Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
 
   8#include "ice.h"
 
   9#include "ice_lib.h"
 
  10#include "ice_dcb_lib.h"
 
 
  11
  12#define DRV_VERSION_MAJOR 0
  13#define DRV_VERSION_MINOR 8
  14#define DRV_VERSION_BUILD 1
  15
  16#define DRV_VERSION	__stringify(DRV_VERSION_MAJOR) "." \
  17			__stringify(DRV_VERSION_MINOR) "." \
  18			__stringify(DRV_VERSION_BUILD) "-k"
  19#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
  20const char ice_drv_ver[] = DRV_VERSION;
  21static const char ice_driver_string[] = DRV_SUMMARY;
  22static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  23
  24/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
  25#define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
  26#define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
  27
  28MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  29MODULE_DESCRIPTION(DRV_SUMMARY);
  30MODULE_LICENSE("GPL v2");
  31MODULE_VERSION(DRV_VERSION);
  32MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
  33
  34static int debug = -1;
  35module_param(debug, int, 0644);
  36#ifndef CONFIG_DYNAMIC_DEBUG
  37MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  38#else
  39MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  40#endif /* !CONFIG_DYNAMIC_DEBUG */
  41
  42static struct workqueue_struct *ice_wq;
  43static const struct net_device_ops ice_netdev_safe_mode_ops;
  44static const struct net_device_ops ice_netdev_ops;
 
  45
  46static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
  47
  48static void ice_vsi_release_all(struct ice_pf *pf);
  49
  50/**
  51 * ice_get_tx_pending - returns number of Tx descriptors not processed
  52 * @ring: the ring of descriptors
  53 */
  54static u16 ice_get_tx_pending(struct ice_ring *ring)
  55{
  56	u16 head, tail;
  57
  58	head = ring->next_to_clean;
  59	tail = ring->next_to_use;
  60
  61	if (head != tail)
  62		return (head < tail) ?
  63			tail - head : (tail + ring->count - head);
  64	return 0;
  65}
  66
  67/**
  68 * ice_check_for_hang_subtask - check for and recover hung queues
  69 * @pf: pointer to PF struct
  70 */
  71static void ice_check_for_hang_subtask(struct ice_pf *pf)
  72{
  73	struct ice_vsi *vsi = NULL;
  74	struct ice_hw *hw;
  75	unsigned int i;
  76	int packets;
  77	u32 v;
  78
  79	ice_for_each_vsi(pf, v)
  80		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
  81			vsi = pf->vsi[v];
  82			break;
  83		}
  84
  85	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
  86		return;
  87
  88	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
  89		return;
  90
  91	hw = &vsi->back->hw;
  92
  93	for (i = 0; i < vsi->num_txq; i++) {
  94		struct ice_ring *tx_ring = vsi->tx_rings[i];
  95
  96		if (tx_ring && tx_ring->desc) {
  97			/* If packet counter has not changed the queue is
  98			 * likely stalled, so force an interrupt for this
  99			 * queue.
 100			 *
 101			 * prev_pkt would be negative if there was no
 102			 * pending work.
 103			 */
 104			packets = tx_ring->stats.pkts & INT_MAX;
 105			if (tx_ring->tx_stats.prev_pkt == packets) {
 106				/* Trigger sw interrupt to revive the queue */
 107				ice_trigger_sw_intr(hw, tx_ring->q_vector);
 108				continue;
 109			}
 110
 111			/* Memory barrier between read of packet count and call
 112			 * to ice_get_tx_pending()
 113			 */
 114			smp_rmb();
 115			tx_ring->tx_stats.prev_pkt =
 116			    ice_get_tx_pending(tx_ring) ? packets : -1;
 117		}
 118	}
 119}
 120
 121/**
 122 * ice_init_mac_fltr - Set initial MAC filters
 123 * @pf: board private structure
 124 *
 125 * Set initial set of MAC filters for PF VSI; configure filters for permanent
 126 * address and broadcast address. If an error is encountered, netdevice will be
 127 * unregistered.
 128 */
 129static int ice_init_mac_fltr(struct ice_pf *pf)
 130{
 131	enum ice_status status;
 132	u8 broadcast[ETH_ALEN];
 133	struct ice_vsi *vsi;
 
 134
 135	vsi = ice_get_main_vsi(pf);
 136	if (!vsi)
 137		return -EINVAL;
 138
 139	/* To add a MAC filter, first add the MAC to a list and then
 140	 * pass the list to ice_add_mac.
 141	 */
 142
 143	 /* Add a unicast MAC filter so the VSI can get its packets */
 144	status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true);
 145	if (status)
 146		goto unregister;
 147
 148	/* VSI needs to receive broadcast traffic, so add the broadcast
 149	 * MAC address to the list as well.
 150	 */
 151	eth_broadcast_addr(broadcast);
 152	status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true);
 153	if (status)
 154		goto unregister;
 155
 156	return 0;
 157unregister:
 158	/* We aren't useful with no MAC filters, so unregister if we
 159	 * had an error
 160	 */
 161	if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
 162		dev_err(&pf->pdev->dev,
 163			"Could not add MAC filters error %d. Unregistering device\n",
 164			status);
 165		unregister_netdev(vsi->netdev);
 166		free_netdev(vsi->netdev);
 167		vsi->netdev = NULL;
 168	}
 169
 170	return -EIO;
 171}
 172
 173/**
 174 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
 175 * @netdev: the net device on which the sync is happening
 176 * @addr: MAC address to sync
 177 *
 178 * This is a callback function which is called by the in kernel device sync
 179 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 180 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 181 * MAC filters from the hardware.
 182 */
 183static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 184{
 185	struct ice_netdev_priv *np = netdev_priv(netdev);
 186	struct ice_vsi *vsi = np->vsi;
 187
 188	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
 
 189		return -EINVAL;
 190
 191	return 0;
 192}
 193
 194/**
 195 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
 196 * @netdev: the net device on which the unsync is happening
 197 * @addr: MAC address to unsync
 198 *
 199 * This is a callback function which is called by the in kernel device unsync
 200 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 201 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 202 * delete the MAC filters from the hardware.
 203 */
 204static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 205{
 206	struct ice_netdev_priv *np = netdev_priv(netdev);
 207	struct ice_vsi *vsi = np->vsi;
 208
 209	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
 
 210		return -EINVAL;
 211
 212	return 0;
 213}
 214
 215/**
 216 * ice_vsi_fltr_changed - check if filter state changed
 217 * @vsi: VSI to be checked
 218 *
 219 * returns true if filter state has changed, false otherwise.
 220 */
 221static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 222{
 223	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
 224	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
 225	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 226}
 227
 228/**
 229 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
 230 * @vsi: the VSI being configured
 231 * @promisc_m: mask of promiscuous config bits
 232 * @set_promisc: enable or disable promisc flag request
 233 *
 234 */
 235static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
 236{
 237	struct ice_hw *hw = &vsi->back->hw;
 238	enum ice_status status = 0;
 239
 240	if (vsi->type != ICE_VSI_PF)
 241		return 0;
 242
 243	if (vsi->vlan_ena) {
 244		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
 245						  set_promisc);
 246	} else {
 247		if (set_promisc)
 248			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 249						     0);
 250		else
 251			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 252						       0);
 253	}
 254
 255	if (status)
 256		return -EIO;
 257
 258	return 0;
 259}
 260
 261/**
 262 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 263 * @vsi: ptr to the VSI
 264 *
 265 * Push any outstanding VSI filter changes through the AdminQ.
 266 */
 267static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 268{
 269	struct device *dev = &vsi->back->pdev->dev;
 270	struct net_device *netdev = vsi->netdev;
 271	bool promisc_forced_on = false;
 272	struct ice_pf *pf = vsi->back;
 273	struct ice_hw *hw = &pf->hw;
 274	enum ice_status status = 0;
 275	u32 changed_flags = 0;
 276	u8 promisc_m;
 277	int err = 0;
 278
 279	if (!vsi->netdev)
 280		return -EINVAL;
 281
 282	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
 283		usleep_range(1000, 2000);
 284
 285	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 286	vsi->current_netdev_flags = vsi->netdev->flags;
 287
 288	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 289	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 290
 291	if (ice_vsi_fltr_changed(vsi)) {
 292		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 293		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 294		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 295
 296		/* grab the netdev's addr_list_lock */
 297		netif_addr_lock_bh(netdev);
 298		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 299			      ice_add_mac_to_unsync_list);
 300		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 301			      ice_add_mac_to_unsync_list);
 302		/* our temp lists are populated. release lock */
 303		netif_addr_unlock_bh(netdev);
 304	}
 305
 306	/* Remove MAC addresses in the unsync list */
 307	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
 308	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
 309	if (status) {
 310		netdev_err(netdev, "Failed to delete MAC filters\n");
 311		/* if we failed because of alloc failures, just bail */
 312		if (status == ICE_ERR_NO_MEMORY) {
 313			err = -ENOMEM;
 314			goto out;
 315		}
 316	}
 317
 318	/* Add MAC addresses in the sync list */
 319	status = ice_add_mac(hw, &vsi->tmp_sync_list);
 320	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
 321	/* If filter is added successfully or already exists, do not go into
 322	 * 'if' condition and report it as error. Instead continue processing
 323	 * rest of the function.
 324	 */
 325	if (status && status != ICE_ERR_ALREADY_EXISTS) {
 326		netdev_err(netdev, "Failed to add MAC filters\n");
 327		/* If there is no more space for new umac filters, VSI
 328		 * should go into promiscuous mode. There should be some
 329		 * space reserved for promiscuous filters.
 330		 */
 331		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 332		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
 333				      vsi->state)) {
 334			promisc_forced_on = true;
 335			netdev_warn(netdev,
 336				    "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 337				    vsi->vsi_num);
 338		} else {
 339			err = -EIO;
 340			goto out;
 341		}
 342	}
 343	/* check for changes in promiscuous modes */
 344	if (changed_flags & IFF_ALLMULTI) {
 345		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
 346			if (vsi->vlan_ena)
 347				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 348			else
 349				promisc_m = ICE_MCAST_PROMISC_BITS;
 350
 351			err = ice_cfg_promisc(vsi, promisc_m, true);
 352			if (err) {
 353				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
 354					   vsi->vsi_num);
 355				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
 356				goto out_promisc;
 357			}
 358		} else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
 
 359			if (vsi->vlan_ena)
 360				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 361			else
 362				promisc_m = ICE_MCAST_PROMISC_BITS;
 363
 364			err = ice_cfg_promisc(vsi, promisc_m, false);
 365			if (err) {
 366				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
 367					   vsi->vsi_num);
 368				vsi->current_netdev_flags |= IFF_ALLMULTI;
 369				goto out_promisc;
 370			}
 371		}
 372	}
 373
 374	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 375	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
 376		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 377		if (vsi->current_netdev_flags & IFF_PROMISC) {
 378			/* Apply Rx filter rule to get traffic from wire */
 379			status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
 380						  ICE_FLTR_RX);
 381			if (status) {
 382				netdev_err(netdev, "Error setting default VSI %i Rx rule\n",
 383					   vsi->vsi_num);
 384				vsi->current_netdev_flags &= ~IFF_PROMISC;
 385				err = -EIO;
 386				goto out_promisc;
 
 
 387			}
 388		} else {
 389			/* Clear Rx filter to remove traffic from wire */
 390			status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
 391						  ICE_FLTR_RX);
 392			if (status) {
 393				netdev_err(netdev, "Error clearing default VSI %i Rx rule\n",
 394					   vsi->vsi_num);
 395				vsi->current_netdev_flags |= IFF_PROMISC;
 396				err = -EIO;
 397				goto out_promisc;
 
 
 
 398			}
 399		}
 400	}
 401	goto exit;
 402
 403out_promisc:
 404	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 405	goto exit;
 406out:
 407	/* if something went wrong then set the changed flag so we try again */
 408	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 409	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 410exit:
 411	clear_bit(__ICE_CFG_BUSY, vsi->state);
 412	return err;
 413}
 414
 415/**
 416 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 417 * @pf: board private structure
 418 */
 419static void ice_sync_fltr_subtask(struct ice_pf *pf)
 420{
 421	int v;
 422
 423	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 424		return;
 425
 426	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 427
 428	ice_for_each_vsi(pf, v)
 429		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 430		    ice_vsi_sync_fltr(pf->vsi[v])) {
 431			/* come back and try again later */
 432			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 433			break;
 434		}
 435}
 436
 437/**
 438 * ice_dis_vsi - pause a VSI
 439 * @vsi: the VSI being paused
 440 * @locked: is the rtnl_lock already held
 441 */
 442static void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
 443{
 444	if (test_bit(__ICE_DOWN, vsi->state))
 445		return;
 446
 447	set_bit(__ICE_NEEDS_RESTART, vsi->state);
 448
 449	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
 450		if (netif_running(vsi->netdev)) {
 451			if (!locked)
 452				rtnl_lock();
 453
 454			ice_stop(vsi->netdev);
 455
 456			if (!locked)
 457				rtnl_unlock();
 458		} else {
 459			ice_vsi_close(vsi);
 460		}
 461	}
 462}
 463
 464/**
 465 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 466 * @pf: the PF
 467 * @locked: is the rtnl_lock already held
 468 */
 469#ifdef CONFIG_DCB
 470void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 471#else
 472static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 473#endif /* CONFIG_DCB */
 474{
 475	int v;
 476
 477	ice_for_each_vsi(pf, v)
 478		if (pf->vsi[v])
 479			ice_dis_vsi(pf->vsi[v], locked);
 480}
 481
 482/**
 483 * ice_prepare_for_reset - prep for the core to reset
 484 * @pf: board private structure
 485 *
 486 * Inform or close all dependent features in prep for reset.
 487 */
 488static void
 489ice_prepare_for_reset(struct ice_pf *pf)
 490{
 491	struct ice_hw *hw = &pf->hw;
 492	int i;
 493
 494	/* already prepared for reset */
 495	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
 496		return;
 497
 498	/* Notify VFs of impending reset */
 499	if (ice_check_sq_alive(hw, &hw->mailboxq))
 500		ice_vc_notify_reset(pf);
 501
 502	/* Disable VFs until reset is completed */
 503	for (i = 0; i < pf->num_alloc_vfs; i++)
 504		ice_set_vf_state_qs_dis(&pf->vf[i]);
 505
 506	/* clear SW filtering DB */
 507	ice_clear_hw_tbls(hw);
 508	/* disable the VSIs and their queues that are not already DOWN */
 509	ice_pf_dis_all_vsi(pf, false);
 510
 511	if (hw->port_info)
 512		ice_sched_clear_port(hw->port_info);
 513
 514	ice_shutdown_all_ctrlq(hw);
 515
 516	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 517}
 518
 519/**
 520 * ice_do_reset - Initiate one of many types of resets
 521 * @pf: board private structure
 522 * @reset_type: reset type requested
 523 * before this function was called.
 524 */
 525static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 526{
 527	struct device *dev = &pf->pdev->dev;
 528	struct ice_hw *hw = &pf->hw;
 529
 530	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 531	WARN_ON(in_interrupt());
 532
 533	ice_prepare_for_reset(pf);
 534
 535	/* trigger the reset */
 536	if (ice_reset(hw, reset_type)) {
 537		dev_err(dev, "reset %d failed\n", reset_type);
 538		set_bit(__ICE_RESET_FAILED, pf->state);
 539		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 540		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 541		clear_bit(__ICE_PFR_REQ, pf->state);
 542		clear_bit(__ICE_CORER_REQ, pf->state);
 543		clear_bit(__ICE_GLOBR_REQ, pf->state);
 544		return;
 545	}
 546
 547	/* PFR is a bit of a special case because it doesn't result in an OICR
 548	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
 549	 * associated state bits.
 550	 */
 551	if (reset_type == ICE_RESET_PFR) {
 552		pf->pfr_count++;
 553		ice_rebuild(pf, reset_type);
 554		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 555		clear_bit(__ICE_PFR_REQ, pf->state);
 556		ice_reset_all_vfs(pf, true);
 557	}
 558}
 559
 560/**
 561 * ice_reset_subtask - Set up for resetting the device and driver
 562 * @pf: board private structure
 563 */
 564static void ice_reset_subtask(struct ice_pf *pf)
 565{
 566	enum ice_reset_req reset_type = ICE_RESET_INVAL;
 567
 568	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 569	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
 570	 * of reset is pending and sets bits in pf->state indicating the reset
 571	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
 572	 * prepare for pending reset if not already (for PF software-initiated
 573	 * global resets the software should already be prepared for it as
 574	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
 575	 * by firmware or software on other PFs, that bit is not set so prepare
 576	 * for the reset now), poll for reset done, rebuild and return.
 577	 */
 578	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
 579		/* Perform the largest reset requested */
 580		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
 581			reset_type = ICE_RESET_CORER;
 582		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
 583			reset_type = ICE_RESET_GLOBR;
 584		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
 585			reset_type = ICE_RESET_EMPR;
 586		/* return if no valid reset type requested */
 587		if (reset_type == ICE_RESET_INVAL)
 588			return;
 589		ice_prepare_for_reset(pf);
 590
 591		/* make sure we are ready to rebuild */
 592		if (ice_check_reset(&pf->hw)) {
 593			set_bit(__ICE_RESET_FAILED, pf->state);
 594		} else {
 595			/* done with reset. start rebuild */
 596			pf->hw.reset_ongoing = false;
 597			ice_rebuild(pf, reset_type);
 598			/* clear bit to resume normal operations, but
 599			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
 600			 */
 601			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 602			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 603			clear_bit(__ICE_PFR_REQ, pf->state);
 604			clear_bit(__ICE_CORER_REQ, pf->state);
 605			clear_bit(__ICE_GLOBR_REQ, pf->state);
 606			ice_reset_all_vfs(pf, true);
 607		}
 608
 609		return;
 610	}
 611
 612	/* No pending resets to finish processing. Check for new resets */
 613	if (test_bit(__ICE_PFR_REQ, pf->state))
 614		reset_type = ICE_RESET_PFR;
 615	if (test_bit(__ICE_CORER_REQ, pf->state))
 616		reset_type = ICE_RESET_CORER;
 617	if (test_bit(__ICE_GLOBR_REQ, pf->state))
 618		reset_type = ICE_RESET_GLOBR;
 619	/* If no valid reset type requested just return */
 620	if (reset_type == ICE_RESET_INVAL)
 621		return;
 622
 623	/* reset if not already down or busy */
 624	if (!test_bit(__ICE_DOWN, pf->state) &&
 625	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
 626		ice_do_reset(pf, reset_type);
 627	}
 628}
 629
 630/**
 631 * ice_print_topo_conflict - print topology conflict message
 632 * @vsi: the VSI whose topology status is being checked
 633 */
 634static void ice_print_topo_conflict(struct ice_vsi *vsi)
 635{
 636	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
 637	case ICE_AQ_LINK_TOPO_CONFLICT:
 638	case ICE_AQ_LINK_MEDIA_CONFLICT:
 
 
 
 639		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
 640		break;
 
 
 
 641	default:
 642		break;
 643	}
 644}
 645
 646/**
 647 * ice_print_link_msg - print link up or down message
 648 * @vsi: the VSI whose link status is being queried
 649 * @isup: boolean for if the link is now up or down
 650 */
 651void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 652{
 653	struct ice_aqc_get_phy_caps_data *caps;
 
 654	enum ice_status status;
 655	const char *fec_req;
 656	const char *speed;
 657	const char *fec;
 658	const char *fc;
 659	const char *an;
 660
 661	if (!vsi)
 662		return;
 663
 664	if (vsi->current_isup == isup)
 665		return;
 666
 667	vsi->current_isup = isup;
 668
 669	if (!isup) {
 670		netdev_info(vsi->netdev, "NIC Link is Down\n");
 671		return;
 672	}
 673
 674	switch (vsi->port_info->phy.link_info.link_speed) {
 675	case ICE_AQ_LINK_SPEED_100GB:
 676		speed = "100 G";
 677		break;
 678	case ICE_AQ_LINK_SPEED_50GB:
 679		speed = "50 G";
 680		break;
 681	case ICE_AQ_LINK_SPEED_40GB:
 682		speed = "40 G";
 683		break;
 684	case ICE_AQ_LINK_SPEED_25GB:
 685		speed = "25 G";
 686		break;
 687	case ICE_AQ_LINK_SPEED_20GB:
 688		speed = "20 G";
 689		break;
 690	case ICE_AQ_LINK_SPEED_10GB:
 691		speed = "10 G";
 692		break;
 693	case ICE_AQ_LINK_SPEED_5GB:
 694		speed = "5 G";
 695		break;
 696	case ICE_AQ_LINK_SPEED_2500MB:
 697		speed = "2.5 G";
 698		break;
 699	case ICE_AQ_LINK_SPEED_1000MB:
 700		speed = "1 G";
 701		break;
 702	case ICE_AQ_LINK_SPEED_100MB:
 703		speed = "100 M";
 704		break;
 705	default:
 706		speed = "Unknown";
 707		break;
 708	}
 709
 710	switch (vsi->port_info->fc.current_mode) {
 711	case ICE_FC_FULL:
 712		fc = "Rx/Tx";
 713		break;
 714	case ICE_FC_TX_PAUSE:
 715		fc = "Tx";
 716		break;
 717	case ICE_FC_RX_PAUSE:
 718		fc = "Rx";
 719		break;
 720	case ICE_FC_NONE:
 721		fc = "None";
 722		break;
 723	default:
 724		fc = "Unknown";
 725		break;
 726	}
 727
 728	/* Get FEC mode based on negotiated link info */
 729	switch (vsi->port_info->phy.link_info.fec_info) {
 730	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
 731		/* fall through */
 732	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
 733		fec = "RS-FEC";
 734		break;
 735	case ICE_AQ_LINK_25G_KR_FEC_EN:
 736		fec = "FC-FEC/BASE-R";
 737		break;
 738	default:
 739		fec = "NONE";
 740		break;
 741	}
 742
 743	/* check if autoneg completed, might be false due to not supported */
 744	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
 745		an = "True";
 746	else
 747		an = "False";
 748
 749	/* Get FEC mode requested based on PHY caps last SW configuration */
 750	caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL);
 751	if (!caps) {
 752		fec_req = "Unknown";
 
 753		goto done;
 754	}
 755
 756	status = ice_aq_get_phy_caps(vsi->port_info, false,
 757				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
 758	if (status)
 759		netdev_info(vsi->netdev, "Get phy capability failed.\n");
 760
 
 
 761	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
 762	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
 763		fec_req = "RS-FEC";
 764	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
 765		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
 766		fec_req = "FC-FEC/BASE-R";
 767	else
 768		fec_req = "NONE";
 769
 770	devm_kfree(&vsi->back->pdev->dev, caps);
 771
 772done:
 773	netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Autoneg: %s, Flow Control: %s\n",
 774		    speed, fec_req, fec, an, fc);
 775	ice_print_topo_conflict(vsi);
 776}
 777
 778/**
 779 * ice_vsi_link_event - update the VSI's netdev
 780 * @vsi: the VSI on which the link event occurred
 781 * @link_up: whether or not the VSI needs to be set up or down
 782 */
 783static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 784{
 785	if (!vsi)
 786		return;
 787
 788	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
 789		return;
 790
 791	if (vsi->type == ICE_VSI_PF) {
 792		if (link_up == netif_carrier_ok(vsi->netdev))
 793			return;
 794
 795		if (link_up) {
 796			netif_carrier_on(vsi->netdev);
 797			netif_tx_wake_all_queues(vsi->netdev);
 798		} else {
 799			netif_carrier_off(vsi->netdev);
 800			netif_tx_stop_all_queues(vsi->netdev);
 801		}
 802	}
 803}
 804
 805/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806 * ice_link_event - process the link event
 807 * @pf: PF that the link event is associated with
 808 * @pi: port_info for the port that the link event is associated with
 809 * @link_up: true if the physical link is up and false if it is down
 810 * @link_speed: current link speed received from the link event
 811 *
 812 * Returns 0 on success and negative on failure
 813 */
 814static int
 815ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
 816	       u16 link_speed)
 817{
 
 818	struct ice_phy_info *phy_info;
 819	struct ice_vsi *vsi;
 820	u16 old_link_speed;
 821	bool old_link;
 822	int result;
 823
 824	phy_info = &pi->phy;
 825	phy_info->link_info_old = phy_info->link_info;
 826
 827	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 828	old_link_speed = phy_info->link_info_old.link_speed;
 829
 830	/* update the link info structures and re-enable link events,
 831	 * don't bail on failure due to other book keeping needed
 832	 */
 833	result = ice_update_link_info(pi);
 834	if (result)
 835		dev_dbg(&pf->pdev->dev,
 836			"Failed to update link status and re-enable link events for port %d\n",
 837			pi->lport);
 838
 839	/* if the old link up/down and speed is the same as the new */
 840	if (link_up == old_link && link_speed == old_link_speed)
 841		return result;
 
 
 842
 843	vsi = ice_get_main_vsi(pf);
 844	if (!vsi || !vsi->port_info)
 845		return -EINVAL;
 846
 847	/* turn off PHY if media was removed */
 848	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
 849	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
 850		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
 851
 852		result = ice_aq_set_link_restart_an(pi, false, NULL);
 853		if (result) {
 854			dev_dbg(&pf->pdev->dev,
 855				"Failed to set link down, VSI %d error %d\n",
 856				vsi->vsi_num, result);
 857			return result;
 858		}
 859	}
 860
 
 
 
 
 
 
 
 
 
 
 
 861	ice_vsi_link_event(vsi, link_up);
 862	ice_print_link_msg(vsi, link_up);
 863
 864	if (pf->num_alloc_vfs)
 865		ice_vc_notify_link_state(pf);
 866
 867	return result;
 868}
 869
 870/**
 871 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 872 * @pf: board private structure
 873 */
 874static void ice_watchdog_subtask(struct ice_pf *pf)
 875{
 876	int i;
 877
 878	/* if interface is down do nothing */
 879	if (test_bit(__ICE_DOWN, pf->state) ||
 880	    test_bit(__ICE_CFG_BUSY, pf->state))
 881		return;
 882
 883	/* make sure we don't do these things too often */
 884	if (time_before(jiffies,
 885			pf->serv_tmr_prev + pf->serv_tmr_period))
 886		return;
 887
 888	pf->serv_tmr_prev = jiffies;
 889
 890	/* Update the stats for active netdevs so the network stack
 891	 * can look at updated numbers whenever it cares to
 892	 */
 893	ice_update_pf_stats(pf);
 894	ice_for_each_vsi(pf, i)
 895		if (pf->vsi[i] && pf->vsi[i]->netdev)
 896			ice_update_vsi_stats(pf->vsi[i]);
 897}
 898
 899/**
 900 * ice_init_link_events - enable/initialize link events
 901 * @pi: pointer to the port_info instance
 902 *
 903 * Returns -EIO on failure, 0 on success
 904 */
 905static int ice_init_link_events(struct ice_port_info *pi)
 906{
 907	u16 mask;
 908
 909	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
 910		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
 911
 912	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
 913		dev_dbg(ice_hw_to_dev(pi->hw),
 914			"Failed to set link event mask for port %d\n",
 915			pi->lport);
 916		return -EIO;
 917	}
 918
 919	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
 920		dev_dbg(ice_hw_to_dev(pi->hw),
 921			"Failed to enable link events for port %d\n",
 922			pi->lport);
 923		return -EIO;
 924	}
 925
 926	return 0;
 927}
 928
 929/**
 930 * ice_handle_link_event - handle link event via ARQ
 931 * @pf: PF that the link event is associated with
 932 * @event: event structure containing link status info
 933 */
 934static int
 935ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
 936{
 937	struct ice_aqc_get_link_status_data *link_data;
 938	struct ice_port_info *port_info;
 939	int status;
 940
 941	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
 942	port_info = pf->hw.port_info;
 943	if (!port_info)
 944		return -EINVAL;
 945
 946	status = ice_link_event(pf, port_info,
 947				!!(link_data->link_info & ICE_AQ_LINK_UP),
 948				le16_to_cpu(link_data->link_speed));
 949	if (status)
 950		dev_dbg(&pf->pdev->dev,
 951			"Could not process link event, error %d\n", status);
 952
 953	return status;
 954}
 955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956/**
 957 * __ice_clean_ctrlq - helper function to clean controlq rings
 958 * @pf: ptr to struct ice_pf
 959 * @q_type: specific Control queue type
 960 */
 961static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
 962{
 
 963	struct ice_rq_event_info event;
 964	struct ice_hw *hw = &pf->hw;
 965	struct ice_ctl_q_info *cq;
 966	u16 pending, i = 0;
 967	const char *qtype;
 968	u32 oldval, val;
 969
 970	/* Do not clean control queue if/when PF reset fails */
 971	if (test_bit(__ICE_RESET_FAILED, pf->state))
 972		return 0;
 973
 974	switch (q_type) {
 975	case ICE_CTL_Q_ADMIN:
 976		cq = &hw->adminq;
 977		qtype = "Admin";
 978		break;
 979	case ICE_CTL_Q_MAILBOX:
 980		cq = &hw->mailboxq;
 981		qtype = "Mailbox";
 982		break;
 983	default:
 984		dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
 985			 q_type);
 986		return 0;
 987	}
 988
 989	/* check for error indications - PF_xx_AxQLEN register layout for
 990	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
 991	 */
 992	val = rd32(hw, cq->rq.len);
 993	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
 994		   PF_FW_ARQLEN_ARQCRIT_M)) {
 995		oldval = val;
 996		if (val & PF_FW_ARQLEN_ARQVFE_M)
 997			dev_dbg(&pf->pdev->dev,
 998				"%s Receive Queue VF Error detected\n", qtype);
 999		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1000			dev_dbg(&pf->pdev->dev,
1001				"%s Receive Queue Overflow Error detected\n",
1002				qtype);
1003		}
1004		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1005			dev_dbg(&pf->pdev->dev,
1006				"%s Receive Queue Critical Error detected\n",
1007				qtype);
1008		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1009			 PF_FW_ARQLEN_ARQCRIT_M);
1010		if (oldval != val)
1011			wr32(hw, cq->rq.len, val);
1012	}
1013
1014	val = rd32(hw, cq->sq.len);
1015	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1016		   PF_FW_ATQLEN_ATQCRIT_M)) {
1017		oldval = val;
1018		if (val & PF_FW_ATQLEN_ATQVFE_M)
1019			dev_dbg(&pf->pdev->dev,
1020				"%s Send Queue VF Error detected\n", qtype);
1021		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1022			dev_dbg(&pf->pdev->dev,
1023				"%s Send Queue Overflow Error detected\n",
1024				qtype);
1025		}
1026		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1027			dev_dbg(&pf->pdev->dev,
1028				"%s Send Queue Critical Error detected\n",
1029				qtype);
1030		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1031			 PF_FW_ATQLEN_ATQCRIT_M);
1032		if (oldval != val)
1033			wr32(hw, cq->sq.len, val);
1034	}
1035
1036	event.buf_len = cq->rq_buf_size;
1037	event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
1038				     GFP_KERNEL);
1039	if (!event.msg_buf)
1040		return 0;
1041
1042	do {
1043		enum ice_status ret;
1044		u16 opcode;
1045
1046		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1047		if (ret == ICE_ERR_AQ_NO_WORK)
1048			break;
1049		if (ret) {
1050			dev_err(&pf->pdev->dev,
1051				"%s Receive Queue event error %d\n", qtype,
1052				ret);
1053			break;
1054		}
1055
1056		opcode = le16_to_cpu(event.desc.opcode);
1057
 
 
 
1058		switch (opcode) {
1059		case ice_aqc_opc_get_link_status:
1060			if (ice_handle_link_event(pf, &event))
1061				dev_err(&pf->pdev->dev,
1062					"Could not handle link event\n");
 
 
1063			break;
1064		case ice_mbx_opc_send_msg_to_pf:
1065			ice_vc_process_vf_msg(pf, &event);
1066			break;
1067		case ice_aqc_opc_fw_logging:
1068			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1069			break;
1070		case ice_aqc_opc_lldp_set_mib_change:
1071			ice_dcb_process_lldp_set_mib_change(pf, &event);
1072			break;
1073		default:
1074			dev_dbg(&pf->pdev->dev,
1075				"%s Receive Queue unknown event 0x%04x ignored\n",
1076				qtype, opcode);
1077			break;
1078		}
1079	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1080
1081	devm_kfree(&pf->pdev->dev, event.msg_buf);
1082
1083	return pending && (i == ICE_DFLT_IRQ_WORK);
1084}
1085
1086/**
1087 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1088 * @hw: pointer to hardware info
1089 * @cq: control queue information
1090 *
1091 * returns true if there are pending messages in a queue, false if there aren't
1092 */
1093static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1094{
1095	u16 ntu;
1096
1097	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1098	return cq->rq.next_to_clean != ntu;
1099}
1100
1101/**
1102 * ice_clean_adminq_subtask - clean the AdminQ rings
1103 * @pf: board private structure
1104 */
1105static void ice_clean_adminq_subtask(struct ice_pf *pf)
1106{
1107	struct ice_hw *hw = &pf->hw;
1108
1109	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1110		return;
1111
1112	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1113		return;
1114
1115	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1116
1117	/* There might be a situation where new messages arrive to a control
1118	 * queue between processing the last message and clearing the
1119	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1120	 * ice_ctrlq_pending) and process new messages if any.
1121	 */
1122	if (ice_ctrlq_pending(hw, &hw->adminq))
1123		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1124
1125	ice_flush(hw);
1126}
1127
1128/**
1129 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1130 * @pf: board private structure
1131 */
1132static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1133{
1134	struct ice_hw *hw = &pf->hw;
1135
1136	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1137		return;
1138
1139	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1140		return;
1141
1142	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1143
1144	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1145		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1146
1147	ice_flush(hw);
1148}
1149
1150/**
1151 * ice_service_task_schedule - schedule the service task to wake up
1152 * @pf: board private structure
1153 *
1154 * If not already scheduled, this puts the task into the work queue.
1155 */
1156static void ice_service_task_schedule(struct ice_pf *pf)
1157{
1158	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1159	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1160	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1161		queue_work(ice_wq, &pf->serv_task);
1162}
1163
1164/**
1165 * ice_service_task_complete - finish up the service task
1166 * @pf: board private structure
1167 */
1168static void ice_service_task_complete(struct ice_pf *pf)
1169{
1170	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1171
1172	/* force memory (pf->state) to sync before next service task */
1173	smp_mb__before_atomic();
1174	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1175}
1176
1177/**
1178 * ice_service_task_stop - stop service task and cancel works
1179 * @pf: board private structure
 
 
 
1180 */
1181static void ice_service_task_stop(struct ice_pf *pf)
1182{
1183	set_bit(__ICE_SERVICE_DIS, pf->state);
 
 
1184
1185	if (pf->serv_tmr.function)
1186		del_timer_sync(&pf->serv_tmr);
1187	if (pf->serv_task.func)
1188		cancel_work_sync(&pf->serv_task);
1189
1190	clear_bit(__ICE_SERVICE_SCHED, pf->state);
 
1191}
1192
1193/**
1194 * ice_service_task_restart - restart service task and schedule works
1195 * @pf: board private structure
1196 *
1197 * This function is needed for suspend and resume works (e.g WoL scenario)
1198 */
1199static void ice_service_task_restart(struct ice_pf *pf)
1200{
1201	clear_bit(__ICE_SERVICE_DIS, pf->state);
1202	ice_service_task_schedule(pf);
1203}
1204
1205/**
1206 * ice_service_timer - timer callback to schedule service task
1207 * @t: pointer to timer_list
1208 */
1209static void ice_service_timer(struct timer_list *t)
1210{
1211	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1212
1213	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1214	ice_service_task_schedule(pf);
1215}
1216
1217/**
1218 * ice_handle_mdd_event - handle malicious driver detect event
1219 * @pf: pointer to the PF structure
1220 *
1221 * Called from service task. OICR interrupt handler indicates MDD event
 
 
 
 
1222 */
1223static void ice_handle_mdd_event(struct ice_pf *pf)
1224{
 
1225	struct ice_hw *hw = &pf->hw;
1226	bool mdd_detected = false;
1227	u32 reg;
1228	int i;
1229
1230	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state))
 
 
 
 
1231		return;
 
1232
1233	/* find what triggered the MDD event */
1234	reg = rd32(hw, GL_MDET_TX_PQM);
1235	if (reg & GL_MDET_TX_PQM_VALID_M) {
1236		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1237				GL_MDET_TX_PQM_PF_NUM_S;
1238		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1239				GL_MDET_TX_PQM_VF_NUM_S;
1240		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1241				GL_MDET_TX_PQM_MAL_TYPE_S;
1242		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1243				GL_MDET_TX_PQM_QNUM_S);
1244
1245		if (netif_msg_tx_err(pf))
1246			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1247				 event, queue, pf_num, vf_num);
1248		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1249		mdd_detected = true;
1250	}
1251
1252	reg = rd32(hw, GL_MDET_TX_TCLAN);
1253	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1254		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1255				GL_MDET_TX_TCLAN_PF_NUM_S;
1256		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1257				GL_MDET_TX_TCLAN_VF_NUM_S;
1258		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1259				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1260		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1261				GL_MDET_TX_TCLAN_QNUM_S);
1262
1263		if (netif_msg_rx_err(pf))
1264			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1265				 event, queue, pf_num, vf_num);
1266		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1267		mdd_detected = true;
1268	}
1269
1270	reg = rd32(hw, GL_MDET_RX);
1271	if (reg & GL_MDET_RX_VALID_M) {
1272		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1273				GL_MDET_RX_PF_NUM_S;
1274		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1275				GL_MDET_RX_VF_NUM_S;
1276		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1277				GL_MDET_RX_MAL_TYPE_S;
1278		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1279				GL_MDET_RX_QNUM_S);
1280
1281		if (netif_msg_rx_err(pf))
1282			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1283				 event, queue, pf_num, vf_num);
1284		wr32(hw, GL_MDET_RX, 0xffffffff);
1285		mdd_detected = true;
1286	}
1287
1288	if (mdd_detected) {
1289		bool pf_mdd_detected = false;
1290
1291		reg = rd32(hw, PF_MDET_TX_PQM);
1292		if (reg & PF_MDET_TX_PQM_VALID_M) {
1293			wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1294			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1295			pf_mdd_detected = true;
1296		}
1297
1298		reg = rd32(hw, PF_MDET_TX_TCLAN);
1299		if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1300			wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1301			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1302			pf_mdd_detected = true;
1303		}
1304
1305		reg = rd32(hw, PF_MDET_RX);
1306		if (reg & PF_MDET_RX_VALID_M) {
1307			wr32(hw, PF_MDET_RX, 0xFFFF);
1308			dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
1309			pf_mdd_detected = true;
1310		}
1311		/* Queue belongs to the PF initiate a reset */
1312		if (pf_mdd_detected) {
1313			set_bit(__ICE_NEEDS_RESTART, pf->state);
1314			ice_service_task_schedule(pf);
1315		}
1316	}
1317
1318	/* check to see if one of the VFs caused the MDD */
1319	for (i = 0; i < pf->num_alloc_vfs; i++) {
 
 
1320		struct ice_vf *vf = &pf->vf[i];
1321
1322		bool vf_mdd_detected = false;
1323
1324		reg = rd32(hw, VP_MDET_TX_PQM(i));
1325		if (reg & VP_MDET_TX_PQM_VALID_M) {
1326			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1327			vf_mdd_detected = true;
1328			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1329				 i);
 
 
1330		}
1331
1332		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1333		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1334			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1335			vf_mdd_detected = true;
1336			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1337				 i);
 
 
1338		}
1339
1340		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1341		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1342			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1343			vf_mdd_detected = true;
1344			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1345				 i);
 
 
1346		}
1347
1348		reg = rd32(hw, VP_MDET_RX(i));
1349		if (reg & VP_MDET_RX_VALID_M) {
1350			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1351			vf_mdd_detected = true;
1352			dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
1353				 i);
1354		}
1355
1356		if (vf_mdd_detected) {
1357			vf->num_mdd_events++;
1358			if (vf->num_mdd_events &&
1359			    vf->num_mdd_events <= ICE_MDD_EVENTS_THRESHOLD)
1360				dev_info(&pf->pdev->dev,
1361					 "VF %d has had %llu MDD events since last boot, Admin might need to reload AVF driver with this number of events\n",
1362					 i, vf->num_mdd_events);
 
 
 
 
 
1363		}
1364	}
 
 
1365}
1366
1367/**
1368 * ice_force_phys_link_state - Force the physical link state
1369 * @vsi: VSI to force the physical link state to up/down
1370 * @link_up: true/false indicates to set the physical link to up/down
1371 *
1372 * Force the physical link state by getting the current PHY capabilities from
1373 * hardware and setting the PHY config based on the determined capabilities. If
1374 * link changes a link event will be triggered because both the Enable Automatic
1375 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1376 *
1377 * Returns 0 on success, negative on failure
1378 */
1379static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1380{
1381	struct ice_aqc_get_phy_caps_data *pcaps;
1382	struct ice_aqc_set_phy_cfg_data *cfg;
1383	struct ice_port_info *pi;
1384	struct device *dev;
1385	int retcode;
1386
1387	if (!vsi || !vsi->port_info || !vsi->back)
1388		return -EINVAL;
1389	if (vsi->type != ICE_VSI_PF)
1390		return 0;
1391
1392	dev = &vsi->back->pdev->dev;
1393
1394	pi = vsi->port_info;
1395
1396	pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL);
1397	if (!pcaps)
1398		return -ENOMEM;
1399
1400	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1401				      NULL);
1402	if (retcode) {
1403		dev_err(dev,
1404			"Failed to get phy capabilities, VSI %d error %d\n",
1405			vsi->vsi_num, retcode);
1406		retcode = -EIO;
1407		goto out;
1408	}
1409
1410	/* No change in link */
1411	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1412	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1413		goto out;
1414
1415	cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL);
 
 
 
 
1416	if (!cfg) {
1417		retcode = -ENOMEM;
1418		goto out;
1419	}
1420
1421	cfg->phy_type_low = pcaps->phy_type_low;
1422	cfg->phy_type_high = pcaps->phy_type_high;
1423	cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1424	cfg->low_power_ctrl = pcaps->low_power_ctrl;
1425	cfg->eee_cap = pcaps->eee_cap;
1426	cfg->eeer_value = pcaps->eeer_value;
1427	cfg->link_fec_opt = pcaps->link_fec_options;
1428	if (link_up)
1429		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1430	else
1431		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1432
1433	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
1434	if (retcode) {
1435		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1436			vsi->vsi_num, retcode);
1437		retcode = -EIO;
1438	}
1439
1440	devm_kfree(dev, cfg);
1441out:
1442	devm_kfree(dev, pcaps);
1443	return retcode;
1444}
1445
1446/**
1447 * ice_check_media_subtask - Check for media; bring link up if detected.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448 * @pf: pointer to PF struct
 
 
 
1449 */
1450static void ice_check_media_subtask(struct ice_pf *pf)
1451{
1452	struct ice_port_info *pi;
1453	struct ice_vsi *vsi;
1454	int err;
1455
1456	vsi = ice_get_main_vsi(pf);
1457	if (!vsi)
1458		return;
1459
1460	/* No need to check for media if it's already present or the interface
1461	 * is down
1462	 */
1463	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) ||
1464	    test_bit(__ICE_DOWN, vsi->state))
1465		return;
1466
1467	/* Refresh link info and check if media is present */
1468	pi = vsi->port_info;
1469	err = ice_update_link_info(pi);
1470	if (err)
1471		return;
1472
1473	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1474		err = ice_force_phys_link_state(vsi, true);
1475		if (err)
 
 
 
 
 
 
1476			return;
1477		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
 
 
 
1478
1479		/* A Link Status Event will be generated; the event handler
1480		 * will complete bringing the interface up
1481		 */
1482	}
1483}
1484
1485/**
1486 * ice_service_task - manage and run subtasks
1487 * @work: pointer to work_struct contained by the PF struct
1488 */
1489static void ice_service_task(struct work_struct *work)
1490{
1491	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1492	unsigned long start_time = jiffies;
1493
1494	/* subtasks */
1495
1496	/* process reset requests first */
1497	ice_reset_subtask(pf);
1498
1499	/* bail if a reset/recovery cycle is pending or rebuild failed */
1500	if (ice_is_reset_in_progress(pf->state) ||
1501	    test_bit(__ICE_SUSPENDED, pf->state) ||
1502	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1503		ice_service_task_complete(pf);
1504		return;
1505	}
1506
1507	ice_clean_adminq_subtask(pf);
1508	ice_check_media_subtask(pf);
1509	ice_check_for_hang_subtask(pf);
1510	ice_sync_fltr_subtask(pf);
1511	ice_handle_mdd_event(pf);
1512	ice_watchdog_subtask(pf);
1513
1514	if (ice_is_safe_mode(pf)) {
1515		ice_service_task_complete(pf);
1516		return;
1517	}
1518
1519	ice_process_vflr_event(pf);
1520	ice_clean_mailboxq_subtask(pf);
1521
1522	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1523	ice_service_task_complete(pf);
1524
1525	/* If the tasks have taken longer than one service timer period
1526	 * or there is more work to be done, reset the service timer to
1527	 * schedule the service task now.
1528	 */
1529	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1530	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1531	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1532	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1533	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1534		mod_timer(&pf->serv_tmr, jiffies);
1535}
1536
1537/**
1538 * ice_set_ctrlq_len - helper function to set controlq length
1539 * @hw: pointer to the HW instance
1540 */
1541static void ice_set_ctrlq_len(struct ice_hw *hw)
1542{
1543	hw->adminq.num_rq_entries = ICE_AQ_LEN;
1544	hw->adminq.num_sq_entries = ICE_AQ_LEN;
1545	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1546	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1547	hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN;
1548	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
1549	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1550	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1551}
1552
1553/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554 * ice_irq_affinity_notify - Callback for affinity changes
1555 * @notify: context as to what irq was changed
1556 * @mask: the new affinity mask
1557 *
1558 * This is a callback function used by the irq_set_affinity_notifier function
1559 * so that we may register to receive changes to the irq affinity masks.
1560 */
1561static void
1562ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1563			const cpumask_t *mask)
1564{
1565	struct ice_q_vector *q_vector =
1566		container_of(notify, struct ice_q_vector, affinity_notify);
1567
1568	cpumask_copy(&q_vector->affinity_mask, mask);
1569}
1570
1571/**
1572 * ice_irq_affinity_release - Callback for affinity notifier release
1573 * @ref: internal core kernel usage
1574 *
1575 * This is a callback function used by the irq_set_affinity_notifier function
1576 * to inform the current notification subscriber that they will no longer
1577 * receive notifications.
1578 */
1579static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1580
1581/**
1582 * ice_vsi_ena_irq - Enable IRQ for the given VSI
1583 * @vsi: the VSI being configured
1584 */
1585static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1586{
1587	struct ice_hw *hw = &vsi->back->hw;
1588	int i;
1589
1590	ice_for_each_q_vector(vsi, i)
1591		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1592
1593	ice_flush(hw);
1594	return 0;
1595}
1596
1597/**
1598 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1599 * @vsi: the VSI being configured
1600 * @basename: name for the vector
1601 */
1602static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1603{
1604	int q_vectors = vsi->num_q_vectors;
1605	struct ice_pf *pf = vsi->back;
1606	int base = vsi->base_vector;
 
1607	int rx_int_idx = 0;
1608	int tx_int_idx = 0;
1609	int vector, err;
1610	int irq_num;
1611
 
1612	for (vector = 0; vector < q_vectors; vector++) {
1613		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1614
1615		irq_num = pf->msix_entries[base + vector].vector;
1616
1617		if (q_vector->tx.ring && q_vector->rx.ring) {
1618			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1619				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1620			tx_int_idx++;
1621		} else if (q_vector->rx.ring) {
1622			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1623				 "%s-%s-%d", basename, "rx", rx_int_idx++);
1624		} else if (q_vector->tx.ring) {
1625			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1626				 "%s-%s-%d", basename, "tx", tx_int_idx++);
1627		} else {
1628			/* skip this unused q_vector */
1629			continue;
1630		}
1631		err = devm_request_irq(&pf->pdev->dev, irq_num,
1632				       vsi->irq_handler, 0,
1633				       q_vector->name, q_vector);
1634		if (err) {
1635			netdev_err(vsi->netdev,
1636				   "MSIX request_irq failed, error: %d\n", err);
1637			goto free_q_irqs;
1638		}
1639
1640		/* register for affinity change notifications */
1641		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1642		q_vector->affinity_notify.release = ice_irq_affinity_release;
1643		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 
 
 
 
 
1644
1645		/* assign the mask for this irq */
1646		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1647	}
1648
1649	vsi->irqs_ready = true;
1650	return 0;
1651
1652free_q_irqs:
1653	while (vector) {
1654		vector--;
1655		irq_num = pf->msix_entries[base + vector].vector,
1656		irq_set_affinity_notifier(irq_num, NULL);
 
1657		irq_set_affinity_hint(irq_num, NULL);
1658		devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1659	}
1660	return err;
1661}
1662
1663/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664 * ice_ena_misc_vector - enable the non-queue interrupts
1665 * @pf: board private structure
1666 */
1667static void ice_ena_misc_vector(struct ice_pf *pf)
1668{
1669	struct ice_hw *hw = &pf->hw;
1670	u32 val;
1671
 
 
 
 
 
 
 
 
1672	/* clear things first */
1673	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
1674	rd32(hw, PFINT_OICR);		/* read to clear */
1675
1676	val = (PFINT_OICR_ECC_ERR_M |
1677	       PFINT_OICR_MAL_DETECT_M |
1678	       PFINT_OICR_GRST_M |
1679	       PFINT_OICR_PCI_EXCEPTION_M |
1680	       PFINT_OICR_VFLR_M |
1681	       PFINT_OICR_HMC_ERR_M |
1682	       PFINT_OICR_PE_CRITERR_M);
1683
1684	wr32(hw, PFINT_OICR_ENA, val);
1685
1686	/* SW_ITR_IDX = 0, but don't change INTENA */
1687	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1688	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1689}
1690
1691/**
1692 * ice_misc_intr - misc interrupt handler
1693 * @irq: interrupt number
1694 * @data: pointer to a q_vector
1695 */
1696static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1697{
1698	struct ice_pf *pf = (struct ice_pf *)data;
1699	struct ice_hw *hw = &pf->hw;
1700	irqreturn_t ret = IRQ_NONE;
 
1701	u32 oicr, ena_mask;
1702
 
1703	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1704	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1705
1706	oicr = rd32(hw, PFINT_OICR);
1707	ena_mask = rd32(hw, PFINT_OICR_ENA);
1708
1709	if (oicr & PFINT_OICR_SWINT_M) {
1710		ena_mask &= ~PFINT_OICR_SWINT_M;
1711		pf->sw_int_count++;
1712	}
1713
1714	if (oicr & PFINT_OICR_MAL_DETECT_M) {
1715		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
1716		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
1717	}
1718	if (oicr & PFINT_OICR_VFLR_M) {
1719		ena_mask &= ~PFINT_OICR_VFLR_M;
1720		set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
 
 
 
 
 
 
 
 
1721	}
1722
1723	if (oicr & PFINT_OICR_GRST_M) {
1724		u32 reset;
1725
1726		/* we have a reset warning */
1727		ena_mask &= ~PFINT_OICR_GRST_M;
1728		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1729			GLGEN_RSTAT_RESET_TYPE_S;
1730
1731		if (reset == ICE_RESET_CORER)
1732			pf->corer_count++;
1733		else if (reset == ICE_RESET_GLOBR)
1734			pf->globr_count++;
1735		else if (reset == ICE_RESET_EMPR)
1736			pf->empr_count++;
1737		else
1738			dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n",
1739				reset);
1740
1741		/* If a reset cycle isn't already in progress, we set a bit in
1742		 * pf->state so that the service task can start a reset/rebuild.
1743		 * We also make note of which reset happened so that peer
1744		 * devices/drivers can be informed.
1745		 */
1746		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
1747			if (reset == ICE_RESET_CORER)
1748				set_bit(__ICE_CORER_RECV, pf->state);
1749			else if (reset == ICE_RESET_GLOBR)
1750				set_bit(__ICE_GLOBR_RECV, pf->state);
1751			else
1752				set_bit(__ICE_EMPR_RECV, pf->state);
1753
1754			/* There are couple of different bits at play here.
1755			 * hw->reset_ongoing indicates whether the hardware is
1756			 * in reset. This is set to true when a reset interrupt
1757			 * is received and set back to false after the driver
1758			 * has determined that the hardware is out of reset.
1759			 *
1760			 * __ICE_RESET_OICR_RECV in pf->state indicates
1761			 * that a post reset rebuild is required before the
1762			 * driver is operational again. This is set above.
1763			 *
1764			 * As this is the start of the reset/rebuild cycle, set
1765			 * both to indicate that.
1766			 */
1767			hw->reset_ongoing = true;
1768		}
1769	}
1770
1771	if (oicr & PFINT_OICR_HMC_ERR_M) {
1772		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1773		dev_dbg(&pf->pdev->dev,
1774			"HMC Error interrupt - info 0x%x, data 0x%x\n",
1775			rd32(hw, PFHMC_ERRORINFO),
1776			rd32(hw, PFHMC_ERRORDATA));
1777	}
1778
1779	/* Report any remaining unexpected interrupts */
1780	oicr &= ena_mask;
1781	if (oicr) {
1782		dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1783			oicr);
1784		/* If a critical error is pending there is no choice but to
1785		 * reset the device.
1786		 */
1787		if (oicr & (PFINT_OICR_PE_CRITERR_M |
1788			    PFINT_OICR_PCI_EXCEPTION_M |
1789			    PFINT_OICR_ECC_ERR_M)) {
1790			set_bit(__ICE_PFR_REQ, pf->state);
1791			ice_service_task_schedule(pf);
1792		}
1793	}
1794	ret = IRQ_HANDLED;
1795
1796	if (!test_bit(__ICE_DOWN, pf->state)) {
1797		ice_service_task_schedule(pf);
1798		ice_irq_dynamic_ena(hw, NULL, NULL);
1799	}
1800
1801	return ret;
1802}
1803
1804/**
1805 * ice_dis_ctrlq_interrupts - disable control queue interrupts
1806 * @hw: pointer to HW structure
1807 */
1808static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
1809{
1810	/* disable Admin queue Interrupt causes */
1811	wr32(hw, PFINT_FW_CTL,
1812	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
1813
1814	/* disable Mailbox queue Interrupt causes */
1815	wr32(hw, PFINT_MBX_CTL,
1816	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
1817
1818	/* disable Control queue Interrupt causes */
1819	wr32(hw, PFINT_OICR_CTL,
1820	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
1821
1822	ice_flush(hw);
1823}
1824
1825/**
1826 * ice_free_irq_msix_misc - Unroll misc vector setup
1827 * @pf: board private structure
1828 */
1829static void ice_free_irq_msix_misc(struct ice_pf *pf)
1830{
1831	struct ice_hw *hw = &pf->hw;
1832
1833	ice_dis_ctrlq_interrupts(hw);
1834
1835	/* disable OICR interrupt */
1836	wr32(hw, PFINT_OICR_ENA, 0);
1837	ice_flush(hw);
1838
1839	if (pf->msix_entries) {
1840		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
1841		devm_free_irq(&pf->pdev->dev,
1842			      pf->msix_entries[pf->oicr_idx].vector, pf);
1843	}
1844
1845	pf->num_avail_sw_msix += 1;
1846	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
1847}
1848
1849/**
1850 * ice_ena_ctrlq_interrupts - enable control queue interrupts
1851 * @hw: pointer to HW structure
1852 * @reg_idx: HW vector index to associate the control queue interrupts with
1853 */
1854static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
1855{
1856	u32 val;
1857
1858	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
1859	       PFINT_OICR_CTL_CAUSE_ENA_M);
1860	wr32(hw, PFINT_OICR_CTL, val);
1861
1862	/* enable Admin queue Interrupt causes */
1863	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
1864	       PFINT_FW_CTL_CAUSE_ENA_M);
1865	wr32(hw, PFINT_FW_CTL, val);
1866
1867	/* enable Mailbox queue Interrupt causes */
1868	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
1869	       PFINT_MBX_CTL_CAUSE_ENA_M);
1870	wr32(hw, PFINT_MBX_CTL, val);
1871
1872	ice_flush(hw);
1873}
1874
1875/**
1876 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
1877 * @pf: board private structure
1878 *
1879 * This sets up the handler for MSIX 0, which is used to manage the
1880 * non-queue interrupts, e.g. AdminQ and errors. This is not used
1881 * when in MSI or Legacy interrupt mode.
1882 */
1883static int ice_req_irq_msix_misc(struct ice_pf *pf)
1884{
 
1885	struct ice_hw *hw = &pf->hw;
1886	int oicr_idx, err = 0;
1887
1888	if (!pf->int_name[0])
1889		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
1890			 dev_driver_string(&pf->pdev->dev),
1891			 dev_name(&pf->pdev->dev));
1892
1893	/* Do not request IRQ but do enable OICR interrupt since settings are
1894	 * lost during reset. Note that this function is called only during
1895	 * rebuild path and not while reset is in progress.
1896	 */
1897	if (ice_is_reset_in_progress(pf->state))
1898		goto skip_req_irq;
1899
1900	/* reserve one vector in irq_tracker for misc interrupts */
1901	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1902	if (oicr_idx < 0)
1903		return oicr_idx;
1904
1905	pf->num_avail_sw_msix -= 1;
1906	pf->oicr_idx = oicr_idx;
1907
1908	err = devm_request_irq(&pf->pdev->dev,
1909			       pf->msix_entries[pf->oicr_idx].vector,
1910			       ice_misc_intr, 0, pf->int_name, pf);
1911	if (err) {
1912		dev_err(&pf->pdev->dev,
1913			"devm_request_irq for %s failed: %d\n",
1914			pf->int_name, err);
1915		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1916		pf->num_avail_sw_msix += 1;
1917		return err;
1918	}
1919
1920skip_req_irq:
1921	ice_ena_misc_vector(pf);
1922
1923	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
1924	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
1925	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
1926
1927	ice_flush(hw);
1928	ice_irq_dynamic_ena(hw, NULL, NULL);
1929
1930	return 0;
1931}
1932
1933/**
1934 * ice_napi_add - register NAPI handler for the VSI
1935 * @vsi: VSI for which NAPI handler is to be registered
1936 *
1937 * This function is only called in the driver's load path. Registering the NAPI
1938 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
1939 * reset/rebuild, etc.)
1940 */
1941static void ice_napi_add(struct ice_vsi *vsi)
1942{
1943	int v_idx;
1944
1945	if (!vsi->netdev)
1946		return;
1947
1948	ice_for_each_q_vector(vsi, v_idx)
1949		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
1950			       ice_napi_poll, NAPI_POLL_WEIGHT);
1951}
1952
1953/**
1954 * ice_set_ops - set netdev and ethtools ops for the given netdev
1955 * @netdev: netdev instance
1956 */
1957static void ice_set_ops(struct net_device *netdev)
1958{
1959	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1960
1961	if (ice_is_safe_mode(pf)) {
1962		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
1963		ice_set_ethtool_safe_mode_ops(netdev);
1964		return;
1965	}
1966
1967	netdev->netdev_ops = &ice_netdev_ops;
1968	ice_set_ethtool_ops(netdev);
1969}
1970
1971/**
1972 * ice_set_netdev_features - set features for the given netdev
1973 * @netdev: netdev instance
1974 */
1975static void ice_set_netdev_features(struct net_device *netdev)
1976{
1977	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1978	netdev_features_t csumo_features;
1979	netdev_features_t vlano_features;
1980	netdev_features_t dflt_features;
1981	netdev_features_t tso_features;
1982
1983	if (ice_is_safe_mode(pf)) {
1984		/* safe mode */
1985		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
1986		netdev->hw_features = netdev->features;
1987		return;
1988	}
1989
1990	dflt_features = NETIF_F_SG	|
1991			NETIF_F_HIGHDMA	|
 
1992			NETIF_F_RXHASH;
1993
1994	csumo_features = NETIF_F_RXCSUM	  |
1995			 NETIF_F_IP_CSUM  |
1996			 NETIF_F_SCTP_CRC |
1997			 NETIF_F_IPV6_CSUM;
1998
1999	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2000			 NETIF_F_HW_VLAN_CTAG_TX     |
2001			 NETIF_F_HW_VLAN_CTAG_RX;
2002
2003	tso_features = NETIF_F_TSO;
 
 
 
 
 
 
 
 
 
 
2004
 
 
2005	/* set features that user can change */
2006	netdev->hw_features = dflt_features | csumo_features |
2007			      vlano_features | tso_features;
2008
 
 
 
2009	/* enable features */
2010	netdev->features |= netdev->hw_features;
2011	/* encap and VLAN devices inherit default, csumo and tso features */
2012	netdev->hw_enc_features |= dflt_features | csumo_features |
2013				   tso_features;
2014	netdev->vlan_features |= dflt_features | csumo_features |
2015				 tso_features;
2016}
2017
2018/**
2019 * ice_cfg_netdev - Allocate, configure and register a netdev
2020 * @vsi: the VSI associated with the new netdev
2021 *
2022 * Returns 0 on success, negative value on failure
2023 */
2024static int ice_cfg_netdev(struct ice_vsi *vsi)
2025{
2026	struct ice_pf *pf = vsi->back;
2027	struct ice_netdev_priv *np;
2028	struct net_device *netdev;
2029	u8 mac_addr[ETH_ALEN];
2030	int err;
2031
 
 
 
 
2032	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2033				    vsi->alloc_rxq);
2034	if (!netdev)
2035		return -ENOMEM;
 
 
2036
2037	vsi->netdev = netdev;
2038	np = netdev_priv(netdev);
2039	np->vsi = vsi;
2040
2041	ice_set_netdev_features(netdev);
2042
2043	ice_set_ops(netdev);
2044
2045	if (vsi->type == ICE_VSI_PF) {
2046		SET_NETDEV_DEV(netdev, &pf->pdev->dev);
2047		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2048		ether_addr_copy(netdev->dev_addr, mac_addr);
2049		ether_addr_copy(netdev->perm_addr, mac_addr);
2050	}
2051
2052	netdev->priv_flags |= IFF_UNICAST_FLT;
2053
2054	/* Setup netdev TC information */
2055	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2056
2057	/* setup watchdog timeout value to be 5 second */
2058	netdev->watchdog_timeo = 5 * HZ;
2059
2060	netdev->min_mtu = ETH_MIN_MTU;
2061	netdev->max_mtu = ICE_MAX_MTU;
2062
2063	err = register_netdev(vsi->netdev);
2064	if (err)
2065		return err;
 
 
2066
2067	netif_carrier_off(vsi->netdev);
2068
2069	/* make sure transmit queues start off as stopped */
2070	netif_tx_stop_all_queues(vsi->netdev);
2071
2072	return 0;
 
 
 
 
 
 
 
2073}
2074
2075/**
2076 * ice_fill_rss_lut - Fill the RSS lookup table with default values
2077 * @lut: Lookup table
2078 * @rss_table_size: Lookup table size
2079 * @rss_size: Range of queue number for hashing
2080 */
2081void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2082{
2083	u16 i;
2084
2085	for (i = 0; i < rss_table_size; i++)
2086		lut[i] = i % rss_size;
2087}
2088
2089/**
2090 * ice_pf_vsi_setup - Set up a PF VSI
2091 * @pf: board private structure
2092 * @pi: pointer to the port_info instance
2093 *
2094 * Returns pointer to the successfully allocated VSI software struct
2095 * on success, otherwise returns NULL on failure.
2096 */
2097static struct ice_vsi *
2098ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2099{
2100	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
2101}
2102
2103/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2104 * ice_lb_vsi_setup - Set up a loopback VSI
2105 * @pf: board private structure
2106 * @pi: pointer to the port_info instance
2107 *
2108 * Returns pointer to the successfully allocated VSI software struct
2109 * on success, otherwise returns NULL on failure.
2110 */
2111struct ice_vsi *
2112ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2113{
2114	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
2115}
2116
2117/**
2118 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
2119 * @netdev: network interface to be adjusted
2120 * @proto: unused protocol
2121 * @vid: VLAN ID to be added
2122 *
2123 * net_device_ops implementation for adding VLAN IDs
2124 */
2125static int
2126ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
2127		    u16 vid)
2128{
2129	struct ice_netdev_priv *np = netdev_priv(netdev);
2130	struct ice_vsi *vsi = np->vsi;
2131	int ret;
2132
2133	if (vid >= VLAN_N_VID) {
2134		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2135			   vid, VLAN_N_VID);
2136		return -EINVAL;
2137	}
2138
2139	if (vsi->info.pvid)
2140		return -EINVAL;
2141
2142	/* Enable VLAN pruning when VLAN 0 is added */
2143	if (unlikely(!vid)) {
 
 
 
 
2144		ret = ice_cfg_vlan_pruning(vsi, true, false);
2145		if (ret)
2146			return ret;
2147	}
2148
2149	/* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is
2150	 * needed to continue allowing all untagged packets since VLAN prune
2151	 * list is applied to all packets by the switch
2152	 */
2153	ret = ice_vsi_add_vlan(vsi, vid);
2154	if (!ret) {
2155		vsi->vlan_ena = true;
2156		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2157	}
2158
2159	return ret;
2160}
2161
2162/**
2163 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
2164 * @netdev: network interface to be adjusted
2165 * @proto: unused protocol
2166 * @vid: VLAN ID to be removed
2167 *
2168 * net_device_ops implementation for removing VLAN IDs
2169 */
2170static int
2171ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
2172		     u16 vid)
2173{
2174	struct ice_netdev_priv *np = netdev_priv(netdev);
2175	struct ice_vsi *vsi = np->vsi;
2176	int ret;
2177
2178	if (vsi->info.pvid)
2179		return -EINVAL;
2180
 
 
 
 
2181	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
2182	 * information
2183	 */
2184	ret = ice_vsi_kill_vlan(vsi, vid);
2185	if (ret)
2186		return ret;
2187
2188	/* Disable VLAN pruning when VLAN 0 is removed */
2189	if (unlikely(!vid))
2190		ret = ice_cfg_vlan_pruning(vsi, false, false);
2191
2192	vsi->vlan_ena = false;
2193	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2194	return ret;
2195}
2196
2197/**
2198 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2199 * @pf: board private structure
2200 *
2201 * Returns 0 on success, negative value on failure
2202 */
2203static int ice_setup_pf_sw(struct ice_pf *pf)
2204{
2205	struct ice_vsi *vsi;
2206	int status = 0;
2207
2208	if (ice_is_reset_in_progress(pf->state))
2209		return -EBUSY;
2210
2211	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2212	if (!vsi) {
2213		status = -ENOMEM;
2214		goto unroll_vsi_setup;
2215	}
2216
2217	status = ice_cfg_netdev(vsi);
2218	if (status) {
2219		status = -ENODEV;
2220		goto unroll_vsi_setup;
2221	}
 
 
 
 
 
2222
2223	/* registering the NAPI handler requires both the queues and
2224	 * netdev to be created, which are done in ice_pf_vsi_setup()
2225	 * and ice_cfg_netdev() respectively
2226	 */
2227	ice_napi_add(vsi);
2228
 
 
 
 
 
 
 
2229	status = ice_init_mac_fltr(pf);
2230	if (status)
2231		goto unroll_napi_add;
2232
2233	return status;
2234
 
 
 
2235unroll_napi_add:
2236	if (vsi) {
2237		ice_napi_del(vsi);
2238		if (vsi->netdev) {
2239			if (vsi->netdev->reg_state == NETREG_REGISTERED)
2240				unregister_netdev(vsi->netdev);
2241			free_netdev(vsi->netdev);
2242			vsi->netdev = NULL;
2243		}
2244	}
2245
2246unroll_vsi_setup:
2247	if (vsi) {
2248		ice_vsi_free_q_vectors(vsi);
2249		ice_vsi_delete(vsi);
2250		ice_vsi_put_qs(vsi);
2251		ice_vsi_clear(vsi);
2252	}
2253	return status;
2254}
2255
2256/**
2257 * ice_get_avail_q_count - Get count of queues in use
2258 * @pf_qmap: bitmap to get queue use count from
2259 * @lock: pointer to a mutex that protects access to pf_qmap
2260 * @size: size of the bitmap
2261 */
2262static u16
2263ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
2264{
2265	u16 count = 0, bit;
 
2266
2267	mutex_lock(lock);
2268	for_each_clear_bit(bit, pf_qmap, size)
2269		count++;
2270	mutex_unlock(lock);
2271
2272	return count;
2273}
2274
2275/**
2276 * ice_get_avail_txq_count - Get count of Tx queues in use
2277 * @pf: pointer to an ice_pf instance
2278 */
2279u16 ice_get_avail_txq_count(struct ice_pf *pf)
2280{
2281	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
2282				     pf->max_pf_txqs);
2283}
2284
2285/**
2286 * ice_get_avail_rxq_count - Get count of Rx queues in use
2287 * @pf: pointer to an ice_pf instance
2288 */
2289u16 ice_get_avail_rxq_count(struct ice_pf *pf)
2290{
2291	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
2292				     pf->max_pf_rxqs);
2293}
2294
2295/**
2296 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2297 * @pf: board private structure to initialize
2298 */
2299static void ice_deinit_pf(struct ice_pf *pf)
2300{
2301	ice_service_task_stop(pf);
2302	mutex_destroy(&pf->sw_mutex);
 
2303	mutex_destroy(&pf->avail_q_mutex);
2304
2305	if (pf->avail_txqs) {
2306		bitmap_free(pf->avail_txqs);
2307		pf->avail_txqs = NULL;
2308	}
2309
2310	if (pf->avail_rxqs) {
2311		bitmap_free(pf->avail_rxqs);
2312		pf->avail_rxqs = NULL;
2313	}
2314}
2315
2316/**
2317 * ice_set_pf_caps - set PFs capability flags
2318 * @pf: pointer to the PF instance
2319 */
2320static void ice_set_pf_caps(struct ice_pf *pf)
2321{
2322	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
2323
2324	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2325	if (func_caps->common_cap.dcb)
2326		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2327#ifdef CONFIG_PCI_IOV
2328	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2329	if (func_caps->common_cap.sr_iov_1_1) {
2330		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2331		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
2332					      ICE_MAX_VF_COUNT);
2333	}
2334#endif /* CONFIG_PCI_IOV */
2335	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
2336	if (func_caps->common_cap.rss_table_size)
2337		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339	pf->max_pf_txqs = func_caps->common_cap.num_txq;
2340	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
2341}
2342
2343/**
2344 * ice_init_pf - Initialize general software structures (struct ice_pf)
2345 * @pf: board private structure to initialize
2346 */
2347static int ice_init_pf(struct ice_pf *pf)
2348{
2349	ice_set_pf_caps(pf);
2350
2351	mutex_init(&pf->sw_mutex);
 
 
 
 
 
2352
2353	/* setup service timer and periodic service task */
2354	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2355	pf->serv_tmr_period = HZ;
2356	INIT_WORK(&pf->serv_task, ice_service_task);
2357	clear_bit(__ICE_SERVICE_SCHED, pf->state);
2358
2359	mutex_init(&pf->avail_q_mutex);
2360	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
2361	if (!pf->avail_txqs)
2362		return -ENOMEM;
2363
2364	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
2365	if (!pf->avail_rxqs) {
2366		devm_kfree(&pf->pdev->dev, pf->avail_txqs);
2367		pf->avail_txqs = NULL;
2368		return -ENOMEM;
2369	}
2370
2371	return 0;
2372}
2373
2374/**
2375 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2376 * @pf: board private structure
2377 *
2378 * compute the number of MSIX vectors required (v_budget) and request from
2379 * the OS. Return the number of vectors reserved or negative on failure
2380 */
2381static int ice_ena_msix_range(struct ice_pf *pf)
2382{
 
2383	int v_left, v_actual, v_budget = 0;
2384	int needed, err, i;
2385
2386	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2387
2388	/* reserve one vector for miscellaneous handler */
2389	needed = 1;
2390	if (v_left < needed)
2391		goto no_hw_vecs_left_err;
2392	v_budget += needed;
2393	v_left -= needed;
2394
2395	/* reserve vectors for LAN traffic */
2396	needed = min_t(int, num_online_cpus(), v_left);
2397	if (v_left < needed)
2398		goto no_hw_vecs_left_err;
2399	pf->num_lan_msix = needed;
2400	v_budget += needed;
2401	v_left -= needed;
2402
2403	pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
 
 
 
 
 
 
 
 
 
2404					sizeof(*pf->msix_entries), GFP_KERNEL);
2405
2406	if (!pf->msix_entries) {
2407		err = -ENOMEM;
2408		goto exit_err;
2409	}
2410
2411	for (i = 0; i < v_budget; i++)
2412		pf->msix_entries[i].entry = i;
2413
2414	/* actually reserve the vectors */
2415	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2416					 ICE_MIN_MSIX, v_budget);
2417
2418	if (v_actual < 0) {
2419		dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
2420		err = v_actual;
2421		goto msix_err;
2422	}
2423
2424	if (v_actual < v_budget) {
2425		dev_warn(&pf->pdev->dev,
2426			 "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
2427			 v_budget, v_actual);
2428/* 2 vectors for LAN (traffic + OICR) */
2429#define ICE_MIN_LAN_VECS 2
 
 
2430
2431		if (v_actual < ICE_MIN_LAN_VECS) {
2432			/* error if we can't get minimum vectors */
2433			pci_disable_msix(pf->pdev);
2434			err = -ERANGE;
2435			goto msix_err;
2436		} else {
2437			pf->num_lan_msix = ICE_MIN_LAN_VECS;
2438		}
2439	}
2440
2441	return v_actual;
2442
2443msix_err:
2444	devm_kfree(&pf->pdev->dev, pf->msix_entries);
2445	goto exit_err;
2446
2447no_hw_vecs_left_err:
2448	dev_err(&pf->pdev->dev,
2449		"not enough device MSI-X vectors. requested = %d, available = %d\n",
2450		needed, v_left);
2451	err = -ERANGE;
2452exit_err:
2453	pf->num_lan_msix = 0;
2454	return err;
2455}
2456
2457/**
2458 * ice_dis_msix - Disable MSI-X interrupt setup in OS
2459 * @pf: board private structure
2460 */
2461static void ice_dis_msix(struct ice_pf *pf)
2462{
2463	pci_disable_msix(pf->pdev);
2464	devm_kfree(&pf->pdev->dev, pf->msix_entries);
2465	pf->msix_entries = NULL;
2466}
2467
2468/**
2469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2470 * @pf: board private structure
2471 */
2472static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2473{
2474	ice_dis_msix(pf);
2475
2476	if (pf->irq_tracker) {
2477		devm_kfree(&pf->pdev->dev, pf->irq_tracker);
2478		pf->irq_tracker = NULL;
2479	}
2480}
2481
2482/**
2483 * ice_init_interrupt_scheme - Determine proper interrupt scheme
2484 * @pf: board private structure to initialize
2485 */
2486static int ice_init_interrupt_scheme(struct ice_pf *pf)
2487{
2488	int vectors;
2489
2490	vectors = ice_ena_msix_range(pf);
2491
2492	if (vectors < 0)
2493		return vectors;
2494
2495	/* set up vector assignment tracking */
2496	pf->irq_tracker =
2497		devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) +
2498			     (sizeof(u16) * vectors), GFP_KERNEL);
2499	if (!pf->irq_tracker) {
2500		ice_dis_msix(pf);
2501		return -ENOMEM;
2502	}
2503
2504	/* populate SW interrupts pool with number of OS granted IRQs. */
2505	pf->num_avail_sw_msix = vectors;
2506	pf->irq_tracker->num_entries = vectors;
2507	pf->irq_tracker->end = pf->irq_tracker->num_entries;
2508
2509	return 0;
2510}
2511
2512/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513 * ice_log_pkg_init - log result of DDP package load
2514 * @hw: pointer to hardware info
2515 * @status: status of package load
2516 */
2517static void
2518ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
2519{
2520	struct ice_pf *pf = (struct ice_pf *)hw->back;
2521	struct device *dev = &pf->pdev->dev;
2522
2523	switch (*status) {
2524	case ICE_SUCCESS:
2525		/* The package download AdminQ command returned success because
2526		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
2527		 * already a package loaded on the device.
2528		 */
2529		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
2530		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
2531		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
2532		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
2533		    !memcmp(hw->pkg_name, hw->active_pkg_name,
2534			    sizeof(hw->pkg_name))) {
2535			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
2536				dev_info(dev,
2537					 "DDP package already present on device: %s version %d.%d.%d.%d\n",
2538					 hw->active_pkg_name,
2539					 hw->active_pkg_ver.major,
2540					 hw->active_pkg_ver.minor,
2541					 hw->active_pkg_ver.update,
2542					 hw->active_pkg_ver.draft);
2543			else
2544				dev_info(dev,
2545					 "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
2546					 hw->active_pkg_name,
2547					 hw->active_pkg_ver.major,
2548					 hw->active_pkg_ver.minor,
2549					 hw->active_pkg_ver.update,
2550					 hw->active_pkg_ver.draft);
2551		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
2552			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
2553			dev_err(dev,
2554				"The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
2555				hw->active_pkg_name,
2556				hw->active_pkg_ver.major,
2557				hw->active_pkg_ver.minor,
2558				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2559			*status = ICE_ERR_NOT_SUPPORTED;
2560		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2561			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
2562			dev_info(dev,
2563				 "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
2564				 hw->active_pkg_name,
2565				 hw->active_pkg_ver.major,
2566				 hw->active_pkg_ver.minor,
2567				 hw->active_pkg_ver.update,
2568				 hw->active_pkg_ver.draft,
2569				 hw->pkg_name,
2570				 hw->pkg_ver.major,
2571				 hw->pkg_ver.minor,
2572				 hw->pkg_ver.update,
2573				 hw->pkg_ver.draft);
2574		} else {
2575			dev_err(dev,
2576				"An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
2577			*status = ICE_ERR_NOT_SUPPORTED;
2578		}
2579		break;
 
 
 
2580	case ICE_ERR_BUF_TOO_SHORT:
2581		/* fall-through */
2582	case ICE_ERR_CFG:
2583		dev_err(dev,
2584			"The DDP package file is invalid. Entering Safe Mode.\n");
2585		break;
2586	case ICE_ERR_NOT_SUPPORTED:
2587		/* Package File version not supported */
2588		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
2589		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2590		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
2591			dev_err(dev,
2592				"The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
2593		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
2594			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2595			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
2596			dev_err(dev,
2597				"The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
2598				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2599		break;
2600	case ICE_ERR_AQ_ERROR:
2601		switch (hw->adminq.sq_last_status) {
2602		case ICE_AQ_RC_ENOSEC:
2603		case ICE_AQ_RC_EBADSIG:
2604			dev_err(dev,
2605				"The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
2606			return;
2607		case ICE_AQ_RC_ESVN:
2608			dev_err(dev,
2609				"The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
2610			return;
2611		case ICE_AQ_RC_EBADMAN:
2612		case ICE_AQ_RC_EBADBUF:
2613			dev_err(dev,
2614				"An error occurred on the device while loading the DDP package.  The device will be reset.\n");
 
 
2615			return;
2616		default:
2617			break;
2618		}
2619		/* fall-through */
2620	default:
2621		dev_err(dev,
2622			"An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
2623			*status);
2624		break;
2625	}
2626}
2627
2628/**
2629 * ice_load_pkg - load/reload the DDP Package file
2630 * @firmware: firmware structure when firmware requested or NULL for reload
2631 * @pf: pointer to the PF instance
2632 *
2633 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
2634 * initialize HW tables.
2635 */
2636static void
2637ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
2638{
2639	enum ice_status status = ICE_ERR_PARAM;
2640	struct device *dev = &pf->pdev->dev;
2641	struct ice_hw *hw = &pf->hw;
2642
2643	/* Load DDP Package */
2644	if (firmware && !hw->pkg_copy) {
2645		status = ice_copy_and_init_pkg(hw, firmware->data,
2646					       firmware->size);
2647		ice_log_pkg_init(hw, &status);
2648	} else if (!firmware && hw->pkg_copy) {
2649		/* Reload package during rebuild after CORER/GLOBR reset */
2650		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
2651		ice_log_pkg_init(hw, &status);
2652	} else {
2653		dev_err(dev,
2654			"The DDP package file failed to load. Entering Safe Mode.\n");
2655	}
2656
2657	if (status) {
2658		/* Safe Mode */
2659		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
2660		return;
2661	}
2662
2663	/* Successful download package is the precondition for advanced
2664	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
2665	 */
2666	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
2667}
2668
2669/**
2670 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
2671 * @pf: pointer to the PF structure
2672 *
2673 * There is no error returned here because the driver should be able to handle
2674 * 128 Byte cache lines, so we only print a warning in case issues are seen,
2675 * specifically with Tx.
2676 */
2677static void ice_verify_cacheline_size(struct ice_pf *pf)
2678{
2679	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
2680		dev_warn(&pf->pdev->dev,
2681			 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
2682			 ICE_CACHE_LINE_BYTES);
2683}
2684
2685/**
2686 * ice_send_version - update firmware with driver version
2687 * @pf: PF struct
2688 *
2689 * Returns ICE_SUCCESS on success, else error code
2690 */
2691static enum ice_status ice_send_version(struct ice_pf *pf)
2692{
2693	struct ice_driver_ver dv;
2694
2695	dv.major_ver = DRV_VERSION_MAJOR;
2696	dv.minor_ver = DRV_VERSION_MINOR;
2697	dv.build_ver = DRV_VERSION_BUILD;
2698	dv.subbuild_ver = 0;
2699	strscpy((char *)dv.driver_string, DRV_VERSION,
2700		sizeof(dv.driver_string));
2701	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
2702}
2703
2704/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2705 * ice_get_opt_fw_name - return optional firmware file name or NULL
2706 * @pf: pointer to the PF instance
2707 */
2708static char *ice_get_opt_fw_name(struct ice_pf *pf)
2709{
2710	/* Optional firmware name same as default with additional dash
2711	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
2712	 */
2713	struct pci_dev *pdev = pf->pdev;
2714	char *opt_fw_filename = NULL;
2715	u32 dword;
2716	u8 dsn[8];
2717	int pos;
2718
2719	/* Determine the name of the optional file using the DSN (two
2720	 * dwords following the start of the DSN Capability).
2721	 */
2722	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
2723	if (pos) {
2724		opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
2725		if (!opt_fw_filename)
2726			return NULL;
2727
2728		pci_read_config_dword(pdev, pos + 4, &dword);
2729		put_unaligned_le32(dword, &dsn[0]);
2730		pci_read_config_dword(pdev, pos + 8, &dword);
2731		put_unaligned_le32(dword, &dsn[4]);
2732		snprintf(opt_fw_filename, NAME_MAX,
2733			 "%sice-%02x%02x%02x%02x%02x%02x%02x%02x.pkg",
2734			 ICE_DDP_PKG_PATH,
2735			 dsn[7], dsn[6], dsn[5], dsn[4],
2736			 dsn[3], dsn[2], dsn[1], dsn[0]);
2737	}
2738
2739	return opt_fw_filename;
2740}
2741
2742/**
2743 * ice_request_fw - Device initialization routine
2744 * @pf: pointer to the PF instance
2745 */
2746static void ice_request_fw(struct ice_pf *pf)
2747{
2748	char *opt_fw_filename = ice_get_opt_fw_name(pf);
2749	const struct firmware *firmware = NULL;
2750	struct device *dev = &pf->pdev->dev;
2751	int err = 0;
2752
2753	/* optional device-specific DDP (if present) overrides the default DDP
2754	 * package file. kernel logs a debug message if the file doesn't exist,
2755	 * and warning messages for other errors.
2756	 */
2757	if (opt_fw_filename) {
2758		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
2759		if (err) {
2760			kfree(opt_fw_filename);
2761			goto dflt_pkg_load;
2762		}
2763
2764		/* request for firmware was successful. Download to device */
2765		ice_load_pkg(firmware, pf);
2766		kfree(opt_fw_filename);
2767		release_firmware(firmware);
2768		return;
2769	}
2770
2771dflt_pkg_load:
2772	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
2773	if (err) {
2774		dev_err(dev,
2775			"The DDP package file was not found or could not be read. Entering Safe Mode\n");
2776		return;
2777	}
2778
2779	/* request for firmware was successful. Download to device */
2780	ice_load_pkg(firmware, pf);
2781	release_firmware(firmware);
2782}
2783
2784/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785 * ice_probe - Device initialization routine
2786 * @pdev: PCI device information struct
2787 * @ent: entry in ice_pci_tbl
2788 *
2789 * Returns 0 on success, negative on failure
2790 */
2791static int
2792ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
2793{
2794	struct device *dev = &pdev->dev;
2795	struct ice_pf *pf;
2796	struct ice_hw *hw;
2797	int err;
2798
2799	/* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */
 
 
2800	err = pcim_enable_device(pdev);
2801	if (err)
2802		return err;
2803
2804	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
2805	if (err) {
2806		dev_err(dev, "BAR0 I/O map error %d\n", err);
2807		return err;
2808	}
2809
2810	pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
2811	if (!pf)
2812		return -ENOMEM;
2813
2814	/* set up for high or low DMA */
2815	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
2816	if (err)
2817		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2818	if (err) {
2819		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
2820		return err;
2821	}
2822
2823	pci_enable_pcie_error_reporting(pdev);
2824	pci_set_master(pdev);
2825
2826	pf->pdev = pdev;
2827	pci_set_drvdata(pdev, pf);
2828	set_bit(__ICE_DOWN, pf->state);
2829	/* Disable service task until DOWN bit is cleared */
2830	set_bit(__ICE_SERVICE_DIS, pf->state);
2831
2832	hw = &pf->hw;
2833	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
 
 
2834	hw->back = pf;
2835	hw->vendor_id = pdev->vendor;
2836	hw->device_id = pdev->device;
2837	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2838	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2839	hw->subsystem_device_id = pdev->subsystem_device;
2840	hw->bus.device = PCI_SLOT(pdev->devfn);
2841	hw->bus.func = PCI_FUNC(pdev->devfn);
2842	ice_set_ctrlq_len(hw);
2843
2844	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
2845
 
 
 
 
 
 
2846#ifndef CONFIG_DYNAMIC_DEBUG
2847	if (debug < -1)
2848		hw->debug_mask = debug;
2849#endif
2850
2851	err = ice_init_hw(hw);
2852	if (err) {
2853		dev_err(dev, "ice_init_hw failed: %d\n", err);
2854		err = -EIO;
2855		goto err_exit_unroll;
2856	}
2857
2858	dev_info(dev, "firmware %d.%d.%d api %d.%d.%d nvm %s build 0x%08x\n",
2859		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch,
2860		 hw->api_maj_ver, hw->api_min_ver, hw->api_patch,
2861		 ice_nvm_version_str(hw), hw->fw_build);
2862
2863	ice_request_fw(pf);
2864
2865	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
2866	 * set in pf->state, which will cause ice_is_safe_mode to return
2867	 * true
2868	 */
2869	if (ice_is_safe_mode(pf)) {
2870		dev_err(dev,
2871			"Package download failed. Advanced features disabled - Device now in Safe Mode\n");
2872		/* we already got function/device capabilities but these don't
2873		 * reflect what the driver needs to do in safe mode. Instead of
2874		 * adding conditional logic everywhere to ignore these
2875		 * device/function capabilities, override them.
2876		 */
2877		ice_set_safe_mode_caps(hw);
2878	}
2879
2880	err = ice_init_pf(pf);
2881	if (err) {
2882		dev_err(dev, "ice_init_pf failed: %d\n", err);
2883		goto err_init_pf_unroll;
2884	}
2885
 
 
2886	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
2887	if (!pf->num_alloc_vsi) {
2888		err = -EIO;
2889		goto err_init_pf_unroll;
2890	}
2891
2892	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
2893			       GFP_KERNEL);
2894	if (!pf->vsi) {
2895		err = -ENOMEM;
2896		goto err_init_pf_unroll;
2897	}
2898
2899	err = ice_init_interrupt_scheme(pf);
2900	if (err) {
2901		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
2902		err = -EIO;
2903		goto err_init_interrupt_unroll;
2904	}
2905
2906	/* Driver is mostly up */
2907	clear_bit(__ICE_DOWN, pf->state);
2908
2909	/* In case of MSIX we are going to setup the misc vector right here
2910	 * to handle admin queue events etc. In case of legacy and MSI
2911	 * the misc functionality and queue processing is combined in
2912	 * the same vector and that gets setup at open.
2913	 */
2914	err = ice_req_irq_msix_misc(pf);
2915	if (err) {
2916		dev_err(dev, "setup of misc vector failed: %d\n", err);
2917		goto err_init_interrupt_unroll;
2918	}
2919
2920	/* create switch struct for the switch element created by FW on boot */
2921	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
2922	if (!pf->first_sw) {
2923		err = -ENOMEM;
2924		goto err_msix_misc_unroll;
2925	}
2926
2927	if (hw->evb_veb)
2928		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
2929	else
2930		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
2931
2932	pf->first_sw->pf = pf;
2933
2934	/* record the sw_id available for later use */
2935	pf->first_sw->sw_id = hw->port_info->sw_id;
2936
2937	err = ice_setup_pf_sw(pf);
2938	if (err) {
2939		dev_err(dev, "probe failed due to setup PF switch:%d\n", err);
2940		goto err_alloc_sw_unroll;
2941	}
2942
2943	clear_bit(__ICE_SERVICE_DIS, pf->state);
2944
2945	/* tell the firmware we are up */
2946	err = ice_send_version(pf);
2947	if (err) {
2948		dev_err(dev,
2949			"probe failed sending driver version %s. error: %d\n",
2950			ice_drv_ver, err);
2951		goto err_alloc_sw_unroll;
2952	}
2953
2954	/* since everything is good, start the service timer */
2955	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
2956
2957	err = ice_init_link_events(pf->hw.port_info);
2958	if (err) {
2959		dev_err(dev, "ice_init_link_events failed: %d\n", err);
2960		goto err_alloc_sw_unroll;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961	}
2962
2963	ice_verify_cacheline_size(pf);
2964
2965	/* If no DDP driven features have to be setup, return here */
2966	if (ice_is_safe_mode(pf))
2967		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2968
2969	/* initialize DDP driven features */
2970
 
 
 
 
2971	/* Note: DCB init failure is non-fatal to load */
2972	if (ice_init_pf_dcb(pf, false)) {
2973		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2974		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
2975	} else {
2976		ice_cfg_lldp_mib_change(&pf->hw, true);
2977	}
2978
 
 
 
 
 
 
2979	return 0;
2980
 
 
2981err_alloc_sw_unroll:
 
2982	set_bit(__ICE_SERVICE_DIS, pf->state);
2983	set_bit(__ICE_DOWN, pf->state);
2984	devm_kfree(&pf->pdev->dev, pf->first_sw);
2985err_msix_misc_unroll:
2986	ice_free_irq_msix_misc(pf);
2987err_init_interrupt_unroll:
2988	ice_clear_interrupt_scheme(pf);
 
2989	devm_kfree(dev, pf->vsi);
2990err_init_pf_unroll:
2991	ice_deinit_pf(pf);
 
2992	ice_deinit_hw(hw);
2993err_exit_unroll:
 
2994	pci_disable_pcie_error_reporting(pdev);
 
2995	return err;
2996}
2997
2998/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2999 * ice_remove - Device removal routine
3000 * @pdev: PCI device information struct
3001 */
3002static void ice_remove(struct pci_dev *pdev)
3003{
3004	struct ice_pf *pf = pci_get_drvdata(pdev);
3005	int i;
3006
3007	if (!pf)
3008		return;
3009
3010	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
3011		if (!ice_is_reset_in_progress(pf->state))
3012			break;
3013		msleep(100);
3014	}
3015
 
 
 
 
 
3016	set_bit(__ICE_DOWN, pf->state);
3017	ice_service_task_stop(pf);
3018
3019	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
3020		ice_free_vfs(pf);
 
 
 
 
 
3021	ice_vsi_release_all(pf);
 
3022	ice_free_irq_msix_misc(pf);
3023	ice_for_each_vsi(pf, i) {
3024		if (!pf->vsi[i])
3025			continue;
3026		ice_vsi_free_q_vectors(pf->vsi[i]);
3027	}
3028	ice_deinit_pf(pf);
 
3029	ice_deinit_hw(&pf->hw);
3030	ice_clear_interrupt_scheme(pf);
 
3031	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
3032	 * do it via ice_schedule_reset() since there is no need to rebuild
3033	 * and the service task is already stopped.
3034	 */
3035	ice_reset(&pf->hw, ICE_RESET_PFR);
 
 
3036	pci_disable_pcie_error_reporting(pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037}
 
3038
3039/**
3040 * ice_pci_err_detected - warning that PCI error has been detected
3041 * @pdev: PCI device information struct
3042 * @err: the type of PCI error
3043 *
3044 * Called to warn that something happened on the PCI bus and the error handling
3045 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
3046 */
3047static pci_ers_result_t
3048ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
3049{
3050	struct ice_pf *pf = pci_get_drvdata(pdev);
3051
3052	if (!pf) {
3053		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
3054			__func__, err);
3055		return PCI_ERS_RESULT_DISCONNECT;
3056	}
3057
3058	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3059		ice_service_task_stop(pf);
3060
3061		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3062			set_bit(__ICE_PFR_REQ, pf->state);
3063			ice_prepare_for_reset(pf);
3064		}
3065	}
3066
3067	return PCI_ERS_RESULT_NEED_RESET;
3068}
3069
3070/**
3071 * ice_pci_err_slot_reset - a PCI slot reset has just happened
3072 * @pdev: PCI device information struct
3073 *
3074 * Called to determine if the driver can recover from the PCI slot reset by
3075 * using a register read to determine if the device is recoverable.
3076 */
3077static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
3078{
3079	struct ice_pf *pf = pci_get_drvdata(pdev);
3080	pci_ers_result_t result;
3081	int err;
3082	u32 reg;
3083
3084	err = pci_enable_device_mem(pdev);
3085	if (err) {
3086		dev_err(&pdev->dev,
3087			"Cannot re-enable PCI device after reset, error %d\n",
3088			err);
3089		result = PCI_ERS_RESULT_DISCONNECT;
3090	} else {
3091		pci_set_master(pdev);
3092		pci_restore_state(pdev);
3093		pci_save_state(pdev);
3094		pci_wake_from_d3(pdev, false);
3095
3096		/* Check for life */
3097		reg = rd32(&pf->hw, GLGEN_RTRIG);
3098		if (!reg)
3099			result = PCI_ERS_RESULT_RECOVERED;
3100		else
3101			result = PCI_ERS_RESULT_DISCONNECT;
3102	}
3103
3104	err = pci_cleanup_aer_uncorrect_error_status(pdev);
3105	if (err)
3106		dev_dbg(&pdev->dev,
3107			"pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
3108			err);
3109		/* non-fatal, continue */
3110
3111	return result;
3112}
3113
3114/**
3115 * ice_pci_err_resume - restart operations after PCI error recovery
3116 * @pdev: PCI device information struct
3117 *
3118 * Called to allow the driver to bring things back up after PCI error and/or
3119 * reset recovery have finished
3120 */
3121static void ice_pci_err_resume(struct pci_dev *pdev)
3122{
3123	struct ice_pf *pf = pci_get_drvdata(pdev);
3124
3125	if (!pf) {
3126		dev_err(&pdev->dev,
3127			"%s failed, device is unrecoverable\n", __func__);
3128		return;
3129	}
3130
3131	if (test_bit(__ICE_SUSPENDED, pf->state)) {
3132		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
3133			__func__);
3134		return;
3135	}
3136
 
 
3137	ice_do_reset(pf, ICE_RESET_PFR);
3138	ice_service_task_restart(pf);
3139	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3140}
3141
3142/**
3143 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
3144 * @pdev: PCI device information struct
3145 */
3146static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
3147{
3148	struct ice_pf *pf = pci_get_drvdata(pdev);
3149
3150	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3151		ice_service_task_stop(pf);
3152
3153		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3154			set_bit(__ICE_PFR_REQ, pf->state);
3155			ice_prepare_for_reset(pf);
3156		}
3157	}
3158}
3159
3160/**
3161 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
3162 * @pdev: PCI device information struct
3163 */
3164static void ice_pci_err_reset_done(struct pci_dev *pdev)
3165{
3166	ice_pci_err_resume(pdev);
3167}
3168
3169/* ice_pci_tbl - PCI Device ID Table
3170 *
3171 * Wildcard entries (PCI_ANY_ID) should come last
3172 * Last entry must be all 0s
3173 *
3174 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3175 *   Class, Class Mask, private data (not used) }
3176 */
3177static const struct pci_device_id ice_pci_tbl[] = {
3178	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
3179	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
3180	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3181	/* required last entry */
3182	{ 0, }
3183};
3184MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3185
 
 
3186static const struct pci_error_handlers ice_pci_err_handler = {
3187	.error_detected = ice_pci_err_detected,
3188	.slot_reset = ice_pci_err_slot_reset,
3189	.reset_prepare = ice_pci_err_reset_prepare,
3190	.reset_done = ice_pci_err_reset_done,
3191	.resume = ice_pci_err_resume
3192};
3193
3194static struct pci_driver ice_driver = {
3195	.name = KBUILD_MODNAME,
3196	.id_table = ice_pci_tbl,
3197	.probe = ice_probe,
3198	.remove = ice_remove,
 
 
 
 
3199	.sriov_configure = ice_sriov_configure,
3200	.err_handler = &ice_pci_err_handler
3201};
3202
3203/**
3204 * ice_module_init - Driver registration routine
3205 *
3206 * ice_module_init is the first routine called when the driver is
3207 * loaded. All it does is register with the PCI subsystem.
3208 */
3209static int __init ice_module_init(void)
3210{
3211	int status;
3212
3213	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3214	pr_info("%s\n", ice_copyright);
3215
3216	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
3217	if (!ice_wq) {
3218		pr_err("Failed to create workqueue\n");
3219		return -ENOMEM;
3220	}
3221
3222	status = pci_register_driver(&ice_driver);
3223	if (status) {
3224		pr_err("failed to register PCI driver, err %d\n", status);
3225		destroy_workqueue(ice_wq);
3226	}
3227
3228	return status;
3229}
3230module_init(ice_module_init);
3231
3232/**
3233 * ice_module_exit - Driver exit cleanup routine
3234 *
3235 * ice_module_exit is called just before the driver is removed
3236 * from memory.
3237 */
3238static void __exit ice_module_exit(void)
3239{
3240	pci_unregister_driver(&ice_driver);
3241	destroy_workqueue(ice_wq);
3242	pr_info("module unloaded\n");
3243}
3244module_exit(ice_module_exit);
3245
3246/**
3247 * ice_set_mac_address - NDO callback to set MAC address
3248 * @netdev: network interface device structure
3249 * @pi: pointer to an address structure
3250 *
3251 * Returns 0 on success, negative on failure
3252 */
3253static int ice_set_mac_address(struct net_device *netdev, void *pi)
3254{
3255	struct ice_netdev_priv *np = netdev_priv(netdev);
3256	struct ice_vsi *vsi = np->vsi;
3257	struct ice_pf *pf = vsi->back;
3258	struct ice_hw *hw = &pf->hw;
3259	struct sockaddr *addr = pi;
3260	enum ice_status status;
3261	u8 flags = 0;
3262	int err = 0;
3263	u8 *mac;
3264
3265	mac = (u8 *)addr->sa_data;
3266
3267	if (!is_valid_ether_addr(mac))
3268		return -EADDRNOTAVAIL;
3269
3270	if (ether_addr_equal(netdev->dev_addr, mac)) {
3271		netdev_warn(netdev, "already using mac %pM\n", mac);
3272		return 0;
3273	}
3274
3275	if (test_bit(__ICE_DOWN, pf->state) ||
3276	    ice_is_reset_in_progress(pf->state)) {
3277		netdev_err(netdev, "can't set mac %pM. device not ready\n",
3278			   mac);
3279		return -EBUSY;
3280	}
3281
3282	/* When we change the MAC address we also have to change the MAC address
3283	 * based filter rules that were created previously for the old MAC
3284	 * address. So first, we remove the old filter rule using ice_remove_mac
3285	 * and then create a new filter rule using ice_add_mac via
3286	 * ice_vsi_cfg_mac_fltr function call for both add and/or remove
3287	 * filters.
3288	 */
3289	status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false);
3290	if (status) {
3291		err = -EADDRNOTAVAIL;
3292		goto err_update_filters;
3293	}
3294
3295	status = ice_vsi_cfg_mac_fltr(vsi, mac, true);
3296	if (status) {
3297		err = -EADDRNOTAVAIL;
3298		goto err_update_filters;
 
3299	}
3300
 
 
 
 
3301err_update_filters:
3302	if (err) {
3303		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
3304			   mac);
3305		return err;
3306	}
3307
3308	/* change the netdev's MAC address */
3309	memcpy(netdev->dev_addr, mac, netdev->addr_len);
3310	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
3311		   netdev->dev_addr);
3312
3313	/* write new MAC address to the firmware */
3314	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3315	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3316	if (status) {
3317		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
3318			   mac, status);
3319	}
3320	return 0;
3321}
3322
3323/**
3324 * ice_set_rx_mode - NDO callback to set the netdev filters
3325 * @netdev: network interface device structure
3326 */
3327static void ice_set_rx_mode(struct net_device *netdev)
3328{
3329	struct ice_netdev_priv *np = netdev_priv(netdev);
3330	struct ice_vsi *vsi = np->vsi;
3331
3332	if (!vsi)
3333		return;
3334
3335	/* Set the flags to synchronize filters
3336	 * ndo_set_rx_mode may be triggered even without a change in netdev
3337	 * flags
3338	 */
3339	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3340	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3341	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3342
3343	/* schedule our worker thread which will take care of
3344	 * applying the new filter changes
3345	 */
3346	ice_service_task_schedule(vsi->back);
3347}
3348
3349/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3350 * ice_fdb_add - add an entry to the hardware database
3351 * @ndm: the input from the stack
3352 * @tb: pointer to array of nladdr (unused)
3353 * @dev: the net device pointer
3354 * @addr: the MAC address entry being added
3355 * @vid: VLAN ID
3356 * @flags: instructions from stack about fdb operation
3357 * @extack: netlink extended ack
3358 */
3359static int
3360ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3361	    struct net_device *dev, const unsigned char *addr, u16 vid,
3362	    u16 flags, struct netlink_ext_ack __always_unused *extack)
3363{
3364	int err;
3365
3366	if (vid) {
3367		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3368		return -EINVAL;
3369	}
3370	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3371		netdev_err(dev, "FDB only supports static addresses\n");
3372		return -EINVAL;
3373	}
3374
3375	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3376		err = dev_uc_add_excl(dev, addr);
3377	else if (is_multicast_ether_addr(addr))
3378		err = dev_mc_add_excl(dev, addr);
3379	else
3380		err = -EINVAL;
3381
3382	/* Only return duplicate errors if NLM_F_EXCL is set */
3383	if (err == -EEXIST && !(flags & NLM_F_EXCL))
3384		err = 0;
3385
3386	return err;
3387}
3388
3389/**
3390 * ice_fdb_del - delete an entry from the hardware database
3391 * @ndm: the input from the stack
3392 * @tb: pointer to array of nladdr (unused)
3393 * @dev: the net device pointer
3394 * @addr: the MAC address entry being added
3395 * @vid: VLAN ID
3396 */
3397static int
3398ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3399	    struct net_device *dev, const unsigned char *addr,
3400	    __always_unused u16 vid)
3401{
3402	int err;
3403
3404	if (ndm->ndm_state & NUD_PERMANENT) {
3405		netdev_err(dev, "FDB only supports static addresses\n");
3406		return -EINVAL;
3407	}
3408
3409	if (is_unicast_ether_addr(addr))
3410		err = dev_uc_del(dev, addr);
3411	else if (is_multicast_ether_addr(addr))
3412		err = dev_mc_del(dev, addr);
3413	else
3414		err = -EINVAL;
3415
3416	return err;
3417}
3418
3419/**
3420 * ice_set_features - set the netdev feature flags
3421 * @netdev: ptr to the netdev being adjusted
3422 * @features: the feature set that the stack is suggesting
3423 */
3424static int
3425ice_set_features(struct net_device *netdev, netdev_features_t features)
3426{
3427	struct ice_netdev_priv *np = netdev_priv(netdev);
3428	struct ice_vsi *vsi = np->vsi;
 
3429	int ret = 0;
3430
3431	/* Don't set any netdev advanced features with device in Safe Mode */
3432	if (ice_is_safe_mode(vsi->back)) {
3433		dev_err(&vsi->back->pdev->dev,
3434			"Device is in Safe Mode - not enabling advanced netdev features\n");
3435		return ret;
3436	}
3437
 
 
 
 
 
 
3438	/* Multiple features can be changed in one call so keep features in
3439	 * separate if/else statements to guarantee each feature is checked
3440	 */
3441	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
3442		ret = ice_vsi_manage_rss_lut(vsi, true);
3443	else if (!(features & NETIF_F_RXHASH) &&
3444		 netdev->features & NETIF_F_RXHASH)
3445		ret = ice_vsi_manage_rss_lut(vsi, false);
3446
3447	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3448	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3449		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3450	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3451		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3452		ret = ice_vsi_manage_vlan_stripping(vsi, false);
3453
3454	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3455	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3456		ret = ice_vsi_manage_vlan_insertion(vsi);
3457	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3458		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3459		ret = ice_vsi_manage_vlan_insertion(vsi);
3460
3461	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3462	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3463		ret = ice_cfg_vlan_pruning(vsi, true, false);
3464	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3465		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3466		ret = ice_cfg_vlan_pruning(vsi, false, false);
3467
 
 
 
 
 
 
 
 
 
 
3468	return ret;
3469}
3470
3471/**
3472 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
3473 * @vsi: VSI to setup VLAN properties for
3474 */
3475static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3476{
3477	int ret = 0;
3478
3479	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3480		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3481	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3482		ret = ice_vsi_manage_vlan_insertion(vsi);
3483
3484	return ret;
3485}
3486
3487/**
3488 * ice_vsi_cfg - Setup the VSI
3489 * @vsi: the VSI being configured
3490 *
3491 * Return 0 on success and negative value on error
3492 */
3493int ice_vsi_cfg(struct ice_vsi *vsi)
3494{
3495	int err;
3496
3497	if (vsi->netdev) {
3498		ice_set_rx_mode(vsi->netdev);
3499
3500		err = ice_vsi_vlan_setup(vsi);
3501
3502		if (err)
3503			return err;
3504	}
3505	ice_vsi_cfg_dcb_rings(vsi);
3506
3507	err = ice_vsi_cfg_lan_txqs(vsi);
 
 
3508	if (!err)
3509		err = ice_vsi_cfg_rxqs(vsi);
3510
3511	return err;
3512}
3513
3514/**
3515 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
3516 * @vsi: the VSI being configured
3517 */
3518static void ice_napi_enable_all(struct ice_vsi *vsi)
3519{
3520	int q_idx;
3521
3522	if (!vsi->netdev)
3523		return;
3524
3525	ice_for_each_q_vector(vsi, q_idx) {
3526		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3527
3528		if (q_vector->rx.ring || q_vector->tx.ring)
3529			napi_enable(&q_vector->napi);
3530	}
3531}
3532
3533/**
3534 * ice_up_complete - Finish the last steps of bringing up a connection
3535 * @vsi: The VSI being configured
3536 *
3537 * Return 0 on success and negative value on error
3538 */
3539static int ice_up_complete(struct ice_vsi *vsi)
3540{
3541	struct ice_pf *pf = vsi->back;
3542	int err;
3543
3544	ice_vsi_cfg_msix(vsi);
3545
3546	/* Enable only Rx rings, Tx rings were enabled by the FW when the
3547	 * Tx queue group list was configured and the context bits were
3548	 * programmed using ice_vsi_cfg_txqs
3549	 */
3550	err = ice_vsi_start_rx_rings(vsi);
3551	if (err)
3552		return err;
3553
3554	clear_bit(__ICE_DOWN, vsi->state);
3555	ice_napi_enable_all(vsi);
3556	ice_vsi_ena_irq(vsi);
3557
3558	if (vsi->port_info &&
3559	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
3560	    vsi->netdev) {
3561		ice_print_link_msg(vsi, true);
3562		netif_tx_start_all_queues(vsi->netdev);
3563		netif_carrier_on(vsi->netdev);
3564	}
3565
3566	ice_service_task_schedule(pf);
3567
3568	return 0;
3569}
3570
3571/**
3572 * ice_up - Bring the connection back up after being down
3573 * @vsi: VSI being configured
3574 */
3575int ice_up(struct ice_vsi *vsi)
3576{
3577	int err;
3578
3579	err = ice_vsi_cfg(vsi);
3580	if (!err)
3581		err = ice_up_complete(vsi);
3582
3583	return err;
3584}
3585
3586/**
3587 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
3588 * @ring: Tx or Rx ring to read stats from
3589 * @pkts: packets stats counter
3590 * @bytes: bytes stats counter
3591 *
3592 * This function fetches stats from the ring considering the atomic operations
3593 * that needs to be performed to read u64 values in 32 bit machine.
3594 */
3595static void
3596ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
3597{
3598	unsigned int start;
3599	*pkts = 0;
3600	*bytes = 0;
3601
3602	if (!ring)
3603		return;
3604	do {
3605		start = u64_stats_fetch_begin_irq(&ring->syncp);
3606		*pkts = ring->stats.pkts;
3607		*bytes = ring->stats.bytes;
3608	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3609}
3610
3611/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3612 * ice_update_vsi_ring_stats - Update VSI stats counters
3613 * @vsi: the VSI to be updated
3614 */
3615static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
3616{
3617	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
3618	struct ice_ring *ring;
3619	u64 pkts, bytes;
3620	int i;
3621
3622	/* reset netdev stats */
3623	vsi_stats->tx_packets = 0;
3624	vsi_stats->tx_bytes = 0;
3625	vsi_stats->rx_packets = 0;
3626	vsi_stats->rx_bytes = 0;
3627
3628	/* reset non-netdev (extended) stats */
3629	vsi->tx_restart = 0;
3630	vsi->tx_busy = 0;
3631	vsi->tx_linearize = 0;
3632	vsi->rx_buf_failed = 0;
3633	vsi->rx_page_failed = 0;
 
3634
3635	rcu_read_lock();
3636
3637	/* update Tx rings counters */
3638	ice_for_each_txq(vsi, i) {
3639		ring = READ_ONCE(vsi->tx_rings[i]);
3640		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3641		vsi_stats->tx_packets += pkts;
3642		vsi_stats->tx_bytes += bytes;
3643		vsi->tx_restart += ring->tx_stats.restart_q;
3644		vsi->tx_busy += ring->tx_stats.tx_busy;
3645		vsi->tx_linearize += ring->tx_stats.tx_linearize;
3646	}
3647
3648	/* update Rx rings counters */
3649	ice_for_each_rxq(vsi, i) {
3650		ring = READ_ONCE(vsi->rx_rings[i]);
3651		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3652		vsi_stats->rx_packets += pkts;
3653		vsi_stats->rx_bytes += bytes;
3654		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
3655		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
 
3656	}
3657
 
 
 
 
 
3658	rcu_read_unlock();
3659}
3660
3661/**
3662 * ice_update_vsi_stats - Update VSI stats counters
3663 * @vsi: the VSI to be updated
3664 */
3665void ice_update_vsi_stats(struct ice_vsi *vsi)
3666{
3667	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
3668	struct ice_eth_stats *cur_es = &vsi->eth_stats;
3669	struct ice_pf *pf = vsi->back;
3670
3671	if (test_bit(__ICE_DOWN, vsi->state) ||
3672	    test_bit(__ICE_CFG_BUSY, pf->state))
3673		return;
3674
3675	/* get stats as recorded by Tx/Rx rings */
3676	ice_update_vsi_ring_stats(vsi);
3677
3678	/* get VSI stats as recorded by the hardware */
3679	ice_update_eth_stats(vsi);
3680
3681	cur_ns->tx_errors = cur_es->tx_errors;
3682	cur_ns->rx_dropped = cur_es->rx_discards;
3683	cur_ns->tx_dropped = cur_es->tx_discards;
3684	cur_ns->multicast = cur_es->rx_multicast;
3685
3686	/* update some more netdev stats if this is main VSI */
3687	if (vsi->type == ICE_VSI_PF) {
3688		cur_ns->rx_crc_errors = pf->stats.crc_errors;
3689		cur_ns->rx_errors = pf->stats.crc_errors +
3690				    pf->stats.illegal_bytes;
 
 
 
 
 
 
3691		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
3692		/* record drops from the port level */
3693		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
3694	}
3695}
3696
3697/**
3698 * ice_update_pf_stats - Update PF port stats counters
3699 * @pf: PF whose stats needs to be updated
3700 */
3701void ice_update_pf_stats(struct ice_pf *pf)
3702{
3703	struct ice_hw_port_stats *prev_ps, *cur_ps;
3704	struct ice_hw *hw = &pf->hw;
 
3705	u8 port;
3706
3707	port = hw->port_info->lport;
3708	prev_ps = &pf->stats_prev;
3709	cur_ps = &pf->stats;
3710
3711	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
3712			  &prev_ps->eth.rx_bytes,
3713			  &cur_ps->eth.rx_bytes);
3714
3715	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
3716			  &prev_ps->eth.rx_unicast,
3717			  &cur_ps->eth.rx_unicast);
3718
3719	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
3720			  &prev_ps->eth.rx_multicast,
3721			  &cur_ps->eth.rx_multicast);
3722
3723	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
3724			  &prev_ps->eth.rx_broadcast,
3725			  &cur_ps->eth.rx_broadcast);
3726
3727	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
3728			  &prev_ps->eth.rx_discards,
3729			  &cur_ps->eth.rx_discards);
3730
3731	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
3732			  &prev_ps->eth.tx_bytes,
3733			  &cur_ps->eth.tx_bytes);
3734
3735	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
3736			  &prev_ps->eth.tx_unicast,
3737			  &cur_ps->eth.tx_unicast);
3738
3739	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
3740			  &prev_ps->eth.tx_multicast,
3741			  &cur_ps->eth.tx_multicast);
3742
3743	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
3744			  &prev_ps->eth.tx_broadcast,
3745			  &cur_ps->eth.tx_broadcast);
3746
3747	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
3748			  &prev_ps->tx_dropped_link_down,
3749			  &cur_ps->tx_dropped_link_down);
3750
3751	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
3752			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
3753
3754	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
3755			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
3756
3757	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
3758			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
3759
3760	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
3761			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
3762
3763	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
3764			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
3765
3766	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
3767			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
3768
3769	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
3770			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
3771
3772	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
3773			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
3774
3775	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
3776			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
3777
3778	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
3779			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
3780
3781	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
3782			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
3783
3784	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
3785			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
3786
3787	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
3788			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
3789
3790	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
3791			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
3792
 
 
 
 
 
 
3793	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
3794			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
3795
3796	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
3797			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
3798
3799	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
3800			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
3801
3802	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
3803			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
3804
3805	ice_update_dcb_stats(pf);
3806
3807	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
3808			  &prev_ps->crc_errors, &cur_ps->crc_errors);
3809
3810	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
3811			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
3812
3813	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
3814			  &prev_ps->mac_local_faults,
3815			  &cur_ps->mac_local_faults);
3816
3817	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
3818			  &prev_ps->mac_remote_faults,
3819			  &cur_ps->mac_remote_faults);
3820
3821	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
3822			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
3823
3824	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
3825			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
3826
3827	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
3828			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
3829
3830	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
3831			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
3832
3833	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
3834			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
3835
 
 
3836	pf->stat_prev_loaded = true;
3837}
3838
3839/**
3840 * ice_get_stats64 - get statistics for network device structure
3841 * @netdev: network interface device structure
3842 * @stats: main device statistics structure
3843 */
3844static
3845void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3846{
3847	struct ice_netdev_priv *np = netdev_priv(netdev);
3848	struct rtnl_link_stats64 *vsi_stats;
3849	struct ice_vsi *vsi = np->vsi;
3850
3851	vsi_stats = &vsi->net_stats;
3852
3853	if (!vsi->num_txq || !vsi->num_rxq)
3854		return;
3855
3856	/* netdev packet/byte stats come from ring counter. These are obtained
3857	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
3858	 * But, only call the update routine and read the registers if VSI is
3859	 * not down.
3860	 */
3861	if (!test_bit(__ICE_DOWN, vsi->state))
3862		ice_update_vsi_ring_stats(vsi);
3863	stats->tx_packets = vsi_stats->tx_packets;
3864	stats->tx_bytes = vsi_stats->tx_bytes;
3865	stats->rx_packets = vsi_stats->rx_packets;
3866	stats->rx_bytes = vsi_stats->rx_bytes;
3867
3868	/* The rest of the stats can be read from the hardware but instead we
3869	 * just return values that the watchdog task has already obtained from
3870	 * the hardware.
3871	 */
3872	stats->multicast = vsi_stats->multicast;
3873	stats->tx_errors = vsi_stats->tx_errors;
3874	stats->tx_dropped = vsi_stats->tx_dropped;
3875	stats->rx_errors = vsi_stats->rx_errors;
3876	stats->rx_dropped = vsi_stats->rx_dropped;
3877	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
3878	stats->rx_length_errors = vsi_stats->rx_length_errors;
3879}
3880
3881/**
3882 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
3883 * @vsi: VSI having NAPI disabled
3884 */
3885static void ice_napi_disable_all(struct ice_vsi *vsi)
3886{
3887	int q_idx;
3888
3889	if (!vsi->netdev)
3890		return;
3891
3892	ice_for_each_q_vector(vsi, q_idx) {
3893		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3894
3895		if (q_vector->rx.ring || q_vector->tx.ring)
3896			napi_disable(&q_vector->napi);
3897	}
3898}
3899
3900/**
3901 * ice_down - Shutdown the connection
3902 * @vsi: The VSI being stopped
3903 */
3904int ice_down(struct ice_vsi *vsi)
3905{
3906	int i, tx_err, rx_err, link_err = 0;
3907
3908	/* Caller of this function is expected to set the
3909	 * vsi->state __ICE_DOWN bit
3910	 */
3911	if (vsi->netdev) {
3912		netif_carrier_off(vsi->netdev);
3913		netif_tx_disable(vsi->netdev);
3914	}
3915
3916	ice_vsi_dis_irq(vsi);
3917
3918	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
3919	if (tx_err)
3920		netdev_err(vsi->netdev,
3921			   "Failed stop Tx rings, VSI %d error %d\n",
3922			   vsi->vsi_num, tx_err);
 
 
 
 
 
 
3923
3924	rx_err = ice_vsi_stop_rx_rings(vsi);
3925	if (rx_err)
3926		netdev_err(vsi->netdev,
3927			   "Failed stop Rx rings, VSI %d error %d\n",
3928			   vsi->vsi_num, rx_err);
3929
3930	ice_napi_disable_all(vsi);
3931
3932	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
3933		link_err = ice_force_phys_link_state(vsi, false);
3934		if (link_err)
3935			netdev_err(vsi->netdev,
3936				   "Failed to set physical link down, VSI %d error %d\n",
3937				   vsi->vsi_num, link_err);
3938	}
3939
3940	ice_for_each_txq(vsi, i)
3941		ice_clean_tx_ring(vsi->tx_rings[i]);
3942
3943	ice_for_each_rxq(vsi, i)
3944		ice_clean_rx_ring(vsi->rx_rings[i]);
3945
3946	if (tx_err || rx_err || link_err) {
3947		netdev_err(vsi->netdev,
3948			   "Failed to close VSI 0x%04X on switch 0x%04X\n",
3949			   vsi->vsi_num, vsi->vsw->sw_id);
3950		return -EIO;
3951	}
3952
3953	return 0;
3954}
3955
3956/**
3957 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
3958 * @vsi: VSI having resources allocated
3959 *
3960 * Return 0 on success, negative on failure
3961 */
3962int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
3963{
3964	int i, err = 0;
3965
3966	if (!vsi->num_txq) {
3967		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
3968			vsi->vsi_num);
3969		return -EINVAL;
3970	}
3971
3972	ice_for_each_txq(vsi, i) {
3973		vsi->tx_rings[i]->netdev = vsi->netdev;
3974		err = ice_setup_tx_ring(vsi->tx_rings[i]);
 
 
 
 
 
3975		if (err)
3976			break;
3977	}
3978
3979	return err;
3980}
3981
3982/**
3983 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
3984 * @vsi: VSI having resources allocated
3985 *
3986 * Return 0 on success, negative on failure
3987 */
3988int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
3989{
3990	int i, err = 0;
3991
3992	if (!vsi->num_rxq) {
3993		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
3994			vsi->vsi_num);
3995		return -EINVAL;
3996	}
3997
3998	ice_for_each_rxq(vsi, i) {
3999		vsi->rx_rings[i]->netdev = vsi->netdev;
4000		err = ice_setup_rx_ring(vsi->rx_rings[i]);
 
 
 
 
 
4001		if (err)
4002			break;
4003	}
4004
4005	return err;
4006}
4007
4008/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4009 * ice_vsi_open - Called when a network interface is made active
4010 * @vsi: the VSI to open
4011 *
4012 * Initialization of the VSI
4013 *
4014 * Returns 0 on success, negative value on error
4015 */
4016static int ice_vsi_open(struct ice_vsi *vsi)
4017{
4018	char int_name[ICE_INT_NAME_STR_LEN];
4019	struct ice_pf *pf = vsi->back;
4020	int err;
4021
4022	/* allocate descriptors */
4023	err = ice_vsi_setup_tx_rings(vsi);
4024	if (err)
4025		goto err_setup_tx;
4026
4027	err = ice_vsi_setup_rx_rings(vsi);
4028	if (err)
4029		goto err_setup_rx;
4030
4031	err = ice_vsi_cfg(vsi);
4032	if (err)
4033		goto err_setup_rx;
4034
4035	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4036		 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
4037	err = ice_vsi_req_irq_msix(vsi, int_name);
4038	if (err)
4039		goto err_setup_rx;
4040
4041	/* Notify the stack of the actual queue counts. */
4042	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4043	if (err)
4044		goto err_set_qs;
4045
4046	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
4047	if (err)
4048		goto err_set_qs;
4049
4050	err = ice_up_complete(vsi);
4051	if (err)
4052		goto err_up_complete;
4053
4054	return 0;
4055
4056err_up_complete:
4057	ice_down(vsi);
4058err_set_qs:
4059	ice_vsi_free_irq(vsi);
4060err_setup_rx:
4061	ice_vsi_free_rx_rings(vsi);
4062err_setup_tx:
4063	ice_vsi_free_tx_rings(vsi);
4064
4065	return err;
4066}
4067
4068/**
4069 * ice_vsi_release_all - Delete all VSIs
4070 * @pf: PF from which all VSIs are being removed
4071 */
4072static void ice_vsi_release_all(struct ice_pf *pf)
4073{
4074	int err, i;
4075
4076	if (!pf->vsi)
4077		return;
4078
4079	ice_for_each_vsi(pf, i) {
4080		if (!pf->vsi[i])
4081			continue;
4082
4083		err = ice_vsi_release(pf->vsi[i]);
4084		if (err)
4085			dev_dbg(&pf->pdev->dev,
4086				"Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
4087				i, err, pf->vsi[i]->vsi_num);
4088	}
4089}
4090
4091/**
4092 * ice_ena_vsi - resume a VSI
4093 * @vsi: the VSI being resume
4094 * @locked: is the rtnl_lock already held
4095 */
4096static int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
4097{
4098	int err = 0;
4099
4100	if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
4101		return 0;
4102
4103	clear_bit(__ICE_NEEDS_RESTART, vsi->state);
4104
4105	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
4106		if (netif_running(vsi->netdev)) {
4107			if (!locked)
4108				rtnl_lock();
4109
4110			err = ice_open(vsi->netdev);
4111
4112			if (!locked)
4113				rtnl_unlock();
4114		}
4115	}
4116
4117	return err;
4118}
4119
4120/**
4121 * ice_pf_ena_all_vsi - Resume all VSIs on a PF
4122 * @pf: the PF
4123 * @locked: is the rtnl_lock already held
4124 */
4125#ifdef CONFIG_DCB
4126int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked)
4127{
4128	int v;
4129
4130	ice_for_each_vsi(pf, v)
4131		if (pf->vsi[v])
4132			if (ice_ena_vsi(pf->vsi[v], locked))
4133				return -EIO;
4134
4135	return 0;
4136}
4137#endif /* CONFIG_DCB */
4138
4139/**
4140 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
4141 * @pf: pointer to the PF instance
4142 * @type: VSI type to rebuild
4143 *
4144 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
4145 */
4146static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
4147{
 
4148	enum ice_status status;
4149	int i, err;
4150
4151	ice_for_each_vsi(pf, i) {
4152		struct ice_vsi *vsi = pf->vsi[i];
4153
4154		if (!vsi || vsi->type != type)
4155			continue;
4156
4157		/* rebuild the VSI */
4158		err = ice_vsi_rebuild(vsi);
4159		if (err) {
4160			dev_err(&pf->pdev->dev,
4161				"rebuild VSI failed, err %d, VSI index %d, type %d\n",
4162				err, vsi->idx, type);
4163			return err;
4164		}
4165
4166		/* replay filters for the VSI */
4167		status = ice_replay_vsi(&pf->hw, vsi->idx);
4168		if (status) {
4169			dev_err(&pf->pdev->dev,
4170				"replay VSI failed, status %d, VSI index %d, type %d\n",
4171				status, vsi->idx, type);
4172			return -EIO;
4173		}
4174
4175		/* Re-map HW VSI number, using VSI handle that has been
4176		 * previously validated in ice_replay_vsi() call above
4177		 */
4178		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
4179
4180		/* enable the VSI */
4181		err = ice_ena_vsi(vsi, false);
4182		if (err) {
4183			dev_err(&pf->pdev->dev,
4184				"enable VSI failed, err %d, VSI index %d, type %d\n",
4185				err, vsi->idx, type);
4186			return err;
4187		}
4188
4189		dev_info(&pf->pdev->dev, "VSI rebuilt. VSI index %d, type %d\n",
4190			 vsi->idx, type);
4191	}
4192
4193	return 0;
4194}
4195
4196/**
4197 * ice_update_pf_netdev_link - Update PF netdev link status
4198 * @pf: pointer to the PF instance
4199 */
4200static void ice_update_pf_netdev_link(struct ice_pf *pf)
4201{
4202	bool link_up;
4203	int i;
4204
4205	ice_for_each_vsi(pf, i) {
4206		struct ice_vsi *vsi = pf->vsi[i];
4207
4208		if (!vsi || vsi->type != ICE_VSI_PF)
4209			return;
4210
4211		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
4212		if (link_up) {
4213			netif_carrier_on(pf->vsi[i]->netdev);
4214			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
4215		} else {
4216			netif_carrier_off(pf->vsi[i]->netdev);
4217			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
4218		}
4219	}
4220}
4221
4222/**
4223 * ice_rebuild - rebuild after reset
4224 * @pf: PF to rebuild
4225 * @reset_type: type of reset
 
 
 
 
 
4226 */
4227static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
4228{
4229	struct device *dev = &pf->pdev->dev;
4230	struct ice_hw *hw = &pf->hw;
4231	enum ice_status ret;
4232	int err;
4233
4234	if (test_bit(__ICE_DOWN, pf->state))
4235		goto clear_recovery;
4236
4237	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
4238
4239	ret = ice_init_all_ctrlq(hw);
4240	if (ret) {
4241		dev_err(dev, "control queues init failed %d\n", ret);
 
4242		goto err_init_ctrlq;
4243	}
4244
4245	/* if DDP was previously loaded successfully */
4246	if (!ice_is_safe_mode(pf)) {
4247		/* reload the SW DB of filter tables */
4248		if (reset_type == ICE_RESET_PFR)
4249			ice_fill_blk_tbls(hw);
4250		else
4251			/* Reload DDP Package after CORER/GLOBR reset */
4252			ice_load_pkg(NULL, pf);
4253	}
4254
4255	ret = ice_clear_pf_cfg(hw);
4256	if (ret) {
4257		dev_err(dev, "clear PF configuration failed %d\n", ret);
 
4258		goto err_init_ctrlq;
4259	}
4260
 
 
 
 
 
 
4261	ice_clear_pxe_mode(hw);
4262
4263	ret = ice_get_caps(hw);
4264	if (ret) {
4265		dev_err(dev, "ice_get_caps failed %d\n", ret);
 
 
 
 
 
 
4266		goto err_init_ctrlq;
4267	}
4268
4269	err = ice_sched_init_port(hw->port_info);
4270	if (err)
4271		goto err_sched_init_port;
4272
4273	err = ice_update_link_info(hw->port_info);
4274	if (err)
4275		dev_err(&pf->pdev->dev, "Get link status error %d\n", err);
4276
4277	/* start misc vector */
4278	err = ice_req_irq_msix_misc(pf);
4279	if (err) {
4280		dev_err(dev, "misc vector setup failed: %d\n", err);
4281		goto err_sched_init_port;
4282	}
4283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4284	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
4285		ice_dcb_rebuild(pf);
4286
4287	/* rebuild PF VSI */
4288	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
4289	if (err) {
4290		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
4291		goto err_vsi_rebuild;
4292	}
4293
4294	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4295		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF);
 
4296		if (err) {
4297			dev_err(dev, "VF VSI rebuild failed: %d\n", err);
4298			goto err_vsi_rebuild;
4299		}
 
 
 
 
 
 
 
 
 
4300	}
4301
4302	ice_update_pf_netdev_link(pf);
4303
4304	/* tell the firmware we are up */
4305	ret = ice_send_version(pf);
4306	if (ret) {
4307		dev_err(dev,
4308			"Rebuild failed due to error sending driver version: %d\n",
4309			ret);
4310		goto err_vsi_rebuild;
4311	}
4312
4313	ice_replay_post(hw);
4314
4315	/* if we get here, reset flow is successful */
4316	clear_bit(__ICE_RESET_FAILED, pf->state);
4317	return;
4318
4319err_vsi_rebuild:
4320err_sched_init_port:
4321	ice_sched_cleanup_all(hw);
4322err_init_ctrlq:
4323	ice_shutdown_all_ctrlq(hw);
4324	set_bit(__ICE_RESET_FAILED, pf->state);
4325clear_recovery:
4326	/* set this bit in PF state to control service task scheduling */
4327	set_bit(__ICE_NEEDS_RESTART, pf->state);
4328	dev_err(dev, "Rebuild failed, unload and reload driver\n");
4329}
4330
4331/**
 
 
 
 
 
 
 
 
 
 
 
 
4332 * ice_change_mtu - NDO callback to change the MTU
4333 * @netdev: network interface device structure
4334 * @new_mtu: new value for maximum frame size
4335 *
4336 * Returns 0 on success, negative on failure
4337 */
4338static int ice_change_mtu(struct net_device *netdev, int new_mtu)
4339{
4340	struct ice_netdev_priv *np = netdev_priv(netdev);
4341	struct ice_vsi *vsi = np->vsi;
4342	struct ice_pf *pf = vsi->back;
4343	u8 count = 0;
4344
4345	if (new_mtu == netdev->mtu) {
4346		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
4347		return 0;
4348	}
4349
4350	if (new_mtu < netdev->min_mtu) {
 
 
 
 
 
 
 
 
 
 
4351		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
4352			   netdev->min_mtu);
4353		return -EINVAL;
4354	} else if (new_mtu > netdev->max_mtu) {
4355		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
4356			   netdev->min_mtu);
4357		return -EINVAL;
4358	}
4359	/* if a reset is in progress, wait for some time for it to complete */
4360	do {
4361		if (ice_is_reset_in_progress(pf->state)) {
4362			count++;
4363			usleep_range(1000, 2000);
4364		} else {
4365			break;
4366		}
4367
4368	} while (count < 100);
4369
4370	if (count == 100) {
4371		netdev_err(netdev, "can't change MTU. Device is busy\n");
4372		return -EBUSY;
4373	}
4374
4375	netdev->mtu = new_mtu;
4376
4377	/* if VSI is up, bring it down and then back up */
4378	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
4379		int err;
4380
4381		err = ice_down(vsi);
4382		if (err) {
4383			netdev_err(netdev, "change MTU if_up err %d\n", err);
4384			return err;
4385		}
4386
4387		err = ice_up(vsi);
4388		if (err) {
4389			netdev_err(netdev, "change MTU if_up err %d\n", err);
4390			return err;
4391		}
4392	}
4393
4394	netdev_info(netdev, "changed MTU to %d\n", new_mtu);
4395	return 0;
4396}
4397
4398/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4399 * ice_set_rss - Set RSS keys and lut
4400 * @vsi: Pointer to VSI structure
4401 * @seed: RSS hash seed
4402 * @lut: Lookup table
4403 * @lut_size: Lookup table size
4404 *
4405 * Returns 0 on success, negative on failure
4406 */
4407int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4408{
4409	struct ice_pf *pf = vsi->back;
4410	struct ice_hw *hw = &pf->hw;
4411	enum ice_status status;
 
4412
 
4413	if (seed) {
4414		struct ice_aqc_get_set_rss_keys *buf =
4415				  (struct ice_aqc_get_set_rss_keys *)seed;
4416
4417		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
4418
4419		if (status) {
4420			dev_err(&pf->pdev->dev,
4421				"Cannot set RSS key, err %d aq_err %d\n",
4422				status, hw->adminq.rq_last_status);
4423			return -EIO;
4424		}
4425	}
4426
4427	if (lut) {
4428		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4429					    lut, lut_size);
4430		if (status) {
4431			dev_err(&pf->pdev->dev,
4432				"Cannot set RSS lut, err %d aq_err %d\n",
4433				status, hw->adminq.rq_last_status);
4434			return -EIO;
4435		}
4436	}
4437
4438	return 0;
4439}
4440
4441/**
4442 * ice_get_rss - Get RSS keys and lut
4443 * @vsi: Pointer to VSI structure
4444 * @seed: Buffer to store the keys
4445 * @lut: Buffer to store the lookup table entries
4446 * @lut_size: Size of buffer to store the lookup table entries
4447 *
4448 * Returns 0 on success, negative on failure
4449 */
4450int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4451{
4452	struct ice_pf *pf = vsi->back;
4453	struct ice_hw *hw = &pf->hw;
4454	enum ice_status status;
 
4455
 
4456	if (seed) {
4457		struct ice_aqc_get_set_rss_keys *buf =
4458				  (struct ice_aqc_get_set_rss_keys *)seed;
4459
4460		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
4461		if (status) {
4462			dev_err(&pf->pdev->dev,
4463				"Cannot get RSS key, err %d aq_err %d\n",
4464				status, hw->adminq.rq_last_status);
4465			return -EIO;
4466		}
4467	}
4468
4469	if (lut) {
4470		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4471					    lut, lut_size);
4472		if (status) {
4473			dev_err(&pf->pdev->dev,
4474				"Cannot get RSS lut, err %d aq_err %d\n",
4475				status, hw->adminq.rq_last_status);
4476			return -EIO;
4477		}
4478	}
4479
4480	return 0;
4481}
4482
4483/**
4484 * ice_bridge_getlink - Get the hardware bridge mode
4485 * @skb: skb buff
4486 * @pid: process ID
4487 * @seq: RTNL message seq
4488 * @dev: the netdev being configured
4489 * @filter_mask: filter mask passed in
4490 * @nlflags: netlink flags passed in
4491 *
4492 * Return the bridge mode (VEB/VEPA)
4493 */
4494static int
4495ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
4496		   struct net_device *dev, u32 filter_mask, int nlflags)
4497{
4498	struct ice_netdev_priv *np = netdev_priv(dev);
4499	struct ice_vsi *vsi = np->vsi;
4500	struct ice_pf *pf = vsi->back;
4501	u16 bmode;
4502
4503	bmode = pf->first_sw->bridge_mode;
4504
4505	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
4506				       filter_mask, NULL);
4507}
4508
4509/**
4510 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
4511 * @vsi: Pointer to VSI structure
4512 * @bmode: Hardware bridge mode (VEB/VEPA)
4513 *
4514 * Returns 0 on success, negative on failure
4515 */
4516static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
4517{
4518	struct device *dev = &vsi->back->pdev->dev;
4519	struct ice_aqc_vsi_props *vsi_props;
4520	struct ice_hw *hw = &vsi->back->hw;
4521	struct ice_vsi_ctx *ctxt;
4522	enum ice_status status;
4523	int ret = 0;
4524
4525	vsi_props = &vsi->info;
4526
4527	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
4528	if (!ctxt)
4529		return -ENOMEM;
4530
4531	ctxt->info = vsi->info;
4532
4533	if (bmode == BRIDGE_MODE_VEB)
4534		/* change from VEPA to VEB mode */
4535		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4536	else
4537		/* change from VEB to VEPA mode */
4538		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4539	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4540
4541	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4542	if (status) {
4543		dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
4544			bmode, status, hw->adminq.sq_last_status);
 
4545		ret = -EIO;
4546		goto out;
4547	}
4548	/* Update sw flags for book keeping */
4549	vsi_props->sw_flags = ctxt->info.sw_flags;
4550
4551out:
4552	devm_kfree(dev, ctxt);
4553	return ret;
4554}
4555
4556/**
4557 * ice_bridge_setlink - Set the hardware bridge mode
4558 * @dev: the netdev being configured
4559 * @nlh: RTNL message
4560 * @flags: bridge setlink flags
4561 * @extack: netlink extended ack
4562 *
4563 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
4564 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
4565 * not already set for all VSIs connected to this switch. And also update the
4566 * unicast switch filter rules for the corresponding switch of the netdev.
4567 */
4568static int
4569ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
4570		   u16 __always_unused flags,
4571		   struct netlink_ext_ack __always_unused *extack)
4572{
4573	struct ice_netdev_priv *np = netdev_priv(dev);
4574	struct ice_pf *pf = np->vsi->back;
4575	struct nlattr *attr, *br_spec;
4576	struct ice_hw *hw = &pf->hw;
4577	enum ice_status status;
4578	struct ice_sw *pf_sw;
4579	int rem, v, err = 0;
4580
4581	pf_sw = pf->first_sw;
4582	/* find the attribute in the netlink message */
4583	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
4584
4585	nla_for_each_nested(attr, br_spec, rem) {
4586		__u16 mode;
4587
4588		if (nla_type(attr) != IFLA_BRIDGE_MODE)
4589			continue;
4590		mode = nla_get_u16(attr);
4591		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
4592			return -EINVAL;
4593		/* Continue  if bridge mode is not being flipped */
4594		if (mode == pf_sw->bridge_mode)
4595			continue;
4596		/* Iterates through the PF VSI list and update the loopback
4597		 * mode of the VSI
4598		 */
4599		ice_for_each_vsi(pf, v) {
4600			if (!pf->vsi[v])
4601				continue;
4602			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
4603			if (err)
4604				return err;
4605		}
4606
4607		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
4608		/* Update the unicast switch filter rules for the corresponding
4609		 * switch of the netdev
4610		 */
4611		status = ice_update_sw_rule_bridge_mode(hw);
4612		if (status) {
4613			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
4614				   mode, status, hw->adminq.sq_last_status);
 
4615			/* revert hw->evb_veb */
4616			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
4617			return -EIO;
4618		}
4619
4620		pf_sw->bridge_mode = mode;
4621	}
4622
4623	return 0;
4624}
4625
4626/**
4627 * ice_tx_timeout - Respond to a Tx Hang
4628 * @netdev: network interface device structure
 
4629 */
4630static void ice_tx_timeout(struct net_device *netdev)
4631{
4632	struct ice_netdev_priv *np = netdev_priv(netdev);
4633	struct ice_ring *tx_ring = NULL;
4634	struct ice_vsi *vsi = np->vsi;
4635	struct ice_pf *pf = vsi->back;
4636	int hung_queue = -1;
4637	u32 i;
4638
4639	pf->tx_timeout_count++;
4640
4641	/* find the stopped queue the same way dev_watchdog() does */
4642	for (i = 0; i < netdev->num_tx_queues; i++) {
4643		unsigned long trans_start;
4644		struct netdev_queue *q;
4645
4646		q = netdev_get_tx_queue(netdev, i);
4647		trans_start = q->trans_start;
4648		if (netif_xmit_stopped(q) &&
4649		    time_after(jiffies,
4650			       trans_start + netdev->watchdog_timeo)) {
4651			hung_queue = i;
4652			break;
4653		}
4654	}
4655
4656	if (i == netdev->num_tx_queues)
4657		netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
4658	else
4659		/* now that we have an index, find the tx_ring struct */
4660		for (i = 0; i < vsi->num_txq; i++)
4661			if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
4662				if (hung_queue == vsi->tx_rings[i]->q_index) {
4663					tx_ring = vsi->tx_rings[i];
4664					break;
4665				}
4666
4667	/* Reset recovery level if enough time has elapsed after last timeout.
4668	 * Also ensure no new reset action happens before next timeout period.
4669	 */
4670	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
4671		pf->tx_timeout_recovery_level = 1;
4672	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
4673				       netdev->watchdog_timeo)))
4674		return;
4675
4676	if (tx_ring) {
4677		struct ice_hw *hw = &pf->hw;
4678		u32 head, val = 0;
4679
4680		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) &
4681			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
4682		/* Read interrupt register */
4683		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
4684
4685		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
4686			    vsi->vsi_num, hung_queue, tx_ring->next_to_clean,
4687			    head, tx_ring->next_to_use, val);
4688	}
4689
4690	pf->tx_timeout_last_recovery = jiffies;
4691	netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
4692		    pf->tx_timeout_recovery_level, hung_queue);
4693
4694	switch (pf->tx_timeout_recovery_level) {
4695	case 1:
4696		set_bit(__ICE_PFR_REQ, pf->state);
4697		break;
4698	case 2:
4699		set_bit(__ICE_CORER_REQ, pf->state);
4700		break;
4701	case 3:
4702		set_bit(__ICE_GLOBR_REQ, pf->state);
4703		break;
4704	default:
4705		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
4706		set_bit(__ICE_DOWN, pf->state);
4707		set_bit(__ICE_NEEDS_RESTART, vsi->state);
4708		set_bit(__ICE_SERVICE_DIS, pf->state);
4709		break;
4710	}
4711
4712	ice_service_task_schedule(pf);
4713	pf->tx_timeout_recovery_level++;
4714}
4715
4716/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4717 * ice_open - Called when a network interface becomes active
4718 * @netdev: network interface device structure
4719 *
4720 * The open entry point is called when a network interface is made
4721 * active by the system (IFF_UP). At this point all resources needed
4722 * for transmit and receive operations are allocated, the interrupt
4723 * handler is registered with the OS, the netdev watchdog is enabled,
4724 * and the stack is notified that the interface is ready.
4725 *
4726 * Returns 0 on success, negative value on failure
4727 */
4728int ice_open(struct net_device *netdev)
4729{
4730	struct ice_netdev_priv *np = netdev_priv(netdev);
4731	struct ice_vsi *vsi = np->vsi;
 
4732	struct ice_port_info *pi;
4733	int err;
4734
4735	if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
4736		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
4737		return -EIO;
4738	}
4739
 
 
 
 
 
4740	netif_carrier_off(netdev);
4741
4742	pi = vsi->port_info;
4743	err = ice_update_link_info(pi);
4744	if (err) {
4745		netdev_err(netdev, "Failed to get link info, error %d\n",
4746			   err);
4747		return err;
4748	}
4749
4750	/* Set PHY if there is media, otherwise, turn off PHY */
4751	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
4752		err = ice_force_phys_link_state(vsi, true);
 
 
 
 
 
 
 
 
 
 
4753		if (err) {
4754			netdev_err(netdev,
4755				   "Failed to set physical link up, error %d\n",
4756				   err);
4757			return err;
4758		}
4759	} else {
 
4760		err = ice_aq_set_link_restart_an(pi, false, NULL);
4761		if (err) {
4762			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
4763				   vsi->vsi_num, err);
4764			return err;
4765		}
4766		set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags);
4767	}
4768
4769	err = ice_vsi_open(vsi);
4770	if (err)
4771		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
4772			   vsi->vsi_num, vsi->vsw->sw_id);
 
 
 
 
4773	return err;
4774}
4775
4776/**
4777 * ice_stop - Disables a network interface
4778 * @netdev: network interface device structure
4779 *
4780 * The stop entry point is called when an interface is de-activated by the OS,
4781 * and the netdevice enters the DOWN state. The hardware is still under the
4782 * driver's control, but the netdev interface is disabled.
4783 *
4784 * Returns success only - not allowed to fail
4785 */
4786int ice_stop(struct net_device *netdev)
4787{
4788	struct ice_netdev_priv *np = netdev_priv(netdev);
4789	struct ice_vsi *vsi = np->vsi;
4790
4791	ice_vsi_close(vsi);
4792
4793	return 0;
4794}
4795
4796/**
4797 * ice_features_check - Validate encapsulated packet conforms to limits
4798 * @skb: skb buffer
4799 * @netdev: This port's netdev
4800 * @features: Offload features that the stack believes apply
4801 */
4802static netdev_features_t
4803ice_features_check(struct sk_buff *skb,
4804		   struct net_device __always_unused *netdev,
4805		   netdev_features_t features)
4806{
4807	size_t len;
4808
4809	/* No point in doing any of this if neither checksum nor GSO are
4810	 * being requested for this frame. We can rule out both by just
4811	 * checking for CHECKSUM_PARTIAL
4812	 */
4813	if (skb->ip_summed != CHECKSUM_PARTIAL)
4814		return features;
4815
4816	/* We cannot support GSO if the MSS is going to be less than
4817	 * 64 bytes. If it is then we need to drop support for GSO.
4818	 */
4819	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4820		features &= ~NETIF_F_GSO_MASK;
4821
4822	len = skb_network_header(skb) - skb->data;
4823	if (len & ~(ICE_TXD_MACLEN_MAX))
4824		goto out_rm_features;
4825
4826	len = skb_transport_header(skb) - skb_network_header(skb);
4827	if (len & ~(ICE_TXD_IPLEN_MAX))
4828		goto out_rm_features;
4829
4830	if (skb->encapsulation) {
4831		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4832		if (len & ~(ICE_TXD_L4LEN_MAX))
4833			goto out_rm_features;
4834
4835		len = skb_inner_transport_header(skb) -
4836		      skb_inner_network_header(skb);
4837		if (len & ~(ICE_TXD_IPLEN_MAX))
4838			goto out_rm_features;
4839	}
4840
4841	return features;
4842out_rm_features:
4843	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4844}
4845
4846static const struct net_device_ops ice_netdev_safe_mode_ops = {
4847	.ndo_open = ice_open,
4848	.ndo_stop = ice_stop,
4849	.ndo_start_xmit = ice_start_xmit,
4850	.ndo_set_mac_address = ice_set_mac_address,
4851	.ndo_validate_addr = eth_validate_addr,
4852	.ndo_change_mtu = ice_change_mtu,
4853	.ndo_get_stats64 = ice_get_stats64,
4854	.ndo_tx_timeout = ice_tx_timeout,
4855};
4856
4857static const struct net_device_ops ice_netdev_ops = {
4858	.ndo_open = ice_open,
4859	.ndo_stop = ice_stop,
4860	.ndo_start_xmit = ice_start_xmit,
4861	.ndo_features_check = ice_features_check,
4862	.ndo_set_rx_mode = ice_set_rx_mode,
4863	.ndo_set_mac_address = ice_set_mac_address,
4864	.ndo_validate_addr = eth_validate_addr,
4865	.ndo_change_mtu = ice_change_mtu,
4866	.ndo_get_stats64 = ice_get_stats64,
 
4867	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
4868	.ndo_set_vf_mac = ice_set_vf_mac,
4869	.ndo_get_vf_config = ice_get_vf_cfg,
4870	.ndo_set_vf_trust = ice_set_vf_trust,
4871	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
4872	.ndo_set_vf_link_state = ice_set_vf_link_state,
 
4873	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
4874	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
4875	.ndo_set_features = ice_set_features,
4876	.ndo_bridge_getlink = ice_bridge_getlink,
4877	.ndo_bridge_setlink = ice_bridge_setlink,
4878	.ndo_fdb_add = ice_fdb_add,
4879	.ndo_fdb_del = ice_fdb_del,
 
 
 
4880	.ndo_tx_timeout = ice_tx_timeout,
 
 
 
 
 
4881};
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <generated/utsrelease.h>
   9#include "ice.h"
  10#include "ice_base.h"
  11#include "ice_lib.h"
  12#include "ice_fltr.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_dcb_nl.h"
  15#include "ice_devlink.h"
  16
 
 
 
 
 
 
 
  17#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
 
  18static const char ice_driver_string[] = DRV_SUMMARY;
  19static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  20
  21/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
  22#define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
  23#define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
  24
  25MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  26MODULE_DESCRIPTION(DRV_SUMMARY);
  27MODULE_LICENSE("GPL v2");
 
  28MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
  29
  30static int debug = -1;
  31module_param(debug, int, 0644);
  32#ifndef CONFIG_DYNAMIC_DEBUG
  33MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  34#else
  35MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  36#endif /* !CONFIG_DYNAMIC_DEBUG */
  37
  38static struct workqueue_struct *ice_wq;
  39static const struct net_device_ops ice_netdev_safe_mode_ops;
  40static const struct net_device_ops ice_netdev_ops;
  41static int ice_vsi_open(struct ice_vsi *vsi);
  42
  43static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
  44
  45static void ice_vsi_release_all(struct ice_pf *pf);
  46
  47/**
  48 * ice_get_tx_pending - returns number of Tx descriptors not processed
  49 * @ring: the ring of descriptors
  50 */
  51static u16 ice_get_tx_pending(struct ice_ring *ring)
  52{
  53	u16 head, tail;
  54
  55	head = ring->next_to_clean;
  56	tail = ring->next_to_use;
  57
  58	if (head != tail)
  59		return (head < tail) ?
  60			tail - head : (tail + ring->count - head);
  61	return 0;
  62}
  63
  64/**
  65 * ice_check_for_hang_subtask - check for and recover hung queues
  66 * @pf: pointer to PF struct
  67 */
  68static void ice_check_for_hang_subtask(struct ice_pf *pf)
  69{
  70	struct ice_vsi *vsi = NULL;
  71	struct ice_hw *hw;
  72	unsigned int i;
  73	int packets;
  74	u32 v;
  75
  76	ice_for_each_vsi(pf, v)
  77		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
  78			vsi = pf->vsi[v];
  79			break;
  80		}
  81
  82	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
  83		return;
  84
  85	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
  86		return;
  87
  88	hw = &vsi->back->hw;
  89
  90	for (i = 0; i < vsi->num_txq; i++) {
  91		struct ice_ring *tx_ring = vsi->tx_rings[i];
  92
  93		if (tx_ring && tx_ring->desc) {
  94			/* If packet counter has not changed the queue is
  95			 * likely stalled, so force an interrupt for this
  96			 * queue.
  97			 *
  98			 * prev_pkt would be negative if there was no
  99			 * pending work.
 100			 */
 101			packets = tx_ring->stats.pkts & INT_MAX;
 102			if (tx_ring->tx_stats.prev_pkt == packets) {
 103				/* Trigger sw interrupt to revive the queue */
 104				ice_trigger_sw_intr(hw, tx_ring->q_vector);
 105				continue;
 106			}
 107
 108			/* Memory barrier between read of packet count and call
 109			 * to ice_get_tx_pending()
 110			 */
 111			smp_rmb();
 112			tx_ring->tx_stats.prev_pkt =
 113			    ice_get_tx_pending(tx_ring) ? packets : -1;
 114		}
 115	}
 116}
 117
 118/**
 119 * ice_init_mac_fltr - Set initial MAC filters
 120 * @pf: board private structure
 121 *
 122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
 123 * address and broadcast address. If an error is encountered, netdevice will be
 124 * unregistered.
 125 */
 126static int ice_init_mac_fltr(struct ice_pf *pf)
 127{
 128	enum ice_status status;
 
 129	struct ice_vsi *vsi;
 130	u8 *perm_addr;
 131
 132	vsi = ice_get_main_vsi(pf);
 133	if (!vsi)
 134		return -EINVAL;
 135
 136	perm_addr = vsi->port_info->mac.perm_addr;
 137	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
 138	if (!status)
 139		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 140
 
 
 141	/* We aren't useful with no MAC filters, so unregister if we
 142	 * had an error
 143	 */
 144	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
 145		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
 146			ice_stat_str(status));
 
 147		unregister_netdev(vsi->netdev);
 148		free_netdev(vsi->netdev);
 149		vsi->netdev = NULL;
 150	}
 151
 152	return -EIO;
 153}
 154
 155/**
 156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
 157 * @netdev: the net device on which the sync is happening
 158 * @addr: MAC address to sync
 159 *
 160 * This is a callback function which is called by the in kernel device sync
 161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 163 * MAC filters from the hardware.
 164 */
 165static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 166{
 167	struct ice_netdev_priv *np = netdev_priv(netdev);
 168	struct ice_vsi *vsi = np->vsi;
 169
 170	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
 171				     ICE_FWD_TO_VSI))
 172		return -EINVAL;
 173
 174	return 0;
 175}
 176
 177/**
 178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
 179 * @netdev: the net device on which the unsync is happening
 180 * @addr: MAC address to unsync
 181 *
 182 * This is a callback function which is called by the in kernel device unsync
 183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 185 * delete the MAC filters from the hardware.
 186 */
 187static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 188{
 189	struct ice_netdev_priv *np = netdev_priv(netdev);
 190	struct ice_vsi *vsi = np->vsi;
 191
 192	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
 193				     ICE_FWD_TO_VSI))
 194		return -EINVAL;
 195
 196	return 0;
 197}
 198
 199/**
 200 * ice_vsi_fltr_changed - check if filter state changed
 201 * @vsi: VSI to be checked
 202 *
 203 * returns true if filter state has changed, false otherwise.
 204 */
 205static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 206{
 207	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
 208	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
 209	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 210}
 211
 212/**
 213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
 214 * @vsi: the VSI being configured
 215 * @promisc_m: mask of promiscuous config bits
 216 * @set_promisc: enable or disable promisc flag request
 217 *
 218 */
 219static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
 220{
 221	struct ice_hw *hw = &vsi->back->hw;
 222	enum ice_status status = 0;
 223
 224	if (vsi->type != ICE_VSI_PF)
 225		return 0;
 226
 227	if (vsi->vlan_ena) {
 228		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
 229						  set_promisc);
 230	} else {
 231		if (set_promisc)
 232			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 233						     0);
 234		else
 235			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 236						       0);
 237	}
 238
 239	if (status)
 240		return -EIO;
 241
 242	return 0;
 243}
 244
 245/**
 246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 247 * @vsi: ptr to the VSI
 248 *
 249 * Push any outstanding VSI filter changes through the AdminQ.
 250 */
 251static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 252{
 253	struct device *dev = ice_pf_to_dev(vsi->back);
 254	struct net_device *netdev = vsi->netdev;
 255	bool promisc_forced_on = false;
 256	struct ice_pf *pf = vsi->back;
 257	struct ice_hw *hw = &pf->hw;
 258	enum ice_status status = 0;
 259	u32 changed_flags = 0;
 260	u8 promisc_m;
 261	int err = 0;
 262
 263	if (!vsi->netdev)
 264		return -EINVAL;
 265
 266	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
 267		usleep_range(1000, 2000);
 268
 269	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 270	vsi->current_netdev_flags = vsi->netdev->flags;
 271
 272	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 273	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 274
 275	if (ice_vsi_fltr_changed(vsi)) {
 276		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 277		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 278		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 279
 280		/* grab the netdev's addr_list_lock */
 281		netif_addr_lock_bh(netdev);
 282		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 283			      ice_add_mac_to_unsync_list);
 284		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 285			      ice_add_mac_to_unsync_list);
 286		/* our temp lists are populated. release lock */
 287		netif_addr_unlock_bh(netdev);
 288	}
 289
 290	/* Remove MAC addresses in the unsync list */
 291	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
 292	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
 293	if (status) {
 294		netdev_err(netdev, "Failed to delete MAC filters\n");
 295		/* if we failed because of alloc failures, just bail */
 296		if (status == ICE_ERR_NO_MEMORY) {
 297			err = -ENOMEM;
 298			goto out;
 299		}
 300	}
 301
 302	/* Add MAC addresses in the sync list */
 303	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
 304	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
 305	/* If filter is added successfully or already exists, do not go into
 306	 * 'if' condition and report it as error. Instead continue processing
 307	 * rest of the function.
 308	 */
 309	if (status && status != ICE_ERR_ALREADY_EXISTS) {
 310		netdev_err(netdev, "Failed to add MAC filters\n");
 311		/* If there is no more space for new umac filters, VSI
 312		 * should go into promiscuous mode. There should be some
 313		 * space reserved for promiscuous filters.
 314		 */
 315		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 316		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
 317				      vsi->state)) {
 318			promisc_forced_on = true;
 319			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 
 320				    vsi->vsi_num);
 321		} else {
 322			err = -EIO;
 323			goto out;
 324		}
 325	}
 326	/* check for changes in promiscuous modes */
 327	if (changed_flags & IFF_ALLMULTI) {
 328		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
 329			if (vsi->vlan_ena)
 330				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 331			else
 332				promisc_m = ICE_MCAST_PROMISC_BITS;
 333
 334			err = ice_cfg_promisc(vsi, promisc_m, true);
 335			if (err) {
 336				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
 337					   vsi->vsi_num);
 338				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
 339				goto out_promisc;
 340			}
 341		} else {
 342			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
 343			if (vsi->vlan_ena)
 344				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 345			else
 346				promisc_m = ICE_MCAST_PROMISC_BITS;
 347
 348			err = ice_cfg_promisc(vsi, promisc_m, false);
 349			if (err) {
 350				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
 351					   vsi->vsi_num);
 352				vsi->current_netdev_flags |= IFF_ALLMULTI;
 353				goto out_promisc;
 354			}
 355		}
 356	}
 357
 358	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 359	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
 360		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 361		if (vsi->current_netdev_flags & IFF_PROMISC) {
 362			/* Apply Rx filter rule to get traffic from wire */
 363			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
 364				err = ice_set_dflt_vsi(pf->first_sw, vsi);
 365				if (err && err != -EEXIST) {
 366					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
 367						   err, vsi->vsi_num);
 368					vsi->current_netdev_flags &=
 369						~IFF_PROMISC;
 370					goto out_promisc;
 371				}
 372				ice_cfg_vlan_pruning(vsi, false, false);
 373			}
 374		} else {
 375			/* Clear Rx filter to remove traffic from wire */
 376			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
 377				err = ice_clear_dflt_vsi(pf->first_sw);
 378				if (err) {
 379					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
 380						   err, vsi->vsi_num);
 381					vsi->current_netdev_flags |=
 382						IFF_PROMISC;
 383					goto out_promisc;
 384				}
 385				if (vsi->num_vlan > 1)
 386					ice_cfg_vlan_pruning(vsi, true, false);
 387			}
 388		}
 389	}
 390	goto exit;
 391
 392out_promisc:
 393	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 394	goto exit;
 395out:
 396	/* if something went wrong then set the changed flag so we try again */
 397	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 398	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 399exit:
 400	clear_bit(__ICE_CFG_BUSY, vsi->state);
 401	return err;
 402}
 403
 404/**
 405 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 406 * @pf: board private structure
 407 */
 408static void ice_sync_fltr_subtask(struct ice_pf *pf)
 409{
 410	int v;
 411
 412	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 413		return;
 414
 415	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 416
 417	ice_for_each_vsi(pf, v)
 418		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 419		    ice_vsi_sync_fltr(pf->vsi[v])) {
 420			/* come back and try again later */
 421			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 422			break;
 423		}
 424}
 425
 426/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 428 * @pf: the PF
 429 * @locked: is the rtnl_lock already held
 430 */
 
 
 
 431static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 
 432{
 433	int v;
 434
 435	ice_for_each_vsi(pf, v)
 436		if (pf->vsi[v])
 437			ice_dis_vsi(pf->vsi[v], locked);
 438}
 439
 440/**
 441 * ice_prepare_for_reset - prep for the core to reset
 442 * @pf: board private structure
 443 *
 444 * Inform or close all dependent features in prep for reset.
 445 */
 446static void
 447ice_prepare_for_reset(struct ice_pf *pf)
 448{
 449	struct ice_hw *hw = &pf->hw;
 450	unsigned int i;
 451
 452	/* already prepared for reset */
 453	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
 454		return;
 455
 456	/* Notify VFs of impending reset */
 457	if (ice_check_sq_alive(hw, &hw->mailboxq))
 458		ice_vc_notify_reset(pf);
 459
 460	/* Disable VFs until reset is completed */
 461	ice_for_each_vf(pf, i)
 462		ice_set_vf_state_qs_dis(&pf->vf[i]);
 463
 464	/* clear SW filtering DB */
 465	ice_clear_hw_tbls(hw);
 466	/* disable the VSIs and their queues that are not already DOWN */
 467	ice_pf_dis_all_vsi(pf, false);
 468
 469	if (hw->port_info)
 470		ice_sched_clear_port(hw->port_info);
 471
 472	ice_shutdown_all_ctrlq(hw);
 473
 474	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 475}
 476
 477/**
 478 * ice_do_reset - Initiate one of many types of resets
 479 * @pf: board private structure
 480 * @reset_type: reset type requested
 481 * before this function was called.
 482 */
 483static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 484{
 485	struct device *dev = ice_pf_to_dev(pf);
 486	struct ice_hw *hw = &pf->hw;
 487
 488	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 489	WARN_ON(in_interrupt());
 490
 491	ice_prepare_for_reset(pf);
 492
 493	/* trigger the reset */
 494	if (ice_reset(hw, reset_type)) {
 495		dev_err(dev, "reset %d failed\n", reset_type);
 496		set_bit(__ICE_RESET_FAILED, pf->state);
 497		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 498		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 499		clear_bit(__ICE_PFR_REQ, pf->state);
 500		clear_bit(__ICE_CORER_REQ, pf->state);
 501		clear_bit(__ICE_GLOBR_REQ, pf->state);
 502		return;
 503	}
 504
 505	/* PFR is a bit of a special case because it doesn't result in an OICR
 506	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
 507	 * associated state bits.
 508	 */
 509	if (reset_type == ICE_RESET_PFR) {
 510		pf->pfr_count++;
 511		ice_rebuild(pf, reset_type);
 512		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 513		clear_bit(__ICE_PFR_REQ, pf->state);
 514		ice_reset_all_vfs(pf, true);
 515	}
 516}
 517
 518/**
 519 * ice_reset_subtask - Set up for resetting the device and driver
 520 * @pf: board private structure
 521 */
 522static void ice_reset_subtask(struct ice_pf *pf)
 523{
 524	enum ice_reset_req reset_type = ICE_RESET_INVAL;
 525
 526	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 527	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
 528	 * of reset is pending and sets bits in pf->state indicating the reset
 529	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
 530	 * prepare for pending reset if not already (for PF software-initiated
 531	 * global resets the software should already be prepared for it as
 532	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
 533	 * by firmware or software on other PFs, that bit is not set so prepare
 534	 * for the reset now), poll for reset done, rebuild and return.
 535	 */
 536	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
 537		/* Perform the largest reset requested */
 538		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
 539			reset_type = ICE_RESET_CORER;
 540		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
 541			reset_type = ICE_RESET_GLOBR;
 542		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
 543			reset_type = ICE_RESET_EMPR;
 544		/* return if no valid reset type requested */
 545		if (reset_type == ICE_RESET_INVAL)
 546			return;
 547		ice_prepare_for_reset(pf);
 548
 549		/* make sure we are ready to rebuild */
 550		if (ice_check_reset(&pf->hw)) {
 551			set_bit(__ICE_RESET_FAILED, pf->state);
 552		} else {
 553			/* done with reset. start rebuild */
 554			pf->hw.reset_ongoing = false;
 555			ice_rebuild(pf, reset_type);
 556			/* clear bit to resume normal operations, but
 557			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
 558			 */
 559			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 560			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 561			clear_bit(__ICE_PFR_REQ, pf->state);
 562			clear_bit(__ICE_CORER_REQ, pf->state);
 563			clear_bit(__ICE_GLOBR_REQ, pf->state);
 564			ice_reset_all_vfs(pf, true);
 565		}
 566
 567		return;
 568	}
 569
 570	/* No pending resets to finish processing. Check for new resets */
 571	if (test_bit(__ICE_PFR_REQ, pf->state))
 572		reset_type = ICE_RESET_PFR;
 573	if (test_bit(__ICE_CORER_REQ, pf->state))
 574		reset_type = ICE_RESET_CORER;
 575	if (test_bit(__ICE_GLOBR_REQ, pf->state))
 576		reset_type = ICE_RESET_GLOBR;
 577	/* If no valid reset type requested just return */
 578	if (reset_type == ICE_RESET_INVAL)
 579		return;
 580
 581	/* reset if not already down or busy */
 582	if (!test_bit(__ICE_DOWN, pf->state) &&
 583	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
 584		ice_do_reset(pf, reset_type);
 585	}
 586}
 587
 588/**
 589 * ice_print_topo_conflict - print topology conflict message
 590 * @vsi: the VSI whose topology status is being checked
 591 */
 592static void ice_print_topo_conflict(struct ice_vsi *vsi)
 593{
 594	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
 595	case ICE_AQ_LINK_TOPO_CONFLICT:
 596	case ICE_AQ_LINK_MEDIA_CONFLICT:
 597	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
 598	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
 599	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
 600		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
 601		break;
 602	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
 603		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
 604		break;
 605	default:
 606		break;
 607	}
 608}
 609
 610/**
 611 * ice_print_link_msg - print link up or down message
 612 * @vsi: the VSI whose link status is being queried
 613 * @isup: boolean for if the link is now up or down
 614 */
 615void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 616{
 617	struct ice_aqc_get_phy_caps_data *caps;
 618	const char *an_advertised;
 619	enum ice_status status;
 620	const char *fec_req;
 621	const char *speed;
 622	const char *fec;
 623	const char *fc;
 624	const char *an;
 625
 626	if (!vsi)
 627		return;
 628
 629	if (vsi->current_isup == isup)
 630		return;
 631
 632	vsi->current_isup = isup;
 633
 634	if (!isup) {
 635		netdev_info(vsi->netdev, "NIC Link is Down\n");
 636		return;
 637	}
 638
 639	switch (vsi->port_info->phy.link_info.link_speed) {
 640	case ICE_AQ_LINK_SPEED_100GB:
 641		speed = "100 G";
 642		break;
 643	case ICE_AQ_LINK_SPEED_50GB:
 644		speed = "50 G";
 645		break;
 646	case ICE_AQ_LINK_SPEED_40GB:
 647		speed = "40 G";
 648		break;
 649	case ICE_AQ_LINK_SPEED_25GB:
 650		speed = "25 G";
 651		break;
 652	case ICE_AQ_LINK_SPEED_20GB:
 653		speed = "20 G";
 654		break;
 655	case ICE_AQ_LINK_SPEED_10GB:
 656		speed = "10 G";
 657		break;
 658	case ICE_AQ_LINK_SPEED_5GB:
 659		speed = "5 G";
 660		break;
 661	case ICE_AQ_LINK_SPEED_2500MB:
 662		speed = "2.5 G";
 663		break;
 664	case ICE_AQ_LINK_SPEED_1000MB:
 665		speed = "1 G";
 666		break;
 667	case ICE_AQ_LINK_SPEED_100MB:
 668		speed = "100 M";
 669		break;
 670	default:
 671		speed = "Unknown";
 672		break;
 673	}
 674
 675	switch (vsi->port_info->fc.current_mode) {
 676	case ICE_FC_FULL:
 677		fc = "Rx/Tx";
 678		break;
 679	case ICE_FC_TX_PAUSE:
 680		fc = "Tx";
 681		break;
 682	case ICE_FC_RX_PAUSE:
 683		fc = "Rx";
 684		break;
 685	case ICE_FC_NONE:
 686		fc = "None";
 687		break;
 688	default:
 689		fc = "Unknown";
 690		break;
 691	}
 692
 693	/* Get FEC mode based on negotiated link info */
 694	switch (vsi->port_info->phy.link_info.fec_info) {
 695	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
 
 696	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
 697		fec = "RS-FEC";
 698		break;
 699	case ICE_AQ_LINK_25G_KR_FEC_EN:
 700		fec = "FC-FEC/BASE-R";
 701		break;
 702	default:
 703		fec = "NONE";
 704		break;
 705	}
 706
 707	/* check if autoneg completed, might be false due to not supported */
 708	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
 709		an = "True";
 710	else
 711		an = "False";
 712
 713	/* Get FEC mode requested based on PHY caps last SW configuration */
 714	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
 715	if (!caps) {
 716		fec_req = "Unknown";
 717		an_advertised = "Unknown";
 718		goto done;
 719	}
 720
 721	status = ice_aq_get_phy_caps(vsi->port_info, false,
 722				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
 723	if (status)
 724		netdev_info(vsi->netdev, "Get phy capability failed.\n");
 725
 726	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
 727
 728	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
 729	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
 730		fec_req = "RS-FEC";
 731	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
 732		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
 733		fec_req = "FC-FEC/BASE-R";
 734	else
 735		fec_req = "NONE";
 736
 737	kfree(caps);
 738
 739done:
 740	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
 741		    speed, fec_req, fec, an_advertised, an, fc);
 742	ice_print_topo_conflict(vsi);
 743}
 744
 745/**
 746 * ice_vsi_link_event - update the VSI's netdev
 747 * @vsi: the VSI on which the link event occurred
 748 * @link_up: whether or not the VSI needs to be set up or down
 749 */
 750static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 751{
 752	if (!vsi)
 753		return;
 754
 755	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
 756		return;
 757
 758	if (vsi->type == ICE_VSI_PF) {
 759		if (link_up == netif_carrier_ok(vsi->netdev))
 760			return;
 761
 762		if (link_up) {
 763			netif_carrier_on(vsi->netdev);
 764			netif_tx_wake_all_queues(vsi->netdev);
 765		} else {
 766			netif_carrier_off(vsi->netdev);
 767			netif_tx_stop_all_queues(vsi->netdev);
 768		}
 769	}
 770}
 771
 772/**
 773 * ice_set_dflt_mib - send a default config MIB to the FW
 774 * @pf: private PF struct
 775 *
 776 * This function sends a default configuration MIB to the FW.
 777 *
 778 * If this function errors out at any point, the driver is still able to
 779 * function.  The main impact is that LFC may not operate as expected.
 780 * Therefore an error state in this function should be treated with a DBG
 781 * message and continue on with driver rebuild/reenable.
 782 */
 783static void ice_set_dflt_mib(struct ice_pf *pf)
 784{
 785	struct device *dev = ice_pf_to_dev(pf);
 786	u8 mib_type, *buf, *lldpmib = NULL;
 787	u16 len, typelen, offset = 0;
 788	struct ice_lldp_org_tlv *tlv;
 789	struct ice_hw *hw;
 790	u32 ouisubtype;
 791
 792	if (!pf) {
 793		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
 794		return;
 795	}
 796
 797	hw = &pf->hw;
 798	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
 799	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
 800	if (!lldpmib) {
 801		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
 802			__func__);
 803		return;
 804	}
 805
 806	/* Add ETS CFG TLV */
 807	tlv = (struct ice_lldp_org_tlv *)lldpmib;
 808	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 809		   ICE_IEEE_ETS_TLV_LEN);
 810	tlv->typelen = htons(typelen);
 811	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 812		      ICE_IEEE_SUBTYPE_ETS_CFG);
 813	tlv->ouisubtype = htonl(ouisubtype);
 814
 815	buf = tlv->tlvinfo;
 816	buf[0] = 0;
 817
 818	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
 819	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
 820	 * Octets 13 - 20 are TSA values - leave as zeros
 821	 */
 822	buf[5] = 0x64;
 823	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 824	offset += len + 2;
 825	tlv = (struct ice_lldp_org_tlv *)
 826		((char *)tlv + sizeof(tlv->typelen) + len);
 827
 828	/* Add ETS REC TLV */
 829	buf = tlv->tlvinfo;
 830	tlv->typelen = htons(typelen);
 831
 832	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 833		      ICE_IEEE_SUBTYPE_ETS_REC);
 834	tlv->ouisubtype = htonl(ouisubtype);
 835
 836	/* First octet of buf is reserved
 837	 * Octets 1 - 4 map UP to TC - all UPs map to zero
 838	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
 839	 * Octets 13 - 20 are TSA value - leave as zeros
 840	 */
 841	buf[5] = 0x64;
 842	offset += len + 2;
 843	tlv = (struct ice_lldp_org_tlv *)
 844		((char *)tlv + sizeof(tlv->typelen) + len);
 845
 846	/* Add PFC CFG TLV */
 847	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 848		   ICE_IEEE_PFC_TLV_LEN);
 849	tlv->typelen = htons(typelen);
 850
 851	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 852		      ICE_IEEE_SUBTYPE_PFC_CFG);
 853	tlv->ouisubtype = htonl(ouisubtype);
 854
 855	/* Octet 1 left as all zeros - PFC disabled */
 856	buf[0] = 0x08;
 857	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 858	offset += len + 2;
 859
 860	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
 861		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
 862
 863	kfree(lldpmib);
 864}
 865
 866/**
 867 * ice_link_event - process the link event
 868 * @pf: PF that the link event is associated with
 869 * @pi: port_info for the port that the link event is associated with
 870 * @link_up: true if the physical link is up and false if it is down
 871 * @link_speed: current link speed received from the link event
 872 *
 873 * Returns 0 on success and negative on failure
 874 */
 875static int
 876ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
 877	       u16 link_speed)
 878{
 879	struct device *dev = ice_pf_to_dev(pf);
 880	struct ice_phy_info *phy_info;
 881	struct ice_vsi *vsi;
 882	u16 old_link_speed;
 883	bool old_link;
 884	int result;
 885
 886	phy_info = &pi->phy;
 887	phy_info->link_info_old = phy_info->link_info;
 888
 889	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 890	old_link_speed = phy_info->link_info_old.link_speed;
 891
 892	/* update the link info structures and re-enable link events,
 893	 * don't bail on failure due to other book keeping needed
 894	 */
 895	result = ice_update_link_info(pi);
 896	if (result)
 897		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
 
 898			pi->lport);
 899
 900	/* Check if the link state is up after updating link info, and treat
 901	 * this event as an UP event since the link is actually UP now.
 902	 */
 903	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
 904		link_up = true;
 905
 906	vsi = ice_get_main_vsi(pf);
 907	if (!vsi || !vsi->port_info)
 908		return -EINVAL;
 909
 910	/* turn off PHY if media was removed */
 911	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
 912	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
 913		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
 914
 915		result = ice_aq_set_link_restart_an(pi, false, NULL);
 916		if (result) {
 917			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
 
 918				vsi->vsi_num, result);
 919			return result;
 920		}
 921	}
 922
 923	/* if the old link up/down and speed is the same as the new */
 924	if (link_up == old_link && link_speed == old_link_speed)
 925		return result;
 926
 927	if (ice_is_dcb_active(pf)) {
 928		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
 929			ice_dcb_rebuild(pf);
 930	} else {
 931		if (link_up)
 932			ice_set_dflt_mib(pf);
 933	}
 934	ice_vsi_link_event(vsi, link_up);
 935	ice_print_link_msg(vsi, link_up);
 936
 937	ice_vc_notify_link_state(pf);
 
 938
 939	return result;
 940}
 941
 942/**
 943 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 944 * @pf: board private structure
 945 */
 946static void ice_watchdog_subtask(struct ice_pf *pf)
 947{
 948	int i;
 949
 950	/* if interface is down do nothing */
 951	if (test_bit(__ICE_DOWN, pf->state) ||
 952	    test_bit(__ICE_CFG_BUSY, pf->state))
 953		return;
 954
 955	/* make sure we don't do these things too often */
 956	if (time_before(jiffies,
 957			pf->serv_tmr_prev + pf->serv_tmr_period))
 958		return;
 959
 960	pf->serv_tmr_prev = jiffies;
 961
 962	/* Update the stats for active netdevs so the network stack
 963	 * can look at updated numbers whenever it cares to
 964	 */
 965	ice_update_pf_stats(pf);
 966	ice_for_each_vsi(pf, i)
 967		if (pf->vsi[i] && pf->vsi[i]->netdev)
 968			ice_update_vsi_stats(pf->vsi[i]);
 969}
 970
 971/**
 972 * ice_init_link_events - enable/initialize link events
 973 * @pi: pointer to the port_info instance
 974 *
 975 * Returns -EIO on failure, 0 on success
 976 */
 977static int ice_init_link_events(struct ice_port_info *pi)
 978{
 979	u16 mask;
 980
 981	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
 982		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
 983
 984	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
 985		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
 
 986			pi->lport);
 987		return -EIO;
 988	}
 989
 990	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
 991		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
 
 992			pi->lport);
 993		return -EIO;
 994	}
 995
 996	return 0;
 997}
 998
 999/**
1000 * ice_handle_link_event - handle link event via ARQ
1001 * @pf: PF that the link event is associated with
1002 * @event: event structure containing link status info
1003 */
1004static int
1005ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1006{
1007	struct ice_aqc_get_link_status_data *link_data;
1008	struct ice_port_info *port_info;
1009	int status;
1010
1011	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1012	port_info = pf->hw.port_info;
1013	if (!port_info)
1014		return -EINVAL;
1015
1016	status = ice_link_event(pf, port_info,
1017				!!(link_data->link_info & ICE_AQ_LINK_UP),
1018				le16_to_cpu(link_data->link_speed));
1019	if (status)
1020		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1021			status);
1022
1023	return status;
1024}
1025
1026enum ice_aq_task_state {
1027	ICE_AQ_TASK_WAITING = 0,
1028	ICE_AQ_TASK_COMPLETE,
1029	ICE_AQ_TASK_CANCELED,
1030};
1031
1032struct ice_aq_task {
1033	struct hlist_node entry;
1034
1035	u16 opcode;
1036	struct ice_rq_event_info *event;
1037	enum ice_aq_task_state state;
1038};
1039
1040/**
1041 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1042 * @pf: pointer to the PF private structure
1043 * @opcode: the opcode to wait for
1044 * @timeout: how long to wait, in jiffies
1045 * @event: storage for the event info
1046 *
1047 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1048 * current thread will be put to sleep until the specified event occurs or
1049 * until the given timeout is reached.
1050 *
1051 * To obtain only the descriptor contents, pass an event without an allocated
1052 * msg_buf. If the complete data buffer is desired, allocate the
1053 * event->msg_buf with enough space ahead of time.
1054 *
1055 * Returns: zero on success, or a negative error code on failure.
1056 */
1057int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1058			  struct ice_rq_event_info *event)
1059{
1060	struct ice_aq_task *task;
1061	long ret;
1062	int err;
1063
1064	task = kzalloc(sizeof(*task), GFP_KERNEL);
1065	if (!task)
1066		return -ENOMEM;
1067
1068	INIT_HLIST_NODE(&task->entry);
1069	task->opcode = opcode;
1070	task->event = event;
1071	task->state = ICE_AQ_TASK_WAITING;
1072
1073	spin_lock_bh(&pf->aq_wait_lock);
1074	hlist_add_head(&task->entry, &pf->aq_wait_list);
1075	spin_unlock_bh(&pf->aq_wait_lock);
1076
1077	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1078					       timeout);
1079	switch (task->state) {
1080	case ICE_AQ_TASK_WAITING:
1081		err = ret < 0 ? ret : -ETIMEDOUT;
1082		break;
1083	case ICE_AQ_TASK_CANCELED:
1084		err = ret < 0 ? ret : -ECANCELED;
1085		break;
1086	case ICE_AQ_TASK_COMPLETE:
1087		err = ret < 0 ? ret : 0;
1088		break;
1089	default:
1090		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1091		err = -EINVAL;
1092		break;
1093	}
1094
1095	spin_lock_bh(&pf->aq_wait_lock);
1096	hlist_del(&task->entry);
1097	spin_unlock_bh(&pf->aq_wait_lock);
1098	kfree(task);
1099
1100	return err;
1101}
1102
1103/**
1104 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1105 * @pf: pointer to the PF private structure
1106 * @opcode: the opcode of the event
1107 * @event: the event to check
1108 *
1109 * Loops over the current list of pending threads waiting for an AdminQ event.
1110 * For each matching task, copy the contents of the event into the task
1111 * structure and wake up the thread.
1112 *
1113 * If multiple threads wait for the same opcode, they will all be woken up.
1114 *
1115 * Note that event->msg_buf will only be duplicated if the event has a buffer
1116 * with enough space already allocated. Otherwise, only the descriptor and
1117 * message length will be copied.
1118 *
1119 * Returns: true if an event was found, false otherwise
1120 */
1121static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1122				struct ice_rq_event_info *event)
1123{
1124	struct ice_aq_task *task;
1125	bool found = false;
1126
1127	spin_lock_bh(&pf->aq_wait_lock);
1128	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1129		if (task->state || task->opcode != opcode)
1130			continue;
1131
1132		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1133		task->event->msg_len = event->msg_len;
1134
1135		/* Only copy the data buffer if a destination was set */
1136		if (task->event->msg_buf &&
1137		    task->event->buf_len > event->buf_len) {
1138			memcpy(task->event->msg_buf, event->msg_buf,
1139			       event->buf_len);
1140			task->event->buf_len = event->buf_len;
1141		}
1142
1143		task->state = ICE_AQ_TASK_COMPLETE;
1144		found = true;
1145	}
1146	spin_unlock_bh(&pf->aq_wait_lock);
1147
1148	if (found)
1149		wake_up(&pf->aq_wait_queue);
1150}
1151
1152/**
1153 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1154 * @pf: the PF private structure
1155 *
1156 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1157 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1158 */
1159static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1160{
1161	struct ice_aq_task *task;
1162
1163	spin_lock_bh(&pf->aq_wait_lock);
1164	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1165		task->state = ICE_AQ_TASK_CANCELED;
1166	spin_unlock_bh(&pf->aq_wait_lock);
1167
1168	wake_up(&pf->aq_wait_queue);
1169}
1170
1171/**
1172 * __ice_clean_ctrlq - helper function to clean controlq rings
1173 * @pf: ptr to struct ice_pf
1174 * @q_type: specific Control queue type
1175 */
1176static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1177{
1178	struct device *dev = ice_pf_to_dev(pf);
1179	struct ice_rq_event_info event;
1180	struct ice_hw *hw = &pf->hw;
1181	struct ice_ctl_q_info *cq;
1182	u16 pending, i = 0;
1183	const char *qtype;
1184	u32 oldval, val;
1185
1186	/* Do not clean control queue if/when PF reset fails */
1187	if (test_bit(__ICE_RESET_FAILED, pf->state))
1188		return 0;
1189
1190	switch (q_type) {
1191	case ICE_CTL_Q_ADMIN:
1192		cq = &hw->adminq;
1193		qtype = "Admin";
1194		break;
1195	case ICE_CTL_Q_MAILBOX:
1196		cq = &hw->mailboxq;
1197		qtype = "Mailbox";
1198		break;
1199	default:
1200		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
 
1201		return 0;
1202	}
1203
1204	/* check for error indications - PF_xx_AxQLEN register layout for
1205	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1206	 */
1207	val = rd32(hw, cq->rq.len);
1208	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1209		   PF_FW_ARQLEN_ARQCRIT_M)) {
1210		oldval = val;
1211		if (val & PF_FW_ARQLEN_ARQVFE_M)
1212			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1213				qtype);
1214		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1215			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
 
1216				qtype);
1217		}
1218		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1219			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
 
1220				qtype);
1221		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1222			 PF_FW_ARQLEN_ARQCRIT_M);
1223		if (oldval != val)
1224			wr32(hw, cq->rq.len, val);
1225	}
1226
1227	val = rd32(hw, cq->sq.len);
1228	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1229		   PF_FW_ATQLEN_ATQCRIT_M)) {
1230		oldval = val;
1231		if (val & PF_FW_ATQLEN_ATQVFE_M)
1232			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1233				qtype);
1234		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1235			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
 
1236				qtype);
1237		}
1238		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1239			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
 
1240				qtype);
1241		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1242			 PF_FW_ATQLEN_ATQCRIT_M);
1243		if (oldval != val)
1244			wr32(hw, cq->sq.len, val);
1245	}
1246
1247	event.buf_len = cq->rq_buf_size;
1248	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
 
1249	if (!event.msg_buf)
1250		return 0;
1251
1252	do {
1253		enum ice_status ret;
1254		u16 opcode;
1255
1256		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1257		if (ret == ICE_ERR_AQ_NO_WORK)
1258			break;
1259		if (ret) {
1260			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1261				ice_stat_str(ret));
 
1262			break;
1263		}
1264
1265		opcode = le16_to_cpu(event.desc.opcode);
1266
1267		/* Notify any thread that might be waiting for this event */
1268		ice_aq_check_events(pf, opcode, &event);
1269
1270		switch (opcode) {
1271		case ice_aqc_opc_get_link_status:
1272			if (ice_handle_link_event(pf, &event))
1273				dev_err(dev, "Could not handle link event\n");
1274			break;
1275		case ice_aqc_opc_event_lan_overflow:
1276			ice_vf_lan_overflow_event(pf, &event);
1277			break;
1278		case ice_mbx_opc_send_msg_to_pf:
1279			ice_vc_process_vf_msg(pf, &event);
1280			break;
1281		case ice_aqc_opc_fw_logging:
1282			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1283			break;
1284		case ice_aqc_opc_lldp_set_mib_change:
1285			ice_dcb_process_lldp_set_mib_change(pf, &event);
1286			break;
1287		default:
1288			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
 
1289				qtype, opcode);
1290			break;
1291		}
1292	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1293
1294	kfree(event.msg_buf);
1295
1296	return pending && (i == ICE_DFLT_IRQ_WORK);
1297}
1298
1299/**
1300 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1301 * @hw: pointer to hardware info
1302 * @cq: control queue information
1303 *
1304 * returns true if there are pending messages in a queue, false if there aren't
1305 */
1306static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1307{
1308	u16 ntu;
1309
1310	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1311	return cq->rq.next_to_clean != ntu;
1312}
1313
1314/**
1315 * ice_clean_adminq_subtask - clean the AdminQ rings
1316 * @pf: board private structure
1317 */
1318static void ice_clean_adminq_subtask(struct ice_pf *pf)
1319{
1320	struct ice_hw *hw = &pf->hw;
1321
1322	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1323		return;
1324
1325	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1326		return;
1327
1328	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1329
1330	/* There might be a situation where new messages arrive to a control
1331	 * queue between processing the last message and clearing the
1332	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1333	 * ice_ctrlq_pending) and process new messages if any.
1334	 */
1335	if (ice_ctrlq_pending(hw, &hw->adminq))
1336		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1337
1338	ice_flush(hw);
1339}
1340
1341/**
1342 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1343 * @pf: board private structure
1344 */
1345static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1346{
1347	struct ice_hw *hw = &pf->hw;
1348
1349	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1350		return;
1351
1352	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1353		return;
1354
1355	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1356
1357	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1358		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1359
1360	ice_flush(hw);
1361}
1362
1363/**
1364 * ice_service_task_schedule - schedule the service task to wake up
1365 * @pf: board private structure
1366 *
1367 * If not already scheduled, this puts the task into the work queue.
1368 */
1369void ice_service_task_schedule(struct ice_pf *pf)
1370{
1371	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1372	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1373	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1374		queue_work(ice_wq, &pf->serv_task);
1375}
1376
1377/**
1378 * ice_service_task_complete - finish up the service task
1379 * @pf: board private structure
1380 */
1381static void ice_service_task_complete(struct ice_pf *pf)
1382{
1383	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1384
1385	/* force memory (pf->state) to sync before next service task */
1386	smp_mb__before_atomic();
1387	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1388}
1389
1390/**
1391 * ice_service_task_stop - stop service task and cancel works
1392 * @pf: board private structure
1393 *
1394 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1395 * 1 otherwise.
1396 */
1397static int ice_service_task_stop(struct ice_pf *pf)
1398{
1399	int ret;
1400
1401	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1402
1403	if (pf->serv_tmr.function)
1404		del_timer_sync(&pf->serv_tmr);
1405	if (pf->serv_task.func)
1406		cancel_work_sync(&pf->serv_task);
1407
1408	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1409	return ret;
1410}
1411
1412/**
1413 * ice_service_task_restart - restart service task and schedule works
1414 * @pf: board private structure
1415 *
1416 * This function is needed for suspend and resume works (e.g WoL scenario)
1417 */
1418static void ice_service_task_restart(struct ice_pf *pf)
1419{
1420	clear_bit(__ICE_SERVICE_DIS, pf->state);
1421	ice_service_task_schedule(pf);
1422}
1423
1424/**
1425 * ice_service_timer - timer callback to schedule service task
1426 * @t: pointer to timer_list
1427 */
1428static void ice_service_timer(struct timer_list *t)
1429{
1430	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1431
1432	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1433	ice_service_task_schedule(pf);
1434}
1435
1436/**
1437 * ice_handle_mdd_event - handle malicious driver detect event
1438 * @pf: pointer to the PF structure
1439 *
1440 * Called from service task. OICR interrupt handler indicates MDD event.
1441 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1442 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1443 * disable the queue, the PF can be configured to reset the VF using ethtool
1444 * private flag mdd-auto-reset-vf.
1445 */
1446static void ice_handle_mdd_event(struct ice_pf *pf)
1447{
1448	struct device *dev = ice_pf_to_dev(pf);
1449	struct ice_hw *hw = &pf->hw;
1450	unsigned int i;
1451	u32 reg;
 
1452
1453	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1454		/* Since the VF MDD event logging is rate limited, check if
1455		 * there are pending MDD events.
1456		 */
1457		ice_print_vfs_mdd_events(pf);
1458		return;
1459	}
1460
1461	/* find what triggered an MDD event */
1462	reg = rd32(hw, GL_MDET_TX_PQM);
1463	if (reg & GL_MDET_TX_PQM_VALID_M) {
1464		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1465				GL_MDET_TX_PQM_PF_NUM_S;
1466		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1467				GL_MDET_TX_PQM_VF_NUM_S;
1468		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1469				GL_MDET_TX_PQM_MAL_TYPE_S;
1470		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1471				GL_MDET_TX_PQM_QNUM_S);
1472
1473		if (netif_msg_tx_err(pf))
1474			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1475				 event, queue, pf_num, vf_num);
1476		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
 
1477	}
1478
1479	reg = rd32(hw, GL_MDET_TX_TCLAN);
1480	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1481		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1482				GL_MDET_TX_TCLAN_PF_NUM_S;
1483		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1484				GL_MDET_TX_TCLAN_VF_NUM_S;
1485		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1486				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1487		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1488				GL_MDET_TX_TCLAN_QNUM_S);
1489
1490		if (netif_msg_tx_err(pf))
1491			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1492				 event, queue, pf_num, vf_num);
1493		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
 
1494	}
1495
1496	reg = rd32(hw, GL_MDET_RX);
1497	if (reg & GL_MDET_RX_VALID_M) {
1498		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1499				GL_MDET_RX_PF_NUM_S;
1500		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1501				GL_MDET_RX_VF_NUM_S;
1502		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1503				GL_MDET_RX_MAL_TYPE_S;
1504		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1505				GL_MDET_RX_QNUM_S);
1506
1507		if (netif_msg_rx_err(pf))
1508			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1509				 event, queue, pf_num, vf_num);
1510		wr32(hw, GL_MDET_RX, 0xffffffff);
 
1511	}
1512
1513	/* check to see if this PF caused an MDD event */
1514	reg = rd32(hw, PF_MDET_TX_PQM);
1515	if (reg & PF_MDET_TX_PQM_VALID_M) {
1516		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1517		if (netif_msg_tx_err(pf))
1518			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1519	}
 
 
1520
1521	reg = rd32(hw, PF_MDET_TX_TCLAN);
1522	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1523		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1524		if (netif_msg_tx_err(pf))
1525			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1526	}
1527
1528	reg = rd32(hw, PF_MDET_RX);
1529	if (reg & PF_MDET_RX_VALID_M) {
1530		wr32(hw, PF_MDET_RX, 0xFFFF);
1531		if (netif_msg_rx_err(pf))
1532			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
 
 
 
 
 
 
1533	}
1534
1535	/* Check to see if one of the VFs caused an MDD event, and then
1536	 * increment counters and set print pending
1537	 */
1538	ice_for_each_vf(pf, i) {
1539		struct ice_vf *vf = &pf->vf[i];
1540
 
 
1541		reg = rd32(hw, VP_MDET_TX_PQM(i));
1542		if (reg & VP_MDET_TX_PQM_VALID_M) {
1543			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1544			vf->mdd_tx_events.count++;
1545			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1546			if (netif_msg_tx_err(pf))
1547				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1548					 i);
1549		}
1550
1551		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1552		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1553			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1554			vf->mdd_tx_events.count++;
1555			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1556			if (netif_msg_tx_err(pf))
1557				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1558					 i);
1559		}
1560
1561		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1562		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1563			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1564			vf->mdd_tx_events.count++;
1565			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1566			if (netif_msg_tx_err(pf))
1567				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1568					 i);
1569		}
1570
1571		reg = rd32(hw, VP_MDET_RX(i));
1572		if (reg & VP_MDET_RX_VALID_M) {
1573			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1574			vf->mdd_rx_events.count++;
1575			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1576			if (netif_msg_rx_err(pf))
1577				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1578					 i);
1579
1580			/* Since the queue is disabled on VF Rx MDD events, the
1581			 * PF can be configured to reset the VF through ethtool
1582			 * private flag mdd-auto-reset-vf.
1583			 */
1584			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1585				/* VF MDD event counters will be cleared by
1586				 * reset, so print the event prior to reset.
1587				 */
1588				ice_print_vf_rx_mdd_event(vf);
1589				ice_reset_vf(&pf->vf[i], false);
1590			}
1591		}
1592	}
1593
1594	ice_print_vfs_mdd_events(pf);
1595}
1596
1597/**
1598 * ice_force_phys_link_state - Force the physical link state
1599 * @vsi: VSI to force the physical link state to up/down
1600 * @link_up: true/false indicates to set the physical link to up/down
1601 *
1602 * Force the physical link state by getting the current PHY capabilities from
1603 * hardware and setting the PHY config based on the determined capabilities. If
1604 * link changes a link event will be triggered because both the Enable Automatic
1605 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1606 *
1607 * Returns 0 on success, negative on failure
1608 */
1609static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1610{
1611	struct ice_aqc_get_phy_caps_data *pcaps;
1612	struct ice_aqc_set_phy_cfg_data *cfg;
1613	struct ice_port_info *pi;
1614	struct device *dev;
1615	int retcode;
1616
1617	if (!vsi || !vsi->port_info || !vsi->back)
1618		return -EINVAL;
1619	if (vsi->type != ICE_VSI_PF)
1620		return 0;
1621
1622	dev = ice_pf_to_dev(vsi->back);
1623
1624	pi = vsi->port_info;
1625
1626	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1627	if (!pcaps)
1628		return -ENOMEM;
1629
1630	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1631				      NULL);
1632	if (retcode) {
1633		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
 
1634			vsi->vsi_num, retcode);
1635		retcode = -EIO;
1636		goto out;
1637	}
1638
1639	/* No change in link */
1640	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1641	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1642		goto out;
1643
1644	/* Use the current user PHY configuration. The current user PHY
1645	 * configuration is initialized during probe from PHY capabilities
1646	 * software mode, and updated on set PHY configuration.
1647	 */
1648	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1649	if (!cfg) {
1650		retcode = -ENOMEM;
1651		goto out;
1652	}
1653
1654	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
 
 
 
 
 
 
1655	if (link_up)
1656		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1657	else
1658		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1659
1660	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1661	if (retcode) {
1662		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1663			vsi->vsi_num, retcode);
1664		retcode = -EIO;
1665	}
1666
1667	kfree(cfg);
1668out:
1669	kfree(pcaps);
1670	return retcode;
1671}
1672
1673/**
1674 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1675 * @pi: port info structure
1676 *
1677 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1678 */
1679static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1680{
1681	struct ice_aqc_get_phy_caps_data *pcaps;
1682	struct ice_pf *pf = pi->hw->back;
1683	enum ice_status status;
1684	int err = 0;
1685
1686	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1687	if (!pcaps)
1688		return -ENOMEM;
1689
1690	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1691				     NULL);
1692
1693	if (status) {
1694		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1695		err = -EIO;
1696		goto out;
1697	}
1698
1699	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1700	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1701
1702out:
1703	kfree(pcaps);
1704	return err;
1705}
1706
1707/**
1708 * ice_init_link_dflt_override - Initialize link default override
1709 * @pi: port info structure
1710 *
1711 * Initialize link default override and PHY total port shutdown during probe
1712 */
1713static void ice_init_link_dflt_override(struct ice_port_info *pi)
1714{
1715	struct ice_link_default_override_tlv *ldo;
1716	struct ice_pf *pf = pi->hw->back;
1717
1718	ldo = &pf->link_dflt_override;
1719	if (ice_get_link_default_override(ldo, pi))
1720		return;
1721
1722	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1723		return;
1724
1725	/* Enable Total Port Shutdown (override/replace link-down-on-close
1726	 * ethtool private flag) for ports with Port Disable bit set.
1727	 */
1728	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1729	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1730}
1731
1732/**
1733 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1734 * @pi: port info structure
1735 *
1736 * If default override is enabled, initialized the user PHY cfg speed and FEC
1737 * settings using the default override mask from the NVM.
1738 *
1739 * The PHY should only be configured with the default override settings the
1740 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1741 * is used to indicate that the user PHY cfg default override is initialized
1742 * and the PHY has not been configured with the default override settings. The
1743 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1744 * configured.
1745 */
1746static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1747{
1748	struct ice_link_default_override_tlv *ldo;
1749	struct ice_aqc_set_phy_cfg_data *cfg;
1750	struct ice_phy_info *phy = &pi->phy;
1751	struct ice_pf *pf = pi->hw->back;
1752
1753	ldo = &pf->link_dflt_override;
1754
1755	/* If link default override is enabled, use to mask NVM PHY capabilities
1756	 * for speed and FEC default configuration.
1757	 */
1758	cfg = &phy->curr_user_phy_cfg;
1759
1760	if (ldo->phy_type_low || ldo->phy_type_high) {
1761		cfg->phy_type_low = pf->nvm_phy_type_lo &
1762				    cpu_to_le64(ldo->phy_type_low);
1763		cfg->phy_type_high = pf->nvm_phy_type_hi &
1764				     cpu_to_le64(ldo->phy_type_high);
1765	}
1766	cfg->link_fec_opt = ldo->fec_options;
1767	phy->curr_user_fec_req = ICE_FEC_AUTO;
1768
1769	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1770}
1771
1772/**
1773 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1774 * @pi: port info structure
1775 *
1776 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1777 * mode to default. The PHY defaults are from get PHY capabilities topology
1778 * with media so call when media is first available. An error is returned if
1779 * called when media is not available. The PHY initialization completed state is
1780 * set here.
1781 *
1782 * These configurations are used when setting PHY
1783 * configuration. The user PHY configuration is updated on set PHY
1784 * configuration. Returns 0 on success, negative on failure
1785 */
1786static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1787{
1788	struct ice_aqc_get_phy_caps_data *pcaps;
1789	struct ice_phy_info *phy = &pi->phy;
1790	struct ice_pf *pf = pi->hw->back;
1791	enum ice_status status;
1792	struct ice_vsi *vsi;
1793	int err = 0;
1794
1795	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1796		return -EIO;
1797
1798	vsi = ice_get_main_vsi(pf);
1799	if (!vsi)
1800		return -EINVAL;
1801
1802	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1803	if (!pcaps)
1804		return -ENOMEM;
1805
1806	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1807				     NULL);
1808	if (status) {
1809		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1810		err = -EIO;
1811		goto err_out;
1812	}
1813
1814	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1815
1816	/* check if lenient mode is supported and enabled */
1817	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1818	    !(pcaps->module_compliance_enforcement &
1819	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1820		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1821
1822		/* if link default override is enabled, initialize user PHY
1823		 * configuration with link default override values
1824		 */
1825		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1826			ice_init_phy_cfg_dflt_override(pi);
1827			goto out;
1828		}
1829	}
1830
1831	/* if link default override is not enabled, initialize PHY using
1832	 * topology with media
1833	 */
1834	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1835						      pcaps->link_fec_options);
1836	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1837
1838out:
1839	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1840	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1841err_out:
1842	kfree(pcaps);
1843	return err;
1844}
1845
1846/**
1847 * ice_configure_phy - configure PHY
1848 * @vsi: VSI of PHY
1849 *
1850 * Set the PHY configuration. If the current PHY configuration is the same as
1851 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1852 * configure the based get PHY capabilities for topology with media.
1853 */
1854static int ice_configure_phy(struct ice_vsi *vsi)
1855{
1856	struct device *dev = ice_pf_to_dev(vsi->back);
1857	struct ice_aqc_get_phy_caps_data *pcaps;
1858	struct ice_aqc_set_phy_cfg_data *cfg;
1859	struct ice_port_info *pi;
1860	enum ice_status status;
1861	int err = 0;
1862
1863	pi = vsi->port_info;
1864	if (!pi)
1865		return -EINVAL;
1866
1867	/* Ensure we have media as we cannot configure a medialess port */
1868	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1869		return -EPERM;
1870
1871	ice_print_topo_conflict(vsi);
1872
1873	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1874	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1875		return -EPERM;
1876
1877	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1878		return ice_force_phys_link_state(vsi, true);
1879
1880	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1881	if (!pcaps)
1882		return -ENOMEM;
1883
1884	/* Get current PHY config */
1885	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1886				     NULL);
1887	if (status) {
1888		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1889			vsi->vsi_num, ice_stat_str(status));
1890		err = -EIO;
1891		goto done;
1892	}
1893
1894	/* If PHY enable link is configured and configuration has not changed,
1895	 * there's nothing to do
1896	 */
1897	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1898	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1899		goto done;
1900
1901	/* Use PHY topology as baseline for configuration */
1902	memset(pcaps, 0, sizeof(*pcaps));
1903	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1904				     NULL);
1905	if (status) {
1906		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1907			vsi->vsi_num, ice_stat_str(status));
1908		err = -EIO;
1909		goto done;
1910	}
1911
1912	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1913	if (!cfg) {
1914		err = -ENOMEM;
1915		goto done;
1916	}
1917
1918	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1919
1920	/* Speed - If default override pending, use curr_user_phy_cfg set in
1921	 * ice_init_phy_user_cfg_ldo.
1922	 */
1923	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1924			       vsi->back->state)) {
1925		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1926		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1927	} else {
1928		u64 phy_low = 0, phy_high = 0;
1929
1930		ice_update_phy_type(&phy_low, &phy_high,
1931				    pi->phy.curr_user_speed_req);
1932		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1933		cfg->phy_type_high = pcaps->phy_type_high &
1934				     cpu_to_le64(phy_high);
1935	}
1936
1937	/* Can't provide what was requested; use PHY capabilities */
1938	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1939		cfg->phy_type_low = pcaps->phy_type_low;
1940		cfg->phy_type_high = pcaps->phy_type_high;
1941	}
1942
1943	/* FEC */
1944	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1945
1946	/* Can't provide what was requested; use PHY capabilities */
1947	if (cfg->link_fec_opt !=
1948	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1949		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1950		cfg->link_fec_opt = pcaps->link_fec_options;
1951	}
1952
1953	/* Flow Control - always supported; no need to check against
1954	 * capabilities
1955	 */
1956	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1957
1958	/* Enable link and link update */
1959	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1960
1961	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1962	if (status) {
1963		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1964			vsi->vsi_num, ice_stat_str(status));
1965		err = -EIO;
1966	}
1967
1968	kfree(cfg);
1969done:
1970	kfree(pcaps);
1971	return err;
1972}
1973
1974/**
1975 * ice_check_media_subtask - Check for media
1976 * @pf: pointer to PF struct
1977 *
1978 * If media is available, then initialize PHY user configuration if it is not
1979 * been, and configure the PHY if the interface is up.
1980 */
1981static void ice_check_media_subtask(struct ice_pf *pf)
1982{
1983	struct ice_port_info *pi;
1984	struct ice_vsi *vsi;
1985	int err;
1986
1987	/* No need to check for media if it's already present */
1988	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1989		return;
1990
1991	vsi = ice_get_main_vsi(pf);
1992	if (!vsi)
 
 
 
1993		return;
1994
1995	/* Refresh link info and check if media is present */
1996	pi = vsi->port_info;
1997	err = ice_update_link_info(pi);
1998	if (err)
1999		return;
2000
2001	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2002		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2003			ice_init_phy_user_cfg(pi);
2004
2005		/* PHY settings are reset on media insertion, reconfigure
2006		 * PHY to preserve settings.
2007		 */
2008		if (test_bit(__ICE_DOWN, vsi->state) &&
2009		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2010			return;
2011
2012		err = ice_configure_phy(vsi);
2013		if (!err)
2014			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2015
2016		/* A Link Status Event will be generated; the event handler
2017		 * will complete bringing the interface up
2018		 */
2019	}
2020}
2021
2022/**
2023 * ice_service_task - manage and run subtasks
2024 * @work: pointer to work_struct contained by the PF struct
2025 */
2026static void ice_service_task(struct work_struct *work)
2027{
2028	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2029	unsigned long start_time = jiffies;
2030
2031	/* subtasks */
2032
2033	/* process reset requests first */
2034	ice_reset_subtask(pf);
2035
2036	/* bail if a reset/recovery cycle is pending or rebuild failed */
2037	if (ice_is_reset_in_progress(pf->state) ||
2038	    test_bit(__ICE_SUSPENDED, pf->state) ||
2039	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2040		ice_service_task_complete(pf);
2041		return;
2042	}
2043
2044	ice_clean_adminq_subtask(pf);
2045	ice_check_media_subtask(pf);
2046	ice_check_for_hang_subtask(pf);
2047	ice_sync_fltr_subtask(pf);
2048	ice_handle_mdd_event(pf);
2049	ice_watchdog_subtask(pf);
2050
2051	if (ice_is_safe_mode(pf)) {
2052		ice_service_task_complete(pf);
2053		return;
2054	}
2055
2056	ice_process_vflr_event(pf);
2057	ice_clean_mailboxq_subtask(pf);
2058	ice_sync_arfs_fltrs(pf);
2059	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2060	ice_service_task_complete(pf);
2061
2062	/* If the tasks have taken longer than one service timer period
2063	 * or there is more work to be done, reset the service timer to
2064	 * schedule the service task now.
2065	 */
2066	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2067	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2068	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2069	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2070	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2071		mod_timer(&pf->serv_tmr, jiffies);
2072}
2073
2074/**
2075 * ice_set_ctrlq_len - helper function to set controlq length
2076 * @hw: pointer to the HW instance
2077 */
2078static void ice_set_ctrlq_len(struct ice_hw *hw)
2079{
2080	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2081	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2082	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2083	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2084	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2085	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2086	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2087	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2088}
2089
2090/**
2091 * ice_schedule_reset - schedule a reset
2092 * @pf: board private structure
2093 * @reset: reset being requested
2094 */
2095int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2096{
2097	struct device *dev = ice_pf_to_dev(pf);
2098
2099	/* bail out if earlier reset has failed */
2100	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2101		dev_dbg(dev, "earlier reset has failed\n");
2102		return -EIO;
2103	}
2104	/* bail if reset/recovery already in progress */
2105	if (ice_is_reset_in_progress(pf->state)) {
2106		dev_dbg(dev, "Reset already in progress\n");
2107		return -EBUSY;
2108	}
2109
2110	switch (reset) {
2111	case ICE_RESET_PFR:
2112		set_bit(__ICE_PFR_REQ, pf->state);
2113		break;
2114	case ICE_RESET_CORER:
2115		set_bit(__ICE_CORER_REQ, pf->state);
2116		break;
2117	case ICE_RESET_GLOBR:
2118		set_bit(__ICE_GLOBR_REQ, pf->state);
2119		break;
2120	default:
2121		return -EINVAL;
2122	}
2123
2124	ice_service_task_schedule(pf);
2125	return 0;
2126}
2127
2128/**
2129 * ice_irq_affinity_notify - Callback for affinity changes
2130 * @notify: context as to what irq was changed
2131 * @mask: the new affinity mask
2132 *
2133 * This is a callback function used by the irq_set_affinity_notifier function
2134 * so that we may register to receive changes to the irq affinity masks.
2135 */
2136static void
2137ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2138			const cpumask_t *mask)
2139{
2140	struct ice_q_vector *q_vector =
2141		container_of(notify, struct ice_q_vector, affinity_notify);
2142
2143	cpumask_copy(&q_vector->affinity_mask, mask);
2144}
2145
2146/**
2147 * ice_irq_affinity_release - Callback for affinity notifier release
2148 * @ref: internal core kernel usage
2149 *
2150 * This is a callback function used by the irq_set_affinity_notifier function
2151 * to inform the current notification subscriber that they will no longer
2152 * receive notifications.
2153 */
2154static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2155
2156/**
2157 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2158 * @vsi: the VSI being configured
2159 */
2160static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2161{
2162	struct ice_hw *hw = &vsi->back->hw;
2163	int i;
2164
2165	ice_for_each_q_vector(vsi, i)
2166		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2167
2168	ice_flush(hw);
2169	return 0;
2170}
2171
2172/**
2173 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2174 * @vsi: the VSI being configured
2175 * @basename: name for the vector
2176 */
2177static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2178{
2179	int q_vectors = vsi->num_q_vectors;
2180	struct ice_pf *pf = vsi->back;
2181	int base = vsi->base_vector;
2182	struct device *dev;
2183	int rx_int_idx = 0;
2184	int tx_int_idx = 0;
2185	int vector, err;
2186	int irq_num;
2187
2188	dev = ice_pf_to_dev(pf);
2189	for (vector = 0; vector < q_vectors; vector++) {
2190		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2191
2192		irq_num = pf->msix_entries[base + vector].vector;
2193
2194		if (q_vector->tx.ring && q_vector->rx.ring) {
2195			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2196				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2197			tx_int_idx++;
2198		} else if (q_vector->rx.ring) {
2199			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2200				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2201		} else if (q_vector->tx.ring) {
2202			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2203				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2204		} else {
2205			/* skip this unused q_vector */
2206			continue;
2207		}
2208		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
 
2209				       q_vector->name, q_vector);
2210		if (err) {
2211			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2212				   err);
2213			goto free_q_irqs;
2214		}
2215
2216		/* register for affinity change notifications */
2217		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2218			struct irq_affinity_notify *affinity_notify;
2219
2220			affinity_notify = &q_vector->affinity_notify;
2221			affinity_notify->notify = ice_irq_affinity_notify;
2222			affinity_notify->release = ice_irq_affinity_release;
2223			irq_set_affinity_notifier(irq_num, affinity_notify);
2224		}
2225
2226		/* assign the mask for this irq */
2227		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2228	}
2229
2230	vsi->irqs_ready = true;
2231	return 0;
2232
2233free_q_irqs:
2234	while (vector) {
2235		vector--;
2236		irq_num = pf->msix_entries[base + vector].vector;
2237		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2238			irq_set_affinity_notifier(irq_num, NULL);
2239		irq_set_affinity_hint(irq_num, NULL);
2240		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2241	}
2242	return err;
2243}
2244
2245/**
2246 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2247 * @vsi: VSI to setup Tx rings used by XDP
2248 *
2249 * Return 0 on success and negative value on error
2250 */
2251static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2252{
2253	struct device *dev = ice_pf_to_dev(vsi->back);
2254	int i;
2255
2256	for (i = 0; i < vsi->num_xdp_txq; i++) {
2257		u16 xdp_q_idx = vsi->alloc_txq + i;
2258		struct ice_ring *xdp_ring;
2259
2260		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2261
2262		if (!xdp_ring)
2263			goto free_xdp_rings;
2264
2265		xdp_ring->q_index = xdp_q_idx;
2266		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2267		xdp_ring->ring_active = false;
2268		xdp_ring->vsi = vsi;
2269		xdp_ring->netdev = NULL;
2270		xdp_ring->dev = dev;
2271		xdp_ring->count = vsi->num_tx_desc;
2272		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2273		if (ice_setup_tx_ring(xdp_ring))
2274			goto free_xdp_rings;
2275		ice_set_ring_xdp(xdp_ring);
2276		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
2277	}
2278
2279	return 0;
2280
2281free_xdp_rings:
2282	for (; i >= 0; i--)
2283		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2284			ice_free_tx_ring(vsi->xdp_rings[i]);
2285	return -ENOMEM;
2286}
2287
2288/**
2289 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2290 * @vsi: VSI to set the bpf prog on
2291 * @prog: the bpf prog pointer
2292 */
2293static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2294{
2295	struct bpf_prog *old_prog;
2296	int i;
2297
2298	old_prog = xchg(&vsi->xdp_prog, prog);
2299	if (old_prog)
2300		bpf_prog_put(old_prog);
2301
2302	ice_for_each_rxq(vsi, i)
2303		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2304}
2305
2306/**
2307 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2308 * @vsi: VSI to bring up Tx rings used by XDP
2309 * @prog: bpf program that will be assigned to VSI
2310 *
2311 * Return 0 on success and negative value on error
2312 */
2313int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2314{
2315	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2316	int xdp_rings_rem = vsi->num_xdp_txq;
2317	struct ice_pf *pf = vsi->back;
2318	struct ice_qs_cfg xdp_qs_cfg = {
2319		.qs_mutex = &pf->avail_q_mutex,
2320		.pf_map = pf->avail_txqs,
2321		.pf_map_size = pf->max_pf_txqs,
2322		.q_count = vsi->num_xdp_txq,
2323		.scatter_count = ICE_MAX_SCATTER_TXQS,
2324		.vsi_map = vsi->txq_map,
2325		.vsi_map_offset = vsi->alloc_txq,
2326		.mapping_mode = ICE_VSI_MAP_CONTIG
2327	};
2328	enum ice_status status;
2329	struct device *dev;
2330	int i, v_idx;
2331
2332	dev = ice_pf_to_dev(pf);
2333	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2334				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2335	if (!vsi->xdp_rings)
2336		return -ENOMEM;
2337
2338	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2339	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2340		goto err_map_xdp;
2341
2342	if (ice_xdp_alloc_setup_rings(vsi))
2343		goto clear_xdp_rings;
2344
2345	/* follow the logic from ice_vsi_map_rings_to_vectors */
2346	ice_for_each_q_vector(vsi, v_idx) {
2347		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2348		int xdp_rings_per_v, q_id, q_base;
2349
2350		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2351					       vsi->num_q_vectors - v_idx);
2352		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2353
2354		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2355			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2356
2357			xdp_ring->q_vector = q_vector;
2358			xdp_ring->next = q_vector->tx.ring;
2359			q_vector->tx.ring = xdp_ring;
2360		}
2361		xdp_rings_rem -= xdp_rings_per_v;
2362	}
2363
2364	/* omit the scheduler update if in reset path; XDP queues will be
2365	 * taken into account at the end of ice_vsi_rebuild, where
2366	 * ice_cfg_vsi_lan is being called
2367	 */
2368	if (ice_is_reset_in_progress(pf->state))
2369		return 0;
2370
2371	/* tell the Tx scheduler that right now we have
2372	 * additional queues
2373	 */
2374	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2375		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2376
2377	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2378				 max_txqs);
2379	if (status) {
2380		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2381			ice_stat_str(status));
2382		goto clear_xdp_rings;
2383	}
2384	ice_vsi_assign_bpf_prog(vsi, prog);
2385
2386	return 0;
2387clear_xdp_rings:
2388	for (i = 0; i < vsi->num_xdp_txq; i++)
2389		if (vsi->xdp_rings[i]) {
2390			kfree_rcu(vsi->xdp_rings[i], rcu);
2391			vsi->xdp_rings[i] = NULL;
2392		}
2393
2394err_map_xdp:
2395	mutex_lock(&pf->avail_q_mutex);
2396	for (i = 0; i < vsi->num_xdp_txq; i++) {
2397		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2398		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2399	}
2400	mutex_unlock(&pf->avail_q_mutex);
2401
2402	devm_kfree(dev, vsi->xdp_rings);
2403	return -ENOMEM;
2404}
2405
2406/**
2407 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2408 * @vsi: VSI to remove XDP rings
2409 *
2410 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2411 * resources
2412 */
2413int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2414{
2415	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2416	struct ice_pf *pf = vsi->back;
2417	int i, v_idx;
2418
2419	/* q_vectors are freed in reset path so there's no point in detaching
2420	 * rings; in case of rebuild being triggered not from reset reset bits
2421	 * in pf->state won't be set, so additionally check first q_vector
2422	 * against NULL
2423	 */
2424	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2425		goto free_qmap;
2426
2427	ice_for_each_q_vector(vsi, v_idx) {
2428		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2429		struct ice_ring *ring;
2430
2431		ice_for_each_ring(ring, q_vector->tx)
2432			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2433				break;
2434
2435		/* restore the value of last node prior to XDP setup */
2436		q_vector->tx.ring = ring;
2437	}
2438
2439free_qmap:
2440	mutex_lock(&pf->avail_q_mutex);
2441	for (i = 0; i < vsi->num_xdp_txq; i++) {
2442		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2443		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2444	}
2445	mutex_unlock(&pf->avail_q_mutex);
2446
2447	for (i = 0; i < vsi->num_xdp_txq; i++)
2448		if (vsi->xdp_rings[i]) {
2449			if (vsi->xdp_rings[i]->desc)
2450				ice_free_tx_ring(vsi->xdp_rings[i]);
2451			kfree_rcu(vsi->xdp_rings[i], rcu);
2452			vsi->xdp_rings[i] = NULL;
2453		}
2454
2455	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2456	vsi->xdp_rings = NULL;
2457
2458	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2459		return 0;
2460
2461	ice_vsi_assign_bpf_prog(vsi, NULL);
2462
2463	/* notify Tx scheduler that we destroyed XDP queues and bring
2464	 * back the old number of child nodes
2465	 */
2466	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2467		max_txqs[i] = vsi->num_txq;
2468
2469	/* change number of XDP Tx queues to 0 */
2470	vsi->num_xdp_txq = 0;
2471
2472	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2473			       max_txqs);
2474}
2475
2476/**
2477 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2478 * @vsi: VSI to setup XDP for
2479 * @prog: XDP program
2480 * @extack: netlink extended ack
2481 */
2482static int
2483ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2484		   struct netlink_ext_ack *extack)
2485{
2486	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2487	bool if_running = netif_running(vsi->netdev);
2488	int ret = 0, xdp_ring_err = 0;
2489
2490	if (frame_size > vsi->rx_buf_len) {
2491		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2492		return -EOPNOTSUPP;
2493	}
2494
2495	/* need to stop netdev while setting up the program for Rx rings */
2496	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2497		ret = ice_down(vsi);
2498		if (ret) {
2499			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2500			return ret;
2501		}
2502	}
2503
2504	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2505		vsi->num_xdp_txq = vsi->alloc_rxq;
2506		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2507		if (xdp_ring_err)
2508			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2509	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2510		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2511		if (xdp_ring_err)
2512			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2513	} else {
2514		ice_vsi_assign_bpf_prog(vsi, prog);
2515	}
2516
2517	if (if_running)
2518		ret = ice_up(vsi);
2519
2520	if (!ret && prog && vsi->xsk_umems) {
2521		int i;
2522
2523		ice_for_each_rxq(vsi, i) {
2524			struct ice_ring *rx_ring = vsi->rx_rings[i];
2525
2526			if (rx_ring->xsk_umem)
2527				napi_schedule(&rx_ring->q_vector->napi);
2528		}
2529	}
2530
2531	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2532}
2533
2534/**
2535 * ice_xdp - implements XDP handler
2536 * @dev: netdevice
2537 * @xdp: XDP command
2538 */
2539static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2540{
2541	struct ice_netdev_priv *np = netdev_priv(dev);
2542	struct ice_vsi *vsi = np->vsi;
2543
2544	if (vsi->type != ICE_VSI_PF) {
2545		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2546		return -EINVAL;
2547	}
2548
2549	switch (xdp->command) {
2550	case XDP_SETUP_PROG:
2551		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2552	case XDP_SETUP_XSK_UMEM:
2553		return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
2554					  xdp->xsk.queue_id);
2555	default:
2556		return -EINVAL;
2557	}
2558}
2559
2560/**
2561 * ice_ena_misc_vector - enable the non-queue interrupts
2562 * @pf: board private structure
2563 */
2564static void ice_ena_misc_vector(struct ice_pf *pf)
2565{
2566	struct ice_hw *hw = &pf->hw;
2567	u32 val;
2568
2569	/* Disable anti-spoof detection interrupt to prevent spurious event
2570	 * interrupts during a function reset. Anti-spoof functionally is
2571	 * still supported.
2572	 */
2573	val = rd32(hw, GL_MDCK_TX_TDPU);
2574	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2575	wr32(hw, GL_MDCK_TX_TDPU, val);
2576
2577	/* clear things first */
2578	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2579	rd32(hw, PFINT_OICR);		/* read to clear */
2580
2581	val = (PFINT_OICR_ECC_ERR_M |
2582	       PFINT_OICR_MAL_DETECT_M |
2583	       PFINT_OICR_GRST_M |
2584	       PFINT_OICR_PCI_EXCEPTION_M |
2585	       PFINT_OICR_VFLR_M |
2586	       PFINT_OICR_HMC_ERR_M |
2587	       PFINT_OICR_PE_CRITERR_M);
2588
2589	wr32(hw, PFINT_OICR_ENA, val);
2590
2591	/* SW_ITR_IDX = 0, but don't change INTENA */
2592	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2593	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2594}
2595
2596/**
2597 * ice_misc_intr - misc interrupt handler
2598 * @irq: interrupt number
2599 * @data: pointer to a q_vector
2600 */
2601static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2602{
2603	struct ice_pf *pf = (struct ice_pf *)data;
2604	struct ice_hw *hw = &pf->hw;
2605	irqreturn_t ret = IRQ_NONE;
2606	struct device *dev;
2607	u32 oicr, ena_mask;
2608
2609	dev = ice_pf_to_dev(pf);
2610	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2611	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2612
2613	oicr = rd32(hw, PFINT_OICR);
2614	ena_mask = rd32(hw, PFINT_OICR_ENA);
2615
2616	if (oicr & PFINT_OICR_SWINT_M) {
2617		ena_mask &= ~PFINT_OICR_SWINT_M;
2618		pf->sw_int_count++;
2619	}
2620
2621	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2622		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2623		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2624	}
2625	if (oicr & PFINT_OICR_VFLR_M) {
2626		/* disable any further VFLR event notifications */
2627		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2628			u32 reg = rd32(hw, PFINT_OICR_ENA);
2629
2630			reg &= ~PFINT_OICR_VFLR_M;
2631			wr32(hw, PFINT_OICR_ENA, reg);
2632		} else {
2633			ena_mask &= ~PFINT_OICR_VFLR_M;
2634			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2635		}
2636	}
2637
2638	if (oicr & PFINT_OICR_GRST_M) {
2639		u32 reset;
2640
2641		/* we have a reset warning */
2642		ena_mask &= ~PFINT_OICR_GRST_M;
2643		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2644			GLGEN_RSTAT_RESET_TYPE_S;
2645
2646		if (reset == ICE_RESET_CORER)
2647			pf->corer_count++;
2648		else if (reset == ICE_RESET_GLOBR)
2649			pf->globr_count++;
2650		else if (reset == ICE_RESET_EMPR)
2651			pf->empr_count++;
2652		else
2653			dev_dbg(dev, "Invalid reset type %d\n", reset);
 
2654
2655		/* If a reset cycle isn't already in progress, we set a bit in
2656		 * pf->state so that the service task can start a reset/rebuild.
2657		 * We also make note of which reset happened so that peer
2658		 * devices/drivers can be informed.
2659		 */
2660		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2661			if (reset == ICE_RESET_CORER)
2662				set_bit(__ICE_CORER_RECV, pf->state);
2663			else if (reset == ICE_RESET_GLOBR)
2664				set_bit(__ICE_GLOBR_RECV, pf->state);
2665			else
2666				set_bit(__ICE_EMPR_RECV, pf->state);
2667
2668			/* There are couple of different bits at play here.
2669			 * hw->reset_ongoing indicates whether the hardware is
2670			 * in reset. This is set to true when a reset interrupt
2671			 * is received and set back to false after the driver
2672			 * has determined that the hardware is out of reset.
2673			 *
2674			 * __ICE_RESET_OICR_RECV in pf->state indicates
2675			 * that a post reset rebuild is required before the
2676			 * driver is operational again. This is set above.
2677			 *
2678			 * As this is the start of the reset/rebuild cycle, set
2679			 * both to indicate that.
2680			 */
2681			hw->reset_ongoing = true;
2682		}
2683	}
2684
2685	if (oicr & PFINT_OICR_HMC_ERR_M) {
2686		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2687		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
 
2688			rd32(hw, PFHMC_ERRORINFO),
2689			rd32(hw, PFHMC_ERRORDATA));
2690	}
2691
2692	/* Report any remaining unexpected interrupts */
2693	oicr &= ena_mask;
2694	if (oicr) {
2695		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
 
2696		/* If a critical error is pending there is no choice but to
2697		 * reset the device.
2698		 */
2699		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2700			    PFINT_OICR_PCI_EXCEPTION_M |
2701			    PFINT_OICR_ECC_ERR_M)) {
2702			set_bit(__ICE_PFR_REQ, pf->state);
2703			ice_service_task_schedule(pf);
2704		}
2705	}
2706	ret = IRQ_HANDLED;
2707
2708	ice_service_task_schedule(pf);
2709	ice_irq_dynamic_ena(hw, NULL, NULL);
 
 
2710
2711	return ret;
2712}
2713
2714/**
2715 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2716 * @hw: pointer to HW structure
2717 */
2718static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2719{
2720	/* disable Admin queue Interrupt causes */
2721	wr32(hw, PFINT_FW_CTL,
2722	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2723
2724	/* disable Mailbox queue Interrupt causes */
2725	wr32(hw, PFINT_MBX_CTL,
2726	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2727
2728	/* disable Control queue Interrupt causes */
2729	wr32(hw, PFINT_OICR_CTL,
2730	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2731
2732	ice_flush(hw);
2733}
2734
2735/**
2736 * ice_free_irq_msix_misc - Unroll misc vector setup
2737 * @pf: board private structure
2738 */
2739static void ice_free_irq_msix_misc(struct ice_pf *pf)
2740{
2741	struct ice_hw *hw = &pf->hw;
2742
2743	ice_dis_ctrlq_interrupts(hw);
2744
2745	/* disable OICR interrupt */
2746	wr32(hw, PFINT_OICR_ENA, 0);
2747	ice_flush(hw);
2748
2749	if (pf->msix_entries) {
2750		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2751		devm_free_irq(ice_pf_to_dev(pf),
2752			      pf->msix_entries[pf->oicr_idx].vector, pf);
2753	}
2754
2755	pf->num_avail_sw_msix += 1;
2756	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2757}
2758
2759/**
2760 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2761 * @hw: pointer to HW structure
2762 * @reg_idx: HW vector index to associate the control queue interrupts with
2763 */
2764static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2765{
2766	u32 val;
2767
2768	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2769	       PFINT_OICR_CTL_CAUSE_ENA_M);
2770	wr32(hw, PFINT_OICR_CTL, val);
2771
2772	/* enable Admin queue Interrupt causes */
2773	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2774	       PFINT_FW_CTL_CAUSE_ENA_M);
2775	wr32(hw, PFINT_FW_CTL, val);
2776
2777	/* enable Mailbox queue Interrupt causes */
2778	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2779	       PFINT_MBX_CTL_CAUSE_ENA_M);
2780	wr32(hw, PFINT_MBX_CTL, val);
2781
2782	ice_flush(hw);
2783}
2784
2785/**
2786 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2787 * @pf: board private structure
2788 *
2789 * This sets up the handler for MSIX 0, which is used to manage the
2790 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2791 * when in MSI or Legacy interrupt mode.
2792 */
2793static int ice_req_irq_msix_misc(struct ice_pf *pf)
2794{
2795	struct device *dev = ice_pf_to_dev(pf);
2796	struct ice_hw *hw = &pf->hw;
2797	int oicr_idx, err = 0;
2798
2799	if (!pf->int_name[0])
2800		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2801			 dev_driver_string(dev), dev_name(dev));
 
2802
2803	/* Do not request IRQ but do enable OICR interrupt since settings are
2804	 * lost during reset. Note that this function is called only during
2805	 * rebuild path and not while reset is in progress.
2806	 */
2807	if (ice_is_reset_in_progress(pf->state))
2808		goto skip_req_irq;
2809
2810	/* reserve one vector in irq_tracker for misc interrupts */
2811	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2812	if (oicr_idx < 0)
2813		return oicr_idx;
2814
2815	pf->num_avail_sw_msix -= 1;
2816	pf->oicr_idx = (u16)oicr_idx;
2817
2818	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
 
2819			       ice_misc_intr, 0, pf->int_name, pf);
2820	if (err) {
2821		dev_err(dev, "devm_request_irq for %s failed: %d\n",
 
2822			pf->int_name, err);
2823		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2824		pf->num_avail_sw_msix += 1;
2825		return err;
2826	}
2827
2828skip_req_irq:
2829	ice_ena_misc_vector(pf);
2830
2831	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2832	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2833	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2834
2835	ice_flush(hw);
2836	ice_irq_dynamic_ena(hw, NULL, NULL);
2837
2838	return 0;
2839}
2840
2841/**
2842 * ice_napi_add - register NAPI handler for the VSI
2843 * @vsi: VSI for which NAPI handler is to be registered
2844 *
2845 * This function is only called in the driver's load path. Registering the NAPI
2846 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2847 * reset/rebuild, etc.)
2848 */
2849static void ice_napi_add(struct ice_vsi *vsi)
2850{
2851	int v_idx;
2852
2853	if (!vsi->netdev)
2854		return;
2855
2856	ice_for_each_q_vector(vsi, v_idx)
2857		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2858			       ice_napi_poll, NAPI_POLL_WEIGHT);
2859}
2860
2861/**
2862 * ice_set_ops - set netdev and ethtools ops for the given netdev
2863 * @netdev: netdev instance
2864 */
2865static void ice_set_ops(struct net_device *netdev)
2866{
2867	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2868
2869	if (ice_is_safe_mode(pf)) {
2870		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2871		ice_set_ethtool_safe_mode_ops(netdev);
2872		return;
2873	}
2874
2875	netdev->netdev_ops = &ice_netdev_ops;
2876	ice_set_ethtool_ops(netdev);
2877}
2878
2879/**
2880 * ice_set_netdev_features - set features for the given netdev
2881 * @netdev: netdev instance
2882 */
2883static void ice_set_netdev_features(struct net_device *netdev)
2884{
2885	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2886	netdev_features_t csumo_features;
2887	netdev_features_t vlano_features;
2888	netdev_features_t dflt_features;
2889	netdev_features_t tso_features;
2890
2891	if (ice_is_safe_mode(pf)) {
2892		/* safe mode */
2893		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2894		netdev->hw_features = netdev->features;
2895		return;
2896	}
2897
2898	dflt_features = NETIF_F_SG	|
2899			NETIF_F_HIGHDMA	|
2900			NETIF_F_NTUPLE	|
2901			NETIF_F_RXHASH;
2902
2903	csumo_features = NETIF_F_RXCSUM	  |
2904			 NETIF_F_IP_CSUM  |
2905			 NETIF_F_SCTP_CRC |
2906			 NETIF_F_IPV6_CSUM;
2907
2908	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2909			 NETIF_F_HW_VLAN_CTAG_TX     |
2910			 NETIF_F_HW_VLAN_CTAG_RX;
2911
2912	tso_features = NETIF_F_TSO			|
2913		       NETIF_F_TSO_ECN			|
2914		       NETIF_F_TSO6			|
2915		       NETIF_F_GSO_GRE			|
2916		       NETIF_F_GSO_UDP_TUNNEL		|
2917		       NETIF_F_GSO_GRE_CSUM		|
2918		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2919		       NETIF_F_GSO_PARTIAL		|
2920		       NETIF_F_GSO_IPXIP4		|
2921		       NETIF_F_GSO_IPXIP6		|
2922		       NETIF_F_GSO_UDP_L4;
2923
2924	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2925					NETIF_F_GSO_GRE_CSUM;
2926	/* set features that user can change */
2927	netdev->hw_features = dflt_features | csumo_features |
2928			      vlano_features | tso_features;
2929
2930	/* add support for HW_CSUM on packets with MPLS header */
2931	netdev->mpls_features =  NETIF_F_HW_CSUM;
2932
2933	/* enable features */
2934	netdev->features |= netdev->hw_features;
2935	/* encap and VLAN devices inherit default, csumo and tso features */
2936	netdev->hw_enc_features |= dflt_features | csumo_features |
2937				   tso_features;
2938	netdev->vlan_features |= dflt_features | csumo_features |
2939				 tso_features;
2940}
2941
2942/**
2943 * ice_cfg_netdev - Allocate, configure and register a netdev
2944 * @vsi: the VSI associated with the new netdev
2945 *
2946 * Returns 0 on success, negative value on failure
2947 */
2948static int ice_cfg_netdev(struct ice_vsi *vsi)
2949{
2950	struct ice_pf *pf = vsi->back;
2951	struct ice_netdev_priv *np;
2952	struct net_device *netdev;
2953	u8 mac_addr[ETH_ALEN];
2954	int err;
2955
2956	err = ice_devlink_create_port(pf);
2957	if (err)
2958		return err;
2959
2960	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2961				    vsi->alloc_rxq);
2962	if (!netdev) {
2963		err = -ENOMEM;
2964		goto err_destroy_devlink_port;
2965	}
2966
2967	vsi->netdev = netdev;
2968	np = netdev_priv(netdev);
2969	np->vsi = vsi;
2970
2971	ice_set_netdev_features(netdev);
2972
2973	ice_set_ops(netdev);
2974
2975	if (vsi->type == ICE_VSI_PF) {
2976		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2977		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2978		ether_addr_copy(netdev->dev_addr, mac_addr);
2979		ether_addr_copy(netdev->perm_addr, mac_addr);
2980	}
2981
2982	netdev->priv_flags |= IFF_UNICAST_FLT;
2983
2984	/* Setup netdev TC information */
2985	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2986
2987	/* setup watchdog timeout value to be 5 second */
2988	netdev->watchdog_timeo = 5 * HZ;
2989
2990	netdev->min_mtu = ETH_MIN_MTU;
2991	netdev->max_mtu = ICE_MAX_MTU;
2992
2993	err = register_netdev(vsi->netdev);
2994	if (err)
2995		goto err_free_netdev;
2996
2997	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
2998
2999	netif_carrier_off(vsi->netdev);
3000
3001	/* make sure transmit queues start off as stopped */
3002	netif_tx_stop_all_queues(vsi->netdev);
3003
3004	return 0;
3005
3006err_free_netdev:
3007	free_netdev(vsi->netdev);
3008	vsi->netdev = NULL;
3009err_destroy_devlink_port:
3010	ice_devlink_destroy_port(pf);
3011	return err;
3012}
3013
3014/**
3015 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3016 * @lut: Lookup table
3017 * @rss_table_size: Lookup table size
3018 * @rss_size: Range of queue number for hashing
3019 */
3020void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3021{
3022	u16 i;
3023
3024	for (i = 0; i < rss_table_size; i++)
3025		lut[i] = i % rss_size;
3026}
3027
3028/**
3029 * ice_pf_vsi_setup - Set up a PF VSI
3030 * @pf: board private structure
3031 * @pi: pointer to the port_info instance
3032 *
3033 * Returns pointer to the successfully allocated VSI software struct
3034 * on success, otherwise returns NULL on failure.
3035 */
3036static struct ice_vsi *
3037ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3038{
3039	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3040}
3041
3042/**
3043 * ice_ctrl_vsi_setup - Set up a control VSI
3044 * @pf: board private structure
3045 * @pi: pointer to the port_info instance
3046 *
3047 * Returns pointer to the successfully allocated VSI software struct
3048 * on success, otherwise returns NULL on failure.
3049 */
3050static struct ice_vsi *
3051ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3052{
3053	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3054}
3055
3056/**
3057 * ice_lb_vsi_setup - Set up a loopback VSI
3058 * @pf: board private structure
3059 * @pi: pointer to the port_info instance
3060 *
3061 * Returns pointer to the successfully allocated VSI software struct
3062 * on success, otherwise returns NULL on failure.
3063 */
3064struct ice_vsi *
3065ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3066{
3067	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3068}
3069
3070/**
3071 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3072 * @netdev: network interface to be adjusted
3073 * @proto: unused protocol
3074 * @vid: VLAN ID to be added
3075 *
3076 * net_device_ops implementation for adding VLAN IDs
3077 */
3078static int
3079ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3080		    u16 vid)
3081{
3082	struct ice_netdev_priv *np = netdev_priv(netdev);
3083	struct ice_vsi *vsi = np->vsi;
3084	int ret;
3085
3086	if (vid >= VLAN_N_VID) {
3087		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3088			   vid, VLAN_N_VID);
3089		return -EINVAL;
3090	}
3091
3092	if (vsi->info.pvid)
3093		return -EINVAL;
3094
3095	/* VLAN 0 is added by default during load/reset */
3096	if (!vid)
3097		return 0;
3098
3099	/* Enable VLAN pruning when a VLAN other than 0 is added */
3100	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3101		ret = ice_cfg_vlan_pruning(vsi, true, false);
3102		if (ret)
3103			return ret;
3104	}
3105
3106	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3107	 * packets aren't pruned by the device's internal switch on Rx
 
3108	 */
3109	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3110	if (!ret) {
3111		vsi->vlan_ena = true;
3112		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3113	}
3114
3115	return ret;
3116}
3117
3118/**
3119 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3120 * @netdev: network interface to be adjusted
3121 * @proto: unused protocol
3122 * @vid: VLAN ID to be removed
3123 *
3124 * net_device_ops implementation for removing VLAN IDs
3125 */
3126static int
3127ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3128		     u16 vid)
3129{
3130	struct ice_netdev_priv *np = netdev_priv(netdev);
3131	struct ice_vsi *vsi = np->vsi;
3132	int ret;
3133
3134	if (vsi->info.pvid)
3135		return -EINVAL;
3136
3137	/* don't allow removal of VLAN 0 */
3138	if (!vid)
3139		return 0;
3140
3141	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3142	 * information
3143	 */
3144	ret = ice_vsi_kill_vlan(vsi, vid);
3145	if (ret)
3146		return ret;
3147
3148	/* Disable pruning when VLAN 0 is the only VLAN rule */
3149	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3150		ret = ice_cfg_vlan_pruning(vsi, false, false);
3151
3152	vsi->vlan_ena = false;
3153	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3154	return ret;
3155}
3156
3157/**
3158 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3159 * @pf: board private structure
3160 *
3161 * Returns 0 on success, negative value on failure
3162 */
3163static int ice_setup_pf_sw(struct ice_pf *pf)
3164{
3165	struct ice_vsi *vsi;
3166	int status = 0;
3167
3168	if (ice_is_reset_in_progress(pf->state))
3169		return -EBUSY;
3170
3171	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3172	if (!vsi)
3173		return -ENOMEM;
 
 
3174
3175	status = ice_cfg_netdev(vsi);
3176	if (status) {
3177		status = -ENODEV;
3178		goto unroll_vsi_setup;
3179	}
3180	/* netdev has to be configured before setting frame size */
3181	ice_vsi_cfg_frame_size(vsi);
3182
3183	/* Setup DCB netlink interface */
3184	ice_dcbnl_setup(vsi);
3185
3186	/* registering the NAPI handler requires both the queues and
3187	 * netdev to be created, which are done in ice_pf_vsi_setup()
3188	 * and ice_cfg_netdev() respectively
3189	 */
3190	ice_napi_add(vsi);
3191
3192	status = ice_set_cpu_rx_rmap(vsi);
3193	if (status) {
3194		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3195			vsi->vsi_num, status);
3196		status = -EINVAL;
3197		goto unroll_napi_add;
3198	}
3199	status = ice_init_mac_fltr(pf);
3200	if (status)
3201		goto free_cpu_rx_map;
3202
3203	return status;
3204
3205free_cpu_rx_map:
3206	ice_free_cpu_rx_rmap(vsi);
3207
3208unroll_napi_add:
3209	if (vsi) {
3210		ice_napi_del(vsi);
3211		if (vsi->netdev) {
3212			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3213				unregister_netdev(vsi->netdev);
3214			free_netdev(vsi->netdev);
3215			vsi->netdev = NULL;
3216		}
3217	}
3218
3219unroll_vsi_setup:
3220	ice_vsi_release(vsi);
 
 
 
 
 
3221	return status;
3222}
3223
3224/**
3225 * ice_get_avail_q_count - Get count of queues in use
3226 * @pf_qmap: bitmap to get queue use count from
3227 * @lock: pointer to a mutex that protects access to pf_qmap
3228 * @size: size of the bitmap
3229 */
3230static u16
3231ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3232{
3233	unsigned long bit;
3234	u16 count = 0;
3235
3236	mutex_lock(lock);
3237	for_each_clear_bit(bit, pf_qmap, size)
3238		count++;
3239	mutex_unlock(lock);
3240
3241	return count;
3242}
3243
3244/**
3245 * ice_get_avail_txq_count - Get count of Tx queues in use
3246 * @pf: pointer to an ice_pf instance
3247 */
3248u16 ice_get_avail_txq_count(struct ice_pf *pf)
3249{
3250	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3251				     pf->max_pf_txqs);
3252}
3253
3254/**
3255 * ice_get_avail_rxq_count - Get count of Rx queues in use
3256 * @pf: pointer to an ice_pf instance
3257 */
3258u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3259{
3260	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3261				     pf->max_pf_rxqs);
3262}
3263
3264/**
3265 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3266 * @pf: board private structure to initialize
3267 */
3268static void ice_deinit_pf(struct ice_pf *pf)
3269{
3270	ice_service_task_stop(pf);
3271	mutex_destroy(&pf->sw_mutex);
3272	mutex_destroy(&pf->tc_mutex);
3273	mutex_destroy(&pf->avail_q_mutex);
3274
3275	if (pf->avail_txqs) {
3276		bitmap_free(pf->avail_txqs);
3277		pf->avail_txqs = NULL;
3278	}
3279
3280	if (pf->avail_rxqs) {
3281		bitmap_free(pf->avail_rxqs);
3282		pf->avail_rxqs = NULL;
3283	}
3284}
3285
3286/**
3287 * ice_set_pf_caps - set PFs capability flags
3288 * @pf: pointer to the PF instance
3289 */
3290static void ice_set_pf_caps(struct ice_pf *pf)
3291{
3292	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3293
3294	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3295	if (func_caps->common_cap.dcb)
3296		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
 
3297	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3298	if (func_caps->common_cap.sr_iov_1_1) {
3299		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3300		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3301					      ICE_MAX_VF_COUNT);
3302	}
 
3303	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3304	if (func_caps->common_cap.rss_table_size)
3305		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3306
3307	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3308	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3309		u16 unused;
3310
3311		/* ctrl_vsi_idx will be set to a valid value when flow director
3312		 * is setup by ice_init_fdir
3313		 */
3314		pf->ctrl_vsi_idx = ICE_NO_VSI;
3315		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3316		/* force guaranteed filter pool for PF */
3317		ice_alloc_fd_guar_item(&pf->hw, &unused,
3318				       func_caps->fd_fltr_guar);
3319		/* force shared filter pool for PF */
3320		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3321				       func_caps->fd_fltr_best_effort);
3322	}
3323
3324	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3325	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3326}
3327
3328/**
3329 * ice_init_pf - Initialize general software structures (struct ice_pf)
3330 * @pf: board private structure to initialize
3331 */
3332static int ice_init_pf(struct ice_pf *pf)
3333{
3334	ice_set_pf_caps(pf);
3335
3336	mutex_init(&pf->sw_mutex);
3337	mutex_init(&pf->tc_mutex);
3338
3339	INIT_HLIST_HEAD(&pf->aq_wait_list);
3340	spin_lock_init(&pf->aq_wait_lock);
3341	init_waitqueue_head(&pf->aq_wait_queue);
3342
3343	/* setup service timer and periodic service task */
3344	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3345	pf->serv_tmr_period = HZ;
3346	INIT_WORK(&pf->serv_task, ice_service_task);
3347	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3348
3349	mutex_init(&pf->avail_q_mutex);
3350	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3351	if (!pf->avail_txqs)
3352		return -ENOMEM;
3353
3354	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3355	if (!pf->avail_rxqs) {
3356		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3357		pf->avail_txqs = NULL;
3358		return -ENOMEM;
3359	}
3360
3361	return 0;
3362}
3363
3364/**
3365 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3366 * @pf: board private structure
3367 *
3368 * compute the number of MSIX vectors required (v_budget) and request from
3369 * the OS. Return the number of vectors reserved or negative on failure
3370 */
3371static int ice_ena_msix_range(struct ice_pf *pf)
3372{
3373	struct device *dev = ice_pf_to_dev(pf);
3374	int v_left, v_actual, v_budget = 0;
3375	int needed, err, i;
3376
3377	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3378
3379	/* reserve one vector for miscellaneous handler */
3380	needed = 1;
3381	if (v_left < needed)
3382		goto no_hw_vecs_left_err;
3383	v_budget += needed;
3384	v_left -= needed;
3385
3386	/* reserve vectors for LAN traffic */
3387	needed = min_t(int, num_online_cpus(), v_left);
3388	if (v_left < needed)
3389		goto no_hw_vecs_left_err;
3390	pf->num_lan_msix = needed;
3391	v_budget += needed;
3392	v_left -= needed;
3393
3394	/* reserve one vector for flow director */
3395	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3396		needed = ICE_FDIR_MSIX;
3397		if (v_left < needed)
3398			goto no_hw_vecs_left_err;
3399		v_budget += needed;
3400		v_left -= needed;
3401	}
3402
3403	pf->msix_entries = devm_kcalloc(dev, v_budget,
3404					sizeof(*pf->msix_entries), GFP_KERNEL);
3405
3406	if (!pf->msix_entries) {
3407		err = -ENOMEM;
3408		goto exit_err;
3409	}
3410
3411	for (i = 0; i < v_budget; i++)
3412		pf->msix_entries[i].entry = i;
3413
3414	/* actually reserve the vectors */
3415	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3416					 ICE_MIN_MSIX, v_budget);
3417
3418	if (v_actual < 0) {
3419		dev_err(dev, "unable to reserve MSI-X vectors\n");
3420		err = v_actual;
3421		goto msix_err;
3422	}
3423
3424	if (v_actual < v_budget) {
3425		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
 
3426			 v_budget, v_actual);
3427/* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */
3428#define ICE_MIN_LAN_VECS 2
3429#define ICE_MIN_RDMA_VECS 2
3430#define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1)
3431
3432		if (v_actual < ICE_MIN_LAN_VECS) {
3433			/* error if we can't get minimum vectors */
3434			pci_disable_msix(pf->pdev);
3435			err = -ERANGE;
3436			goto msix_err;
3437		} else {
3438			pf->num_lan_msix = ICE_MIN_LAN_VECS;
3439		}
3440	}
3441
3442	return v_actual;
3443
3444msix_err:
3445	devm_kfree(dev, pf->msix_entries);
3446	goto exit_err;
3447
3448no_hw_vecs_left_err:
3449	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
 
3450		needed, v_left);
3451	err = -ERANGE;
3452exit_err:
3453	pf->num_lan_msix = 0;
3454	return err;
3455}
3456
3457/**
3458 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3459 * @pf: board private structure
3460 */
3461static void ice_dis_msix(struct ice_pf *pf)
3462{
3463	pci_disable_msix(pf->pdev);
3464	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3465	pf->msix_entries = NULL;
3466}
3467
3468/**
3469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3470 * @pf: board private structure
3471 */
3472static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3473{
3474	ice_dis_msix(pf);
3475
3476	if (pf->irq_tracker) {
3477		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3478		pf->irq_tracker = NULL;
3479	}
3480}
3481
3482/**
3483 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3484 * @pf: board private structure to initialize
3485 */
3486static int ice_init_interrupt_scheme(struct ice_pf *pf)
3487{
3488	int vectors;
3489
3490	vectors = ice_ena_msix_range(pf);
3491
3492	if (vectors < 0)
3493		return vectors;
3494
3495	/* set up vector assignment tracking */
3496	pf->irq_tracker =
3497		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3498			     (sizeof(u16) * vectors), GFP_KERNEL);
3499	if (!pf->irq_tracker) {
3500		ice_dis_msix(pf);
3501		return -ENOMEM;
3502	}
3503
3504	/* populate SW interrupts pool with number of OS granted IRQs. */
3505	pf->num_avail_sw_msix = (u16)vectors;
3506	pf->irq_tracker->num_entries = (u16)vectors;
3507	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3508
3509	return 0;
3510}
3511
3512/**
3513 * ice_is_wol_supported - get NVM state of WoL
3514 * @pf: board private structure
3515 *
3516 * Check if WoL is supported based on the HW configuration.
3517 * Returns true if NVM supports and enables WoL for this port, false otherwise
3518 */
3519bool ice_is_wol_supported(struct ice_pf *pf)
3520{
3521	struct ice_hw *hw = &pf->hw;
3522	u16 wol_ctrl;
3523
3524	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3525	 * word) indicates WoL is not supported on the corresponding PF ID.
3526	 */
3527	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3528		return false;
3529
3530	return !(BIT(hw->pf_id) & wol_ctrl);
3531}
3532
3533/**
3534 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3535 * @vsi: VSI being changed
3536 * @new_rx: new number of Rx queues
3537 * @new_tx: new number of Tx queues
3538 *
3539 * Only change the number of queues if new_tx, or new_rx is non-0.
3540 *
3541 * Returns 0 on success.
3542 */
3543int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3544{
3545	struct ice_pf *pf = vsi->back;
3546	int err = 0, timeout = 50;
3547
3548	if (!new_rx && !new_tx)
3549		return -EINVAL;
3550
3551	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3552		timeout--;
3553		if (!timeout)
3554			return -EBUSY;
3555		usleep_range(1000, 2000);
3556	}
3557
3558	if (new_tx)
3559		vsi->req_txq = (u16)new_tx;
3560	if (new_rx)
3561		vsi->req_rxq = (u16)new_rx;
3562
3563	/* set for the next time the netdev is started */
3564	if (!netif_running(vsi->netdev)) {
3565		ice_vsi_rebuild(vsi, false);
3566		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3567		goto done;
3568	}
3569
3570	ice_vsi_close(vsi);
3571	ice_vsi_rebuild(vsi, false);
3572	ice_pf_dcb_recfg(pf);
3573	ice_vsi_open(vsi);
3574done:
3575	clear_bit(__ICE_CFG_BUSY, pf->state);
3576	return err;
3577}
3578
3579/**
3580 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3581 * @pf: PF to configure
3582 *
3583 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3584 * VSI can still Tx/Rx VLAN tagged packets.
3585 */
3586static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3587{
3588	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3589	struct ice_vsi_ctx *ctxt;
3590	enum ice_status status;
3591	struct ice_hw *hw;
3592
3593	if (!vsi)
3594		return;
3595
3596	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3597	if (!ctxt)
3598		return;
3599
3600	hw = &pf->hw;
3601	ctxt->info = vsi->info;
3602
3603	ctxt->info.valid_sections =
3604		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3605			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3606			    ICE_AQ_VSI_PROP_SW_VALID);
3607
3608	/* disable VLAN anti-spoof */
3609	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3610				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3611
3612	/* disable VLAN pruning and keep all other settings */
3613	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3614
3615	/* allow all VLANs on Tx and don't strip on Rx */
3616	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3617		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3618
3619	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3620	if (status) {
3621		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3622			ice_stat_str(status),
3623			ice_aq_str(hw->adminq.sq_last_status));
3624	} else {
3625		vsi->info.sec_flags = ctxt->info.sec_flags;
3626		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3627		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3628	}
3629
3630	kfree(ctxt);
3631}
3632
3633/**
3634 * ice_log_pkg_init - log result of DDP package load
3635 * @hw: pointer to hardware info
3636 * @status: status of package load
3637 */
3638static void
3639ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3640{
3641	struct ice_pf *pf = (struct ice_pf *)hw->back;
3642	struct device *dev = ice_pf_to_dev(pf);
3643
3644	switch (*status) {
3645	case ICE_SUCCESS:
3646		/* The package download AdminQ command returned success because
3647		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3648		 * already a package loaded on the device.
3649		 */
3650		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3651		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3652		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3653		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3654		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3655			    sizeof(hw->pkg_name))) {
3656			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3657				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
 
3658					 hw->active_pkg_name,
3659					 hw->active_pkg_ver.major,
3660					 hw->active_pkg_ver.minor,
3661					 hw->active_pkg_ver.update,
3662					 hw->active_pkg_ver.draft);
3663			else
3664				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
 
3665					 hw->active_pkg_name,
3666					 hw->active_pkg_ver.major,
3667					 hw->active_pkg_ver.minor,
3668					 hw->active_pkg_ver.update,
3669					 hw->active_pkg_ver.draft);
3670		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3671			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3672			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
 
3673				hw->active_pkg_name,
3674				hw->active_pkg_ver.major,
3675				hw->active_pkg_ver.minor,
3676				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3677			*status = ICE_ERR_NOT_SUPPORTED;
3678		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3679			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3680			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
 
3681				 hw->active_pkg_name,
3682				 hw->active_pkg_ver.major,
3683				 hw->active_pkg_ver.minor,
3684				 hw->active_pkg_ver.update,
3685				 hw->active_pkg_ver.draft,
3686				 hw->pkg_name,
3687				 hw->pkg_ver.major,
3688				 hw->pkg_ver.minor,
3689				 hw->pkg_ver.update,
3690				 hw->pkg_ver.draft);
3691		} else {
3692			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
 
3693			*status = ICE_ERR_NOT_SUPPORTED;
3694		}
3695		break;
3696	case ICE_ERR_FW_DDP_MISMATCH:
3697		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3698		break;
3699	case ICE_ERR_BUF_TOO_SHORT:
 
3700	case ICE_ERR_CFG:
3701		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
 
3702		break;
3703	case ICE_ERR_NOT_SUPPORTED:
3704		/* Package File version not supported */
3705		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3706		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3707		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3708			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
 
3709		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3710			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3711			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3712			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
 
3713				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3714		break;
3715	case ICE_ERR_AQ_ERROR:
3716		switch (hw->pkg_dwnld_status) {
3717		case ICE_AQ_RC_ENOSEC:
3718		case ICE_AQ_RC_EBADSIG:
3719			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
 
3720			return;
3721		case ICE_AQ_RC_ESVN:
3722			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
 
3723			return;
3724		case ICE_AQ_RC_EBADMAN:
3725		case ICE_AQ_RC_EBADBUF:
3726			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3727			/* poll for reset to complete */
3728			if (ice_check_reset(hw))
3729				dev_err(dev, "Error resetting device. Please reload the driver\n");
3730			return;
3731		default:
3732			break;
3733		}
3734		fallthrough;
3735	default:
3736		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
 
3737			*status);
3738		break;
3739	}
3740}
3741
3742/**
3743 * ice_load_pkg - load/reload the DDP Package file
3744 * @firmware: firmware structure when firmware requested or NULL for reload
3745 * @pf: pointer to the PF instance
3746 *
3747 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3748 * initialize HW tables.
3749 */
3750static void
3751ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3752{
3753	enum ice_status status = ICE_ERR_PARAM;
3754	struct device *dev = ice_pf_to_dev(pf);
3755	struct ice_hw *hw = &pf->hw;
3756
3757	/* Load DDP Package */
3758	if (firmware && !hw->pkg_copy) {
3759		status = ice_copy_and_init_pkg(hw, firmware->data,
3760					       firmware->size);
3761		ice_log_pkg_init(hw, &status);
3762	} else if (!firmware && hw->pkg_copy) {
3763		/* Reload package during rebuild after CORER/GLOBR reset */
3764		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3765		ice_log_pkg_init(hw, &status);
3766	} else {
3767		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
 
3768	}
3769
3770	if (status) {
3771		/* Safe Mode */
3772		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3773		return;
3774	}
3775
3776	/* Successful download package is the precondition for advanced
3777	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3778	 */
3779	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3780}
3781
3782/**
3783 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3784 * @pf: pointer to the PF structure
3785 *
3786 * There is no error returned here because the driver should be able to handle
3787 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3788 * specifically with Tx.
3789 */
3790static void ice_verify_cacheline_size(struct ice_pf *pf)
3791{
3792	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3793		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
 
3794			 ICE_CACHE_LINE_BYTES);
3795}
3796
3797/**
3798 * ice_send_version - update firmware with driver version
3799 * @pf: PF struct
3800 *
3801 * Returns ICE_SUCCESS on success, else error code
3802 */
3803static enum ice_status ice_send_version(struct ice_pf *pf)
3804{
3805	struct ice_driver_ver dv;
3806
3807	dv.major_ver = 0xff;
3808	dv.minor_ver = 0xff;
3809	dv.build_ver = 0xff;
3810	dv.subbuild_ver = 0;
3811	strscpy((char *)dv.driver_string, UTS_RELEASE,
3812		sizeof(dv.driver_string));
3813	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3814}
3815
3816/**
3817 * ice_init_fdir - Initialize flow director VSI and configuration
3818 * @pf: pointer to the PF instance
3819 *
3820 * returns 0 on success, negative on error
3821 */
3822static int ice_init_fdir(struct ice_pf *pf)
3823{
3824	struct device *dev = ice_pf_to_dev(pf);
3825	struct ice_vsi *ctrl_vsi;
3826	int err;
3827
3828	/* Side Band Flow Director needs to have a control VSI.
3829	 * Allocate it and store it in the PF.
3830	 */
3831	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3832	if (!ctrl_vsi) {
3833		dev_dbg(dev, "could not create control VSI\n");
3834		return -ENOMEM;
3835	}
3836
3837	err = ice_vsi_open_ctrl(ctrl_vsi);
3838	if (err) {
3839		dev_dbg(dev, "could not open control VSI\n");
3840		goto err_vsi_open;
3841	}
3842
3843	mutex_init(&pf->hw.fdir_fltr_lock);
3844
3845	err = ice_fdir_create_dflt_rules(pf);
3846	if (err)
3847		goto err_fdir_rule;
3848
3849	return 0;
3850
3851err_fdir_rule:
3852	ice_fdir_release_flows(&pf->hw);
3853	ice_vsi_close(ctrl_vsi);
3854err_vsi_open:
3855	ice_vsi_release(ctrl_vsi);
3856	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3857		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3858		pf->ctrl_vsi_idx = ICE_NO_VSI;
3859	}
3860	return err;
3861}
3862
3863/**
3864 * ice_get_opt_fw_name - return optional firmware file name or NULL
3865 * @pf: pointer to the PF instance
3866 */
3867static char *ice_get_opt_fw_name(struct ice_pf *pf)
3868{
3869	/* Optional firmware name same as default with additional dash
3870	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3871	 */
3872	struct pci_dev *pdev = pf->pdev;
3873	char *opt_fw_filename;
3874	u64 dsn;
 
 
3875
3876	/* Determine the name of the optional file using the DSN (two
3877	 * dwords following the start of the DSN Capability).
3878	 */
3879	dsn = pci_get_dsn(pdev);
3880	if (!dsn)
3881		return NULL;
3882
3883	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3884	if (!opt_fw_filename)
3885		return NULL;
3886
3887	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3888		 ICE_DDP_PKG_PATH, dsn);
 
 
 
 
 
 
3889
3890	return opt_fw_filename;
3891}
3892
3893/**
3894 * ice_request_fw - Device initialization routine
3895 * @pf: pointer to the PF instance
3896 */
3897static void ice_request_fw(struct ice_pf *pf)
3898{
3899	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3900	const struct firmware *firmware = NULL;
3901	struct device *dev = ice_pf_to_dev(pf);
3902	int err = 0;
3903
3904	/* optional device-specific DDP (if present) overrides the default DDP
3905	 * package file. kernel logs a debug message if the file doesn't exist,
3906	 * and warning messages for other errors.
3907	 */
3908	if (opt_fw_filename) {
3909		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3910		if (err) {
3911			kfree(opt_fw_filename);
3912			goto dflt_pkg_load;
3913		}
3914
3915		/* request for firmware was successful. Download to device */
3916		ice_load_pkg(firmware, pf);
3917		kfree(opt_fw_filename);
3918		release_firmware(firmware);
3919		return;
3920	}
3921
3922dflt_pkg_load:
3923	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3924	if (err) {
3925		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
 
3926		return;
3927	}
3928
3929	/* request for firmware was successful. Download to device */
3930	ice_load_pkg(firmware, pf);
3931	release_firmware(firmware);
3932}
3933
3934/**
3935 * ice_print_wake_reason - show the wake up cause in the log
3936 * @pf: pointer to the PF struct
3937 */
3938static void ice_print_wake_reason(struct ice_pf *pf)
3939{
3940	u32 wus = pf->wakeup_reason;
3941	const char *wake_str;
3942
3943	/* if no wake event, nothing to print */
3944	if (!wus)
3945		return;
3946
3947	if (wus & PFPM_WUS_LNKC_M)
3948		wake_str = "Link\n";
3949	else if (wus & PFPM_WUS_MAG_M)
3950		wake_str = "Magic Packet\n";
3951	else if (wus & PFPM_WUS_MNG_M)
3952		wake_str = "Management\n";
3953	else if (wus & PFPM_WUS_FW_RST_WK_M)
3954		wake_str = "Firmware Reset\n";
3955	else
3956		wake_str = "Unknown\n";
3957
3958	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3959}
3960
3961/**
3962 * ice_probe - Device initialization routine
3963 * @pdev: PCI device information struct
3964 * @ent: entry in ice_pci_tbl
3965 *
3966 * Returns 0 on success, negative on failure
3967 */
3968static int
3969ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3970{
3971	struct device *dev = &pdev->dev;
3972	struct ice_pf *pf;
3973	struct ice_hw *hw;
3974	int err;
3975
3976	/* this driver uses devres, see
3977	 * Documentation/driver-api/driver-model/devres.rst
3978	 */
3979	err = pcim_enable_device(pdev);
3980	if (err)
3981		return err;
3982
3983	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3984	if (err) {
3985		dev_err(dev, "BAR0 I/O map error %d\n", err);
3986		return err;
3987	}
3988
3989	pf = ice_allocate_pf(dev);
3990	if (!pf)
3991		return -ENOMEM;
3992
3993	/* set up for high or low DMA */
3994	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3995	if (err)
3996		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3997	if (err) {
3998		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3999		return err;
4000	}
4001
4002	pci_enable_pcie_error_reporting(pdev);
4003	pci_set_master(pdev);
4004
4005	pf->pdev = pdev;
4006	pci_set_drvdata(pdev, pf);
4007	set_bit(__ICE_DOWN, pf->state);
4008	/* Disable service task until DOWN bit is cleared */
4009	set_bit(__ICE_SERVICE_DIS, pf->state);
4010
4011	hw = &pf->hw;
4012	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4013	pci_save_state(pdev);
4014
4015	hw->back = pf;
4016	hw->vendor_id = pdev->vendor;
4017	hw->device_id = pdev->device;
4018	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4019	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4020	hw->subsystem_device_id = pdev->subsystem_device;
4021	hw->bus.device = PCI_SLOT(pdev->devfn);
4022	hw->bus.func = PCI_FUNC(pdev->devfn);
4023	ice_set_ctrlq_len(hw);
4024
4025	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4026
4027	err = ice_devlink_register(pf);
4028	if (err) {
4029		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4030		goto err_exit_unroll;
4031	}
4032
4033#ifndef CONFIG_DYNAMIC_DEBUG
4034	if (debug < -1)
4035		hw->debug_mask = debug;
4036#endif
4037
4038	err = ice_init_hw(hw);
4039	if (err) {
4040		dev_err(dev, "ice_init_hw failed: %d\n", err);
4041		err = -EIO;
4042		goto err_exit_unroll;
4043	}
4044
 
 
 
 
 
4045	ice_request_fw(pf);
4046
4047	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4048	 * set in pf->state, which will cause ice_is_safe_mode to return
4049	 * true
4050	 */
4051	if (ice_is_safe_mode(pf)) {
4052		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
 
4053		/* we already got function/device capabilities but these don't
4054		 * reflect what the driver needs to do in safe mode. Instead of
4055		 * adding conditional logic everywhere to ignore these
4056		 * device/function capabilities, override them.
4057		 */
4058		ice_set_safe_mode_caps(hw);
4059	}
4060
4061	err = ice_init_pf(pf);
4062	if (err) {
4063		dev_err(dev, "ice_init_pf failed: %d\n", err);
4064		goto err_init_pf_unroll;
4065	}
4066
4067	ice_devlink_init_regions(pf);
4068
4069	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4070	if (!pf->num_alloc_vsi) {
4071		err = -EIO;
4072		goto err_init_pf_unroll;
4073	}
4074
4075	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4076			       GFP_KERNEL);
4077	if (!pf->vsi) {
4078		err = -ENOMEM;
4079		goto err_init_pf_unroll;
4080	}
4081
4082	err = ice_init_interrupt_scheme(pf);
4083	if (err) {
4084		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4085		err = -EIO;
4086		goto err_init_vsi_unroll;
4087	}
4088
 
 
 
4089	/* In case of MSIX we are going to setup the misc vector right here
4090	 * to handle admin queue events etc. In case of legacy and MSI
4091	 * the misc functionality and queue processing is combined in
4092	 * the same vector and that gets setup at open.
4093	 */
4094	err = ice_req_irq_msix_misc(pf);
4095	if (err) {
4096		dev_err(dev, "setup of misc vector failed: %d\n", err);
4097		goto err_init_interrupt_unroll;
4098	}
4099
4100	/* create switch struct for the switch element created by FW on boot */
4101	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4102	if (!pf->first_sw) {
4103		err = -ENOMEM;
4104		goto err_msix_misc_unroll;
4105	}
4106
4107	if (hw->evb_veb)
4108		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4109	else
4110		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4111
4112	pf->first_sw->pf = pf;
4113
4114	/* record the sw_id available for later use */
4115	pf->first_sw->sw_id = hw->port_info->sw_id;
4116
4117	err = ice_setup_pf_sw(pf);
4118	if (err) {
4119		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4120		goto err_alloc_sw_unroll;
4121	}
4122
4123	clear_bit(__ICE_SERVICE_DIS, pf->state);
4124
4125	/* tell the firmware we are up */
4126	err = ice_send_version(pf);
4127	if (err) {
4128		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4129			UTS_RELEASE, err);
4130		goto err_send_version_unroll;
 
4131	}
4132
4133	/* since everything is good, start the service timer */
4134	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4135
4136	err = ice_init_link_events(pf->hw.port_info);
4137	if (err) {
4138		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4139		goto err_send_version_unroll;
4140	}
4141
4142	err = ice_init_nvm_phy_type(pf->hw.port_info);
4143	if (err) {
4144		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4145		goto err_send_version_unroll;
4146	}
4147
4148	err = ice_update_link_info(pf->hw.port_info);
4149	if (err) {
4150		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4151		goto err_send_version_unroll;
4152	}
4153
4154	ice_init_link_dflt_override(pf->hw.port_info);
4155
4156	/* if media available, initialize PHY settings */
4157	if (pf->hw.port_info->phy.link_info.link_info &
4158	    ICE_AQ_MEDIA_AVAILABLE) {
4159		err = ice_init_phy_user_cfg(pf->hw.port_info);
4160		if (err) {
4161			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4162			goto err_send_version_unroll;
4163		}
4164
4165		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4166			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4167
4168			if (vsi)
4169				ice_configure_phy(vsi);
4170		}
4171	} else {
4172		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4173	}
4174
4175	ice_verify_cacheline_size(pf);
4176
4177	/* Save wakeup reason register for later use */
4178	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4179
4180	/* check for a power management event */
4181	ice_print_wake_reason(pf);
4182
4183	/* clear wake status, all bits */
4184	wr32(hw, PFPM_WUS, U32_MAX);
4185
4186	/* Disable WoL at init, wait for user to enable */
4187	device_set_wakeup_enable(dev, false);
4188
4189	if (ice_is_safe_mode(pf)) {
4190		ice_set_safe_mode_vlan_cfg(pf);
4191		goto probe_done;
4192	}
4193
4194	/* initialize DDP driven features */
4195
4196	/* Note: Flow director init failure is non-fatal to load */
4197	if (ice_init_fdir(pf))
4198		dev_err(dev, "could not initialize flow director\n");
4199
4200	/* Note: DCB init failure is non-fatal to load */
4201	if (ice_init_pf_dcb(pf, false)) {
4202		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4203		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4204	} else {
4205		ice_cfg_lldp_mib_change(&pf->hw, true);
4206	}
4207
4208	/* print PCI link speed and width */
4209	pcie_print_link_status(pf->pdev);
4210
4211probe_done:
4212	/* ready to go, so clear down state bit */
4213	clear_bit(__ICE_DOWN, pf->state);
4214	return 0;
4215
4216err_send_version_unroll:
4217	ice_vsi_release_all(pf);
4218err_alloc_sw_unroll:
4219	ice_devlink_destroy_port(pf);
4220	set_bit(__ICE_SERVICE_DIS, pf->state);
4221	set_bit(__ICE_DOWN, pf->state);
4222	devm_kfree(dev, pf->first_sw);
4223err_msix_misc_unroll:
4224	ice_free_irq_msix_misc(pf);
4225err_init_interrupt_unroll:
4226	ice_clear_interrupt_scheme(pf);
4227err_init_vsi_unroll:
4228	devm_kfree(dev, pf->vsi);
4229err_init_pf_unroll:
4230	ice_deinit_pf(pf);
4231	ice_devlink_destroy_regions(pf);
4232	ice_deinit_hw(hw);
4233err_exit_unroll:
4234	ice_devlink_unregister(pf);
4235	pci_disable_pcie_error_reporting(pdev);
4236	pci_disable_device(pdev);
4237	return err;
4238}
4239
4240/**
4241 * ice_set_wake - enable or disable Wake on LAN
4242 * @pf: pointer to the PF struct
4243 *
4244 * Simple helper for WoL control
4245 */
4246static void ice_set_wake(struct ice_pf *pf)
4247{
4248	struct ice_hw *hw = &pf->hw;
4249	bool wol = pf->wol_ena;
4250
4251	/* clear wake state, otherwise new wake events won't fire */
4252	wr32(hw, PFPM_WUS, U32_MAX);
4253
4254	/* enable / disable APM wake up, no RMW needed */
4255	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4256
4257	/* set magic packet filter enabled */
4258	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4259}
4260
4261/**
4262 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4263 * @pf: pointer to the PF struct
4264 *
4265 * Issue firmware command to enable multicast magic wake, making
4266 * sure that any locally administered address (LAA) is used for
4267 * wake, and that PF reset doesn't undo the LAA.
4268 */
4269static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4270{
4271	struct device *dev = ice_pf_to_dev(pf);
4272	struct ice_hw *hw = &pf->hw;
4273	enum ice_status status;
4274	u8 mac_addr[ETH_ALEN];
4275	struct ice_vsi *vsi;
4276	u8 flags;
4277
4278	if (!pf->wol_ena)
4279		return;
4280
4281	vsi = ice_get_main_vsi(pf);
4282	if (!vsi)
4283		return;
4284
4285	/* Get current MAC address in case it's an LAA */
4286	if (vsi->netdev)
4287		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4288	else
4289		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4290
4291	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4292		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4293		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4294
4295	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4296	if (status)
4297		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4298			ice_stat_str(status),
4299			ice_aq_str(hw->adminq.sq_last_status));
4300}
4301
4302/**
4303 * ice_remove - Device removal routine
4304 * @pdev: PCI device information struct
4305 */
4306static void ice_remove(struct pci_dev *pdev)
4307{
4308	struct ice_pf *pf = pci_get_drvdata(pdev);
4309	int i;
4310
4311	if (!pf)
4312		return;
4313
4314	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4315		if (!ice_is_reset_in_progress(pf->state))
4316			break;
4317		msleep(100);
4318	}
4319
4320	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4321		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4322		ice_free_vfs(pf);
4323	}
4324
4325	set_bit(__ICE_DOWN, pf->state);
4326	ice_service_task_stop(pf);
4327
4328	ice_aq_cancel_waiting_tasks(pf);
4329
4330	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4331	if (!ice_is_safe_mode(pf))
4332		ice_remove_arfs(pf);
4333	ice_setup_mc_magic_wake(pf);
4334	ice_devlink_destroy_port(pf);
4335	ice_vsi_release_all(pf);
4336	ice_set_wake(pf);
4337	ice_free_irq_msix_misc(pf);
4338	ice_for_each_vsi(pf, i) {
4339		if (!pf->vsi[i])
4340			continue;
4341		ice_vsi_free_q_vectors(pf->vsi[i]);
4342	}
4343	ice_deinit_pf(pf);
4344	ice_devlink_destroy_regions(pf);
4345	ice_deinit_hw(&pf->hw);
4346	ice_devlink_unregister(pf);
4347
4348	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4349	 * do it via ice_schedule_reset() since there is no need to rebuild
4350	 * and the service task is already stopped.
4351	 */
4352	ice_reset(&pf->hw, ICE_RESET_PFR);
4353	pci_wait_for_pending_transaction(pdev);
4354	ice_clear_interrupt_scheme(pf);
4355	pci_disable_pcie_error_reporting(pdev);
4356	pci_disable_device(pdev);
4357}
4358
4359/**
4360 * ice_shutdown - PCI callback for shutting down device
4361 * @pdev: PCI device information struct
4362 */
4363static void ice_shutdown(struct pci_dev *pdev)
4364{
4365	struct ice_pf *pf = pci_get_drvdata(pdev);
4366
4367	ice_remove(pdev);
4368
4369	if (system_state == SYSTEM_POWER_OFF) {
4370		pci_wake_from_d3(pdev, pf->wol_ena);
4371		pci_set_power_state(pdev, PCI_D3hot);
4372	}
4373}
4374
4375#ifdef CONFIG_PM
4376/**
4377 * ice_prepare_for_shutdown - prep for PCI shutdown
4378 * @pf: board private structure
4379 *
4380 * Inform or close all dependent features in prep for PCI device shutdown
4381 */
4382static void ice_prepare_for_shutdown(struct ice_pf *pf)
4383{
4384	struct ice_hw *hw = &pf->hw;
4385	u32 v;
4386
4387	/* Notify VFs of impending reset */
4388	if (ice_check_sq_alive(hw, &hw->mailboxq))
4389		ice_vc_notify_reset(pf);
4390
4391	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4392
4393	/* disable the VSIs and their queues that are not already DOWN */
4394	ice_pf_dis_all_vsi(pf, false);
4395
4396	ice_for_each_vsi(pf, v)
4397		if (pf->vsi[v])
4398			pf->vsi[v]->vsi_num = 0;
4399
4400	ice_shutdown_all_ctrlq(hw);
4401}
4402
4403/**
4404 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4405 * @pf: board private structure to reinitialize
4406 *
4407 * This routine reinitialize interrupt scheme that was cleared during
4408 * power management suspend callback.
4409 *
4410 * This should be called during resume routine to re-allocate the q_vectors
4411 * and reacquire interrupts.
4412 */
4413static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4414{
4415	struct device *dev = ice_pf_to_dev(pf);
4416	int ret, v;
4417
4418	/* Since we clear MSIX flag during suspend, we need to
4419	 * set it back during resume...
4420	 */
4421
4422	ret = ice_init_interrupt_scheme(pf);
4423	if (ret) {
4424		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4425		return ret;
4426	}
4427
4428	/* Remap vectors and rings, after successful re-init interrupts */
4429	ice_for_each_vsi(pf, v) {
4430		if (!pf->vsi[v])
4431			continue;
4432
4433		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4434		if (ret)
4435			goto err_reinit;
4436		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4437	}
4438
4439	ret = ice_req_irq_msix_misc(pf);
4440	if (ret) {
4441		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4442			ret);
4443		goto err_reinit;
4444	}
4445
4446	return 0;
4447
4448err_reinit:
4449	while (v--)
4450		if (pf->vsi[v])
4451			ice_vsi_free_q_vectors(pf->vsi[v]);
4452
4453	return ret;
4454}
4455
4456/**
4457 * ice_suspend
4458 * @dev: generic device information structure
4459 *
4460 * Power Management callback to quiesce the device and prepare
4461 * for D3 transition.
4462 */
4463static int __maybe_unused ice_suspend(struct device *dev)
4464{
4465	struct pci_dev *pdev = to_pci_dev(dev);
4466	struct ice_pf *pf;
4467	int disabled, v;
4468
4469	pf = pci_get_drvdata(pdev);
4470
4471	if (!ice_pf_state_is_nominal(pf)) {
4472		dev_err(dev, "Device is not ready, no need to suspend it\n");
4473		return -EBUSY;
4474	}
4475
4476	/* Stop watchdog tasks until resume completion.
4477	 * Even though it is most likely that the service task is
4478	 * disabled if the device is suspended or down, the service task's
4479	 * state is controlled by a different state bit, and we should
4480	 * store and honor whatever state that bit is in at this point.
4481	 */
4482	disabled = ice_service_task_stop(pf);
4483
4484	/* Already suspended?, then there is nothing to do */
4485	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4486		if (!disabled)
4487			ice_service_task_restart(pf);
4488		return 0;
4489	}
4490
4491	if (test_bit(__ICE_DOWN, pf->state) ||
4492	    ice_is_reset_in_progress(pf->state)) {
4493		dev_err(dev, "can't suspend device in reset or already down\n");
4494		if (!disabled)
4495			ice_service_task_restart(pf);
4496		return 0;
4497	}
4498
4499	ice_setup_mc_magic_wake(pf);
4500
4501	ice_prepare_for_shutdown(pf);
4502
4503	ice_set_wake(pf);
4504
4505	/* Free vectors, clear the interrupt scheme and release IRQs
4506	 * for proper hibernation, especially with large number of CPUs.
4507	 * Otherwise hibernation might fail when mapping all the vectors back
4508	 * to CPU0.
4509	 */
4510	ice_free_irq_msix_misc(pf);
4511	ice_for_each_vsi(pf, v) {
4512		if (!pf->vsi[v])
4513			continue;
4514		ice_vsi_free_q_vectors(pf->vsi[v]);
4515	}
4516	ice_clear_interrupt_scheme(pf);
4517
4518	pci_save_state(pdev);
4519	pci_wake_from_d3(pdev, pf->wol_ena);
4520	pci_set_power_state(pdev, PCI_D3hot);
4521	return 0;
4522}
4523
4524/**
4525 * ice_resume - PM callback for waking up from D3
4526 * @dev: generic device information structure
4527 */
4528static int __maybe_unused ice_resume(struct device *dev)
4529{
4530	struct pci_dev *pdev = to_pci_dev(dev);
4531	enum ice_reset_req reset_type;
4532	struct ice_pf *pf;
4533	struct ice_hw *hw;
4534	int ret;
4535
4536	pci_set_power_state(pdev, PCI_D0);
4537	pci_restore_state(pdev);
4538	pci_save_state(pdev);
4539
4540	if (!pci_device_is_present(pdev))
4541		return -ENODEV;
4542
4543	ret = pci_enable_device_mem(pdev);
4544	if (ret) {
4545		dev_err(dev, "Cannot enable device after suspend\n");
4546		return ret;
4547	}
4548
4549	pf = pci_get_drvdata(pdev);
4550	hw = &pf->hw;
4551
4552	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4553	ice_print_wake_reason(pf);
4554
4555	/* We cleared the interrupt scheme when we suspended, so we need to
4556	 * restore it now to resume device functionality.
4557	 */
4558	ret = ice_reinit_interrupt_scheme(pf);
4559	if (ret)
4560		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4561
4562	clear_bit(__ICE_DOWN, pf->state);
4563	/* Now perform PF reset and rebuild */
4564	reset_type = ICE_RESET_PFR;
4565	/* re-enable service task for reset, but allow reset to schedule it */
4566	clear_bit(__ICE_SERVICE_DIS, pf->state);
4567
4568	if (ice_schedule_reset(pf, reset_type))
4569		dev_err(dev, "Reset during resume failed.\n");
4570
4571	clear_bit(__ICE_SUSPENDED, pf->state);
4572	ice_service_task_restart(pf);
4573
4574	/* Restart the service task */
4575	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4576
4577	return 0;
4578}
4579#endif /* CONFIG_PM */
4580
4581/**
4582 * ice_pci_err_detected - warning that PCI error has been detected
4583 * @pdev: PCI device information struct
4584 * @err: the type of PCI error
4585 *
4586 * Called to warn that something happened on the PCI bus and the error handling
4587 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4588 */
4589static pci_ers_result_t
4590ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4591{
4592	struct ice_pf *pf = pci_get_drvdata(pdev);
4593
4594	if (!pf) {
4595		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4596			__func__, err);
4597		return PCI_ERS_RESULT_DISCONNECT;
4598	}
4599
4600	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4601		ice_service_task_stop(pf);
4602
4603		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4604			set_bit(__ICE_PFR_REQ, pf->state);
4605			ice_prepare_for_reset(pf);
4606		}
4607	}
4608
4609	return PCI_ERS_RESULT_NEED_RESET;
4610}
4611
4612/**
4613 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4614 * @pdev: PCI device information struct
4615 *
4616 * Called to determine if the driver can recover from the PCI slot reset by
4617 * using a register read to determine if the device is recoverable.
4618 */
4619static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4620{
4621	struct ice_pf *pf = pci_get_drvdata(pdev);
4622	pci_ers_result_t result;
4623	int err;
4624	u32 reg;
4625
4626	err = pci_enable_device_mem(pdev);
4627	if (err) {
4628		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
 
4629			err);
4630		result = PCI_ERS_RESULT_DISCONNECT;
4631	} else {
4632		pci_set_master(pdev);
4633		pci_restore_state(pdev);
4634		pci_save_state(pdev);
4635		pci_wake_from_d3(pdev, false);
4636
4637		/* Check for life */
4638		reg = rd32(&pf->hw, GLGEN_RTRIG);
4639		if (!reg)
4640			result = PCI_ERS_RESULT_RECOVERED;
4641		else
4642			result = PCI_ERS_RESULT_DISCONNECT;
4643	}
4644
4645	err = pci_aer_clear_nonfatal_status(pdev);
4646	if (err)
4647		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
 
4648			err);
4649		/* non-fatal, continue */
4650
4651	return result;
4652}
4653
4654/**
4655 * ice_pci_err_resume - restart operations after PCI error recovery
4656 * @pdev: PCI device information struct
4657 *
4658 * Called to allow the driver to bring things back up after PCI error and/or
4659 * reset recovery have finished
4660 */
4661static void ice_pci_err_resume(struct pci_dev *pdev)
4662{
4663	struct ice_pf *pf = pci_get_drvdata(pdev);
4664
4665	if (!pf) {
4666		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4667			__func__);
4668		return;
4669	}
4670
4671	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4672		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4673			__func__);
4674		return;
4675	}
4676
4677	ice_restore_all_vfs_msi_state(pdev);
4678
4679	ice_do_reset(pf, ICE_RESET_PFR);
4680	ice_service_task_restart(pf);
4681	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4682}
4683
4684/**
4685 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4686 * @pdev: PCI device information struct
4687 */
4688static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4689{
4690	struct ice_pf *pf = pci_get_drvdata(pdev);
4691
4692	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4693		ice_service_task_stop(pf);
4694
4695		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4696			set_bit(__ICE_PFR_REQ, pf->state);
4697			ice_prepare_for_reset(pf);
4698		}
4699	}
4700}
4701
4702/**
4703 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4704 * @pdev: PCI device information struct
4705 */
4706static void ice_pci_err_reset_done(struct pci_dev *pdev)
4707{
4708	ice_pci_err_resume(pdev);
4709}
4710
4711/* ice_pci_tbl - PCI Device ID Table
4712 *
4713 * Wildcard entries (PCI_ANY_ID) should come last
4714 * Last entry must be all 0s
4715 *
4716 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4717 *   Class, Class Mask, private data (not used) }
4718 */
4719static const struct pci_device_id ice_pci_tbl[] = {
4720	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4721	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4722	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4723	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4724	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4725	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4726	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4727	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4728	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4729	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4730	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4731	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4732	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4733	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4734	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4735	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4736	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4737	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4738	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4739	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4740	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4741	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4742	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4743	/* required last entry */
4744	{ 0, }
4745};
4746MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4747
4748static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4749
4750static const struct pci_error_handlers ice_pci_err_handler = {
4751	.error_detected = ice_pci_err_detected,
4752	.slot_reset = ice_pci_err_slot_reset,
4753	.reset_prepare = ice_pci_err_reset_prepare,
4754	.reset_done = ice_pci_err_reset_done,
4755	.resume = ice_pci_err_resume
4756};
4757
4758static struct pci_driver ice_driver = {
4759	.name = KBUILD_MODNAME,
4760	.id_table = ice_pci_tbl,
4761	.probe = ice_probe,
4762	.remove = ice_remove,
4763#ifdef CONFIG_PM
4764	.driver.pm = &ice_pm_ops,
4765#endif /* CONFIG_PM */
4766	.shutdown = ice_shutdown,
4767	.sriov_configure = ice_sriov_configure,
4768	.err_handler = &ice_pci_err_handler
4769};
4770
4771/**
4772 * ice_module_init - Driver registration routine
4773 *
4774 * ice_module_init is the first routine called when the driver is
4775 * loaded. All it does is register with the PCI subsystem.
4776 */
4777static int __init ice_module_init(void)
4778{
4779	int status;
4780
4781	pr_info("%s\n", ice_driver_string);
4782	pr_info("%s\n", ice_copyright);
4783
4784	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4785	if (!ice_wq) {
4786		pr_err("Failed to create workqueue\n");
4787		return -ENOMEM;
4788	}
4789
4790	status = pci_register_driver(&ice_driver);
4791	if (status) {
4792		pr_err("failed to register PCI driver, err %d\n", status);
4793		destroy_workqueue(ice_wq);
4794	}
4795
4796	return status;
4797}
4798module_init(ice_module_init);
4799
4800/**
4801 * ice_module_exit - Driver exit cleanup routine
4802 *
4803 * ice_module_exit is called just before the driver is removed
4804 * from memory.
4805 */
4806static void __exit ice_module_exit(void)
4807{
4808	pci_unregister_driver(&ice_driver);
4809	destroy_workqueue(ice_wq);
4810	pr_info("module unloaded\n");
4811}
4812module_exit(ice_module_exit);
4813
4814/**
4815 * ice_set_mac_address - NDO callback to set MAC address
4816 * @netdev: network interface device structure
4817 * @pi: pointer to an address structure
4818 *
4819 * Returns 0 on success, negative on failure
4820 */
4821static int ice_set_mac_address(struct net_device *netdev, void *pi)
4822{
4823	struct ice_netdev_priv *np = netdev_priv(netdev);
4824	struct ice_vsi *vsi = np->vsi;
4825	struct ice_pf *pf = vsi->back;
4826	struct ice_hw *hw = &pf->hw;
4827	struct sockaddr *addr = pi;
4828	enum ice_status status;
4829	u8 flags = 0;
4830	int err = 0;
4831	u8 *mac;
4832
4833	mac = (u8 *)addr->sa_data;
4834
4835	if (!is_valid_ether_addr(mac))
4836		return -EADDRNOTAVAIL;
4837
4838	if (ether_addr_equal(netdev->dev_addr, mac)) {
4839		netdev_warn(netdev, "already using mac %pM\n", mac);
4840		return 0;
4841	}
4842
4843	if (test_bit(__ICE_DOWN, pf->state) ||
4844	    ice_is_reset_in_progress(pf->state)) {
4845		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4846			   mac);
4847		return -EBUSY;
4848	}
4849
4850	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4851	status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4852	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
 
 
 
 
 
 
4853		err = -EADDRNOTAVAIL;
4854		goto err_update_filters;
4855	}
4856
4857	/* Add filter for new MAC. If filter exists, just return success */
4858	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4859	if (status == ICE_ERR_ALREADY_EXISTS) {
4860		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4861		return 0;
4862	}
4863
4864	/* error if the new filter addition failed */
4865	if (status)
4866		err = -EADDRNOTAVAIL;
4867
4868err_update_filters:
4869	if (err) {
4870		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4871			   mac);
4872		return err;
4873	}
4874
4875	/* change the netdev's MAC address */
4876	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4877	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4878		   netdev->dev_addr);
4879
4880	/* write new MAC address to the firmware */
4881	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4882	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4883	if (status) {
4884		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4885			   mac, ice_stat_str(status));
4886	}
4887	return 0;
4888}
4889
4890/**
4891 * ice_set_rx_mode - NDO callback to set the netdev filters
4892 * @netdev: network interface device structure
4893 */
4894static void ice_set_rx_mode(struct net_device *netdev)
4895{
4896	struct ice_netdev_priv *np = netdev_priv(netdev);
4897	struct ice_vsi *vsi = np->vsi;
4898
4899	if (!vsi)
4900		return;
4901
4902	/* Set the flags to synchronize filters
4903	 * ndo_set_rx_mode may be triggered even without a change in netdev
4904	 * flags
4905	 */
4906	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4907	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4908	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4909
4910	/* schedule our worker thread which will take care of
4911	 * applying the new filter changes
4912	 */
4913	ice_service_task_schedule(vsi->back);
4914}
4915
4916/**
4917 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4918 * @netdev: network interface device structure
4919 * @queue_index: Queue ID
4920 * @maxrate: maximum bandwidth in Mbps
4921 */
4922static int
4923ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4924{
4925	struct ice_netdev_priv *np = netdev_priv(netdev);
4926	struct ice_vsi *vsi = np->vsi;
4927	enum ice_status status;
4928	u16 q_handle;
4929	u8 tc;
4930
4931	/* Validate maxrate requested is within permitted range */
4932	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4933		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4934			   maxrate, queue_index);
4935		return -EINVAL;
4936	}
4937
4938	q_handle = vsi->tx_rings[queue_index]->q_handle;
4939	tc = ice_dcb_get_tc(vsi, queue_index);
4940
4941	/* Set BW back to default, when user set maxrate to 0 */
4942	if (!maxrate)
4943		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
4944					       q_handle, ICE_MAX_BW);
4945	else
4946		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
4947					  q_handle, ICE_MAX_BW, maxrate * 1000);
4948	if (status) {
4949		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
4950			   ice_stat_str(status));
4951		return -EIO;
4952	}
4953
4954	return 0;
4955}
4956
4957/**
4958 * ice_fdb_add - add an entry to the hardware database
4959 * @ndm: the input from the stack
4960 * @tb: pointer to array of nladdr (unused)
4961 * @dev: the net device pointer
4962 * @addr: the MAC address entry being added
4963 * @vid: VLAN ID
4964 * @flags: instructions from stack about fdb operation
4965 * @extack: netlink extended ack
4966 */
4967static int
4968ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
4969	    struct net_device *dev, const unsigned char *addr, u16 vid,
4970	    u16 flags, struct netlink_ext_ack __always_unused *extack)
4971{
4972	int err;
4973
4974	if (vid) {
4975		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
4976		return -EINVAL;
4977	}
4978	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
4979		netdev_err(dev, "FDB only supports static addresses\n");
4980		return -EINVAL;
4981	}
4982
4983	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
4984		err = dev_uc_add_excl(dev, addr);
4985	else if (is_multicast_ether_addr(addr))
4986		err = dev_mc_add_excl(dev, addr);
4987	else
4988		err = -EINVAL;
4989
4990	/* Only return duplicate errors if NLM_F_EXCL is set */
4991	if (err == -EEXIST && !(flags & NLM_F_EXCL))
4992		err = 0;
4993
4994	return err;
4995}
4996
4997/**
4998 * ice_fdb_del - delete an entry from the hardware database
4999 * @ndm: the input from the stack
5000 * @tb: pointer to array of nladdr (unused)
5001 * @dev: the net device pointer
5002 * @addr: the MAC address entry being added
5003 * @vid: VLAN ID
5004 */
5005static int
5006ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5007	    struct net_device *dev, const unsigned char *addr,
5008	    __always_unused u16 vid)
5009{
5010	int err;
5011
5012	if (ndm->ndm_state & NUD_PERMANENT) {
5013		netdev_err(dev, "FDB only supports static addresses\n");
5014		return -EINVAL;
5015	}
5016
5017	if (is_unicast_ether_addr(addr))
5018		err = dev_uc_del(dev, addr);
5019	else if (is_multicast_ether_addr(addr))
5020		err = dev_mc_del(dev, addr);
5021	else
5022		err = -EINVAL;
5023
5024	return err;
5025}
5026
5027/**
5028 * ice_set_features - set the netdev feature flags
5029 * @netdev: ptr to the netdev being adjusted
5030 * @features: the feature set that the stack is suggesting
5031 */
5032static int
5033ice_set_features(struct net_device *netdev, netdev_features_t features)
5034{
5035	struct ice_netdev_priv *np = netdev_priv(netdev);
5036	struct ice_vsi *vsi = np->vsi;
5037	struct ice_pf *pf = vsi->back;
5038	int ret = 0;
5039
5040	/* Don't set any netdev advanced features with device in Safe Mode */
5041	if (ice_is_safe_mode(vsi->back)) {
5042		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
 
5043		return ret;
5044	}
5045
5046	/* Do not change setting during reset */
5047	if (ice_is_reset_in_progress(pf->state)) {
5048		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5049		return -EBUSY;
5050	}
5051
5052	/* Multiple features can be changed in one call so keep features in
5053	 * separate if/else statements to guarantee each feature is checked
5054	 */
5055	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5056		ret = ice_vsi_manage_rss_lut(vsi, true);
5057	else if (!(features & NETIF_F_RXHASH) &&
5058		 netdev->features & NETIF_F_RXHASH)
5059		ret = ice_vsi_manage_rss_lut(vsi, false);
5060
5061	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5062	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5063		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5064	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5065		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5066		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5067
5068	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5069	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5070		ret = ice_vsi_manage_vlan_insertion(vsi);
5071	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5072		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5073		ret = ice_vsi_manage_vlan_insertion(vsi);
5074
5075	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5076	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5077		ret = ice_cfg_vlan_pruning(vsi, true, false);
5078	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5079		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5080		ret = ice_cfg_vlan_pruning(vsi, false, false);
5081
5082	if ((features & NETIF_F_NTUPLE) &&
5083	    !(netdev->features & NETIF_F_NTUPLE)) {
5084		ice_vsi_manage_fdir(vsi, true);
5085		ice_init_arfs(vsi);
5086	} else if (!(features & NETIF_F_NTUPLE) &&
5087		 (netdev->features & NETIF_F_NTUPLE)) {
5088		ice_vsi_manage_fdir(vsi, false);
5089		ice_clear_arfs(vsi);
5090	}
5091
5092	return ret;
5093}
5094
5095/**
5096 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5097 * @vsi: VSI to setup VLAN properties for
5098 */
5099static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5100{
5101	int ret = 0;
5102
5103	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5104		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5105	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5106		ret = ice_vsi_manage_vlan_insertion(vsi);
5107
5108	return ret;
5109}
5110
5111/**
5112 * ice_vsi_cfg - Setup the VSI
5113 * @vsi: the VSI being configured
5114 *
5115 * Return 0 on success and negative value on error
5116 */
5117int ice_vsi_cfg(struct ice_vsi *vsi)
5118{
5119	int err;
5120
5121	if (vsi->netdev) {
5122		ice_set_rx_mode(vsi->netdev);
5123
5124		err = ice_vsi_vlan_setup(vsi);
5125
5126		if (err)
5127			return err;
5128	}
5129	ice_vsi_cfg_dcb_rings(vsi);
5130
5131	err = ice_vsi_cfg_lan_txqs(vsi);
5132	if (!err && ice_is_xdp_ena_vsi(vsi))
5133		err = ice_vsi_cfg_xdp_txqs(vsi);
5134	if (!err)
5135		err = ice_vsi_cfg_rxqs(vsi);
5136
5137	return err;
5138}
5139
5140/**
5141 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5142 * @vsi: the VSI being configured
5143 */
5144static void ice_napi_enable_all(struct ice_vsi *vsi)
5145{
5146	int q_idx;
5147
5148	if (!vsi->netdev)
5149		return;
5150
5151	ice_for_each_q_vector(vsi, q_idx) {
5152		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5153
5154		if (q_vector->rx.ring || q_vector->tx.ring)
5155			napi_enable(&q_vector->napi);
5156	}
5157}
5158
5159/**
5160 * ice_up_complete - Finish the last steps of bringing up a connection
5161 * @vsi: The VSI being configured
5162 *
5163 * Return 0 on success and negative value on error
5164 */
5165static int ice_up_complete(struct ice_vsi *vsi)
5166{
5167	struct ice_pf *pf = vsi->back;
5168	int err;
5169
5170	ice_vsi_cfg_msix(vsi);
5171
5172	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5173	 * Tx queue group list was configured and the context bits were
5174	 * programmed using ice_vsi_cfg_txqs
5175	 */
5176	err = ice_vsi_start_all_rx_rings(vsi);
5177	if (err)
5178		return err;
5179
5180	clear_bit(__ICE_DOWN, vsi->state);
5181	ice_napi_enable_all(vsi);
5182	ice_vsi_ena_irq(vsi);
5183
5184	if (vsi->port_info &&
5185	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5186	    vsi->netdev) {
5187		ice_print_link_msg(vsi, true);
5188		netif_tx_start_all_queues(vsi->netdev);
5189		netif_carrier_on(vsi->netdev);
5190	}
5191
5192	ice_service_task_schedule(pf);
5193
5194	return 0;
5195}
5196
5197/**
5198 * ice_up - Bring the connection back up after being down
5199 * @vsi: VSI being configured
5200 */
5201int ice_up(struct ice_vsi *vsi)
5202{
5203	int err;
5204
5205	err = ice_vsi_cfg(vsi);
5206	if (!err)
5207		err = ice_up_complete(vsi);
5208
5209	return err;
5210}
5211
5212/**
5213 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5214 * @ring: Tx or Rx ring to read stats from
5215 * @pkts: packets stats counter
5216 * @bytes: bytes stats counter
5217 *
5218 * This function fetches stats from the ring considering the atomic operations
5219 * that needs to be performed to read u64 values in 32 bit machine.
5220 */
5221static void
5222ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5223{
5224	unsigned int start;
5225	*pkts = 0;
5226	*bytes = 0;
5227
5228	if (!ring)
5229		return;
5230	do {
5231		start = u64_stats_fetch_begin_irq(&ring->syncp);
5232		*pkts = ring->stats.pkts;
5233		*bytes = ring->stats.bytes;
5234	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5235}
5236
5237/**
5238 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5239 * @vsi: the VSI to be updated
5240 * @rings: rings to work on
5241 * @count: number of rings
5242 */
5243static void
5244ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5245			     u16 count)
5246{
5247	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5248	u16 i;
5249
5250	for (i = 0; i < count; i++) {
5251		struct ice_ring *ring;
5252		u64 pkts, bytes;
5253
5254		ring = READ_ONCE(rings[i]);
5255		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5256		vsi_stats->tx_packets += pkts;
5257		vsi_stats->tx_bytes += bytes;
5258		vsi->tx_restart += ring->tx_stats.restart_q;
5259		vsi->tx_busy += ring->tx_stats.tx_busy;
5260		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5261	}
5262}
5263
5264/**
5265 * ice_update_vsi_ring_stats - Update VSI stats counters
5266 * @vsi: the VSI to be updated
5267 */
5268static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5269{
5270	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5271	struct ice_ring *ring;
5272	u64 pkts, bytes;
5273	int i;
5274
5275	/* reset netdev stats */
5276	vsi_stats->tx_packets = 0;
5277	vsi_stats->tx_bytes = 0;
5278	vsi_stats->rx_packets = 0;
5279	vsi_stats->rx_bytes = 0;
5280
5281	/* reset non-netdev (extended) stats */
5282	vsi->tx_restart = 0;
5283	vsi->tx_busy = 0;
5284	vsi->tx_linearize = 0;
5285	vsi->rx_buf_failed = 0;
5286	vsi->rx_page_failed = 0;
5287	vsi->rx_gro_dropped = 0;
5288
5289	rcu_read_lock();
5290
5291	/* update Tx rings counters */
5292	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
 
 
 
 
 
 
 
 
5293
5294	/* update Rx rings counters */
5295	ice_for_each_rxq(vsi, i) {
5296		ring = READ_ONCE(vsi->rx_rings[i]);
5297		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5298		vsi_stats->rx_packets += pkts;
5299		vsi_stats->rx_bytes += bytes;
5300		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5301		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5302		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5303	}
5304
5305	/* update XDP Tx rings counters */
5306	if (ice_is_xdp_ena_vsi(vsi))
5307		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5308					     vsi->num_xdp_txq);
5309
5310	rcu_read_unlock();
5311}
5312
5313/**
5314 * ice_update_vsi_stats - Update VSI stats counters
5315 * @vsi: the VSI to be updated
5316 */
5317void ice_update_vsi_stats(struct ice_vsi *vsi)
5318{
5319	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5320	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5321	struct ice_pf *pf = vsi->back;
5322
5323	if (test_bit(__ICE_DOWN, vsi->state) ||
5324	    test_bit(__ICE_CFG_BUSY, pf->state))
5325		return;
5326
5327	/* get stats as recorded by Tx/Rx rings */
5328	ice_update_vsi_ring_stats(vsi);
5329
5330	/* get VSI stats as recorded by the hardware */
5331	ice_update_eth_stats(vsi);
5332
5333	cur_ns->tx_errors = cur_es->tx_errors;
5334	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5335	cur_ns->tx_dropped = cur_es->tx_discards;
5336	cur_ns->multicast = cur_es->rx_multicast;
5337
5338	/* update some more netdev stats if this is main VSI */
5339	if (vsi->type == ICE_VSI_PF) {
5340		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5341		cur_ns->rx_errors = pf->stats.crc_errors +
5342				    pf->stats.illegal_bytes +
5343				    pf->stats.rx_len_errors +
5344				    pf->stats.rx_undersize +
5345				    pf->hw_csum_rx_error +
5346				    pf->stats.rx_jabber +
5347				    pf->stats.rx_fragments +
5348				    pf->stats.rx_oversize;
5349		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5350		/* record drops from the port level */
5351		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5352	}
5353}
5354
5355/**
5356 * ice_update_pf_stats - Update PF port stats counters
5357 * @pf: PF whose stats needs to be updated
5358 */
5359void ice_update_pf_stats(struct ice_pf *pf)
5360{
5361	struct ice_hw_port_stats *prev_ps, *cur_ps;
5362	struct ice_hw *hw = &pf->hw;
5363	u16 fd_ctr_base;
5364	u8 port;
5365
5366	port = hw->port_info->lport;
5367	prev_ps = &pf->stats_prev;
5368	cur_ps = &pf->stats;
5369
5370	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5371			  &prev_ps->eth.rx_bytes,
5372			  &cur_ps->eth.rx_bytes);
5373
5374	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5375			  &prev_ps->eth.rx_unicast,
5376			  &cur_ps->eth.rx_unicast);
5377
5378	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5379			  &prev_ps->eth.rx_multicast,
5380			  &cur_ps->eth.rx_multicast);
5381
5382	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5383			  &prev_ps->eth.rx_broadcast,
5384			  &cur_ps->eth.rx_broadcast);
5385
5386	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5387			  &prev_ps->eth.rx_discards,
5388			  &cur_ps->eth.rx_discards);
5389
5390	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5391			  &prev_ps->eth.tx_bytes,
5392			  &cur_ps->eth.tx_bytes);
5393
5394	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5395			  &prev_ps->eth.tx_unicast,
5396			  &cur_ps->eth.tx_unicast);
5397
5398	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5399			  &prev_ps->eth.tx_multicast,
5400			  &cur_ps->eth.tx_multicast);
5401
5402	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5403			  &prev_ps->eth.tx_broadcast,
5404			  &cur_ps->eth.tx_broadcast);
5405
5406	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5407			  &prev_ps->tx_dropped_link_down,
5408			  &cur_ps->tx_dropped_link_down);
5409
5410	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5411			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5412
5413	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5414			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5415
5416	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5417			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5418
5419	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5420			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5421
5422	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5423			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5424
5425	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5426			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5427
5428	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5429			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5430
5431	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5432			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5433
5434	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5435			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5436
5437	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5438			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5439
5440	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5441			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5442
5443	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5444			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5445
5446	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5447			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5448
5449	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5450			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5451
5452	fd_ctr_base = hw->fd_ctr_base;
5453
5454	ice_stat_update40(hw,
5455			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5456			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5457			  &cur_ps->fd_sb_match);
5458	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5459			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5460
5461	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5462			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5463
5464	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5465			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5466
5467	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5468			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5469
5470	ice_update_dcb_stats(pf);
5471
5472	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5473			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5474
5475	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5476			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5477
5478	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5479			  &prev_ps->mac_local_faults,
5480			  &cur_ps->mac_local_faults);
5481
5482	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5483			  &prev_ps->mac_remote_faults,
5484			  &cur_ps->mac_remote_faults);
5485
5486	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5487			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5488
5489	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5490			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5491
5492	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5493			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5494
5495	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5496			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5497
5498	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5499			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5500
5501	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5502
5503	pf->stat_prev_loaded = true;
5504}
5505
5506/**
5507 * ice_get_stats64 - get statistics for network device structure
5508 * @netdev: network interface device structure
5509 * @stats: main device statistics structure
5510 */
5511static
5512void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5513{
5514	struct ice_netdev_priv *np = netdev_priv(netdev);
5515	struct rtnl_link_stats64 *vsi_stats;
5516	struct ice_vsi *vsi = np->vsi;
5517
5518	vsi_stats = &vsi->net_stats;
5519
5520	if (!vsi->num_txq || !vsi->num_rxq)
5521		return;
5522
5523	/* netdev packet/byte stats come from ring counter. These are obtained
5524	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5525	 * But, only call the update routine and read the registers if VSI is
5526	 * not down.
5527	 */
5528	if (!test_bit(__ICE_DOWN, vsi->state))
5529		ice_update_vsi_ring_stats(vsi);
5530	stats->tx_packets = vsi_stats->tx_packets;
5531	stats->tx_bytes = vsi_stats->tx_bytes;
5532	stats->rx_packets = vsi_stats->rx_packets;
5533	stats->rx_bytes = vsi_stats->rx_bytes;
5534
5535	/* The rest of the stats can be read from the hardware but instead we
5536	 * just return values that the watchdog task has already obtained from
5537	 * the hardware.
5538	 */
5539	stats->multicast = vsi_stats->multicast;
5540	stats->tx_errors = vsi_stats->tx_errors;
5541	stats->tx_dropped = vsi_stats->tx_dropped;
5542	stats->rx_errors = vsi_stats->rx_errors;
5543	stats->rx_dropped = vsi_stats->rx_dropped;
5544	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5545	stats->rx_length_errors = vsi_stats->rx_length_errors;
5546}
5547
5548/**
5549 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5550 * @vsi: VSI having NAPI disabled
5551 */
5552static void ice_napi_disable_all(struct ice_vsi *vsi)
5553{
5554	int q_idx;
5555
5556	if (!vsi->netdev)
5557		return;
5558
5559	ice_for_each_q_vector(vsi, q_idx) {
5560		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5561
5562		if (q_vector->rx.ring || q_vector->tx.ring)
5563			napi_disable(&q_vector->napi);
5564	}
5565}
5566
5567/**
5568 * ice_down - Shutdown the connection
5569 * @vsi: The VSI being stopped
5570 */
5571int ice_down(struct ice_vsi *vsi)
5572{
5573	int i, tx_err, rx_err, link_err = 0;
5574
5575	/* Caller of this function is expected to set the
5576	 * vsi->state __ICE_DOWN bit
5577	 */
5578	if (vsi->netdev) {
5579		netif_carrier_off(vsi->netdev);
5580		netif_tx_disable(vsi->netdev);
5581	}
5582
5583	ice_vsi_dis_irq(vsi);
5584
5585	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5586	if (tx_err)
5587		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
 
5588			   vsi->vsi_num, tx_err);
5589	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5590		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5591		if (tx_err)
5592			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5593				   vsi->vsi_num, tx_err);
5594	}
5595
5596	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5597	if (rx_err)
5598		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
 
5599			   vsi->vsi_num, rx_err);
5600
5601	ice_napi_disable_all(vsi);
5602
5603	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5604		link_err = ice_force_phys_link_state(vsi, false);
5605		if (link_err)
5606			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
 
5607				   vsi->vsi_num, link_err);
5608	}
5609
5610	ice_for_each_txq(vsi, i)
5611		ice_clean_tx_ring(vsi->tx_rings[i]);
5612
5613	ice_for_each_rxq(vsi, i)
5614		ice_clean_rx_ring(vsi->rx_rings[i]);
5615
5616	if (tx_err || rx_err || link_err) {
5617		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
 
5618			   vsi->vsi_num, vsi->vsw->sw_id);
5619		return -EIO;
5620	}
5621
5622	return 0;
5623}
5624
5625/**
5626 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5627 * @vsi: VSI having resources allocated
5628 *
5629 * Return 0 on success, negative on failure
5630 */
5631int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5632{
5633	int i, err = 0;
5634
5635	if (!vsi->num_txq) {
5636		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5637			vsi->vsi_num);
5638		return -EINVAL;
5639	}
5640
5641	ice_for_each_txq(vsi, i) {
5642		struct ice_ring *ring = vsi->tx_rings[i];
5643
5644		if (!ring)
5645			return -EINVAL;
5646
5647		ring->netdev = vsi->netdev;
5648		err = ice_setup_tx_ring(ring);
5649		if (err)
5650			break;
5651	}
5652
5653	return err;
5654}
5655
5656/**
5657 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5658 * @vsi: VSI having resources allocated
5659 *
5660 * Return 0 on success, negative on failure
5661 */
5662int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5663{
5664	int i, err = 0;
5665
5666	if (!vsi->num_rxq) {
5667		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5668			vsi->vsi_num);
5669		return -EINVAL;
5670	}
5671
5672	ice_for_each_rxq(vsi, i) {
5673		struct ice_ring *ring = vsi->rx_rings[i];
5674
5675		if (!ring)
5676			return -EINVAL;
5677
5678		ring->netdev = vsi->netdev;
5679		err = ice_setup_rx_ring(ring);
5680		if (err)
5681			break;
5682	}
5683
5684	return err;
5685}
5686
5687/**
5688 * ice_vsi_open_ctrl - open control VSI for use
5689 * @vsi: the VSI to open
5690 *
5691 * Initialization of the Control VSI
5692 *
5693 * Returns 0 on success, negative value on error
5694 */
5695int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5696{
5697	char int_name[ICE_INT_NAME_STR_LEN];
5698	struct ice_pf *pf = vsi->back;
5699	struct device *dev;
5700	int err;
5701
5702	dev = ice_pf_to_dev(pf);
5703	/* allocate descriptors */
5704	err = ice_vsi_setup_tx_rings(vsi);
5705	if (err)
5706		goto err_setup_tx;
5707
5708	err = ice_vsi_setup_rx_rings(vsi);
5709	if (err)
5710		goto err_setup_rx;
5711
5712	err = ice_vsi_cfg(vsi);
5713	if (err)
5714		goto err_setup_rx;
5715
5716	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5717		 dev_driver_string(dev), dev_name(dev));
5718	err = ice_vsi_req_irq_msix(vsi, int_name);
5719	if (err)
5720		goto err_setup_rx;
5721
5722	ice_vsi_cfg_msix(vsi);
5723
5724	err = ice_vsi_start_all_rx_rings(vsi);
5725	if (err)
5726		goto err_up_complete;
5727
5728	clear_bit(__ICE_DOWN, vsi->state);
5729	ice_vsi_ena_irq(vsi);
5730
5731	return 0;
5732
5733err_up_complete:
5734	ice_down(vsi);
5735err_setup_rx:
5736	ice_vsi_free_rx_rings(vsi);
5737err_setup_tx:
5738	ice_vsi_free_tx_rings(vsi);
5739
5740	return err;
5741}
5742
5743/**
5744 * ice_vsi_open - Called when a network interface is made active
5745 * @vsi: the VSI to open
5746 *
5747 * Initialization of the VSI
5748 *
5749 * Returns 0 on success, negative value on error
5750 */
5751static int ice_vsi_open(struct ice_vsi *vsi)
5752{
5753	char int_name[ICE_INT_NAME_STR_LEN];
5754	struct ice_pf *pf = vsi->back;
5755	int err;
5756
5757	/* allocate descriptors */
5758	err = ice_vsi_setup_tx_rings(vsi);
5759	if (err)
5760		goto err_setup_tx;
5761
5762	err = ice_vsi_setup_rx_rings(vsi);
5763	if (err)
5764		goto err_setup_rx;
5765
5766	err = ice_vsi_cfg(vsi);
5767	if (err)
5768		goto err_setup_rx;
5769
5770	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5771		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5772	err = ice_vsi_req_irq_msix(vsi, int_name);
5773	if (err)
5774		goto err_setup_rx;
5775
5776	/* Notify the stack of the actual queue counts. */
5777	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5778	if (err)
5779		goto err_set_qs;
5780
5781	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5782	if (err)
5783		goto err_set_qs;
5784
5785	err = ice_up_complete(vsi);
5786	if (err)
5787		goto err_up_complete;
5788
5789	return 0;
5790
5791err_up_complete:
5792	ice_down(vsi);
5793err_set_qs:
5794	ice_vsi_free_irq(vsi);
5795err_setup_rx:
5796	ice_vsi_free_rx_rings(vsi);
5797err_setup_tx:
5798	ice_vsi_free_tx_rings(vsi);
5799
5800	return err;
5801}
5802
5803/**
5804 * ice_vsi_release_all - Delete all VSIs
5805 * @pf: PF from which all VSIs are being removed
5806 */
5807static void ice_vsi_release_all(struct ice_pf *pf)
5808{
5809	int err, i;
5810
5811	if (!pf->vsi)
5812		return;
5813
5814	ice_for_each_vsi(pf, i) {
5815		if (!pf->vsi[i])
5816			continue;
5817
5818		err = ice_vsi_release(pf->vsi[i]);
5819		if (err)
5820			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
 
5821				i, err, pf->vsi[i]->vsi_num);
5822	}
5823}
5824
5825/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5826 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5827 * @pf: pointer to the PF instance
5828 * @type: VSI type to rebuild
5829 *
5830 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5831 */
5832static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5833{
5834	struct device *dev = ice_pf_to_dev(pf);
5835	enum ice_status status;
5836	int i, err;
5837
5838	ice_for_each_vsi(pf, i) {
5839		struct ice_vsi *vsi = pf->vsi[i];
5840
5841		if (!vsi || vsi->type != type)
5842			continue;
5843
5844		/* rebuild the VSI */
5845		err = ice_vsi_rebuild(vsi, true);
5846		if (err) {
5847			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5848				err, vsi->idx, ice_vsi_type_str(type));
 
5849			return err;
5850		}
5851
5852		/* replay filters for the VSI */
5853		status = ice_replay_vsi(&pf->hw, vsi->idx);
5854		if (status) {
5855			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5856				ice_stat_str(status), vsi->idx,
5857				ice_vsi_type_str(type));
5858			return -EIO;
5859		}
5860
5861		/* Re-map HW VSI number, using VSI handle that has been
5862		 * previously validated in ice_replay_vsi() call above
5863		 */
5864		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5865
5866		/* enable the VSI */
5867		err = ice_ena_vsi(vsi, false);
5868		if (err) {
5869			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5870				err, vsi->idx, ice_vsi_type_str(type));
 
5871			return err;
5872		}
5873
5874		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5875			 ice_vsi_type_str(type));
5876	}
5877
5878	return 0;
5879}
5880
5881/**
5882 * ice_update_pf_netdev_link - Update PF netdev link status
5883 * @pf: pointer to the PF instance
5884 */
5885static void ice_update_pf_netdev_link(struct ice_pf *pf)
5886{
5887	bool link_up;
5888	int i;
5889
5890	ice_for_each_vsi(pf, i) {
5891		struct ice_vsi *vsi = pf->vsi[i];
5892
5893		if (!vsi || vsi->type != ICE_VSI_PF)
5894			return;
5895
5896		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5897		if (link_up) {
5898			netif_carrier_on(pf->vsi[i]->netdev);
5899			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5900		} else {
5901			netif_carrier_off(pf->vsi[i]->netdev);
5902			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5903		}
5904	}
5905}
5906
5907/**
5908 * ice_rebuild - rebuild after reset
5909 * @pf: PF to rebuild
5910 * @reset_type: type of reset
5911 *
5912 * Do not rebuild VF VSI in this flow because that is already handled via
5913 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5914 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5915 * to reset/rebuild all the VF VSI twice.
5916 */
5917static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5918{
5919	struct device *dev = ice_pf_to_dev(pf);
5920	struct ice_hw *hw = &pf->hw;
5921	enum ice_status ret;
5922	int err;
5923
5924	if (test_bit(__ICE_DOWN, pf->state))
5925		goto clear_recovery;
5926
5927	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5928
5929	ret = ice_init_all_ctrlq(hw);
5930	if (ret) {
5931		dev_err(dev, "control queues init failed %s\n",
5932			ice_stat_str(ret));
5933		goto err_init_ctrlq;
5934	}
5935
5936	/* if DDP was previously loaded successfully */
5937	if (!ice_is_safe_mode(pf)) {
5938		/* reload the SW DB of filter tables */
5939		if (reset_type == ICE_RESET_PFR)
5940			ice_fill_blk_tbls(hw);
5941		else
5942			/* Reload DDP Package after CORER/GLOBR reset */
5943			ice_load_pkg(NULL, pf);
5944	}
5945
5946	ret = ice_clear_pf_cfg(hw);
5947	if (ret) {
5948		dev_err(dev, "clear PF configuration failed %s\n",
5949			ice_stat_str(ret));
5950		goto err_init_ctrlq;
5951	}
5952
5953	if (pf->first_sw->dflt_vsi_ena)
5954		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
5955	/* clear the default VSI configuration if it exists */
5956	pf->first_sw->dflt_vsi = NULL;
5957	pf->first_sw->dflt_vsi_ena = false;
5958
5959	ice_clear_pxe_mode(hw);
5960
5961	ret = ice_get_caps(hw);
5962	if (ret) {
5963		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
5964		goto err_init_ctrlq;
5965	}
5966
5967	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
5968	if (ret) {
5969		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
5970		goto err_init_ctrlq;
5971	}
5972
5973	err = ice_sched_init_port(hw->port_info);
5974	if (err)
5975		goto err_sched_init_port;
5976
 
 
 
 
5977	/* start misc vector */
5978	err = ice_req_irq_msix_misc(pf);
5979	if (err) {
5980		dev_err(dev, "misc vector setup failed: %d\n", err);
5981		goto err_sched_init_port;
5982	}
5983
5984	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
5985		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
5986		if (!rd32(hw, PFQF_FD_SIZE)) {
5987			u16 unused, guar, b_effort;
5988
5989			guar = hw->func_caps.fd_fltr_guar;
5990			b_effort = hw->func_caps.fd_fltr_best_effort;
5991
5992			/* force guaranteed filter pool for PF */
5993			ice_alloc_fd_guar_item(hw, &unused, guar);
5994			/* force shared filter pool for PF */
5995			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
5996		}
5997	}
5998
5999	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6000		ice_dcb_rebuild(pf);
6001
6002	/* rebuild PF VSI */
6003	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6004	if (err) {
6005		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6006		goto err_vsi_rebuild;
6007	}
6008
6009	/* If Flow Director is active */
6010	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6011		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6012		if (err) {
6013			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6014			goto err_vsi_rebuild;
6015		}
6016
6017		/* replay HW Flow Director recipes */
6018		if (hw->fdir_prof)
6019			ice_fdir_replay_flows(hw);
6020
6021		/* replay Flow Director filters */
6022		ice_fdir_replay_fltrs(pf);
6023
6024		ice_rebuild_arfs(pf);
6025	}
6026
6027	ice_update_pf_netdev_link(pf);
6028
6029	/* tell the firmware we are up */
6030	ret = ice_send_version(pf);
6031	if (ret) {
6032		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6033			ice_stat_str(ret));
 
6034		goto err_vsi_rebuild;
6035	}
6036
6037	ice_replay_post(hw);
6038
6039	/* if we get here, reset flow is successful */
6040	clear_bit(__ICE_RESET_FAILED, pf->state);
6041	return;
6042
6043err_vsi_rebuild:
6044err_sched_init_port:
6045	ice_sched_cleanup_all(hw);
6046err_init_ctrlq:
6047	ice_shutdown_all_ctrlq(hw);
6048	set_bit(__ICE_RESET_FAILED, pf->state);
6049clear_recovery:
6050	/* set this bit in PF state to control service task scheduling */
6051	set_bit(__ICE_NEEDS_RESTART, pf->state);
6052	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6053}
6054
6055/**
6056 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6057 * @vsi: Pointer to VSI structure
6058 */
6059static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6060{
6061	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6062		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6063	else
6064		return ICE_RXBUF_3072;
6065}
6066
6067/**
6068 * ice_change_mtu - NDO callback to change the MTU
6069 * @netdev: network interface device structure
6070 * @new_mtu: new value for maximum frame size
6071 *
6072 * Returns 0 on success, negative on failure
6073 */
6074static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6075{
6076	struct ice_netdev_priv *np = netdev_priv(netdev);
6077	struct ice_vsi *vsi = np->vsi;
6078	struct ice_pf *pf = vsi->back;
6079	u8 count = 0;
6080
6081	if (new_mtu == (int)netdev->mtu) {
6082		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6083		return 0;
6084	}
6085
6086	if (ice_is_xdp_ena_vsi(vsi)) {
6087		int frame_size = ice_max_xdp_frame_size(vsi);
6088
6089		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6090			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6091				   frame_size - ICE_ETH_PKT_HDR_PAD);
6092			return -EINVAL;
6093		}
6094	}
6095
6096	if (new_mtu < (int)netdev->min_mtu) {
6097		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6098			   netdev->min_mtu);
6099		return -EINVAL;
6100	} else if (new_mtu > (int)netdev->max_mtu) {
6101		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6102			   netdev->min_mtu);
6103		return -EINVAL;
6104	}
6105	/* if a reset is in progress, wait for some time for it to complete */
6106	do {
6107		if (ice_is_reset_in_progress(pf->state)) {
6108			count++;
6109			usleep_range(1000, 2000);
6110		} else {
6111			break;
6112		}
6113
6114	} while (count < 100);
6115
6116	if (count == 100) {
6117		netdev_err(netdev, "can't change MTU. Device is busy\n");
6118		return -EBUSY;
6119	}
6120
6121	netdev->mtu = (unsigned int)new_mtu;
6122
6123	/* if VSI is up, bring it down and then back up */
6124	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6125		int err;
6126
6127		err = ice_down(vsi);
6128		if (err) {
6129			netdev_err(netdev, "change MTU if_up err %d\n", err);
6130			return err;
6131		}
6132
6133		err = ice_up(vsi);
6134		if (err) {
6135			netdev_err(netdev, "change MTU if_up err %d\n", err);
6136			return err;
6137		}
6138	}
6139
6140	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6141	return 0;
6142}
6143
6144/**
6145 * ice_aq_str - convert AQ err code to a string
6146 * @aq_err: the AQ error code to convert
6147 */
6148const char *ice_aq_str(enum ice_aq_err aq_err)
6149{
6150	switch (aq_err) {
6151	case ICE_AQ_RC_OK:
6152		return "OK";
6153	case ICE_AQ_RC_EPERM:
6154		return "ICE_AQ_RC_EPERM";
6155	case ICE_AQ_RC_ENOENT:
6156		return "ICE_AQ_RC_ENOENT";
6157	case ICE_AQ_RC_ENOMEM:
6158		return "ICE_AQ_RC_ENOMEM";
6159	case ICE_AQ_RC_EBUSY:
6160		return "ICE_AQ_RC_EBUSY";
6161	case ICE_AQ_RC_EEXIST:
6162		return "ICE_AQ_RC_EEXIST";
6163	case ICE_AQ_RC_EINVAL:
6164		return "ICE_AQ_RC_EINVAL";
6165	case ICE_AQ_RC_ENOSPC:
6166		return "ICE_AQ_RC_ENOSPC";
6167	case ICE_AQ_RC_ENOSYS:
6168		return "ICE_AQ_RC_ENOSYS";
6169	case ICE_AQ_RC_EMODE:
6170		return "ICE_AQ_RC_EMODE";
6171	case ICE_AQ_RC_ENOSEC:
6172		return "ICE_AQ_RC_ENOSEC";
6173	case ICE_AQ_RC_EBADSIG:
6174		return "ICE_AQ_RC_EBADSIG";
6175	case ICE_AQ_RC_ESVN:
6176		return "ICE_AQ_RC_ESVN";
6177	case ICE_AQ_RC_EBADMAN:
6178		return "ICE_AQ_RC_EBADMAN";
6179	case ICE_AQ_RC_EBADBUF:
6180		return "ICE_AQ_RC_EBADBUF";
6181	}
6182
6183	return "ICE_AQ_RC_UNKNOWN";
6184}
6185
6186/**
6187 * ice_stat_str - convert status err code to a string
6188 * @stat_err: the status error code to convert
6189 */
6190const char *ice_stat_str(enum ice_status stat_err)
6191{
6192	switch (stat_err) {
6193	case ICE_SUCCESS:
6194		return "OK";
6195	case ICE_ERR_PARAM:
6196		return "ICE_ERR_PARAM";
6197	case ICE_ERR_NOT_IMPL:
6198		return "ICE_ERR_NOT_IMPL";
6199	case ICE_ERR_NOT_READY:
6200		return "ICE_ERR_NOT_READY";
6201	case ICE_ERR_NOT_SUPPORTED:
6202		return "ICE_ERR_NOT_SUPPORTED";
6203	case ICE_ERR_BAD_PTR:
6204		return "ICE_ERR_BAD_PTR";
6205	case ICE_ERR_INVAL_SIZE:
6206		return "ICE_ERR_INVAL_SIZE";
6207	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6208		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6209	case ICE_ERR_RESET_FAILED:
6210		return "ICE_ERR_RESET_FAILED";
6211	case ICE_ERR_FW_API_VER:
6212		return "ICE_ERR_FW_API_VER";
6213	case ICE_ERR_NO_MEMORY:
6214		return "ICE_ERR_NO_MEMORY";
6215	case ICE_ERR_CFG:
6216		return "ICE_ERR_CFG";
6217	case ICE_ERR_OUT_OF_RANGE:
6218		return "ICE_ERR_OUT_OF_RANGE";
6219	case ICE_ERR_ALREADY_EXISTS:
6220		return "ICE_ERR_ALREADY_EXISTS";
6221	case ICE_ERR_NVM_CHECKSUM:
6222		return "ICE_ERR_NVM_CHECKSUM";
6223	case ICE_ERR_BUF_TOO_SHORT:
6224		return "ICE_ERR_BUF_TOO_SHORT";
6225	case ICE_ERR_NVM_BLANK_MODE:
6226		return "ICE_ERR_NVM_BLANK_MODE";
6227	case ICE_ERR_IN_USE:
6228		return "ICE_ERR_IN_USE";
6229	case ICE_ERR_MAX_LIMIT:
6230		return "ICE_ERR_MAX_LIMIT";
6231	case ICE_ERR_RESET_ONGOING:
6232		return "ICE_ERR_RESET_ONGOING";
6233	case ICE_ERR_HW_TABLE:
6234		return "ICE_ERR_HW_TABLE";
6235	case ICE_ERR_DOES_NOT_EXIST:
6236		return "ICE_ERR_DOES_NOT_EXIST";
6237	case ICE_ERR_FW_DDP_MISMATCH:
6238		return "ICE_ERR_FW_DDP_MISMATCH";
6239	case ICE_ERR_AQ_ERROR:
6240		return "ICE_ERR_AQ_ERROR";
6241	case ICE_ERR_AQ_TIMEOUT:
6242		return "ICE_ERR_AQ_TIMEOUT";
6243	case ICE_ERR_AQ_FULL:
6244		return "ICE_ERR_AQ_FULL";
6245	case ICE_ERR_AQ_NO_WORK:
6246		return "ICE_ERR_AQ_NO_WORK";
6247	case ICE_ERR_AQ_EMPTY:
6248		return "ICE_ERR_AQ_EMPTY";
6249	case ICE_ERR_AQ_FW_CRITICAL:
6250		return "ICE_ERR_AQ_FW_CRITICAL";
6251	}
6252
6253	return "ICE_ERR_UNKNOWN";
6254}
6255
6256/**
6257 * ice_set_rss - Set RSS keys and lut
6258 * @vsi: Pointer to VSI structure
6259 * @seed: RSS hash seed
6260 * @lut: Lookup table
6261 * @lut_size: Lookup table size
6262 *
6263 * Returns 0 on success, negative on failure
6264 */
6265int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6266{
6267	struct ice_pf *pf = vsi->back;
6268	struct ice_hw *hw = &pf->hw;
6269	enum ice_status status;
6270	struct device *dev;
6271
6272	dev = ice_pf_to_dev(pf);
6273	if (seed) {
6274		struct ice_aqc_get_set_rss_keys *buf =
6275				  (struct ice_aqc_get_set_rss_keys *)seed;
6276
6277		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6278
6279		if (status) {
6280			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6281				ice_stat_str(status),
6282				ice_aq_str(hw->adminq.sq_last_status));
6283			return -EIO;
6284		}
6285	}
6286
6287	if (lut) {
6288		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6289					    lut, lut_size);
6290		if (status) {
6291			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6292				ice_stat_str(status),
6293				ice_aq_str(hw->adminq.sq_last_status));
6294			return -EIO;
6295		}
6296	}
6297
6298	return 0;
6299}
6300
6301/**
6302 * ice_get_rss - Get RSS keys and lut
6303 * @vsi: Pointer to VSI structure
6304 * @seed: Buffer to store the keys
6305 * @lut: Buffer to store the lookup table entries
6306 * @lut_size: Size of buffer to store the lookup table entries
6307 *
6308 * Returns 0 on success, negative on failure
6309 */
6310int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6311{
6312	struct ice_pf *pf = vsi->back;
6313	struct ice_hw *hw = &pf->hw;
6314	enum ice_status status;
6315	struct device *dev;
6316
6317	dev = ice_pf_to_dev(pf);
6318	if (seed) {
6319		struct ice_aqc_get_set_rss_keys *buf =
6320				  (struct ice_aqc_get_set_rss_keys *)seed;
6321
6322		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6323		if (status) {
6324			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6325				ice_stat_str(status),
6326				ice_aq_str(hw->adminq.sq_last_status));
6327			return -EIO;
6328		}
6329	}
6330
6331	if (lut) {
6332		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6333					    lut, lut_size);
6334		if (status) {
6335			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6336				ice_stat_str(status),
6337				ice_aq_str(hw->adminq.sq_last_status));
6338			return -EIO;
6339		}
6340	}
6341
6342	return 0;
6343}
6344
6345/**
6346 * ice_bridge_getlink - Get the hardware bridge mode
6347 * @skb: skb buff
6348 * @pid: process ID
6349 * @seq: RTNL message seq
6350 * @dev: the netdev being configured
6351 * @filter_mask: filter mask passed in
6352 * @nlflags: netlink flags passed in
6353 *
6354 * Return the bridge mode (VEB/VEPA)
6355 */
6356static int
6357ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6358		   struct net_device *dev, u32 filter_mask, int nlflags)
6359{
6360	struct ice_netdev_priv *np = netdev_priv(dev);
6361	struct ice_vsi *vsi = np->vsi;
6362	struct ice_pf *pf = vsi->back;
6363	u16 bmode;
6364
6365	bmode = pf->first_sw->bridge_mode;
6366
6367	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6368				       filter_mask, NULL);
6369}
6370
6371/**
6372 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6373 * @vsi: Pointer to VSI structure
6374 * @bmode: Hardware bridge mode (VEB/VEPA)
6375 *
6376 * Returns 0 on success, negative on failure
6377 */
6378static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6379{
 
6380	struct ice_aqc_vsi_props *vsi_props;
6381	struct ice_hw *hw = &vsi->back->hw;
6382	struct ice_vsi_ctx *ctxt;
6383	enum ice_status status;
6384	int ret = 0;
6385
6386	vsi_props = &vsi->info;
6387
6388	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6389	if (!ctxt)
6390		return -ENOMEM;
6391
6392	ctxt->info = vsi->info;
6393
6394	if (bmode == BRIDGE_MODE_VEB)
6395		/* change from VEPA to VEB mode */
6396		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6397	else
6398		/* change from VEB to VEPA mode */
6399		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6400	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6401
6402	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6403	if (status) {
6404		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6405			bmode, ice_stat_str(status),
6406			ice_aq_str(hw->adminq.sq_last_status));
6407		ret = -EIO;
6408		goto out;
6409	}
6410	/* Update sw flags for book keeping */
6411	vsi_props->sw_flags = ctxt->info.sw_flags;
6412
6413out:
6414	kfree(ctxt);
6415	return ret;
6416}
6417
6418/**
6419 * ice_bridge_setlink - Set the hardware bridge mode
6420 * @dev: the netdev being configured
6421 * @nlh: RTNL message
6422 * @flags: bridge setlink flags
6423 * @extack: netlink extended ack
6424 *
6425 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6426 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6427 * not already set for all VSIs connected to this switch. And also update the
6428 * unicast switch filter rules for the corresponding switch of the netdev.
6429 */
6430static int
6431ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6432		   u16 __always_unused flags,
6433		   struct netlink_ext_ack __always_unused *extack)
6434{
6435	struct ice_netdev_priv *np = netdev_priv(dev);
6436	struct ice_pf *pf = np->vsi->back;
6437	struct nlattr *attr, *br_spec;
6438	struct ice_hw *hw = &pf->hw;
6439	enum ice_status status;
6440	struct ice_sw *pf_sw;
6441	int rem, v, err = 0;
6442
6443	pf_sw = pf->first_sw;
6444	/* find the attribute in the netlink message */
6445	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6446
6447	nla_for_each_nested(attr, br_spec, rem) {
6448		__u16 mode;
6449
6450		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6451			continue;
6452		mode = nla_get_u16(attr);
6453		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6454			return -EINVAL;
6455		/* Continue  if bridge mode is not being flipped */
6456		if (mode == pf_sw->bridge_mode)
6457			continue;
6458		/* Iterates through the PF VSI list and update the loopback
6459		 * mode of the VSI
6460		 */
6461		ice_for_each_vsi(pf, v) {
6462			if (!pf->vsi[v])
6463				continue;
6464			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6465			if (err)
6466				return err;
6467		}
6468
6469		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6470		/* Update the unicast switch filter rules for the corresponding
6471		 * switch of the netdev
6472		 */
6473		status = ice_update_sw_rule_bridge_mode(hw);
6474		if (status) {
6475			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6476				   mode, ice_stat_str(status),
6477				   ice_aq_str(hw->adminq.sq_last_status));
6478			/* revert hw->evb_veb */
6479			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6480			return -EIO;
6481		}
6482
6483		pf_sw->bridge_mode = mode;
6484	}
6485
6486	return 0;
6487}
6488
6489/**
6490 * ice_tx_timeout - Respond to a Tx Hang
6491 * @netdev: network interface device structure
6492 * @txqueue: Tx queue
6493 */
6494static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6495{
6496	struct ice_netdev_priv *np = netdev_priv(netdev);
6497	struct ice_ring *tx_ring = NULL;
6498	struct ice_vsi *vsi = np->vsi;
6499	struct ice_pf *pf = vsi->back;
 
6500	u32 i;
6501
6502	pf->tx_timeout_count++;
6503
6504	/* Check if PFC is enabled for the TC to which the queue belongs
6505	 * to. If yes then Tx timeout is not caused by a hung queue, no
6506	 * need to reset and rebuild
6507	 */
6508	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6509		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6510			 txqueue);
6511		return;
 
 
 
 
 
6512	}
6513
6514	/* now that we have an index, find the tx_ring struct */
6515	for (i = 0; i < vsi->num_txq; i++)
6516		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6517			if (txqueue == vsi->tx_rings[i]->q_index) {
6518				tx_ring = vsi->tx_rings[i];
6519				break;
6520			}
 
 
 
6521
6522	/* Reset recovery level if enough time has elapsed after last timeout.
6523	 * Also ensure no new reset action happens before next timeout period.
6524	 */
6525	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6526		pf->tx_timeout_recovery_level = 1;
6527	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6528				       netdev->watchdog_timeo)))
6529		return;
6530
6531	if (tx_ring) {
6532		struct ice_hw *hw = &pf->hw;
6533		u32 head, val = 0;
6534
6535		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6536			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6537		/* Read interrupt register */
6538		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6539
6540		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6541			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6542			    head, tx_ring->next_to_use, val);
6543	}
6544
6545	pf->tx_timeout_last_recovery = jiffies;
6546	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6547		    pf->tx_timeout_recovery_level, txqueue);
6548
6549	switch (pf->tx_timeout_recovery_level) {
6550	case 1:
6551		set_bit(__ICE_PFR_REQ, pf->state);
6552		break;
6553	case 2:
6554		set_bit(__ICE_CORER_REQ, pf->state);
6555		break;
6556	case 3:
6557		set_bit(__ICE_GLOBR_REQ, pf->state);
6558		break;
6559	default:
6560		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6561		set_bit(__ICE_DOWN, pf->state);
6562		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6563		set_bit(__ICE_SERVICE_DIS, pf->state);
6564		break;
6565	}
6566
6567	ice_service_task_schedule(pf);
6568	pf->tx_timeout_recovery_level++;
6569}
6570
6571/**
6572 * ice_udp_tunnel_add - Get notifications about UDP tunnel ports that come up
6573 * @netdev: This physical port's netdev
6574 * @ti: Tunnel endpoint information
6575 */
6576static void
6577ice_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti)
6578{
6579	struct ice_netdev_priv *np = netdev_priv(netdev);
6580	struct ice_vsi *vsi = np->vsi;
6581	struct ice_pf *pf = vsi->back;
6582	enum ice_tunnel_type tnl_type;
6583	u16 port = ntohs(ti->port);
6584	enum ice_status status;
6585
6586	switch (ti->type) {
6587	case UDP_TUNNEL_TYPE_VXLAN:
6588		tnl_type = TNL_VXLAN;
6589		break;
6590	case UDP_TUNNEL_TYPE_GENEVE:
6591		tnl_type = TNL_GENEVE;
6592		break;
6593	default:
6594		netdev_err(netdev, "Unknown tunnel type\n");
6595		return;
6596	}
6597
6598	status = ice_create_tunnel(&pf->hw, tnl_type, port);
6599	if (status == ICE_ERR_OUT_OF_RANGE)
6600		netdev_info(netdev, "Max tunneled UDP ports reached, port %d not added\n",
6601			    port);
6602	else if (status)
6603		netdev_err(netdev, "Error adding UDP tunnel - %s\n",
6604			   ice_stat_str(status));
6605}
6606
6607/**
6608 * ice_udp_tunnel_del - Get notifications about UDP tunnel ports that go away
6609 * @netdev: This physical port's netdev
6610 * @ti: Tunnel endpoint information
6611 */
6612static void
6613ice_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti)
6614{
6615	struct ice_netdev_priv *np = netdev_priv(netdev);
6616	struct ice_vsi *vsi = np->vsi;
6617	struct ice_pf *pf = vsi->back;
6618	u16 port = ntohs(ti->port);
6619	enum ice_status status;
6620	bool retval;
6621
6622	retval = ice_tunnel_port_in_use(&pf->hw, port, NULL);
6623	if (!retval) {
6624		netdev_info(netdev, "port %d not found in UDP tunnels list\n",
6625			    port);
6626		return;
6627	}
6628
6629	status = ice_destroy_tunnel(&pf->hw, port, false);
6630	if (status)
6631		netdev_err(netdev, "error deleting port %d from UDP tunnels list\n",
6632			   port);
6633}
6634
6635/**
6636 * ice_open - Called when a network interface becomes active
6637 * @netdev: network interface device structure
6638 *
6639 * The open entry point is called when a network interface is made
6640 * active by the system (IFF_UP). At this point all resources needed
6641 * for transmit and receive operations are allocated, the interrupt
6642 * handler is registered with the OS, the netdev watchdog is enabled,
6643 * and the stack is notified that the interface is ready.
6644 *
6645 * Returns 0 on success, negative value on failure
6646 */
6647int ice_open(struct net_device *netdev)
6648{
6649	struct ice_netdev_priv *np = netdev_priv(netdev);
6650	struct ice_vsi *vsi = np->vsi;
6651	struct ice_pf *pf = vsi->back;
6652	struct ice_port_info *pi;
6653	int err;
6654
6655	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6656		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6657		return -EIO;
6658	}
6659
6660	if (test_bit(__ICE_DOWN, pf->state)) {
6661		netdev_err(netdev, "device is not ready yet\n");
6662		return -EBUSY;
6663	}
6664
6665	netif_carrier_off(netdev);
6666
6667	pi = vsi->port_info;
6668	err = ice_update_link_info(pi);
6669	if (err) {
6670		netdev_err(netdev, "Failed to get link info, error %d\n",
6671			   err);
6672		return err;
6673	}
6674
6675	/* Set PHY if there is media, otherwise, turn off PHY */
6676	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6677		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6678		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6679			err = ice_init_phy_user_cfg(pi);
6680			if (err) {
6681				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6682					   err);
6683				return err;
6684			}
6685		}
6686
6687		err = ice_configure_phy(vsi);
6688		if (err) {
6689			netdev_err(netdev, "Failed to set physical link up, error %d\n",
 
6690				   err);
6691			return err;
6692		}
6693	} else {
6694		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6695		err = ice_aq_set_link_restart_an(pi, false, NULL);
6696		if (err) {
6697			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6698				   vsi->vsi_num, err);
6699			return err;
6700		}
 
6701	}
6702
6703	err = ice_vsi_open(vsi);
6704	if (err)
6705		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6706			   vsi->vsi_num, vsi->vsw->sw_id);
6707
6708	/* Update existing tunnels information */
6709	udp_tunnel_get_rx_info(netdev);
6710
6711	return err;
6712}
6713
6714/**
6715 * ice_stop - Disables a network interface
6716 * @netdev: network interface device structure
6717 *
6718 * The stop entry point is called when an interface is de-activated by the OS,
6719 * and the netdevice enters the DOWN state. The hardware is still under the
6720 * driver's control, but the netdev interface is disabled.
6721 *
6722 * Returns success only - not allowed to fail
6723 */
6724int ice_stop(struct net_device *netdev)
6725{
6726	struct ice_netdev_priv *np = netdev_priv(netdev);
6727	struct ice_vsi *vsi = np->vsi;
6728
6729	ice_vsi_close(vsi);
6730
6731	return 0;
6732}
6733
6734/**
6735 * ice_features_check - Validate encapsulated packet conforms to limits
6736 * @skb: skb buffer
6737 * @netdev: This port's netdev
6738 * @features: Offload features that the stack believes apply
6739 */
6740static netdev_features_t
6741ice_features_check(struct sk_buff *skb,
6742		   struct net_device __always_unused *netdev,
6743		   netdev_features_t features)
6744{
6745	size_t len;
6746
6747	/* No point in doing any of this if neither checksum nor GSO are
6748	 * being requested for this frame. We can rule out both by just
6749	 * checking for CHECKSUM_PARTIAL
6750	 */
6751	if (skb->ip_summed != CHECKSUM_PARTIAL)
6752		return features;
6753
6754	/* We cannot support GSO if the MSS is going to be less than
6755	 * 64 bytes. If it is then we need to drop support for GSO.
6756	 */
6757	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6758		features &= ~NETIF_F_GSO_MASK;
6759
6760	len = skb_network_header(skb) - skb->data;
6761	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6762		goto out_rm_features;
6763
6764	len = skb_transport_header(skb) - skb_network_header(skb);
6765	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6766		goto out_rm_features;
6767
6768	if (skb->encapsulation) {
6769		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6770		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6771			goto out_rm_features;
6772
6773		len = skb_inner_transport_header(skb) -
6774		      skb_inner_network_header(skb);
6775		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6776			goto out_rm_features;
6777	}
6778
6779	return features;
6780out_rm_features:
6781	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6782}
6783
6784static const struct net_device_ops ice_netdev_safe_mode_ops = {
6785	.ndo_open = ice_open,
6786	.ndo_stop = ice_stop,
6787	.ndo_start_xmit = ice_start_xmit,
6788	.ndo_set_mac_address = ice_set_mac_address,
6789	.ndo_validate_addr = eth_validate_addr,
6790	.ndo_change_mtu = ice_change_mtu,
6791	.ndo_get_stats64 = ice_get_stats64,
6792	.ndo_tx_timeout = ice_tx_timeout,
6793};
6794
6795static const struct net_device_ops ice_netdev_ops = {
6796	.ndo_open = ice_open,
6797	.ndo_stop = ice_stop,
6798	.ndo_start_xmit = ice_start_xmit,
6799	.ndo_features_check = ice_features_check,
6800	.ndo_set_rx_mode = ice_set_rx_mode,
6801	.ndo_set_mac_address = ice_set_mac_address,
6802	.ndo_validate_addr = eth_validate_addr,
6803	.ndo_change_mtu = ice_change_mtu,
6804	.ndo_get_stats64 = ice_get_stats64,
6805	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
6806	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6807	.ndo_set_vf_mac = ice_set_vf_mac,
6808	.ndo_get_vf_config = ice_get_vf_cfg,
6809	.ndo_set_vf_trust = ice_set_vf_trust,
6810	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6811	.ndo_set_vf_link_state = ice_set_vf_link_state,
6812	.ndo_get_vf_stats = ice_get_vf_stats,
6813	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6814	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6815	.ndo_set_features = ice_set_features,
6816	.ndo_bridge_getlink = ice_bridge_getlink,
6817	.ndo_bridge_setlink = ice_bridge_setlink,
6818	.ndo_fdb_add = ice_fdb_add,
6819	.ndo_fdb_del = ice_fdb_del,
6820#ifdef CONFIG_RFS_ACCEL
6821	.ndo_rx_flow_steer = ice_rx_flow_steer,
6822#endif
6823	.ndo_tx_timeout = ice_tx_timeout,
6824	.ndo_bpf = ice_xdp,
6825	.ndo_xdp_xmit = ice_xdp_xmit,
6826	.ndo_xsk_wakeup = ice_xsk_wakeup,
6827	.ndo_udp_tunnel_add = ice_udp_tunnel_add,
6828	.ndo_udp_tunnel_del = ice_udp_tunnel_del,
6829};