Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/aer.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/ip.h>
11
12#include <net/ipv6.h>
13
14#include "igc.h"
15#include "igc_hw.h"
16
17#define DRV_VERSION "0.0.1-k"
18#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
19
20#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
21
22static int debug = -1;
23
24MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
25MODULE_DESCRIPTION(DRV_SUMMARY);
26MODULE_LICENSE("GPL v2");
27MODULE_VERSION(DRV_VERSION);
28module_param(debug, int, 0);
29MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
30
31char igc_driver_name[] = "igc";
32char igc_driver_version[] = DRV_VERSION;
33static const char igc_driver_string[] = DRV_SUMMARY;
34static const char igc_copyright[] =
35 "Copyright(c) 2018 Intel Corporation.";
36
37static const struct igc_info *igc_info_tbl[] = {
38 [board_base] = &igc_base_info,
39};
40
41static const struct pci_device_id igc_pci_tbl[] = {
42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 /* required last entry */
48 {0, }
49};
50
51MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
52
53/* forward declaration */
54static void igc_clean_tx_ring(struct igc_ring *tx_ring);
55static int igc_sw_init(struct igc_adapter *);
56static void igc_configure(struct igc_adapter *adapter);
57static void igc_power_down_link(struct igc_adapter *adapter);
58static void igc_set_default_mac_filter(struct igc_adapter *adapter);
59static void igc_set_rx_mode(struct net_device *netdev);
60static void igc_write_itr(struct igc_q_vector *q_vector);
61static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
62static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
63static void igc_set_interrupt_capability(struct igc_adapter *adapter,
64 bool msix);
65static void igc_free_q_vectors(struct igc_adapter *adapter);
66static void igc_irq_disable(struct igc_adapter *adapter);
67static void igc_irq_enable(struct igc_adapter *adapter);
68static void igc_configure_msix(struct igc_adapter *adapter);
69static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
70 struct igc_rx_buffer *bi);
71
72enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77};
78
79void igc_reset(struct igc_adapter *adapter)
80{
81 struct pci_dev *pdev = adapter->pdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 dev_err(&pdev->dev, "Hardware Error\n");
109
110 if (!netif_running(adapter->netdev))
111 igc_power_down_link(adapter);
112
113 igc_get_phy_info(hw);
114}
115
116/**
117 * igc_power_up_link - Power up the phy/serdes link
118 * @adapter: address of board private structure
119 */
120static void igc_power_up_link(struct igc_adapter *adapter)
121{
122 igc_reset_phy(&adapter->hw);
123
124 if (adapter->hw.phy.media_type == igc_media_type_copper)
125 igc_power_up_phy_copper(&adapter->hw);
126
127 igc_setup_link(&adapter->hw);
128}
129
130/**
131 * igc_power_down_link - Power down the phy/serdes link
132 * @adapter: address of board private structure
133 */
134static void igc_power_down_link(struct igc_adapter *adapter)
135{
136 if (adapter->hw.phy.media_type == igc_media_type_copper)
137 igc_power_down_phy_copper_base(&adapter->hw);
138}
139
140/**
141 * igc_release_hw_control - release control of the h/w to f/w
142 * @adapter: address of board private structure
143 *
144 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
145 * For ASF and Pass Through versions of f/w this means that the
146 * driver is no longer loaded.
147 */
148static void igc_release_hw_control(struct igc_adapter *adapter)
149{
150 struct igc_hw *hw = &adapter->hw;
151 u32 ctrl_ext;
152
153 /* Let firmware take over control of h/w */
154 ctrl_ext = rd32(IGC_CTRL_EXT);
155 wr32(IGC_CTRL_EXT,
156 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
157}
158
159/**
160 * igc_get_hw_control - get control of the h/w from f/w
161 * @adapter: address of board private structure
162 *
163 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
164 * For ASF and Pass Through versions of f/w this means that
165 * the driver is loaded.
166 */
167static void igc_get_hw_control(struct igc_adapter *adapter)
168{
169 struct igc_hw *hw = &adapter->hw;
170 u32 ctrl_ext;
171
172 /* Let firmware know the driver has taken over */
173 ctrl_ext = rd32(IGC_CTRL_EXT);
174 wr32(IGC_CTRL_EXT,
175 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
176}
177
178/**
179 * igc_free_tx_resources - Free Tx Resources per Queue
180 * @tx_ring: Tx descriptor ring for a specific queue
181 *
182 * Free all transmit software resources
183 */
184void igc_free_tx_resources(struct igc_ring *tx_ring)
185{
186 igc_clean_tx_ring(tx_ring);
187
188 vfree(tx_ring->tx_buffer_info);
189 tx_ring->tx_buffer_info = NULL;
190
191 /* if not set, then don't free */
192 if (!tx_ring->desc)
193 return;
194
195 dma_free_coherent(tx_ring->dev, tx_ring->size,
196 tx_ring->desc, tx_ring->dma);
197
198 tx_ring->desc = NULL;
199}
200
201/**
202 * igc_free_all_tx_resources - Free Tx Resources for All Queues
203 * @adapter: board private structure
204 *
205 * Free all transmit software resources
206 */
207static void igc_free_all_tx_resources(struct igc_adapter *adapter)
208{
209 int i;
210
211 for (i = 0; i < adapter->num_tx_queues; i++)
212 igc_free_tx_resources(adapter->tx_ring[i]);
213}
214
215/**
216 * igc_clean_tx_ring - Free Tx Buffers
217 * @tx_ring: ring to be cleaned
218 */
219static void igc_clean_tx_ring(struct igc_ring *tx_ring)
220{
221 u16 i = tx_ring->next_to_clean;
222 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
223
224 while (i != tx_ring->next_to_use) {
225 union igc_adv_tx_desc *eop_desc, *tx_desc;
226
227 /* Free all the Tx ring sk_buffs */
228 dev_kfree_skb_any(tx_buffer->skb);
229
230 /* unmap skb header data */
231 dma_unmap_single(tx_ring->dev,
232 dma_unmap_addr(tx_buffer, dma),
233 dma_unmap_len(tx_buffer, len),
234 DMA_TO_DEVICE);
235
236 /* check for eop_desc to determine the end of the packet */
237 eop_desc = tx_buffer->next_to_watch;
238 tx_desc = IGC_TX_DESC(tx_ring, i);
239
240 /* unmap remaining buffers */
241 while (tx_desc != eop_desc) {
242 tx_buffer++;
243 tx_desc++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 tx_desc = IGC_TX_DESC(tx_ring, 0);
249 }
250
251 /* unmap any remaining paged data */
252 if (dma_unmap_len(tx_buffer, len))
253 dma_unmap_page(tx_ring->dev,
254 dma_unmap_addr(tx_buffer, dma),
255 dma_unmap_len(tx_buffer, len),
256 DMA_TO_DEVICE);
257 }
258
259 /* move us one more past the eop_desc for start of next pkt */
260 tx_buffer++;
261 i++;
262 if (unlikely(i == tx_ring->count)) {
263 i = 0;
264 tx_buffer = tx_ring->tx_buffer_info;
265 }
266 }
267
268 /* reset BQL for queue */
269 netdev_tx_reset_queue(txring_txq(tx_ring));
270
271 /* reset next_to_use and next_to_clean */
272 tx_ring->next_to_use = 0;
273 tx_ring->next_to_clean = 0;
274}
275
276/**
277 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
278 * @adapter: board private structure
279 */
280static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
281{
282 int i;
283
284 for (i = 0; i < adapter->num_tx_queues; i++)
285 if (adapter->tx_ring[i])
286 igc_clean_tx_ring(adapter->tx_ring[i]);
287}
288
289/**
290 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
291 * @tx_ring: tx descriptor ring (for a specific queue) to setup
292 *
293 * Return 0 on success, negative on failure
294 */
295int igc_setup_tx_resources(struct igc_ring *tx_ring)
296{
297 struct device *dev = tx_ring->dev;
298 int size = 0;
299
300 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
301 tx_ring->tx_buffer_info = vzalloc(size);
302 if (!tx_ring->tx_buffer_info)
303 goto err;
304
305 /* round up to nearest 4K */
306 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
307 tx_ring->size = ALIGN(tx_ring->size, 4096);
308
309 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
310 &tx_ring->dma, GFP_KERNEL);
311
312 if (!tx_ring->desc)
313 goto err;
314
315 tx_ring->next_to_use = 0;
316 tx_ring->next_to_clean = 0;
317
318 return 0;
319
320err:
321 vfree(tx_ring->tx_buffer_info);
322 dev_err(dev,
323 "Unable to allocate memory for the transmit descriptor ring\n");
324 return -ENOMEM;
325}
326
327/**
328 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
329 * @adapter: board private structure
330 *
331 * Return 0 on success, negative on failure
332 */
333static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
334{
335 struct pci_dev *pdev = adapter->pdev;
336 int i, err = 0;
337
338 for (i = 0; i < adapter->num_tx_queues; i++) {
339 err = igc_setup_tx_resources(adapter->tx_ring[i]);
340 if (err) {
341 dev_err(&pdev->dev,
342 "Allocation for Tx Queue %u failed\n", i);
343 for (i--; i >= 0; i--)
344 igc_free_tx_resources(adapter->tx_ring[i]);
345 break;
346 }
347 }
348
349 return err;
350}
351
352/**
353 * igc_clean_rx_ring - Free Rx Buffers per Queue
354 * @rx_ring: ring to free buffers from
355 */
356static void igc_clean_rx_ring(struct igc_ring *rx_ring)
357{
358 u16 i = rx_ring->next_to_clean;
359
360 dev_kfree_skb(rx_ring->skb);
361 rx_ring->skb = NULL;
362
363 /* Free all the Rx ring sk_buffs */
364 while (i != rx_ring->next_to_alloc) {
365 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
366
367 /* Invalidate cache lines that may have been written to by
368 * device so that we avoid corrupting memory.
369 */
370 dma_sync_single_range_for_cpu(rx_ring->dev,
371 buffer_info->dma,
372 buffer_info->page_offset,
373 igc_rx_bufsz(rx_ring),
374 DMA_FROM_DEVICE);
375
376 /* free resources associated with mapping */
377 dma_unmap_page_attrs(rx_ring->dev,
378 buffer_info->dma,
379 igc_rx_pg_size(rx_ring),
380 DMA_FROM_DEVICE,
381 IGC_RX_DMA_ATTR);
382 __page_frag_cache_drain(buffer_info->page,
383 buffer_info->pagecnt_bias);
384
385 i++;
386 if (i == rx_ring->count)
387 i = 0;
388 }
389
390 rx_ring->next_to_alloc = 0;
391 rx_ring->next_to_clean = 0;
392 rx_ring->next_to_use = 0;
393}
394
395/**
396 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
397 * @adapter: board private structure
398 */
399static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
400{
401 int i;
402
403 for (i = 0; i < adapter->num_rx_queues; i++)
404 if (adapter->rx_ring[i])
405 igc_clean_rx_ring(adapter->rx_ring[i]);
406}
407
408/**
409 * igc_free_rx_resources - Free Rx Resources
410 * @rx_ring: ring to clean the resources from
411 *
412 * Free all receive software resources
413 */
414void igc_free_rx_resources(struct igc_ring *rx_ring)
415{
416 igc_clean_rx_ring(rx_ring);
417
418 vfree(rx_ring->rx_buffer_info);
419 rx_ring->rx_buffer_info = NULL;
420
421 /* if not set, then don't free */
422 if (!rx_ring->desc)
423 return;
424
425 dma_free_coherent(rx_ring->dev, rx_ring->size,
426 rx_ring->desc, rx_ring->dma);
427
428 rx_ring->desc = NULL;
429}
430
431/**
432 * igc_free_all_rx_resources - Free Rx Resources for All Queues
433 * @adapter: board private structure
434 *
435 * Free all receive software resources
436 */
437static void igc_free_all_rx_resources(struct igc_adapter *adapter)
438{
439 int i;
440
441 for (i = 0; i < adapter->num_rx_queues; i++)
442 igc_free_rx_resources(adapter->rx_ring[i]);
443}
444
445/**
446 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
447 * @rx_ring: rx descriptor ring (for a specific queue) to setup
448 *
449 * Returns 0 on success, negative on failure
450 */
451int igc_setup_rx_resources(struct igc_ring *rx_ring)
452{
453 struct device *dev = rx_ring->dev;
454 int size, desc_len;
455
456 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
457 rx_ring->rx_buffer_info = vzalloc(size);
458 if (!rx_ring->rx_buffer_info)
459 goto err;
460
461 desc_len = sizeof(union igc_adv_rx_desc);
462
463 /* Round up to nearest 4K */
464 rx_ring->size = rx_ring->count * desc_len;
465 rx_ring->size = ALIGN(rx_ring->size, 4096);
466
467 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
468 &rx_ring->dma, GFP_KERNEL);
469
470 if (!rx_ring->desc)
471 goto err;
472
473 rx_ring->next_to_alloc = 0;
474 rx_ring->next_to_clean = 0;
475 rx_ring->next_to_use = 0;
476
477 return 0;
478
479err:
480 vfree(rx_ring->rx_buffer_info);
481 rx_ring->rx_buffer_info = NULL;
482 dev_err(dev,
483 "Unable to allocate memory for the receive descriptor ring\n");
484 return -ENOMEM;
485}
486
487/**
488 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
489 * (Descriptors) for all queues
490 * @adapter: board private structure
491 *
492 * Return 0 on success, negative on failure
493 */
494static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
495{
496 struct pci_dev *pdev = adapter->pdev;
497 int i, err = 0;
498
499 for (i = 0; i < adapter->num_rx_queues; i++) {
500 err = igc_setup_rx_resources(adapter->rx_ring[i]);
501 if (err) {
502 dev_err(&pdev->dev,
503 "Allocation for Rx Queue %u failed\n", i);
504 for (i--; i >= 0; i--)
505 igc_free_rx_resources(adapter->rx_ring[i]);
506 break;
507 }
508 }
509
510 return err;
511}
512
513/**
514 * igc_configure_rx_ring - Configure a receive ring after Reset
515 * @adapter: board private structure
516 * @ring: receive ring to be configured
517 *
518 * Configure the Rx unit of the MAC after a reset.
519 */
520static void igc_configure_rx_ring(struct igc_adapter *adapter,
521 struct igc_ring *ring)
522{
523 struct igc_hw *hw = &adapter->hw;
524 union igc_adv_rx_desc *rx_desc;
525 int reg_idx = ring->reg_idx;
526 u32 srrctl = 0, rxdctl = 0;
527 u64 rdba = ring->dma;
528
529 /* disable the queue */
530 wr32(IGC_RXDCTL(reg_idx), 0);
531
532 /* Set DMA base address registers */
533 wr32(IGC_RDBAL(reg_idx),
534 rdba & 0x00000000ffffffffULL);
535 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
536 wr32(IGC_RDLEN(reg_idx),
537 ring->count * sizeof(union igc_adv_rx_desc));
538
539 /* initialize head and tail */
540 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
541 wr32(IGC_RDH(reg_idx), 0);
542 writel(0, ring->tail);
543
544 /* reset next-to- use/clean to place SW in sync with hardware */
545 ring->next_to_clean = 0;
546 ring->next_to_use = 0;
547
548 /* set descriptor configuration */
549 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
550 if (ring_uses_large_buffer(ring))
551 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
552 else
553 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
554 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
555
556 wr32(IGC_SRRCTL(reg_idx), srrctl);
557
558 rxdctl |= IGC_RX_PTHRESH;
559 rxdctl |= IGC_RX_HTHRESH << 8;
560 rxdctl |= IGC_RX_WTHRESH << 16;
561
562 /* initialize rx_buffer_info */
563 memset(ring->rx_buffer_info, 0,
564 sizeof(struct igc_rx_buffer) * ring->count);
565
566 /* initialize Rx descriptor 0 */
567 rx_desc = IGC_RX_DESC(ring, 0);
568 rx_desc->wb.upper.length = 0;
569
570 /* enable receive descriptor fetching */
571 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
572
573 wr32(IGC_RXDCTL(reg_idx), rxdctl);
574}
575
576/**
577 * igc_configure_rx - Configure receive Unit after Reset
578 * @adapter: board private structure
579 *
580 * Configure the Rx unit of the MAC after a reset.
581 */
582static void igc_configure_rx(struct igc_adapter *adapter)
583{
584 int i;
585
586 /* Setup the HW Rx Head and Tail Descriptor Pointers and
587 * the Base and Length of the Rx Descriptor Ring
588 */
589 for (i = 0; i < adapter->num_rx_queues; i++)
590 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
591}
592
593/**
594 * igc_configure_tx_ring - Configure transmit ring after Reset
595 * @adapter: board private structure
596 * @ring: tx ring to configure
597 *
598 * Configure a transmit ring after a reset.
599 */
600static void igc_configure_tx_ring(struct igc_adapter *adapter,
601 struct igc_ring *ring)
602{
603 struct igc_hw *hw = &adapter->hw;
604 int reg_idx = ring->reg_idx;
605 u64 tdba = ring->dma;
606 u32 txdctl = 0;
607
608 /* disable the queue */
609 wr32(IGC_TXDCTL(reg_idx), 0);
610 wrfl();
611 mdelay(10);
612
613 wr32(IGC_TDLEN(reg_idx),
614 ring->count * sizeof(union igc_adv_tx_desc));
615 wr32(IGC_TDBAL(reg_idx),
616 tdba & 0x00000000ffffffffULL);
617 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
618
619 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
620 wr32(IGC_TDH(reg_idx), 0);
621 writel(0, ring->tail);
622
623 txdctl |= IGC_TX_PTHRESH;
624 txdctl |= IGC_TX_HTHRESH << 8;
625 txdctl |= IGC_TX_WTHRESH << 16;
626
627 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
628 wr32(IGC_TXDCTL(reg_idx), txdctl);
629}
630
631/**
632 * igc_configure_tx - Configure transmit Unit after Reset
633 * @adapter: board private structure
634 *
635 * Configure the Tx unit of the MAC after a reset.
636 */
637static void igc_configure_tx(struct igc_adapter *adapter)
638{
639 int i;
640
641 for (i = 0; i < adapter->num_tx_queues; i++)
642 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
643}
644
645/**
646 * igc_setup_mrqc - configure the multiple receive queue control registers
647 * @adapter: Board private structure
648 */
649static void igc_setup_mrqc(struct igc_adapter *adapter)
650{
651 struct igc_hw *hw = &adapter->hw;
652 u32 j, num_rx_queues;
653 u32 mrqc, rxcsum;
654 u32 rss_key[10];
655
656 netdev_rss_key_fill(rss_key, sizeof(rss_key));
657 for (j = 0; j < 10; j++)
658 wr32(IGC_RSSRK(j), rss_key[j]);
659
660 num_rx_queues = adapter->rss_queues;
661
662 if (adapter->rss_indir_tbl_init != num_rx_queues) {
663 for (j = 0; j < IGC_RETA_SIZE; j++)
664 adapter->rss_indir_tbl[j] =
665 (j * num_rx_queues) / IGC_RETA_SIZE;
666 adapter->rss_indir_tbl_init = num_rx_queues;
667 }
668 igc_write_rss_indir_tbl(adapter);
669
670 /* Disable raw packet checksumming so that RSS hash is placed in
671 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
672 * offloads as they are enabled by default
673 */
674 rxcsum = rd32(IGC_RXCSUM);
675 rxcsum |= IGC_RXCSUM_PCSD;
676
677 /* Enable Receive Checksum Offload for SCTP */
678 rxcsum |= IGC_RXCSUM_CRCOFL;
679
680 /* Don't need to set TUOFL or IPOFL, they default to 1 */
681 wr32(IGC_RXCSUM, rxcsum);
682
683 /* Generate RSS hash based on packet types, TCP/UDP
684 * port numbers and/or IPv4/v6 src and dst addresses
685 */
686 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
687 IGC_MRQC_RSS_FIELD_IPV4_TCP |
688 IGC_MRQC_RSS_FIELD_IPV6 |
689 IGC_MRQC_RSS_FIELD_IPV6_TCP |
690 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
691
692 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
693 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
694 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
695 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
696
697 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
698
699 wr32(IGC_MRQC, mrqc);
700}
701
702/**
703 * igc_setup_rctl - configure the receive control registers
704 * @adapter: Board private structure
705 */
706static void igc_setup_rctl(struct igc_adapter *adapter)
707{
708 struct igc_hw *hw = &adapter->hw;
709 u32 rctl;
710
711 rctl = rd32(IGC_RCTL);
712
713 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
714 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
715
716 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
717 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
718
719 /* enable stripping of CRC. Newer features require
720 * that the HW strips the CRC.
721 */
722 rctl |= IGC_RCTL_SECRC;
723
724 /* disable store bad packets and clear size bits. */
725 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
726
727 /* enable LPE to allow for reception of jumbo frames */
728 rctl |= IGC_RCTL_LPE;
729
730 /* disable queue 0 to prevent tail write w/o re-config */
731 wr32(IGC_RXDCTL(0), 0);
732
733 /* This is useful for sniffing bad packets. */
734 if (adapter->netdev->features & NETIF_F_RXALL) {
735 /* UPE and MPE will be handled by normal PROMISC logic
736 * in set_rx_mode
737 */
738 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
739 IGC_RCTL_BAM | /* RX All Bcast Pkts */
740 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
741
742 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
743 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
744 }
745
746 wr32(IGC_RCTL, rctl);
747}
748
749/**
750 * igc_setup_tctl - configure the transmit control registers
751 * @adapter: Board private structure
752 */
753static void igc_setup_tctl(struct igc_adapter *adapter)
754{
755 struct igc_hw *hw = &adapter->hw;
756 u32 tctl;
757
758 /* disable queue 0 which icould be enabled by default */
759 wr32(IGC_TXDCTL(0), 0);
760
761 /* Program the Transmit Control Register */
762 tctl = rd32(IGC_TCTL);
763 tctl &= ~IGC_TCTL_CT;
764 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
765 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
766
767 /* Enable transmits */
768 tctl |= IGC_TCTL_EN;
769
770 wr32(IGC_TCTL, tctl);
771}
772
773/**
774 * igc_set_mac - Change the Ethernet Address of the NIC
775 * @netdev: network interface device structure
776 * @p: pointer to an address structure
777 *
778 * Returns 0 on success, negative on failure
779 */
780static int igc_set_mac(struct net_device *netdev, void *p)
781{
782 struct igc_adapter *adapter = netdev_priv(netdev);
783 struct igc_hw *hw = &adapter->hw;
784 struct sockaddr *addr = p;
785
786 if (!is_valid_ether_addr(addr->sa_data))
787 return -EADDRNOTAVAIL;
788
789 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
790 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
791
792 /* set the correct pool for the new PF MAC address in entry 0 */
793 igc_set_default_mac_filter(adapter);
794
795 return 0;
796}
797
798static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
799 struct igc_tx_buffer *first,
800 u32 vlan_macip_lens, u32 type_tucmd,
801 u32 mss_l4len_idx)
802{
803 struct igc_adv_tx_context_desc *context_desc;
804 u16 i = tx_ring->next_to_use;
805 struct timespec64 ts;
806
807 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
808
809 i++;
810 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
811
812 /* set bits to identify this as an advanced context descriptor */
813 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
814
815 /* For 82575, context index must be unique per ring. */
816 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
817 mss_l4len_idx |= tx_ring->reg_idx << 4;
818
819 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
820 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
821 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
822
823 /* We assume there is always a valid Tx time available. Invalid times
824 * should have been handled by the upper layers.
825 */
826 if (tx_ring->launchtime_enable) {
827 ts = ktime_to_timespec64(first->skb->tstamp);
828 first->skb->tstamp = ktime_set(0, 0);
829 context_desc->launch_time = cpu_to_le32(ts.tv_nsec / 32);
830 } else {
831 context_desc->launch_time = 0;
832 }
833}
834
835static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
836{
837 unsigned int offset = 0;
838
839 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
840
841 return offset == skb_checksum_start_offset(skb);
842}
843
844static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
845{
846 struct sk_buff *skb = first->skb;
847 u32 vlan_macip_lens = 0;
848 u32 type_tucmd = 0;
849
850 if (skb->ip_summed != CHECKSUM_PARTIAL) {
851csum_failed:
852 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
853 !tx_ring->launchtime_enable)
854 return;
855 goto no_csum;
856 }
857
858 switch (skb->csum_offset) {
859 case offsetof(struct tcphdr, check):
860 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
861 /* fall through */
862 case offsetof(struct udphdr, check):
863 break;
864 case offsetof(struct sctphdr, checksum):
865 /* validate that this is actually an SCTP request */
866 if ((first->protocol == htons(ETH_P_IP) &&
867 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
868 (first->protocol == htons(ETH_P_IPV6) &&
869 igc_ipv6_csum_is_sctp(skb))) {
870 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
871 break;
872 }
873 /* fall through */
874 default:
875 skb_checksum_help(skb);
876 goto csum_failed;
877 }
878
879 /* update TX checksum flag */
880 first->tx_flags |= IGC_TX_FLAGS_CSUM;
881 vlan_macip_lens = skb_checksum_start_offset(skb) -
882 skb_network_offset(skb);
883no_csum:
884 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
885 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
886
887 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
888}
889
890static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
891{
892 struct net_device *netdev = tx_ring->netdev;
893
894 netif_stop_subqueue(netdev, tx_ring->queue_index);
895
896 /* memory barriier comment */
897 smp_mb();
898
899 /* We need to check again in a case another CPU has just
900 * made room available.
901 */
902 if (igc_desc_unused(tx_ring) < size)
903 return -EBUSY;
904
905 /* A reprieve! */
906 netif_wake_subqueue(netdev, tx_ring->queue_index);
907
908 u64_stats_update_begin(&tx_ring->tx_syncp2);
909 tx_ring->tx_stats.restart_queue2++;
910 u64_stats_update_end(&tx_ring->tx_syncp2);
911
912 return 0;
913}
914
915static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
916{
917 if (igc_desc_unused(tx_ring) >= size)
918 return 0;
919 return __igc_maybe_stop_tx(tx_ring, size);
920}
921
922static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
923{
924 /* set type for advanced descriptor with frame checksum insertion */
925 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
926 IGC_ADVTXD_DCMD_DEXT |
927 IGC_ADVTXD_DCMD_IFCS;
928
929 return cmd_type;
930}
931
932static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
933 union igc_adv_tx_desc *tx_desc,
934 u32 tx_flags, unsigned int paylen)
935{
936 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
937
938 /* insert L4 checksum */
939 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
940 ((IGC_TXD_POPTS_TXSM << 8) /
941 IGC_TX_FLAGS_CSUM);
942
943 /* insert IPv4 checksum */
944 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
945 (((IGC_TXD_POPTS_IXSM << 8)) /
946 IGC_TX_FLAGS_IPV4);
947
948 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
949}
950
951static int igc_tx_map(struct igc_ring *tx_ring,
952 struct igc_tx_buffer *first,
953 const u8 hdr_len)
954{
955 struct sk_buff *skb = first->skb;
956 struct igc_tx_buffer *tx_buffer;
957 union igc_adv_tx_desc *tx_desc;
958 u32 tx_flags = first->tx_flags;
959 skb_frag_t *frag;
960 u16 i = tx_ring->next_to_use;
961 unsigned int data_len, size;
962 dma_addr_t dma;
963 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
964
965 tx_desc = IGC_TX_DESC(tx_ring, i);
966
967 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
968
969 size = skb_headlen(skb);
970 data_len = skb->data_len;
971
972 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
973
974 tx_buffer = first;
975
976 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
977 if (dma_mapping_error(tx_ring->dev, dma))
978 goto dma_error;
979
980 /* record length, and DMA address */
981 dma_unmap_len_set(tx_buffer, len, size);
982 dma_unmap_addr_set(tx_buffer, dma, dma);
983
984 tx_desc->read.buffer_addr = cpu_to_le64(dma);
985
986 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
987 tx_desc->read.cmd_type_len =
988 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
989
990 i++;
991 tx_desc++;
992 if (i == tx_ring->count) {
993 tx_desc = IGC_TX_DESC(tx_ring, 0);
994 i = 0;
995 }
996 tx_desc->read.olinfo_status = 0;
997
998 dma += IGC_MAX_DATA_PER_TXD;
999 size -= IGC_MAX_DATA_PER_TXD;
1000
1001 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1002 }
1003
1004 if (likely(!data_len))
1005 break;
1006
1007 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1008
1009 i++;
1010 tx_desc++;
1011 if (i == tx_ring->count) {
1012 tx_desc = IGC_TX_DESC(tx_ring, 0);
1013 i = 0;
1014 }
1015 tx_desc->read.olinfo_status = 0;
1016
1017 size = skb_frag_size(frag);
1018 data_len -= size;
1019
1020 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1021 size, DMA_TO_DEVICE);
1022
1023 tx_buffer = &tx_ring->tx_buffer_info[i];
1024 }
1025
1026 /* write last descriptor with RS and EOP bits */
1027 cmd_type |= size | IGC_TXD_DCMD;
1028 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1029
1030 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1031
1032 /* set the timestamp */
1033 first->time_stamp = jiffies;
1034
1035 skb_tx_timestamp(skb);
1036
1037 /* Force memory writes to complete before letting h/w know there
1038 * are new descriptors to fetch. (Only applicable for weak-ordered
1039 * memory model archs, such as IA-64).
1040 *
1041 * We also need this memory barrier to make certain all of the
1042 * status bits have been updated before next_to_watch is written.
1043 */
1044 wmb();
1045
1046 /* set next_to_watch value indicating a packet is present */
1047 first->next_to_watch = tx_desc;
1048
1049 i++;
1050 if (i == tx_ring->count)
1051 i = 0;
1052
1053 tx_ring->next_to_use = i;
1054
1055 /* Make sure there is space in the ring for the next send. */
1056 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1057
1058 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1059 writel(i, tx_ring->tail);
1060 }
1061
1062 return 0;
1063dma_error:
1064 dev_err(tx_ring->dev, "TX DMA map failed\n");
1065 tx_buffer = &tx_ring->tx_buffer_info[i];
1066
1067 /* clear dma mappings for failed tx_buffer_info map */
1068 while (tx_buffer != first) {
1069 if (dma_unmap_len(tx_buffer, len))
1070 dma_unmap_page(tx_ring->dev,
1071 dma_unmap_addr(tx_buffer, dma),
1072 dma_unmap_len(tx_buffer, len),
1073 DMA_TO_DEVICE);
1074 dma_unmap_len_set(tx_buffer, len, 0);
1075
1076 if (i-- == 0)
1077 i += tx_ring->count;
1078 tx_buffer = &tx_ring->tx_buffer_info[i];
1079 }
1080
1081 if (dma_unmap_len(tx_buffer, len))
1082 dma_unmap_single(tx_ring->dev,
1083 dma_unmap_addr(tx_buffer, dma),
1084 dma_unmap_len(tx_buffer, len),
1085 DMA_TO_DEVICE);
1086 dma_unmap_len_set(tx_buffer, len, 0);
1087
1088 dev_kfree_skb_any(tx_buffer->skb);
1089 tx_buffer->skb = NULL;
1090
1091 tx_ring->next_to_use = i;
1092
1093 return -1;
1094}
1095
1096static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1097 struct igc_ring *tx_ring)
1098{
1099 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1100 __be16 protocol = vlan_get_protocol(skb);
1101 struct igc_tx_buffer *first;
1102 u32 tx_flags = 0;
1103 unsigned short f;
1104 u8 hdr_len = 0;
1105
1106 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1107 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1108 * + 2 desc gap to keep tail from touching head,
1109 * + 1 desc for context descriptor,
1110 * otherwise try next time
1111 */
1112 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1113 count += TXD_USE_COUNT(skb_frag_size(
1114 &skb_shinfo(skb)->frags[f]));
1115
1116 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1117 /* this is a hard error */
1118 return NETDEV_TX_BUSY;
1119 }
1120
1121 /* record the location of the first descriptor for this packet */
1122 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1123 first->skb = skb;
1124 first->bytecount = skb->len;
1125 first->gso_segs = 1;
1126
1127 /* record initial flags and protocol */
1128 first->tx_flags = tx_flags;
1129 first->protocol = protocol;
1130
1131 igc_tx_csum(tx_ring, first);
1132
1133 igc_tx_map(tx_ring, first, hdr_len);
1134
1135 return NETDEV_TX_OK;
1136}
1137
1138static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1139 struct sk_buff *skb)
1140{
1141 unsigned int r_idx = skb->queue_mapping;
1142
1143 if (r_idx >= adapter->num_tx_queues)
1144 r_idx = r_idx % adapter->num_tx_queues;
1145
1146 return adapter->tx_ring[r_idx];
1147}
1148
1149static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1150 struct net_device *netdev)
1151{
1152 struct igc_adapter *adapter = netdev_priv(netdev);
1153
1154 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1155 * in order to meet this minimum size requirement.
1156 */
1157 if (skb->len < 17) {
1158 if (skb_padto(skb, 17))
1159 return NETDEV_TX_OK;
1160 skb->len = 17;
1161 }
1162
1163 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1164}
1165
1166static inline void igc_rx_hash(struct igc_ring *ring,
1167 union igc_adv_rx_desc *rx_desc,
1168 struct sk_buff *skb)
1169{
1170 if (ring->netdev->features & NETIF_F_RXHASH)
1171 skb_set_hash(skb,
1172 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1173 PKT_HASH_TYPE_L3);
1174}
1175
1176/**
1177 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1178 * @rx_ring: rx descriptor ring packet is being transacted on
1179 * @rx_desc: pointer to the EOP Rx descriptor
1180 * @skb: pointer to current skb being populated
1181 *
1182 * This function checks the ring, descriptor, and packet information in
1183 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1184 * other fields within the skb.
1185 */
1186static void igc_process_skb_fields(struct igc_ring *rx_ring,
1187 union igc_adv_rx_desc *rx_desc,
1188 struct sk_buff *skb)
1189{
1190 igc_rx_hash(rx_ring, rx_desc, skb);
1191
1192 skb_record_rx_queue(skb, rx_ring->queue_index);
1193
1194 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1195}
1196
1197static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1198 const unsigned int size)
1199{
1200 struct igc_rx_buffer *rx_buffer;
1201
1202 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1203 prefetchw(rx_buffer->page);
1204
1205 /* we are reusing so sync this buffer for CPU use */
1206 dma_sync_single_range_for_cpu(rx_ring->dev,
1207 rx_buffer->dma,
1208 rx_buffer->page_offset,
1209 size,
1210 DMA_FROM_DEVICE);
1211
1212 rx_buffer->pagecnt_bias--;
1213
1214 return rx_buffer;
1215}
1216
1217/**
1218 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1219 * @rx_ring: rx descriptor ring to transact packets on
1220 * @rx_buffer: buffer containing page to add
1221 * @skb: sk_buff to place the data into
1222 * @size: size of buffer to be added
1223 *
1224 * This function will add the data contained in rx_buffer->page to the skb.
1225 */
1226static void igc_add_rx_frag(struct igc_ring *rx_ring,
1227 struct igc_rx_buffer *rx_buffer,
1228 struct sk_buff *skb,
1229 unsigned int size)
1230{
1231#if (PAGE_SIZE < 8192)
1232 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1233
1234 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1235 rx_buffer->page_offset, size, truesize);
1236 rx_buffer->page_offset ^= truesize;
1237#else
1238 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1239 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1240 SKB_DATA_ALIGN(size);
1241 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1242 rx_buffer->page_offset, size, truesize);
1243 rx_buffer->page_offset += truesize;
1244#endif
1245}
1246
1247static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1248 struct igc_rx_buffer *rx_buffer,
1249 union igc_adv_rx_desc *rx_desc,
1250 unsigned int size)
1251{
1252 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1253#if (PAGE_SIZE < 8192)
1254 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1255#else
1256 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1257 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1258#endif
1259 struct sk_buff *skb;
1260
1261 /* prefetch first cache line of first page */
1262 prefetch(va);
1263#if L1_CACHE_BYTES < 128
1264 prefetch(va + L1_CACHE_BYTES);
1265#endif
1266
1267 /* build an skb around the page buffer */
1268 skb = build_skb(va - IGC_SKB_PAD, truesize);
1269 if (unlikely(!skb))
1270 return NULL;
1271
1272 /* update pointers within the skb to store the data */
1273 skb_reserve(skb, IGC_SKB_PAD);
1274 __skb_put(skb, size);
1275
1276 /* update buffer offset */
1277#if (PAGE_SIZE < 8192)
1278 rx_buffer->page_offset ^= truesize;
1279#else
1280 rx_buffer->page_offset += truesize;
1281#endif
1282
1283 return skb;
1284}
1285
1286static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1287 struct igc_rx_buffer *rx_buffer,
1288 union igc_adv_rx_desc *rx_desc,
1289 unsigned int size)
1290{
1291 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1292#if (PAGE_SIZE < 8192)
1293 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1294#else
1295 unsigned int truesize = SKB_DATA_ALIGN(size);
1296#endif
1297 unsigned int headlen;
1298 struct sk_buff *skb;
1299
1300 /* prefetch first cache line of first page */
1301 prefetch(va);
1302#if L1_CACHE_BYTES < 128
1303 prefetch(va + L1_CACHE_BYTES);
1304#endif
1305
1306 /* allocate a skb to store the frags */
1307 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1308 if (unlikely(!skb))
1309 return NULL;
1310
1311 /* Determine available headroom for copy */
1312 headlen = size;
1313 if (headlen > IGC_RX_HDR_LEN)
1314 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1315
1316 /* align pull length to size of long to optimize memcpy performance */
1317 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1318
1319 /* update all of the pointers */
1320 size -= headlen;
1321 if (size) {
1322 skb_add_rx_frag(skb, 0, rx_buffer->page,
1323 (va + headlen) - page_address(rx_buffer->page),
1324 size, truesize);
1325#if (PAGE_SIZE < 8192)
1326 rx_buffer->page_offset ^= truesize;
1327#else
1328 rx_buffer->page_offset += truesize;
1329#endif
1330 } else {
1331 rx_buffer->pagecnt_bias++;
1332 }
1333
1334 return skb;
1335}
1336
1337/**
1338 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1339 * @rx_ring: rx descriptor ring to store buffers on
1340 * @old_buff: donor buffer to have page reused
1341 *
1342 * Synchronizes page for reuse by the adapter
1343 */
1344static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1345 struct igc_rx_buffer *old_buff)
1346{
1347 u16 nta = rx_ring->next_to_alloc;
1348 struct igc_rx_buffer *new_buff;
1349
1350 new_buff = &rx_ring->rx_buffer_info[nta];
1351
1352 /* update, and store next to alloc */
1353 nta++;
1354 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1355
1356 /* Transfer page from old buffer to new buffer.
1357 * Move each member individually to avoid possible store
1358 * forwarding stalls.
1359 */
1360 new_buff->dma = old_buff->dma;
1361 new_buff->page = old_buff->page;
1362 new_buff->page_offset = old_buff->page_offset;
1363 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1364}
1365
1366static inline bool igc_page_is_reserved(struct page *page)
1367{
1368 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1369}
1370
1371static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1372{
1373 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1374 struct page *page = rx_buffer->page;
1375
1376 /* avoid re-using remote pages */
1377 if (unlikely(igc_page_is_reserved(page)))
1378 return false;
1379
1380#if (PAGE_SIZE < 8192)
1381 /* if we are only owner of page we can reuse it */
1382 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1383 return false;
1384#else
1385#define IGC_LAST_OFFSET \
1386 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1387
1388 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1389 return false;
1390#endif
1391
1392 /* If we have drained the page fragment pool we need to update
1393 * the pagecnt_bias and page count so that we fully restock the
1394 * number of references the driver holds.
1395 */
1396 if (unlikely(!pagecnt_bias)) {
1397 page_ref_add(page, USHRT_MAX);
1398 rx_buffer->pagecnt_bias = USHRT_MAX;
1399 }
1400
1401 return true;
1402}
1403
1404/**
1405 * igc_is_non_eop - process handling of non-EOP buffers
1406 * @rx_ring: Rx ring being processed
1407 * @rx_desc: Rx descriptor for current buffer
1408 * @skb: current socket buffer containing buffer in progress
1409 *
1410 * This function updates next to clean. If the buffer is an EOP buffer
1411 * this function exits returning false, otherwise it will place the
1412 * sk_buff in the next buffer to be chained and return true indicating
1413 * that this is in fact a non-EOP buffer.
1414 */
1415static bool igc_is_non_eop(struct igc_ring *rx_ring,
1416 union igc_adv_rx_desc *rx_desc)
1417{
1418 u32 ntc = rx_ring->next_to_clean + 1;
1419
1420 /* fetch, update, and store next to clean */
1421 ntc = (ntc < rx_ring->count) ? ntc : 0;
1422 rx_ring->next_to_clean = ntc;
1423
1424 prefetch(IGC_RX_DESC(rx_ring, ntc));
1425
1426 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1427 return false;
1428
1429 return true;
1430}
1431
1432/**
1433 * igc_cleanup_headers - Correct corrupted or empty headers
1434 * @rx_ring: rx descriptor ring packet is being transacted on
1435 * @rx_desc: pointer to the EOP Rx descriptor
1436 * @skb: pointer to current skb being fixed
1437 *
1438 * Address the case where we are pulling data in on pages only
1439 * and as such no data is present in the skb header.
1440 *
1441 * In addition if skb is not at least 60 bytes we need to pad it so that
1442 * it is large enough to qualify as a valid Ethernet frame.
1443 *
1444 * Returns true if an error was encountered and skb was freed.
1445 */
1446static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1447 union igc_adv_rx_desc *rx_desc,
1448 struct sk_buff *skb)
1449{
1450 if (unlikely((igc_test_staterr(rx_desc,
1451 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1452 struct net_device *netdev = rx_ring->netdev;
1453
1454 if (!(netdev->features & NETIF_F_RXALL)) {
1455 dev_kfree_skb_any(skb);
1456 return true;
1457 }
1458 }
1459
1460 /* if eth_skb_pad returns an error the skb was freed */
1461 if (eth_skb_pad(skb))
1462 return true;
1463
1464 return false;
1465}
1466
1467static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1468 struct igc_rx_buffer *rx_buffer)
1469{
1470 if (igc_can_reuse_rx_page(rx_buffer)) {
1471 /* hand second half of page back to the ring */
1472 igc_reuse_rx_page(rx_ring, rx_buffer);
1473 } else {
1474 /* We are not reusing the buffer so unmap it and free
1475 * any references we are holding to it
1476 */
1477 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1478 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1479 IGC_RX_DMA_ATTR);
1480 __page_frag_cache_drain(rx_buffer->page,
1481 rx_buffer->pagecnt_bias);
1482 }
1483
1484 /* clear contents of rx_buffer */
1485 rx_buffer->page = NULL;
1486}
1487
1488/**
1489 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1490 * @adapter: address of board private structure
1491 */
1492static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1493{
1494 union igc_adv_rx_desc *rx_desc;
1495 u16 i = rx_ring->next_to_use;
1496 struct igc_rx_buffer *bi;
1497 u16 bufsz;
1498
1499 /* nothing to do */
1500 if (!cleaned_count)
1501 return;
1502
1503 rx_desc = IGC_RX_DESC(rx_ring, i);
1504 bi = &rx_ring->rx_buffer_info[i];
1505 i -= rx_ring->count;
1506
1507 bufsz = igc_rx_bufsz(rx_ring);
1508
1509 do {
1510 if (!igc_alloc_mapped_page(rx_ring, bi))
1511 break;
1512
1513 /* sync the buffer for use by the device */
1514 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1515 bi->page_offset, bufsz,
1516 DMA_FROM_DEVICE);
1517
1518 /* Refresh the desc even if buffer_addrs didn't change
1519 * because each write-back erases this info.
1520 */
1521 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1522
1523 rx_desc++;
1524 bi++;
1525 i++;
1526 if (unlikely(!i)) {
1527 rx_desc = IGC_RX_DESC(rx_ring, 0);
1528 bi = rx_ring->rx_buffer_info;
1529 i -= rx_ring->count;
1530 }
1531
1532 /* clear the length for the next_to_use descriptor */
1533 rx_desc->wb.upper.length = 0;
1534
1535 cleaned_count--;
1536 } while (cleaned_count);
1537
1538 i += rx_ring->count;
1539
1540 if (rx_ring->next_to_use != i) {
1541 /* record the next descriptor to use */
1542 rx_ring->next_to_use = i;
1543
1544 /* update next to alloc since we have filled the ring */
1545 rx_ring->next_to_alloc = i;
1546
1547 /* Force memory writes to complete before letting h/w
1548 * know there are new descriptors to fetch. (Only
1549 * applicable for weak-ordered memory model archs,
1550 * such as IA-64).
1551 */
1552 wmb();
1553 writel(i, rx_ring->tail);
1554 }
1555}
1556
1557static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1558{
1559 unsigned int total_bytes = 0, total_packets = 0;
1560 struct igc_ring *rx_ring = q_vector->rx.ring;
1561 struct sk_buff *skb = rx_ring->skb;
1562 u16 cleaned_count = igc_desc_unused(rx_ring);
1563
1564 while (likely(total_packets < budget)) {
1565 union igc_adv_rx_desc *rx_desc;
1566 struct igc_rx_buffer *rx_buffer;
1567 unsigned int size;
1568
1569 /* return some buffers to hardware, one at a time is too slow */
1570 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1571 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1572 cleaned_count = 0;
1573 }
1574
1575 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1576 size = le16_to_cpu(rx_desc->wb.upper.length);
1577 if (!size)
1578 break;
1579
1580 /* This memory barrier is needed to keep us from reading
1581 * any other fields out of the rx_desc until we know the
1582 * descriptor has been written back
1583 */
1584 dma_rmb();
1585
1586 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1587
1588 /* retrieve a buffer from the ring */
1589 if (skb)
1590 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1591 else if (ring_uses_build_skb(rx_ring))
1592 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1593 else
1594 skb = igc_construct_skb(rx_ring, rx_buffer,
1595 rx_desc, size);
1596
1597 /* exit if we failed to retrieve a buffer */
1598 if (!skb) {
1599 rx_ring->rx_stats.alloc_failed++;
1600 rx_buffer->pagecnt_bias++;
1601 break;
1602 }
1603
1604 igc_put_rx_buffer(rx_ring, rx_buffer);
1605 cleaned_count++;
1606
1607 /* fetch next buffer in frame if non-eop */
1608 if (igc_is_non_eop(rx_ring, rx_desc))
1609 continue;
1610
1611 /* verify the packet layout is correct */
1612 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1613 skb = NULL;
1614 continue;
1615 }
1616
1617 /* probably a little skewed due to removing CRC */
1618 total_bytes += skb->len;
1619
1620 /* populate checksum, timestamp, VLAN, and protocol */
1621 igc_process_skb_fields(rx_ring, rx_desc, skb);
1622
1623 napi_gro_receive(&q_vector->napi, skb);
1624
1625 /* reset skb pointer */
1626 skb = NULL;
1627
1628 /* update budget accounting */
1629 total_packets++;
1630 }
1631
1632 /* place incomplete frames back on ring for completion */
1633 rx_ring->skb = skb;
1634
1635 u64_stats_update_begin(&rx_ring->rx_syncp);
1636 rx_ring->rx_stats.packets += total_packets;
1637 rx_ring->rx_stats.bytes += total_bytes;
1638 u64_stats_update_end(&rx_ring->rx_syncp);
1639 q_vector->rx.total_packets += total_packets;
1640 q_vector->rx.total_bytes += total_bytes;
1641
1642 if (cleaned_count)
1643 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1644
1645 return total_packets;
1646}
1647
1648static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1649{
1650 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1651}
1652
1653static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1654 struct igc_rx_buffer *bi)
1655{
1656 struct page *page = bi->page;
1657 dma_addr_t dma;
1658
1659 /* since we are recycling buffers we should seldom need to alloc */
1660 if (likely(page))
1661 return true;
1662
1663 /* alloc new page for storage */
1664 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1665 if (unlikely(!page)) {
1666 rx_ring->rx_stats.alloc_failed++;
1667 return false;
1668 }
1669
1670 /* map page for use */
1671 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1672 igc_rx_pg_size(rx_ring),
1673 DMA_FROM_DEVICE,
1674 IGC_RX_DMA_ATTR);
1675
1676 /* if mapping failed free memory back to system since
1677 * there isn't much point in holding memory we can't use
1678 */
1679 if (dma_mapping_error(rx_ring->dev, dma)) {
1680 __free_page(page);
1681
1682 rx_ring->rx_stats.alloc_failed++;
1683 return false;
1684 }
1685
1686 bi->dma = dma;
1687 bi->page = page;
1688 bi->page_offset = igc_rx_offset(rx_ring);
1689 bi->pagecnt_bias = 1;
1690
1691 return true;
1692}
1693
1694/**
1695 * igc_clean_tx_irq - Reclaim resources after transmit completes
1696 * @q_vector: pointer to q_vector containing needed info
1697 * @napi_budget: Used to determine if we are in netpoll
1698 *
1699 * returns true if ring is completely cleaned
1700 */
1701static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1702{
1703 struct igc_adapter *adapter = q_vector->adapter;
1704 unsigned int total_bytes = 0, total_packets = 0;
1705 unsigned int budget = q_vector->tx.work_limit;
1706 struct igc_ring *tx_ring = q_vector->tx.ring;
1707 unsigned int i = tx_ring->next_to_clean;
1708 struct igc_tx_buffer *tx_buffer;
1709 union igc_adv_tx_desc *tx_desc;
1710
1711 if (test_bit(__IGC_DOWN, &adapter->state))
1712 return true;
1713
1714 tx_buffer = &tx_ring->tx_buffer_info[i];
1715 tx_desc = IGC_TX_DESC(tx_ring, i);
1716 i -= tx_ring->count;
1717
1718 do {
1719 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1720
1721 /* if next_to_watch is not set then there is no work pending */
1722 if (!eop_desc)
1723 break;
1724
1725 /* prevent any other reads prior to eop_desc */
1726 smp_rmb();
1727
1728 /* if DD is not set pending work has not been completed */
1729 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1730 break;
1731
1732 /* clear next_to_watch to prevent false hangs */
1733 tx_buffer->next_to_watch = NULL;
1734
1735 /* update the statistics for this packet */
1736 total_bytes += tx_buffer->bytecount;
1737 total_packets += tx_buffer->gso_segs;
1738
1739 /* free the skb */
1740 napi_consume_skb(tx_buffer->skb, napi_budget);
1741
1742 /* unmap skb header data */
1743 dma_unmap_single(tx_ring->dev,
1744 dma_unmap_addr(tx_buffer, dma),
1745 dma_unmap_len(tx_buffer, len),
1746 DMA_TO_DEVICE);
1747
1748 /* clear tx_buffer data */
1749 dma_unmap_len_set(tx_buffer, len, 0);
1750
1751 /* clear last DMA location and unmap remaining buffers */
1752 while (tx_desc != eop_desc) {
1753 tx_buffer++;
1754 tx_desc++;
1755 i++;
1756 if (unlikely(!i)) {
1757 i -= tx_ring->count;
1758 tx_buffer = tx_ring->tx_buffer_info;
1759 tx_desc = IGC_TX_DESC(tx_ring, 0);
1760 }
1761
1762 /* unmap any remaining paged data */
1763 if (dma_unmap_len(tx_buffer, len)) {
1764 dma_unmap_page(tx_ring->dev,
1765 dma_unmap_addr(tx_buffer, dma),
1766 dma_unmap_len(tx_buffer, len),
1767 DMA_TO_DEVICE);
1768 dma_unmap_len_set(tx_buffer, len, 0);
1769 }
1770 }
1771
1772 /* move us one more past the eop_desc for start of next pkt */
1773 tx_buffer++;
1774 tx_desc++;
1775 i++;
1776 if (unlikely(!i)) {
1777 i -= tx_ring->count;
1778 tx_buffer = tx_ring->tx_buffer_info;
1779 tx_desc = IGC_TX_DESC(tx_ring, 0);
1780 }
1781
1782 /* issue prefetch for next Tx descriptor */
1783 prefetch(tx_desc);
1784
1785 /* update budget accounting */
1786 budget--;
1787 } while (likely(budget));
1788
1789 netdev_tx_completed_queue(txring_txq(tx_ring),
1790 total_packets, total_bytes);
1791
1792 i += tx_ring->count;
1793 tx_ring->next_to_clean = i;
1794 u64_stats_update_begin(&tx_ring->tx_syncp);
1795 tx_ring->tx_stats.bytes += total_bytes;
1796 tx_ring->tx_stats.packets += total_packets;
1797 u64_stats_update_end(&tx_ring->tx_syncp);
1798 q_vector->tx.total_bytes += total_bytes;
1799 q_vector->tx.total_packets += total_packets;
1800
1801 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1802 struct igc_hw *hw = &adapter->hw;
1803
1804 /* Detect a transmit hang in hardware, this serializes the
1805 * check with the clearing of time_stamp and movement of i
1806 */
1807 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1808 if (tx_buffer->next_to_watch &&
1809 time_after(jiffies, tx_buffer->time_stamp +
1810 (adapter->tx_timeout_factor * HZ)) &&
1811 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1812 /* detected Tx unit hang */
1813 dev_err(tx_ring->dev,
1814 "Detected Tx Unit Hang\n"
1815 " Tx Queue <%d>\n"
1816 " TDH <%x>\n"
1817 " TDT <%x>\n"
1818 " next_to_use <%x>\n"
1819 " next_to_clean <%x>\n"
1820 "buffer_info[next_to_clean]\n"
1821 " time_stamp <%lx>\n"
1822 " next_to_watch <%p>\n"
1823 " jiffies <%lx>\n"
1824 " desc.status <%x>\n",
1825 tx_ring->queue_index,
1826 rd32(IGC_TDH(tx_ring->reg_idx)),
1827 readl(tx_ring->tail),
1828 tx_ring->next_to_use,
1829 tx_ring->next_to_clean,
1830 tx_buffer->time_stamp,
1831 tx_buffer->next_to_watch,
1832 jiffies,
1833 tx_buffer->next_to_watch->wb.status);
1834 netif_stop_subqueue(tx_ring->netdev,
1835 tx_ring->queue_index);
1836
1837 /* we are about to reset, no point in enabling stuff */
1838 return true;
1839 }
1840 }
1841
1842#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1843 if (unlikely(total_packets &&
1844 netif_carrier_ok(tx_ring->netdev) &&
1845 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1846 /* Make sure that anybody stopping the queue after this
1847 * sees the new next_to_clean.
1848 */
1849 smp_mb();
1850 if (__netif_subqueue_stopped(tx_ring->netdev,
1851 tx_ring->queue_index) &&
1852 !(test_bit(__IGC_DOWN, &adapter->state))) {
1853 netif_wake_subqueue(tx_ring->netdev,
1854 tx_ring->queue_index);
1855
1856 u64_stats_update_begin(&tx_ring->tx_syncp);
1857 tx_ring->tx_stats.restart_queue++;
1858 u64_stats_update_end(&tx_ring->tx_syncp);
1859 }
1860 }
1861
1862 return !!budget;
1863}
1864
1865/**
1866 * igc_up - Open the interface and prepare it to handle traffic
1867 * @adapter: board private structure
1868 */
1869void igc_up(struct igc_adapter *adapter)
1870{
1871 struct igc_hw *hw = &adapter->hw;
1872 int i = 0;
1873
1874 /* hardware has been reset, we need to reload some things */
1875 igc_configure(adapter);
1876
1877 clear_bit(__IGC_DOWN, &adapter->state);
1878
1879 for (i = 0; i < adapter->num_q_vectors; i++)
1880 napi_enable(&adapter->q_vector[i]->napi);
1881
1882 if (adapter->msix_entries)
1883 igc_configure_msix(adapter);
1884 else
1885 igc_assign_vector(adapter->q_vector[0], 0);
1886
1887 /* Clear any pending interrupts. */
1888 rd32(IGC_ICR);
1889 igc_irq_enable(adapter);
1890
1891 netif_tx_start_all_queues(adapter->netdev);
1892
1893 /* start the watchdog. */
1894 hw->mac.get_link_status = 1;
1895 schedule_work(&adapter->watchdog_task);
1896}
1897
1898/**
1899 * igc_update_stats - Update the board statistics counters
1900 * @adapter: board private structure
1901 */
1902void igc_update_stats(struct igc_adapter *adapter)
1903{
1904 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
1905 struct pci_dev *pdev = adapter->pdev;
1906 struct igc_hw *hw = &adapter->hw;
1907 u64 _bytes, _packets;
1908 u64 bytes, packets;
1909 unsigned int start;
1910 u32 mpc;
1911 int i;
1912
1913 /* Prevent stats update while adapter is being reset, or if the pci
1914 * connection is down.
1915 */
1916 if (adapter->link_speed == 0)
1917 return;
1918 if (pci_channel_offline(pdev))
1919 return;
1920
1921 packets = 0;
1922 bytes = 0;
1923
1924 rcu_read_lock();
1925 for (i = 0; i < adapter->num_rx_queues; i++) {
1926 struct igc_ring *ring = adapter->rx_ring[i];
1927 u32 rqdpc = rd32(IGC_RQDPC(i));
1928
1929 if (hw->mac.type >= igc_i225)
1930 wr32(IGC_RQDPC(i), 0);
1931
1932 if (rqdpc) {
1933 ring->rx_stats.drops += rqdpc;
1934 net_stats->rx_fifo_errors += rqdpc;
1935 }
1936
1937 do {
1938 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
1939 _bytes = ring->rx_stats.bytes;
1940 _packets = ring->rx_stats.packets;
1941 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
1942 bytes += _bytes;
1943 packets += _packets;
1944 }
1945
1946 net_stats->rx_bytes = bytes;
1947 net_stats->rx_packets = packets;
1948
1949 packets = 0;
1950 bytes = 0;
1951 for (i = 0; i < adapter->num_tx_queues; i++) {
1952 struct igc_ring *ring = adapter->tx_ring[i];
1953
1954 do {
1955 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
1956 _bytes = ring->tx_stats.bytes;
1957 _packets = ring->tx_stats.packets;
1958 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
1959 bytes += _bytes;
1960 packets += _packets;
1961 }
1962 net_stats->tx_bytes = bytes;
1963 net_stats->tx_packets = packets;
1964 rcu_read_unlock();
1965
1966 /* read stats registers */
1967 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
1968 adapter->stats.gprc += rd32(IGC_GPRC);
1969 adapter->stats.gorc += rd32(IGC_GORCL);
1970 rd32(IGC_GORCH); /* clear GORCL */
1971 adapter->stats.bprc += rd32(IGC_BPRC);
1972 adapter->stats.mprc += rd32(IGC_MPRC);
1973 adapter->stats.roc += rd32(IGC_ROC);
1974
1975 adapter->stats.prc64 += rd32(IGC_PRC64);
1976 adapter->stats.prc127 += rd32(IGC_PRC127);
1977 adapter->stats.prc255 += rd32(IGC_PRC255);
1978 adapter->stats.prc511 += rd32(IGC_PRC511);
1979 adapter->stats.prc1023 += rd32(IGC_PRC1023);
1980 adapter->stats.prc1522 += rd32(IGC_PRC1522);
1981 adapter->stats.symerrs += rd32(IGC_SYMERRS);
1982 adapter->stats.sec += rd32(IGC_SEC);
1983
1984 mpc = rd32(IGC_MPC);
1985 adapter->stats.mpc += mpc;
1986 net_stats->rx_fifo_errors += mpc;
1987 adapter->stats.scc += rd32(IGC_SCC);
1988 adapter->stats.ecol += rd32(IGC_ECOL);
1989 adapter->stats.mcc += rd32(IGC_MCC);
1990 adapter->stats.latecol += rd32(IGC_LATECOL);
1991 adapter->stats.dc += rd32(IGC_DC);
1992 adapter->stats.rlec += rd32(IGC_RLEC);
1993 adapter->stats.xonrxc += rd32(IGC_XONRXC);
1994 adapter->stats.xontxc += rd32(IGC_XONTXC);
1995 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
1996 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
1997 adapter->stats.fcruc += rd32(IGC_FCRUC);
1998 adapter->stats.gptc += rd32(IGC_GPTC);
1999 adapter->stats.gotc += rd32(IGC_GOTCL);
2000 rd32(IGC_GOTCH); /* clear GOTCL */
2001 adapter->stats.rnbc += rd32(IGC_RNBC);
2002 adapter->stats.ruc += rd32(IGC_RUC);
2003 adapter->stats.rfc += rd32(IGC_RFC);
2004 adapter->stats.rjc += rd32(IGC_RJC);
2005 adapter->stats.tor += rd32(IGC_TORH);
2006 adapter->stats.tot += rd32(IGC_TOTH);
2007 adapter->stats.tpr += rd32(IGC_TPR);
2008
2009 adapter->stats.ptc64 += rd32(IGC_PTC64);
2010 adapter->stats.ptc127 += rd32(IGC_PTC127);
2011 adapter->stats.ptc255 += rd32(IGC_PTC255);
2012 adapter->stats.ptc511 += rd32(IGC_PTC511);
2013 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
2014 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
2015
2016 adapter->stats.mptc += rd32(IGC_MPTC);
2017 adapter->stats.bptc += rd32(IGC_BPTC);
2018
2019 adapter->stats.tpt += rd32(IGC_TPT);
2020 adapter->stats.colc += rd32(IGC_COLC);
2021
2022 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
2023
2024 adapter->stats.tsctc += rd32(IGC_TSCTC);
2025 adapter->stats.tsctfc += rd32(IGC_TSCTFC);
2026
2027 adapter->stats.iac += rd32(IGC_IAC);
2028 adapter->stats.icrxoc += rd32(IGC_ICRXOC);
2029 adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
2030 adapter->stats.icrxatc += rd32(IGC_ICRXATC);
2031 adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
2032 adapter->stats.ictxatc += rd32(IGC_ICTXATC);
2033 adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
2034 adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
2035 adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
2036
2037 /* Fill out the OS statistics structure */
2038 net_stats->multicast = adapter->stats.mprc;
2039 net_stats->collisions = adapter->stats.colc;
2040
2041 /* Rx Errors */
2042
2043 /* RLEC on some newer hardware can be incorrect so build
2044 * our own version based on RUC and ROC
2045 */
2046 net_stats->rx_errors = adapter->stats.rxerrc +
2047 adapter->stats.crcerrs + adapter->stats.algnerrc +
2048 adapter->stats.ruc + adapter->stats.roc +
2049 adapter->stats.cexterr;
2050 net_stats->rx_length_errors = adapter->stats.ruc +
2051 adapter->stats.roc;
2052 net_stats->rx_crc_errors = adapter->stats.crcerrs;
2053 net_stats->rx_frame_errors = adapter->stats.algnerrc;
2054 net_stats->rx_missed_errors = adapter->stats.mpc;
2055
2056 /* Tx Errors */
2057 net_stats->tx_errors = adapter->stats.ecol +
2058 adapter->stats.latecol;
2059 net_stats->tx_aborted_errors = adapter->stats.ecol;
2060 net_stats->tx_window_errors = adapter->stats.latecol;
2061 net_stats->tx_carrier_errors = adapter->stats.tncrs;
2062
2063 /* Tx Dropped needs to be maintained elsewhere */
2064
2065 /* Management Stats */
2066 adapter->stats.mgptc += rd32(IGC_MGTPTC);
2067 adapter->stats.mgprc += rd32(IGC_MGTPRC);
2068 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
2069}
2070
2071static void igc_nfc_filter_exit(struct igc_adapter *adapter)
2072{
2073 struct igc_nfc_filter *rule;
2074
2075 spin_lock(&adapter->nfc_lock);
2076
2077 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2078 igc_erase_filter(adapter, rule);
2079
2080 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
2081 igc_erase_filter(adapter, rule);
2082
2083 spin_unlock(&adapter->nfc_lock);
2084}
2085
2086static void igc_nfc_filter_restore(struct igc_adapter *adapter)
2087{
2088 struct igc_nfc_filter *rule;
2089
2090 spin_lock(&adapter->nfc_lock);
2091
2092 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2093 igc_add_filter(adapter, rule);
2094
2095 spin_unlock(&adapter->nfc_lock);
2096}
2097
2098/**
2099 * igc_down - Close the interface
2100 * @adapter: board private structure
2101 */
2102void igc_down(struct igc_adapter *adapter)
2103{
2104 struct net_device *netdev = adapter->netdev;
2105 struct igc_hw *hw = &adapter->hw;
2106 u32 tctl, rctl;
2107 int i = 0;
2108
2109 set_bit(__IGC_DOWN, &adapter->state);
2110
2111 /* disable receives in the hardware */
2112 rctl = rd32(IGC_RCTL);
2113 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
2114 /* flush and sleep below */
2115
2116 igc_nfc_filter_exit(adapter);
2117
2118 /* set trans_start so we don't get spurious watchdogs during reset */
2119 netif_trans_update(netdev);
2120
2121 netif_carrier_off(netdev);
2122 netif_tx_stop_all_queues(netdev);
2123
2124 /* disable transmits in the hardware */
2125 tctl = rd32(IGC_TCTL);
2126 tctl &= ~IGC_TCTL_EN;
2127 wr32(IGC_TCTL, tctl);
2128 /* flush both disables and wait for them to finish */
2129 wrfl();
2130 usleep_range(10000, 20000);
2131
2132 igc_irq_disable(adapter);
2133
2134 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2135
2136 for (i = 0; i < adapter->num_q_vectors; i++) {
2137 if (adapter->q_vector[i]) {
2138 napi_synchronize(&adapter->q_vector[i]->napi);
2139 napi_disable(&adapter->q_vector[i]->napi);
2140 }
2141 }
2142
2143 del_timer_sync(&adapter->watchdog_timer);
2144 del_timer_sync(&adapter->phy_info_timer);
2145
2146 /* record the stats before reset*/
2147 spin_lock(&adapter->stats64_lock);
2148 igc_update_stats(adapter);
2149 spin_unlock(&adapter->stats64_lock);
2150
2151 adapter->link_speed = 0;
2152 adapter->link_duplex = 0;
2153
2154 if (!pci_channel_offline(adapter->pdev))
2155 igc_reset(adapter);
2156
2157 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2158 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
2159
2160 igc_clean_all_tx_rings(adapter);
2161 igc_clean_all_rx_rings(adapter);
2162}
2163
2164void igc_reinit_locked(struct igc_adapter *adapter)
2165{
2166 WARN_ON(in_interrupt());
2167 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2168 usleep_range(1000, 2000);
2169 igc_down(adapter);
2170 igc_up(adapter);
2171 clear_bit(__IGC_RESETTING, &adapter->state);
2172}
2173
2174static void igc_reset_task(struct work_struct *work)
2175{
2176 struct igc_adapter *adapter;
2177
2178 adapter = container_of(work, struct igc_adapter, reset_task);
2179
2180 netdev_err(adapter->netdev, "Reset adapter\n");
2181 igc_reinit_locked(adapter);
2182}
2183
2184/**
2185 * igc_change_mtu - Change the Maximum Transfer Unit
2186 * @netdev: network interface device structure
2187 * @new_mtu: new value for maximum frame size
2188 *
2189 * Returns 0 on success, negative on failure
2190 */
2191static int igc_change_mtu(struct net_device *netdev, int new_mtu)
2192{
2193 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2194 struct igc_adapter *adapter = netdev_priv(netdev);
2195 struct pci_dev *pdev = adapter->pdev;
2196
2197 /* adjust max frame to be at least the size of a standard frame */
2198 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
2199 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
2200
2201 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2202 usleep_range(1000, 2000);
2203
2204 /* igc_down has a dependency on max_frame_size */
2205 adapter->max_frame_size = max_frame;
2206
2207 if (netif_running(netdev))
2208 igc_down(adapter);
2209
2210 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
2211 netdev->mtu, new_mtu);
2212 netdev->mtu = new_mtu;
2213
2214 if (netif_running(netdev))
2215 igc_up(adapter);
2216 else
2217 igc_reset(adapter);
2218
2219 clear_bit(__IGC_RESETTING, &adapter->state);
2220
2221 return 0;
2222}
2223
2224/**
2225 * igc_get_stats - Get System Network Statistics
2226 * @netdev: network interface device structure
2227 *
2228 * Returns the address of the device statistics structure.
2229 * The statistics are updated here and also from the timer callback.
2230 */
2231static struct net_device_stats *igc_get_stats(struct net_device *netdev)
2232{
2233 struct igc_adapter *adapter = netdev_priv(netdev);
2234
2235 if (!test_bit(__IGC_RESETTING, &adapter->state))
2236 igc_update_stats(adapter);
2237
2238 /* only return the current stats */
2239 return &netdev->stats;
2240}
2241
2242static netdev_features_t igc_fix_features(struct net_device *netdev,
2243 netdev_features_t features)
2244{
2245 /* Since there is no support for separate Rx/Tx vlan accel
2246 * enable/disable make sure Tx flag is always in same state as Rx.
2247 */
2248 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2249 features |= NETIF_F_HW_VLAN_CTAG_TX;
2250 else
2251 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2252
2253 return features;
2254}
2255
2256static int igc_set_features(struct net_device *netdev,
2257 netdev_features_t features)
2258{
2259 netdev_features_t changed = netdev->features ^ features;
2260 struct igc_adapter *adapter = netdev_priv(netdev);
2261
2262 /* Add VLAN support */
2263 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2264 return 0;
2265
2266 if (!(features & NETIF_F_NTUPLE)) {
2267 struct hlist_node *node2;
2268 struct igc_nfc_filter *rule;
2269
2270 spin_lock(&adapter->nfc_lock);
2271 hlist_for_each_entry_safe(rule, node2,
2272 &adapter->nfc_filter_list, nfc_node) {
2273 igc_erase_filter(adapter, rule);
2274 hlist_del(&rule->nfc_node);
2275 kfree(rule);
2276 }
2277 spin_unlock(&adapter->nfc_lock);
2278 adapter->nfc_filter_count = 0;
2279 }
2280
2281 netdev->features = features;
2282
2283 if (netif_running(netdev))
2284 igc_reinit_locked(adapter);
2285 else
2286 igc_reset(adapter);
2287
2288 return 1;
2289}
2290
2291static netdev_features_t
2292igc_features_check(struct sk_buff *skb, struct net_device *dev,
2293 netdev_features_t features)
2294{
2295 unsigned int network_hdr_len, mac_hdr_len;
2296
2297 /* Make certain the headers can be described by a context descriptor */
2298 mac_hdr_len = skb_network_header(skb) - skb->data;
2299 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
2300 return features & ~(NETIF_F_HW_CSUM |
2301 NETIF_F_SCTP_CRC |
2302 NETIF_F_HW_VLAN_CTAG_TX |
2303 NETIF_F_TSO |
2304 NETIF_F_TSO6);
2305
2306 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2307 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
2308 return features & ~(NETIF_F_HW_CSUM |
2309 NETIF_F_SCTP_CRC |
2310 NETIF_F_TSO |
2311 NETIF_F_TSO6);
2312
2313 /* We can only support IPv4 TSO in tunnels if we can mangle the
2314 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2315 */
2316 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2317 features &= ~NETIF_F_TSO;
2318
2319 return features;
2320}
2321
2322/**
2323 * igc_configure - configure the hardware for RX and TX
2324 * @adapter: private board structure
2325 */
2326static void igc_configure(struct igc_adapter *adapter)
2327{
2328 struct net_device *netdev = adapter->netdev;
2329 int i = 0;
2330
2331 igc_get_hw_control(adapter);
2332 igc_set_rx_mode(netdev);
2333
2334 igc_setup_tctl(adapter);
2335 igc_setup_mrqc(adapter);
2336 igc_setup_rctl(adapter);
2337
2338 igc_nfc_filter_restore(adapter);
2339 igc_configure_tx(adapter);
2340 igc_configure_rx(adapter);
2341
2342 igc_rx_fifo_flush_base(&adapter->hw);
2343
2344 /* call igc_desc_unused which always leaves
2345 * at least 1 descriptor unused to make sure
2346 * next_to_use != next_to_clean
2347 */
2348 for (i = 0; i < adapter->num_rx_queues; i++) {
2349 struct igc_ring *ring = adapter->rx_ring[i];
2350
2351 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2352 }
2353}
2354
2355/**
2356 * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
2357 * @adapter: address of board private structure
2358 * @index: Index of the RAR entry which need to be synced with MAC table
2359 */
2360static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
2361{
2362 u8 *addr = adapter->mac_table[index].addr;
2363 struct igc_hw *hw = &adapter->hw;
2364 u32 rar_low, rar_high;
2365
2366 /* HW expects these to be in network order when they are plugged
2367 * into the registers which are little endian. In order to guarantee
2368 * that ordering we need to do an leXX_to_cpup here in order to be
2369 * ready for the byteswap that occurs with writel
2370 */
2371 rar_low = le32_to_cpup((__le32 *)(addr));
2372 rar_high = le16_to_cpup((__le16 *)(addr + 4));
2373
2374 /* Indicate to hardware the Address is Valid. */
2375 if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
2376 if (is_valid_ether_addr(addr))
2377 rar_high |= IGC_RAH_AV;
2378
2379 rar_high |= IGC_RAH_POOL_1 <<
2380 adapter->mac_table[index].queue;
2381 }
2382
2383 wr32(IGC_RAL(index), rar_low);
2384 wrfl();
2385 wr32(IGC_RAH(index), rar_high);
2386 wrfl();
2387}
2388
2389/* Set default MAC address for the PF in the first RAR entry */
2390static void igc_set_default_mac_filter(struct igc_adapter *adapter)
2391{
2392 struct igc_mac_addr *mac_table = &adapter->mac_table[0];
2393
2394 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
2395 mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2396
2397 igc_rar_set_index(adapter, 0);
2398}
2399
2400/* If the filter to be added and an already existing filter express
2401 * the same address and address type, it should be possible to only
2402 * override the other configurations, for example the queue to steer
2403 * traffic.
2404 */
2405static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry,
2406 const u8 *addr, const u8 flags)
2407{
2408 if (!(entry->state & IGC_MAC_STATE_IN_USE))
2409 return true;
2410
2411 if ((entry->state & IGC_MAC_STATE_SRC_ADDR) !=
2412 (flags & IGC_MAC_STATE_SRC_ADDR))
2413 return false;
2414
2415 if (!ether_addr_equal(addr, entry->addr))
2416 return false;
2417
2418 return true;
2419}
2420
2421/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2422 * 'flags' is used to indicate what kind of match is made, match is by
2423 * default for the destination address, if matching by source address
2424 * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2425 */
2426static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
2427 const u8 *addr, const u8 queue,
2428 const u8 flags)
2429{
2430 struct igc_hw *hw = &adapter->hw;
2431 int rar_entries = hw->mac.rar_entry_count;
2432 int i;
2433
2434 if (is_zero_ether_addr(addr))
2435 return -EINVAL;
2436
2437 /* Search for the first empty entry in the MAC table.
2438 * Do not touch entries at the end of the table reserved for the VF MAC
2439 * addresses.
2440 */
2441 for (i = 0; i < rar_entries; i++) {
2442 if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2443 addr, flags))
2444 continue;
2445
2446 ether_addr_copy(adapter->mac_table[i].addr, addr);
2447 adapter->mac_table[i].queue = queue;
2448 adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
2449
2450 igc_rar_set_index(adapter, i);
2451 return i;
2452 }
2453
2454 return -ENOSPC;
2455}
2456
2457int igc_add_mac_steering_filter(struct igc_adapter *adapter,
2458 const u8 *addr, u8 queue, u8 flags)
2459{
2460 return igc_add_mac_filter_flags(adapter, addr, queue,
2461 IGC_MAC_STATE_QUEUE_STEERING | flags);
2462}
2463
2464/* Remove a MAC filter for 'addr' directing matching traffic to
2465 * 'queue', 'flags' is used to indicate what kind of match need to be
2466 * removed, match is by default for the destination address, if
2467 * matching by source address is to be removed the flag
2468 * IGC_MAC_STATE_SRC_ADDR can be used.
2469 */
2470static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
2471 const u8 *addr, const u8 queue,
2472 const u8 flags)
2473{
2474 struct igc_hw *hw = &adapter->hw;
2475 int rar_entries = hw->mac.rar_entry_count;
2476 int i;
2477
2478 if (is_zero_ether_addr(addr))
2479 return -EINVAL;
2480
2481 /* Search for matching entry in the MAC table based on given address
2482 * and queue. Do not touch entries at the end of the table reserved
2483 * for the VF MAC addresses.
2484 */
2485 for (i = 0; i < rar_entries; i++) {
2486 if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2487 continue;
2488 if ((adapter->mac_table[i].state & flags) != flags)
2489 continue;
2490 if (adapter->mac_table[i].queue != queue)
2491 continue;
2492 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2493 continue;
2494
2495 /* When a filter for the default address is "deleted",
2496 * we return it to its initial configuration
2497 */
2498 if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2499 adapter->mac_table[i].state =
2500 IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2501 } else {
2502 adapter->mac_table[i].state = 0;
2503 adapter->mac_table[i].queue = 0;
2504 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2505 }
2506
2507 igc_rar_set_index(adapter, i);
2508 return 0;
2509 }
2510
2511 return -ENOENT;
2512}
2513
2514int igc_del_mac_steering_filter(struct igc_adapter *adapter,
2515 const u8 *addr, u8 queue, u8 flags)
2516{
2517 return igc_del_mac_filter_flags(adapter, addr, queue,
2518 IGC_MAC_STATE_QUEUE_STEERING | flags);
2519}
2520
2521/**
2522 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2523 * @netdev: network interface device structure
2524 *
2525 * The set_rx_mode entry point is called whenever the unicast or multicast
2526 * address lists or the network interface flags are updated. This routine is
2527 * responsible for configuring the hardware for proper unicast, multicast,
2528 * promiscuous mode, and all-multi behavior.
2529 */
2530static void igc_set_rx_mode(struct net_device *netdev)
2531{
2532}
2533
2534/**
2535 * igc_msix_other - msix other interrupt handler
2536 * @irq: interrupt number
2537 * @data: pointer to a q_vector
2538 */
2539static irqreturn_t igc_msix_other(int irq, void *data)
2540{
2541 struct igc_adapter *adapter = data;
2542 struct igc_hw *hw = &adapter->hw;
2543 u32 icr = rd32(IGC_ICR);
2544
2545 /* reading ICR causes bit 31 of EICR to be cleared */
2546 if (icr & IGC_ICR_DRSTA)
2547 schedule_work(&adapter->reset_task);
2548
2549 if (icr & IGC_ICR_DOUTSYNC) {
2550 /* HW is reporting DMA is out of sync */
2551 adapter->stats.doosync++;
2552 }
2553
2554 if (icr & IGC_ICR_LSC) {
2555 hw->mac.get_link_status = 1;
2556 /* guard against interrupt when we're going down */
2557 if (!test_bit(__IGC_DOWN, &adapter->state))
2558 mod_timer(&adapter->watchdog_timer, jiffies + 1);
2559 }
2560
2561 wr32(IGC_EIMS, adapter->eims_other);
2562
2563 return IRQ_HANDLED;
2564}
2565
2566/**
2567 * igc_write_ivar - configure ivar for given MSI-X vector
2568 * @hw: pointer to the HW structure
2569 * @msix_vector: vector number we are allocating to a given ring
2570 * @index: row index of IVAR register to write within IVAR table
2571 * @offset: column offset of in IVAR, should be multiple of 8
2572 *
2573 * The IVAR table consists of 2 columns,
2574 * each containing an cause allocation for an Rx and Tx ring, and a
2575 * variable number of rows depending on the number of queues supported.
2576 */
2577static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2578 int index, int offset)
2579{
2580 u32 ivar = array_rd32(IGC_IVAR0, index);
2581
2582 /* clear any bits that are currently set */
2583 ivar &= ~((u32)0xFF << offset);
2584
2585 /* write vector and valid bit */
2586 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2587
2588 array_wr32(IGC_IVAR0, index, ivar);
2589}
2590
2591static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2592{
2593 struct igc_adapter *adapter = q_vector->adapter;
2594 struct igc_hw *hw = &adapter->hw;
2595 int rx_queue = IGC_N0_QUEUE;
2596 int tx_queue = IGC_N0_QUEUE;
2597
2598 if (q_vector->rx.ring)
2599 rx_queue = q_vector->rx.ring->reg_idx;
2600 if (q_vector->tx.ring)
2601 tx_queue = q_vector->tx.ring->reg_idx;
2602
2603 switch (hw->mac.type) {
2604 case igc_i225:
2605 if (rx_queue > IGC_N0_QUEUE)
2606 igc_write_ivar(hw, msix_vector,
2607 rx_queue >> 1,
2608 (rx_queue & 0x1) << 4);
2609 if (tx_queue > IGC_N0_QUEUE)
2610 igc_write_ivar(hw, msix_vector,
2611 tx_queue >> 1,
2612 ((tx_queue & 0x1) << 4) + 8);
2613 q_vector->eims_value = BIT(msix_vector);
2614 break;
2615 default:
2616 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2617 break;
2618 }
2619
2620 /* add q_vector eims value to global eims_enable_mask */
2621 adapter->eims_enable_mask |= q_vector->eims_value;
2622
2623 /* configure q_vector to set itr on first interrupt */
2624 q_vector->set_itr = 1;
2625}
2626
2627/**
2628 * igc_configure_msix - Configure MSI-X hardware
2629 * @adapter: Pointer to adapter structure
2630 *
2631 * igc_configure_msix sets up the hardware to properly
2632 * generate MSI-X interrupts.
2633 */
2634static void igc_configure_msix(struct igc_adapter *adapter)
2635{
2636 struct igc_hw *hw = &adapter->hw;
2637 int i, vector = 0;
2638 u32 tmp;
2639
2640 adapter->eims_enable_mask = 0;
2641
2642 /* set vector for other causes, i.e. link changes */
2643 switch (hw->mac.type) {
2644 case igc_i225:
2645 /* Turn on MSI-X capability first, or our settings
2646 * won't stick. And it will take days to debug.
2647 */
2648 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2649 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2650 IGC_GPIE_NSICR);
2651
2652 /* enable msix_other interrupt */
2653 adapter->eims_other = BIT(vector);
2654 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2655
2656 wr32(IGC_IVAR_MISC, tmp);
2657 break;
2658 default:
2659 /* do nothing, since nothing else supports MSI-X */
2660 break;
2661 } /* switch (hw->mac.type) */
2662
2663 adapter->eims_enable_mask |= adapter->eims_other;
2664
2665 for (i = 0; i < adapter->num_q_vectors; i++)
2666 igc_assign_vector(adapter->q_vector[i], vector++);
2667
2668 wrfl();
2669}
2670
2671static irqreturn_t igc_msix_ring(int irq, void *data)
2672{
2673 struct igc_q_vector *q_vector = data;
2674
2675 /* Write the ITR value calculated from the previous interrupt. */
2676 igc_write_itr(q_vector);
2677
2678 napi_schedule(&q_vector->napi);
2679
2680 return IRQ_HANDLED;
2681}
2682
2683/**
2684 * igc_request_msix - Initialize MSI-X interrupts
2685 * @adapter: Pointer to adapter structure
2686 *
2687 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2688 * kernel.
2689 */
2690static int igc_request_msix(struct igc_adapter *adapter)
2691{
2692 int i = 0, err = 0, vector = 0, free_vector = 0;
2693 struct net_device *netdev = adapter->netdev;
2694
2695 err = request_irq(adapter->msix_entries[vector].vector,
2696 &igc_msix_other, 0, netdev->name, adapter);
2697 if (err)
2698 goto err_out;
2699
2700 for (i = 0; i < adapter->num_q_vectors; i++) {
2701 struct igc_q_vector *q_vector = adapter->q_vector[i];
2702
2703 vector++;
2704
2705 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2706
2707 if (q_vector->rx.ring && q_vector->tx.ring)
2708 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2709 q_vector->rx.ring->queue_index);
2710 else if (q_vector->tx.ring)
2711 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2712 q_vector->tx.ring->queue_index);
2713 else if (q_vector->rx.ring)
2714 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2715 q_vector->rx.ring->queue_index);
2716 else
2717 sprintf(q_vector->name, "%s-unused", netdev->name);
2718
2719 err = request_irq(adapter->msix_entries[vector].vector,
2720 igc_msix_ring, 0, q_vector->name,
2721 q_vector);
2722 if (err)
2723 goto err_free;
2724 }
2725
2726 igc_configure_msix(adapter);
2727 return 0;
2728
2729err_free:
2730 /* free already assigned IRQs */
2731 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2732
2733 vector--;
2734 for (i = 0; i < vector; i++) {
2735 free_irq(adapter->msix_entries[free_vector++].vector,
2736 adapter->q_vector[i]);
2737 }
2738err_out:
2739 return err;
2740}
2741
2742/**
2743 * igc_reset_q_vector - Reset config for interrupt vector
2744 * @adapter: board private structure to initialize
2745 * @v_idx: Index of vector to be reset
2746 *
2747 * If NAPI is enabled it will delete any references to the
2748 * NAPI struct. This is preparation for igc_free_q_vector.
2749 */
2750static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2751{
2752 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2753
2754 /* if we're coming from igc_set_interrupt_capability, the vectors are
2755 * not yet allocated
2756 */
2757 if (!q_vector)
2758 return;
2759
2760 if (q_vector->tx.ring)
2761 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2762
2763 if (q_vector->rx.ring)
2764 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2765
2766 netif_napi_del(&q_vector->napi);
2767}
2768
2769static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2770{
2771 int v_idx = adapter->num_q_vectors;
2772
2773 if (adapter->msix_entries) {
2774 pci_disable_msix(adapter->pdev);
2775 kfree(adapter->msix_entries);
2776 adapter->msix_entries = NULL;
2777 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2778 pci_disable_msi(adapter->pdev);
2779 }
2780
2781 while (v_idx--)
2782 igc_reset_q_vector(adapter, v_idx);
2783}
2784
2785/**
2786 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
2787 * @adapter: Pointer to adapter structure
2788 *
2789 * This function resets the device so that it has 0 rx queues, tx queues, and
2790 * MSI-X interrupts allocated.
2791 */
2792static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
2793{
2794 igc_free_q_vectors(adapter);
2795 igc_reset_interrupt_capability(adapter);
2796}
2797
2798/**
2799 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2800 * @adapter: board private structure to initialize
2801 *
2802 * This function frees the memory allocated to the q_vectors. In addition if
2803 * NAPI is enabled it will delete any references to the NAPI struct prior
2804 * to freeing the q_vector.
2805 */
2806static void igc_free_q_vectors(struct igc_adapter *adapter)
2807{
2808 int v_idx = adapter->num_q_vectors;
2809
2810 adapter->num_tx_queues = 0;
2811 adapter->num_rx_queues = 0;
2812 adapter->num_q_vectors = 0;
2813
2814 while (v_idx--) {
2815 igc_reset_q_vector(adapter, v_idx);
2816 igc_free_q_vector(adapter, v_idx);
2817 }
2818}
2819
2820/**
2821 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2822 * @adapter: board private structure to initialize
2823 * @v_idx: Index of vector to be freed
2824 *
2825 * This function frees the memory allocated to the q_vector.
2826 */
2827static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2828{
2829 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2830
2831 adapter->q_vector[v_idx] = NULL;
2832
2833 /* igc_get_stats64() might access the rings on this vector,
2834 * we must wait a grace period before freeing it.
2835 */
2836 if (q_vector)
2837 kfree_rcu(q_vector, rcu);
2838}
2839
2840/* Need to wait a few seconds after link up to get diagnostic information from
2841 * the phy
2842 */
2843static void igc_update_phy_info(struct timer_list *t)
2844{
2845 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
2846
2847 igc_get_phy_info(&adapter->hw);
2848}
2849
2850/**
2851 * igc_has_link - check shared code for link and determine up/down
2852 * @adapter: pointer to driver private info
2853 */
2854bool igc_has_link(struct igc_adapter *adapter)
2855{
2856 struct igc_hw *hw = &adapter->hw;
2857 bool link_active = false;
2858
2859 /* get_link_status is set on LSC (link status) interrupt or
2860 * rx sequence error interrupt. get_link_status will stay
2861 * false until the igc_check_for_link establishes link
2862 * for copper adapters ONLY
2863 */
2864 switch (hw->phy.media_type) {
2865 case igc_media_type_copper:
2866 if (!hw->mac.get_link_status)
2867 return true;
2868 hw->mac.ops.check_for_link(hw);
2869 link_active = !hw->mac.get_link_status;
2870 break;
2871 default:
2872 case igc_media_type_unknown:
2873 break;
2874 }
2875
2876 if (hw->mac.type == igc_i225 &&
2877 hw->phy.id == I225_I_PHY_ID) {
2878 if (!netif_carrier_ok(adapter->netdev)) {
2879 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2880 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
2881 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
2882 adapter->link_check_timeout = jiffies;
2883 }
2884 }
2885
2886 return link_active;
2887}
2888
2889/**
2890 * igc_watchdog - Timer Call-back
2891 * @data: pointer to adapter cast into an unsigned long
2892 */
2893static void igc_watchdog(struct timer_list *t)
2894{
2895 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
2896 /* Do the rest outside of interrupt context */
2897 schedule_work(&adapter->watchdog_task);
2898}
2899
2900static void igc_watchdog_task(struct work_struct *work)
2901{
2902 struct igc_adapter *adapter = container_of(work,
2903 struct igc_adapter,
2904 watchdog_task);
2905 struct net_device *netdev = adapter->netdev;
2906 struct igc_hw *hw = &adapter->hw;
2907 struct igc_phy_info *phy = &hw->phy;
2908 u16 phy_data, retry_count = 20;
2909 u32 connsw;
2910 u32 link;
2911 int i;
2912
2913 link = igc_has_link(adapter);
2914
2915 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
2916 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
2917 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2918 else
2919 link = false;
2920 }
2921
2922 /* Force link down if we have fiber to swap to */
2923 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2924 if (hw->phy.media_type == igc_media_type_copper) {
2925 connsw = rd32(IGC_CONNSW);
2926 if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
2927 link = 0;
2928 }
2929 }
2930 if (link) {
2931 if (!netif_carrier_ok(netdev)) {
2932 u32 ctrl;
2933
2934 hw->mac.ops.get_speed_and_duplex(hw,
2935 &adapter->link_speed,
2936 &adapter->link_duplex);
2937
2938 ctrl = rd32(IGC_CTRL);
2939 /* Link status message must follow this format */
2940 netdev_info(netdev,
2941 "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
2942 netdev->name,
2943 adapter->link_speed,
2944 adapter->link_duplex == FULL_DUPLEX ?
2945 "Full" : "Half",
2946 (ctrl & IGC_CTRL_TFCE) &&
2947 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
2948 (ctrl & IGC_CTRL_RFCE) ? "RX" :
2949 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
2950
2951 /* check if SmartSpeed worked */
2952 igc_check_downshift(hw);
2953 if (phy->speed_downgraded)
2954 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
2955
2956 /* adjust timeout factor according to speed/duplex */
2957 adapter->tx_timeout_factor = 1;
2958 switch (adapter->link_speed) {
2959 case SPEED_10:
2960 adapter->tx_timeout_factor = 14;
2961 break;
2962 case SPEED_100:
2963 /* maybe add some timeout factor ? */
2964 break;
2965 }
2966
2967 if (adapter->link_speed != SPEED_1000)
2968 goto no_wait;
2969
2970 /* wait for Remote receiver status OK */
2971retry_read_status:
2972 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
2973 &phy_data)) {
2974 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
2975 retry_count) {
2976 msleep(100);
2977 retry_count--;
2978 goto retry_read_status;
2979 } else if (!retry_count) {
2980 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
2981 }
2982 } else {
2983 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
2984 }
2985no_wait:
2986 netif_carrier_on(netdev);
2987
2988 /* link state has changed, schedule phy info update */
2989 if (!test_bit(__IGC_DOWN, &adapter->state))
2990 mod_timer(&adapter->phy_info_timer,
2991 round_jiffies(jiffies + 2 * HZ));
2992 }
2993 } else {
2994 if (netif_carrier_ok(netdev)) {
2995 adapter->link_speed = 0;
2996 adapter->link_duplex = 0;
2997
2998 /* Links status message must follow this format */
2999 netdev_info(netdev, "igc: %s NIC Link is Down\n",
3000 netdev->name);
3001 netif_carrier_off(netdev);
3002
3003 /* link state has changed, schedule phy info update */
3004 if (!test_bit(__IGC_DOWN, &adapter->state))
3005 mod_timer(&adapter->phy_info_timer,
3006 round_jiffies(jiffies + 2 * HZ));
3007
3008 /* link is down, time to check for alternate media */
3009 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
3010 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3011 schedule_work(&adapter->reset_task);
3012 /* return immediately */
3013 return;
3014 }
3015 }
3016
3017 /* also check for alternate media here */
3018 } else if (!netif_carrier_ok(netdev) &&
3019 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
3020 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3021 schedule_work(&adapter->reset_task);
3022 /* return immediately */
3023 return;
3024 }
3025 }
3026 }
3027
3028 spin_lock(&adapter->stats64_lock);
3029 igc_update_stats(adapter);
3030 spin_unlock(&adapter->stats64_lock);
3031
3032 for (i = 0; i < adapter->num_tx_queues; i++) {
3033 struct igc_ring *tx_ring = adapter->tx_ring[i];
3034
3035 if (!netif_carrier_ok(netdev)) {
3036 /* We've lost link, so the controller stops DMA,
3037 * but we've got queued Tx work that's never going
3038 * to get done, so reset controller to flush Tx.
3039 * (Do the reset outside of interrupt context).
3040 */
3041 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
3042 adapter->tx_timeout_count++;
3043 schedule_work(&adapter->reset_task);
3044 /* return immediately since reset is imminent */
3045 return;
3046 }
3047 }
3048
3049 /* Force detection of hung controller every watchdog period */
3050 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3051 }
3052
3053 /* Cause software interrupt to ensure Rx ring is cleaned */
3054 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3055 u32 eics = 0;
3056
3057 for (i = 0; i < adapter->num_q_vectors; i++)
3058 eics |= adapter->q_vector[i]->eims_value;
3059 wr32(IGC_EICS, eics);
3060 } else {
3061 wr32(IGC_ICS, IGC_ICS_RXDMT0);
3062 }
3063
3064 /* Reset the timer */
3065 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3066 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
3067 mod_timer(&adapter->watchdog_timer,
3068 round_jiffies(jiffies + HZ));
3069 else
3070 mod_timer(&adapter->watchdog_timer,
3071 round_jiffies(jiffies + 2 * HZ));
3072 }
3073}
3074
3075/**
3076 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3077 * @q_vector: pointer to q_vector
3078 *
3079 * Stores a new ITR value based on strictly on packet size. This
3080 * algorithm is less sophisticated than that used in igc_update_itr,
3081 * due to the difficulty of synchronizing statistics across multiple
3082 * receive rings. The divisors and thresholds used by this function
3083 * were determined based on theoretical maximum wire speed and testing
3084 * data, in order to minimize response time while increasing bulk
3085 * throughput.
3086 * NOTE: This function is called only when operating in a multiqueue
3087 * receive environment.
3088 */
3089static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3090{
3091 struct igc_adapter *adapter = q_vector->adapter;
3092 int new_val = q_vector->itr_val;
3093 int avg_wire_size = 0;
3094 unsigned int packets;
3095
3096 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3097 * ints/sec - ITR timer value of 120 ticks.
3098 */
3099 switch (adapter->link_speed) {
3100 case SPEED_10:
3101 case SPEED_100:
3102 new_val = IGC_4K_ITR;
3103 goto set_itr_val;
3104 default:
3105 break;
3106 }
3107
3108 packets = q_vector->rx.total_packets;
3109 if (packets)
3110 avg_wire_size = q_vector->rx.total_bytes / packets;
3111
3112 packets = q_vector->tx.total_packets;
3113 if (packets)
3114 avg_wire_size = max_t(u32, avg_wire_size,
3115 q_vector->tx.total_bytes / packets);
3116
3117 /* if avg_wire_size isn't set no work was done */
3118 if (!avg_wire_size)
3119 goto clear_counts;
3120
3121 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3122 avg_wire_size += 24;
3123
3124 /* Don't starve jumbo frames */
3125 avg_wire_size = min(avg_wire_size, 3000);
3126
3127 /* Give a little boost to mid-size frames */
3128 if (avg_wire_size > 300 && avg_wire_size < 1200)
3129 new_val = avg_wire_size / 3;
3130 else
3131 new_val = avg_wire_size / 2;
3132
3133 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3134 if (new_val < IGC_20K_ITR &&
3135 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3136 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3137 new_val = IGC_20K_ITR;
3138
3139set_itr_val:
3140 if (new_val != q_vector->itr_val) {
3141 q_vector->itr_val = new_val;
3142 q_vector->set_itr = 1;
3143 }
3144clear_counts:
3145 q_vector->rx.total_bytes = 0;
3146 q_vector->rx.total_packets = 0;
3147 q_vector->tx.total_bytes = 0;
3148 q_vector->tx.total_packets = 0;
3149}
3150
3151/**
3152 * igc_update_itr - update the dynamic ITR value based on statistics
3153 * @q_vector: pointer to q_vector
3154 * @ring_container: ring info to update the itr for
3155 *
3156 * Stores a new ITR value based on packets and byte
3157 * counts during the last interrupt. The advantage of per interrupt
3158 * computation is faster updates and more accurate ITR for the current
3159 * traffic pattern. Constants in this function were computed
3160 * based on theoretical maximum wire speed and thresholds were set based
3161 * on testing data as well as attempting to minimize response time
3162 * while increasing bulk throughput.
3163 * NOTE: These calculations are only valid when operating in a single-
3164 * queue environment.
3165 */
3166static void igc_update_itr(struct igc_q_vector *q_vector,
3167 struct igc_ring_container *ring_container)
3168{
3169 unsigned int packets = ring_container->total_packets;
3170 unsigned int bytes = ring_container->total_bytes;
3171 u8 itrval = ring_container->itr;
3172
3173 /* no packets, exit with status unchanged */
3174 if (packets == 0)
3175 return;
3176
3177 switch (itrval) {
3178 case lowest_latency:
3179 /* handle TSO and jumbo frames */
3180 if (bytes / packets > 8000)
3181 itrval = bulk_latency;
3182 else if ((packets < 5) && (bytes > 512))
3183 itrval = low_latency;
3184 break;
3185 case low_latency: /* 50 usec aka 20000 ints/s */
3186 if (bytes > 10000) {
3187 /* this if handles the TSO accounting */
3188 if (bytes / packets > 8000)
3189 itrval = bulk_latency;
3190 else if ((packets < 10) || ((bytes / packets) > 1200))
3191 itrval = bulk_latency;
3192 else if ((packets > 35))
3193 itrval = lowest_latency;
3194 } else if (bytes / packets > 2000) {
3195 itrval = bulk_latency;
3196 } else if (packets <= 2 && bytes < 512) {
3197 itrval = lowest_latency;
3198 }
3199 break;
3200 case bulk_latency: /* 250 usec aka 4000 ints/s */
3201 if (bytes > 25000) {
3202 if (packets > 35)
3203 itrval = low_latency;
3204 } else if (bytes < 1500) {
3205 itrval = low_latency;
3206 }
3207 break;
3208 }
3209
3210 /* clear work counters since we have the values we need */
3211 ring_container->total_bytes = 0;
3212 ring_container->total_packets = 0;
3213
3214 /* write updated itr to ring container */
3215 ring_container->itr = itrval;
3216}
3217
3218/**
3219 * igc_intr_msi - Interrupt Handler
3220 * @irq: interrupt number
3221 * @data: pointer to a network interface device structure
3222 */
3223static irqreturn_t igc_intr_msi(int irq, void *data)
3224{
3225 struct igc_adapter *adapter = data;
3226 struct igc_q_vector *q_vector = adapter->q_vector[0];
3227 struct igc_hw *hw = &adapter->hw;
3228 /* read ICR disables interrupts using IAM */
3229 u32 icr = rd32(IGC_ICR);
3230
3231 igc_write_itr(q_vector);
3232
3233 if (icr & IGC_ICR_DRSTA)
3234 schedule_work(&adapter->reset_task);
3235
3236 if (icr & IGC_ICR_DOUTSYNC) {
3237 /* HW is reporting DMA is out of sync */
3238 adapter->stats.doosync++;
3239 }
3240
3241 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3242 hw->mac.get_link_status = 1;
3243 if (!test_bit(__IGC_DOWN, &adapter->state))
3244 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3245 }
3246
3247 napi_schedule(&q_vector->napi);
3248
3249 return IRQ_HANDLED;
3250}
3251
3252/**
3253 * igc_intr - Legacy Interrupt Handler
3254 * @irq: interrupt number
3255 * @data: pointer to a network interface device structure
3256 */
3257static irqreturn_t igc_intr(int irq, void *data)
3258{
3259 struct igc_adapter *adapter = data;
3260 struct igc_q_vector *q_vector = adapter->q_vector[0];
3261 struct igc_hw *hw = &adapter->hw;
3262 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3263 * need for the IMC write
3264 */
3265 u32 icr = rd32(IGC_ICR);
3266
3267 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3268 * not set, then the adapter didn't send an interrupt
3269 */
3270 if (!(icr & IGC_ICR_INT_ASSERTED))
3271 return IRQ_NONE;
3272
3273 igc_write_itr(q_vector);
3274
3275 if (icr & IGC_ICR_DRSTA)
3276 schedule_work(&adapter->reset_task);
3277
3278 if (icr & IGC_ICR_DOUTSYNC) {
3279 /* HW is reporting DMA is out of sync */
3280 adapter->stats.doosync++;
3281 }
3282
3283 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3284 hw->mac.get_link_status = 1;
3285 /* guard against interrupt when we're going down */
3286 if (!test_bit(__IGC_DOWN, &adapter->state))
3287 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3288 }
3289
3290 napi_schedule(&q_vector->napi);
3291
3292 return IRQ_HANDLED;
3293}
3294
3295static void igc_set_itr(struct igc_q_vector *q_vector)
3296{
3297 struct igc_adapter *adapter = q_vector->adapter;
3298 u32 new_itr = q_vector->itr_val;
3299 u8 current_itr = 0;
3300
3301 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3302 switch (adapter->link_speed) {
3303 case SPEED_10:
3304 case SPEED_100:
3305 current_itr = 0;
3306 new_itr = IGC_4K_ITR;
3307 goto set_itr_now;
3308 default:
3309 break;
3310 }
3311
3312 igc_update_itr(q_vector, &q_vector->tx);
3313 igc_update_itr(q_vector, &q_vector->rx);
3314
3315 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3316
3317 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3318 if (current_itr == lowest_latency &&
3319 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3320 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3321 current_itr = low_latency;
3322
3323 switch (current_itr) {
3324 /* counts and packets in update_itr are dependent on these numbers */
3325 case lowest_latency:
3326 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3327 break;
3328 case low_latency:
3329 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3330 break;
3331 case bulk_latency:
3332 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3333 break;
3334 default:
3335 break;
3336 }
3337
3338set_itr_now:
3339 if (new_itr != q_vector->itr_val) {
3340 /* this attempts to bias the interrupt rate towards Bulk
3341 * by adding intermediate steps when interrupt rate is
3342 * increasing
3343 */
3344 new_itr = new_itr > q_vector->itr_val ?
3345 max((new_itr * q_vector->itr_val) /
3346 (new_itr + (q_vector->itr_val >> 2)),
3347 new_itr) : new_itr;
3348 /* Don't write the value here; it resets the adapter's
3349 * internal timer, and causes us to delay far longer than
3350 * we should between interrupts. Instead, we write the ITR
3351 * value at the beginning of the next interrupt so the timing
3352 * ends up being correct.
3353 */
3354 q_vector->itr_val = new_itr;
3355 q_vector->set_itr = 1;
3356 }
3357}
3358
3359static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3360{
3361 struct igc_adapter *adapter = q_vector->adapter;
3362 struct igc_hw *hw = &adapter->hw;
3363
3364 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3365 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3366 if (adapter->num_q_vectors == 1)
3367 igc_set_itr(q_vector);
3368 else
3369 igc_update_ring_itr(q_vector);
3370 }
3371
3372 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3373 if (adapter->msix_entries)
3374 wr32(IGC_EIMS, q_vector->eims_value);
3375 else
3376 igc_irq_enable(adapter);
3377 }
3378}
3379
3380/**
3381 * igc_poll - NAPI Rx polling callback
3382 * @napi: napi polling structure
3383 * @budget: count of how many packets we should handle
3384 */
3385static int igc_poll(struct napi_struct *napi, int budget)
3386{
3387 struct igc_q_vector *q_vector = container_of(napi,
3388 struct igc_q_vector,
3389 napi);
3390 bool clean_complete = true;
3391 int work_done = 0;
3392
3393 if (q_vector->tx.ring)
3394 clean_complete = igc_clean_tx_irq(q_vector, budget);
3395
3396 if (q_vector->rx.ring) {
3397 int cleaned = igc_clean_rx_irq(q_vector, budget);
3398
3399 work_done += cleaned;
3400 if (cleaned >= budget)
3401 clean_complete = false;
3402 }
3403
3404 /* If all work not completed, return budget and keep polling */
3405 if (!clean_complete)
3406 return budget;
3407
3408 /* Exit the polling mode, but don't re-enable interrupts if stack might
3409 * poll us due to busy-polling
3410 */
3411 if (likely(napi_complete_done(napi, work_done)))
3412 igc_ring_irq_enable(q_vector);
3413
3414 return min(work_done, budget - 1);
3415}
3416
3417/**
3418 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3419 * @adapter: Pointer to adapter structure
3420 *
3421 * Attempt to configure interrupts using the best available
3422 * capabilities of the hardware and kernel.
3423 */
3424static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3425 bool msix)
3426{
3427 int numvecs, i;
3428 int err;
3429
3430 if (!msix)
3431 goto msi_only;
3432 adapter->flags |= IGC_FLAG_HAS_MSIX;
3433
3434 /* Number of supported queues. */
3435 adapter->num_rx_queues = adapter->rss_queues;
3436
3437 adapter->num_tx_queues = adapter->rss_queues;
3438
3439 /* start with one vector for every Rx queue */
3440 numvecs = adapter->num_rx_queues;
3441
3442 /* if Tx handler is separate add 1 for every Tx queue */
3443 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3444 numvecs += adapter->num_tx_queues;
3445
3446 /* store the number of vectors reserved for queues */
3447 adapter->num_q_vectors = numvecs;
3448
3449 /* add 1 vector for link status interrupts */
3450 numvecs++;
3451
3452 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3453 GFP_KERNEL);
3454
3455 if (!adapter->msix_entries)
3456 return;
3457
3458 /* populate entry values */
3459 for (i = 0; i < numvecs; i++)
3460 adapter->msix_entries[i].entry = i;
3461
3462 err = pci_enable_msix_range(adapter->pdev,
3463 adapter->msix_entries,
3464 numvecs,
3465 numvecs);
3466 if (err > 0)
3467 return;
3468
3469 kfree(adapter->msix_entries);
3470 adapter->msix_entries = NULL;
3471
3472 igc_reset_interrupt_capability(adapter);
3473
3474msi_only:
3475 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3476
3477 adapter->rss_queues = 1;
3478 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3479 adapter->num_rx_queues = 1;
3480 adapter->num_tx_queues = 1;
3481 adapter->num_q_vectors = 1;
3482 if (!pci_enable_msi(adapter->pdev))
3483 adapter->flags |= IGC_FLAG_HAS_MSI;
3484}
3485
3486static void igc_add_ring(struct igc_ring *ring,
3487 struct igc_ring_container *head)
3488{
3489 head->ring = ring;
3490 head->count++;
3491}
3492
3493/**
3494 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3495 * @adapter: board private structure to initialize
3496 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3497 * @v_idx: index of vector in adapter struct
3498 * @txr_count: total number of Tx rings to allocate
3499 * @txr_idx: index of first Tx ring to allocate
3500 * @rxr_count: total number of Rx rings to allocate
3501 * @rxr_idx: index of first Rx ring to allocate
3502 *
3503 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3504 */
3505static int igc_alloc_q_vector(struct igc_adapter *adapter,
3506 unsigned int v_count, unsigned int v_idx,
3507 unsigned int txr_count, unsigned int txr_idx,
3508 unsigned int rxr_count, unsigned int rxr_idx)
3509{
3510 struct igc_q_vector *q_vector;
3511 struct igc_ring *ring;
3512 int ring_count;
3513
3514 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3515 if (txr_count > 1 || rxr_count > 1)
3516 return -ENOMEM;
3517
3518 ring_count = txr_count + rxr_count;
3519
3520 /* allocate q_vector and rings */
3521 q_vector = adapter->q_vector[v_idx];
3522 if (!q_vector)
3523 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3524 GFP_KERNEL);
3525 else
3526 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3527 if (!q_vector)
3528 return -ENOMEM;
3529
3530 /* initialize NAPI */
3531 netif_napi_add(adapter->netdev, &q_vector->napi,
3532 igc_poll, 64);
3533
3534 /* tie q_vector and adapter together */
3535 adapter->q_vector[v_idx] = q_vector;
3536 q_vector->adapter = adapter;
3537
3538 /* initialize work limits */
3539 q_vector->tx.work_limit = adapter->tx_work_limit;
3540
3541 /* initialize ITR configuration */
3542 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3543 q_vector->itr_val = IGC_START_ITR;
3544
3545 /* initialize pointer to rings */
3546 ring = q_vector->ring;
3547
3548 /* initialize ITR */
3549 if (rxr_count) {
3550 /* rx or rx/tx vector */
3551 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3552 q_vector->itr_val = adapter->rx_itr_setting;
3553 } else {
3554 /* tx only vector */
3555 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3556 q_vector->itr_val = adapter->tx_itr_setting;
3557 }
3558
3559 if (txr_count) {
3560 /* assign generic ring traits */
3561 ring->dev = &adapter->pdev->dev;
3562 ring->netdev = adapter->netdev;
3563
3564 /* configure backlink on ring */
3565 ring->q_vector = q_vector;
3566
3567 /* update q_vector Tx values */
3568 igc_add_ring(ring, &q_vector->tx);
3569
3570 /* apply Tx specific ring traits */
3571 ring->count = adapter->tx_ring_count;
3572 ring->queue_index = txr_idx;
3573
3574 /* assign ring to adapter */
3575 adapter->tx_ring[txr_idx] = ring;
3576
3577 /* push pointer to next ring */
3578 ring++;
3579 }
3580
3581 if (rxr_count) {
3582 /* assign generic ring traits */
3583 ring->dev = &adapter->pdev->dev;
3584 ring->netdev = adapter->netdev;
3585
3586 /* configure backlink on ring */
3587 ring->q_vector = q_vector;
3588
3589 /* update q_vector Rx values */
3590 igc_add_ring(ring, &q_vector->rx);
3591
3592 /* apply Rx specific ring traits */
3593 ring->count = adapter->rx_ring_count;
3594 ring->queue_index = rxr_idx;
3595
3596 /* assign ring to adapter */
3597 adapter->rx_ring[rxr_idx] = ring;
3598 }
3599
3600 return 0;
3601}
3602
3603/**
3604 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3605 * @adapter: board private structure to initialize
3606 *
3607 * We allocate one q_vector per queue interrupt. If allocation fails we
3608 * return -ENOMEM.
3609 */
3610static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3611{
3612 int rxr_remaining = adapter->num_rx_queues;
3613 int txr_remaining = adapter->num_tx_queues;
3614 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3615 int q_vectors = adapter->num_q_vectors;
3616 int err;
3617
3618 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3619 for (; rxr_remaining; v_idx++) {
3620 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3621 0, 0, 1, rxr_idx);
3622
3623 if (err)
3624 goto err_out;
3625
3626 /* update counts and index */
3627 rxr_remaining--;
3628 rxr_idx++;
3629 }
3630 }
3631
3632 for (; v_idx < q_vectors; v_idx++) {
3633 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3634 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3635
3636 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3637 tqpv, txr_idx, rqpv, rxr_idx);
3638
3639 if (err)
3640 goto err_out;
3641
3642 /* update counts and index */
3643 rxr_remaining -= rqpv;
3644 txr_remaining -= tqpv;
3645 rxr_idx++;
3646 txr_idx++;
3647 }
3648
3649 return 0;
3650
3651err_out:
3652 adapter->num_tx_queues = 0;
3653 adapter->num_rx_queues = 0;
3654 adapter->num_q_vectors = 0;
3655
3656 while (v_idx--)
3657 igc_free_q_vector(adapter, v_idx);
3658
3659 return -ENOMEM;
3660}
3661
3662/**
3663 * igc_cache_ring_register - Descriptor ring to register mapping
3664 * @adapter: board private structure to initialize
3665 *
3666 * Once we know the feature-set enabled for the device, we'll cache
3667 * the register offset the descriptor ring is assigned to.
3668 */
3669static void igc_cache_ring_register(struct igc_adapter *adapter)
3670{
3671 int i = 0, j = 0;
3672
3673 switch (adapter->hw.mac.type) {
3674 case igc_i225:
3675 /* Fall through */
3676 default:
3677 for (; i < adapter->num_rx_queues; i++)
3678 adapter->rx_ring[i]->reg_idx = i;
3679 for (; j < adapter->num_tx_queues; j++)
3680 adapter->tx_ring[j]->reg_idx = j;
3681 break;
3682 }
3683}
3684
3685/**
3686 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3687 * @adapter: Pointer to adapter structure
3688 *
3689 * This function initializes the interrupts and allocates all of the queues.
3690 */
3691static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3692{
3693 struct pci_dev *pdev = adapter->pdev;
3694 int err = 0;
3695
3696 igc_set_interrupt_capability(adapter, msix);
3697
3698 err = igc_alloc_q_vectors(adapter);
3699 if (err) {
3700 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3701 goto err_alloc_q_vectors;
3702 }
3703
3704 igc_cache_ring_register(adapter);
3705
3706 return 0;
3707
3708err_alloc_q_vectors:
3709 igc_reset_interrupt_capability(adapter);
3710 return err;
3711}
3712
3713static void igc_free_irq(struct igc_adapter *adapter)
3714{
3715 if (adapter->msix_entries) {
3716 int vector = 0, i;
3717
3718 free_irq(adapter->msix_entries[vector++].vector, adapter);
3719
3720 for (i = 0; i < adapter->num_q_vectors; i++)
3721 free_irq(adapter->msix_entries[vector++].vector,
3722 adapter->q_vector[i]);
3723 } else {
3724 free_irq(adapter->pdev->irq, adapter);
3725 }
3726}
3727
3728/**
3729 * igc_irq_disable - Mask off interrupt generation on the NIC
3730 * @adapter: board private structure
3731 */
3732static void igc_irq_disable(struct igc_adapter *adapter)
3733{
3734 struct igc_hw *hw = &adapter->hw;
3735
3736 if (adapter->msix_entries) {
3737 u32 regval = rd32(IGC_EIAM);
3738
3739 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3740 wr32(IGC_EIMC, adapter->eims_enable_mask);
3741 regval = rd32(IGC_EIAC);
3742 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3743 }
3744
3745 wr32(IGC_IAM, 0);
3746 wr32(IGC_IMC, ~0);
3747 wrfl();
3748
3749 if (adapter->msix_entries) {
3750 int vector = 0, i;
3751
3752 synchronize_irq(adapter->msix_entries[vector++].vector);
3753
3754 for (i = 0; i < adapter->num_q_vectors; i++)
3755 synchronize_irq(adapter->msix_entries[vector++].vector);
3756 } else {
3757 synchronize_irq(adapter->pdev->irq);
3758 }
3759}
3760
3761/**
3762 * igc_irq_enable - Enable default interrupt generation settings
3763 * @adapter: board private structure
3764 */
3765static void igc_irq_enable(struct igc_adapter *adapter)
3766{
3767 struct igc_hw *hw = &adapter->hw;
3768
3769 if (adapter->msix_entries) {
3770 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3771 u32 regval = rd32(IGC_EIAC);
3772
3773 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3774 regval = rd32(IGC_EIAM);
3775 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3776 wr32(IGC_EIMS, adapter->eims_enable_mask);
3777 wr32(IGC_IMS, ims);
3778 } else {
3779 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3780 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3781 }
3782}
3783
3784/**
3785 * igc_request_irq - initialize interrupts
3786 * @adapter: Pointer to adapter structure
3787 *
3788 * Attempts to configure interrupts using the best available
3789 * capabilities of the hardware and kernel.
3790 */
3791static int igc_request_irq(struct igc_adapter *adapter)
3792{
3793 struct net_device *netdev = adapter->netdev;
3794 struct pci_dev *pdev = adapter->pdev;
3795 int err = 0;
3796
3797 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3798 err = igc_request_msix(adapter);
3799 if (!err)
3800 goto request_done;
3801 /* fall back to MSI */
3802 igc_free_all_tx_resources(adapter);
3803 igc_free_all_rx_resources(adapter);
3804
3805 igc_clear_interrupt_scheme(adapter);
3806 err = igc_init_interrupt_scheme(adapter, false);
3807 if (err)
3808 goto request_done;
3809 igc_setup_all_tx_resources(adapter);
3810 igc_setup_all_rx_resources(adapter);
3811 igc_configure(adapter);
3812 }
3813
3814 igc_assign_vector(adapter->q_vector[0], 0);
3815
3816 if (adapter->flags & IGC_FLAG_HAS_MSI) {
3817 err = request_irq(pdev->irq, &igc_intr_msi, 0,
3818 netdev->name, adapter);
3819 if (!err)
3820 goto request_done;
3821
3822 /* fall back to legacy interrupts */
3823 igc_reset_interrupt_capability(adapter);
3824 adapter->flags &= ~IGC_FLAG_HAS_MSI;
3825 }
3826
3827 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
3828 netdev->name, adapter);
3829
3830 if (err)
3831 dev_err(&pdev->dev, "Error %d getting interrupt\n",
3832 err);
3833
3834request_done:
3835 return err;
3836}
3837
3838static void igc_write_itr(struct igc_q_vector *q_vector)
3839{
3840 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
3841
3842 if (!q_vector->set_itr)
3843 return;
3844
3845 if (!itr_val)
3846 itr_val = IGC_ITR_VAL_MASK;
3847
3848 itr_val |= IGC_EITR_CNT_IGNR;
3849
3850 writel(itr_val, q_vector->itr_register);
3851 q_vector->set_itr = 0;
3852}
3853
3854/**
3855 * igc_open - Called when a network interface is made active
3856 * @netdev: network interface device structure
3857 *
3858 * Returns 0 on success, negative value on failure
3859 *
3860 * The open entry point is called when a network interface is made
3861 * active by the system (IFF_UP). At this point all resources needed
3862 * for transmit and receive operations are allocated, the interrupt
3863 * handler is registered with the OS, the watchdog timer is started,
3864 * and the stack is notified that the interface is ready.
3865 */
3866static int __igc_open(struct net_device *netdev, bool resuming)
3867{
3868 struct igc_adapter *adapter = netdev_priv(netdev);
3869 struct igc_hw *hw = &adapter->hw;
3870 int err = 0;
3871 int i = 0;
3872
3873 /* disallow open during test */
3874
3875 if (test_bit(__IGC_TESTING, &adapter->state)) {
3876 WARN_ON(resuming);
3877 return -EBUSY;
3878 }
3879
3880 netif_carrier_off(netdev);
3881
3882 /* allocate transmit descriptors */
3883 err = igc_setup_all_tx_resources(adapter);
3884 if (err)
3885 goto err_setup_tx;
3886
3887 /* allocate receive descriptors */
3888 err = igc_setup_all_rx_resources(adapter);
3889 if (err)
3890 goto err_setup_rx;
3891
3892 igc_power_up_link(adapter);
3893
3894 igc_configure(adapter);
3895
3896 err = igc_request_irq(adapter);
3897 if (err)
3898 goto err_req_irq;
3899
3900 /* Notify the stack of the actual queue counts. */
3901 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3902 if (err)
3903 goto err_set_queues;
3904
3905 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3906 if (err)
3907 goto err_set_queues;
3908
3909 clear_bit(__IGC_DOWN, &adapter->state);
3910
3911 for (i = 0; i < adapter->num_q_vectors; i++)
3912 napi_enable(&adapter->q_vector[i]->napi);
3913
3914 /* Clear any pending interrupts. */
3915 rd32(IGC_ICR);
3916 igc_irq_enable(adapter);
3917
3918 netif_tx_start_all_queues(netdev);
3919
3920 /* start the watchdog. */
3921 hw->mac.get_link_status = 1;
3922 schedule_work(&adapter->watchdog_task);
3923
3924 return IGC_SUCCESS;
3925
3926err_set_queues:
3927 igc_free_irq(adapter);
3928err_req_irq:
3929 igc_release_hw_control(adapter);
3930 igc_power_down_link(adapter);
3931 igc_free_all_rx_resources(adapter);
3932err_setup_rx:
3933 igc_free_all_tx_resources(adapter);
3934err_setup_tx:
3935 igc_reset(adapter);
3936
3937 return err;
3938}
3939
3940static int igc_open(struct net_device *netdev)
3941{
3942 return __igc_open(netdev, false);
3943}
3944
3945/**
3946 * igc_close - Disables a network interface
3947 * @netdev: network interface device structure
3948 *
3949 * Returns 0, this is not allowed to fail
3950 *
3951 * The close entry point is called when an interface is de-activated
3952 * by the OS. The hardware is still under the driver's control, but
3953 * needs to be disabled. A global MAC reset is issued to stop the
3954 * hardware, and all transmit and receive resources are freed.
3955 */
3956static int __igc_close(struct net_device *netdev, bool suspending)
3957{
3958 struct igc_adapter *adapter = netdev_priv(netdev);
3959
3960 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
3961
3962 igc_down(adapter);
3963
3964 igc_release_hw_control(adapter);
3965
3966 igc_free_irq(adapter);
3967
3968 igc_free_all_tx_resources(adapter);
3969 igc_free_all_rx_resources(adapter);
3970
3971 return 0;
3972}
3973
3974static int igc_close(struct net_device *netdev)
3975{
3976 if (netif_device_present(netdev) || netdev->dismantle)
3977 return __igc_close(netdev, false);
3978 return 0;
3979}
3980
3981static const struct net_device_ops igc_netdev_ops = {
3982 .ndo_open = igc_open,
3983 .ndo_stop = igc_close,
3984 .ndo_start_xmit = igc_xmit_frame,
3985 .ndo_set_mac_address = igc_set_mac,
3986 .ndo_change_mtu = igc_change_mtu,
3987 .ndo_get_stats = igc_get_stats,
3988 .ndo_fix_features = igc_fix_features,
3989 .ndo_set_features = igc_set_features,
3990 .ndo_features_check = igc_features_check,
3991};
3992
3993/* PCIe configuration access */
3994void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3995{
3996 struct igc_adapter *adapter = hw->back;
3997
3998 pci_read_config_word(adapter->pdev, reg, value);
3999}
4000
4001void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4002{
4003 struct igc_adapter *adapter = hw->back;
4004
4005 pci_write_config_word(adapter->pdev, reg, *value);
4006}
4007
4008s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4009{
4010 struct igc_adapter *adapter = hw->back;
4011
4012 if (!pci_is_pcie(adapter->pdev))
4013 return -IGC_ERR_CONFIG;
4014
4015 pcie_capability_read_word(adapter->pdev, reg, value);
4016
4017 return IGC_SUCCESS;
4018}
4019
4020s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4021{
4022 struct igc_adapter *adapter = hw->back;
4023
4024 if (!pci_is_pcie(adapter->pdev))
4025 return -IGC_ERR_CONFIG;
4026
4027 pcie_capability_write_word(adapter->pdev, reg, *value);
4028
4029 return IGC_SUCCESS;
4030}
4031
4032u32 igc_rd32(struct igc_hw *hw, u32 reg)
4033{
4034 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4035 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4036 u32 value = 0;
4037
4038 if (IGC_REMOVED(hw_addr))
4039 return ~value;
4040
4041 value = readl(&hw_addr[reg]);
4042
4043 /* reads should not return all F's */
4044 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4045 struct net_device *netdev = igc->netdev;
4046
4047 hw->hw_addr = NULL;
4048 netif_device_detach(netdev);
4049 netdev_err(netdev, "PCIe link lost, device now detached\n");
4050 WARN(pci_device_is_present(igc->pdev),
4051 "igc: Failed to read reg 0x%x!\n", reg);
4052 }
4053
4054 return value;
4055}
4056
4057int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4058{
4059 struct pci_dev *pdev = adapter->pdev;
4060 struct igc_mac_info *mac = &adapter->hw.mac;
4061
4062 mac->autoneg = 0;
4063
4064 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4065 * for the switch() below to work
4066 */
4067 if ((spd & 1) || (dplx & ~1))
4068 goto err_inval;
4069
4070 switch (spd + dplx) {
4071 case SPEED_10 + DUPLEX_HALF:
4072 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4073 break;
4074 case SPEED_10 + DUPLEX_FULL:
4075 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4076 break;
4077 case SPEED_100 + DUPLEX_HALF:
4078 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4079 break;
4080 case SPEED_100 + DUPLEX_FULL:
4081 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4082 break;
4083 case SPEED_1000 + DUPLEX_FULL:
4084 mac->autoneg = 1;
4085 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4086 break;
4087 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4088 goto err_inval;
4089 case SPEED_2500 + DUPLEX_FULL:
4090 mac->autoneg = 1;
4091 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4092 break;
4093 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4094 default:
4095 goto err_inval;
4096 }
4097
4098 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4099 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4100
4101 return 0;
4102
4103err_inval:
4104 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
4105 return -EINVAL;
4106}
4107
4108/**
4109 * igc_probe - Device Initialization Routine
4110 * @pdev: PCI device information struct
4111 * @ent: entry in igc_pci_tbl
4112 *
4113 * Returns 0 on success, negative on failure
4114 *
4115 * igc_probe initializes an adapter identified by a pci_dev structure.
4116 * The OS initialization, configuring the adapter private structure,
4117 * and a hardware reset occur.
4118 */
4119static int igc_probe(struct pci_dev *pdev,
4120 const struct pci_device_id *ent)
4121{
4122 struct igc_adapter *adapter;
4123 struct net_device *netdev;
4124 struct igc_hw *hw;
4125 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4126 int err;
4127
4128 err = pci_enable_device_mem(pdev);
4129 if (err)
4130 return err;
4131
4132 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
4133 if (!err) {
4134 err = dma_set_coherent_mask(&pdev->dev,
4135 DMA_BIT_MASK(64));
4136 } else {
4137 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4138 if (err) {
4139 err = dma_set_coherent_mask(&pdev->dev,
4140 DMA_BIT_MASK(32));
4141 if (err) {
4142 dev_err(&pdev->dev, "igc: Wrong DMA config\n");
4143 goto err_dma;
4144 }
4145 }
4146 }
4147
4148 err = pci_request_selected_regions(pdev,
4149 pci_select_bars(pdev,
4150 IORESOURCE_MEM),
4151 igc_driver_name);
4152 if (err)
4153 goto err_pci_reg;
4154
4155 pci_enable_pcie_error_reporting(pdev);
4156
4157 pci_set_master(pdev);
4158
4159 err = -ENOMEM;
4160 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4161 IGC_MAX_TX_QUEUES);
4162
4163 if (!netdev)
4164 goto err_alloc_etherdev;
4165
4166 SET_NETDEV_DEV(netdev, &pdev->dev);
4167
4168 pci_set_drvdata(pdev, netdev);
4169 adapter = netdev_priv(netdev);
4170 adapter->netdev = netdev;
4171 adapter->pdev = pdev;
4172 hw = &adapter->hw;
4173 hw->back = adapter;
4174 adapter->port_num = hw->bus.func;
4175 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4176
4177 err = pci_save_state(pdev);
4178 if (err)
4179 goto err_ioremap;
4180
4181 err = -EIO;
4182 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
4183 pci_resource_len(pdev, 0));
4184 if (!adapter->io_addr)
4185 goto err_ioremap;
4186
4187 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
4188 hw->hw_addr = adapter->io_addr;
4189
4190 netdev->netdev_ops = &igc_netdev_ops;
4191 igc_set_ethtool_ops(netdev);
4192 netdev->watchdog_timeo = 5 * HZ;
4193
4194 netdev->mem_start = pci_resource_start(pdev, 0);
4195 netdev->mem_end = pci_resource_end(pdev, 0);
4196
4197 /* PCI config space info */
4198 hw->vendor_id = pdev->vendor;
4199 hw->device_id = pdev->device;
4200 hw->revision_id = pdev->revision;
4201 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4202 hw->subsystem_device_id = pdev->subsystem_device;
4203
4204 /* Copy the default MAC and PHY function pointers */
4205 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4206 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4207
4208 /* Initialize skew-specific constants */
4209 err = ei->get_invariants(hw);
4210 if (err)
4211 goto err_sw_init;
4212
4213 /* Add supported features to the features list*/
4214 netdev->features |= NETIF_F_HW_CSUM;
4215
4216 /* setup the private structure */
4217 err = igc_sw_init(adapter);
4218 if (err)
4219 goto err_sw_init;
4220
4221 /* copy netdev features into list of user selectable features */
4222 netdev->hw_features |= NETIF_F_NTUPLE;
4223 netdev->hw_features |= netdev->features;
4224
4225 /* MTU range: 68 - 9216 */
4226 netdev->min_mtu = ETH_MIN_MTU;
4227 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
4228
4229 /* before reading the NVM, reset the controller to put the device in a
4230 * known good starting state
4231 */
4232 hw->mac.ops.reset_hw(hw);
4233
4234 if (igc_get_flash_presence_i225(hw)) {
4235 if (hw->nvm.ops.validate(hw) < 0) {
4236 dev_err(&pdev->dev,
4237 "The NVM Checksum Is Not Valid\n");
4238 err = -EIO;
4239 goto err_eeprom;
4240 }
4241 }
4242
4243 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
4244 /* copy the MAC address out of the NVM */
4245 if (hw->mac.ops.read_mac_addr(hw))
4246 dev_err(&pdev->dev, "NVM Read Error\n");
4247 }
4248
4249 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
4250
4251 if (!is_valid_ether_addr(netdev->dev_addr)) {
4252 dev_err(&pdev->dev, "Invalid MAC Address\n");
4253 err = -EIO;
4254 goto err_eeprom;
4255 }
4256
4257 /* configure RXPBSIZE and TXPBSIZE */
4258 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
4259 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
4260
4261 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
4262 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
4263
4264 INIT_WORK(&adapter->reset_task, igc_reset_task);
4265 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
4266
4267 /* Initialize link properties that are user-changeable */
4268 adapter->fc_autoneg = true;
4269 hw->mac.autoneg = true;
4270 hw->phy.autoneg_advertised = 0xaf;
4271
4272 hw->fc.requested_mode = igc_fc_default;
4273 hw->fc.current_mode = igc_fc_default;
4274
4275 /* reset the hardware with the new settings */
4276 igc_reset(adapter);
4277
4278 /* let the f/w know that the h/w is now under the control of the
4279 * driver.
4280 */
4281 igc_get_hw_control(adapter);
4282
4283 strncpy(netdev->name, "eth%d", IFNAMSIZ);
4284 err = register_netdev(netdev);
4285 if (err)
4286 goto err_register;
4287
4288 /* carrier off reporting is important to ethtool even BEFORE open */
4289 netif_carrier_off(netdev);
4290
4291 /* Check if Media Autosense is enabled */
4292 adapter->ei = *ei;
4293
4294 /* print pcie link status and MAC address */
4295 pcie_print_link_status(pdev);
4296 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
4297
4298 return 0;
4299
4300err_register:
4301 igc_release_hw_control(adapter);
4302err_eeprom:
4303 if (!igc_check_reset_block(hw))
4304 igc_reset_phy(hw);
4305err_sw_init:
4306 igc_clear_interrupt_scheme(adapter);
4307 iounmap(adapter->io_addr);
4308err_ioremap:
4309 free_netdev(netdev);
4310err_alloc_etherdev:
4311 pci_release_selected_regions(pdev,
4312 pci_select_bars(pdev, IORESOURCE_MEM));
4313err_pci_reg:
4314err_dma:
4315 pci_disable_device(pdev);
4316 return err;
4317}
4318
4319/**
4320 * igc_remove - Device Removal Routine
4321 * @pdev: PCI device information struct
4322 *
4323 * igc_remove is called by the PCI subsystem to alert the driver
4324 * that it should release a PCI device. This could be caused by a
4325 * Hot-Plug event, or because the driver is going to be removed from
4326 * memory.
4327 */
4328static void igc_remove(struct pci_dev *pdev)
4329{
4330 struct net_device *netdev = pci_get_drvdata(pdev);
4331 struct igc_adapter *adapter = netdev_priv(netdev);
4332
4333 set_bit(__IGC_DOWN, &adapter->state);
4334
4335 del_timer_sync(&adapter->watchdog_timer);
4336 del_timer_sync(&adapter->phy_info_timer);
4337
4338 cancel_work_sync(&adapter->reset_task);
4339 cancel_work_sync(&adapter->watchdog_task);
4340
4341 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4342 * would have already happened in close and is redundant.
4343 */
4344 igc_release_hw_control(adapter);
4345 unregister_netdev(netdev);
4346
4347 igc_clear_interrupt_scheme(adapter);
4348 pci_iounmap(pdev, adapter->io_addr);
4349 pci_release_mem_regions(pdev);
4350
4351 kfree(adapter->mac_table);
4352 kfree(adapter->shadow_vfta);
4353 free_netdev(netdev);
4354
4355 pci_disable_pcie_error_reporting(pdev);
4356
4357 pci_disable_device(pdev);
4358}
4359
4360static struct pci_driver igc_driver = {
4361 .name = igc_driver_name,
4362 .id_table = igc_pci_tbl,
4363 .probe = igc_probe,
4364 .remove = igc_remove,
4365};
4366
4367void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4368 const u32 max_rss_queues)
4369{
4370 /* Determine if we need to pair queues. */
4371 /* If rss_queues > half of max_rss_queues, pair the queues in
4372 * order to conserve interrupts due to limited supply.
4373 */
4374 if (adapter->rss_queues > (max_rss_queues / 2))
4375 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4376 else
4377 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4378}
4379
4380unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4381{
4382 unsigned int max_rss_queues;
4383
4384 /* Determine the maximum number of RSS queues supported. */
4385 max_rss_queues = IGC_MAX_RX_QUEUES;
4386
4387 return max_rss_queues;
4388}
4389
4390static void igc_init_queue_configuration(struct igc_adapter *adapter)
4391{
4392 u32 max_rss_queues;
4393
4394 max_rss_queues = igc_get_max_rss_queues(adapter);
4395 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4396
4397 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4398}
4399
4400/**
4401 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4402 * @adapter: board private structure to initialize
4403 *
4404 * igc_sw_init initializes the Adapter private data structure.
4405 * Fields are initialized based on PCI device information and
4406 * OS network device settings (MTU size).
4407 */
4408static int igc_sw_init(struct igc_adapter *adapter)
4409{
4410 struct net_device *netdev = adapter->netdev;
4411 struct pci_dev *pdev = adapter->pdev;
4412 struct igc_hw *hw = &adapter->hw;
4413
4414 int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
4415
4416 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4417
4418 /* set default ring sizes */
4419 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4420 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4421
4422 /* set default ITR values */
4423 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4424 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4425
4426 /* set default work limits */
4427 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4428
4429 /* adjust max frame to be at least the size of a standard frame */
4430 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4431 VLAN_HLEN;
4432 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4433
4434 spin_lock_init(&adapter->nfc_lock);
4435 spin_lock_init(&adapter->stats64_lock);
4436 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4437 adapter->flags |= IGC_FLAG_HAS_MSIX;
4438
4439 adapter->mac_table = kzalloc(size, GFP_ATOMIC);
4440 if (!adapter->mac_table)
4441 return -ENOMEM;
4442
4443 igc_init_queue_configuration(adapter);
4444
4445 /* This call may decrease the number of queues */
4446 if (igc_init_interrupt_scheme(adapter, true)) {
4447 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4448 return -ENOMEM;
4449 }
4450
4451 /* Explicitly disable IRQ since the NIC can be in any state. */
4452 igc_irq_disable(adapter);
4453
4454 set_bit(__IGC_DOWN, &adapter->state);
4455
4456 return 0;
4457}
4458
4459/**
4460 * igc_reinit_queues - return error
4461 * @adapter: pointer to adapter structure
4462 */
4463int igc_reinit_queues(struct igc_adapter *adapter)
4464{
4465 struct net_device *netdev = adapter->netdev;
4466 struct pci_dev *pdev = adapter->pdev;
4467 int err = 0;
4468
4469 if (netif_running(netdev))
4470 igc_close(netdev);
4471
4472 igc_reset_interrupt_capability(adapter);
4473
4474 if (igc_init_interrupt_scheme(adapter, true)) {
4475 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4476 return -ENOMEM;
4477 }
4478
4479 if (netif_running(netdev))
4480 err = igc_open(netdev);
4481
4482 return err;
4483}
4484
4485/**
4486 * igc_get_hw_dev - return device
4487 * @hw: pointer to hardware structure
4488 *
4489 * used by hardware layer to print debugging information
4490 */
4491struct net_device *igc_get_hw_dev(struct igc_hw *hw)
4492{
4493 struct igc_adapter *adapter = hw->back;
4494
4495 return adapter->netdev;
4496}
4497
4498/**
4499 * igc_init_module - Driver Registration Routine
4500 *
4501 * igc_init_module is the first routine called when the driver is
4502 * loaded. All it does is register with the PCI subsystem.
4503 */
4504static int __init igc_init_module(void)
4505{
4506 int ret;
4507
4508 pr_info("%s - version %s\n",
4509 igc_driver_string, igc_driver_version);
4510
4511 pr_info("%s\n", igc_copyright);
4512
4513 ret = pci_register_driver(&igc_driver);
4514 return ret;
4515}
4516
4517module_init(igc_init_module);
4518
4519/**
4520 * igc_exit_module - Driver Exit Cleanup Routine
4521 *
4522 * igc_exit_module is called just before the driver is removed
4523 * from memory.
4524 */
4525static void __exit igc_exit_module(void)
4526{
4527 pci_unregister_driver(&igc_driver);
4528}
4529
4530module_exit(igc_exit_module);
4531/* igc_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/aer.h>
8#include <linux/tcp.h>
9#include <linux/udp.h>
10#include <linux/ip.h>
11#include <linux/pm_runtime.h>
12#include <net/pkt_sched.h>
13
14#include <net/ipv6.h>
15
16#include "igc.h"
17#include "igc_hw.h"
18#include "igc_tsn.h"
19
20#define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
21
22#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
23
24static int debug = -1;
25
26MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
27MODULE_DESCRIPTION(DRV_SUMMARY);
28MODULE_LICENSE("GPL v2");
29module_param(debug, int, 0);
30MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
31
32char igc_driver_name[] = "igc";
33static const char igc_driver_string[] = DRV_SUMMARY;
34static const char igc_copyright[] =
35 "Copyright(c) 2018 Intel Corporation.";
36
37static const struct igc_info *igc_info_tbl[] = {
38 [board_base] = &igc_base_info,
39};
40
41static const struct pci_device_id igc_pci_tbl[] = {
42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
48 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
49 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
51 /* required last entry */
52 {0, }
53};
54
55MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
56
57enum latency_range {
58 lowest_latency = 0,
59 low_latency = 1,
60 bulk_latency = 2,
61 latency_invalid = 255
62};
63
64void igc_reset(struct igc_adapter *adapter)
65{
66 struct net_device *dev = adapter->netdev;
67 struct igc_hw *hw = &adapter->hw;
68 struct igc_fc_info *fc = &hw->fc;
69 u32 pba, hwm;
70
71 /* Repartition PBA for greater than 9k MTU if required */
72 pba = IGC_PBA_34K;
73
74 /* flow control settings
75 * The high water mark must be low enough to fit one full frame
76 * after transmitting the pause frame. As such we must have enough
77 * space to allow for us to complete our current transmit and then
78 * receive the frame that is in progress from the link partner.
79 * Set it to:
80 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
81 */
82 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
83
84 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
85 fc->low_water = fc->high_water - 16;
86 fc->pause_time = 0xFFFF;
87 fc->send_xon = 1;
88 fc->current_mode = fc->requested_mode;
89
90 hw->mac.ops.reset_hw(hw);
91
92 if (hw->mac.ops.init_hw(hw))
93 netdev_err(dev, "Error on hardware initialization\n");
94
95 /* Re-establish EEE setting */
96 igc_set_eee_i225(hw, true, true, true);
97
98 if (!netif_running(adapter->netdev))
99 igc_power_down_phy_copper_base(&adapter->hw);
100
101 /* Re-enable PTP, where applicable. */
102 igc_ptp_reset(adapter);
103
104 /* Re-enable TSN offloading, where applicable. */
105 igc_tsn_offload_apply(adapter);
106
107 igc_get_phy_info(hw);
108}
109
110/**
111 * igc_power_up_link - Power up the phy link
112 * @adapter: address of board private structure
113 */
114static void igc_power_up_link(struct igc_adapter *adapter)
115{
116 igc_reset_phy(&adapter->hw);
117
118 igc_power_up_phy_copper(&adapter->hw);
119
120 igc_setup_link(&adapter->hw);
121}
122
123/**
124 * igc_release_hw_control - release control of the h/w to f/w
125 * @adapter: address of board private structure
126 *
127 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
128 * For ASF and Pass Through versions of f/w this means that the
129 * driver is no longer loaded.
130 */
131static void igc_release_hw_control(struct igc_adapter *adapter)
132{
133 struct igc_hw *hw = &adapter->hw;
134 u32 ctrl_ext;
135
136 /* Let firmware take over control of h/w */
137 ctrl_ext = rd32(IGC_CTRL_EXT);
138 wr32(IGC_CTRL_EXT,
139 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
140}
141
142/**
143 * igc_get_hw_control - get control of the h/w from f/w
144 * @adapter: address of board private structure
145 *
146 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
147 * For ASF and Pass Through versions of f/w this means that
148 * the driver is loaded.
149 */
150static void igc_get_hw_control(struct igc_adapter *adapter)
151{
152 struct igc_hw *hw = &adapter->hw;
153 u32 ctrl_ext;
154
155 /* Let firmware know the driver has taken over */
156 ctrl_ext = rd32(IGC_CTRL_EXT);
157 wr32(IGC_CTRL_EXT,
158 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
159}
160
161/**
162 * igc_clean_tx_ring - Free Tx Buffers
163 * @tx_ring: ring to be cleaned
164 */
165static void igc_clean_tx_ring(struct igc_ring *tx_ring)
166{
167 u16 i = tx_ring->next_to_clean;
168 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
169
170 while (i != tx_ring->next_to_use) {
171 union igc_adv_tx_desc *eop_desc, *tx_desc;
172
173 /* Free all the Tx ring sk_buffs */
174 dev_kfree_skb_any(tx_buffer->skb);
175
176 /* unmap skb header data */
177 dma_unmap_single(tx_ring->dev,
178 dma_unmap_addr(tx_buffer, dma),
179 dma_unmap_len(tx_buffer, len),
180 DMA_TO_DEVICE);
181
182 /* check for eop_desc to determine the end of the packet */
183 eop_desc = tx_buffer->next_to_watch;
184 tx_desc = IGC_TX_DESC(tx_ring, i);
185
186 /* unmap remaining buffers */
187 while (tx_desc != eop_desc) {
188 tx_buffer++;
189 tx_desc++;
190 i++;
191 if (unlikely(i == tx_ring->count)) {
192 i = 0;
193 tx_buffer = tx_ring->tx_buffer_info;
194 tx_desc = IGC_TX_DESC(tx_ring, 0);
195 }
196
197 /* unmap any remaining paged data */
198 if (dma_unmap_len(tx_buffer, len))
199 dma_unmap_page(tx_ring->dev,
200 dma_unmap_addr(tx_buffer, dma),
201 dma_unmap_len(tx_buffer, len),
202 DMA_TO_DEVICE);
203 }
204
205 /* move us one more past the eop_desc for start of next pkt */
206 tx_buffer++;
207 i++;
208 if (unlikely(i == tx_ring->count)) {
209 i = 0;
210 tx_buffer = tx_ring->tx_buffer_info;
211 }
212 }
213
214 /* reset BQL for queue */
215 netdev_tx_reset_queue(txring_txq(tx_ring));
216
217 /* reset next_to_use and next_to_clean */
218 tx_ring->next_to_use = 0;
219 tx_ring->next_to_clean = 0;
220}
221
222/**
223 * igc_free_tx_resources - Free Tx Resources per Queue
224 * @tx_ring: Tx descriptor ring for a specific queue
225 *
226 * Free all transmit software resources
227 */
228void igc_free_tx_resources(struct igc_ring *tx_ring)
229{
230 igc_clean_tx_ring(tx_ring);
231
232 vfree(tx_ring->tx_buffer_info);
233 tx_ring->tx_buffer_info = NULL;
234
235 /* if not set, then don't free */
236 if (!tx_ring->desc)
237 return;
238
239 dma_free_coherent(tx_ring->dev, tx_ring->size,
240 tx_ring->desc, tx_ring->dma);
241
242 tx_ring->desc = NULL;
243}
244
245/**
246 * igc_free_all_tx_resources - Free Tx Resources for All Queues
247 * @adapter: board private structure
248 *
249 * Free all transmit software resources
250 */
251static void igc_free_all_tx_resources(struct igc_adapter *adapter)
252{
253 int i;
254
255 for (i = 0; i < adapter->num_tx_queues; i++)
256 igc_free_tx_resources(adapter->tx_ring[i]);
257}
258
259/**
260 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
261 * @adapter: board private structure
262 */
263static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
264{
265 int i;
266
267 for (i = 0; i < adapter->num_tx_queues; i++)
268 if (adapter->tx_ring[i])
269 igc_clean_tx_ring(adapter->tx_ring[i]);
270}
271
272/**
273 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
274 * @tx_ring: tx descriptor ring (for a specific queue) to setup
275 *
276 * Return 0 on success, negative on failure
277 */
278int igc_setup_tx_resources(struct igc_ring *tx_ring)
279{
280 struct net_device *ndev = tx_ring->netdev;
281 struct device *dev = tx_ring->dev;
282 int size = 0;
283
284 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
285 tx_ring->tx_buffer_info = vzalloc(size);
286 if (!tx_ring->tx_buffer_info)
287 goto err;
288
289 /* round up to nearest 4K */
290 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
291 tx_ring->size = ALIGN(tx_ring->size, 4096);
292
293 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
294 &tx_ring->dma, GFP_KERNEL);
295
296 if (!tx_ring->desc)
297 goto err;
298
299 tx_ring->next_to_use = 0;
300 tx_ring->next_to_clean = 0;
301
302 return 0;
303
304err:
305 vfree(tx_ring->tx_buffer_info);
306 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
307 return -ENOMEM;
308}
309
310/**
311 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
312 * @adapter: board private structure
313 *
314 * Return 0 on success, negative on failure
315 */
316static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
317{
318 struct net_device *dev = adapter->netdev;
319 int i, err = 0;
320
321 for (i = 0; i < adapter->num_tx_queues; i++) {
322 err = igc_setup_tx_resources(adapter->tx_ring[i]);
323 if (err) {
324 netdev_err(dev, "Error on Tx queue %u setup\n", i);
325 for (i--; i >= 0; i--)
326 igc_free_tx_resources(adapter->tx_ring[i]);
327 break;
328 }
329 }
330
331 return err;
332}
333
334/**
335 * igc_clean_rx_ring - Free Rx Buffers per Queue
336 * @rx_ring: ring to free buffers from
337 */
338static void igc_clean_rx_ring(struct igc_ring *rx_ring)
339{
340 u16 i = rx_ring->next_to_clean;
341
342 dev_kfree_skb(rx_ring->skb);
343 rx_ring->skb = NULL;
344
345 /* Free all the Rx ring sk_buffs */
346 while (i != rx_ring->next_to_alloc) {
347 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
348
349 /* Invalidate cache lines that may have been written to by
350 * device so that we avoid corrupting memory.
351 */
352 dma_sync_single_range_for_cpu(rx_ring->dev,
353 buffer_info->dma,
354 buffer_info->page_offset,
355 igc_rx_bufsz(rx_ring),
356 DMA_FROM_DEVICE);
357
358 /* free resources associated with mapping */
359 dma_unmap_page_attrs(rx_ring->dev,
360 buffer_info->dma,
361 igc_rx_pg_size(rx_ring),
362 DMA_FROM_DEVICE,
363 IGC_RX_DMA_ATTR);
364 __page_frag_cache_drain(buffer_info->page,
365 buffer_info->pagecnt_bias);
366
367 i++;
368 if (i == rx_ring->count)
369 i = 0;
370 }
371
372 rx_ring->next_to_alloc = 0;
373 rx_ring->next_to_clean = 0;
374 rx_ring->next_to_use = 0;
375}
376
377/**
378 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
379 * @adapter: board private structure
380 */
381static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
382{
383 int i;
384
385 for (i = 0; i < adapter->num_rx_queues; i++)
386 if (adapter->rx_ring[i])
387 igc_clean_rx_ring(adapter->rx_ring[i]);
388}
389
390/**
391 * igc_free_rx_resources - Free Rx Resources
392 * @rx_ring: ring to clean the resources from
393 *
394 * Free all receive software resources
395 */
396void igc_free_rx_resources(struct igc_ring *rx_ring)
397{
398 igc_clean_rx_ring(rx_ring);
399
400 vfree(rx_ring->rx_buffer_info);
401 rx_ring->rx_buffer_info = NULL;
402
403 /* if not set, then don't free */
404 if (!rx_ring->desc)
405 return;
406
407 dma_free_coherent(rx_ring->dev, rx_ring->size,
408 rx_ring->desc, rx_ring->dma);
409
410 rx_ring->desc = NULL;
411}
412
413/**
414 * igc_free_all_rx_resources - Free Rx Resources for All Queues
415 * @adapter: board private structure
416 *
417 * Free all receive software resources
418 */
419static void igc_free_all_rx_resources(struct igc_adapter *adapter)
420{
421 int i;
422
423 for (i = 0; i < adapter->num_rx_queues; i++)
424 igc_free_rx_resources(adapter->rx_ring[i]);
425}
426
427/**
428 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
429 * @rx_ring: rx descriptor ring (for a specific queue) to setup
430 *
431 * Returns 0 on success, negative on failure
432 */
433int igc_setup_rx_resources(struct igc_ring *rx_ring)
434{
435 struct net_device *ndev = rx_ring->netdev;
436 struct device *dev = rx_ring->dev;
437 int size, desc_len;
438
439 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
440 rx_ring->rx_buffer_info = vzalloc(size);
441 if (!rx_ring->rx_buffer_info)
442 goto err;
443
444 desc_len = sizeof(union igc_adv_rx_desc);
445
446 /* Round up to nearest 4K */
447 rx_ring->size = rx_ring->count * desc_len;
448 rx_ring->size = ALIGN(rx_ring->size, 4096);
449
450 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
451 &rx_ring->dma, GFP_KERNEL);
452
453 if (!rx_ring->desc)
454 goto err;
455
456 rx_ring->next_to_alloc = 0;
457 rx_ring->next_to_clean = 0;
458 rx_ring->next_to_use = 0;
459
460 return 0;
461
462err:
463 vfree(rx_ring->rx_buffer_info);
464 rx_ring->rx_buffer_info = NULL;
465 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
466 return -ENOMEM;
467}
468
469/**
470 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
471 * (Descriptors) for all queues
472 * @adapter: board private structure
473 *
474 * Return 0 on success, negative on failure
475 */
476static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
477{
478 struct net_device *dev = adapter->netdev;
479 int i, err = 0;
480
481 for (i = 0; i < adapter->num_rx_queues; i++) {
482 err = igc_setup_rx_resources(adapter->rx_ring[i]);
483 if (err) {
484 netdev_err(dev, "Error on Rx queue %u setup\n", i);
485 for (i--; i >= 0; i--)
486 igc_free_rx_resources(adapter->rx_ring[i]);
487 break;
488 }
489 }
490
491 return err;
492}
493
494/**
495 * igc_configure_rx_ring - Configure a receive ring after Reset
496 * @adapter: board private structure
497 * @ring: receive ring to be configured
498 *
499 * Configure the Rx unit of the MAC after a reset.
500 */
501static void igc_configure_rx_ring(struct igc_adapter *adapter,
502 struct igc_ring *ring)
503{
504 struct igc_hw *hw = &adapter->hw;
505 union igc_adv_rx_desc *rx_desc;
506 int reg_idx = ring->reg_idx;
507 u32 srrctl = 0, rxdctl = 0;
508 u64 rdba = ring->dma;
509
510 /* disable the queue */
511 wr32(IGC_RXDCTL(reg_idx), 0);
512
513 /* Set DMA base address registers */
514 wr32(IGC_RDBAL(reg_idx),
515 rdba & 0x00000000ffffffffULL);
516 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
517 wr32(IGC_RDLEN(reg_idx),
518 ring->count * sizeof(union igc_adv_rx_desc));
519
520 /* initialize head and tail */
521 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
522 wr32(IGC_RDH(reg_idx), 0);
523 writel(0, ring->tail);
524
525 /* reset next-to- use/clean to place SW in sync with hardware */
526 ring->next_to_clean = 0;
527 ring->next_to_use = 0;
528
529 /* set descriptor configuration */
530 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
531 if (ring_uses_large_buffer(ring))
532 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
533 else
534 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
535 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
536
537 wr32(IGC_SRRCTL(reg_idx), srrctl);
538
539 rxdctl |= IGC_RX_PTHRESH;
540 rxdctl |= IGC_RX_HTHRESH << 8;
541 rxdctl |= IGC_RX_WTHRESH << 16;
542
543 /* initialize rx_buffer_info */
544 memset(ring->rx_buffer_info, 0,
545 sizeof(struct igc_rx_buffer) * ring->count);
546
547 /* initialize Rx descriptor 0 */
548 rx_desc = IGC_RX_DESC(ring, 0);
549 rx_desc->wb.upper.length = 0;
550
551 /* enable receive descriptor fetching */
552 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
553
554 wr32(IGC_RXDCTL(reg_idx), rxdctl);
555}
556
557/**
558 * igc_configure_rx - Configure receive Unit after Reset
559 * @adapter: board private structure
560 *
561 * Configure the Rx unit of the MAC after a reset.
562 */
563static void igc_configure_rx(struct igc_adapter *adapter)
564{
565 int i;
566
567 /* Setup the HW Rx Head and Tail Descriptor Pointers and
568 * the Base and Length of the Rx Descriptor Ring
569 */
570 for (i = 0; i < adapter->num_rx_queues; i++)
571 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
572}
573
574/**
575 * igc_configure_tx_ring - Configure transmit ring after Reset
576 * @adapter: board private structure
577 * @ring: tx ring to configure
578 *
579 * Configure a transmit ring after a reset.
580 */
581static void igc_configure_tx_ring(struct igc_adapter *adapter,
582 struct igc_ring *ring)
583{
584 struct igc_hw *hw = &adapter->hw;
585 int reg_idx = ring->reg_idx;
586 u64 tdba = ring->dma;
587 u32 txdctl = 0;
588
589 /* disable the queue */
590 wr32(IGC_TXDCTL(reg_idx), 0);
591 wrfl();
592 mdelay(10);
593
594 wr32(IGC_TDLEN(reg_idx),
595 ring->count * sizeof(union igc_adv_tx_desc));
596 wr32(IGC_TDBAL(reg_idx),
597 tdba & 0x00000000ffffffffULL);
598 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
599
600 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
601 wr32(IGC_TDH(reg_idx), 0);
602 writel(0, ring->tail);
603
604 txdctl |= IGC_TX_PTHRESH;
605 txdctl |= IGC_TX_HTHRESH << 8;
606 txdctl |= IGC_TX_WTHRESH << 16;
607
608 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
609 wr32(IGC_TXDCTL(reg_idx), txdctl);
610}
611
612/**
613 * igc_configure_tx - Configure transmit Unit after Reset
614 * @adapter: board private structure
615 *
616 * Configure the Tx unit of the MAC after a reset.
617 */
618static void igc_configure_tx(struct igc_adapter *adapter)
619{
620 int i;
621
622 for (i = 0; i < adapter->num_tx_queues; i++)
623 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
624}
625
626/**
627 * igc_setup_mrqc - configure the multiple receive queue control registers
628 * @adapter: Board private structure
629 */
630static void igc_setup_mrqc(struct igc_adapter *adapter)
631{
632 struct igc_hw *hw = &adapter->hw;
633 u32 j, num_rx_queues;
634 u32 mrqc, rxcsum;
635 u32 rss_key[10];
636
637 netdev_rss_key_fill(rss_key, sizeof(rss_key));
638 for (j = 0; j < 10; j++)
639 wr32(IGC_RSSRK(j), rss_key[j]);
640
641 num_rx_queues = adapter->rss_queues;
642
643 if (adapter->rss_indir_tbl_init != num_rx_queues) {
644 for (j = 0; j < IGC_RETA_SIZE; j++)
645 adapter->rss_indir_tbl[j] =
646 (j * num_rx_queues) / IGC_RETA_SIZE;
647 adapter->rss_indir_tbl_init = num_rx_queues;
648 }
649 igc_write_rss_indir_tbl(adapter);
650
651 /* Disable raw packet checksumming so that RSS hash is placed in
652 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
653 * offloads as they are enabled by default
654 */
655 rxcsum = rd32(IGC_RXCSUM);
656 rxcsum |= IGC_RXCSUM_PCSD;
657
658 /* Enable Receive Checksum Offload for SCTP */
659 rxcsum |= IGC_RXCSUM_CRCOFL;
660
661 /* Don't need to set TUOFL or IPOFL, they default to 1 */
662 wr32(IGC_RXCSUM, rxcsum);
663
664 /* Generate RSS hash based on packet types, TCP/UDP
665 * port numbers and/or IPv4/v6 src and dst addresses
666 */
667 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
668 IGC_MRQC_RSS_FIELD_IPV4_TCP |
669 IGC_MRQC_RSS_FIELD_IPV6 |
670 IGC_MRQC_RSS_FIELD_IPV6_TCP |
671 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
672
673 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
674 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
675 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
676 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
677
678 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
679
680 wr32(IGC_MRQC, mrqc);
681}
682
683/**
684 * igc_setup_rctl - configure the receive control registers
685 * @adapter: Board private structure
686 */
687static void igc_setup_rctl(struct igc_adapter *adapter)
688{
689 struct igc_hw *hw = &adapter->hw;
690 u32 rctl;
691
692 rctl = rd32(IGC_RCTL);
693
694 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
695 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
696
697 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
698 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
699
700 /* enable stripping of CRC. Newer features require
701 * that the HW strips the CRC.
702 */
703 rctl |= IGC_RCTL_SECRC;
704
705 /* disable store bad packets and clear size bits. */
706 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
707
708 /* enable LPE to allow for reception of jumbo frames */
709 rctl |= IGC_RCTL_LPE;
710
711 /* disable queue 0 to prevent tail write w/o re-config */
712 wr32(IGC_RXDCTL(0), 0);
713
714 /* This is useful for sniffing bad packets. */
715 if (adapter->netdev->features & NETIF_F_RXALL) {
716 /* UPE and MPE will be handled by normal PROMISC logic
717 * in set_rx_mode
718 */
719 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
720 IGC_RCTL_BAM | /* RX All Bcast Pkts */
721 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
722
723 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
724 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
725 }
726
727 wr32(IGC_RCTL, rctl);
728}
729
730/**
731 * igc_setup_tctl - configure the transmit control registers
732 * @adapter: Board private structure
733 */
734static void igc_setup_tctl(struct igc_adapter *adapter)
735{
736 struct igc_hw *hw = &adapter->hw;
737 u32 tctl;
738
739 /* disable queue 0 which icould be enabled by default */
740 wr32(IGC_TXDCTL(0), 0);
741
742 /* Program the Transmit Control Register */
743 tctl = rd32(IGC_TCTL);
744 tctl &= ~IGC_TCTL_CT;
745 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
746 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
747
748 /* Enable transmits */
749 tctl |= IGC_TCTL_EN;
750
751 wr32(IGC_TCTL, tctl);
752}
753
754/**
755 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
756 * @adapter: Pointer to adapter where the filter should be set
757 * @index: Filter index
758 * @type: MAC address filter type (source or destination)
759 * @addr: MAC address
760 * @queue: If non-negative, queue assignment feature is enabled and frames
761 * matching the filter are enqueued onto 'queue'. Otherwise, queue
762 * assignment is disabled.
763 */
764static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
765 enum igc_mac_filter_type type,
766 const u8 *addr, int queue)
767{
768 struct net_device *dev = adapter->netdev;
769 struct igc_hw *hw = &adapter->hw;
770 u32 ral, rah;
771
772 if (WARN_ON(index >= hw->mac.rar_entry_count))
773 return;
774
775 ral = le32_to_cpup((__le32 *)(addr));
776 rah = le16_to_cpup((__le16 *)(addr + 4));
777
778 if (type == IGC_MAC_FILTER_TYPE_SRC) {
779 rah &= ~IGC_RAH_ASEL_MASK;
780 rah |= IGC_RAH_ASEL_SRC_ADDR;
781 }
782
783 if (queue >= 0) {
784 rah &= ~IGC_RAH_QSEL_MASK;
785 rah |= (queue << IGC_RAH_QSEL_SHIFT);
786 rah |= IGC_RAH_QSEL_ENABLE;
787 }
788
789 rah |= IGC_RAH_AV;
790
791 wr32(IGC_RAL(index), ral);
792 wr32(IGC_RAH(index), rah);
793
794 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
795}
796
797/**
798 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
799 * @adapter: Pointer to adapter where the filter should be cleared
800 * @index: Filter index
801 */
802static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
803{
804 struct net_device *dev = adapter->netdev;
805 struct igc_hw *hw = &adapter->hw;
806
807 if (WARN_ON(index >= hw->mac.rar_entry_count))
808 return;
809
810 wr32(IGC_RAL(index), 0);
811 wr32(IGC_RAH(index), 0);
812
813 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
814}
815
816/* Set default MAC address for the PF in the first RAR entry */
817static void igc_set_default_mac_filter(struct igc_adapter *adapter)
818{
819 struct net_device *dev = adapter->netdev;
820 u8 *addr = adapter->hw.mac.addr;
821
822 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
823
824 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
825}
826
827/**
828 * igc_set_mac - Change the Ethernet Address of the NIC
829 * @netdev: network interface device structure
830 * @p: pointer to an address structure
831 *
832 * Returns 0 on success, negative on failure
833 */
834static int igc_set_mac(struct net_device *netdev, void *p)
835{
836 struct igc_adapter *adapter = netdev_priv(netdev);
837 struct igc_hw *hw = &adapter->hw;
838 struct sockaddr *addr = p;
839
840 if (!is_valid_ether_addr(addr->sa_data))
841 return -EADDRNOTAVAIL;
842
843 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
844 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
845
846 /* set the correct pool for the new PF MAC address in entry 0 */
847 igc_set_default_mac_filter(adapter);
848
849 return 0;
850}
851
852/**
853 * igc_write_mc_addr_list - write multicast addresses to MTA
854 * @netdev: network interface device structure
855 *
856 * Writes multicast address list to the MTA hash table.
857 * Returns: -ENOMEM on failure
858 * 0 on no addresses written
859 * X on writing X addresses to MTA
860 **/
861static int igc_write_mc_addr_list(struct net_device *netdev)
862{
863 struct igc_adapter *adapter = netdev_priv(netdev);
864 struct igc_hw *hw = &adapter->hw;
865 struct netdev_hw_addr *ha;
866 u8 *mta_list;
867 int i;
868
869 if (netdev_mc_empty(netdev)) {
870 /* nothing to program, so clear mc list */
871 igc_update_mc_addr_list(hw, NULL, 0);
872 return 0;
873 }
874
875 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
876 if (!mta_list)
877 return -ENOMEM;
878
879 /* The shared function expects a packed array of only addresses. */
880 i = 0;
881 netdev_for_each_mc_addr(ha, netdev)
882 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
883
884 igc_update_mc_addr_list(hw, mta_list, i);
885 kfree(mta_list);
886
887 return netdev_mc_count(netdev);
888}
889
890static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
891{
892 ktime_t cycle_time = adapter->cycle_time;
893 ktime_t base_time = adapter->base_time;
894 u32 launchtime;
895
896 /* FIXME: when using ETF together with taprio, we may have a
897 * case where 'delta' is larger than the cycle_time, this may
898 * cause problems if we don't read the current value of
899 * IGC_BASET, as the value writen into the launchtime
900 * descriptor field may be misinterpreted.
901 */
902 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
903
904 return cpu_to_le32(launchtime);
905}
906
907static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
908 struct igc_tx_buffer *first,
909 u32 vlan_macip_lens, u32 type_tucmd,
910 u32 mss_l4len_idx)
911{
912 struct igc_adv_tx_context_desc *context_desc;
913 u16 i = tx_ring->next_to_use;
914
915 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
916
917 i++;
918 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
919
920 /* set bits to identify this as an advanced context descriptor */
921 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
922
923 /* For i225, context index must be unique per ring. */
924 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
925 mss_l4len_idx |= tx_ring->reg_idx << 4;
926
927 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
928 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
929 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
930
931 /* We assume there is always a valid Tx time available. Invalid times
932 * should have been handled by the upper layers.
933 */
934 if (tx_ring->launchtime_enable) {
935 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
936 ktime_t txtime = first->skb->tstamp;
937
938 first->skb->tstamp = ktime_set(0, 0);
939 context_desc->launch_time = igc_tx_launchtime(adapter,
940 txtime);
941 } else {
942 context_desc->launch_time = 0;
943 }
944}
945
946static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
947{
948 unsigned int offset = 0;
949
950 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
951
952 return offset == skb_checksum_start_offset(skb);
953}
954
955static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
956{
957 struct sk_buff *skb = first->skb;
958 u32 vlan_macip_lens = 0;
959 u32 type_tucmd = 0;
960
961 if (skb->ip_summed != CHECKSUM_PARTIAL) {
962csum_failed:
963 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
964 !tx_ring->launchtime_enable)
965 return;
966 goto no_csum;
967 }
968
969 switch (skb->csum_offset) {
970 case offsetof(struct tcphdr, check):
971 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
972 fallthrough;
973 case offsetof(struct udphdr, check):
974 break;
975 case offsetof(struct sctphdr, checksum):
976 /* validate that this is actually an SCTP request */
977 if ((first->protocol == htons(ETH_P_IP) &&
978 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
979 (first->protocol == htons(ETH_P_IPV6) &&
980 igc_ipv6_csum_is_sctp(skb))) {
981 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
982 break;
983 }
984 fallthrough;
985 default:
986 skb_checksum_help(skb);
987 goto csum_failed;
988 }
989
990 /* update TX checksum flag */
991 first->tx_flags |= IGC_TX_FLAGS_CSUM;
992 vlan_macip_lens = skb_checksum_start_offset(skb) -
993 skb_network_offset(skb);
994no_csum:
995 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
996 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
997
998 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
999}
1000
1001static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1002{
1003 struct net_device *netdev = tx_ring->netdev;
1004
1005 netif_stop_subqueue(netdev, tx_ring->queue_index);
1006
1007 /* memory barriier comment */
1008 smp_mb();
1009
1010 /* We need to check again in a case another CPU has just
1011 * made room available.
1012 */
1013 if (igc_desc_unused(tx_ring) < size)
1014 return -EBUSY;
1015
1016 /* A reprieve! */
1017 netif_wake_subqueue(netdev, tx_ring->queue_index);
1018
1019 u64_stats_update_begin(&tx_ring->tx_syncp2);
1020 tx_ring->tx_stats.restart_queue2++;
1021 u64_stats_update_end(&tx_ring->tx_syncp2);
1022
1023 return 0;
1024}
1025
1026static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1027{
1028 if (igc_desc_unused(tx_ring) >= size)
1029 return 0;
1030 return __igc_maybe_stop_tx(tx_ring, size);
1031}
1032
1033#define IGC_SET_FLAG(_input, _flag, _result) \
1034 (((_flag) <= (_result)) ? \
1035 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1036 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1037
1038static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1039{
1040 /* set type for advanced descriptor with frame checksum insertion */
1041 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1042 IGC_ADVTXD_DCMD_DEXT |
1043 IGC_ADVTXD_DCMD_IFCS;
1044
1045 /* set segmentation bits for TSO */
1046 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1047 (IGC_ADVTXD_DCMD_TSE));
1048
1049 /* set timestamp bit if present */
1050 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1051 (IGC_ADVTXD_MAC_TSTAMP));
1052
1053 return cmd_type;
1054}
1055
1056static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1057 union igc_adv_tx_desc *tx_desc,
1058 u32 tx_flags, unsigned int paylen)
1059{
1060 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1061
1062 /* insert L4 checksum */
1063 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1064 ((IGC_TXD_POPTS_TXSM << 8) /
1065 IGC_TX_FLAGS_CSUM);
1066
1067 /* insert IPv4 checksum */
1068 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1069 (((IGC_TXD_POPTS_IXSM << 8)) /
1070 IGC_TX_FLAGS_IPV4);
1071
1072 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1073}
1074
1075static int igc_tx_map(struct igc_ring *tx_ring,
1076 struct igc_tx_buffer *first,
1077 const u8 hdr_len)
1078{
1079 struct sk_buff *skb = first->skb;
1080 struct igc_tx_buffer *tx_buffer;
1081 union igc_adv_tx_desc *tx_desc;
1082 u32 tx_flags = first->tx_flags;
1083 skb_frag_t *frag;
1084 u16 i = tx_ring->next_to_use;
1085 unsigned int data_len, size;
1086 dma_addr_t dma;
1087 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1088
1089 tx_desc = IGC_TX_DESC(tx_ring, i);
1090
1091 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1092
1093 size = skb_headlen(skb);
1094 data_len = skb->data_len;
1095
1096 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1097
1098 tx_buffer = first;
1099
1100 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1101 if (dma_mapping_error(tx_ring->dev, dma))
1102 goto dma_error;
1103
1104 /* record length, and DMA address */
1105 dma_unmap_len_set(tx_buffer, len, size);
1106 dma_unmap_addr_set(tx_buffer, dma, dma);
1107
1108 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1109
1110 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1111 tx_desc->read.cmd_type_len =
1112 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1113
1114 i++;
1115 tx_desc++;
1116 if (i == tx_ring->count) {
1117 tx_desc = IGC_TX_DESC(tx_ring, 0);
1118 i = 0;
1119 }
1120 tx_desc->read.olinfo_status = 0;
1121
1122 dma += IGC_MAX_DATA_PER_TXD;
1123 size -= IGC_MAX_DATA_PER_TXD;
1124
1125 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1126 }
1127
1128 if (likely(!data_len))
1129 break;
1130
1131 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1132
1133 i++;
1134 tx_desc++;
1135 if (i == tx_ring->count) {
1136 tx_desc = IGC_TX_DESC(tx_ring, 0);
1137 i = 0;
1138 }
1139 tx_desc->read.olinfo_status = 0;
1140
1141 size = skb_frag_size(frag);
1142 data_len -= size;
1143
1144 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1145 size, DMA_TO_DEVICE);
1146
1147 tx_buffer = &tx_ring->tx_buffer_info[i];
1148 }
1149
1150 /* write last descriptor with RS and EOP bits */
1151 cmd_type |= size | IGC_TXD_DCMD;
1152 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1153
1154 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1155
1156 /* set the timestamp */
1157 first->time_stamp = jiffies;
1158
1159 skb_tx_timestamp(skb);
1160
1161 /* Force memory writes to complete before letting h/w know there
1162 * are new descriptors to fetch. (Only applicable for weak-ordered
1163 * memory model archs, such as IA-64).
1164 *
1165 * We also need this memory barrier to make certain all of the
1166 * status bits have been updated before next_to_watch is written.
1167 */
1168 wmb();
1169
1170 /* set next_to_watch value indicating a packet is present */
1171 first->next_to_watch = tx_desc;
1172
1173 i++;
1174 if (i == tx_ring->count)
1175 i = 0;
1176
1177 tx_ring->next_to_use = i;
1178
1179 /* Make sure there is space in the ring for the next send. */
1180 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1181
1182 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1183 writel(i, tx_ring->tail);
1184 }
1185
1186 return 0;
1187dma_error:
1188 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1189 tx_buffer = &tx_ring->tx_buffer_info[i];
1190
1191 /* clear dma mappings for failed tx_buffer_info map */
1192 while (tx_buffer != first) {
1193 if (dma_unmap_len(tx_buffer, len))
1194 dma_unmap_page(tx_ring->dev,
1195 dma_unmap_addr(tx_buffer, dma),
1196 dma_unmap_len(tx_buffer, len),
1197 DMA_TO_DEVICE);
1198 dma_unmap_len_set(tx_buffer, len, 0);
1199
1200 if (i-- == 0)
1201 i += tx_ring->count;
1202 tx_buffer = &tx_ring->tx_buffer_info[i];
1203 }
1204
1205 if (dma_unmap_len(tx_buffer, len))
1206 dma_unmap_single(tx_ring->dev,
1207 dma_unmap_addr(tx_buffer, dma),
1208 dma_unmap_len(tx_buffer, len),
1209 DMA_TO_DEVICE);
1210 dma_unmap_len_set(tx_buffer, len, 0);
1211
1212 dev_kfree_skb_any(tx_buffer->skb);
1213 tx_buffer->skb = NULL;
1214
1215 tx_ring->next_to_use = i;
1216
1217 return -1;
1218}
1219
1220static int igc_tso(struct igc_ring *tx_ring,
1221 struct igc_tx_buffer *first,
1222 u8 *hdr_len)
1223{
1224 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1225 struct sk_buff *skb = first->skb;
1226 union {
1227 struct iphdr *v4;
1228 struct ipv6hdr *v6;
1229 unsigned char *hdr;
1230 } ip;
1231 union {
1232 struct tcphdr *tcp;
1233 struct udphdr *udp;
1234 unsigned char *hdr;
1235 } l4;
1236 u32 paylen, l4_offset;
1237 int err;
1238
1239 if (skb->ip_summed != CHECKSUM_PARTIAL)
1240 return 0;
1241
1242 if (!skb_is_gso(skb))
1243 return 0;
1244
1245 err = skb_cow_head(skb, 0);
1246 if (err < 0)
1247 return err;
1248
1249 ip.hdr = skb_network_header(skb);
1250 l4.hdr = skb_checksum_start(skb);
1251
1252 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1253 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1254
1255 /* initialize outer IP header fields */
1256 if (ip.v4->version == 4) {
1257 unsigned char *csum_start = skb_checksum_start(skb);
1258 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1259
1260 /* IP header will have to cancel out any data that
1261 * is not a part of the outer IP header
1262 */
1263 ip.v4->check = csum_fold(csum_partial(trans_start,
1264 csum_start - trans_start,
1265 0));
1266 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1267
1268 ip.v4->tot_len = 0;
1269 first->tx_flags |= IGC_TX_FLAGS_TSO |
1270 IGC_TX_FLAGS_CSUM |
1271 IGC_TX_FLAGS_IPV4;
1272 } else {
1273 ip.v6->payload_len = 0;
1274 first->tx_flags |= IGC_TX_FLAGS_TSO |
1275 IGC_TX_FLAGS_CSUM;
1276 }
1277
1278 /* determine offset of inner transport header */
1279 l4_offset = l4.hdr - skb->data;
1280
1281 /* remove payload length from inner checksum */
1282 paylen = skb->len - l4_offset;
1283 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1284 /* compute length of segmentation header */
1285 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1286 csum_replace_by_diff(&l4.tcp->check,
1287 (__force __wsum)htonl(paylen));
1288 } else {
1289 /* compute length of segmentation header */
1290 *hdr_len = sizeof(*l4.udp) + l4_offset;
1291 csum_replace_by_diff(&l4.udp->check,
1292 (__force __wsum)htonl(paylen));
1293 }
1294
1295 /* update gso size and bytecount with header size */
1296 first->gso_segs = skb_shinfo(skb)->gso_segs;
1297 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1298
1299 /* MSS L4LEN IDX */
1300 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1301 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1302
1303 /* VLAN MACLEN IPLEN */
1304 vlan_macip_lens = l4.hdr - ip.hdr;
1305 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1306 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1307
1308 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1309 type_tucmd, mss_l4len_idx);
1310
1311 return 1;
1312}
1313
1314static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1315 struct igc_ring *tx_ring)
1316{
1317 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1318 __be16 protocol = vlan_get_protocol(skb);
1319 struct igc_tx_buffer *first;
1320 u32 tx_flags = 0;
1321 unsigned short f;
1322 u8 hdr_len = 0;
1323 int tso = 0;
1324
1325 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1326 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1327 * + 2 desc gap to keep tail from touching head,
1328 * + 1 desc for context descriptor,
1329 * otherwise try next time
1330 */
1331 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1332 count += TXD_USE_COUNT(skb_frag_size(
1333 &skb_shinfo(skb)->frags[f]));
1334
1335 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1336 /* this is a hard error */
1337 return NETDEV_TX_BUSY;
1338 }
1339
1340 /* record the location of the first descriptor for this packet */
1341 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1342 first->skb = skb;
1343 first->bytecount = skb->len;
1344 first->gso_segs = 1;
1345
1346 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1347 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1348
1349 /* FIXME: add support for retrieving timestamps from
1350 * the other timer registers before skipping the
1351 * timestamping request.
1352 */
1353 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1354 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1355 &adapter->state)) {
1356 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1357 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1358
1359 adapter->ptp_tx_skb = skb_get(skb);
1360 adapter->ptp_tx_start = jiffies;
1361 } else {
1362 adapter->tx_hwtstamp_skipped++;
1363 }
1364 }
1365
1366 /* record initial flags and protocol */
1367 first->tx_flags = tx_flags;
1368 first->protocol = protocol;
1369
1370 tso = igc_tso(tx_ring, first, &hdr_len);
1371 if (tso < 0)
1372 goto out_drop;
1373 else if (!tso)
1374 igc_tx_csum(tx_ring, first);
1375
1376 igc_tx_map(tx_ring, first, hdr_len);
1377
1378 return NETDEV_TX_OK;
1379
1380out_drop:
1381 dev_kfree_skb_any(first->skb);
1382 first->skb = NULL;
1383
1384 return NETDEV_TX_OK;
1385}
1386
1387static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1388 struct sk_buff *skb)
1389{
1390 unsigned int r_idx = skb->queue_mapping;
1391
1392 if (r_idx >= adapter->num_tx_queues)
1393 r_idx = r_idx % adapter->num_tx_queues;
1394
1395 return adapter->tx_ring[r_idx];
1396}
1397
1398static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1399 struct net_device *netdev)
1400{
1401 struct igc_adapter *adapter = netdev_priv(netdev);
1402
1403 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1404 * in order to meet this minimum size requirement.
1405 */
1406 if (skb->len < 17) {
1407 if (skb_padto(skb, 17))
1408 return NETDEV_TX_OK;
1409 skb->len = 17;
1410 }
1411
1412 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1413}
1414
1415static void igc_rx_checksum(struct igc_ring *ring,
1416 union igc_adv_rx_desc *rx_desc,
1417 struct sk_buff *skb)
1418{
1419 skb_checksum_none_assert(skb);
1420
1421 /* Ignore Checksum bit is set */
1422 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1423 return;
1424
1425 /* Rx checksum disabled via ethtool */
1426 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1427 return;
1428
1429 /* TCP/UDP checksum error bit is set */
1430 if (igc_test_staterr(rx_desc,
1431 IGC_RXDEXT_STATERR_TCPE |
1432 IGC_RXDEXT_STATERR_IPE)) {
1433 /* work around errata with sctp packets where the TCPE aka
1434 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1435 * packets (aka let the stack check the crc32c)
1436 */
1437 if (!(skb->len == 60 &&
1438 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1439 u64_stats_update_begin(&ring->rx_syncp);
1440 ring->rx_stats.csum_err++;
1441 u64_stats_update_end(&ring->rx_syncp);
1442 }
1443 /* let the stack verify checksum errors */
1444 return;
1445 }
1446 /* It must be a TCP or UDP packet with a valid checksum */
1447 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1448 IGC_RXD_STAT_UDPCS))
1449 skb->ip_summed = CHECKSUM_UNNECESSARY;
1450
1451 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1452 le32_to_cpu(rx_desc->wb.upper.status_error));
1453}
1454
1455static inline void igc_rx_hash(struct igc_ring *ring,
1456 union igc_adv_rx_desc *rx_desc,
1457 struct sk_buff *skb)
1458{
1459 if (ring->netdev->features & NETIF_F_RXHASH)
1460 skb_set_hash(skb,
1461 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1462 PKT_HASH_TYPE_L3);
1463}
1464
1465/**
1466 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1467 * @rx_ring: rx descriptor ring packet is being transacted on
1468 * @rx_desc: pointer to the EOP Rx descriptor
1469 * @skb: pointer to current skb being populated
1470 *
1471 * This function checks the ring, descriptor, and packet information in order
1472 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1473 * skb.
1474 */
1475static void igc_process_skb_fields(struct igc_ring *rx_ring,
1476 union igc_adv_rx_desc *rx_desc,
1477 struct sk_buff *skb)
1478{
1479 igc_rx_hash(rx_ring, rx_desc, skb);
1480
1481 igc_rx_checksum(rx_ring, rx_desc, skb);
1482
1483 skb_record_rx_queue(skb, rx_ring->queue_index);
1484
1485 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1486}
1487
1488static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1489 const unsigned int size)
1490{
1491 struct igc_rx_buffer *rx_buffer;
1492
1493 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1494 prefetchw(rx_buffer->page);
1495
1496 /* we are reusing so sync this buffer for CPU use */
1497 dma_sync_single_range_for_cpu(rx_ring->dev,
1498 rx_buffer->dma,
1499 rx_buffer->page_offset,
1500 size,
1501 DMA_FROM_DEVICE);
1502
1503 rx_buffer->pagecnt_bias--;
1504
1505 return rx_buffer;
1506}
1507
1508/**
1509 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1510 * @rx_ring: rx descriptor ring to transact packets on
1511 * @rx_buffer: buffer containing page to add
1512 * @skb: sk_buff to place the data into
1513 * @size: size of buffer to be added
1514 *
1515 * This function will add the data contained in rx_buffer->page to the skb.
1516 */
1517static void igc_add_rx_frag(struct igc_ring *rx_ring,
1518 struct igc_rx_buffer *rx_buffer,
1519 struct sk_buff *skb,
1520 unsigned int size)
1521{
1522#if (PAGE_SIZE < 8192)
1523 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1524
1525 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1526 rx_buffer->page_offset, size, truesize);
1527 rx_buffer->page_offset ^= truesize;
1528#else
1529 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1530 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1531 SKB_DATA_ALIGN(size);
1532 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1533 rx_buffer->page_offset, size, truesize);
1534 rx_buffer->page_offset += truesize;
1535#endif
1536}
1537
1538static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1539 struct igc_rx_buffer *rx_buffer,
1540 union igc_adv_rx_desc *rx_desc,
1541 unsigned int size)
1542{
1543 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1544#if (PAGE_SIZE < 8192)
1545 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1546#else
1547 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1548 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1549#endif
1550 struct sk_buff *skb;
1551
1552 /* prefetch first cache line of first page */
1553 prefetch(va);
1554#if L1_CACHE_BYTES < 128
1555 prefetch(va + L1_CACHE_BYTES);
1556#endif
1557
1558 /* build an skb around the page buffer */
1559 skb = build_skb(va - IGC_SKB_PAD, truesize);
1560 if (unlikely(!skb))
1561 return NULL;
1562
1563 /* update pointers within the skb to store the data */
1564 skb_reserve(skb, IGC_SKB_PAD);
1565 __skb_put(skb, size);
1566
1567 /* update buffer offset */
1568#if (PAGE_SIZE < 8192)
1569 rx_buffer->page_offset ^= truesize;
1570#else
1571 rx_buffer->page_offset += truesize;
1572#endif
1573
1574 return skb;
1575}
1576
1577static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1578 struct igc_rx_buffer *rx_buffer,
1579 union igc_adv_rx_desc *rx_desc,
1580 unsigned int size)
1581{
1582 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1583#if (PAGE_SIZE < 8192)
1584 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1585#else
1586 unsigned int truesize = SKB_DATA_ALIGN(size);
1587#endif
1588 unsigned int headlen;
1589 struct sk_buff *skb;
1590
1591 /* prefetch first cache line of first page */
1592 prefetch(va);
1593#if L1_CACHE_BYTES < 128
1594 prefetch(va + L1_CACHE_BYTES);
1595#endif
1596
1597 /* allocate a skb to store the frags */
1598 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1599 if (unlikely(!skb))
1600 return NULL;
1601
1602 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1603 igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1604 va += IGC_TS_HDR_LEN;
1605 size -= IGC_TS_HDR_LEN;
1606 }
1607
1608 /* Determine available headroom for copy */
1609 headlen = size;
1610 if (headlen > IGC_RX_HDR_LEN)
1611 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1612
1613 /* align pull length to size of long to optimize memcpy performance */
1614 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1615
1616 /* update all of the pointers */
1617 size -= headlen;
1618 if (size) {
1619 skb_add_rx_frag(skb, 0, rx_buffer->page,
1620 (va + headlen) - page_address(rx_buffer->page),
1621 size, truesize);
1622#if (PAGE_SIZE < 8192)
1623 rx_buffer->page_offset ^= truesize;
1624#else
1625 rx_buffer->page_offset += truesize;
1626#endif
1627 } else {
1628 rx_buffer->pagecnt_bias++;
1629 }
1630
1631 return skb;
1632}
1633
1634/**
1635 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1636 * @rx_ring: rx descriptor ring to store buffers on
1637 * @old_buff: donor buffer to have page reused
1638 *
1639 * Synchronizes page for reuse by the adapter
1640 */
1641static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1642 struct igc_rx_buffer *old_buff)
1643{
1644 u16 nta = rx_ring->next_to_alloc;
1645 struct igc_rx_buffer *new_buff;
1646
1647 new_buff = &rx_ring->rx_buffer_info[nta];
1648
1649 /* update, and store next to alloc */
1650 nta++;
1651 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1652
1653 /* Transfer page from old buffer to new buffer.
1654 * Move each member individually to avoid possible store
1655 * forwarding stalls.
1656 */
1657 new_buff->dma = old_buff->dma;
1658 new_buff->page = old_buff->page;
1659 new_buff->page_offset = old_buff->page_offset;
1660 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1661}
1662
1663static inline bool igc_page_is_reserved(struct page *page)
1664{
1665 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1666}
1667
1668static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1669{
1670 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1671 struct page *page = rx_buffer->page;
1672
1673 /* avoid re-using remote pages */
1674 if (unlikely(igc_page_is_reserved(page)))
1675 return false;
1676
1677#if (PAGE_SIZE < 8192)
1678 /* if we are only owner of page we can reuse it */
1679 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1680 return false;
1681#else
1682#define IGC_LAST_OFFSET \
1683 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1684
1685 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1686 return false;
1687#endif
1688
1689 /* If we have drained the page fragment pool we need to update
1690 * the pagecnt_bias and page count so that we fully restock the
1691 * number of references the driver holds.
1692 */
1693 if (unlikely(!pagecnt_bias)) {
1694 page_ref_add(page, USHRT_MAX);
1695 rx_buffer->pagecnt_bias = USHRT_MAX;
1696 }
1697
1698 return true;
1699}
1700
1701/**
1702 * igc_is_non_eop - process handling of non-EOP buffers
1703 * @rx_ring: Rx ring being processed
1704 * @rx_desc: Rx descriptor for current buffer
1705 *
1706 * This function updates next to clean. If the buffer is an EOP buffer
1707 * this function exits returning false, otherwise it will place the
1708 * sk_buff in the next buffer to be chained and return true indicating
1709 * that this is in fact a non-EOP buffer.
1710 */
1711static bool igc_is_non_eop(struct igc_ring *rx_ring,
1712 union igc_adv_rx_desc *rx_desc)
1713{
1714 u32 ntc = rx_ring->next_to_clean + 1;
1715
1716 /* fetch, update, and store next to clean */
1717 ntc = (ntc < rx_ring->count) ? ntc : 0;
1718 rx_ring->next_to_clean = ntc;
1719
1720 prefetch(IGC_RX_DESC(rx_ring, ntc));
1721
1722 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1723 return false;
1724
1725 return true;
1726}
1727
1728/**
1729 * igc_cleanup_headers - Correct corrupted or empty headers
1730 * @rx_ring: rx descriptor ring packet is being transacted on
1731 * @rx_desc: pointer to the EOP Rx descriptor
1732 * @skb: pointer to current skb being fixed
1733 *
1734 * Address the case where we are pulling data in on pages only
1735 * and as such no data is present in the skb header.
1736 *
1737 * In addition if skb is not at least 60 bytes we need to pad it so that
1738 * it is large enough to qualify as a valid Ethernet frame.
1739 *
1740 * Returns true if an error was encountered and skb was freed.
1741 */
1742static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1743 union igc_adv_rx_desc *rx_desc,
1744 struct sk_buff *skb)
1745{
1746 if (unlikely((igc_test_staterr(rx_desc,
1747 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1748 struct net_device *netdev = rx_ring->netdev;
1749
1750 if (!(netdev->features & NETIF_F_RXALL)) {
1751 dev_kfree_skb_any(skb);
1752 return true;
1753 }
1754 }
1755
1756 /* if eth_skb_pad returns an error the skb was freed */
1757 if (eth_skb_pad(skb))
1758 return true;
1759
1760 return false;
1761}
1762
1763static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1764 struct igc_rx_buffer *rx_buffer)
1765{
1766 if (igc_can_reuse_rx_page(rx_buffer)) {
1767 /* hand second half of page back to the ring */
1768 igc_reuse_rx_page(rx_ring, rx_buffer);
1769 } else {
1770 /* We are not reusing the buffer so unmap it and free
1771 * any references we are holding to it
1772 */
1773 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1774 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1775 IGC_RX_DMA_ATTR);
1776 __page_frag_cache_drain(rx_buffer->page,
1777 rx_buffer->pagecnt_bias);
1778 }
1779
1780 /* clear contents of rx_buffer */
1781 rx_buffer->page = NULL;
1782}
1783
1784static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1785{
1786 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1787}
1788
1789static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1790 struct igc_rx_buffer *bi)
1791{
1792 struct page *page = bi->page;
1793 dma_addr_t dma;
1794
1795 /* since we are recycling buffers we should seldom need to alloc */
1796 if (likely(page))
1797 return true;
1798
1799 /* alloc new page for storage */
1800 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1801 if (unlikely(!page)) {
1802 rx_ring->rx_stats.alloc_failed++;
1803 return false;
1804 }
1805
1806 /* map page for use */
1807 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1808 igc_rx_pg_size(rx_ring),
1809 DMA_FROM_DEVICE,
1810 IGC_RX_DMA_ATTR);
1811
1812 /* if mapping failed free memory back to system since
1813 * there isn't much point in holding memory we can't use
1814 */
1815 if (dma_mapping_error(rx_ring->dev, dma)) {
1816 __free_page(page);
1817
1818 rx_ring->rx_stats.alloc_failed++;
1819 return false;
1820 }
1821
1822 bi->dma = dma;
1823 bi->page = page;
1824 bi->page_offset = igc_rx_offset(rx_ring);
1825 bi->pagecnt_bias = 1;
1826
1827 return true;
1828}
1829
1830/**
1831 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1832 * @rx_ring: rx descriptor ring
1833 * @cleaned_count: number of buffers to clean
1834 */
1835static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1836{
1837 union igc_adv_rx_desc *rx_desc;
1838 u16 i = rx_ring->next_to_use;
1839 struct igc_rx_buffer *bi;
1840 u16 bufsz;
1841
1842 /* nothing to do */
1843 if (!cleaned_count)
1844 return;
1845
1846 rx_desc = IGC_RX_DESC(rx_ring, i);
1847 bi = &rx_ring->rx_buffer_info[i];
1848 i -= rx_ring->count;
1849
1850 bufsz = igc_rx_bufsz(rx_ring);
1851
1852 do {
1853 if (!igc_alloc_mapped_page(rx_ring, bi))
1854 break;
1855
1856 /* sync the buffer for use by the device */
1857 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1858 bi->page_offset, bufsz,
1859 DMA_FROM_DEVICE);
1860
1861 /* Refresh the desc even if buffer_addrs didn't change
1862 * because each write-back erases this info.
1863 */
1864 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1865
1866 rx_desc++;
1867 bi++;
1868 i++;
1869 if (unlikely(!i)) {
1870 rx_desc = IGC_RX_DESC(rx_ring, 0);
1871 bi = rx_ring->rx_buffer_info;
1872 i -= rx_ring->count;
1873 }
1874
1875 /* clear the length for the next_to_use descriptor */
1876 rx_desc->wb.upper.length = 0;
1877
1878 cleaned_count--;
1879 } while (cleaned_count);
1880
1881 i += rx_ring->count;
1882
1883 if (rx_ring->next_to_use != i) {
1884 /* record the next descriptor to use */
1885 rx_ring->next_to_use = i;
1886
1887 /* update next to alloc since we have filled the ring */
1888 rx_ring->next_to_alloc = i;
1889
1890 /* Force memory writes to complete before letting h/w
1891 * know there are new descriptors to fetch. (Only
1892 * applicable for weak-ordered memory model archs,
1893 * such as IA-64).
1894 */
1895 wmb();
1896 writel(i, rx_ring->tail);
1897 }
1898}
1899
1900static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1901{
1902 unsigned int total_bytes = 0, total_packets = 0;
1903 struct igc_ring *rx_ring = q_vector->rx.ring;
1904 struct sk_buff *skb = rx_ring->skb;
1905 u16 cleaned_count = igc_desc_unused(rx_ring);
1906
1907 while (likely(total_packets < budget)) {
1908 union igc_adv_rx_desc *rx_desc;
1909 struct igc_rx_buffer *rx_buffer;
1910 unsigned int size;
1911
1912 /* return some buffers to hardware, one at a time is too slow */
1913 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1914 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1915 cleaned_count = 0;
1916 }
1917
1918 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1919 size = le16_to_cpu(rx_desc->wb.upper.length);
1920 if (!size)
1921 break;
1922
1923 /* This memory barrier is needed to keep us from reading
1924 * any other fields out of the rx_desc until we know the
1925 * descriptor has been written back
1926 */
1927 dma_rmb();
1928
1929 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1930
1931 /* retrieve a buffer from the ring */
1932 if (skb)
1933 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1934 else if (ring_uses_build_skb(rx_ring))
1935 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1936 else
1937 skb = igc_construct_skb(rx_ring, rx_buffer,
1938 rx_desc, size);
1939
1940 /* exit if we failed to retrieve a buffer */
1941 if (!skb) {
1942 rx_ring->rx_stats.alloc_failed++;
1943 rx_buffer->pagecnt_bias++;
1944 break;
1945 }
1946
1947 igc_put_rx_buffer(rx_ring, rx_buffer);
1948 cleaned_count++;
1949
1950 /* fetch next buffer in frame if non-eop */
1951 if (igc_is_non_eop(rx_ring, rx_desc))
1952 continue;
1953
1954 /* verify the packet layout is correct */
1955 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1956 skb = NULL;
1957 continue;
1958 }
1959
1960 /* probably a little skewed due to removing CRC */
1961 total_bytes += skb->len;
1962
1963 /* populate checksum, VLAN, and protocol */
1964 igc_process_skb_fields(rx_ring, rx_desc, skb);
1965
1966 napi_gro_receive(&q_vector->napi, skb);
1967
1968 /* reset skb pointer */
1969 skb = NULL;
1970
1971 /* update budget accounting */
1972 total_packets++;
1973 }
1974
1975 /* place incomplete frames back on ring for completion */
1976 rx_ring->skb = skb;
1977
1978 u64_stats_update_begin(&rx_ring->rx_syncp);
1979 rx_ring->rx_stats.packets += total_packets;
1980 rx_ring->rx_stats.bytes += total_bytes;
1981 u64_stats_update_end(&rx_ring->rx_syncp);
1982 q_vector->rx.total_packets += total_packets;
1983 q_vector->rx.total_bytes += total_bytes;
1984
1985 if (cleaned_count)
1986 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1987
1988 return total_packets;
1989}
1990
1991/**
1992 * igc_clean_tx_irq - Reclaim resources after transmit completes
1993 * @q_vector: pointer to q_vector containing needed info
1994 * @napi_budget: Used to determine if we are in netpoll
1995 *
1996 * returns true if ring is completely cleaned
1997 */
1998static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1999{
2000 struct igc_adapter *adapter = q_vector->adapter;
2001 unsigned int total_bytes = 0, total_packets = 0;
2002 unsigned int budget = q_vector->tx.work_limit;
2003 struct igc_ring *tx_ring = q_vector->tx.ring;
2004 unsigned int i = tx_ring->next_to_clean;
2005 struct igc_tx_buffer *tx_buffer;
2006 union igc_adv_tx_desc *tx_desc;
2007
2008 if (test_bit(__IGC_DOWN, &adapter->state))
2009 return true;
2010
2011 tx_buffer = &tx_ring->tx_buffer_info[i];
2012 tx_desc = IGC_TX_DESC(tx_ring, i);
2013 i -= tx_ring->count;
2014
2015 do {
2016 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2017
2018 /* if next_to_watch is not set then there is no work pending */
2019 if (!eop_desc)
2020 break;
2021
2022 /* prevent any other reads prior to eop_desc */
2023 smp_rmb();
2024
2025 /* if DD is not set pending work has not been completed */
2026 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2027 break;
2028
2029 /* clear next_to_watch to prevent false hangs */
2030 tx_buffer->next_to_watch = NULL;
2031
2032 /* update the statistics for this packet */
2033 total_bytes += tx_buffer->bytecount;
2034 total_packets += tx_buffer->gso_segs;
2035
2036 /* free the skb */
2037 napi_consume_skb(tx_buffer->skb, napi_budget);
2038
2039 /* unmap skb header data */
2040 dma_unmap_single(tx_ring->dev,
2041 dma_unmap_addr(tx_buffer, dma),
2042 dma_unmap_len(tx_buffer, len),
2043 DMA_TO_DEVICE);
2044
2045 /* clear tx_buffer data */
2046 dma_unmap_len_set(tx_buffer, len, 0);
2047
2048 /* clear last DMA location and unmap remaining buffers */
2049 while (tx_desc != eop_desc) {
2050 tx_buffer++;
2051 tx_desc++;
2052 i++;
2053 if (unlikely(!i)) {
2054 i -= tx_ring->count;
2055 tx_buffer = tx_ring->tx_buffer_info;
2056 tx_desc = IGC_TX_DESC(tx_ring, 0);
2057 }
2058
2059 /* unmap any remaining paged data */
2060 if (dma_unmap_len(tx_buffer, len)) {
2061 dma_unmap_page(tx_ring->dev,
2062 dma_unmap_addr(tx_buffer, dma),
2063 dma_unmap_len(tx_buffer, len),
2064 DMA_TO_DEVICE);
2065 dma_unmap_len_set(tx_buffer, len, 0);
2066 }
2067 }
2068
2069 /* move us one more past the eop_desc for start of next pkt */
2070 tx_buffer++;
2071 tx_desc++;
2072 i++;
2073 if (unlikely(!i)) {
2074 i -= tx_ring->count;
2075 tx_buffer = tx_ring->tx_buffer_info;
2076 tx_desc = IGC_TX_DESC(tx_ring, 0);
2077 }
2078
2079 /* issue prefetch for next Tx descriptor */
2080 prefetch(tx_desc);
2081
2082 /* update budget accounting */
2083 budget--;
2084 } while (likely(budget));
2085
2086 netdev_tx_completed_queue(txring_txq(tx_ring),
2087 total_packets, total_bytes);
2088
2089 i += tx_ring->count;
2090 tx_ring->next_to_clean = i;
2091 u64_stats_update_begin(&tx_ring->tx_syncp);
2092 tx_ring->tx_stats.bytes += total_bytes;
2093 tx_ring->tx_stats.packets += total_packets;
2094 u64_stats_update_end(&tx_ring->tx_syncp);
2095 q_vector->tx.total_bytes += total_bytes;
2096 q_vector->tx.total_packets += total_packets;
2097
2098 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2099 struct igc_hw *hw = &adapter->hw;
2100
2101 /* Detect a transmit hang in hardware, this serializes the
2102 * check with the clearing of time_stamp and movement of i
2103 */
2104 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2105 if (tx_buffer->next_to_watch &&
2106 time_after(jiffies, tx_buffer->time_stamp +
2107 (adapter->tx_timeout_factor * HZ)) &&
2108 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2109 /* detected Tx unit hang */
2110 netdev_err(tx_ring->netdev,
2111 "Detected Tx Unit Hang\n"
2112 " Tx Queue <%d>\n"
2113 " TDH <%x>\n"
2114 " TDT <%x>\n"
2115 " next_to_use <%x>\n"
2116 " next_to_clean <%x>\n"
2117 "buffer_info[next_to_clean]\n"
2118 " time_stamp <%lx>\n"
2119 " next_to_watch <%p>\n"
2120 " jiffies <%lx>\n"
2121 " desc.status <%x>\n",
2122 tx_ring->queue_index,
2123 rd32(IGC_TDH(tx_ring->reg_idx)),
2124 readl(tx_ring->tail),
2125 tx_ring->next_to_use,
2126 tx_ring->next_to_clean,
2127 tx_buffer->time_stamp,
2128 tx_buffer->next_to_watch,
2129 jiffies,
2130 tx_buffer->next_to_watch->wb.status);
2131 netif_stop_subqueue(tx_ring->netdev,
2132 tx_ring->queue_index);
2133
2134 /* we are about to reset, no point in enabling stuff */
2135 return true;
2136 }
2137 }
2138
2139#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2140 if (unlikely(total_packets &&
2141 netif_carrier_ok(tx_ring->netdev) &&
2142 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2143 /* Make sure that anybody stopping the queue after this
2144 * sees the new next_to_clean.
2145 */
2146 smp_mb();
2147 if (__netif_subqueue_stopped(tx_ring->netdev,
2148 tx_ring->queue_index) &&
2149 !(test_bit(__IGC_DOWN, &adapter->state))) {
2150 netif_wake_subqueue(tx_ring->netdev,
2151 tx_ring->queue_index);
2152
2153 u64_stats_update_begin(&tx_ring->tx_syncp);
2154 tx_ring->tx_stats.restart_queue++;
2155 u64_stats_update_end(&tx_ring->tx_syncp);
2156 }
2157 }
2158
2159 return !!budget;
2160}
2161
2162static int igc_find_mac_filter(struct igc_adapter *adapter,
2163 enum igc_mac_filter_type type, const u8 *addr)
2164{
2165 struct igc_hw *hw = &adapter->hw;
2166 int max_entries = hw->mac.rar_entry_count;
2167 u32 ral, rah;
2168 int i;
2169
2170 for (i = 0; i < max_entries; i++) {
2171 ral = rd32(IGC_RAL(i));
2172 rah = rd32(IGC_RAH(i));
2173
2174 if (!(rah & IGC_RAH_AV))
2175 continue;
2176 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2177 continue;
2178 if ((rah & IGC_RAH_RAH_MASK) !=
2179 le16_to_cpup((__le16 *)(addr + 4)))
2180 continue;
2181 if (ral != le32_to_cpup((__le32 *)(addr)))
2182 continue;
2183
2184 return i;
2185 }
2186
2187 return -1;
2188}
2189
2190static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2191{
2192 struct igc_hw *hw = &adapter->hw;
2193 int max_entries = hw->mac.rar_entry_count;
2194 u32 rah;
2195 int i;
2196
2197 for (i = 0; i < max_entries; i++) {
2198 rah = rd32(IGC_RAH(i));
2199
2200 if (!(rah & IGC_RAH_AV))
2201 return i;
2202 }
2203
2204 return -1;
2205}
2206
2207/**
2208 * igc_add_mac_filter() - Add MAC address filter
2209 * @adapter: Pointer to adapter where the filter should be added
2210 * @type: MAC address filter type (source or destination)
2211 * @addr: MAC address
2212 * @queue: If non-negative, queue assignment feature is enabled and frames
2213 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2214 * assignment is disabled.
2215 *
2216 * Return: 0 in case of success, negative errno code otherwise.
2217 */
2218static int igc_add_mac_filter(struct igc_adapter *adapter,
2219 enum igc_mac_filter_type type, const u8 *addr,
2220 int queue)
2221{
2222 struct net_device *dev = adapter->netdev;
2223 int index;
2224
2225 index = igc_find_mac_filter(adapter, type, addr);
2226 if (index >= 0)
2227 goto update_filter;
2228
2229 index = igc_get_avail_mac_filter_slot(adapter);
2230 if (index < 0)
2231 return -ENOSPC;
2232
2233 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2234 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2235 addr, queue);
2236
2237update_filter:
2238 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2239 return 0;
2240}
2241
2242/**
2243 * igc_del_mac_filter() - Delete MAC address filter
2244 * @adapter: Pointer to adapter where the filter should be deleted from
2245 * @type: MAC address filter type (source or destination)
2246 * @addr: MAC address
2247 */
2248static void igc_del_mac_filter(struct igc_adapter *adapter,
2249 enum igc_mac_filter_type type, const u8 *addr)
2250{
2251 struct net_device *dev = adapter->netdev;
2252 int index;
2253
2254 index = igc_find_mac_filter(adapter, type, addr);
2255 if (index < 0)
2256 return;
2257
2258 if (index == 0) {
2259 /* If this is the default filter, we don't actually delete it.
2260 * We just reset to its default value i.e. disable queue
2261 * assignment.
2262 */
2263 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2264
2265 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2266 } else {
2267 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2268 index,
2269 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2270 addr);
2271
2272 igc_clear_mac_filter_hw(adapter, index);
2273 }
2274}
2275
2276/**
2277 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2278 * @adapter: Pointer to adapter where the filter should be added
2279 * @prio: VLAN priority value
2280 * @queue: Queue number which matching frames are assigned to
2281 *
2282 * Return: 0 in case of success, negative errno code otherwise.
2283 */
2284static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2285 int queue)
2286{
2287 struct net_device *dev = adapter->netdev;
2288 struct igc_hw *hw = &adapter->hw;
2289 u32 vlanpqf;
2290
2291 vlanpqf = rd32(IGC_VLANPQF);
2292
2293 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2294 netdev_dbg(dev, "VLAN priority filter already in use\n");
2295 return -EEXIST;
2296 }
2297
2298 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2299 vlanpqf |= IGC_VLANPQF_VALID(prio);
2300
2301 wr32(IGC_VLANPQF, vlanpqf);
2302
2303 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2304 prio, queue);
2305 return 0;
2306}
2307
2308/**
2309 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2310 * @adapter: Pointer to adapter where the filter should be deleted from
2311 * @prio: VLAN priority value
2312 */
2313static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2314{
2315 struct igc_hw *hw = &adapter->hw;
2316 u32 vlanpqf;
2317
2318 vlanpqf = rd32(IGC_VLANPQF);
2319
2320 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2321 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2322
2323 wr32(IGC_VLANPQF, vlanpqf);
2324
2325 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2326 prio);
2327}
2328
2329static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2330{
2331 struct igc_hw *hw = &adapter->hw;
2332 int i;
2333
2334 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2335 u32 etqf = rd32(IGC_ETQF(i));
2336
2337 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2338 return i;
2339 }
2340
2341 return -1;
2342}
2343
2344/**
2345 * igc_add_etype_filter() - Add ethertype filter
2346 * @adapter: Pointer to adapter where the filter should be added
2347 * @etype: Ethertype value
2348 * @queue: If non-negative, queue assignment feature is enabled and frames
2349 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2350 * assignment is disabled.
2351 *
2352 * Return: 0 in case of success, negative errno code otherwise.
2353 */
2354static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2355 int queue)
2356{
2357 struct igc_hw *hw = &adapter->hw;
2358 int index;
2359 u32 etqf;
2360
2361 index = igc_get_avail_etype_filter_slot(adapter);
2362 if (index < 0)
2363 return -ENOSPC;
2364
2365 etqf = rd32(IGC_ETQF(index));
2366
2367 etqf &= ~IGC_ETQF_ETYPE_MASK;
2368 etqf |= etype;
2369
2370 if (queue >= 0) {
2371 etqf &= ~IGC_ETQF_QUEUE_MASK;
2372 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2373 etqf |= IGC_ETQF_QUEUE_ENABLE;
2374 }
2375
2376 etqf |= IGC_ETQF_FILTER_ENABLE;
2377
2378 wr32(IGC_ETQF(index), etqf);
2379
2380 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2381 etype, queue);
2382 return 0;
2383}
2384
2385static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2386{
2387 struct igc_hw *hw = &adapter->hw;
2388 int i;
2389
2390 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2391 u32 etqf = rd32(IGC_ETQF(i));
2392
2393 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2394 return i;
2395 }
2396
2397 return -1;
2398}
2399
2400/**
2401 * igc_del_etype_filter() - Delete ethertype filter
2402 * @adapter: Pointer to adapter where the filter should be deleted from
2403 * @etype: Ethertype value
2404 */
2405static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2406{
2407 struct igc_hw *hw = &adapter->hw;
2408 int index;
2409
2410 index = igc_find_etype_filter(adapter, etype);
2411 if (index < 0)
2412 return;
2413
2414 wr32(IGC_ETQF(index), 0);
2415
2416 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2417 etype);
2418}
2419
2420static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2421 const struct igc_nfc_rule *rule)
2422{
2423 int err;
2424
2425 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2426 err = igc_add_etype_filter(adapter, rule->filter.etype,
2427 rule->action);
2428 if (err)
2429 return err;
2430 }
2431
2432 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2433 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2434 rule->filter.src_addr, rule->action);
2435 if (err)
2436 return err;
2437 }
2438
2439 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2440 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2441 rule->filter.dst_addr, rule->action);
2442 if (err)
2443 return err;
2444 }
2445
2446 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2447 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2448 VLAN_PRIO_SHIFT;
2449
2450 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2451 if (err)
2452 return err;
2453 }
2454
2455 return 0;
2456}
2457
2458static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2459 const struct igc_nfc_rule *rule)
2460{
2461 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2462 igc_del_etype_filter(adapter, rule->filter.etype);
2463
2464 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2465 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2466 VLAN_PRIO_SHIFT;
2467
2468 igc_del_vlan_prio_filter(adapter, prio);
2469 }
2470
2471 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2472 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2473 rule->filter.src_addr);
2474
2475 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2476 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2477 rule->filter.dst_addr);
2478}
2479
2480/**
2481 * igc_get_nfc_rule() - Get NFC rule
2482 * @adapter: Pointer to adapter
2483 * @location: Rule location
2484 *
2485 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2486 *
2487 * Return: Pointer to NFC rule at @location. If not found, NULL.
2488 */
2489struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2490 u32 location)
2491{
2492 struct igc_nfc_rule *rule;
2493
2494 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2495 if (rule->location == location)
2496 return rule;
2497 if (rule->location > location)
2498 break;
2499 }
2500
2501 return NULL;
2502}
2503
2504/**
2505 * igc_del_nfc_rule() - Delete NFC rule
2506 * @adapter: Pointer to adapter
2507 * @rule: Pointer to rule to be deleted
2508 *
2509 * Disable NFC rule in hardware and delete it from adapter.
2510 *
2511 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2512 */
2513void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2514{
2515 igc_disable_nfc_rule(adapter, rule);
2516
2517 list_del(&rule->list);
2518 adapter->nfc_rule_count--;
2519
2520 kfree(rule);
2521}
2522
2523static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2524{
2525 struct igc_nfc_rule *rule, *tmp;
2526
2527 mutex_lock(&adapter->nfc_rule_lock);
2528
2529 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2530 igc_del_nfc_rule(adapter, rule);
2531
2532 mutex_unlock(&adapter->nfc_rule_lock);
2533}
2534
2535/**
2536 * igc_add_nfc_rule() - Add NFC rule
2537 * @adapter: Pointer to adapter
2538 * @rule: Pointer to rule to be added
2539 *
2540 * Enable NFC rule in hardware and add it to adapter.
2541 *
2542 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2543 *
2544 * Return: 0 on success, negative errno on failure.
2545 */
2546int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2547{
2548 struct igc_nfc_rule *pred, *cur;
2549 int err;
2550
2551 err = igc_enable_nfc_rule(adapter, rule);
2552 if (err)
2553 return err;
2554
2555 pred = NULL;
2556 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2557 if (cur->location >= rule->location)
2558 break;
2559 pred = cur;
2560 }
2561
2562 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2563 adapter->nfc_rule_count++;
2564 return 0;
2565}
2566
2567static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2568{
2569 struct igc_nfc_rule *rule;
2570
2571 mutex_lock(&adapter->nfc_rule_lock);
2572
2573 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2574 igc_enable_nfc_rule(adapter, rule);
2575
2576 mutex_unlock(&adapter->nfc_rule_lock);
2577}
2578
2579static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2580{
2581 struct igc_adapter *adapter = netdev_priv(netdev);
2582
2583 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2584}
2585
2586static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2587{
2588 struct igc_adapter *adapter = netdev_priv(netdev);
2589
2590 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2591 return 0;
2592}
2593
2594/**
2595 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2596 * @netdev: network interface device structure
2597 *
2598 * The set_rx_mode entry point is called whenever the unicast or multicast
2599 * address lists or the network interface flags are updated. This routine is
2600 * responsible for configuring the hardware for proper unicast, multicast,
2601 * promiscuous mode, and all-multi behavior.
2602 */
2603static void igc_set_rx_mode(struct net_device *netdev)
2604{
2605 struct igc_adapter *adapter = netdev_priv(netdev);
2606 struct igc_hw *hw = &adapter->hw;
2607 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2608 int count;
2609
2610 /* Check for Promiscuous and All Multicast modes */
2611 if (netdev->flags & IFF_PROMISC) {
2612 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2613 } else {
2614 if (netdev->flags & IFF_ALLMULTI) {
2615 rctl |= IGC_RCTL_MPE;
2616 } else {
2617 /* Write addresses to the MTA, if the attempt fails
2618 * then we should just turn on promiscuous mode so
2619 * that we can at least receive multicast traffic
2620 */
2621 count = igc_write_mc_addr_list(netdev);
2622 if (count < 0)
2623 rctl |= IGC_RCTL_MPE;
2624 }
2625 }
2626
2627 /* Write addresses to available RAR registers, if there is not
2628 * sufficient space to store all the addresses then enable
2629 * unicast promiscuous mode
2630 */
2631 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2632 rctl |= IGC_RCTL_UPE;
2633
2634 /* update state of unicast and multicast */
2635 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2636 wr32(IGC_RCTL, rctl);
2637
2638#if (PAGE_SIZE < 8192)
2639 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2640 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2641#endif
2642 wr32(IGC_RLPML, rlpml);
2643}
2644
2645/**
2646 * igc_configure - configure the hardware for RX and TX
2647 * @adapter: private board structure
2648 */
2649static void igc_configure(struct igc_adapter *adapter)
2650{
2651 struct net_device *netdev = adapter->netdev;
2652 int i = 0;
2653
2654 igc_get_hw_control(adapter);
2655 igc_set_rx_mode(netdev);
2656
2657 igc_setup_tctl(adapter);
2658 igc_setup_mrqc(adapter);
2659 igc_setup_rctl(adapter);
2660
2661 igc_set_default_mac_filter(adapter);
2662 igc_restore_nfc_rules(adapter);
2663
2664 igc_configure_tx(adapter);
2665 igc_configure_rx(adapter);
2666
2667 igc_rx_fifo_flush_base(&adapter->hw);
2668
2669 /* call igc_desc_unused which always leaves
2670 * at least 1 descriptor unused to make sure
2671 * next_to_use != next_to_clean
2672 */
2673 for (i = 0; i < adapter->num_rx_queues; i++) {
2674 struct igc_ring *ring = adapter->rx_ring[i];
2675
2676 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2677 }
2678}
2679
2680/**
2681 * igc_write_ivar - configure ivar for given MSI-X vector
2682 * @hw: pointer to the HW structure
2683 * @msix_vector: vector number we are allocating to a given ring
2684 * @index: row index of IVAR register to write within IVAR table
2685 * @offset: column offset of in IVAR, should be multiple of 8
2686 *
2687 * The IVAR table consists of 2 columns,
2688 * each containing an cause allocation for an Rx and Tx ring, and a
2689 * variable number of rows depending on the number of queues supported.
2690 */
2691static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2692 int index, int offset)
2693{
2694 u32 ivar = array_rd32(IGC_IVAR0, index);
2695
2696 /* clear any bits that are currently set */
2697 ivar &= ~((u32)0xFF << offset);
2698
2699 /* write vector and valid bit */
2700 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2701
2702 array_wr32(IGC_IVAR0, index, ivar);
2703}
2704
2705static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2706{
2707 struct igc_adapter *adapter = q_vector->adapter;
2708 struct igc_hw *hw = &adapter->hw;
2709 int rx_queue = IGC_N0_QUEUE;
2710 int tx_queue = IGC_N0_QUEUE;
2711
2712 if (q_vector->rx.ring)
2713 rx_queue = q_vector->rx.ring->reg_idx;
2714 if (q_vector->tx.ring)
2715 tx_queue = q_vector->tx.ring->reg_idx;
2716
2717 switch (hw->mac.type) {
2718 case igc_i225:
2719 if (rx_queue > IGC_N0_QUEUE)
2720 igc_write_ivar(hw, msix_vector,
2721 rx_queue >> 1,
2722 (rx_queue & 0x1) << 4);
2723 if (tx_queue > IGC_N0_QUEUE)
2724 igc_write_ivar(hw, msix_vector,
2725 tx_queue >> 1,
2726 ((tx_queue & 0x1) << 4) + 8);
2727 q_vector->eims_value = BIT(msix_vector);
2728 break;
2729 default:
2730 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2731 break;
2732 }
2733
2734 /* add q_vector eims value to global eims_enable_mask */
2735 adapter->eims_enable_mask |= q_vector->eims_value;
2736
2737 /* configure q_vector to set itr on first interrupt */
2738 q_vector->set_itr = 1;
2739}
2740
2741/**
2742 * igc_configure_msix - Configure MSI-X hardware
2743 * @adapter: Pointer to adapter structure
2744 *
2745 * igc_configure_msix sets up the hardware to properly
2746 * generate MSI-X interrupts.
2747 */
2748static void igc_configure_msix(struct igc_adapter *adapter)
2749{
2750 struct igc_hw *hw = &adapter->hw;
2751 int i, vector = 0;
2752 u32 tmp;
2753
2754 adapter->eims_enable_mask = 0;
2755
2756 /* set vector for other causes, i.e. link changes */
2757 switch (hw->mac.type) {
2758 case igc_i225:
2759 /* Turn on MSI-X capability first, or our settings
2760 * won't stick. And it will take days to debug.
2761 */
2762 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2763 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2764 IGC_GPIE_NSICR);
2765
2766 /* enable msix_other interrupt */
2767 adapter->eims_other = BIT(vector);
2768 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2769
2770 wr32(IGC_IVAR_MISC, tmp);
2771 break;
2772 default:
2773 /* do nothing, since nothing else supports MSI-X */
2774 break;
2775 } /* switch (hw->mac.type) */
2776
2777 adapter->eims_enable_mask |= adapter->eims_other;
2778
2779 for (i = 0; i < adapter->num_q_vectors; i++)
2780 igc_assign_vector(adapter->q_vector[i], vector++);
2781
2782 wrfl();
2783}
2784
2785/**
2786 * igc_irq_enable - Enable default interrupt generation settings
2787 * @adapter: board private structure
2788 */
2789static void igc_irq_enable(struct igc_adapter *adapter)
2790{
2791 struct igc_hw *hw = &adapter->hw;
2792
2793 if (adapter->msix_entries) {
2794 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2795 u32 regval = rd32(IGC_EIAC);
2796
2797 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2798 regval = rd32(IGC_EIAM);
2799 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2800 wr32(IGC_EIMS, adapter->eims_enable_mask);
2801 wr32(IGC_IMS, ims);
2802 } else {
2803 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2804 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2805 }
2806}
2807
2808/**
2809 * igc_irq_disable - Mask off interrupt generation on the NIC
2810 * @adapter: board private structure
2811 */
2812static void igc_irq_disable(struct igc_adapter *adapter)
2813{
2814 struct igc_hw *hw = &adapter->hw;
2815
2816 if (adapter->msix_entries) {
2817 u32 regval = rd32(IGC_EIAM);
2818
2819 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2820 wr32(IGC_EIMC, adapter->eims_enable_mask);
2821 regval = rd32(IGC_EIAC);
2822 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2823 }
2824
2825 wr32(IGC_IAM, 0);
2826 wr32(IGC_IMC, ~0);
2827 wrfl();
2828
2829 if (adapter->msix_entries) {
2830 int vector = 0, i;
2831
2832 synchronize_irq(adapter->msix_entries[vector++].vector);
2833
2834 for (i = 0; i < adapter->num_q_vectors; i++)
2835 synchronize_irq(adapter->msix_entries[vector++].vector);
2836 } else {
2837 synchronize_irq(adapter->pdev->irq);
2838 }
2839}
2840
2841void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2842 const u32 max_rss_queues)
2843{
2844 /* Determine if we need to pair queues. */
2845 /* If rss_queues > half of max_rss_queues, pair the queues in
2846 * order to conserve interrupts due to limited supply.
2847 */
2848 if (adapter->rss_queues > (max_rss_queues / 2))
2849 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2850 else
2851 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2852}
2853
2854unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2855{
2856 return IGC_MAX_RX_QUEUES;
2857}
2858
2859static void igc_init_queue_configuration(struct igc_adapter *adapter)
2860{
2861 u32 max_rss_queues;
2862
2863 max_rss_queues = igc_get_max_rss_queues(adapter);
2864 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2865
2866 igc_set_flag_queue_pairs(adapter, max_rss_queues);
2867}
2868
2869/**
2870 * igc_reset_q_vector - Reset config for interrupt vector
2871 * @adapter: board private structure to initialize
2872 * @v_idx: Index of vector to be reset
2873 *
2874 * If NAPI is enabled it will delete any references to the
2875 * NAPI struct. This is preparation for igc_free_q_vector.
2876 */
2877static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2878{
2879 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2880
2881 /* if we're coming from igc_set_interrupt_capability, the vectors are
2882 * not yet allocated
2883 */
2884 if (!q_vector)
2885 return;
2886
2887 if (q_vector->tx.ring)
2888 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2889
2890 if (q_vector->rx.ring)
2891 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2892
2893 netif_napi_del(&q_vector->napi);
2894}
2895
2896/**
2897 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2898 * @adapter: board private structure to initialize
2899 * @v_idx: Index of vector to be freed
2900 *
2901 * This function frees the memory allocated to the q_vector.
2902 */
2903static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2904{
2905 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2906
2907 adapter->q_vector[v_idx] = NULL;
2908
2909 /* igc_get_stats64() might access the rings on this vector,
2910 * we must wait a grace period before freeing it.
2911 */
2912 if (q_vector)
2913 kfree_rcu(q_vector, rcu);
2914}
2915
2916/**
2917 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2918 * @adapter: board private structure to initialize
2919 *
2920 * This function frees the memory allocated to the q_vectors. In addition if
2921 * NAPI is enabled it will delete any references to the NAPI struct prior
2922 * to freeing the q_vector.
2923 */
2924static void igc_free_q_vectors(struct igc_adapter *adapter)
2925{
2926 int v_idx = adapter->num_q_vectors;
2927
2928 adapter->num_tx_queues = 0;
2929 adapter->num_rx_queues = 0;
2930 adapter->num_q_vectors = 0;
2931
2932 while (v_idx--) {
2933 igc_reset_q_vector(adapter, v_idx);
2934 igc_free_q_vector(adapter, v_idx);
2935 }
2936}
2937
2938/**
2939 * igc_update_itr - update the dynamic ITR value based on statistics
2940 * @q_vector: pointer to q_vector
2941 * @ring_container: ring info to update the itr for
2942 *
2943 * Stores a new ITR value based on packets and byte
2944 * counts during the last interrupt. The advantage of per interrupt
2945 * computation is faster updates and more accurate ITR for the current
2946 * traffic pattern. Constants in this function were computed
2947 * based on theoretical maximum wire speed and thresholds were set based
2948 * on testing data as well as attempting to minimize response time
2949 * while increasing bulk throughput.
2950 * NOTE: These calculations are only valid when operating in a single-
2951 * queue environment.
2952 */
2953static void igc_update_itr(struct igc_q_vector *q_vector,
2954 struct igc_ring_container *ring_container)
2955{
2956 unsigned int packets = ring_container->total_packets;
2957 unsigned int bytes = ring_container->total_bytes;
2958 u8 itrval = ring_container->itr;
2959
2960 /* no packets, exit with status unchanged */
2961 if (packets == 0)
2962 return;
2963
2964 switch (itrval) {
2965 case lowest_latency:
2966 /* handle TSO and jumbo frames */
2967 if (bytes / packets > 8000)
2968 itrval = bulk_latency;
2969 else if ((packets < 5) && (bytes > 512))
2970 itrval = low_latency;
2971 break;
2972 case low_latency: /* 50 usec aka 20000 ints/s */
2973 if (bytes > 10000) {
2974 /* this if handles the TSO accounting */
2975 if (bytes / packets > 8000)
2976 itrval = bulk_latency;
2977 else if ((packets < 10) || ((bytes / packets) > 1200))
2978 itrval = bulk_latency;
2979 else if ((packets > 35))
2980 itrval = lowest_latency;
2981 } else if (bytes / packets > 2000) {
2982 itrval = bulk_latency;
2983 } else if (packets <= 2 && bytes < 512) {
2984 itrval = lowest_latency;
2985 }
2986 break;
2987 case bulk_latency: /* 250 usec aka 4000 ints/s */
2988 if (bytes > 25000) {
2989 if (packets > 35)
2990 itrval = low_latency;
2991 } else if (bytes < 1500) {
2992 itrval = low_latency;
2993 }
2994 break;
2995 }
2996
2997 /* clear work counters since we have the values we need */
2998 ring_container->total_bytes = 0;
2999 ring_container->total_packets = 0;
3000
3001 /* write updated itr to ring container */
3002 ring_container->itr = itrval;
3003}
3004
3005static void igc_set_itr(struct igc_q_vector *q_vector)
3006{
3007 struct igc_adapter *adapter = q_vector->adapter;
3008 u32 new_itr = q_vector->itr_val;
3009 u8 current_itr = 0;
3010
3011 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3012 switch (adapter->link_speed) {
3013 case SPEED_10:
3014 case SPEED_100:
3015 current_itr = 0;
3016 new_itr = IGC_4K_ITR;
3017 goto set_itr_now;
3018 default:
3019 break;
3020 }
3021
3022 igc_update_itr(q_vector, &q_vector->tx);
3023 igc_update_itr(q_vector, &q_vector->rx);
3024
3025 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3026
3027 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3028 if (current_itr == lowest_latency &&
3029 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3030 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3031 current_itr = low_latency;
3032
3033 switch (current_itr) {
3034 /* counts and packets in update_itr are dependent on these numbers */
3035 case lowest_latency:
3036 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3037 break;
3038 case low_latency:
3039 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3040 break;
3041 case bulk_latency:
3042 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3043 break;
3044 default:
3045 break;
3046 }
3047
3048set_itr_now:
3049 if (new_itr != q_vector->itr_val) {
3050 /* this attempts to bias the interrupt rate towards Bulk
3051 * by adding intermediate steps when interrupt rate is
3052 * increasing
3053 */
3054 new_itr = new_itr > q_vector->itr_val ?
3055 max((new_itr * q_vector->itr_val) /
3056 (new_itr + (q_vector->itr_val >> 2)),
3057 new_itr) : new_itr;
3058 /* Don't write the value here; it resets the adapter's
3059 * internal timer, and causes us to delay far longer than
3060 * we should between interrupts. Instead, we write the ITR
3061 * value at the beginning of the next interrupt so the timing
3062 * ends up being correct.
3063 */
3064 q_vector->itr_val = new_itr;
3065 q_vector->set_itr = 1;
3066 }
3067}
3068
3069static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3070{
3071 int v_idx = adapter->num_q_vectors;
3072
3073 if (adapter->msix_entries) {
3074 pci_disable_msix(adapter->pdev);
3075 kfree(adapter->msix_entries);
3076 adapter->msix_entries = NULL;
3077 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3078 pci_disable_msi(adapter->pdev);
3079 }
3080
3081 while (v_idx--)
3082 igc_reset_q_vector(adapter, v_idx);
3083}
3084
3085/**
3086 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3087 * @adapter: Pointer to adapter structure
3088 * @msix: boolean value for MSI-X capability
3089 *
3090 * Attempt to configure interrupts using the best available
3091 * capabilities of the hardware and kernel.
3092 */
3093static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3094 bool msix)
3095{
3096 int numvecs, i;
3097 int err;
3098
3099 if (!msix)
3100 goto msi_only;
3101 adapter->flags |= IGC_FLAG_HAS_MSIX;
3102
3103 /* Number of supported queues. */
3104 adapter->num_rx_queues = adapter->rss_queues;
3105
3106 adapter->num_tx_queues = adapter->rss_queues;
3107
3108 /* start with one vector for every Rx queue */
3109 numvecs = adapter->num_rx_queues;
3110
3111 /* if Tx handler is separate add 1 for every Tx queue */
3112 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3113 numvecs += adapter->num_tx_queues;
3114
3115 /* store the number of vectors reserved for queues */
3116 adapter->num_q_vectors = numvecs;
3117
3118 /* add 1 vector for link status interrupts */
3119 numvecs++;
3120
3121 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3122 GFP_KERNEL);
3123
3124 if (!adapter->msix_entries)
3125 return;
3126
3127 /* populate entry values */
3128 for (i = 0; i < numvecs; i++)
3129 adapter->msix_entries[i].entry = i;
3130
3131 err = pci_enable_msix_range(adapter->pdev,
3132 adapter->msix_entries,
3133 numvecs,
3134 numvecs);
3135 if (err > 0)
3136 return;
3137
3138 kfree(adapter->msix_entries);
3139 adapter->msix_entries = NULL;
3140
3141 igc_reset_interrupt_capability(adapter);
3142
3143msi_only:
3144 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3145
3146 adapter->rss_queues = 1;
3147 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3148 adapter->num_rx_queues = 1;
3149 adapter->num_tx_queues = 1;
3150 adapter->num_q_vectors = 1;
3151 if (!pci_enable_msi(adapter->pdev))
3152 adapter->flags |= IGC_FLAG_HAS_MSI;
3153}
3154
3155/**
3156 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3157 * @q_vector: pointer to q_vector
3158 *
3159 * Stores a new ITR value based on strictly on packet size. This
3160 * algorithm is less sophisticated than that used in igc_update_itr,
3161 * due to the difficulty of synchronizing statistics across multiple
3162 * receive rings. The divisors and thresholds used by this function
3163 * were determined based on theoretical maximum wire speed and testing
3164 * data, in order to minimize response time while increasing bulk
3165 * throughput.
3166 * NOTE: This function is called only when operating in a multiqueue
3167 * receive environment.
3168 */
3169static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3170{
3171 struct igc_adapter *adapter = q_vector->adapter;
3172 int new_val = q_vector->itr_val;
3173 int avg_wire_size = 0;
3174 unsigned int packets;
3175
3176 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3177 * ints/sec - ITR timer value of 120 ticks.
3178 */
3179 switch (adapter->link_speed) {
3180 case SPEED_10:
3181 case SPEED_100:
3182 new_val = IGC_4K_ITR;
3183 goto set_itr_val;
3184 default:
3185 break;
3186 }
3187
3188 packets = q_vector->rx.total_packets;
3189 if (packets)
3190 avg_wire_size = q_vector->rx.total_bytes / packets;
3191
3192 packets = q_vector->tx.total_packets;
3193 if (packets)
3194 avg_wire_size = max_t(u32, avg_wire_size,
3195 q_vector->tx.total_bytes / packets);
3196
3197 /* if avg_wire_size isn't set no work was done */
3198 if (!avg_wire_size)
3199 goto clear_counts;
3200
3201 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3202 avg_wire_size += 24;
3203
3204 /* Don't starve jumbo frames */
3205 avg_wire_size = min(avg_wire_size, 3000);
3206
3207 /* Give a little boost to mid-size frames */
3208 if (avg_wire_size > 300 && avg_wire_size < 1200)
3209 new_val = avg_wire_size / 3;
3210 else
3211 new_val = avg_wire_size / 2;
3212
3213 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3214 if (new_val < IGC_20K_ITR &&
3215 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3216 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3217 new_val = IGC_20K_ITR;
3218
3219set_itr_val:
3220 if (new_val != q_vector->itr_val) {
3221 q_vector->itr_val = new_val;
3222 q_vector->set_itr = 1;
3223 }
3224clear_counts:
3225 q_vector->rx.total_bytes = 0;
3226 q_vector->rx.total_packets = 0;
3227 q_vector->tx.total_bytes = 0;
3228 q_vector->tx.total_packets = 0;
3229}
3230
3231static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3232{
3233 struct igc_adapter *adapter = q_vector->adapter;
3234 struct igc_hw *hw = &adapter->hw;
3235
3236 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3237 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3238 if (adapter->num_q_vectors == 1)
3239 igc_set_itr(q_vector);
3240 else
3241 igc_update_ring_itr(q_vector);
3242 }
3243
3244 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3245 if (adapter->msix_entries)
3246 wr32(IGC_EIMS, q_vector->eims_value);
3247 else
3248 igc_irq_enable(adapter);
3249 }
3250}
3251
3252static void igc_add_ring(struct igc_ring *ring,
3253 struct igc_ring_container *head)
3254{
3255 head->ring = ring;
3256 head->count++;
3257}
3258
3259/**
3260 * igc_cache_ring_register - Descriptor ring to register mapping
3261 * @adapter: board private structure to initialize
3262 *
3263 * Once we know the feature-set enabled for the device, we'll cache
3264 * the register offset the descriptor ring is assigned to.
3265 */
3266static void igc_cache_ring_register(struct igc_adapter *adapter)
3267{
3268 int i = 0, j = 0;
3269
3270 switch (adapter->hw.mac.type) {
3271 case igc_i225:
3272 default:
3273 for (; i < adapter->num_rx_queues; i++)
3274 adapter->rx_ring[i]->reg_idx = i;
3275 for (; j < adapter->num_tx_queues; j++)
3276 adapter->tx_ring[j]->reg_idx = j;
3277 break;
3278 }
3279}
3280
3281/**
3282 * igc_poll - NAPI Rx polling callback
3283 * @napi: napi polling structure
3284 * @budget: count of how many packets we should handle
3285 */
3286static int igc_poll(struct napi_struct *napi, int budget)
3287{
3288 struct igc_q_vector *q_vector = container_of(napi,
3289 struct igc_q_vector,
3290 napi);
3291 bool clean_complete = true;
3292 int work_done = 0;
3293
3294 if (q_vector->tx.ring)
3295 clean_complete = igc_clean_tx_irq(q_vector, budget);
3296
3297 if (q_vector->rx.ring) {
3298 int cleaned = igc_clean_rx_irq(q_vector, budget);
3299
3300 work_done += cleaned;
3301 if (cleaned >= budget)
3302 clean_complete = false;
3303 }
3304
3305 /* If all work not completed, return budget and keep polling */
3306 if (!clean_complete)
3307 return budget;
3308
3309 /* Exit the polling mode, but don't re-enable interrupts if stack might
3310 * poll us due to busy-polling
3311 */
3312 if (likely(napi_complete_done(napi, work_done)))
3313 igc_ring_irq_enable(q_vector);
3314
3315 return min(work_done, budget - 1);
3316}
3317
3318/**
3319 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3320 * @adapter: board private structure to initialize
3321 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3322 * @v_idx: index of vector in adapter struct
3323 * @txr_count: total number of Tx rings to allocate
3324 * @txr_idx: index of first Tx ring to allocate
3325 * @rxr_count: total number of Rx rings to allocate
3326 * @rxr_idx: index of first Rx ring to allocate
3327 *
3328 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3329 */
3330static int igc_alloc_q_vector(struct igc_adapter *adapter,
3331 unsigned int v_count, unsigned int v_idx,
3332 unsigned int txr_count, unsigned int txr_idx,
3333 unsigned int rxr_count, unsigned int rxr_idx)
3334{
3335 struct igc_q_vector *q_vector;
3336 struct igc_ring *ring;
3337 int ring_count;
3338
3339 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3340 if (txr_count > 1 || rxr_count > 1)
3341 return -ENOMEM;
3342
3343 ring_count = txr_count + rxr_count;
3344
3345 /* allocate q_vector and rings */
3346 q_vector = adapter->q_vector[v_idx];
3347 if (!q_vector)
3348 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3349 GFP_KERNEL);
3350 else
3351 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3352 if (!q_vector)
3353 return -ENOMEM;
3354
3355 /* initialize NAPI */
3356 netif_napi_add(adapter->netdev, &q_vector->napi,
3357 igc_poll, 64);
3358
3359 /* tie q_vector and adapter together */
3360 adapter->q_vector[v_idx] = q_vector;
3361 q_vector->adapter = adapter;
3362
3363 /* initialize work limits */
3364 q_vector->tx.work_limit = adapter->tx_work_limit;
3365
3366 /* initialize ITR configuration */
3367 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3368 q_vector->itr_val = IGC_START_ITR;
3369
3370 /* initialize pointer to rings */
3371 ring = q_vector->ring;
3372
3373 /* initialize ITR */
3374 if (rxr_count) {
3375 /* rx or rx/tx vector */
3376 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3377 q_vector->itr_val = adapter->rx_itr_setting;
3378 } else {
3379 /* tx only vector */
3380 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3381 q_vector->itr_val = adapter->tx_itr_setting;
3382 }
3383
3384 if (txr_count) {
3385 /* assign generic ring traits */
3386 ring->dev = &adapter->pdev->dev;
3387 ring->netdev = adapter->netdev;
3388
3389 /* configure backlink on ring */
3390 ring->q_vector = q_vector;
3391
3392 /* update q_vector Tx values */
3393 igc_add_ring(ring, &q_vector->tx);
3394
3395 /* apply Tx specific ring traits */
3396 ring->count = adapter->tx_ring_count;
3397 ring->queue_index = txr_idx;
3398
3399 /* assign ring to adapter */
3400 adapter->tx_ring[txr_idx] = ring;
3401
3402 /* push pointer to next ring */
3403 ring++;
3404 }
3405
3406 if (rxr_count) {
3407 /* assign generic ring traits */
3408 ring->dev = &adapter->pdev->dev;
3409 ring->netdev = adapter->netdev;
3410
3411 /* configure backlink on ring */
3412 ring->q_vector = q_vector;
3413
3414 /* update q_vector Rx values */
3415 igc_add_ring(ring, &q_vector->rx);
3416
3417 /* apply Rx specific ring traits */
3418 ring->count = adapter->rx_ring_count;
3419 ring->queue_index = rxr_idx;
3420
3421 /* assign ring to adapter */
3422 adapter->rx_ring[rxr_idx] = ring;
3423 }
3424
3425 return 0;
3426}
3427
3428/**
3429 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3430 * @adapter: board private structure to initialize
3431 *
3432 * We allocate one q_vector per queue interrupt. If allocation fails we
3433 * return -ENOMEM.
3434 */
3435static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3436{
3437 int rxr_remaining = adapter->num_rx_queues;
3438 int txr_remaining = adapter->num_tx_queues;
3439 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3440 int q_vectors = adapter->num_q_vectors;
3441 int err;
3442
3443 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3444 for (; rxr_remaining; v_idx++) {
3445 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3446 0, 0, 1, rxr_idx);
3447
3448 if (err)
3449 goto err_out;
3450
3451 /* update counts and index */
3452 rxr_remaining--;
3453 rxr_idx++;
3454 }
3455 }
3456
3457 for (; v_idx < q_vectors; v_idx++) {
3458 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3459 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3460
3461 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3462 tqpv, txr_idx, rqpv, rxr_idx);
3463
3464 if (err)
3465 goto err_out;
3466
3467 /* update counts and index */
3468 rxr_remaining -= rqpv;
3469 txr_remaining -= tqpv;
3470 rxr_idx++;
3471 txr_idx++;
3472 }
3473
3474 return 0;
3475
3476err_out:
3477 adapter->num_tx_queues = 0;
3478 adapter->num_rx_queues = 0;
3479 adapter->num_q_vectors = 0;
3480
3481 while (v_idx--)
3482 igc_free_q_vector(adapter, v_idx);
3483
3484 return -ENOMEM;
3485}
3486
3487/**
3488 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3489 * @adapter: Pointer to adapter structure
3490 * @msix: boolean for MSI-X capability
3491 *
3492 * This function initializes the interrupts and allocates all of the queues.
3493 */
3494static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3495{
3496 struct net_device *dev = adapter->netdev;
3497 int err = 0;
3498
3499 igc_set_interrupt_capability(adapter, msix);
3500
3501 err = igc_alloc_q_vectors(adapter);
3502 if (err) {
3503 netdev_err(dev, "Unable to allocate memory for vectors\n");
3504 goto err_alloc_q_vectors;
3505 }
3506
3507 igc_cache_ring_register(adapter);
3508
3509 return 0;
3510
3511err_alloc_q_vectors:
3512 igc_reset_interrupt_capability(adapter);
3513 return err;
3514}
3515
3516/**
3517 * igc_sw_init - Initialize general software structures (struct igc_adapter)
3518 * @adapter: board private structure to initialize
3519 *
3520 * igc_sw_init initializes the Adapter private data structure.
3521 * Fields are initialized based on PCI device information and
3522 * OS network device settings (MTU size).
3523 */
3524static int igc_sw_init(struct igc_adapter *adapter)
3525{
3526 struct net_device *netdev = adapter->netdev;
3527 struct pci_dev *pdev = adapter->pdev;
3528 struct igc_hw *hw = &adapter->hw;
3529
3530 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3531
3532 /* set default ring sizes */
3533 adapter->tx_ring_count = IGC_DEFAULT_TXD;
3534 adapter->rx_ring_count = IGC_DEFAULT_RXD;
3535
3536 /* set default ITR values */
3537 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3538 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3539
3540 /* set default work limits */
3541 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3542
3543 /* adjust max frame to be at least the size of a standard frame */
3544 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3545 VLAN_HLEN;
3546 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3547
3548 mutex_init(&adapter->nfc_rule_lock);
3549 INIT_LIST_HEAD(&adapter->nfc_rule_list);
3550 adapter->nfc_rule_count = 0;
3551
3552 spin_lock_init(&adapter->stats64_lock);
3553 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3554 adapter->flags |= IGC_FLAG_HAS_MSIX;
3555
3556 igc_init_queue_configuration(adapter);
3557
3558 /* This call may decrease the number of queues */
3559 if (igc_init_interrupt_scheme(adapter, true)) {
3560 netdev_err(netdev, "Unable to allocate memory for queues\n");
3561 return -ENOMEM;
3562 }
3563
3564 /* Explicitly disable IRQ since the NIC can be in any state. */
3565 igc_irq_disable(adapter);
3566
3567 set_bit(__IGC_DOWN, &adapter->state);
3568
3569 return 0;
3570}
3571
3572/**
3573 * igc_up - Open the interface and prepare it to handle traffic
3574 * @adapter: board private structure
3575 */
3576void igc_up(struct igc_adapter *adapter)
3577{
3578 struct igc_hw *hw = &adapter->hw;
3579 int i = 0;
3580
3581 /* hardware has been reset, we need to reload some things */
3582 igc_configure(adapter);
3583
3584 clear_bit(__IGC_DOWN, &adapter->state);
3585
3586 for (i = 0; i < adapter->num_q_vectors; i++)
3587 napi_enable(&adapter->q_vector[i]->napi);
3588
3589 if (adapter->msix_entries)
3590 igc_configure_msix(adapter);
3591 else
3592 igc_assign_vector(adapter->q_vector[0], 0);
3593
3594 /* Clear any pending interrupts. */
3595 rd32(IGC_ICR);
3596 igc_irq_enable(adapter);
3597
3598 netif_tx_start_all_queues(adapter->netdev);
3599
3600 /* start the watchdog. */
3601 hw->mac.get_link_status = 1;
3602 schedule_work(&adapter->watchdog_task);
3603}
3604
3605/**
3606 * igc_update_stats - Update the board statistics counters
3607 * @adapter: board private structure
3608 */
3609void igc_update_stats(struct igc_adapter *adapter)
3610{
3611 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3612 struct pci_dev *pdev = adapter->pdev;
3613 struct igc_hw *hw = &adapter->hw;
3614 u64 _bytes, _packets;
3615 u64 bytes, packets;
3616 unsigned int start;
3617 u32 mpc;
3618 int i;
3619
3620 /* Prevent stats update while adapter is being reset, or if the pci
3621 * connection is down.
3622 */
3623 if (adapter->link_speed == 0)
3624 return;
3625 if (pci_channel_offline(pdev))
3626 return;
3627
3628 packets = 0;
3629 bytes = 0;
3630
3631 rcu_read_lock();
3632 for (i = 0; i < adapter->num_rx_queues; i++) {
3633 struct igc_ring *ring = adapter->rx_ring[i];
3634 u32 rqdpc = rd32(IGC_RQDPC(i));
3635
3636 if (hw->mac.type >= igc_i225)
3637 wr32(IGC_RQDPC(i), 0);
3638
3639 if (rqdpc) {
3640 ring->rx_stats.drops += rqdpc;
3641 net_stats->rx_fifo_errors += rqdpc;
3642 }
3643
3644 do {
3645 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3646 _bytes = ring->rx_stats.bytes;
3647 _packets = ring->rx_stats.packets;
3648 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3649 bytes += _bytes;
3650 packets += _packets;
3651 }
3652
3653 net_stats->rx_bytes = bytes;
3654 net_stats->rx_packets = packets;
3655
3656 packets = 0;
3657 bytes = 0;
3658 for (i = 0; i < adapter->num_tx_queues; i++) {
3659 struct igc_ring *ring = adapter->tx_ring[i];
3660
3661 do {
3662 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3663 _bytes = ring->tx_stats.bytes;
3664 _packets = ring->tx_stats.packets;
3665 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3666 bytes += _bytes;
3667 packets += _packets;
3668 }
3669 net_stats->tx_bytes = bytes;
3670 net_stats->tx_packets = packets;
3671 rcu_read_unlock();
3672
3673 /* read stats registers */
3674 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3675 adapter->stats.gprc += rd32(IGC_GPRC);
3676 adapter->stats.gorc += rd32(IGC_GORCL);
3677 rd32(IGC_GORCH); /* clear GORCL */
3678 adapter->stats.bprc += rd32(IGC_BPRC);
3679 adapter->stats.mprc += rd32(IGC_MPRC);
3680 adapter->stats.roc += rd32(IGC_ROC);
3681
3682 adapter->stats.prc64 += rd32(IGC_PRC64);
3683 adapter->stats.prc127 += rd32(IGC_PRC127);
3684 adapter->stats.prc255 += rd32(IGC_PRC255);
3685 adapter->stats.prc511 += rd32(IGC_PRC511);
3686 adapter->stats.prc1023 += rd32(IGC_PRC1023);
3687 adapter->stats.prc1522 += rd32(IGC_PRC1522);
3688
3689 mpc = rd32(IGC_MPC);
3690 adapter->stats.mpc += mpc;
3691 net_stats->rx_fifo_errors += mpc;
3692 adapter->stats.scc += rd32(IGC_SCC);
3693 adapter->stats.ecol += rd32(IGC_ECOL);
3694 adapter->stats.mcc += rd32(IGC_MCC);
3695 adapter->stats.latecol += rd32(IGC_LATECOL);
3696 adapter->stats.dc += rd32(IGC_DC);
3697 adapter->stats.rlec += rd32(IGC_RLEC);
3698 adapter->stats.xonrxc += rd32(IGC_XONRXC);
3699 adapter->stats.xontxc += rd32(IGC_XONTXC);
3700 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3701 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3702 adapter->stats.fcruc += rd32(IGC_FCRUC);
3703 adapter->stats.gptc += rd32(IGC_GPTC);
3704 adapter->stats.gotc += rd32(IGC_GOTCL);
3705 rd32(IGC_GOTCH); /* clear GOTCL */
3706 adapter->stats.rnbc += rd32(IGC_RNBC);
3707 adapter->stats.ruc += rd32(IGC_RUC);
3708 adapter->stats.rfc += rd32(IGC_RFC);
3709 adapter->stats.rjc += rd32(IGC_RJC);
3710 adapter->stats.tor += rd32(IGC_TORH);
3711 adapter->stats.tot += rd32(IGC_TOTH);
3712 adapter->stats.tpr += rd32(IGC_TPR);
3713
3714 adapter->stats.ptc64 += rd32(IGC_PTC64);
3715 adapter->stats.ptc127 += rd32(IGC_PTC127);
3716 adapter->stats.ptc255 += rd32(IGC_PTC255);
3717 adapter->stats.ptc511 += rd32(IGC_PTC511);
3718 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3719 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3720
3721 adapter->stats.mptc += rd32(IGC_MPTC);
3722 adapter->stats.bptc += rd32(IGC_BPTC);
3723
3724 adapter->stats.tpt += rd32(IGC_TPT);
3725 adapter->stats.colc += rd32(IGC_COLC);
3726 adapter->stats.colc += rd32(IGC_RERC);
3727
3728 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3729
3730 adapter->stats.tsctc += rd32(IGC_TSCTC);
3731
3732 adapter->stats.iac += rd32(IGC_IAC);
3733
3734 /* Fill out the OS statistics structure */
3735 net_stats->multicast = adapter->stats.mprc;
3736 net_stats->collisions = adapter->stats.colc;
3737
3738 /* Rx Errors */
3739
3740 /* RLEC on some newer hardware can be incorrect so build
3741 * our own version based on RUC and ROC
3742 */
3743 net_stats->rx_errors = adapter->stats.rxerrc +
3744 adapter->stats.crcerrs + adapter->stats.algnerrc +
3745 adapter->stats.ruc + adapter->stats.roc +
3746 adapter->stats.cexterr;
3747 net_stats->rx_length_errors = adapter->stats.ruc +
3748 adapter->stats.roc;
3749 net_stats->rx_crc_errors = adapter->stats.crcerrs;
3750 net_stats->rx_frame_errors = adapter->stats.algnerrc;
3751 net_stats->rx_missed_errors = adapter->stats.mpc;
3752
3753 /* Tx Errors */
3754 net_stats->tx_errors = adapter->stats.ecol +
3755 adapter->stats.latecol;
3756 net_stats->tx_aborted_errors = adapter->stats.ecol;
3757 net_stats->tx_window_errors = adapter->stats.latecol;
3758 net_stats->tx_carrier_errors = adapter->stats.tncrs;
3759
3760 /* Tx Dropped needs to be maintained elsewhere */
3761
3762 /* Management Stats */
3763 adapter->stats.mgptc += rd32(IGC_MGTPTC);
3764 adapter->stats.mgprc += rd32(IGC_MGTPRC);
3765 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3766}
3767
3768/**
3769 * igc_down - Close the interface
3770 * @adapter: board private structure
3771 */
3772void igc_down(struct igc_adapter *adapter)
3773{
3774 struct net_device *netdev = adapter->netdev;
3775 struct igc_hw *hw = &adapter->hw;
3776 u32 tctl, rctl;
3777 int i = 0;
3778
3779 set_bit(__IGC_DOWN, &adapter->state);
3780
3781 /* disable receives in the hardware */
3782 rctl = rd32(IGC_RCTL);
3783 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3784 /* flush and sleep below */
3785
3786 /* set trans_start so we don't get spurious watchdogs during reset */
3787 netif_trans_update(netdev);
3788
3789 netif_carrier_off(netdev);
3790 netif_tx_stop_all_queues(netdev);
3791
3792 /* disable transmits in the hardware */
3793 tctl = rd32(IGC_TCTL);
3794 tctl &= ~IGC_TCTL_EN;
3795 wr32(IGC_TCTL, tctl);
3796 /* flush both disables and wait for them to finish */
3797 wrfl();
3798 usleep_range(10000, 20000);
3799
3800 igc_irq_disable(adapter);
3801
3802 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3803
3804 for (i = 0; i < adapter->num_q_vectors; i++) {
3805 if (adapter->q_vector[i]) {
3806 napi_synchronize(&adapter->q_vector[i]->napi);
3807 napi_disable(&adapter->q_vector[i]->napi);
3808 }
3809 }
3810
3811 del_timer_sync(&adapter->watchdog_timer);
3812 del_timer_sync(&adapter->phy_info_timer);
3813
3814 /* record the stats before reset*/
3815 spin_lock(&adapter->stats64_lock);
3816 igc_update_stats(adapter);
3817 spin_unlock(&adapter->stats64_lock);
3818
3819 adapter->link_speed = 0;
3820 adapter->link_duplex = 0;
3821
3822 if (!pci_channel_offline(adapter->pdev))
3823 igc_reset(adapter);
3824
3825 /* clear VLAN promisc flag so VFTA will be updated if necessary */
3826 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3827
3828 igc_clean_all_tx_rings(adapter);
3829 igc_clean_all_rx_rings(adapter);
3830}
3831
3832void igc_reinit_locked(struct igc_adapter *adapter)
3833{
3834 WARN_ON(in_interrupt());
3835 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3836 usleep_range(1000, 2000);
3837 igc_down(adapter);
3838 igc_up(adapter);
3839 clear_bit(__IGC_RESETTING, &adapter->state);
3840}
3841
3842static void igc_reset_task(struct work_struct *work)
3843{
3844 struct igc_adapter *adapter;
3845
3846 adapter = container_of(work, struct igc_adapter, reset_task);
3847
3848 igc_rings_dump(adapter);
3849 igc_regs_dump(adapter);
3850 netdev_err(adapter->netdev, "Reset adapter\n");
3851 igc_reinit_locked(adapter);
3852}
3853
3854/**
3855 * igc_change_mtu - Change the Maximum Transfer Unit
3856 * @netdev: network interface device structure
3857 * @new_mtu: new value for maximum frame size
3858 *
3859 * Returns 0 on success, negative on failure
3860 */
3861static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3862{
3863 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3864 struct igc_adapter *adapter = netdev_priv(netdev);
3865
3866 /* adjust max frame to be at least the size of a standard frame */
3867 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3868 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3869
3870 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3871 usleep_range(1000, 2000);
3872
3873 /* igc_down has a dependency on max_frame_size */
3874 adapter->max_frame_size = max_frame;
3875
3876 if (netif_running(netdev))
3877 igc_down(adapter);
3878
3879 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3880 netdev->mtu = new_mtu;
3881
3882 if (netif_running(netdev))
3883 igc_up(adapter);
3884 else
3885 igc_reset(adapter);
3886
3887 clear_bit(__IGC_RESETTING, &adapter->state);
3888
3889 return 0;
3890}
3891
3892/**
3893 * igc_get_stats - Get System Network Statistics
3894 * @netdev: network interface device structure
3895 *
3896 * Returns the address of the device statistics structure.
3897 * The statistics are updated here and also from the timer callback.
3898 */
3899static struct net_device_stats *igc_get_stats(struct net_device *netdev)
3900{
3901 struct igc_adapter *adapter = netdev_priv(netdev);
3902
3903 if (!test_bit(__IGC_RESETTING, &adapter->state))
3904 igc_update_stats(adapter);
3905
3906 /* only return the current stats */
3907 return &netdev->stats;
3908}
3909
3910static netdev_features_t igc_fix_features(struct net_device *netdev,
3911 netdev_features_t features)
3912{
3913 /* Since there is no support for separate Rx/Tx vlan accel
3914 * enable/disable make sure Tx flag is always in same state as Rx.
3915 */
3916 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3917 features |= NETIF_F_HW_VLAN_CTAG_TX;
3918 else
3919 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3920
3921 return features;
3922}
3923
3924static int igc_set_features(struct net_device *netdev,
3925 netdev_features_t features)
3926{
3927 netdev_features_t changed = netdev->features ^ features;
3928 struct igc_adapter *adapter = netdev_priv(netdev);
3929
3930 /* Add VLAN support */
3931 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3932 return 0;
3933
3934 if (!(features & NETIF_F_NTUPLE))
3935 igc_flush_nfc_rules(adapter);
3936
3937 netdev->features = features;
3938
3939 if (netif_running(netdev))
3940 igc_reinit_locked(adapter);
3941 else
3942 igc_reset(adapter);
3943
3944 return 1;
3945}
3946
3947static netdev_features_t
3948igc_features_check(struct sk_buff *skb, struct net_device *dev,
3949 netdev_features_t features)
3950{
3951 unsigned int network_hdr_len, mac_hdr_len;
3952
3953 /* Make certain the headers can be described by a context descriptor */
3954 mac_hdr_len = skb_network_header(skb) - skb->data;
3955 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3956 return features & ~(NETIF_F_HW_CSUM |
3957 NETIF_F_SCTP_CRC |
3958 NETIF_F_HW_VLAN_CTAG_TX |
3959 NETIF_F_TSO |
3960 NETIF_F_TSO6);
3961
3962 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3963 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
3964 return features & ~(NETIF_F_HW_CSUM |
3965 NETIF_F_SCTP_CRC |
3966 NETIF_F_TSO |
3967 NETIF_F_TSO6);
3968
3969 /* We can only support IPv4 TSO in tunnels if we can mangle the
3970 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3971 */
3972 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3973 features &= ~NETIF_F_TSO;
3974
3975 return features;
3976}
3977
3978static void igc_tsync_interrupt(struct igc_adapter *adapter)
3979{
3980 struct igc_hw *hw = &adapter->hw;
3981 u32 tsicr = rd32(IGC_TSICR);
3982 u32 ack = 0;
3983
3984 if (tsicr & IGC_TSICR_TXTS) {
3985 /* retrieve hardware timestamp */
3986 schedule_work(&adapter->ptp_tx_work);
3987 ack |= IGC_TSICR_TXTS;
3988 }
3989
3990 /* acknowledge the interrupts */
3991 wr32(IGC_TSICR, ack);
3992}
3993
3994/**
3995 * igc_msix_other - msix other interrupt handler
3996 * @irq: interrupt number
3997 * @data: pointer to a q_vector
3998 */
3999static irqreturn_t igc_msix_other(int irq, void *data)
4000{
4001 struct igc_adapter *adapter = data;
4002 struct igc_hw *hw = &adapter->hw;
4003 u32 icr = rd32(IGC_ICR);
4004
4005 /* reading ICR causes bit 31 of EICR to be cleared */
4006 if (icr & IGC_ICR_DRSTA)
4007 schedule_work(&adapter->reset_task);
4008
4009 if (icr & IGC_ICR_DOUTSYNC) {
4010 /* HW is reporting DMA is out of sync */
4011 adapter->stats.doosync++;
4012 }
4013
4014 if (icr & IGC_ICR_LSC) {
4015 hw->mac.get_link_status = 1;
4016 /* guard against interrupt when we're going down */
4017 if (!test_bit(__IGC_DOWN, &adapter->state))
4018 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4019 }
4020
4021 if (icr & IGC_ICR_TS)
4022 igc_tsync_interrupt(adapter);
4023
4024 wr32(IGC_EIMS, adapter->eims_other);
4025
4026 return IRQ_HANDLED;
4027}
4028
4029static void igc_write_itr(struct igc_q_vector *q_vector)
4030{
4031 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4032
4033 if (!q_vector->set_itr)
4034 return;
4035
4036 if (!itr_val)
4037 itr_val = IGC_ITR_VAL_MASK;
4038
4039 itr_val |= IGC_EITR_CNT_IGNR;
4040
4041 writel(itr_val, q_vector->itr_register);
4042 q_vector->set_itr = 0;
4043}
4044
4045static irqreturn_t igc_msix_ring(int irq, void *data)
4046{
4047 struct igc_q_vector *q_vector = data;
4048
4049 /* Write the ITR value calculated from the previous interrupt. */
4050 igc_write_itr(q_vector);
4051
4052 napi_schedule(&q_vector->napi);
4053
4054 return IRQ_HANDLED;
4055}
4056
4057/**
4058 * igc_request_msix - Initialize MSI-X interrupts
4059 * @adapter: Pointer to adapter structure
4060 *
4061 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4062 * kernel.
4063 */
4064static int igc_request_msix(struct igc_adapter *adapter)
4065{
4066 int i = 0, err = 0, vector = 0, free_vector = 0;
4067 struct net_device *netdev = adapter->netdev;
4068
4069 err = request_irq(adapter->msix_entries[vector].vector,
4070 &igc_msix_other, 0, netdev->name, adapter);
4071 if (err)
4072 goto err_out;
4073
4074 for (i = 0; i < adapter->num_q_vectors; i++) {
4075 struct igc_q_vector *q_vector = adapter->q_vector[i];
4076
4077 vector++;
4078
4079 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4080
4081 if (q_vector->rx.ring && q_vector->tx.ring)
4082 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4083 q_vector->rx.ring->queue_index);
4084 else if (q_vector->tx.ring)
4085 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4086 q_vector->tx.ring->queue_index);
4087 else if (q_vector->rx.ring)
4088 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4089 q_vector->rx.ring->queue_index);
4090 else
4091 sprintf(q_vector->name, "%s-unused", netdev->name);
4092
4093 err = request_irq(adapter->msix_entries[vector].vector,
4094 igc_msix_ring, 0, q_vector->name,
4095 q_vector);
4096 if (err)
4097 goto err_free;
4098 }
4099
4100 igc_configure_msix(adapter);
4101 return 0;
4102
4103err_free:
4104 /* free already assigned IRQs */
4105 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4106
4107 vector--;
4108 for (i = 0; i < vector; i++) {
4109 free_irq(adapter->msix_entries[free_vector++].vector,
4110 adapter->q_vector[i]);
4111 }
4112err_out:
4113 return err;
4114}
4115
4116/**
4117 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4118 * @adapter: Pointer to adapter structure
4119 *
4120 * This function resets the device so that it has 0 rx queues, tx queues, and
4121 * MSI-X interrupts allocated.
4122 */
4123static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4124{
4125 igc_free_q_vectors(adapter);
4126 igc_reset_interrupt_capability(adapter);
4127}
4128
4129/* Need to wait a few seconds after link up to get diagnostic information from
4130 * the phy
4131 */
4132static void igc_update_phy_info(struct timer_list *t)
4133{
4134 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4135
4136 igc_get_phy_info(&adapter->hw);
4137}
4138
4139/**
4140 * igc_has_link - check shared code for link and determine up/down
4141 * @adapter: pointer to driver private info
4142 */
4143bool igc_has_link(struct igc_adapter *adapter)
4144{
4145 struct igc_hw *hw = &adapter->hw;
4146 bool link_active = false;
4147
4148 /* get_link_status is set on LSC (link status) interrupt or
4149 * rx sequence error interrupt. get_link_status will stay
4150 * false until the igc_check_for_link establishes link
4151 * for copper adapters ONLY
4152 */
4153 switch (hw->phy.media_type) {
4154 case igc_media_type_copper:
4155 if (!hw->mac.get_link_status)
4156 return true;
4157 hw->mac.ops.check_for_link(hw);
4158 link_active = !hw->mac.get_link_status;
4159 break;
4160 default:
4161 case igc_media_type_unknown:
4162 break;
4163 }
4164
4165 if (hw->mac.type == igc_i225 &&
4166 hw->phy.id == I225_I_PHY_ID) {
4167 if (!netif_carrier_ok(adapter->netdev)) {
4168 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4169 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4170 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4171 adapter->link_check_timeout = jiffies;
4172 }
4173 }
4174
4175 return link_active;
4176}
4177
4178/**
4179 * igc_watchdog - Timer Call-back
4180 * @t: timer for the watchdog
4181 */
4182static void igc_watchdog(struct timer_list *t)
4183{
4184 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4185 /* Do the rest outside of interrupt context */
4186 schedule_work(&adapter->watchdog_task);
4187}
4188
4189static void igc_watchdog_task(struct work_struct *work)
4190{
4191 struct igc_adapter *adapter = container_of(work,
4192 struct igc_adapter,
4193 watchdog_task);
4194 struct net_device *netdev = adapter->netdev;
4195 struct igc_hw *hw = &adapter->hw;
4196 struct igc_phy_info *phy = &hw->phy;
4197 u16 phy_data, retry_count = 20;
4198 u32 link;
4199 int i;
4200
4201 link = igc_has_link(adapter);
4202
4203 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4204 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4205 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4206 else
4207 link = false;
4208 }
4209
4210 if (link) {
4211 /* Cancel scheduled suspend requests. */
4212 pm_runtime_resume(netdev->dev.parent);
4213
4214 if (!netif_carrier_ok(netdev)) {
4215 u32 ctrl;
4216
4217 hw->mac.ops.get_speed_and_duplex(hw,
4218 &adapter->link_speed,
4219 &adapter->link_duplex);
4220
4221 ctrl = rd32(IGC_CTRL);
4222 /* Link status message must follow this format */
4223 netdev_info(netdev,
4224 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4225 adapter->link_speed,
4226 adapter->link_duplex == FULL_DUPLEX ?
4227 "Full" : "Half",
4228 (ctrl & IGC_CTRL_TFCE) &&
4229 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4230 (ctrl & IGC_CTRL_RFCE) ? "RX" :
4231 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
4232
4233 /* disable EEE if enabled */
4234 if ((adapter->flags & IGC_FLAG_EEE) &&
4235 adapter->link_duplex == HALF_DUPLEX) {
4236 netdev_info(netdev,
4237 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4238 adapter->hw.dev_spec._base.eee_enable = false;
4239 adapter->flags &= ~IGC_FLAG_EEE;
4240 }
4241
4242 /* check if SmartSpeed worked */
4243 igc_check_downshift(hw);
4244 if (phy->speed_downgraded)
4245 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4246
4247 /* adjust timeout factor according to speed/duplex */
4248 adapter->tx_timeout_factor = 1;
4249 switch (adapter->link_speed) {
4250 case SPEED_10:
4251 adapter->tx_timeout_factor = 14;
4252 break;
4253 case SPEED_100:
4254 /* maybe add some timeout factor ? */
4255 break;
4256 }
4257
4258 if (adapter->link_speed != SPEED_1000)
4259 goto no_wait;
4260
4261 /* wait for Remote receiver status OK */
4262retry_read_status:
4263 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4264 &phy_data)) {
4265 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4266 retry_count) {
4267 msleep(100);
4268 retry_count--;
4269 goto retry_read_status;
4270 } else if (!retry_count) {
4271 netdev_err(netdev, "exceed max 2 second\n");
4272 }
4273 } else {
4274 netdev_err(netdev, "read 1000Base-T Status Reg\n");
4275 }
4276no_wait:
4277 netif_carrier_on(netdev);
4278
4279 /* link state has changed, schedule phy info update */
4280 if (!test_bit(__IGC_DOWN, &adapter->state))
4281 mod_timer(&adapter->phy_info_timer,
4282 round_jiffies(jiffies + 2 * HZ));
4283 }
4284 } else {
4285 if (netif_carrier_ok(netdev)) {
4286 adapter->link_speed = 0;
4287 adapter->link_duplex = 0;
4288
4289 /* Links status message must follow this format */
4290 netdev_info(netdev, "NIC Link is Down\n");
4291 netif_carrier_off(netdev);
4292
4293 /* link state has changed, schedule phy info update */
4294 if (!test_bit(__IGC_DOWN, &adapter->state))
4295 mod_timer(&adapter->phy_info_timer,
4296 round_jiffies(jiffies + 2 * HZ));
4297
4298 /* link is down, time to check for alternate media */
4299 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4300 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4301 schedule_work(&adapter->reset_task);
4302 /* return immediately */
4303 return;
4304 }
4305 }
4306 pm_schedule_suspend(netdev->dev.parent,
4307 MSEC_PER_SEC * 5);
4308
4309 /* also check for alternate media here */
4310 } else if (!netif_carrier_ok(netdev) &&
4311 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4312 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4313 schedule_work(&adapter->reset_task);
4314 /* return immediately */
4315 return;
4316 }
4317 }
4318 }
4319
4320 spin_lock(&adapter->stats64_lock);
4321 igc_update_stats(adapter);
4322 spin_unlock(&adapter->stats64_lock);
4323
4324 for (i = 0; i < adapter->num_tx_queues; i++) {
4325 struct igc_ring *tx_ring = adapter->tx_ring[i];
4326
4327 if (!netif_carrier_ok(netdev)) {
4328 /* We've lost link, so the controller stops DMA,
4329 * but we've got queued Tx work that's never going
4330 * to get done, so reset controller to flush Tx.
4331 * (Do the reset outside of interrupt context).
4332 */
4333 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4334 adapter->tx_timeout_count++;
4335 schedule_work(&adapter->reset_task);
4336 /* return immediately since reset is imminent */
4337 return;
4338 }
4339 }
4340
4341 /* Force detection of hung controller every watchdog period */
4342 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4343 }
4344
4345 /* Cause software interrupt to ensure Rx ring is cleaned */
4346 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4347 u32 eics = 0;
4348
4349 for (i = 0; i < adapter->num_q_vectors; i++)
4350 eics |= adapter->q_vector[i]->eims_value;
4351 wr32(IGC_EICS, eics);
4352 } else {
4353 wr32(IGC_ICS, IGC_ICS_RXDMT0);
4354 }
4355
4356 igc_ptp_tx_hang(adapter);
4357
4358 /* Reset the timer */
4359 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4360 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4361 mod_timer(&adapter->watchdog_timer,
4362 round_jiffies(jiffies + HZ));
4363 else
4364 mod_timer(&adapter->watchdog_timer,
4365 round_jiffies(jiffies + 2 * HZ));
4366 }
4367}
4368
4369/**
4370 * igc_intr_msi - Interrupt Handler
4371 * @irq: interrupt number
4372 * @data: pointer to a network interface device structure
4373 */
4374static irqreturn_t igc_intr_msi(int irq, void *data)
4375{
4376 struct igc_adapter *adapter = data;
4377 struct igc_q_vector *q_vector = adapter->q_vector[0];
4378 struct igc_hw *hw = &adapter->hw;
4379 /* read ICR disables interrupts using IAM */
4380 u32 icr = rd32(IGC_ICR);
4381
4382 igc_write_itr(q_vector);
4383
4384 if (icr & IGC_ICR_DRSTA)
4385 schedule_work(&adapter->reset_task);
4386
4387 if (icr & IGC_ICR_DOUTSYNC) {
4388 /* HW is reporting DMA is out of sync */
4389 adapter->stats.doosync++;
4390 }
4391
4392 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4393 hw->mac.get_link_status = 1;
4394 if (!test_bit(__IGC_DOWN, &adapter->state))
4395 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4396 }
4397
4398 napi_schedule(&q_vector->napi);
4399
4400 return IRQ_HANDLED;
4401}
4402
4403/**
4404 * igc_intr - Legacy Interrupt Handler
4405 * @irq: interrupt number
4406 * @data: pointer to a network interface device structure
4407 */
4408static irqreturn_t igc_intr(int irq, void *data)
4409{
4410 struct igc_adapter *adapter = data;
4411 struct igc_q_vector *q_vector = adapter->q_vector[0];
4412 struct igc_hw *hw = &adapter->hw;
4413 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4414 * need for the IMC write
4415 */
4416 u32 icr = rd32(IGC_ICR);
4417
4418 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4419 * not set, then the adapter didn't send an interrupt
4420 */
4421 if (!(icr & IGC_ICR_INT_ASSERTED))
4422 return IRQ_NONE;
4423
4424 igc_write_itr(q_vector);
4425
4426 if (icr & IGC_ICR_DRSTA)
4427 schedule_work(&adapter->reset_task);
4428
4429 if (icr & IGC_ICR_DOUTSYNC) {
4430 /* HW is reporting DMA is out of sync */
4431 adapter->stats.doosync++;
4432 }
4433
4434 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4435 hw->mac.get_link_status = 1;
4436 /* guard against interrupt when we're going down */
4437 if (!test_bit(__IGC_DOWN, &adapter->state))
4438 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4439 }
4440
4441 napi_schedule(&q_vector->napi);
4442
4443 return IRQ_HANDLED;
4444}
4445
4446static void igc_free_irq(struct igc_adapter *adapter)
4447{
4448 if (adapter->msix_entries) {
4449 int vector = 0, i;
4450
4451 free_irq(adapter->msix_entries[vector++].vector, adapter);
4452
4453 for (i = 0; i < adapter->num_q_vectors; i++)
4454 free_irq(adapter->msix_entries[vector++].vector,
4455 adapter->q_vector[i]);
4456 } else {
4457 free_irq(adapter->pdev->irq, adapter);
4458 }
4459}
4460
4461/**
4462 * igc_request_irq - initialize interrupts
4463 * @adapter: Pointer to adapter structure
4464 *
4465 * Attempts to configure interrupts using the best available
4466 * capabilities of the hardware and kernel.
4467 */
4468static int igc_request_irq(struct igc_adapter *adapter)
4469{
4470 struct net_device *netdev = adapter->netdev;
4471 struct pci_dev *pdev = adapter->pdev;
4472 int err = 0;
4473
4474 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4475 err = igc_request_msix(adapter);
4476 if (!err)
4477 goto request_done;
4478 /* fall back to MSI */
4479 igc_free_all_tx_resources(adapter);
4480 igc_free_all_rx_resources(adapter);
4481
4482 igc_clear_interrupt_scheme(adapter);
4483 err = igc_init_interrupt_scheme(adapter, false);
4484 if (err)
4485 goto request_done;
4486 igc_setup_all_tx_resources(adapter);
4487 igc_setup_all_rx_resources(adapter);
4488 igc_configure(adapter);
4489 }
4490
4491 igc_assign_vector(adapter->q_vector[0], 0);
4492
4493 if (adapter->flags & IGC_FLAG_HAS_MSI) {
4494 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4495 netdev->name, adapter);
4496 if (!err)
4497 goto request_done;
4498
4499 /* fall back to legacy interrupts */
4500 igc_reset_interrupt_capability(adapter);
4501 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4502 }
4503
4504 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4505 netdev->name, adapter);
4506
4507 if (err)
4508 netdev_err(netdev, "Error %d getting interrupt\n", err);
4509
4510request_done:
4511 return err;
4512}
4513
4514/**
4515 * __igc_open - Called when a network interface is made active
4516 * @netdev: network interface device structure
4517 * @resuming: boolean indicating if the device is resuming
4518 *
4519 * Returns 0 on success, negative value on failure
4520 *
4521 * The open entry point is called when a network interface is made
4522 * active by the system (IFF_UP). At this point all resources needed
4523 * for transmit and receive operations are allocated, the interrupt
4524 * handler is registered with the OS, the watchdog timer is started,
4525 * and the stack is notified that the interface is ready.
4526 */
4527static int __igc_open(struct net_device *netdev, bool resuming)
4528{
4529 struct igc_adapter *adapter = netdev_priv(netdev);
4530 struct pci_dev *pdev = adapter->pdev;
4531 struct igc_hw *hw = &adapter->hw;
4532 int err = 0;
4533 int i = 0;
4534
4535 /* disallow open during test */
4536
4537 if (test_bit(__IGC_TESTING, &adapter->state)) {
4538 WARN_ON(resuming);
4539 return -EBUSY;
4540 }
4541
4542 if (!resuming)
4543 pm_runtime_get_sync(&pdev->dev);
4544
4545 netif_carrier_off(netdev);
4546
4547 /* allocate transmit descriptors */
4548 err = igc_setup_all_tx_resources(adapter);
4549 if (err)
4550 goto err_setup_tx;
4551
4552 /* allocate receive descriptors */
4553 err = igc_setup_all_rx_resources(adapter);
4554 if (err)
4555 goto err_setup_rx;
4556
4557 igc_power_up_link(adapter);
4558
4559 igc_configure(adapter);
4560
4561 err = igc_request_irq(adapter);
4562 if (err)
4563 goto err_req_irq;
4564
4565 /* Notify the stack of the actual queue counts. */
4566 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4567 if (err)
4568 goto err_set_queues;
4569
4570 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4571 if (err)
4572 goto err_set_queues;
4573
4574 clear_bit(__IGC_DOWN, &adapter->state);
4575
4576 for (i = 0; i < adapter->num_q_vectors; i++)
4577 napi_enable(&adapter->q_vector[i]->napi);
4578
4579 /* Clear any pending interrupts. */
4580 rd32(IGC_ICR);
4581 igc_irq_enable(adapter);
4582
4583 if (!resuming)
4584 pm_runtime_put(&pdev->dev);
4585
4586 netif_tx_start_all_queues(netdev);
4587
4588 /* start the watchdog. */
4589 hw->mac.get_link_status = 1;
4590 schedule_work(&adapter->watchdog_task);
4591
4592 return IGC_SUCCESS;
4593
4594err_set_queues:
4595 igc_free_irq(adapter);
4596err_req_irq:
4597 igc_release_hw_control(adapter);
4598 igc_power_down_phy_copper_base(&adapter->hw);
4599 igc_free_all_rx_resources(adapter);
4600err_setup_rx:
4601 igc_free_all_tx_resources(adapter);
4602err_setup_tx:
4603 igc_reset(adapter);
4604 if (!resuming)
4605 pm_runtime_put(&pdev->dev);
4606
4607 return err;
4608}
4609
4610int igc_open(struct net_device *netdev)
4611{
4612 return __igc_open(netdev, false);
4613}
4614
4615/**
4616 * __igc_close - Disables a network interface
4617 * @netdev: network interface device structure
4618 * @suspending: boolean indicating the device is suspending
4619 *
4620 * Returns 0, this is not allowed to fail
4621 *
4622 * The close entry point is called when an interface is de-activated
4623 * by the OS. The hardware is still under the driver's control, but
4624 * needs to be disabled. A global MAC reset is issued to stop the
4625 * hardware, and all transmit and receive resources are freed.
4626 */
4627static int __igc_close(struct net_device *netdev, bool suspending)
4628{
4629 struct igc_adapter *adapter = netdev_priv(netdev);
4630 struct pci_dev *pdev = adapter->pdev;
4631
4632 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4633
4634 if (!suspending)
4635 pm_runtime_get_sync(&pdev->dev);
4636
4637 igc_down(adapter);
4638
4639 igc_release_hw_control(adapter);
4640
4641 igc_free_irq(adapter);
4642
4643 igc_free_all_tx_resources(adapter);
4644 igc_free_all_rx_resources(adapter);
4645
4646 if (!suspending)
4647 pm_runtime_put_sync(&pdev->dev);
4648
4649 return 0;
4650}
4651
4652int igc_close(struct net_device *netdev)
4653{
4654 if (netif_device_present(netdev) || netdev->dismantle)
4655 return __igc_close(netdev, false);
4656 return 0;
4657}
4658
4659/**
4660 * igc_ioctl - Access the hwtstamp interface
4661 * @netdev: network interface device structure
4662 * @ifreq: interface request data
4663 * @cmd: ioctl command
4664 **/
4665static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4666{
4667 switch (cmd) {
4668 case SIOCGHWTSTAMP:
4669 return igc_ptp_get_ts_config(netdev, ifr);
4670 case SIOCSHWTSTAMP:
4671 return igc_ptp_set_ts_config(netdev, ifr);
4672 default:
4673 return -EOPNOTSUPP;
4674 }
4675}
4676
4677static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4678 bool enable)
4679{
4680 struct igc_ring *ring;
4681 int i;
4682
4683 if (queue < 0 || queue >= adapter->num_tx_queues)
4684 return -EINVAL;
4685
4686 ring = adapter->tx_ring[queue];
4687 ring->launchtime_enable = enable;
4688
4689 if (adapter->base_time)
4690 return 0;
4691
4692 adapter->cycle_time = NSEC_PER_SEC;
4693
4694 for (i = 0; i < adapter->num_tx_queues; i++) {
4695 ring = adapter->tx_ring[i];
4696 ring->start_time = 0;
4697 ring->end_time = NSEC_PER_SEC;
4698 }
4699
4700 return 0;
4701}
4702
4703static bool validate_schedule(const struct tc_taprio_qopt_offload *qopt)
4704{
4705 int queue_uses[IGC_MAX_TX_QUEUES] = { };
4706 size_t n;
4707
4708 if (qopt->cycle_time_extension)
4709 return false;
4710
4711 for (n = 0; n < qopt->num_entries; n++) {
4712 const struct tc_taprio_sched_entry *e;
4713 int i;
4714
4715 e = &qopt->entries[n];
4716
4717 /* i225 only supports "global" frame preemption
4718 * settings.
4719 */
4720 if (e->command != TC_TAPRIO_CMD_SET_GATES)
4721 return false;
4722
4723 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4724 if (e->gate_mask & BIT(i))
4725 queue_uses[i]++;
4726
4727 if (queue_uses[i] > 1)
4728 return false;
4729 }
4730 }
4731
4732 return true;
4733}
4734
4735static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4736 struct tc_etf_qopt_offload *qopt)
4737{
4738 struct igc_hw *hw = &adapter->hw;
4739 int err;
4740
4741 if (hw->mac.type != igc_i225)
4742 return -EOPNOTSUPP;
4743
4744 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4745 if (err)
4746 return err;
4747
4748 return igc_tsn_offload_apply(adapter);
4749}
4750
4751static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4752 struct tc_taprio_qopt_offload *qopt)
4753{
4754 u32 start_time = 0, end_time = 0;
4755 size_t n;
4756
4757 if (!qopt->enable) {
4758 adapter->base_time = 0;
4759 return 0;
4760 }
4761
4762 if (adapter->base_time)
4763 return -EALREADY;
4764
4765 if (!validate_schedule(qopt))
4766 return -EINVAL;
4767
4768 adapter->cycle_time = qopt->cycle_time;
4769 adapter->base_time = qopt->base_time;
4770
4771 /* FIXME: be a little smarter about cases when the gate for a
4772 * queue stays open for more than one entry.
4773 */
4774 for (n = 0; n < qopt->num_entries; n++) {
4775 struct tc_taprio_sched_entry *e = &qopt->entries[n];
4776 int i;
4777
4778 end_time += e->interval;
4779
4780 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4781 struct igc_ring *ring = adapter->tx_ring[i];
4782
4783 if (!(e->gate_mask & BIT(i)))
4784 continue;
4785
4786 ring->start_time = start_time;
4787 ring->end_time = end_time;
4788 }
4789
4790 start_time += e->interval;
4791 }
4792
4793 return 0;
4794}
4795
4796static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4797 struct tc_taprio_qopt_offload *qopt)
4798{
4799 struct igc_hw *hw = &adapter->hw;
4800 int err;
4801
4802 if (hw->mac.type != igc_i225)
4803 return -EOPNOTSUPP;
4804
4805 err = igc_save_qbv_schedule(adapter, qopt);
4806 if (err)
4807 return err;
4808
4809 return igc_tsn_offload_apply(adapter);
4810}
4811
4812static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4813 void *type_data)
4814{
4815 struct igc_adapter *adapter = netdev_priv(dev);
4816
4817 switch (type) {
4818 case TC_SETUP_QDISC_TAPRIO:
4819 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4820
4821 case TC_SETUP_QDISC_ETF:
4822 return igc_tsn_enable_launchtime(adapter, type_data);
4823
4824 default:
4825 return -EOPNOTSUPP;
4826 }
4827}
4828
4829static const struct net_device_ops igc_netdev_ops = {
4830 .ndo_open = igc_open,
4831 .ndo_stop = igc_close,
4832 .ndo_start_xmit = igc_xmit_frame,
4833 .ndo_set_rx_mode = igc_set_rx_mode,
4834 .ndo_set_mac_address = igc_set_mac,
4835 .ndo_change_mtu = igc_change_mtu,
4836 .ndo_get_stats = igc_get_stats,
4837 .ndo_fix_features = igc_fix_features,
4838 .ndo_set_features = igc_set_features,
4839 .ndo_features_check = igc_features_check,
4840 .ndo_do_ioctl = igc_ioctl,
4841 .ndo_setup_tc = igc_setup_tc,
4842};
4843
4844/* PCIe configuration access */
4845void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4846{
4847 struct igc_adapter *adapter = hw->back;
4848
4849 pci_read_config_word(adapter->pdev, reg, value);
4850}
4851
4852void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4853{
4854 struct igc_adapter *adapter = hw->back;
4855
4856 pci_write_config_word(adapter->pdev, reg, *value);
4857}
4858
4859s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4860{
4861 struct igc_adapter *adapter = hw->back;
4862
4863 if (!pci_is_pcie(adapter->pdev))
4864 return -IGC_ERR_CONFIG;
4865
4866 pcie_capability_read_word(adapter->pdev, reg, value);
4867
4868 return IGC_SUCCESS;
4869}
4870
4871s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4872{
4873 struct igc_adapter *adapter = hw->back;
4874
4875 if (!pci_is_pcie(adapter->pdev))
4876 return -IGC_ERR_CONFIG;
4877
4878 pcie_capability_write_word(adapter->pdev, reg, *value);
4879
4880 return IGC_SUCCESS;
4881}
4882
4883u32 igc_rd32(struct igc_hw *hw, u32 reg)
4884{
4885 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4886 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4887 u32 value = 0;
4888
4889 value = readl(&hw_addr[reg]);
4890
4891 /* reads should not return all F's */
4892 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4893 struct net_device *netdev = igc->netdev;
4894
4895 hw->hw_addr = NULL;
4896 netif_device_detach(netdev);
4897 netdev_err(netdev, "PCIe link lost, device now detached\n");
4898 WARN(pci_device_is_present(igc->pdev),
4899 "igc: Failed to read reg 0x%x!\n", reg);
4900 }
4901
4902 return value;
4903}
4904
4905int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4906{
4907 struct igc_mac_info *mac = &adapter->hw.mac;
4908
4909 mac->autoneg = 0;
4910
4911 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4912 * for the switch() below to work
4913 */
4914 if ((spd & 1) || (dplx & ~1))
4915 goto err_inval;
4916
4917 switch (spd + dplx) {
4918 case SPEED_10 + DUPLEX_HALF:
4919 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4920 break;
4921 case SPEED_10 + DUPLEX_FULL:
4922 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4923 break;
4924 case SPEED_100 + DUPLEX_HALF:
4925 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4926 break;
4927 case SPEED_100 + DUPLEX_FULL:
4928 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4929 break;
4930 case SPEED_1000 + DUPLEX_FULL:
4931 mac->autoneg = 1;
4932 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4933 break;
4934 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4935 goto err_inval;
4936 case SPEED_2500 + DUPLEX_FULL:
4937 mac->autoneg = 1;
4938 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4939 break;
4940 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4941 default:
4942 goto err_inval;
4943 }
4944
4945 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4946 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4947
4948 return 0;
4949
4950err_inval:
4951 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4952 return -EINVAL;
4953}
4954
4955/**
4956 * igc_probe - Device Initialization Routine
4957 * @pdev: PCI device information struct
4958 * @ent: entry in igc_pci_tbl
4959 *
4960 * Returns 0 on success, negative on failure
4961 *
4962 * igc_probe initializes an adapter identified by a pci_dev structure.
4963 * The OS initialization, configuring the adapter private structure,
4964 * and a hardware reset occur.
4965 */
4966static int igc_probe(struct pci_dev *pdev,
4967 const struct pci_device_id *ent)
4968{
4969 struct igc_adapter *adapter;
4970 struct net_device *netdev;
4971 struct igc_hw *hw;
4972 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4973 int err, pci_using_dac;
4974
4975 err = pci_enable_device_mem(pdev);
4976 if (err)
4977 return err;
4978
4979 pci_using_dac = 0;
4980 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4981 if (!err) {
4982 pci_using_dac = 1;
4983 } else {
4984 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4985 if (err) {
4986 dev_err(&pdev->dev,
4987 "No usable DMA configuration, aborting\n");
4988 goto err_dma;
4989 }
4990 }
4991
4992 err = pci_request_mem_regions(pdev, igc_driver_name);
4993 if (err)
4994 goto err_pci_reg;
4995
4996 pci_enable_pcie_error_reporting(pdev);
4997
4998 pci_set_master(pdev);
4999
5000 err = -ENOMEM;
5001 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5002 IGC_MAX_TX_QUEUES);
5003
5004 if (!netdev)
5005 goto err_alloc_etherdev;
5006
5007 SET_NETDEV_DEV(netdev, &pdev->dev);
5008
5009 pci_set_drvdata(pdev, netdev);
5010 adapter = netdev_priv(netdev);
5011 adapter->netdev = netdev;
5012 adapter->pdev = pdev;
5013 hw = &adapter->hw;
5014 hw->back = adapter;
5015 adapter->port_num = hw->bus.func;
5016 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5017
5018 err = pci_save_state(pdev);
5019 if (err)
5020 goto err_ioremap;
5021
5022 err = -EIO;
5023 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5024 pci_resource_len(pdev, 0));
5025 if (!adapter->io_addr)
5026 goto err_ioremap;
5027
5028 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5029 hw->hw_addr = adapter->io_addr;
5030
5031 netdev->netdev_ops = &igc_netdev_ops;
5032 igc_ethtool_set_ops(netdev);
5033 netdev->watchdog_timeo = 5 * HZ;
5034
5035 netdev->mem_start = pci_resource_start(pdev, 0);
5036 netdev->mem_end = pci_resource_end(pdev, 0);
5037
5038 /* PCI config space info */
5039 hw->vendor_id = pdev->vendor;
5040 hw->device_id = pdev->device;
5041 hw->revision_id = pdev->revision;
5042 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5043 hw->subsystem_device_id = pdev->subsystem_device;
5044
5045 /* Copy the default MAC and PHY function pointers */
5046 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5047 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5048
5049 /* Initialize skew-specific constants */
5050 err = ei->get_invariants(hw);
5051 if (err)
5052 goto err_sw_init;
5053
5054 /* Add supported features to the features list*/
5055 netdev->features |= NETIF_F_SG;
5056 netdev->features |= NETIF_F_TSO;
5057 netdev->features |= NETIF_F_TSO6;
5058 netdev->features |= NETIF_F_TSO_ECN;
5059 netdev->features |= NETIF_F_RXCSUM;
5060 netdev->features |= NETIF_F_HW_CSUM;
5061 netdev->features |= NETIF_F_SCTP_CRC;
5062 netdev->features |= NETIF_F_HW_TC;
5063
5064#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5065 NETIF_F_GSO_GRE_CSUM | \
5066 NETIF_F_GSO_IPXIP4 | \
5067 NETIF_F_GSO_IPXIP6 | \
5068 NETIF_F_GSO_UDP_TUNNEL | \
5069 NETIF_F_GSO_UDP_TUNNEL_CSUM)
5070
5071 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5072 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5073
5074 /* setup the private structure */
5075 err = igc_sw_init(adapter);
5076 if (err)
5077 goto err_sw_init;
5078
5079 /* copy netdev features into list of user selectable features */
5080 netdev->hw_features |= NETIF_F_NTUPLE;
5081 netdev->hw_features |= netdev->features;
5082
5083 if (pci_using_dac)
5084 netdev->features |= NETIF_F_HIGHDMA;
5085
5086 /* MTU range: 68 - 9216 */
5087 netdev->min_mtu = ETH_MIN_MTU;
5088 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5089
5090 /* before reading the NVM, reset the controller to put the device in a
5091 * known good starting state
5092 */
5093 hw->mac.ops.reset_hw(hw);
5094
5095 if (igc_get_flash_presence_i225(hw)) {
5096 if (hw->nvm.ops.validate(hw) < 0) {
5097 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5098 err = -EIO;
5099 goto err_eeprom;
5100 }
5101 }
5102
5103 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5104 /* copy the MAC address out of the NVM */
5105 if (hw->mac.ops.read_mac_addr(hw))
5106 dev_err(&pdev->dev, "NVM Read Error\n");
5107 }
5108
5109 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5110
5111 if (!is_valid_ether_addr(netdev->dev_addr)) {
5112 dev_err(&pdev->dev, "Invalid MAC Address\n");
5113 err = -EIO;
5114 goto err_eeprom;
5115 }
5116
5117 /* configure RXPBSIZE and TXPBSIZE */
5118 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5119 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5120
5121 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5122 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5123
5124 INIT_WORK(&adapter->reset_task, igc_reset_task);
5125 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5126
5127 /* Initialize link properties that are user-changeable */
5128 adapter->fc_autoneg = true;
5129 hw->mac.autoneg = true;
5130 hw->phy.autoneg_advertised = 0xaf;
5131
5132 hw->fc.requested_mode = igc_fc_default;
5133 hw->fc.current_mode = igc_fc_default;
5134
5135 /* By default, support wake on port A */
5136 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5137
5138 /* initialize the wol settings based on the eeprom settings */
5139 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5140 adapter->wol |= IGC_WUFC_MAG;
5141
5142 device_set_wakeup_enable(&adapter->pdev->dev,
5143 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5144
5145 igc_ptp_init(adapter);
5146
5147 /* reset the hardware with the new settings */
5148 igc_reset(adapter);
5149
5150 /* let the f/w know that the h/w is now under the control of the
5151 * driver.
5152 */
5153 igc_get_hw_control(adapter);
5154
5155 strncpy(netdev->name, "eth%d", IFNAMSIZ);
5156 err = register_netdev(netdev);
5157 if (err)
5158 goto err_register;
5159
5160 /* carrier off reporting is important to ethtool even BEFORE open */
5161 netif_carrier_off(netdev);
5162
5163 /* Check if Media Autosense is enabled */
5164 adapter->ei = *ei;
5165
5166 /* print pcie link status and MAC address */
5167 pcie_print_link_status(pdev);
5168 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5169
5170 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5171 /* Disable EEE for internal PHY devices */
5172 hw->dev_spec._base.eee_enable = false;
5173 adapter->flags &= ~IGC_FLAG_EEE;
5174 igc_set_eee_i225(hw, false, false, false);
5175
5176 pm_runtime_put_noidle(&pdev->dev);
5177
5178 return 0;
5179
5180err_register:
5181 igc_release_hw_control(adapter);
5182err_eeprom:
5183 if (!igc_check_reset_block(hw))
5184 igc_reset_phy(hw);
5185err_sw_init:
5186 igc_clear_interrupt_scheme(adapter);
5187 iounmap(adapter->io_addr);
5188err_ioremap:
5189 free_netdev(netdev);
5190err_alloc_etherdev:
5191 pci_release_mem_regions(pdev);
5192err_pci_reg:
5193err_dma:
5194 pci_disable_device(pdev);
5195 return err;
5196}
5197
5198/**
5199 * igc_remove - Device Removal Routine
5200 * @pdev: PCI device information struct
5201 *
5202 * igc_remove is called by the PCI subsystem to alert the driver
5203 * that it should release a PCI device. This could be caused by a
5204 * Hot-Plug event, or because the driver is going to be removed from
5205 * memory.
5206 */
5207static void igc_remove(struct pci_dev *pdev)
5208{
5209 struct net_device *netdev = pci_get_drvdata(pdev);
5210 struct igc_adapter *adapter = netdev_priv(netdev);
5211
5212 pm_runtime_get_noresume(&pdev->dev);
5213
5214 igc_flush_nfc_rules(adapter);
5215
5216 igc_ptp_stop(adapter);
5217
5218 set_bit(__IGC_DOWN, &adapter->state);
5219
5220 del_timer_sync(&adapter->watchdog_timer);
5221 del_timer_sync(&adapter->phy_info_timer);
5222
5223 cancel_work_sync(&adapter->reset_task);
5224 cancel_work_sync(&adapter->watchdog_task);
5225
5226 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5227 * would have already happened in close and is redundant.
5228 */
5229 igc_release_hw_control(adapter);
5230 unregister_netdev(netdev);
5231
5232 igc_clear_interrupt_scheme(adapter);
5233 pci_iounmap(pdev, adapter->io_addr);
5234 pci_release_mem_regions(pdev);
5235
5236 free_netdev(netdev);
5237
5238 pci_disable_pcie_error_reporting(pdev);
5239
5240 pci_disable_device(pdev);
5241}
5242
5243static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5244 bool runtime)
5245{
5246 struct net_device *netdev = pci_get_drvdata(pdev);
5247 struct igc_adapter *adapter = netdev_priv(netdev);
5248 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5249 struct igc_hw *hw = &adapter->hw;
5250 u32 ctrl, rctl, status;
5251 bool wake;
5252
5253 rtnl_lock();
5254 netif_device_detach(netdev);
5255
5256 if (netif_running(netdev))
5257 __igc_close(netdev, true);
5258
5259 igc_ptp_suspend(adapter);
5260
5261 igc_clear_interrupt_scheme(adapter);
5262 rtnl_unlock();
5263
5264 status = rd32(IGC_STATUS);
5265 if (status & IGC_STATUS_LU)
5266 wufc &= ~IGC_WUFC_LNKC;
5267
5268 if (wufc) {
5269 igc_setup_rctl(adapter);
5270 igc_set_rx_mode(netdev);
5271
5272 /* turn on all-multi mode if wake on multicast is enabled */
5273 if (wufc & IGC_WUFC_MC) {
5274 rctl = rd32(IGC_RCTL);
5275 rctl |= IGC_RCTL_MPE;
5276 wr32(IGC_RCTL, rctl);
5277 }
5278
5279 ctrl = rd32(IGC_CTRL);
5280 ctrl |= IGC_CTRL_ADVD3WUC;
5281 wr32(IGC_CTRL, ctrl);
5282
5283 /* Allow time for pending master requests to run */
5284 igc_disable_pcie_master(hw);
5285
5286 wr32(IGC_WUC, IGC_WUC_PME_EN);
5287 wr32(IGC_WUFC, wufc);
5288 } else {
5289 wr32(IGC_WUC, 0);
5290 wr32(IGC_WUFC, 0);
5291 }
5292
5293 wake = wufc || adapter->en_mng_pt;
5294 if (!wake)
5295 igc_power_down_phy_copper_base(&adapter->hw);
5296 else
5297 igc_power_up_link(adapter);
5298
5299 if (enable_wake)
5300 *enable_wake = wake;
5301
5302 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5303 * would have already happened in close and is redundant.
5304 */
5305 igc_release_hw_control(adapter);
5306
5307 pci_disable_device(pdev);
5308
5309 return 0;
5310}
5311
5312#ifdef CONFIG_PM
5313static int __maybe_unused igc_runtime_suspend(struct device *dev)
5314{
5315 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5316}
5317
5318static void igc_deliver_wake_packet(struct net_device *netdev)
5319{
5320 struct igc_adapter *adapter = netdev_priv(netdev);
5321 struct igc_hw *hw = &adapter->hw;
5322 struct sk_buff *skb;
5323 u32 wupl;
5324
5325 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5326
5327 /* WUPM stores only the first 128 bytes of the wake packet.
5328 * Read the packet only if we have the whole thing.
5329 */
5330 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5331 return;
5332
5333 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5334 if (!skb)
5335 return;
5336
5337 skb_put(skb, wupl);
5338
5339 /* Ensure reads are 32-bit aligned */
5340 wupl = roundup(wupl, 4);
5341
5342 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5343
5344 skb->protocol = eth_type_trans(skb, netdev);
5345 netif_rx(skb);
5346}
5347
5348static int __maybe_unused igc_resume(struct device *dev)
5349{
5350 struct pci_dev *pdev = to_pci_dev(dev);
5351 struct net_device *netdev = pci_get_drvdata(pdev);
5352 struct igc_adapter *adapter = netdev_priv(netdev);
5353 struct igc_hw *hw = &adapter->hw;
5354 u32 err, val;
5355
5356 pci_set_power_state(pdev, PCI_D0);
5357 pci_restore_state(pdev);
5358 pci_save_state(pdev);
5359
5360 if (!pci_device_is_present(pdev))
5361 return -ENODEV;
5362 err = pci_enable_device_mem(pdev);
5363 if (err) {
5364 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5365 return err;
5366 }
5367 pci_set_master(pdev);
5368
5369 pci_enable_wake(pdev, PCI_D3hot, 0);
5370 pci_enable_wake(pdev, PCI_D3cold, 0);
5371
5372 if (igc_init_interrupt_scheme(adapter, true)) {
5373 netdev_err(netdev, "Unable to allocate memory for queues\n");
5374 return -ENOMEM;
5375 }
5376
5377 igc_reset(adapter);
5378
5379 /* let the f/w know that the h/w is now under the control of the
5380 * driver.
5381 */
5382 igc_get_hw_control(adapter);
5383
5384 val = rd32(IGC_WUS);
5385 if (val & WAKE_PKT_WUS)
5386 igc_deliver_wake_packet(netdev);
5387
5388 wr32(IGC_WUS, ~0);
5389
5390 rtnl_lock();
5391 if (!err && netif_running(netdev))
5392 err = __igc_open(netdev, true);
5393
5394 if (!err)
5395 netif_device_attach(netdev);
5396 rtnl_unlock();
5397
5398 return err;
5399}
5400
5401static int __maybe_unused igc_runtime_resume(struct device *dev)
5402{
5403 return igc_resume(dev);
5404}
5405
5406static int __maybe_unused igc_suspend(struct device *dev)
5407{
5408 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5409}
5410
5411static int __maybe_unused igc_runtime_idle(struct device *dev)
5412{
5413 struct net_device *netdev = dev_get_drvdata(dev);
5414 struct igc_adapter *adapter = netdev_priv(netdev);
5415
5416 if (!igc_has_link(adapter))
5417 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5418
5419 return -EBUSY;
5420}
5421#endif /* CONFIG_PM */
5422
5423static void igc_shutdown(struct pci_dev *pdev)
5424{
5425 bool wake;
5426
5427 __igc_shutdown(pdev, &wake, 0);
5428
5429 if (system_state == SYSTEM_POWER_OFF) {
5430 pci_wake_from_d3(pdev, wake);
5431 pci_set_power_state(pdev, PCI_D3hot);
5432 }
5433}
5434
5435/**
5436 * igc_io_error_detected - called when PCI error is detected
5437 * @pdev: Pointer to PCI device
5438 * @state: The current PCI connection state
5439 *
5440 * This function is called after a PCI bus error affecting
5441 * this device has been detected.
5442 **/
5443static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5444 pci_channel_state_t state)
5445{
5446 struct net_device *netdev = pci_get_drvdata(pdev);
5447 struct igc_adapter *adapter = netdev_priv(netdev);
5448
5449 netif_device_detach(netdev);
5450
5451 if (state == pci_channel_io_perm_failure)
5452 return PCI_ERS_RESULT_DISCONNECT;
5453
5454 if (netif_running(netdev))
5455 igc_down(adapter);
5456 pci_disable_device(pdev);
5457
5458 /* Request a slot reset. */
5459 return PCI_ERS_RESULT_NEED_RESET;
5460}
5461
5462/**
5463 * igc_io_slot_reset - called after the PCI bus has been reset.
5464 * @pdev: Pointer to PCI device
5465 *
5466 * Restart the card from scratch, as if from a cold-boot. Implementation
5467 * resembles the first-half of the igc_resume routine.
5468 **/
5469static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5470{
5471 struct net_device *netdev = pci_get_drvdata(pdev);
5472 struct igc_adapter *adapter = netdev_priv(netdev);
5473 struct igc_hw *hw = &adapter->hw;
5474 pci_ers_result_t result;
5475
5476 if (pci_enable_device_mem(pdev)) {
5477 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5478 result = PCI_ERS_RESULT_DISCONNECT;
5479 } else {
5480 pci_set_master(pdev);
5481 pci_restore_state(pdev);
5482 pci_save_state(pdev);
5483
5484 pci_enable_wake(pdev, PCI_D3hot, 0);
5485 pci_enable_wake(pdev, PCI_D3cold, 0);
5486
5487 /* In case of PCI error, adapter loses its HW address
5488 * so we should re-assign it here.
5489 */
5490 hw->hw_addr = adapter->io_addr;
5491
5492 igc_reset(adapter);
5493 wr32(IGC_WUS, ~0);
5494 result = PCI_ERS_RESULT_RECOVERED;
5495 }
5496
5497 return result;
5498}
5499
5500/**
5501 * igc_io_resume - called when traffic can start to flow again.
5502 * @pdev: Pointer to PCI device
5503 *
5504 * This callback is called when the error recovery driver tells us that
5505 * its OK to resume normal operation. Implementation resembles the
5506 * second-half of the igc_resume routine.
5507 */
5508static void igc_io_resume(struct pci_dev *pdev)
5509{
5510 struct net_device *netdev = pci_get_drvdata(pdev);
5511 struct igc_adapter *adapter = netdev_priv(netdev);
5512
5513 rtnl_lock();
5514 if (netif_running(netdev)) {
5515 if (igc_open(netdev)) {
5516 netdev_err(netdev, "igc_open failed after reset\n");
5517 return;
5518 }
5519 }
5520
5521 netif_device_attach(netdev);
5522
5523 /* let the f/w know that the h/w is now under the control of the
5524 * driver.
5525 */
5526 igc_get_hw_control(adapter);
5527 rtnl_unlock();
5528}
5529
5530static const struct pci_error_handlers igc_err_handler = {
5531 .error_detected = igc_io_error_detected,
5532 .slot_reset = igc_io_slot_reset,
5533 .resume = igc_io_resume,
5534};
5535
5536#ifdef CONFIG_PM
5537static const struct dev_pm_ops igc_pm_ops = {
5538 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5539 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5540 igc_runtime_idle)
5541};
5542#endif
5543
5544static struct pci_driver igc_driver = {
5545 .name = igc_driver_name,
5546 .id_table = igc_pci_tbl,
5547 .probe = igc_probe,
5548 .remove = igc_remove,
5549#ifdef CONFIG_PM
5550 .driver.pm = &igc_pm_ops,
5551#endif
5552 .shutdown = igc_shutdown,
5553 .err_handler = &igc_err_handler,
5554};
5555
5556/**
5557 * igc_reinit_queues - return error
5558 * @adapter: pointer to adapter structure
5559 */
5560int igc_reinit_queues(struct igc_adapter *adapter)
5561{
5562 struct net_device *netdev = adapter->netdev;
5563 int err = 0;
5564
5565 if (netif_running(netdev))
5566 igc_close(netdev);
5567
5568 igc_reset_interrupt_capability(adapter);
5569
5570 if (igc_init_interrupt_scheme(adapter, true)) {
5571 netdev_err(netdev, "Unable to allocate memory for queues\n");
5572 return -ENOMEM;
5573 }
5574
5575 if (netif_running(netdev))
5576 err = igc_open(netdev);
5577
5578 return err;
5579}
5580
5581/**
5582 * igc_get_hw_dev - return device
5583 * @hw: pointer to hardware structure
5584 *
5585 * used by hardware layer to print debugging information
5586 */
5587struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5588{
5589 struct igc_adapter *adapter = hw->back;
5590
5591 return adapter->netdev;
5592}
5593
5594/**
5595 * igc_init_module - Driver Registration Routine
5596 *
5597 * igc_init_module is the first routine called when the driver is
5598 * loaded. All it does is register with the PCI subsystem.
5599 */
5600static int __init igc_init_module(void)
5601{
5602 int ret;
5603
5604 pr_info("%s\n", igc_driver_string);
5605 pr_info("%s\n", igc_copyright);
5606
5607 ret = pci_register_driver(&igc_driver);
5608 return ret;
5609}
5610
5611module_init(igc_init_module);
5612
5613/**
5614 * igc_exit_module - Driver Exit Cleanup Routine
5615 *
5616 * igc_exit_module is called just before the driver is removed
5617 * from memory.
5618 */
5619static void __exit igc_exit_module(void)
5620{
5621 pci_unregister_driver(&igc_driver);
5622}
5623
5624module_exit(igc_exit_module);
5625/* igc_main.c */