_notify_workfn(struct work_struct *work)
 866{
 867	struct kernfs_node *kn;
 868	struct kernfs_super_info *info;
 869repeat:
 870	/* pop one off the notify_list */
 871	spin_lock_irq(&kernfs_notify_lock);
 872	kn = kernfs_notify_list;
 873	if (kn == KERNFS_NOTIFY_EOL) {
 874		spin_unlock_irq(&kernfs_notify_lock);
 875		return;
 876	}
 877	kernfs_notify_list = kn->attr.notify_next;
 878	kn->attr.notify_next = NULL;
 879	spin_unlock_irq(&kernfs_notify_lock);
 880
 881	/* kick fsnotify */
 882	mutex_lock(&kernfs_mutex);
 883
 884	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
 885		struct kernfs_node *parent;
 
 886		struct inode *inode;
 887		struct qstr name;
 888
 889		/*
 890		 * We want fsnotify_modify() on @kn but as the
 891		 * modifications aren't originating from userland don't
 892		 * have the matching @file available.  Look up the inodes
 893		 * and generate the events manually.
 894		 */
 895		inode = ilookup(info->sb, kn->id.ino);
 896		if (!inode)
 897			continue;
 898
 899		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
 900		parent = kernfs_get_parent(kn);
 901		if (parent) {
 902			struct inode *p_inode;
 903
 904			p_inode = ilookup(info->sb, parent->id.ino);
 905			if (p_inode) {
 906				fsnotify(p_inode, FS_MODIFY | FS_EVENT_ON_CHILD,
 907					 inode, FSNOTIFY_EVENT_INODE, &name, 0);
 
 908				iput(p_inode);
 909			}
 910
 911			kernfs_put(parent);
 912		}
 913
 914		fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
 915			 &name, 0);
 
 916		iput(inode);
 917	}
 918
 919	mutex_unlock(&kernfs_mutex);
 920	kernfs_put(kn);
 921	goto repeat;
 922}
 923
 924/**
 925 * kernfs_notify - notify a kernfs file
 926 * @kn: file to notify
 927 *
 928 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
 929 * context.
 930 */
 931void kernfs_notify(struct kernfs_node *kn)
 932{
 933	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
 934	unsigned long flags;
 935	struct kernfs_open_node *on;
 936
 937	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
 938		return;
 939
 940	/* kick poll immediately */
 941	spin_lock_irqsave(&kernfs_open_node_lock, flags);
 942	on = kn->attr.open;
 943	if (on) {
 944		atomic_inc(&on->event);
 945		wake_up_interruptible(&on->poll);
 946	}
 947	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 948
 949	/* schedule work to kick fsnotify */
 950	spin_lock_irqsave(&kernfs_notify_lock, flags);
 951	if (!kn->attr.notify_next) {
 952		kernfs_get(kn);
 953		kn->attr.notify_next = kernfs_notify_list;
 954		kernfs_notify_list = kn;
 955		schedule_work(&kernfs_notify_work);
 956	}
 957	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
 958}
 959EXPORT_SYMBOL_GPL(kernfs_notify);
 960
 961const struct file_operations kernfs_file_fops = {
 962	.read		= kernfs_fop_read,
 963	.write		= kernfs_fop_write,
 964	.llseek		= generic_file_llseek,
 965	.mmap		= kernfs_fop_mmap,
 966	.open		= kernfs_fop_open,
 967	.release	= kernfs_fop_release,
 968	.poll		= kernfs_fop_poll,
 969	.fsync		= noop_fsync,
 970};
 971
 972/**
 973 * __kernfs_create_file - kernfs internal function to create a file
 974 * @parent: directory to create the file in
 975 * @name: name of the file
 976 * @mode: mode of the file
 977 * @uid: uid of the file
 978 * @gid: gid of the file
 979 * @size: size of the file
 980 * @ops: kernfs operations for the file
 981 * @priv: private data for the file
 982 * @ns: optional namespace tag of the file
 983 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
 984 *
 985 * Returns the created node on success, ERR_PTR() value on error.
 986 */
 987struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
 988					 const char *name,
 989					 umode_t mode, kuid_t uid, kgid_t gid,
 990					 loff_t size,
 991					 const struct kernfs_ops *ops,
 992					 void *priv, const void *ns,
 993					 struct lock_class_key *key)
 994{
 995	struct kernfs_node *kn;
 996	unsigned flags;
 997	int rc;
 998
 999	flags = KERNFS_FILE;
1000
1001	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1002			     uid, gid, flags);
1003	if (!kn)
1004		return ERR_PTR(-ENOMEM);
1005
1006	kn->attr.ops = ops;
1007	kn->attr.size = size;
1008	kn->ns = ns;
1009	kn->priv = priv;
1010
1011#ifdef CONFIG_DEBUG_LOCK_ALLOC
1012	if (key) {
1013		lockdep_init_map(&kn->dep_map, "kn->count", key, 0);
1014		kn->flags |= KERNFS_LOCKDEP;
1015	}
1016#endif
1017
1018	/*
1019	 * kn->attr.ops is accesible only while holding active ref.  We
1020	 * need to know whether some ops are implemented outside active
1021	 * ref.  Cache their existence in flags.
1022	 */
1023	if (ops->seq_show)
1024		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1025	if (ops->mmap)
1026		kn->flags |= KERNFS_HAS_MMAP;
1027	if (ops->release)
1028		kn->flags |= KERNFS_HAS_RELEASE;
1029
1030	rc = kernfs_add_one(kn);
1031	if (rc) {
1032		kernfs_put(kn);
1033		return ERR_PTR(rc);
1034	}
1035	return kn;
1036}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/kernfs/file.c - kernfs file implementation
   4 *
   5 * Copyright (c) 2001-3 Patrick Mochel
   6 * Copyright (c) 2007 SUSE Linux Products GmbH
   7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   8 */
   9
  10#include <linux/fs.h>
  11#include <linux/seq_file.h>
  12#include <linux/slab.h>
  13#include <linux/poll.h>
  14#include <linux/pagemap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/fsnotify.h>
  17
  18#include "kernfs-internal.h"
  19
  20/*
  21 * There's one kernfs_open_file for each open file and one kernfs_open_node
  22 * for each kernfs_node with one or more open files.
  23 *
  24 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
  25 * protected by kernfs_open_node_lock.
  26 *
  27 * filp->private_data points to seq_file whose ->private points to
  28 * kernfs_open_file.  kernfs_open_files are chained at
  29 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
  30 */
  31static DEFINE_SPINLOCK(kernfs_open_node_lock);
  32static DEFINE_MUTEX(kernfs_open_file_mutex);
  33
  34struct kernfs_open_node {
  35	atomic_t		refcnt;
  36	atomic_t		event;
  37	wait_queue_head_t	poll;
  38	struct list_head	files; /* goes through kernfs_open_file.list */
  39};
  40
  41/*
  42 * kernfs_notify() may be called from any context and bounces notifications
  43 * through a work item.  To minimize space overhead in kernfs_node, the
  44 * pending queue is implemented as a singly linked list of kernfs_nodes.
  45 * The list is terminated with the self pointer so that whether a
  46 * kernfs_node is on the list or not can be determined by testing the next
  47 * pointer for NULL.
  48 */
  49#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
  50
  51static DEFINE_SPINLOCK(kernfs_notify_lock);
  52static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
  53
  54static struct kernfs_open_file *kernfs_of(struct file *file)
  55{
  56	return ((struct seq_file *)file->private_data)->private;
  57}
  58
  59/*
  60 * Determine the kernfs_ops for the given kernfs_node.  This function must
  61 * be called while holding an active reference.
  62 */
  63static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
  64{
  65	if (kn->flags & KERNFS_LOCKDEP)
  66		lockdep_assert_held(kn);
  67	return kn->attr.ops;
  68}
  69
  70/*
  71 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
  72 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
  73 * a seq_file iteration which is fully initialized with an active reference
  74 * or an aborted kernfs_seq_start() due to get_active failure.  The
  75 * position pointer is the only context for each seq_file iteration and
  76 * thus the stop condition should be encoded in it.  As the return value is
  77 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
  78 * choice to indicate get_active failure.
  79 *
  80 * Unfortunately, this is complicated due to the optional custom seq_file
  81 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
  82 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
  83 * custom seq_file operations and thus can't decide whether put_active
  84 * should be performed or not only on ERR_PTR(-ENODEV).
  85 *
  86 * This is worked around by factoring out the custom seq_stop() and
  87 * put_active part into kernfs_seq_stop_active(), skipping it from
  88 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
  89 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
  90 * that kernfs_seq_stop_active() is skipped only after get_active failure.
  91 */
  92static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
  93{
  94	struct kernfs_open_file *of = sf->private;
  95	const struct kernfs_ops *ops = kernfs_ops(of->kn);
  96
  97	if (ops->seq_stop)
  98		ops->seq_stop(sf, v);
  99	kernfs_put_active(of->kn);
 100}
 101
 102static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 103{
 104	struct kernfs_open_file *of = sf->private;
 105	const struct kernfs_ops *ops;
 106
 107	/*
 108	 * @of->mutex nests outside active ref and is primarily to ensure that
 109	 * the ops aren't called concurrently for the same open file.
 110	 */
 111	mutex_lock(&of->mutex);
 112	if (!kernfs_get_active(of->kn))
 113		return ERR_PTR(-ENODEV);
 114
 115	ops = kernfs_ops(of->kn);
 116	if (ops->seq_start) {
 117		void *next = ops->seq_start(sf, ppos);
 118		/* see the comment above kernfs_seq_stop_active() */
 119		if (next == ERR_PTR(-ENODEV))
 120			kernfs_seq_stop_active(sf, next);
 121		return next;
 122	} else {
 123		/*
 124		 * The same behavior and code as single_open().  Returns
 125		 * !NULL if pos is at the beginning; otherwise, NULL.
 126		 */
 127		return NULL + !*ppos;
 128	}
 129}
 130
 131static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
 132{
 133	struct kernfs_open_file *of = sf->private;
 134	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 135
 136	if (ops->seq_next) {
 137		void *next = ops->seq_next(sf, v, ppos);
 138		/* see the comment above kernfs_seq_stop_active() */
 139		if (next == ERR_PTR(-ENODEV))
 140			kernfs_seq_stop_active(sf, next);
 141		return next;
 142	} else {
 143		/*
 144		 * The same behavior and code as single_open(), always
 145		 * terminate after the initial read.
 146		 */
 147		++*ppos;
 148		return NULL;
 149	}
 150}
 151
 152static void kernfs_seq_stop(struct seq_file *sf, void *v)
 153{
 154	struct kernfs_open_file *of = sf->private;
 155
 156	if (v != ERR_PTR(-ENODEV))
 157		kernfs_seq_stop_active(sf, v);
 158	mutex_unlock(&of->mutex);
 159}
 160
 161static int kernfs_seq_show(struct seq_file *sf, void *v)
 162{
 163	struct kernfs_open_file *of = sf->private;
 164
 165	of->event = atomic_read(&of->kn->attr.open->event);
 166
 167	return of->kn->attr.ops->seq_show(sf, v);
 168}
 169
 170static const struct seq_operations kernfs_seq_ops = {
 171	.start = kernfs_seq_start,
 172	.next = kernfs_seq_next,
 173	.stop = kernfs_seq_stop,
 174	.show = kernfs_seq_show,
 175};
 176
 177/*
 178 * As reading a bin file can have side-effects, the exact offset and bytes
 179 * specified in read(2) call should be passed to the read callback making
 180 * it difficult to use seq_file.  Implement simplistic custom buffering for
 181 * bin files.
 182 */
 183static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
 184				       char __user *user_buf, size_t count,
 185				       loff_t *ppos)
 186{
 187	ssize_t len = min_t(size_t, count, PAGE_SIZE);
 188	const struct kernfs_ops *ops;
 189	char *buf;
 190
 191	buf = of->prealloc_buf;
 192	if (buf)
 193		mutex_lock(&of->prealloc_mutex);
 194	else
 195		buf = kmalloc(len, GFP_KERNEL);
 196	if (!buf)
 197		return -ENOMEM;
 198
 199	/*
 200	 * @of->mutex nests outside active ref and is used both to ensure that
 201	 * the ops aren't called concurrently for the same open file.
 202	 */
 203	mutex_lock(&of->mutex);
 204	if (!kernfs_get_active(of->kn)) {
 205		len = -ENODEV;
 206		mutex_unlock(&of->mutex);
 207		goto out_free;
 208	}
 209
 210	of->event = atomic_read(&of->kn->attr.open->event);
 211	ops = kernfs_ops(of->kn);
 212	if (ops->read)
 213		len = ops->read(of, buf, len, *ppos);
 214	else
 215		len = -EINVAL;
 216
 217	kernfs_put_active(of->kn);
 218	mutex_unlock(&of->mutex);
 219
 220	if (len < 0)
 221		goto out_free;
 222
 223	if (copy_to_user(user_buf, buf, len)) {
 224		len = -EFAULT;
 225		goto out_free;
 226	}
 227
 228	*ppos += len;
 229
 230 out_free:
 231	if (buf == of->prealloc_buf)
 232		mutex_unlock(&of->prealloc_mutex);
 233	else
 234		kfree(buf);
 235	return len;
 236}
 237
 238/**
 239 * kernfs_fop_read - kernfs vfs read callback
 240 * @file: file pointer
 241 * @user_buf: data to write
 242 * @count: number of bytes
 243 * @ppos: starting offset
 244 */
 245static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
 246			       size_t count, loff_t *ppos)
 247{
 248	struct kernfs_open_file *of = kernfs_of(file);
 249
 250	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
 251		return seq_read(file, user_buf, count, ppos);
 252	else
 253		return kernfs_file_direct_read(of, user_buf, count, ppos);
 254}
 255
 256/**
 257 * kernfs_fop_write - kernfs vfs write callback
 258 * @file: file pointer
 259 * @user_buf: data to write
 260 * @count: number of bytes
 261 * @ppos: starting offset
 262 *
 263 * Copy data in from userland and pass it to the matching kernfs write
 264 * operation.
 265 *
 266 * There is no easy way for us to know if userspace is only doing a partial
 267 * write, so we don't support them. We expect the entire buffer to come on
 268 * the first write.  Hint: if you're writing a value, first read the file,
 269 * modify only the the value you're changing, then write entire buffer
 270 * back.
 271 */
 272static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
 273				size_t count, loff_t *ppos)
 274{
 275	struct kernfs_open_file *of = kernfs_of(file);
 276	const struct kernfs_ops *ops;
 277	ssize_t len;
 278	char *buf;
 279
 280	if (of->atomic_write_len) {
 281		len = count;
 282		if (len > of->atomic_write_len)
 283			return -E2BIG;
 284	} else {
 285		len = min_t(size_t, count, PAGE_SIZE);
 286	}
 287
 288	buf = of->prealloc_buf;
 289	if (buf)
 290		mutex_lock(&of->prealloc_mutex);
 291	else
 292		buf = kmalloc(len + 1, GFP_KERNEL);
 293	if (!buf)
 294		return -ENOMEM;
 295
 296	if (copy_from_user(buf, user_buf, len)) {
 297		len = -EFAULT;
 298		goto out_free;
 299	}
 300	buf[len] = '\0';	/* guarantee string termination */
 301
 302	/*
 303	 * @of->mutex nests outside active ref and is used both to ensure that
 304	 * the ops aren't called concurrently for the same open file.
 305	 */
 306	mutex_lock(&of->mutex);
 307	if (!kernfs_get_active(of->kn)) {
 308		mutex_unlock(&of->mutex);
 309		len = -ENODEV;
 310		goto out_free;
 311	}
 312
 313	ops = kernfs_ops(of->kn);
 314	if (ops->write)
 315		len = ops->write(of, buf, len, *ppos);
 316	else
 317		len = -EINVAL;
 318
 319	kernfs_put_active(of->kn);
 320	mutex_unlock(&of->mutex);
 321
 322	if (len > 0)
 323		*ppos += len;
 324
 325out_free:
 326	if (buf == of->prealloc_buf)
 327		mutex_unlock(&of->prealloc_mutex);
 328	else
 329		kfree(buf);
 330	return len;
 331}
 332
 333static void kernfs_vma_open(struct vm_area_struct *vma)
 334{
 335	struct file *file = vma->vm_file;
 336	struct kernfs_open_file *of = kernfs_of(file);
 337
 338	if (!of->vm_ops)
 339		return;
 340
 341	if (!kernfs_get_active(of->kn))
 342		return;
 343
 344	if (of->vm_ops->open)
 345		of->vm_ops->open(vma);
 346
 347	kernfs_put_active(of->kn);
 348}
 349
 350static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
 351{
 352	struct file *file = vmf->vma->vm_file;
 353	struct kernfs_open_file *of = kernfs_of(file);
 354	vm_fault_t ret;
 355
 356	if (!of->vm_ops)
 357		return VM_FAULT_SIGBUS;
 358
 359	if (!kernfs_get_active(of->kn))
 360		return VM_FAULT_SIGBUS;
 361
 362	ret = VM_FAULT_SIGBUS;
 363	if (of->vm_ops->fault)
 364		ret = of->vm_ops->fault(vmf);
 365
 366	kernfs_put_active(of->kn);
 367	return ret;
 368}
 369
 370static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
 371{
 372	struct file *file = vmf->vma->vm_file;
 373	struct kernfs_open_file *of = kernfs_of(file);
 374	vm_fault_t ret;
 375
 376	if (!of->vm_ops)
 377		return VM_FAULT_SIGBUS;
 378
 379	if (!kernfs_get_active(of->kn))
 380		return VM_FAULT_SIGBUS;
 381
 382	ret = 0;
 383	if (of->vm_ops->page_mkwrite)
 384		ret = of->vm_ops->page_mkwrite(vmf);
 385	else
 386		file_update_time(file);
 387
 388	kernfs_put_active(of->kn);
 389	return ret;
 390}
 391
 392static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
 393			     void *buf, int len, int write)
 394{
 395	struct file *file = vma->vm_file;
 396	struct kernfs_open_file *of = kernfs_of(file);
 397	int ret;
 398
 399	if (!of->vm_ops)
 400		return -EINVAL;
 401
 402	if (!kernfs_get_active(of->kn))
 403		return -EINVAL;
 404
 405	ret = -EINVAL;
 406	if (of->vm_ops->access)
 407		ret = of->vm_ops->access(vma, addr, buf, len, write);
 408
 409	kernfs_put_active(of->kn);
 410	return ret;
 411}
 412
 413#ifdef CONFIG_NUMA
 414static int kernfs_vma_set_policy(struct vm_area_struct *vma,
 415				 struct mempolicy *new)
 416{
 417	struct file *file = vma->vm_file;
 418	struct kernfs_open_file *of = kernfs_of(file);
 419	int ret;
 420
 421	if (!of->vm_ops)
 422		return 0;
 423
 424	if (!kernfs_get_active(of->kn))
 425		return -EINVAL;
 426
 427	ret = 0;
 428	if (of->vm_ops->set_policy)
 429		ret = of->vm_ops->set_policy(vma, new);
 430
 431	kernfs_put_active(of->kn);
 432	return ret;
 433}
 434
 435static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
 436					       unsigned long addr)
 437{
 438	struct file *file = vma->vm_file;
 439	struct kernfs_open_file *of = kernfs_of(file);
 440	struct mempolicy *pol;
 441
 442	if (!of->vm_ops)
 443		return vma->vm_policy;
 444
 445	if (!kernfs_get_active(of->kn))
 446		return vma->vm_policy;
 447
 448	pol = vma->vm_policy;
 449	if (of->vm_ops->get_policy)
 450		pol = of->vm_ops->get_policy(vma, addr);
 451
 452	kernfs_put_active(of->kn);
 453	return pol;
 454}
 455
 456#endif
 457
 458static const struct vm_operations_struct kernfs_vm_ops = {
 459	.open		= kernfs_vma_open,
 460	.fault		= kernfs_vma_fault,
 461	.page_mkwrite	= kernfs_vma_page_mkwrite,
 462	.access		= kernfs_vma_access,
 463#ifdef CONFIG_NUMA
 464	.set_policy	= kernfs_vma_set_policy,
 465	.get_policy	= kernfs_vma_get_policy,
 466#endif
 467};
 468
 469static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
 470{
 471	struct kernfs_open_file *of = kernfs_of(file);
 472	const struct kernfs_ops *ops;
 473	int rc;
 474
 475	/*
 476	 * mmap path and of->mutex are prone to triggering spurious lockdep
 477	 * warnings and we don't want to add spurious locking dependency
 478	 * between the two.  Check whether mmap is actually implemented
 479	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
 480	 * comment in kernfs_file_open() for more details.
 481	 */
 482	if (!(of->kn->flags & KERNFS_HAS_MMAP))
 483		return -ENODEV;
 484
 485	mutex_lock(&of->mutex);
 486
 487	rc = -ENODEV;
 488	if (!kernfs_get_active(of->kn))
 489		goto out_unlock;
 490
 491	ops = kernfs_ops(of->kn);
 492	rc = ops->mmap(of, vma);
 493	if (rc)
 494		goto out_put;
 495
 496	/*
 497	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
 498	 * to satisfy versions of X which crash if the mmap fails: that
 499	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
 500	 */
 501	if (vma->vm_file != file)
 502		goto out_put;
 503
 504	rc = -EINVAL;
 505	if (of->mmapped && of->vm_ops != vma->vm_ops)
 506		goto out_put;
 507
 508	/*
 509	 * It is not possible to successfully wrap close.
 510	 * So error if someone is trying to use close.
 511	 */
 512	rc = -EINVAL;
 513	if (vma->vm_ops && vma->vm_ops->close)
 514		goto out_put;
 515
 516	rc = 0;
 517	of->mmapped = true;
 518	of->vm_ops = vma->vm_ops;
 519	vma->vm_ops = &kernfs_vm_ops;
 520out_put:
 521	kernfs_put_active(of->kn);
 522out_unlock:
 523	mutex_unlock(&of->mutex);
 524
 525	return rc;
 526}
 527
 528/**
 529 *	kernfs_get_open_node - get or create kernfs_open_node
 530 *	@kn: target kernfs_node
 531 *	@of: kernfs_open_file for this instance of open
 532 *
 533 *	If @kn->attr.open exists, increment its reference count; otherwise,
 534 *	create one.  @of is chained to the files list.
 535 *
 536 *	LOCKING:
 537 *	Kernel thread context (may sleep).
 538 *
 539 *	RETURNS:
 540 *	0 on success, -errno on failure.
 541 */
 542static int kernfs_get_open_node(struct kernfs_node *kn,
 543				struct kernfs_open_file *of)
 544{
 545	struct kernfs_open_node *on, *new_on = NULL;
 546
 547 retry:
 548	mutex_lock(&kernfs_open_file_mutex);
 549	spin_lock_irq(&kernfs_open_node_lock);
 550
 551	if (!kn->attr.open && new_on) {
 552		kn->attr.open = new_on;
 553		new_on = NULL;
 554	}
 555
 556	on = kn->attr.open;
 557	if (on) {
 558		atomic_inc(&on->refcnt);
 559		list_add_tail(&of->list, &on->files);
 560	}
 561
 562	spin_unlock_irq(&kernfs_open_node_lock);
 563	mutex_unlock(&kernfs_open_file_mutex);
 564
 565	if (on) {
 566		kfree(new_on);
 567		return 0;
 568	}
 569
 570	/* not there, initialize a new one and retry */
 571	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
 572	if (!new_on)
 573		return -ENOMEM;
 574
 575	atomic_set(&new_on->refcnt, 0);
 576	atomic_set(&new_on->event, 1);
 577	init_waitqueue_head(&new_on->poll);
 578	INIT_LIST_HEAD(&new_on->files);
 579	goto retry;
 580}
 581
 582/**
 583 *	kernfs_put_open_node - put kernfs_open_node
 584 *	@kn: target kernfs_nodet
 585 *	@of: associated kernfs_open_file
 586 *
 587 *	Put @kn->attr.open and unlink @of from the files list.  If
 588 *	reference count reaches zero, disassociate and free it.
 589 *
 590 *	LOCKING:
 591 *	None.
 592 */
 593static void kernfs_put_open_node(struct kernfs_node *kn,
 594				 struct kernfs_open_file *of)
 595{
 596	struct kernfs_open_node *on = kn->attr.open;
 597	unsigned long flags;
 598
 599	mutex_lock(&kernfs_open_file_mutex);
 600	spin_lock_irqsave(&kernfs_open_node_lock, flags);
 601
 602	if (of)
 603		list_del(&of->list);
 604
 605	if (atomic_dec_and_test(&on->refcnt))
 606		kn->attr.open = NULL;
 607	else
 608		on = NULL;
 609
 610	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 611	mutex_unlock(&kernfs_open_file_mutex);
 612
 613	kfree(on);
 614}
 615
 616static int kernfs_fop_open(struct inode *inode, struct file *file)
 617{
 618	struct kernfs_node *kn = inode->i_private;
 619	struct kernfs_root *root = kernfs_root(kn);
 620	const struct kernfs_ops *ops;
 621	struct kernfs_open_file *of;
 622	bool has_read, has_write, has_mmap;
 623	int error = -EACCES;
 624
 625	if (!kernfs_get_active(kn))
 626		return -ENODEV;
 627
 628	ops = kernfs_ops(kn);
 629
 630	has_read = ops->seq_show || ops->read || ops->mmap;
 631	has_write = ops->write || ops->mmap;
 632	has_mmap = ops->mmap;
 633
 634	/* see the flag definition for details */
 635	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
 636		if ((file->f_mode & FMODE_WRITE) &&
 637		    (!(inode->i_mode & S_IWUGO) || !has_write))
 638			goto err_out;
 639
 640		if ((file->f_mode & FMODE_READ) &&
 641		    (!(inode->i_mode & S_IRUGO) || !has_read))
 642			goto err_out;
 643	}
 644
 645	/* allocate a kernfs_open_file for the file */
 646	error = -ENOMEM;
 647	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
 648	if (!of)
 649		goto err_out;
 650
 651	/*
 652	 * The following is done to give a different lockdep key to
 653	 * @of->mutex for files which implement mmap.  This is a rather
 654	 * crude way to avoid false positive lockdep warning around
 655	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
 656	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
 657	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
 658	 * open file has a separate mutex, it's okay as long as those don't
 659	 * happen on the same file.  At this point, we can't easily give
 660	 * each file a separate locking class.  Let's differentiate on
 661	 * whether the file has mmap or not for now.
 662	 *
 663	 * Both paths of the branch look the same.  They're supposed to
 664	 * look that way and give @of->mutex different static lockdep keys.
 665	 */
 666	if (has_mmap)
 667		mutex_init(&of->mutex);
 668	else
 669		mutex_init(&of->mutex);
 670
 671	of->kn = kn;
 672	of->file = file;
 673
 674	/*
 675	 * Write path needs to atomic_write_len outside active reference.
 676	 * Cache it in open_file.  See kernfs_fop_write() for details.
 677	 */
 678	of->atomic_write_len = ops->atomic_write_len;
 679
 680	error = -EINVAL;
 681	/*
 682	 * ->seq_show is incompatible with ->prealloc,
 683	 * as seq_read does its own allocation.
 684	 * ->read must be used instead.
 685	 */
 686	if (ops->prealloc && ops->seq_show)
 687		goto err_free;
 688	if (ops->prealloc) {
 689		int len = of->atomic_write_len ?: PAGE_SIZE;
 690		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
 691		error = -ENOMEM;
 692		if (!of->prealloc_buf)
 693			goto err_free;
 694		mutex_init(&of->prealloc_mutex);
 695	}
 696
 697	/*
 698	 * Always instantiate seq_file even if read access doesn't use
 699	 * seq_file or is not requested.  This unifies private data access
 700	 * and readable regular files are the vast majority anyway.
 701	 */
 702	if (ops->seq_show)
 703		error = seq_open(file, &kernfs_seq_ops);
 704	else
 705		error = seq_open(file, NULL);
 706	if (error)
 707		goto err_free;
 708
 709	of->seq_file = file->private_data;
 710	of->seq_file->private = of;
 711
 712	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
 713	if (file->f_mode & FMODE_WRITE)
 714		file->f_mode |= FMODE_PWRITE;
 715
 716	/* make sure we have open node struct */
 717	error = kernfs_get_open_node(kn, of);
 718	if (error)
 719		goto err_seq_release;
 720
 721	if (ops->open) {
 722		/* nobody has access to @of yet, skip @of->mutex */
 723		error = ops->open(of);
 724		if (error)
 725			goto err_put_node;
 726	}
 727
 728	/* open succeeded, put active references */
 729	kernfs_put_active(kn);
 730	return 0;
 731
 732err_put_node:
 733	kernfs_put_open_node(kn, of);
 734err_seq_release:
 735	seq_release(inode, file);
 736err_free:
 737	kfree(of->prealloc_buf);
 738	kfree(of);
 739err_out:
 740	kernfs_put_active(kn);
 741	return error;
 742}
 743
 744/* used from release/drain to ensure that ->release() is called exactly once */
 745static void kernfs_release_file(struct kernfs_node *kn,
 746				struct kernfs_open_file *of)
 747{
 748	/*
 749	 * @of is guaranteed to have no other file operations in flight and
 750	 * we just want to synchronize release and drain paths.
 751	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
 752	 * here because drain path may be called from places which can
 753	 * cause circular dependency.
 754	 */
 755	lockdep_assert_held(&kernfs_open_file_mutex);
 756
 757	if (!of->released) {
 758		/*
 759		 * A file is never detached without being released and we
 760		 * need to be able to release files which are deactivated
 761		 * and being drained.  Don't use kernfs_ops().
 762		 */
 763		kn->attr.ops->release(of);
 764		of->released = true;
 765	}
 766}
 767
 768static int kernfs_fop_release(struct inode *inode, struct file *filp)
 769{
 770	struct kernfs_node *kn = inode->i_private;
 771	struct kernfs_open_file *of = kernfs_of(filp);
 772
 773	if (kn->flags & KERNFS_HAS_RELEASE) {
 774		mutex_lock(&kernfs_open_file_mutex);
 775		kernfs_release_file(kn, of);
 776		mutex_unlock(&kernfs_open_file_mutex);
 777	}
 778
 779	kernfs_put_open_node(kn, of);
 780	seq_release(inode, filp);
 781	kfree(of->prealloc_buf);
 782	kfree(of);
 783
 784	return 0;
 785}
 786
 787void kernfs_drain_open_files(struct kernfs_node *kn)
 788{
 789	struct kernfs_open_node *on;
 790	struct kernfs_open_file *of;
 791
 792	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
 793		return;
 794
 795	spin_lock_irq(&kernfs_open_node_lock);
 796	on = kn->attr.open;
 797	if (on)
 798		atomic_inc(&on->refcnt);
 799	spin_unlock_irq(&kernfs_open_node_lock);
 800	if (!on)
 801		return;
 802
 803	mutex_lock(&kernfs_open_file_mutex);
 804
 805	list_for_each_entry(of, &on->files, list) {
 806		struct inode *inode = file_inode(of->file);
 807
 808		if (kn->flags & KERNFS_HAS_MMAP)
 809			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 810
 811		if (kn->flags & KERNFS_HAS_RELEASE)
 812			kernfs_release_file(kn, of);
 813	}
 814
 815	mutex_unlock(&kernfs_open_file_mutex);
 816
 817	kernfs_put_open_node(kn, NULL);
 818}
 819
 820/*
 821 * Kernfs attribute files are pollable.  The idea is that you read
 822 * the content and then you use 'poll' or 'select' to wait for
 823 * the content to change.  When the content changes (assuming the
 824 * manager for the kobject supports notification), poll will
 825 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
 826 * it is waiting for read, write, or exceptions.
 827 * Once poll/select indicates that the value has changed, you
 828 * need to close and re-open the file, or seek to 0 and read again.
 829 * Reminder: this only works for attributes which actively support
 830 * it, and it is not possible to test an attribute from userspace
 831 * to see if it supports poll (Neither 'poll' nor 'select' return
 832 * an appropriate error code).  When in doubt, set a suitable timeout value.
 833 */
 834__poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
 835{
 836	struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
 837	struct kernfs_open_node *on = kn->attr.open;
 838
 839	poll_wait(of->file, &on->poll, wait);
 840
 841	if (of->event != atomic_read(&on->event))
 842		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 843
 844	return DEFAULT_POLLMASK;
 845}
 846
 847static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
 848{
 849	struct kernfs_open_file *of = kernfs_of(filp);
 850	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
 851	__poll_t ret;
 852
 853	if (!kernfs_get_active(kn))
 854		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 855
 856	if (kn->attr.ops->poll)
 857		ret = kn->attr.ops->poll(of, wait);
 858	else
 859		ret = kernfs_generic_poll(of, wait);
 860
 861	kernfs_put_active(kn);
 862	return ret;
 863}
 864
 865static void kernfs_notify_workfn(struct work_struct *work)
 866{
 867	struct kernfs_node *kn;
 868	struct kernfs_super_info *info;
 869repeat:
 870	/* pop one off the notify_list */
 871	spin_lock_irq(&kernfs_notify_lock);
 872	kn = kernfs_notify_list;
 873	if (kn == KERNFS_NOTIFY_EOL) {
 874		spin_unlock_irq(&kernfs_notify_lock);
 875		return;
 876	}
 877	kernfs_notify_list = kn->attr.notify_next;
 878	kn->attr.notify_next = NULL;
 879	spin_unlock_irq(&kernfs_notify_lock);
 880
 881	/* kick fsnotify */
 882	mutex_lock(&kernfs_mutex);
 883
 884	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
 885		struct kernfs_node *parent;
 886		struct inode *p_inode = NULL;
 887		struct inode *inode;
 888		struct qstr name;
 889
 890		/*
 891		 * We want fsnotify_modify() on @kn but as the
 892		 * modifications aren't originating from userland don't
 893		 * have the matching @file available.  Look up the inodes
 894		 * and generate the events manually.
 895		 */
 896		inode = ilookup(info->sb, kernfs_ino(kn));
 897		if (!inode)
 898			continue;
 899
 900		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
 901		parent = kernfs_get_parent(kn);
 902		if (parent) {
 903			p_inode = ilookup(info->sb, kernfs_ino(parent));
 
 
 904			if (p_inode) {
 905				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
 906					 inode, FSNOTIFY_EVENT_INODE,
 907					 p_inode, &name, inode, 0);
 908				iput(p_inode);
 909			}
 910
 911			kernfs_put(parent);
 912		}
 913
 914		if (!p_inode)
 915			fsnotify_inode(inode, FS_MODIFY);
 916
 917		iput(inode);
 918	}
 919
 920	mutex_unlock(&kernfs_mutex);
 921	kernfs_put(kn);
 922	goto repeat;
 923}
 924
 925/**
 926 * kernfs_notify - notify a kernfs file
 927 * @kn: file to notify
 928 *
 929 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
 930 * context.
 931 */
 932void kernfs_notify(struct kernfs_node *kn)
 933{
 934	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
 935	unsigned long flags;
 936	struct kernfs_open_node *on;
 937
 938	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
 939		return;
 940
 941	/* kick poll immediately */
 942	spin_lock_irqsave(&kernfs_open_node_lock, flags);
 943	on = kn->attr.open;
 944	if (on) {
 945		atomic_inc(&on->event);
 946		wake_up_interruptible(&on->poll);
 947	}
 948	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 949
 950	/* schedule work to kick fsnotify */
 951	spin_lock_irqsave(&kernfs_notify_lock, flags);
 952	if (!kn->attr.notify_next) {
 953		kernfs_get(kn);
 954		kn->attr.notify_next = kernfs_notify_list;
 955		kernfs_notify_list = kn;
 956		schedule_work(&kernfs_notify_work);
 957	}
 958	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
 959}
 960EXPORT_SYMBOL_GPL(kernfs_notify);
 961
 962const struct file_operations kernfs_file_fops = {
 963	.read		= kernfs_fop_read,
 964	.write		= kernfs_fop_write,
 965	.llseek		= generic_file_llseek,
 966	.mmap		= kernfs_fop_mmap,
 967	.open		= kernfs_fop_open,
 968	.release	= kernfs_fop_release,
 969	.poll		= kernfs_fop_poll,
 970	.fsync		= noop_fsync,
 971};
 972
 973/**
 974 * __kernfs_create_file - kernfs internal function to create a file
 975 * @parent: directory to create the file in
 976 * @name: name of the file
 977 * @mode: mode of the file
 978 * @uid: uid of the file
 979 * @gid: gid of the file
 980 * @size: size of the file
 981 * @ops: kernfs operations for the file
 982 * @priv: private data for the file
 983 * @ns: optional namespace tag of the file
 984 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
 985 *
 986 * Returns the created node on success, ERR_PTR() value on error.
 987 */
 988struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
 989					 const char *name,
 990					 umode_t mode, kuid_t uid, kgid_t gid,
 991					 loff_t size,
 992					 const struct kernfs_ops *ops,
 993					 void *priv, const void *ns,
 994					 struct lock_class_key *key)
 995{
 996	struct kernfs_node *kn;
 997	unsigned flags;
 998	int rc;
 999
1000	flags = KERNFS_FILE;
1001
1002	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1003			     uid, gid, flags);
1004	if (!kn)
1005		return ERR_PTR(-ENOMEM);
1006
1007	kn->attr.ops = ops;
1008	kn->attr.size = size;
1009	kn->ns = ns;
1010	kn->priv = priv;
1011
1012#ifdef CONFIG_DEBUG_LOCK_ALLOC
1013	if (key) {
1014		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1015		kn->flags |= KERNFS_LOCKDEP;
1016	}
1017#endif
1018
1019	/*
1020	 * kn->attr.ops is accesible only while holding active ref.  We
1021	 * need to know whether some ops are implemented outside active
1022	 * ref.  Cache their existence in flags.
1023	 */
1024	if (ops->seq_show)
1025		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1026	if (ops->mmap)
1027		kn->flags |= KERNFS_HAS_MMAP;
1028	if (ops->release)
1029		kn->flags |= KERNFS_HAS_RELEASE;
1030
1031	rc = kernfs_add_one(kn);
1032	if (rc) {
1033		kernfs_put(kn);
1034		return ERR_PTR(rc);
1035	}
1036	return kn;
1037}