Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
   4 *
   5 * Rewritten for Linux IIO framework with some code based on
   6 * earlier driver found in the Motorola Linux kernel:
   7 *
   8 * Copyright (C) 2009-2010 Motorola, Inc.
   9 */
  10
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/err.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/of.h>
  19#include <linux/of_platform.h>
  20#include <linux/platform_device.h>
 
  21#include <linux/regmap.h>
  22
  23#include <linux/iio/buffer.h>
  24#include <linux/iio/driver.h>
  25#include <linux/iio/iio.h>
  26#include <linux/iio/kfifo_buf.h>
  27#include <linux/mfd/motorola-cpcap.h>
  28
  29/* Register CPCAP_REG_ADCC1 bits */
  30#define CPCAP_BIT_ADEN_AUTO_CLR		BIT(15)	/* Currently unused */
  31#define CPCAP_BIT_CAL_MODE		BIT(14) /* Set with BIT_RAND0 */
  32#define CPCAP_BIT_ADC_CLK_SEL1		BIT(13)	/* Currently unused */
  33#define CPCAP_BIT_ADC_CLK_SEL0		BIT(12)	/* Currently unused */
  34#define CPCAP_BIT_ATOX			BIT(11)
  35#define CPCAP_BIT_ATO3			BIT(10)
  36#define CPCAP_BIT_ATO2			BIT(9)
  37#define CPCAP_BIT_ATO1			BIT(8)
  38#define CPCAP_BIT_ATO0			BIT(7)
  39#define CPCAP_BIT_ADA2			BIT(6)
  40#define CPCAP_BIT_ADA1			BIT(5)
  41#define CPCAP_BIT_ADA0			BIT(4)
  42#define CPCAP_BIT_AD_SEL1		BIT(3)	/* Set for bank1 */
  43#define CPCAP_BIT_RAND1			BIT(2)	/* Set for channel 16 & 17 */
  44#define CPCAP_BIT_RAND0			BIT(1)	/* Set with CAL_MODE */
  45#define CPCAP_BIT_ADEN			BIT(0)	/* Currently unused */
  46
  47#define CPCAP_REG_ADCC1_DEFAULTS	(CPCAP_BIT_ADEN_AUTO_CLR | \
  48					 CPCAP_BIT_ADC_CLK_SEL0 |  \
  49					 CPCAP_BIT_RAND1)
  50
  51/* Register CPCAP_REG_ADCC2 bits */
  52#define CPCAP_BIT_CAL_FACTOR_ENABLE	BIT(15)	/* Currently unused */
  53#define CPCAP_BIT_BATDETB_EN		BIT(14)	/* Currently unused */
  54#define CPCAP_BIT_ADTRIG_ONESHOT	BIT(13)	/* Set for !TIMING_IMM */
  55#define CPCAP_BIT_ASC			BIT(12)	/* Set for TIMING_IMM */
  56#define CPCAP_BIT_ATOX_PS_FACTOR	BIT(11)
  57#define CPCAP_BIT_ADC_PS_FACTOR1	BIT(10)
  58#define CPCAP_BIT_ADC_PS_FACTOR0	BIT(9)
  59#define CPCAP_BIT_AD4_SELECT		BIT(8)	/* Currently unused */
  60#define CPCAP_BIT_ADC_BUSY		BIT(7)	/* Currently unused */
  61#define CPCAP_BIT_THERMBIAS_EN		BIT(6)	/* Bias for AD0_BATTDETB */
  62#define CPCAP_BIT_ADTRIG_DIS		BIT(5)	/* Disable interrupt */
  63#define CPCAP_BIT_LIADC			BIT(4)	/* Currently unused */
  64#define CPCAP_BIT_TS_REFEN		BIT(3)	/* Currently unused */
  65#define CPCAP_BIT_TS_M2			BIT(2)	/* Currently unused */
  66#define CPCAP_BIT_TS_M1			BIT(1)	/* Currently unused */
  67#define CPCAP_BIT_TS_M0			BIT(0)	/* Currently unused */
  68
  69#define CPCAP_REG_ADCC2_DEFAULTS	(CPCAP_BIT_AD4_SELECT | \
  70					 CPCAP_BIT_ADTRIG_DIS | \
  71					 CPCAP_BIT_LIADC | \
  72					 CPCAP_BIT_TS_M2 | \
  73					 CPCAP_BIT_TS_M1)
  74
  75#define CPCAP_MAX_TEMP_LVL		27
  76#define CPCAP_FOUR_POINT_TWO_ADC	801
  77#define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD	530
  78#define ST_ADC_CAL_CHRGI_LOW_THRESHOLD	494
  79#define ST_ADC_CAL_BATTI_HIGH_THRESHOLD	530
  80#define ST_ADC_CAL_BATTI_LOW_THRESHOLD	494
  81#define ST_ADC_CALIBRATE_DIFF_THRESHOLD	3
  82
  83#define CPCAP_ADC_MAX_RETRIES		5	/* Calibration */
  84
  85/**
  86 * struct cpcap_adc_ato - timing settings for cpcap adc
  87 *
  88 * Unfortunately no cpcap documentation available, please document when
  89 * using these.
  90 */
  91struct cpcap_adc_ato {
  92	unsigned short ato_in;
  93	unsigned short atox_in;
  94	unsigned short adc_ps_factor_in;
  95	unsigned short atox_ps_factor_in;
  96	unsigned short ato_out;
  97	unsigned short atox_out;
  98	unsigned short adc_ps_factor_out;
  99	unsigned short atox_ps_factor_out;
 100};
 101
 102/**
 103 * struct cpcap-adc - cpcap adc device driver data
 104 * @reg: cpcap regmap
 105 * @dev: struct device
 106 * @vendor: cpcap vendor
 107 * @irq: interrupt
 108 * @lock: mutex
 109 * @ato: request timings
 110 * @wq_data_avail: work queue
 111 * @done: work done
 112 */
 113struct cpcap_adc {
 114	struct regmap *reg;
 115	struct device *dev;
 116	u16 vendor;
 117	int irq;
 118	struct mutex lock;	/* ADC register access lock */
 119	const struct cpcap_adc_ato *ato;
 120	wait_queue_head_t wq_data_avail;
 121	bool done;
 122};
 123
 124/**
 125 * enum cpcap_adc_channel - cpcap adc channels
 126 */
 127enum cpcap_adc_channel {
 128	/* Bank0 channels */
 129	CPCAP_ADC_AD0,		/* Battery temperature */
 130	CPCAP_ADC_BATTP,	/* Battery voltage */
 131	CPCAP_ADC_VBUS,		/* USB VBUS voltage */
 132	CPCAP_ADC_AD3,		/* Die temperature when charging */
 133	CPCAP_ADC_BPLUS_AD4,	/* Another battery or system voltage */
 134	CPCAP_ADC_CHG_ISENSE,	/* Calibrated charge current */
 135	CPCAP_ADC_BATTI,	/* Calibrated system current */
 136	CPCAP_ADC_USB_ID,	/* USB OTG ID, unused on droid 4? */
 137
 138	/* Bank1 channels */
 139	CPCAP_ADC_AD8,		/* Seems unused */
 140	CPCAP_ADC_AD9,		/* Seems unused */
 141	CPCAP_ADC_LICELL,	/* Maybe system voltage? Always 3V */
 142	CPCAP_ADC_HV_BATTP,	/* Another battery detection? */
 143	CPCAP_ADC_TSX1_AD12,	/* Seems unused, for touchscreen? */
 144	CPCAP_ADC_TSX2_AD13,	/* Seems unused, for touchscreen? */
 145	CPCAP_ADC_TSY1_AD14,	/* Seems unused, for touchscreen? */
 146	CPCAP_ADC_TSY2_AD15,	/* Seems unused, for touchscreen? */
 147
 148	/* Remuxed channels using bank0 entries */
 149	CPCAP_ADC_BATTP_PI16,	/* Alternative mux mode for BATTP */
 150	CPCAP_ADC_BATTI_PI17,	/* Alternative mux mode for BATTI */
 151
 152	CPCAP_ADC_CHANNEL_NUM,
 153};
 154
 155/**
 156 * enum cpcap_adc_timing - cpcap adc timing options
 157 *
 158 * CPCAP_ADC_TIMING_IMM seems to be immediate with no timings.
 159 * Please document when using.
 160 */
 161enum cpcap_adc_timing {
 162	CPCAP_ADC_TIMING_IMM,
 163	CPCAP_ADC_TIMING_IN,
 164	CPCAP_ADC_TIMING_OUT,
 165};
 166
 167/**
 168 * struct cpcap_adc_phasing_tbl - cpcap phasing table
 169 * @offset: offset in the phasing table
 170 * @multiplier: multiplier in the phasing table
 171 * @divider: divider in the phasing table
 172 * @min: minimum value
 173 * @max: maximum value
 174 */
 175struct cpcap_adc_phasing_tbl {
 176	short offset;
 177	unsigned short multiplier;
 178	unsigned short divider;
 179	short min;
 180	short max;
 181};
 182
 183/**
 184 * struct cpcap_adc_conversion_tbl - cpcap conversion table
 185 * @conv_type: conversion type
 186 * @align_offset: align offset
 187 * @conv_offset: conversion offset
 188 * @cal_offset: calibration offset
 189 * @multiplier: conversion multiplier
 190 * @divider: conversion divider
 191 */
 192struct cpcap_adc_conversion_tbl {
 193	enum iio_chan_info_enum conv_type;
 194	int align_offset;
 195	int conv_offset;
 196	int cal_offset;
 197	int multiplier;
 198	int divider;
 199};
 200
 201/**
 202 * struct cpcap_adc_request - cpcap adc request
 203 * @channel: request channel
 204 * @phase_tbl: channel phasing table
 205 * @conv_tbl: channel conversion table
 206 * @bank_index: channel index within the bank
 207 * @timing: timing settings
 208 * @result: result
 209 */
 210struct cpcap_adc_request {
 211	int channel;
 212	const struct cpcap_adc_phasing_tbl *phase_tbl;
 213	const struct cpcap_adc_conversion_tbl *conv_tbl;
 214	int bank_index;
 215	enum cpcap_adc_timing timing;
 216	int result;
 217};
 218
 219/* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */
 220static const struct cpcap_adc_phasing_tbl bank_phasing[] = {
 221	/* Bank0 */
 222	[CPCAP_ADC_AD0] =          {0, 0x80, 0x80,    0, 1023},
 223	[CPCAP_ADC_BATTP] =        {0, 0x80, 0x80,    0, 1023},
 224	[CPCAP_ADC_VBUS] =         {0, 0x80, 0x80,    0, 1023},
 225	[CPCAP_ADC_AD3] =          {0, 0x80, 0x80,    0, 1023},
 226	[CPCAP_ADC_BPLUS_AD4] =    {0, 0x80, 0x80,    0, 1023},
 227	[CPCAP_ADC_CHG_ISENSE] =   {0, 0x80, 0x80, -512,  511},
 228	[CPCAP_ADC_BATTI] =        {0, 0x80, 0x80, -512,  511},
 229	[CPCAP_ADC_USB_ID] =       {0, 0x80, 0x80,    0, 1023},
 230
 231	/* Bank1 */
 232	[CPCAP_ADC_AD8] =          {0, 0x80, 0x80,    0, 1023},
 233	[CPCAP_ADC_AD9] =          {0, 0x80, 0x80,    0, 1023},
 234	[CPCAP_ADC_LICELL] =       {0, 0x80, 0x80,    0, 1023},
 235	[CPCAP_ADC_HV_BATTP] =     {0, 0x80, 0x80,    0, 1023},
 236	[CPCAP_ADC_TSX1_AD12] =    {0, 0x80, 0x80,    0, 1023},
 237	[CPCAP_ADC_TSX2_AD13] =    {0, 0x80, 0x80,    0, 1023},
 238	[CPCAP_ADC_TSY1_AD14] =    {0, 0x80, 0x80,    0, 1023},
 239	[CPCAP_ADC_TSY2_AD15] =    {0, 0x80, 0x80,    0, 1023},
 240};
 241
 242/*
 243 * Conversion table for channels. Updated during init based on calibration.
 244 * Here too channels 16 & 17 use BATTP and BATTI.
 245 */
 246static struct cpcap_adc_conversion_tbl bank_conversion[] = {
 247	/* Bank0 */
 248	[CPCAP_ADC_AD0] = {
 249		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
 250	},
 251	[CPCAP_ADC_BATTP] = {
 252		IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
 253	},
 254	[CPCAP_ADC_VBUS] = {
 255		IIO_CHAN_INFO_PROCESSED,    0,    0, 0, 10000, 1023,
 256	},
 257	[CPCAP_ADC_AD3] = {
 258		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
 259		},
 260	[CPCAP_ADC_BPLUS_AD4] = {
 261		IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
 262	},
 263	[CPCAP_ADC_CHG_ISENSE] = {
 264		IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
 265	},
 266	[CPCAP_ADC_BATTI] = {
 267		IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
 268	},
 269	[CPCAP_ADC_USB_ID] = {
 270		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 271	},
 272
 273	/* Bank1 */
 274	[CPCAP_ADC_AD8] = {
 275		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 276	},
 277	[CPCAP_ADC_AD9] = {
 278		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 279	},
 280	[CPCAP_ADC_LICELL] = {
 281		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,  3400, 1023,
 282	},
 283	[CPCAP_ADC_HV_BATTP] = {
 284		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 285	},
 286	[CPCAP_ADC_TSX1_AD12] = {
 287		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 288	},
 289	[CPCAP_ADC_TSX2_AD13] = {
 290		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 291	},
 292	[CPCAP_ADC_TSY1_AD14] = {
 293		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 294	},
 295	[CPCAP_ADC_TSY2_AD15] = {
 296		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 297	},
 298};
 299
 300/*
 301 * Temperature lookup table of register values to milliCelcius.
 302 * REVISIT: Check the duplicate 0x3ff entry in a freezer
 303 */
 304static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = {
 305	{ 0x03ff, -40000 },
 306	{ 0x03ff, -35000 },
 307	{ 0x03ef, -30000 },
 308	{ 0x03b2, -25000 },
 309	{ 0x036c, -20000 },
 310	{ 0x0320, -15000 },
 311	{ 0x02d0, -10000 },
 312	{ 0x027f, -5000 },
 313	{ 0x022f, 0 },
 314	{ 0x01e4, 5000 },
 315	{ 0x019f, 10000 },
 316	{ 0x0161, 15000 },
 317	{ 0x012b, 20000 },
 318	{ 0x00fc, 25000 },
 319	{ 0x00d4, 30000 },
 320	{ 0x00b2, 35000 },
 321	{ 0x0095, 40000 },
 322	{ 0x007d, 45000 },
 323	{ 0x0069, 50000 },
 324	{ 0x0059, 55000 },
 325	{ 0x004b, 60000 },
 326	{ 0x003f, 65000 },
 327	{ 0x0036, 70000 },
 328	{ 0x002e, 75000 },
 329	{ 0x0027, 80000 },
 330	{ 0x0022, 85000 },
 331	{ 0x001d, 90000 },
 332};
 333
 334#define CPCAP_CHAN(_type, _index, _address, _datasheet_name) {	\
 335	.type = (_type), \
 336	.address = (_address), \
 337	.indexed = 1, \
 338	.channel = (_index), \
 339	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 340			      BIT(IIO_CHAN_INFO_PROCESSED), \
 341	.scan_index = (_index), \
 342	.scan_type = { \
 343		.sign = 'u', \
 344		.realbits = 10, \
 345		.storagebits = 16, \
 346		.endianness = IIO_CPU, \
 347	}, \
 348	.datasheet_name = (_datasheet_name), \
 349}
 350
 351/*
 352 * The datasheet names are from Motorola mapphone Linux kernel except
 353 * for the last two which might be uncalibrated charge voltage and
 354 * current.
 355 */
 356static const struct iio_chan_spec cpcap_adc_channels[] = {
 357	/* Bank0 */
 358	CPCAP_CHAN(IIO_TEMP,    0, CPCAP_REG_ADCD0,  "battdetb"),
 359	CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1,  "battp"),
 360	CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2,  "vbus"),
 361	CPCAP_CHAN(IIO_TEMP,    3, CPCAP_REG_ADCD3,  "ad3"),
 362	CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4,  "ad4"),
 363	CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5,  "chg_isense"),
 364	CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6,  "batti"),
 365	CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7,  "usb_id"),
 366
 367	/* Bank1 */
 368	CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0,  "ad8"),
 369	CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1,  "ad9"),
 370	CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"),
 371	CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"),
 372	CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"),
 373	CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"),
 374	CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"),
 375	CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"),
 376
 377	/* There are two registers with multiplexed functionality */
 378	CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"),
 379	CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"),
 380};
 381
 382static irqreturn_t cpcap_adc_irq_thread(int irq, void *data)
 383{
 384	struct iio_dev *indio_dev = data;
 385	struct cpcap_adc *ddata = iio_priv(indio_dev);
 386	int error;
 387
 388	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 389				   CPCAP_BIT_ADTRIG_DIS,
 390				   CPCAP_BIT_ADTRIG_DIS);
 391	if (error)
 392		return IRQ_NONE;
 393
 394	ddata->done = true;
 395	wake_up_interruptible(&ddata->wq_data_avail);
 396
 397	return IRQ_HANDLED;
 398}
 399
 400/* ADC calibration functions */
 401static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata,
 402				      enum cpcap_adc_channel chan)
 403{
 404	unsigned int value = 0;
 405	unsigned long timeout = jiffies + msecs_to_jiffies(3000);
 406	int error;
 407
 408	if ((chan != CPCAP_ADC_CHG_ISENSE) &&
 409	    (chan != CPCAP_ADC_BATTI))
 410		return;
 411
 412	value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0;
 413	value |= ((chan << 4) &
 414		  (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0));
 415
 416	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
 417				   CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
 418				   CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
 419				   CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
 420				   CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
 421				   CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
 422				   CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
 423				   value);
 424	if (error)
 425		return;
 426
 427	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 428				   CPCAP_BIT_ATOX_PS_FACTOR |
 429				   CPCAP_BIT_ADC_PS_FACTOR1 |
 430				   CPCAP_BIT_ADC_PS_FACTOR0,
 431				   0);
 432	if (error)
 433		return;
 434
 435	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 436				   CPCAP_BIT_ADTRIG_DIS,
 437				   CPCAP_BIT_ADTRIG_DIS);
 438	if (error)
 439		return;
 440
 441	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 442				   CPCAP_BIT_ASC,
 443				   CPCAP_BIT_ASC);
 444	if (error)
 445		return;
 446
 447	do {
 448		schedule_timeout_uninterruptible(1);
 449		error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value);
 450		if (error)
 451			return;
 452	} while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout));
 453
 454	if (value & CPCAP_BIT_ASC)
 455		dev_err(ddata->dev,
 456			"Timeout waiting for calibration to complete\n");
 457
 458	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
 459				   CPCAP_BIT_CAL_MODE, 0);
 460	if (error)
 461		return;
 462}
 463
 464static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata,
 465				   int channel,
 466				   u16 calibration_register,
 467				   int lower_threshold,
 468				   int upper_threshold)
 469{
 470	unsigned int calibration_data[2];
 471	unsigned short cal_data_diff;
 472	int i, error;
 473
 474	for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
 475		calibration_data[0]  = 0;
 476		calibration_data[1]  = 0;
 477		cal_data_diff = 0;
 478		cpcap_adc_setup_calibrate(ddata, channel);
 479		error = regmap_read(ddata->reg, calibration_register,
 480				    &calibration_data[0]);
 481		if (error)
 482			return error;
 483		cpcap_adc_setup_calibrate(ddata, channel);
 484		error = regmap_read(ddata->reg, calibration_register,
 485				    &calibration_data[1]);
 486		if (error)
 487			return error;
 488
 489		if (calibration_data[0] > calibration_data[1])
 490			cal_data_diff =
 491				calibration_data[0] - calibration_data[1];
 492		else
 493			cal_data_diff =
 494				calibration_data[1] - calibration_data[0];
 495
 496		if (((calibration_data[1] >= lower_threshold) &&
 497		     (calibration_data[1] <= upper_threshold) &&
 498		     (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) ||
 499		    (ddata->vendor == CPCAP_VENDOR_TI)) {
 500			bank_conversion[channel].cal_offset =
 501				((short)calibration_data[1] * -1) + 512;
 502			dev_dbg(ddata->dev, "ch%i calibration complete: %i\n",
 503				channel, bank_conversion[channel].cal_offset);
 504			break;
 505		}
 506		usleep_range(5000, 10000);
 507	}
 508
 509	return 0;
 510}
 511
 512static int cpcap_adc_calibrate(struct cpcap_adc *ddata)
 513{
 514	int error;
 515
 516	error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE,
 517					CPCAP_REG_ADCAL1,
 518					ST_ADC_CAL_CHRGI_LOW_THRESHOLD,
 519					ST_ADC_CAL_CHRGI_HIGH_THRESHOLD);
 520	if (error)
 521		return error;
 522
 523	error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI,
 524					CPCAP_REG_ADCAL2,
 525					ST_ADC_CAL_BATTI_LOW_THRESHOLD,
 526					ST_ADC_CAL_BATTI_HIGH_THRESHOLD);
 527	if (error)
 528		return error;
 529
 530	return 0;
 531}
 532
 533/* ADC setup, read and scale functions */
 534static void cpcap_adc_setup_bank(struct cpcap_adc *ddata,
 535				 struct cpcap_adc_request *req)
 536{
 537	const struct cpcap_adc_ato *ato = ddata->ato;
 538	unsigned short value1 = 0;
 539	unsigned short value2 = 0;
 540	int error;
 541
 542	if (!ato)
 543		return;
 544
 545	switch (req->channel) {
 546	case CPCAP_ADC_AD0:
 547		value2 |= CPCAP_BIT_THERMBIAS_EN;
 548		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 549					   CPCAP_BIT_THERMBIAS_EN,
 550					   value2);
 551		if (error)
 552			return;
 553		usleep_range(800, 1000);
 554		break;
 555	case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
 556		value1 |= CPCAP_BIT_AD_SEL1;
 557		break;
 558	case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17:
 559		value1 |= CPCAP_BIT_RAND1;
 560	default:
 561		break;
 562	}
 563
 564	switch (req->timing) {
 565	case CPCAP_ADC_TIMING_IN:
 566		value1 |= ato->ato_in;
 567		value1 |= ato->atox_in;
 568		value2 |= ato->adc_ps_factor_in;
 569		value2 |= ato->atox_ps_factor_in;
 570		break;
 571	case CPCAP_ADC_TIMING_OUT:
 572		value1 |= ato->ato_out;
 573		value1 |= ato->atox_out;
 574		value2 |= ato->adc_ps_factor_out;
 575		value2 |= ato->atox_ps_factor_out;
 576		break;
 577
 578	case CPCAP_ADC_TIMING_IMM:
 579	default:
 580		break;
 581	}
 582
 583	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
 584				   CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
 585				   CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
 586				   CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
 587				   CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
 588				   CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
 589				   CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
 590				   value1);
 591	if (error)
 592		return;
 593
 594	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 595				   CPCAP_BIT_ATOX_PS_FACTOR |
 596				   CPCAP_BIT_ADC_PS_FACTOR1 |
 597				   CPCAP_BIT_ADC_PS_FACTOR0 |
 598				   CPCAP_BIT_THERMBIAS_EN,
 599				   value2);
 600	if (error)
 601		return;
 602
 603	if (req->timing == CPCAP_ADC_TIMING_IMM) {
 604		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 605					   CPCAP_BIT_ADTRIG_DIS,
 606					   CPCAP_BIT_ADTRIG_DIS);
 607		if (error)
 608			return;
 609
 610		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 611					   CPCAP_BIT_ASC,
 612					   CPCAP_BIT_ASC);
 613		if (error)
 614			return;
 615	} else {
 616		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 617					   CPCAP_BIT_ADTRIG_ONESHOT,
 618					   CPCAP_BIT_ADTRIG_ONESHOT);
 619		if (error)
 620			return;
 621
 622		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 623					   CPCAP_BIT_ADTRIG_DIS, 0);
 624		if (error)
 625			return;
 626	}
 627}
 628
 629static int cpcap_adc_start_bank(struct cpcap_adc *ddata,
 630				struct cpcap_adc_request *req)
 631{
 632	int i, error;
 633
 634	req->timing = CPCAP_ADC_TIMING_IMM;
 635	ddata->done = false;
 636
 637	for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
 638		cpcap_adc_setup_bank(ddata, req);
 639		error = wait_event_interruptible_timeout(ddata->wq_data_avail,
 640							 ddata->done,
 641							 msecs_to_jiffies(50));
 642		if (error > 0)
 643			return 0;
 644
 645		if (error == 0) {
 646			error = -ETIMEDOUT;
 647			continue;
 648		}
 649
 650		if (error < 0)
 651			return error;
 652	}
 653
 654	return error;
 655}
 656
 657static int cpcap_adc_stop_bank(struct cpcap_adc *ddata)
 658{
 659	int error;
 660
 661	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
 662				   0xffff,
 663				   CPCAP_REG_ADCC1_DEFAULTS);
 664	if (error)
 665		return error;
 666
 667	return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 668				  0xffff,
 669				  CPCAP_REG_ADCC2_DEFAULTS);
 670}
 671
 672static void cpcap_adc_phase(struct cpcap_adc_request *req)
 673{
 674	const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
 675	const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl;
 676	int index = req->channel;
 677
 678	/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
 679	switch (req->channel) {
 680	case CPCAP_ADC_BATTP:
 681	case CPCAP_ADC_BATTP_PI16:
 682		index = req->bank_index;
 683		req->result -= phase_tbl[index].offset;
 684		req->result -= CPCAP_FOUR_POINT_TWO_ADC;
 685		req->result *= phase_tbl[index].multiplier;
 686		if (phase_tbl[index].divider == 0)
 687			return;
 688		req->result /= phase_tbl[index].divider;
 689		req->result += CPCAP_FOUR_POINT_TWO_ADC;
 690		break;
 691	case CPCAP_ADC_BATTI_PI17:
 692		index = req->bank_index;
 693		/* fallthrough */
 694	default:
 695		req->result += conv_tbl[index].cal_offset;
 696		req->result += conv_tbl[index].align_offset;
 697		req->result *= phase_tbl[index].multiplier;
 698		if (phase_tbl[index].divider == 0)
 699			return;
 700		req->result /= phase_tbl[index].divider;
 701		req->result += phase_tbl[index].offset;
 702		break;
 703	}
 704
 705	if (req->result < phase_tbl[index].min)
 706		req->result = phase_tbl[index].min;
 707	else if (req->result > phase_tbl[index].max)
 708		req->result = phase_tbl[index].max;
 709}
 710
 711/* Looks up temperatures in a table and calculates averages if needed */
 712static int cpcap_adc_table_to_millicelcius(unsigned short value)
 713{
 714	int i, result = 0, alpha;
 715
 716	if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0])
 717		return temp_map[CPCAP_MAX_TEMP_LVL - 1][1];
 718
 719	if (value >= temp_map[0][0])
 720		return temp_map[0][1];
 721
 722	for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) {
 723		if ((value <= temp_map[i][0]) &&
 724		    (value >= temp_map[i + 1][0])) {
 725			if (value == temp_map[i][0]) {
 726				result = temp_map[i][1];
 727			} else if (value == temp_map[i + 1][0]) {
 728				result = temp_map[i + 1][1];
 729			} else {
 730				alpha = ((value - temp_map[i][0]) * 1000) /
 731					(temp_map[i + 1][0] - temp_map[i][0]);
 732
 733				result = temp_map[i][1] +
 734					((alpha * (temp_map[i + 1][1] -
 735						 temp_map[i][1])) / 1000);
 736			}
 737			break;
 738		}
 739	}
 740
 741	return result;
 742}
 743
 744static void cpcap_adc_convert(struct cpcap_adc_request *req)
 745{
 746	const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
 747	int index = req->channel;
 748
 749	/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
 750	switch (req->channel) {
 751	case CPCAP_ADC_BATTP_PI16:
 752		index = CPCAP_ADC_BATTP;
 753		break;
 754	case CPCAP_ADC_BATTI_PI17:
 755		index = CPCAP_ADC_BATTI;
 756		break;
 757	default:
 758		break;
 759	}
 760
 761	/* No conversion for raw channels */
 762	if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW)
 763		return;
 764
 765	/* Temperatures use a lookup table instead of conversion table */
 766	if ((req->channel == CPCAP_ADC_AD0) ||
 767	    (req->channel == CPCAP_ADC_AD3)) {
 768		req->result =
 769			cpcap_adc_table_to_millicelcius(req->result);
 770
 771		return;
 772	}
 773
 774	/* All processed channels use a conversion table */
 775	req->result *= conv_tbl[index].multiplier;
 776	if (conv_tbl[index].divider == 0)
 777		return;
 778	req->result /= conv_tbl[index].divider;
 779	req->result += conv_tbl[index].conv_offset;
 780}
 781
 782/*
 783 * REVISIT: Check if timed sampling can use multiple channels at the
 784 * same time. If not, replace channel_mask with just channel.
 785 */
 786static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata,
 787				      struct cpcap_adc_request *req)
 788{
 789	int calibration_data, error, addr;
 790
 791	if (ddata->vendor == CPCAP_VENDOR_TI) {
 792		error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1,
 793				    &calibration_data);
 794		if (error)
 795			return error;
 796		bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset =
 797			((short)calibration_data * -1) + 512;
 798
 799		error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2,
 800				    &calibration_data);
 801		if (error)
 802			return error;
 803		bank_conversion[CPCAP_ADC_BATTI].cal_offset =
 804			((short)calibration_data * -1) + 512;
 805	}
 806
 807	addr = CPCAP_REG_ADCD0 + req->bank_index * 4;
 808
 809	error = regmap_read(ddata->reg, addr, &req->result);
 810	if (error)
 811		return error;
 812
 813	req->result &= 0x3ff;
 814	cpcap_adc_phase(req);
 815	cpcap_adc_convert(req);
 816
 817	return 0;
 818}
 819
 820static int cpcap_adc_init_request(struct cpcap_adc_request *req,
 821				  int channel)
 822{
 823	req->channel = channel;
 824	req->phase_tbl = bank_phasing;
 825	req->conv_tbl = bank_conversion;
 826
 827	switch (channel) {
 828	case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID:
 829		req->bank_index = channel;
 830		break;
 831	case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
 832		req->bank_index = channel - 8;
 833		break;
 834	case CPCAP_ADC_BATTP_PI16:
 835		req->bank_index = CPCAP_ADC_BATTP;
 836		break;
 837	case CPCAP_ADC_BATTI_PI17:
 838		req->bank_index = CPCAP_ADC_BATTI;
 839		break;
 840	default:
 841		return -EINVAL;
 842	}
 843
 844	return 0;
 845}
 846
 847static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata,
 848				      int addr, int *val)
 849{
 850	int error;
 851
 852	error = regmap_read(ddata->reg, addr, val);
 853	if (error)
 854		return error;
 855
 856	*val -= 282;
 857	*val *= 114;
 858	*val += 25000;
 859
 860	return 0;
 861}
 862
 863static int cpcap_adc_read(struct iio_dev *indio_dev,
 864			  struct iio_chan_spec const *chan,
 865			  int *val, int *val2, long mask)
 866{
 867	struct cpcap_adc *ddata = iio_priv(indio_dev);
 868	struct cpcap_adc_request req;
 869	int error;
 870
 871	error = cpcap_adc_init_request(&req, chan->channel);
 872	if (error)
 873		return error;
 874
 875	switch (mask) {
 876	case IIO_CHAN_INFO_RAW:
 877		mutex_lock(&ddata->lock);
 878		error = cpcap_adc_start_bank(ddata, &req);
 879		if (error)
 880			goto err_unlock;
 881		error = regmap_read(ddata->reg, chan->address, val);
 882		if (error)
 883			goto err_unlock;
 884		error = cpcap_adc_stop_bank(ddata);
 885		if (error)
 886			goto err_unlock;
 887		mutex_unlock(&ddata->lock);
 888		break;
 889	case IIO_CHAN_INFO_PROCESSED:
 890		mutex_lock(&ddata->lock);
 891		error = cpcap_adc_start_bank(ddata, &req);
 892		if (error)
 893			goto err_unlock;
 894		if ((ddata->vendor == CPCAP_VENDOR_ST) &&
 895		    (chan->channel == CPCAP_ADC_AD3)) {
 896			error = cpcap_adc_read_st_die_temp(ddata,
 897							   chan->address,
 898							   &req.result);
 899			if (error)
 900				goto err_unlock;
 901		} else {
 902			error = cpcap_adc_read_bank_scaled(ddata, &req);
 903			if (error)
 904				goto err_unlock;
 905		}
 906		error = cpcap_adc_stop_bank(ddata);
 907		if (error)
 908			goto err_unlock;
 909		mutex_unlock(&ddata->lock);
 910		*val = req.result;
 911		break;
 912	default:
 913		return -EINVAL;
 914	}
 915
 916	return IIO_VAL_INT;
 917
 918err_unlock:
 919	mutex_unlock(&ddata->lock);
 920	dev_err(ddata->dev, "error reading ADC: %i\n", error);
 921
 922	return error;
 923}
 924
 925static const struct iio_info cpcap_adc_info = {
 926	.read_raw = &cpcap_adc_read,
 927};
 928
 929/*
 930 * Configuration for Motorola mapphone series such as droid 4.
 931 * Copied from the Motorola mapphone kernel tree.
 932 */
 933static const struct cpcap_adc_ato mapphone_adc = {
 934	.ato_in = 0x0480,
 935	.atox_in = 0,
 936	.adc_ps_factor_in = 0x0200,
 937	.atox_ps_factor_in = 0,
 938	.ato_out = 0,
 939	.atox_out = 0,
 940	.adc_ps_factor_out = 0,
 941	.atox_ps_factor_out = 0,
 942};
 943
 944static const struct of_device_id cpcap_adc_id_table[] = {
 945	{
 946		.compatible = "motorola,cpcap-adc",
 947	},
 948	{
 949		.compatible = "motorola,mapphone-cpcap-adc",
 950		.data = &mapphone_adc,
 951	},
 952	{ /* sentinel */ },
 953};
 954MODULE_DEVICE_TABLE(of, cpcap_adc_id_table);
 955
 956static int cpcap_adc_probe(struct platform_device *pdev)
 957{
 958	const struct of_device_id *match;
 959	struct cpcap_adc *ddata;
 960	struct iio_dev *indio_dev;
 961	int error;
 962
 963	match = of_match_device(of_match_ptr(cpcap_adc_id_table),
 964				&pdev->dev);
 965	if (!match)
 966		return -EINVAL;
 967
 968	if (!match->data) {
 969		dev_err(&pdev->dev, "no configuration data found\n");
 970
 971		return -ENODEV;
 972	}
 973
 974	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata));
 975	if (!indio_dev) {
 976		dev_err(&pdev->dev, "failed to allocate iio device\n");
 977
 978		return -ENOMEM;
 979	}
 980	ddata = iio_priv(indio_dev);
 981	ddata->ato = match->data;
 
 
 982	ddata->dev = &pdev->dev;
 983
 984	mutex_init(&ddata->lock);
 985	init_waitqueue_head(&ddata->wq_data_avail);
 986
 987	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
 988	indio_dev->dev.parent = &pdev->dev;
 989	indio_dev->dev.of_node = pdev->dev.of_node;
 990	indio_dev->channels = cpcap_adc_channels;
 991	indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels);
 992	indio_dev->name = dev_name(&pdev->dev);
 993	indio_dev->info = &cpcap_adc_info;
 994
 995	ddata->reg = dev_get_regmap(pdev->dev.parent, NULL);
 996	if (!ddata->reg)
 997		return -ENODEV;
 998
 999	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
1000	if (error)
1001		return error;
1002
1003	platform_set_drvdata(pdev, indio_dev);
1004
1005	ddata->irq = platform_get_irq_byname(pdev, "adcdone");
1006	if (ddata->irq < 0)
1007		return -ENODEV;
1008
1009	error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL,
1010					  cpcap_adc_irq_thread,
1011					  IRQF_TRIGGER_NONE,
1012					  "cpcap-adc", indio_dev);
1013	if (error) {
1014		dev_err(&pdev->dev, "could not get irq: %i\n",
1015			error);
1016
1017		return error;
1018	}
1019
1020	error = cpcap_adc_calibrate(ddata);
1021	if (error)
1022		return error;
1023
1024	dev_info(&pdev->dev, "CPCAP ADC device probed\n");
1025
1026	return devm_iio_device_register(&pdev->dev, indio_dev);
1027}
1028
1029static struct platform_driver cpcap_adc_driver = {
1030	.driver = {
1031		.name = "cpcap_adc",
1032		.of_match_table = of_match_ptr(cpcap_adc_id_table),
1033	},
1034	.probe = cpcap_adc_probe,
1035};
1036
1037module_platform_driver(cpcap_adc_driver);
1038
1039MODULE_ALIAS("platform:cpcap_adc");
1040MODULE_DESCRIPTION("CPCAP ADC driver");
1041MODULE_AUTHOR("Tony Lindgren <tony@atomide.com");
1042MODULE_LICENSE("GPL v2");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
   4 *
   5 * Rewritten for Linux IIO framework with some code based on
   6 * earlier driver found in the Motorola Linux kernel:
   7 *
   8 * Copyright (C) 2009-2010 Motorola, Inc.
   9 */
  10
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/err.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/mod_devicetable.h>
 
  19#include <linux/platform_device.h>
  20#include <linux/property.h>
  21#include <linux/regmap.h>
  22
  23#include <linux/iio/buffer.h>
  24#include <linux/iio/driver.h>
  25#include <linux/iio/iio.h>
  26#include <linux/iio/kfifo_buf.h>
  27#include <linux/mfd/motorola-cpcap.h>
  28
  29/* Register CPCAP_REG_ADCC1 bits */
  30#define CPCAP_BIT_ADEN_AUTO_CLR		BIT(15)	/* Currently unused */
  31#define CPCAP_BIT_CAL_MODE		BIT(14) /* Set with BIT_RAND0 */
  32#define CPCAP_BIT_ADC_CLK_SEL1		BIT(13)	/* Currently unused */
  33#define CPCAP_BIT_ADC_CLK_SEL0		BIT(12)	/* Currently unused */
  34#define CPCAP_BIT_ATOX			BIT(11)
  35#define CPCAP_BIT_ATO3			BIT(10)
  36#define CPCAP_BIT_ATO2			BIT(9)
  37#define CPCAP_BIT_ATO1			BIT(8)
  38#define CPCAP_BIT_ATO0			BIT(7)
  39#define CPCAP_BIT_ADA2			BIT(6)
  40#define CPCAP_BIT_ADA1			BIT(5)
  41#define CPCAP_BIT_ADA0			BIT(4)
  42#define CPCAP_BIT_AD_SEL1		BIT(3)	/* Set for bank1 */
  43#define CPCAP_BIT_RAND1			BIT(2)	/* Set for channel 16 & 17 */
  44#define CPCAP_BIT_RAND0			BIT(1)	/* Set with CAL_MODE */
  45#define CPCAP_BIT_ADEN			BIT(0)	/* Currently unused */
  46
  47#define CPCAP_REG_ADCC1_DEFAULTS	(CPCAP_BIT_ADEN_AUTO_CLR | \
  48					 CPCAP_BIT_ADC_CLK_SEL0 |  \
  49					 CPCAP_BIT_RAND1)
  50
  51/* Register CPCAP_REG_ADCC2 bits */
  52#define CPCAP_BIT_CAL_FACTOR_ENABLE	BIT(15)	/* Currently unused */
  53#define CPCAP_BIT_BATDETB_EN		BIT(14)	/* Currently unused */
  54#define CPCAP_BIT_ADTRIG_ONESHOT	BIT(13)	/* Set for !TIMING_IMM */
  55#define CPCAP_BIT_ASC			BIT(12)	/* Set for TIMING_IMM */
  56#define CPCAP_BIT_ATOX_PS_FACTOR	BIT(11)
  57#define CPCAP_BIT_ADC_PS_FACTOR1	BIT(10)
  58#define CPCAP_BIT_ADC_PS_FACTOR0	BIT(9)
  59#define CPCAP_BIT_AD4_SELECT		BIT(8)	/* Currently unused */
  60#define CPCAP_BIT_ADC_BUSY		BIT(7)	/* Currently unused */
  61#define CPCAP_BIT_THERMBIAS_EN		BIT(6)	/* Bias for AD0_BATTDETB */
  62#define CPCAP_BIT_ADTRIG_DIS		BIT(5)	/* Disable interrupt */
  63#define CPCAP_BIT_LIADC			BIT(4)	/* Currently unused */
  64#define CPCAP_BIT_TS_REFEN		BIT(3)	/* Currently unused */
  65#define CPCAP_BIT_TS_M2			BIT(2)	/* Currently unused */
  66#define CPCAP_BIT_TS_M1			BIT(1)	/* Currently unused */
  67#define CPCAP_BIT_TS_M0			BIT(0)	/* Currently unused */
  68
  69#define CPCAP_REG_ADCC2_DEFAULTS	(CPCAP_BIT_AD4_SELECT | \
  70					 CPCAP_BIT_ADTRIG_DIS | \
  71					 CPCAP_BIT_LIADC | \
  72					 CPCAP_BIT_TS_M2 | \
  73					 CPCAP_BIT_TS_M1)
  74
  75#define CPCAP_MAX_TEMP_LVL		27
  76#define CPCAP_FOUR_POINT_TWO_ADC	801
  77#define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD	530
  78#define ST_ADC_CAL_CHRGI_LOW_THRESHOLD	494
  79#define ST_ADC_CAL_BATTI_HIGH_THRESHOLD	530
  80#define ST_ADC_CAL_BATTI_LOW_THRESHOLD	494
  81#define ST_ADC_CALIBRATE_DIFF_THRESHOLD	3
  82
  83#define CPCAP_ADC_MAX_RETRIES		5	/* Calibration */
  84
  85/*
  86 * struct cpcap_adc_ato - timing settings for cpcap adc
  87 *
  88 * Unfortunately no cpcap documentation available, please document when
  89 * using these.
  90 */
  91struct cpcap_adc_ato {
  92	unsigned short ato_in;
  93	unsigned short atox_in;
  94	unsigned short adc_ps_factor_in;
  95	unsigned short atox_ps_factor_in;
  96	unsigned short ato_out;
  97	unsigned short atox_out;
  98	unsigned short adc_ps_factor_out;
  99	unsigned short atox_ps_factor_out;
 100};
 101
 102/**
 103 * struct cpcap-adc - cpcap adc device driver data
 104 * @reg: cpcap regmap
 105 * @dev: struct device
 106 * @vendor: cpcap vendor
 107 * @irq: interrupt
 108 * @lock: mutex
 109 * @ato: request timings
 110 * @wq_data_avail: work queue
 111 * @done: work done
 112 */
 113struct cpcap_adc {
 114	struct regmap *reg;
 115	struct device *dev;
 116	u16 vendor;
 117	int irq;
 118	struct mutex lock;	/* ADC register access lock */
 119	const struct cpcap_adc_ato *ato;
 120	wait_queue_head_t wq_data_avail;
 121	bool done;
 122};
 123
 124/*
 125 * enum cpcap_adc_channel - cpcap adc channels
 126 */
 127enum cpcap_adc_channel {
 128	/* Bank0 channels */
 129	CPCAP_ADC_AD0,		/* Battery temperature */
 130	CPCAP_ADC_BATTP,	/* Battery voltage */
 131	CPCAP_ADC_VBUS,		/* USB VBUS voltage */
 132	CPCAP_ADC_AD3,		/* Die temperature when charging */
 133	CPCAP_ADC_BPLUS_AD4,	/* Another battery or system voltage */
 134	CPCAP_ADC_CHG_ISENSE,	/* Calibrated charge current */
 135	CPCAP_ADC_BATTI,	/* Calibrated system current */
 136	CPCAP_ADC_USB_ID,	/* USB OTG ID, unused on droid 4? */
 137
 138	/* Bank1 channels */
 139	CPCAP_ADC_AD8,		/* Seems unused */
 140	CPCAP_ADC_AD9,		/* Seems unused */
 141	CPCAP_ADC_LICELL,	/* Maybe system voltage? Always 3V */
 142	CPCAP_ADC_HV_BATTP,	/* Another battery detection? */
 143	CPCAP_ADC_TSX1_AD12,	/* Seems unused, for touchscreen? */
 144	CPCAP_ADC_TSX2_AD13,	/* Seems unused, for touchscreen? */
 145	CPCAP_ADC_TSY1_AD14,	/* Seems unused, for touchscreen? */
 146	CPCAP_ADC_TSY2_AD15,	/* Seems unused, for touchscreen? */
 147
 148	/* Remuxed channels using bank0 entries */
 149	CPCAP_ADC_BATTP_PI16,	/* Alternative mux mode for BATTP */
 150	CPCAP_ADC_BATTI_PI17,	/* Alternative mux mode for BATTI */
 151
 152	CPCAP_ADC_CHANNEL_NUM,
 153};
 154
 155/*
 156 * enum cpcap_adc_timing - cpcap adc timing options
 157 *
 158 * CPCAP_ADC_TIMING_IMM seems to be immediate with no timings.
 159 * Please document when using.
 160 */
 161enum cpcap_adc_timing {
 162	CPCAP_ADC_TIMING_IMM,
 163	CPCAP_ADC_TIMING_IN,
 164	CPCAP_ADC_TIMING_OUT,
 165};
 166
 167/**
 168 * struct cpcap_adc_phasing_tbl - cpcap phasing table
 169 * @offset: offset in the phasing table
 170 * @multiplier: multiplier in the phasing table
 171 * @divider: divider in the phasing table
 172 * @min: minimum value
 173 * @max: maximum value
 174 */
 175struct cpcap_adc_phasing_tbl {
 176	short offset;
 177	unsigned short multiplier;
 178	unsigned short divider;
 179	short min;
 180	short max;
 181};
 182
 183/**
 184 * struct cpcap_adc_conversion_tbl - cpcap conversion table
 185 * @conv_type: conversion type
 186 * @align_offset: align offset
 187 * @conv_offset: conversion offset
 188 * @cal_offset: calibration offset
 189 * @multiplier: conversion multiplier
 190 * @divider: conversion divider
 191 */
 192struct cpcap_adc_conversion_tbl {
 193	enum iio_chan_info_enum conv_type;
 194	int align_offset;
 195	int conv_offset;
 196	int cal_offset;
 197	int multiplier;
 198	int divider;
 199};
 200
 201/**
 202 * struct cpcap_adc_request - cpcap adc request
 203 * @channel: request channel
 204 * @phase_tbl: channel phasing table
 205 * @conv_tbl: channel conversion table
 206 * @bank_index: channel index within the bank
 207 * @timing: timing settings
 208 * @result: result
 209 */
 210struct cpcap_adc_request {
 211	int channel;
 212	const struct cpcap_adc_phasing_tbl *phase_tbl;
 213	const struct cpcap_adc_conversion_tbl *conv_tbl;
 214	int bank_index;
 215	enum cpcap_adc_timing timing;
 216	int result;
 217};
 218
 219/* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */
 220static const struct cpcap_adc_phasing_tbl bank_phasing[] = {
 221	/* Bank0 */
 222	[CPCAP_ADC_AD0] =          {0, 0x80, 0x80,    0, 1023},
 223	[CPCAP_ADC_BATTP] =        {0, 0x80, 0x80,    0, 1023},
 224	[CPCAP_ADC_VBUS] =         {0, 0x80, 0x80,    0, 1023},
 225	[CPCAP_ADC_AD3] =          {0, 0x80, 0x80,    0, 1023},
 226	[CPCAP_ADC_BPLUS_AD4] =    {0, 0x80, 0x80,    0, 1023},
 227	[CPCAP_ADC_CHG_ISENSE] =   {0, 0x80, 0x80, -512,  511},
 228	[CPCAP_ADC_BATTI] =        {0, 0x80, 0x80, -512,  511},
 229	[CPCAP_ADC_USB_ID] =       {0, 0x80, 0x80,    0, 1023},
 230
 231	/* Bank1 */
 232	[CPCAP_ADC_AD8] =          {0, 0x80, 0x80,    0, 1023},
 233	[CPCAP_ADC_AD9] =          {0, 0x80, 0x80,    0, 1023},
 234	[CPCAP_ADC_LICELL] =       {0, 0x80, 0x80,    0, 1023},
 235	[CPCAP_ADC_HV_BATTP] =     {0, 0x80, 0x80,    0, 1023},
 236	[CPCAP_ADC_TSX1_AD12] =    {0, 0x80, 0x80,    0, 1023},
 237	[CPCAP_ADC_TSX2_AD13] =    {0, 0x80, 0x80,    0, 1023},
 238	[CPCAP_ADC_TSY1_AD14] =    {0, 0x80, 0x80,    0, 1023},
 239	[CPCAP_ADC_TSY2_AD15] =    {0, 0x80, 0x80,    0, 1023},
 240};
 241
 242/*
 243 * Conversion table for channels. Updated during init based on calibration.
 244 * Here too channels 16 & 17 use BATTP and BATTI.
 245 */
 246static struct cpcap_adc_conversion_tbl bank_conversion[] = {
 247	/* Bank0 */
 248	[CPCAP_ADC_AD0] = {
 249		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
 250	},
 251	[CPCAP_ADC_BATTP] = {
 252		IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
 253	},
 254	[CPCAP_ADC_VBUS] = {
 255		IIO_CHAN_INFO_PROCESSED,    0,    0, 0, 10000, 1023,
 256	},
 257	[CPCAP_ADC_AD3] = {
 258		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
 259		},
 260	[CPCAP_ADC_BPLUS_AD4] = {
 261		IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
 262	},
 263	[CPCAP_ADC_CHG_ISENSE] = {
 264		IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
 265	},
 266	[CPCAP_ADC_BATTI] = {
 267		IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
 268	},
 269	[CPCAP_ADC_USB_ID] = {
 270		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 271	},
 272
 273	/* Bank1 */
 274	[CPCAP_ADC_AD8] = {
 275		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 276	},
 277	[CPCAP_ADC_AD9] = {
 278		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 279	},
 280	[CPCAP_ADC_LICELL] = {
 281		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,  3400, 1023,
 282	},
 283	[CPCAP_ADC_HV_BATTP] = {
 284		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 285	},
 286	[CPCAP_ADC_TSX1_AD12] = {
 287		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 288	},
 289	[CPCAP_ADC_TSX2_AD13] = {
 290		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 291	},
 292	[CPCAP_ADC_TSY1_AD14] = {
 293		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 294	},
 295	[CPCAP_ADC_TSY2_AD15] = {
 296		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
 297	},
 298};
 299
 300/*
 301 * Temperature lookup table of register values to milliCelcius.
 302 * REVISIT: Check the duplicate 0x3ff entry in a freezer
 303 */
 304static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = {
 305	{ 0x03ff, -40000 },
 306	{ 0x03ff, -35000 },
 307	{ 0x03ef, -30000 },
 308	{ 0x03b2, -25000 },
 309	{ 0x036c, -20000 },
 310	{ 0x0320, -15000 },
 311	{ 0x02d0, -10000 },
 312	{ 0x027f, -5000 },
 313	{ 0x022f, 0 },
 314	{ 0x01e4, 5000 },
 315	{ 0x019f, 10000 },
 316	{ 0x0161, 15000 },
 317	{ 0x012b, 20000 },
 318	{ 0x00fc, 25000 },
 319	{ 0x00d4, 30000 },
 320	{ 0x00b2, 35000 },
 321	{ 0x0095, 40000 },
 322	{ 0x007d, 45000 },
 323	{ 0x0069, 50000 },
 324	{ 0x0059, 55000 },
 325	{ 0x004b, 60000 },
 326	{ 0x003f, 65000 },
 327	{ 0x0036, 70000 },
 328	{ 0x002e, 75000 },
 329	{ 0x0027, 80000 },
 330	{ 0x0022, 85000 },
 331	{ 0x001d, 90000 },
 332};
 333
 334#define CPCAP_CHAN(_type, _index, _address, _datasheet_name) {	\
 335	.type = (_type), \
 336	.address = (_address), \
 337	.indexed = 1, \
 338	.channel = (_index), \
 339	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 340			      BIT(IIO_CHAN_INFO_PROCESSED), \
 341	.scan_index = (_index), \
 342	.scan_type = { \
 343		.sign = 'u', \
 344		.realbits = 10, \
 345		.storagebits = 16, \
 346		.endianness = IIO_CPU, \
 347	}, \
 348	.datasheet_name = (_datasheet_name), \
 349}
 350
 351/*
 352 * The datasheet names are from Motorola mapphone Linux kernel except
 353 * for the last two which might be uncalibrated charge voltage and
 354 * current.
 355 */
 356static const struct iio_chan_spec cpcap_adc_channels[] = {
 357	/* Bank0 */
 358	CPCAP_CHAN(IIO_TEMP,    0, CPCAP_REG_ADCD0,  "battdetb"),
 359	CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1,  "battp"),
 360	CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2,  "vbus"),
 361	CPCAP_CHAN(IIO_TEMP,    3, CPCAP_REG_ADCD3,  "ad3"),
 362	CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4,  "ad4"),
 363	CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5,  "chg_isense"),
 364	CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6,  "batti"),
 365	CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7,  "usb_id"),
 366
 367	/* Bank1 */
 368	CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0,  "ad8"),
 369	CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1,  "ad9"),
 370	CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"),
 371	CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"),
 372	CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"),
 373	CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"),
 374	CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"),
 375	CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"),
 376
 377	/* There are two registers with multiplexed functionality */
 378	CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"),
 379	CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"),
 380};
 381
 382static irqreturn_t cpcap_adc_irq_thread(int irq, void *data)
 383{
 384	struct iio_dev *indio_dev = data;
 385	struct cpcap_adc *ddata = iio_priv(indio_dev);
 386	int error;
 387
 388	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 389				   CPCAP_BIT_ADTRIG_DIS,
 390				   CPCAP_BIT_ADTRIG_DIS);
 391	if (error)
 392		return IRQ_NONE;
 393
 394	ddata->done = true;
 395	wake_up_interruptible(&ddata->wq_data_avail);
 396
 397	return IRQ_HANDLED;
 398}
 399
 400/* ADC calibration functions */
 401static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata,
 402				      enum cpcap_adc_channel chan)
 403{
 404	unsigned int value = 0;
 405	unsigned long timeout = jiffies + msecs_to_jiffies(3000);
 406	int error;
 407
 408	if ((chan != CPCAP_ADC_CHG_ISENSE) &&
 409	    (chan != CPCAP_ADC_BATTI))
 410		return;
 411
 412	value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0;
 413	value |= ((chan << 4) &
 414		  (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0));
 415
 416	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
 417				   CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
 418				   CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
 419				   CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
 420				   CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
 421				   CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
 422				   CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
 423				   value);
 424	if (error)
 425		return;
 426
 427	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 428				   CPCAP_BIT_ATOX_PS_FACTOR |
 429				   CPCAP_BIT_ADC_PS_FACTOR1 |
 430				   CPCAP_BIT_ADC_PS_FACTOR0,
 431				   0);
 432	if (error)
 433		return;
 434
 435	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 436				   CPCAP_BIT_ADTRIG_DIS,
 437				   CPCAP_BIT_ADTRIG_DIS);
 438	if (error)
 439		return;
 440
 441	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 442				   CPCAP_BIT_ASC,
 443				   CPCAP_BIT_ASC);
 444	if (error)
 445		return;
 446
 447	do {
 448		schedule_timeout_uninterruptible(1);
 449		error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value);
 450		if (error)
 451			return;
 452	} while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout));
 453
 454	if (value & CPCAP_BIT_ASC)
 455		dev_err(ddata->dev,
 456			"Timeout waiting for calibration to complete\n");
 457
 458	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
 459				   CPCAP_BIT_CAL_MODE, 0);
 460	if (error)
 461		return;
 462}
 463
 464static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata,
 465				   int channel,
 466				   u16 calibration_register,
 467				   int lower_threshold,
 468				   int upper_threshold)
 469{
 470	unsigned int calibration_data[2];
 471	unsigned short cal_data_diff;
 472	int i, error;
 473
 474	for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
 475		calibration_data[0]  = 0;
 476		calibration_data[1]  = 0;
 477		cal_data_diff = 0;
 478		cpcap_adc_setup_calibrate(ddata, channel);
 479		error = regmap_read(ddata->reg, calibration_register,
 480				    &calibration_data[0]);
 481		if (error)
 482			return error;
 483		cpcap_adc_setup_calibrate(ddata, channel);
 484		error = regmap_read(ddata->reg, calibration_register,
 485				    &calibration_data[1]);
 486		if (error)
 487			return error;
 488
 489		if (calibration_data[0] > calibration_data[1])
 490			cal_data_diff =
 491				calibration_data[0] - calibration_data[1];
 492		else
 493			cal_data_diff =
 494				calibration_data[1] - calibration_data[0];
 495
 496		if (((calibration_data[1] >= lower_threshold) &&
 497		     (calibration_data[1] <= upper_threshold) &&
 498		     (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) ||
 499		    (ddata->vendor == CPCAP_VENDOR_TI)) {
 500			bank_conversion[channel].cal_offset =
 501				((short)calibration_data[1] * -1) + 512;
 502			dev_dbg(ddata->dev, "ch%i calibration complete: %i\n",
 503				channel, bank_conversion[channel].cal_offset);
 504			break;
 505		}
 506		usleep_range(5000, 10000);
 507	}
 508
 509	return 0;
 510}
 511
 512static int cpcap_adc_calibrate(struct cpcap_adc *ddata)
 513{
 514	int error;
 515
 516	error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE,
 517					CPCAP_REG_ADCAL1,
 518					ST_ADC_CAL_CHRGI_LOW_THRESHOLD,
 519					ST_ADC_CAL_CHRGI_HIGH_THRESHOLD);
 520	if (error)
 521		return error;
 522
 523	error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI,
 524					CPCAP_REG_ADCAL2,
 525					ST_ADC_CAL_BATTI_LOW_THRESHOLD,
 526					ST_ADC_CAL_BATTI_HIGH_THRESHOLD);
 527	if (error)
 528		return error;
 529
 530	return 0;
 531}
 532
 533/* ADC setup, read and scale functions */
 534static void cpcap_adc_setup_bank(struct cpcap_adc *ddata,
 535				 struct cpcap_adc_request *req)
 536{
 537	const struct cpcap_adc_ato *ato = ddata->ato;
 538	unsigned short value1 = 0;
 539	unsigned short value2 = 0;
 540	int error;
 541
 542	if (!ato)
 543		return;
 544
 545	switch (req->channel) {
 546	case CPCAP_ADC_AD0:
 547		value2 |= CPCAP_BIT_THERMBIAS_EN;
 548		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 549					   CPCAP_BIT_THERMBIAS_EN,
 550					   value2);
 551		if (error)
 552			return;
 553		usleep_range(800, 1000);
 554		break;
 555	case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
 556		value1 |= CPCAP_BIT_AD_SEL1;
 557		break;
 558	case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17:
 559		value1 |= CPCAP_BIT_RAND1;
 560	default:
 561		break;
 562	}
 563
 564	switch (req->timing) {
 565	case CPCAP_ADC_TIMING_IN:
 566		value1 |= ato->ato_in;
 567		value1 |= ato->atox_in;
 568		value2 |= ato->adc_ps_factor_in;
 569		value2 |= ato->atox_ps_factor_in;
 570		break;
 571	case CPCAP_ADC_TIMING_OUT:
 572		value1 |= ato->ato_out;
 573		value1 |= ato->atox_out;
 574		value2 |= ato->adc_ps_factor_out;
 575		value2 |= ato->atox_ps_factor_out;
 576		break;
 577
 578	case CPCAP_ADC_TIMING_IMM:
 579	default:
 580		break;
 581	}
 582
 583	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
 584				   CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
 585				   CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
 586				   CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
 587				   CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
 588				   CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
 589				   CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
 590				   value1);
 591	if (error)
 592		return;
 593
 594	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 595				   CPCAP_BIT_ATOX_PS_FACTOR |
 596				   CPCAP_BIT_ADC_PS_FACTOR1 |
 597				   CPCAP_BIT_ADC_PS_FACTOR0 |
 598				   CPCAP_BIT_THERMBIAS_EN,
 599				   value2);
 600	if (error)
 601		return;
 602
 603	if (req->timing == CPCAP_ADC_TIMING_IMM) {
 604		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 605					   CPCAP_BIT_ADTRIG_DIS,
 606					   CPCAP_BIT_ADTRIG_DIS);
 607		if (error)
 608			return;
 609
 610		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 611					   CPCAP_BIT_ASC,
 612					   CPCAP_BIT_ASC);
 613		if (error)
 614			return;
 615	} else {
 616		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 617					   CPCAP_BIT_ADTRIG_ONESHOT,
 618					   CPCAP_BIT_ADTRIG_ONESHOT);
 619		if (error)
 620			return;
 621
 622		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 623					   CPCAP_BIT_ADTRIG_DIS, 0);
 624		if (error)
 625			return;
 626	}
 627}
 628
 629static int cpcap_adc_start_bank(struct cpcap_adc *ddata,
 630				struct cpcap_adc_request *req)
 631{
 632	int i, error;
 633
 634	req->timing = CPCAP_ADC_TIMING_IMM;
 635	ddata->done = false;
 636
 637	for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
 638		cpcap_adc_setup_bank(ddata, req);
 639		error = wait_event_interruptible_timeout(ddata->wq_data_avail,
 640							 ddata->done,
 641							 msecs_to_jiffies(50));
 642		if (error > 0)
 643			return 0;
 644
 645		if (error == 0) {
 646			error = -ETIMEDOUT;
 647			continue;
 648		}
 649
 650		if (error < 0)
 651			return error;
 652	}
 653
 654	return error;
 655}
 656
 657static int cpcap_adc_stop_bank(struct cpcap_adc *ddata)
 658{
 659	int error;
 660
 661	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
 662				   0xffff,
 663				   CPCAP_REG_ADCC1_DEFAULTS);
 664	if (error)
 665		return error;
 666
 667	return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
 668				  0xffff,
 669				  CPCAP_REG_ADCC2_DEFAULTS);
 670}
 671
 672static void cpcap_adc_phase(struct cpcap_adc_request *req)
 673{
 674	const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
 675	const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl;
 676	int index = req->channel;
 677
 678	/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
 679	switch (req->channel) {
 680	case CPCAP_ADC_BATTP:
 681	case CPCAP_ADC_BATTP_PI16:
 682		index = req->bank_index;
 683		req->result -= phase_tbl[index].offset;
 684		req->result -= CPCAP_FOUR_POINT_TWO_ADC;
 685		req->result *= phase_tbl[index].multiplier;
 686		if (phase_tbl[index].divider == 0)
 687			return;
 688		req->result /= phase_tbl[index].divider;
 689		req->result += CPCAP_FOUR_POINT_TWO_ADC;
 690		break;
 691	case CPCAP_ADC_BATTI_PI17:
 692		index = req->bank_index;
 693		fallthrough;
 694	default:
 695		req->result += conv_tbl[index].cal_offset;
 696		req->result += conv_tbl[index].align_offset;
 697		req->result *= phase_tbl[index].multiplier;
 698		if (phase_tbl[index].divider == 0)
 699			return;
 700		req->result /= phase_tbl[index].divider;
 701		req->result += phase_tbl[index].offset;
 702		break;
 703	}
 704
 705	if (req->result < phase_tbl[index].min)
 706		req->result = phase_tbl[index].min;
 707	else if (req->result > phase_tbl[index].max)
 708		req->result = phase_tbl[index].max;
 709}
 710
 711/* Looks up temperatures in a table and calculates averages if needed */
 712static int cpcap_adc_table_to_millicelcius(unsigned short value)
 713{
 714	int i, result = 0, alpha;
 715
 716	if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0])
 717		return temp_map[CPCAP_MAX_TEMP_LVL - 1][1];
 718
 719	if (value >= temp_map[0][0])
 720		return temp_map[0][1];
 721
 722	for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) {
 723		if ((value <= temp_map[i][0]) &&
 724		    (value >= temp_map[i + 1][0])) {
 725			if (value == temp_map[i][0]) {
 726				result = temp_map[i][1];
 727			} else if (value == temp_map[i + 1][0]) {
 728				result = temp_map[i + 1][1];
 729			} else {
 730				alpha = ((value - temp_map[i][0]) * 1000) /
 731					(temp_map[i + 1][0] - temp_map[i][0]);
 732
 733				result = temp_map[i][1] +
 734					((alpha * (temp_map[i + 1][1] -
 735						 temp_map[i][1])) / 1000);
 736			}
 737			break;
 738		}
 739	}
 740
 741	return result;
 742}
 743
 744static void cpcap_adc_convert(struct cpcap_adc_request *req)
 745{
 746	const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
 747	int index = req->channel;
 748
 749	/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
 750	switch (req->channel) {
 751	case CPCAP_ADC_BATTP_PI16:
 752		index = CPCAP_ADC_BATTP;
 753		break;
 754	case CPCAP_ADC_BATTI_PI17:
 755		index = CPCAP_ADC_BATTI;
 756		break;
 757	default:
 758		break;
 759	}
 760
 761	/* No conversion for raw channels */
 762	if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW)
 763		return;
 764
 765	/* Temperatures use a lookup table instead of conversion table */
 766	if ((req->channel == CPCAP_ADC_AD0) ||
 767	    (req->channel == CPCAP_ADC_AD3)) {
 768		req->result =
 769			cpcap_adc_table_to_millicelcius(req->result);
 770
 771		return;
 772	}
 773
 774	/* All processed channels use a conversion table */
 775	req->result *= conv_tbl[index].multiplier;
 776	if (conv_tbl[index].divider == 0)
 777		return;
 778	req->result /= conv_tbl[index].divider;
 779	req->result += conv_tbl[index].conv_offset;
 780}
 781
 782/*
 783 * REVISIT: Check if timed sampling can use multiple channels at the
 784 * same time. If not, replace channel_mask with just channel.
 785 */
 786static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata,
 787				      struct cpcap_adc_request *req)
 788{
 789	int calibration_data, error, addr;
 790
 791	if (ddata->vendor == CPCAP_VENDOR_TI) {
 792		error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1,
 793				    &calibration_data);
 794		if (error)
 795			return error;
 796		bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset =
 797			((short)calibration_data * -1) + 512;
 798
 799		error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2,
 800				    &calibration_data);
 801		if (error)
 802			return error;
 803		bank_conversion[CPCAP_ADC_BATTI].cal_offset =
 804			((short)calibration_data * -1) + 512;
 805	}
 806
 807	addr = CPCAP_REG_ADCD0 + req->bank_index * 4;
 808
 809	error = regmap_read(ddata->reg, addr, &req->result);
 810	if (error)
 811		return error;
 812
 813	req->result &= 0x3ff;
 814	cpcap_adc_phase(req);
 815	cpcap_adc_convert(req);
 816
 817	return 0;
 818}
 819
 820static int cpcap_adc_init_request(struct cpcap_adc_request *req,
 821				  int channel)
 822{
 823	req->channel = channel;
 824	req->phase_tbl = bank_phasing;
 825	req->conv_tbl = bank_conversion;
 826
 827	switch (channel) {
 828	case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID:
 829		req->bank_index = channel;
 830		break;
 831	case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
 832		req->bank_index = channel - 8;
 833		break;
 834	case CPCAP_ADC_BATTP_PI16:
 835		req->bank_index = CPCAP_ADC_BATTP;
 836		break;
 837	case CPCAP_ADC_BATTI_PI17:
 838		req->bank_index = CPCAP_ADC_BATTI;
 839		break;
 840	default:
 841		return -EINVAL;
 842	}
 843
 844	return 0;
 845}
 846
 847static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata,
 848				      int addr, int *val)
 849{
 850	int error;
 851
 852	error = regmap_read(ddata->reg, addr, val);
 853	if (error)
 854		return error;
 855
 856	*val -= 282;
 857	*val *= 114;
 858	*val += 25000;
 859
 860	return 0;
 861}
 862
 863static int cpcap_adc_read(struct iio_dev *indio_dev,
 864			  struct iio_chan_spec const *chan,
 865			  int *val, int *val2, long mask)
 866{
 867	struct cpcap_adc *ddata = iio_priv(indio_dev);
 868	struct cpcap_adc_request req;
 869	int error;
 870
 871	error = cpcap_adc_init_request(&req, chan->channel);
 872	if (error)
 873		return error;
 874
 875	switch (mask) {
 876	case IIO_CHAN_INFO_RAW:
 877		mutex_lock(&ddata->lock);
 878		error = cpcap_adc_start_bank(ddata, &req);
 879		if (error)
 880			goto err_unlock;
 881		error = regmap_read(ddata->reg, chan->address, val);
 882		if (error)
 883			goto err_unlock;
 884		error = cpcap_adc_stop_bank(ddata);
 885		if (error)
 886			goto err_unlock;
 887		mutex_unlock(&ddata->lock);
 888		break;
 889	case IIO_CHAN_INFO_PROCESSED:
 890		mutex_lock(&ddata->lock);
 891		error = cpcap_adc_start_bank(ddata, &req);
 892		if (error)
 893			goto err_unlock;
 894		if ((ddata->vendor == CPCAP_VENDOR_ST) &&
 895		    (chan->channel == CPCAP_ADC_AD3)) {
 896			error = cpcap_adc_read_st_die_temp(ddata,
 897							   chan->address,
 898							   &req.result);
 899			if (error)
 900				goto err_unlock;
 901		} else {
 902			error = cpcap_adc_read_bank_scaled(ddata, &req);
 903			if (error)
 904				goto err_unlock;
 905		}
 906		error = cpcap_adc_stop_bank(ddata);
 907		if (error)
 908			goto err_unlock;
 909		mutex_unlock(&ddata->lock);
 910		*val = req.result;
 911		break;
 912	default:
 913		return -EINVAL;
 914	}
 915
 916	return IIO_VAL_INT;
 917
 918err_unlock:
 919	mutex_unlock(&ddata->lock);
 920	dev_err(ddata->dev, "error reading ADC: %i\n", error);
 921
 922	return error;
 923}
 924
 925static const struct iio_info cpcap_adc_info = {
 926	.read_raw = &cpcap_adc_read,
 927};
 928
 929/*
 930 * Configuration for Motorola mapphone series such as droid 4.
 931 * Copied from the Motorola mapphone kernel tree.
 932 */
 933static const struct cpcap_adc_ato mapphone_adc = {
 934	.ato_in = 0x0480,
 935	.atox_in = 0,
 936	.adc_ps_factor_in = 0x0200,
 937	.atox_ps_factor_in = 0,
 938	.ato_out = 0,
 939	.atox_out = 0,
 940	.adc_ps_factor_out = 0,
 941	.atox_ps_factor_out = 0,
 942};
 943
 944static const struct of_device_id cpcap_adc_id_table[] = {
 945	{
 946		.compatible = "motorola,cpcap-adc",
 947	},
 948	{
 949		.compatible = "motorola,mapphone-cpcap-adc",
 950		.data = &mapphone_adc,
 951	},
 952	{ /* sentinel */ },
 953};
 954MODULE_DEVICE_TABLE(of, cpcap_adc_id_table);
 955
 956static int cpcap_adc_probe(struct platform_device *pdev)
 957{
 
 958	struct cpcap_adc *ddata;
 959	struct iio_dev *indio_dev;
 960	int error;
 961
 
 
 
 
 
 
 
 
 
 
 
 962	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata));
 963	if (!indio_dev) {
 964		dev_err(&pdev->dev, "failed to allocate iio device\n");
 965
 966		return -ENOMEM;
 967	}
 968	ddata = iio_priv(indio_dev);
 969	ddata->ato = device_get_match_data(&pdev->dev);
 970	if (!ddata->ato)
 971		return -ENODEV;
 972	ddata->dev = &pdev->dev;
 973
 974	mutex_init(&ddata->lock);
 975	init_waitqueue_head(&ddata->wq_data_avail);
 976
 977	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
 
 
 978	indio_dev->channels = cpcap_adc_channels;
 979	indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels);
 980	indio_dev->name = dev_name(&pdev->dev);
 981	indio_dev->info = &cpcap_adc_info;
 982
 983	ddata->reg = dev_get_regmap(pdev->dev.parent, NULL);
 984	if (!ddata->reg)
 985		return -ENODEV;
 986
 987	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
 988	if (error)
 989		return error;
 990
 991	platform_set_drvdata(pdev, indio_dev);
 992
 993	ddata->irq = platform_get_irq_byname(pdev, "adcdone");
 994	if (ddata->irq < 0)
 995		return -ENODEV;
 996
 997	error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL,
 998					  cpcap_adc_irq_thread,
 999					  IRQF_TRIGGER_NONE | IRQF_ONESHOT,
1000					  "cpcap-adc", indio_dev);
1001	if (error) {
1002		dev_err(&pdev->dev, "could not get irq: %i\n",
1003			error);
1004
1005		return error;
1006	}
1007
1008	error = cpcap_adc_calibrate(ddata);
1009	if (error)
1010		return error;
1011
1012	dev_info(&pdev->dev, "CPCAP ADC device probed\n");
1013
1014	return devm_iio_device_register(&pdev->dev, indio_dev);
1015}
1016
1017static struct platform_driver cpcap_adc_driver = {
1018	.driver = {
1019		.name = "cpcap_adc",
1020		.of_match_table = cpcap_adc_id_table,
1021	},
1022	.probe = cpcap_adc_probe,
1023};
1024
1025module_platform_driver(cpcap_adc_driver);
1026
1027MODULE_ALIAS("platform:cpcap_adc");
1028MODULE_DESCRIPTION("CPCAP ADC driver");
1029MODULE_AUTHOR("Tony Lindgren <tony@atomide.com");
1030MODULE_LICENSE("GPL v2");