Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/device.h>
15#include <linux/interrupt.h>
16#include <linux/sysctl.h>
17#include <linux/slab.h>
18#include <linux/acpi.h>
19#include <linux/completion.h>
20#include <linux/hyperv.h>
21#include <linux/kernel_stat.h>
22#include <linux/clockchips.h>
23#include <linux/cpu.h>
24#include <linux/sched/task_stack.h>
25
26#include <asm/mshyperv.h>
27#include <linux/delay.h>
28#include <linux/notifier.h>
29#include <linux/ptrace.h>
30#include <linux/screen_info.h>
31#include <linux/kdebug.h>
32#include <linux/efi.h>
33#include <linux/random.h>
34#include <linux/syscore_ops.h>
35#include <clocksource/hyperv_timer.h>
36#include "hyperv_vmbus.h"
37
38struct vmbus_dynid {
39 struct list_head node;
40 struct hv_vmbus_device_id id;
41};
42
43static struct acpi_device *hv_acpi_dev;
44
45static struct completion probe_event;
46
47static int hyperv_cpuhp_online;
48
49static void *hv_panic_page;
50
51static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
52 void *args)
53{
54 struct pt_regs *regs;
55
56 regs = current_pt_regs();
57
58 hyperv_report_panic(regs, val);
59 return NOTIFY_DONE;
60}
61
62static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
63 void *args)
64{
65 struct die_args *die = (struct die_args *)args;
66 struct pt_regs *regs = die->regs;
67
68 hyperv_report_panic(regs, val);
69 return NOTIFY_DONE;
70}
71
72static struct notifier_block hyperv_die_block = {
73 .notifier_call = hyperv_die_event,
74};
75static struct notifier_block hyperv_panic_block = {
76 .notifier_call = hyperv_panic_event,
77};
78
79static const char *fb_mmio_name = "fb_range";
80static struct resource *fb_mmio;
81static struct resource *hyperv_mmio;
82static DEFINE_SEMAPHORE(hyperv_mmio_lock);
83
84static int vmbus_exists(void)
85{
86 if (hv_acpi_dev == NULL)
87 return -ENODEV;
88
89 return 0;
90}
91
92#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
93static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
94{
95 int i;
96 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
97 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
98}
99
100static u8 channel_monitor_group(const struct vmbus_channel *channel)
101{
102 return (u8)channel->offermsg.monitorid / 32;
103}
104
105static u8 channel_monitor_offset(const struct vmbus_channel *channel)
106{
107 return (u8)channel->offermsg.monitorid % 32;
108}
109
110static u32 channel_pending(const struct vmbus_channel *channel,
111 const struct hv_monitor_page *monitor_page)
112{
113 u8 monitor_group = channel_monitor_group(channel);
114
115 return monitor_page->trigger_group[monitor_group].pending;
116}
117
118static u32 channel_latency(const struct vmbus_channel *channel,
119 const struct hv_monitor_page *monitor_page)
120{
121 u8 monitor_group = channel_monitor_group(channel);
122 u8 monitor_offset = channel_monitor_offset(channel);
123
124 return monitor_page->latency[monitor_group][monitor_offset];
125}
126
127static u32 channel_conn_id(struct vmbus_channel *channel,
128 struct hv_monitor_page *monitor_page)
129{
130 u8 monitor_group = channel_monitor_group(channel);
131 u8 monitor_offset = channel_monitor_offset(channel);
132 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
133}
134
135static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
136 char *buf)
137{
138 struct hv_device *hv_dev = device_to_hv_device(dev);
139
140 if (!hv_dev->channel)
141 return -ENODEV;
142 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
143}
144static DEVICE_ATTR_RO(id);
145
146static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
147 char *buf)
148{
149 struct hv_device *hv_dev = device_to_hv_device(dev);
150
151 if (!hv_dev->channel)
152 return -ENODEV;
153 return sprintf(buf, "%d\n", hv_dev->channel->state);
154}
155static DEVICE_ATTR_RO(state);
156
157static ssize_t monitor_id_show(struct device *dev,
158 struct device_attribute *dev_attr, char *buf)
159{
160 struct hv_device *hv_dev = device_to_hv_device(dev);
161
162 if (!hv_dev->channel)
163 return -ENODEV;
164 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
165}
166static DEVICE_ATTR_RO(monitor_id);
167
168static ssize_t class_id_show(struct device *dev,
169 struct device_attribute *dev_attr, char *buf)
170{
171 struct hv_device *hv_dev = device_to_hv_device(dev);
172
173 if (!hv_dev->channel)
174 return -ENODEV;
175 return sprintf(buf, "{%pUl}\n",
176 hv_dev->channel->offermsg.offer.if_type.b);
177}
178static DEVICE_ATTR_RO(class_id);
179
180static ssize_t device_id_show(struct device *dev,
181 struct device_attribute *dev_attr, char *buf)
182{
183 struct hv_device *hv_dev = device_to_hv_device(dev);
184
185 if (!hv_dev->channel)
186 return -ENODEV;
187 return sprintf(buf, "{%pUl}\n",
188 hv_dev->channel->offermsg.offer.if_instance.b);
189}
190static DEVICE_ATTR_RO(device_id);
191
192static ssize_t modalias_show(struct device *dev,
193 struct device_attribute *dev_attr, char *buf)
194{
195 struct hv_device *hv_dev = device_to_hv_device(dev);
196 char alias_name[VMBUS_ALIAS_LEN + 1];
197
198 print_alias_name(hv_dev, alias_name);
199 return sprintf(buf, "vmbus:%s\n", alias_name);
200}
201static DEVICE_ATTR_RO(modalias);
202
203#ifdef CONFIG_NUMA
204static ssize_t numa_node_show(struct device *dev,
205 struct device_attribute *attr, char *buf)
206{
207 struct hv_device *hv_dev = device_to_hv_device(dev);
208
209 if (!hv_dev->channel)
210 return -ENODEV;
211
212 return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
213}
214static DEVICE_ATTR_RO(numa_node);
215#endif
216
217static ssize_t server_monitor_pending_show(struct device *dev,
218 struct device_attribute *dev_attr,
219 char *buf)
220{
221 struct hv_device *hv_dev = device_to_hv_device(dev);
222
223 if (!hv_dev->channel)
224 return -ENODEV;
225 return sprintf(buf, "%d\n",
226 channel_pending(hv_dev->channel,
227 vmbus_connection.monitor_pages[0]));
228}
229static DEVICE_ATTR_RO(server_monitor_pending);
230
231static ssize_t client_monitor_pending_show(struct device *dev,
232 struct device_attribute *dev_attr,
233 char *buf)
234{
235 struct hv_device *hv_dev = device_to_hv_device(dev);
236
237 if (!hv_dev->channel)
238 return -ENODEV;
239 return sprintf(buf, "%d\n",
240 channel_pending(hv_dev->channel,
241 vmbus_connection.monitor_pages[1]));
242}
243static DEVICE_ATTR_RO(client_monitor_pending);
244
245static ssize_t server_monitor_latency_show(struct device *dev,
246 struct device_attribute *dev_attr,
247 char *buf)
248{
249 struct hv_device *hv_dev = device_to_hv_device(dev);
250
251 if (!hv_dev->channel)
252 return -ENODEV;
253 return sprintf(buf, "%d\n",
254 channel_latency(hv_dev->channel,
255 vmbus_connection.monitor_pages[0]));
256}
257static DEVICE_ATTR_RO(server_monitor_latency);
258
259static ssize_t client_monitor_latency_show(struct device *dev,
260 struct device_attribute *dev_attr,
261 char *buf)
262{
263 struct hv_device *hv_dev = device_to_hv_device(dev);
264
265 if (!hv_dev->channel)
266 return -ENODEV;
267 return sprintf(buf, "%d\n",
268 channel_latency(hv_dev->channel,
269 vmbus_connection.monitor_pages[1]));
270}
271static DEVICE_ATTR_RO(client_monitor_latency);
272
273static ssize_t server_monitor_conn_id_show(struct device *dev,
274 struct device_attribute *dev_attr,
275 char *buf)
276{
277 struct hv_device *hv_dev = device_to_hv_device(dev);
278
279 if (!hv_dev->channel)
280 return -ENODEV;
281 return sprintf(buf, "%d\n",
282 channel_conn_id(hv_dev->channel,
283 vmbus_connection.monitor_pages[0]));
284}
285static DEVICE_ATTR_RO(server_monitor_conn_id);
286
287static ssize_t client_monitor_conn_id_show(struct device *dev,
288 struct device_attribute *dev_attr,
289 char *buf)
290{
291 struct hv_device *hv_dev = device_to_hv_device(dev);
292
293 if (!hv_dev->channel)
294 return -ENODEV;
295 return sprintf(buf, "%d\n",
296 channel_conn_id(hv_dev->channel,
297 vmbus_connection.monitor_pages[1]));
298}
299static DEVICE_ATTR_RO(client_monitor_conn_id);
300
301static ssize_t out_intr_mask_show(struct device *dev,
302 struct device_attribute *dev_attr, char *buf)
303{
304 struct hv_device *hv_dev = device_to_hv_device(dev);
305 struct hv_ring_buffer_debug_info outbound;
306 int ret;
307
308 if (!hv_dev->channel)
309 return -ENODEV;
310
311 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
312 &outbound);
313 if (ret < 0)
314 return ret;
315
316 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
317}
318static DEVICE_ATTR_RO(out_intr_mask);
319
320static ssize_t out_read_index_show(struct device *dev,
321 struct device_attribute *dev_attr, char *buf)
322{
323 struct hv_device *hv_dev = device_to_hv_device(dev);
324 struct hv_ring_buffer_debug_info outbound;
325 int ret;
326
327 if (!hv_dev->channel)
328 return -ENODEV;
329
330 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
331 &outbound);
332 if (ret < 0)
333 return ret;
334 return sprintf(buf, "%d\n", outbound.current_read_index);
335}
336static DEVICE_ATTR_RO(out_read_index);
337
338static ssize_t out_write_index_show(struct device *dev,
339 struct device_attribute *dev_attr,
340 char *buf)
341{
342 struct hv_device *hv_dev = device_to_hv_device(dev);
343 struct hv_ring_buffer_debug_info outbound;
344 int ret;
345
346 if (!hv_dev->channel)
347 return -ENODEV;
348
349 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
350 &outbound);
351 if (ret < 0)
352 return ret;
353 return sprintf(buf, "%d\n", outbound.current_write_index);
354}
355static DEVICE_ATTR_RO(out_write_index);
356
357static ssize_t out_read_bytes_avail_show(struct device *dev,
358 struct device_attribute *dev_attr,
359 char *buf)
360{
361 struct hv_device *hv_dev = device_to_hv_device(dev);
362 struct hv_ring_buffer_debug_info outbound;
363 int ret;
364
365 if (!hv_dev->channel)
366 return -ENODEV;
367
368 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
369 &outbound);
370 if (ret < 0)
371 return ret;
372 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
373}
374static DEVICE_ATTR_RO(out_read_bytes_avail);
375
376static ssize_t out_write_bytes_avail_show(struct device *dev,
377 struct device_attribute *dev_attr,
378 char *buf)
379{
380 struct hv_device *hv_dev = device_to_hv_device(dev);
381 struct hv_ring_buffer_debug_info outbound;
382 int ret;
383
384 if (!hv_dev->channel)
385 return -ENODEV;
386
387 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
388 &outbound);
389 if (ret < 0)
390 return ret;
391 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
392}
393static DEVICE_ATTR_RO(out_write_bytes_avail);
394
395static ssize_t in_intr_mask_show(struct device *dev,
396 struct device_attribute *dev_attr, char *buf)
397{
398 struct hv_device *hv_dev = device_to_hv_device(dev);
399 struct hv_ring_buffer_debug_info inbound;
400 int ret;
401
402 if (!hv_dev->channel)
403 return -ENODEV;
404
405 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
406 if (ret < 0)
407 return ret;
408
409 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
410}
411static DEVICE_ATTR_RO(in_intr_mask);
412
413static ssize_t in_read_index_show(struct device *dev,
414 struct device_attribute *dev_attr, char *buf)
415{
416 struct hv_device *hv_dev = device_to_hv_device(dev);
417 struct hv_ring_buffer_debug_info inbound;
418 int ret;
419
420 if (!hv_dev->channel)
421 return -ENODEV;
422
423 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
424 if (ret < 0)
425 return ret;
426
427 return sprintf(buf, "%d\n", inbound.current_read_index);
428}
429static DEVICE_ATTR_RO(in_read_index);
430
431static ssize_t in_write_index_show(struct device *dev,
432 struct device_attribute *dev_attr, char *buf)
433{
434 struct hv_device *hv_dev = device_to_hv_device(dev);
435 struct hv_ring_buffer_debug_info inbound;
436 int ret;
437
438 if (!hv_dev->channel)
439 return -ENODEV;
440
441 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442 if (ret < 0)
443 return ret;
444
445 return sprintf(buf, "%d\n", inbound.current_write_index);
446}
447static DEVICE_ATTR_RO(in_write_index);
448
449static ssize_t in_read_bytes_avail_show(struct device *dev,
450 struct device_attribute *dev_attr,
451 char *buf)
452{
453 struct hv_device *hv_dev = device_to_hv_device(dev);
454 struct hv_ring_buffer_debug_info inbound;
455 int ret;
456
457 if (!hv_dev->channel)
458 return -ENODEV;
459
460 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
461 if (ret < 0)
462 return ret;
463
464 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
465}
466static DEVICE_ATTR_RO(in_read_bytes_avail);
467
468static ssize_t in_write_bytes_avail_show(struct device *dev,
469 struct device_attribute *dev_attr,
470 char *buf)
471{
472 struct hv_device *hv_dev = device_to_hv_device(dev);
473 struct hv_ring_buffer_debug_info inbound;
474 int ret;
475
476 if (!hv_dev->channel)
477 return -ENODEV;
478
479 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
480 if (ret < 0)
481 return ret;
482
483 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
484}
485static DEVICE_ATTR_RO(in_write_bytes_avail);
486
487static ssize_t channel_vp_mapping_show(struct device *dev,
488 struct device_attribute *dev_attr,
489 char *buf)
490{
491 struct hv_device *hv_dev = device_to_hv_device(dev);
492 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
493 unsigned long flags;
494 int buf_size = PAGE_SIZE, n_written, tot_written;
495 struct list_head *cur;
496
497 if (!channel)
498 return -ENODEV;
499
500 tot_written = snprintf(buf, buf_size, "%u:%u\n",
501 channel->offermsg.child_relid, channel->target_cpu);
502
503 spin_lock_irqsave(&channel->lock, flags);
504
505 list_for_each(cur, &channel->sc_list) {
506 if (tot_written >= buf_size - 1)
507 break;
508
509 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
510 n_written = scnprintf(buf + tot_written,
511 buf_size - tot_written,
512 "%u:%u\n",
513 cur_sc->offermsg.child_relid,
514 cur_sc->target_cpu);
515 tot_written += n_written;
516 }
517
518 spin_unlock_irqrestore(&channel->lock, flags);
519
520 return tot_written;
521}
522static DEVICE_ATTR_RO(channel_vp_mapping);
523
524static ssize_t vendor_show(struct device *dev,
525 struct device_attribute *dev_attr,
526 char *buf)
527{
528 struct hv_device *hv_dev = device_to_hv_device(dev);
529 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
530}
531static DEVICE_ATTR_RO(vendor);
532
533static ssize_t device_show(struct device *dev,
534 struct device_attribute *dev_attr,
535 char *buf)
536{
537 struct hv_device *hv_dev = device_to_hv_device(dev);
538 return sprintf(buf, "0x%x\n", hv_dev->device_id);
539}
540static DEVICE_ATTR_RO(device);
541
542static ssize_t driver_override_store(struct device *dev,
543 struct device_attribute *attr,
544 const char *buf, size_t count)
545{
546 struct hv_device *hv_dev = device_to_hv_device(dev);
547 char *driver_override, *old, *cp;
548
549 /* We need to keep extra room for a newline */
550 if (count >= (PAGE_SIZE - 1))
551 return -EINVAL;
552
553 driver_override = kstrndup(buf, count, GFP_KERNEL);
554 if (!driver_override)
555 return -ENOMEM;
556
557 cp = strchr(driver_override, '\n');
558 if (cp)
559 *cp = '\0';
560
561 device_lock(dev);
562 old = hv_dev->driver_override;
563 if (strlen(driver_override)) {
564 hv_dev->driver_override = driver_override;
565 } else {
566 kfree(driver_override);
567 hv_dev->driver_override = NULL;
568 }
569 device_unlock(dev);
570
571 kfree(old);
572
573 return count;
574}
575
576static ssize_t driver_override_show(struct device *dev,
577 struct device_attribute *attr, char *buf)
578{
579 struct hv_device *hv_dev = device_to_hv_device(dev);
580 ssize_t len;
581
582 device_lock(dev);
583 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
584 device_unlock(dev);
585
586 return len;
587}
588static DEVICE_ATTR_RW(driver_override);
589
590/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
591static struct attribute *vmbus_dev_attrs[] = {
592 &dev_attr_id.attr,
593 &dev_attr_state.attr,
594 &dev_attr_monitor_id.attr,
595 &dev_attr_class_id.attr,
596 &dev_attr_device_id.attr,
597 &dev_attr_modalias.attr,
598#ifdef CONFIG_NUMA
599 &dev_attr_numa_node.attr,
600#endif
601 &dev_attr_server_monitor_pending.attr,
602 &dev_attr_client_monitor_pending.attr,
603 &dev_attr_server_monitor_latency.attr,
604 &dev_attr_client_monitor_latency.attr,
605 &dev_attr_server_monitor_conn_id.attr,
606 &dev_attr_client_monitor_conn_id.attr,
607 &dev_attr_out_intr_mask.attr,
608 &dev_attr_out_read_index.attr,
609 &dev_attr_out_write_index.attr,
610 &dev_attr_out_read_bytes_avail.attr,
611 &dev_attr_out_write_bytes_avail.attr,
612 &dev_attr_in_intr_mask.attr,
613 &dev_attr_in_read_index.attr,
614 &dev_attr_in_write_index.attr,
615 &dev_attr_in_read_bytes_avail.attr,
616 &dev_attr_in_write_bytes_avail.attr,
617 &dev_attr_channel_vp_mapping.attr,
618 &dev_attr_vendor.attr,
619 &dev_attr_device.attr,
620 &dev_attr_driver_override.attr,
621 NULL,
622};
623
624/*
625 * Device-level attribute_group callback function. Returns the permission for
626 * each attribute, and returns 0 if an attribute is not visible.
627 */
628static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
629 struct attribute *attr, int idx)
630{
631 struct device *dev = kobj_to_dev(kobj);
632 const struct hv_device *hv_dev = device_to_hv_device(dev);
633
634 /* Hide the monitor attributes if the monitor mechanism is not used. */
635 if (!hv_dev->channel->offermsg.monitor_allocated &&
636 (attr == &dev_attr_monitor_id.attr ||
637 attr == &dev_attr_server_monitor_pending.attr ||
638 attr == &dev_attr_client_monitor_pending.attr ||
639 attr == &dev_attr_server_monitor_latency.attr ||
640 attr == &dev_attr_client_monitor_latency.attr ||
641 attr == &dev_attr_server_monitor_conn_id.attr ||
642 attr == &dev_attr_client_monitor_conn_id.attr))
643 return 0;
644
645 return attr->mode;
646}
647
648static const struct attribute_group vmbus_dev_group = {
649 .attrs = vmbus_dev_attrs,
650 .is_visible = vmbus_dev_attr_is_visible
651};
652__ATTRIBUTE_GROUPS(vmbus_dev);
653
654/*
655 * vmbus_uevent - add uevent for our device
656 *
657 * This routine is invoked when a device is added or removed on the vmbus to
658 * generate a uevent to udev in the userspace. The udev will then look at its
659 * rule and the uevent generated here to load the appropriate driver
660 *
661 * The alias string will be of the form vmbus:guid where guid is the string
662 * representation of the device guid (each byte of the guid will be
663 * represented with two hex characters.
664 */
665static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
666{
667 struct hv_device *dev = device_to_hv_device(device);
668 int ret;
669 char alias_name[VMBUS_ALIAS_LEN + 1];
670
671 print_alias_name(dev, alias_name);
672 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
673 return ret;
674}
675
676static const struct hv_vmbus_device_id *
677hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
678{
679 if (id == NULL)
680 return NULL; /* empty device table */
681
682 for (; !guid_is_null(&id->guid); id++)
683 if (guid_equal(&id->guid, guid))
684 return id;
685
686 return NULL;
687}
688
689static const struct hv_vmbus_device_id *
690hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
691{
692 const struct hv_vmbus_device_id *id = NULL;
693 struct vmbus_dynid *dynid;
694
695 spin_lock(&drv->dynids.lock);
696 list_for_each_entry(dynid, &drv->dynids.list, node) {
697 if (guid_equal(&dynid->id.guid, guid)) {
698 id = &dynid->id;
699 break;
700 }
701 }
702 spin_unlock(&drv->dynids.lock);
703
704 return id;
705}
706
707static const struct hv_vmbus_device_id vmbus_device_null;
708
709/*
710 * Return a matching hv_vmbus_device_id pointer.
711 * If there is no match, return NULL.
712 */
713static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
714 struct hv_device *dev)
715{
716 const guid_t *guid = &dev->dev_type;
717 const struct hv_vmbus_device_id *id;
718
719 /* When driver_override is set, only bind to the matching driver */
720 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
721 return NULL;
722
723 /* Look at the dynamic ids first, before the static ones */
724 id = hv_vmbus_dynid_match(drv, guid);
725 if (!id)
726 id = hv_vmbus_dev_match(drv->id_table, guid);
727
728 /* driver_override will always match, send a dummy id */
729 if (!id && dev->driver_override)
730 id = &vmbus_device_null;
731
732 return id;
733}
734
735/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
736static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
737{
738 struct vmbus_dynid *dynid;
739
740 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
741 if (!dynid)
742 return -ENOMEM;
743
744 dynid->id.guid = *guid;
745
746 spin_lock(&drv->dynids.lock);
747 list_add_tail(&dynid->node, &drv->dynids.list);
748 spin_unlock(&drv->dynids.lock);
749
750 return driver_attach(&drv->driver);
751}
752
753static void vmbus_free_dynids(struct hv_driver *drv)
754{
755 struct vmbus_dynid *dynid, *n;
756
757 spin_lock(&drv->dynids.lock);
758 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
759 list_del(&dynid->node);
760 kfree(dynid);
761 }
762 spin_unlock(&drv->dynids.lock);
763}
764
765/*
766 * store_new_id - sysfs frontend to vmbus_add_dynid()
767 *
768 * Allow GUIDs to be added to an existing driver via sysfs.
769 */
770static ssize_t new_id_store(struct device_driver *driver, const char *buf,
771 size_t count)
772{
773 struct hv_driver *drv = drv_to_hv_drv(driver);
774 guid_t guid;
775 ssize_t retval;
776
777 retval = guid_parse(buf, &guid);
778 if (retval)
779 return retval;
780
781 if (hv_vmbus_dynid_match(drv, &guid))
782 return -EEXIST;
783
784 retval = vmbus_add_dynid(drv, &guid);
785 if (retval)
786 return retval;
787 return count;
788}
789static DRIVER_ATTR_WO(new_id);
790
791/*
792 * store_remove_id - remove a PCI device ID from this driver
793 *
794 * Removes a dynamic pci device ID to this driver.
795 */
796static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
797 size_t count)
798{
799 struct hv_driver *drv = drv_to_hv_drv(driver);
800 struct vmbus_dynid *dynid, *n;
801 guid_t guid;
802 ssize_t retval;
803
804 retval = guid_parse(buf, &guid);
805 if (retval)
806 return retval;
807
808 retval = -ENODEV;
809 spin_lock(&drv->dynids.lock);
810 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
811 struct hv_vmbus_device_id *id = &dynid->id;
812
813 if (guid_equal(&id->guid, &guid)) {
814 list_del(&dynid->node);
815 kfree(dynid);
816 retval = count;
817 break;
818 }
819 }
820 spin_unlock(&drv->dynids.lock);
821
822 return retval;
823}
824static DRIVER_ATTR_WO(remove_id);
825
826static struct attribute *vmbus_drv_attrs[] = {
827 &driver_attr_new_id.attr,
828 &driver_attr_remove_id.attr,
829 NULL,
830};
831ATTRIBUTE_GROUPS(vmbus_drv);
832
833
834/*
835 * vmbus_match - Attempt to match the specified device to the specified driver
836 */
837static int vmbus_match(struct device *device, struct device_driver *driver)
838{
839 struct hv_driver *drv = drv_to_hv_drv(driver);
840 struct hv_device *hv_dev = device_to_hv_device(device);
841
842 /* The hv_sock driver handles all hv_sock offers. */
843 if (is_hvsock_channel(hv_dev->channel))
844 return drv->hvsock;
845
846 if (hv_vmbus_get_id(drv, hv_dev))
847 return 1;
848
849 return 0;
850}
851
852/*
853 * vmbus_probe - Add the new vmbus's child device
854 */
855static int vmbus_probe(struct device *child_device)
856{
857 int ret = 0;
858 struct hv_driver *drv =
859 drv_to_hv_drv(child_device->driver);
860 struct hv_device *dev = device_to_hv_device(child_device);
861 const struct hv_vmbus_device_id *dev_id;
862
863 dev_id = hv_vmbus_get_id(drv, dev);
864 if (drv->probe) {
865 ret = drv->probe(dev, dev_id);
866 if (ret != 0)
867 pr_err("probe failed for device %s (%d)\n",
868 dev_name(child_device), ret);
869
870 } else {
871 pr_err("probe not set for driver %s\n",
872 dev_name(child_device));
873 ret = -ENODEV;
874 }
875 return ret;
876}
877
878/*
879 * vmbus_remove - Remove a vmbus device
880 */
881static int vmbus_remove(struct device *child_device)
882{
883 struct hv_driver *drv;
884 struct hv_device *dev = device_to_hv_device(child_device);
885
886 if (child_device->driver) {
887 drv = drv_to_hv_drv(child_device->driver);
888 if (drv->remove)
889 drv->remove(dev);
890 }
891
892 return 0;
893}
894
895
896/*
897 * vmbus_shutdown - Shutdown a vmbus device
898 */
899static void vmbus_shutdown(struct device *child_device)
900{
901 struct hv_driver *drv;
902 struct hv_device *dev = device_to_hv_device(child_device);
903
904
905 /* The device may not be attached yet */
906 if (!child_device->driver)
907 return;
908
909 drv = drv_to_hv_drv(child_device->driver);
910
911 if (drv->shutdown)
912 drv->shutdown(dev);
913}
914
915#ifdef CONFIG_PM_SLEEP
916/*
917 * vmbus_suspend - Suspend a vmbus device
918 */
919static int vmbus_suspend(struct device *child_device)
920{
921 struct hv_driver *drv;
922 struct hv_device *dev = device_to_hv_device(child_device);
923
924 /* The device may not be attached yet */
925 if (!child_device->driver)
926 return 0;
927
928 drv = drv_to_hv_drv(child_device->driver);
929 if (!drv->suspend)
930 return -EOPNOTSUPP;
931
932 return drv->suspend(dev);
933}
934
935/*
936 * vmbus_resume - Resume a vmbus device
937 */
938static int vmbus_resume(struct device *child_device)
939{
940 struct hv_driver *drv;
941 struct hv_device *dev = device_to_hv_device(child_device);
942
943 /* The device may not be attached yet */
944 if (!child_device->driver)
945 return 0;
946
947 drv = drv_to_hv_drv(child_device->driver);
948 if (!drv->resume)
949 return -EOPNOTSUPP;
950
951 return drv->resume(dev);
952}
953#endif /* CONFIG_PM_SLEEP */
954
955/*
956 * vmbus_device_release - Final callback release of the vmbus child device
957 */
958static void vmbus_device_release(struct device *device)
959{
960 struct hv_device *hv_dev = device_to_hv_device(device);
961 struct vmbus_channel *channel = hv_dev->channel;
962
963 mutex_lock(&vmbus_connection.channel_mutex);
964 hv_process_channel_removal(channel);
965 mutex_unlock(&vmbus_connection.channel_mutex);
966 kfree(hv_dev);
967}
968
969/*
970 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
971 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm.
972 */
973static const struct dev_pm_ops vmbus_pm = {
974 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume)
975};
976
977/* The one and only one */
978static struct bus_type hv_bus = {
979 .name = "vmbus",
980 .match = vmbus_match,
981 .shutdown = vmbus_shutdown,
982 .remove = vmbus_remove,
983 .probe = vmbus_probe,
984 .uevent = vmbus_uevent,
985 .dev_groups = vmbus_dev_groups,
986 .drv_groups = vmbus_drv_groups,
987 .pm = &vmbus_pm,
988};
989
990struct onmessage_work_context {
991 struct work_struct work;
992 struct hv_message msg;
993};
994
995static void vmbus_onmessage_work(struct work_struct *work)
996{
997 struct onmessage_work_context *ctx;
998
999 /* Do not process messages if we're in DISCONNECTED state */
1000 if (vmbus_connection.conn_state == DISCONNECTED)
1001 return;
1002
1003 ctx = container_of(work, struct onmessage_work_context,
1004 work);
1005 vmbus_onmessage(&ctx->msg);
1006 kfree(ctx);
1007}
1008
1009void vmbus_on_msg_dpc(unsigned long data)
1010{
1011 struct hv_per_cpu_context *hv_cpu = (void *)data;
1012 void *page_addr = hv_cpu->synic_message_page;
1013 struct hv_message *msg = (struct hv_message *)page_addr +
1014 VMBUS_MESSAGE_SINT;
1015 struct vmbus_channel_message_header *hdr;
1016 const struct vmbus_channel_message_table_entry *entry;
1017 struct onmessage_work_context *ctx;
1018 u32 message_type = msg->header.message_type;
1019
1020 if (message_type == HVMSG_NONE)
1021 /* no msg */
1022 return;
1023
1024 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1025
1026 trace_vmbus_on_msg_dpc(hdr);
1027
1028 if (hdr->msgtype >= CHANNELMSG_COUNT) {
1029 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1030 goto msg_handled;
1031 }
1032
1033 entry = &channel_message_table[hdr->msgtype];
1034 if (entry->handler_type == VMHT_BLOCKING) {
1035 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
1036 if (ctx == NULL)
1037 return;
1038
1039 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1040 memcpy(&ctx->msg, msg, sizeof(*msg));
1041
1042 /*
1043 * The host can generate a rescind message while we
1044 * may still be handling the original offer. We deal with
1045 * this condition by ensuring the processing is done on the
1046 * same CPU.
1047 */
1048 switch (hdr->msgtype) {
1049 case CHANNELMSG_RESCIND_CHANNELOFFER:
1050 /*
1051 * If we are handling the rescind message;
1052 * schedule the work on the global work queue.
1053 */
1054 schedule_work_on(vmbus_connection.connect_cpu,
1055 &ctx->work);
1056 break;
1057
1058 case CHANNELMSG_OFFERCHANNEL:
1059 atomic_inc(&vmbus_connection.offer_in_progress);
1060 queue_work_on(vmbus_connection.connect_cpu,
1061 vmbus_connection.work_queue,
1062 &ctx->work);
1063 break;
1064
1065 default:
1066 queue_work(vmbus_connection.work_queue, &ctx->work);
1067 }
1068 } else
1069 entry->message_handler(hdr);
1070
1071msg_handled:
1072 vmbus_signal_eom(msg, message_type);
1073}
1074
1075#ifdef CONFIG_PM_SLEEP
1076/*
1077 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1078 * hibernation, because hv_sock connections can not persist across hibernation.
1079 */
1080static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1081{
1082 struct onmessage_work_context *ctx;
1083 struct vmbus_channel_rescind_offer *rescind;
1084
1085 WARN_ON(!is_hvsock_channel(channel));
1086
1087 /*
1088 * sizeof(*ctx) is small and the allocation should really not fail,
1089 * otherwise the state of the hv_sock connections ends up in limbo.
1090 */
1091 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
1092
1093 /*
1094 * So far, these are not really used by Linux. Just set them to the
1095 * reasonable values conforming to the definitions of the fields.
1096 */
1097 ctx->msg.header.message_type = 1;
1098 ctx->msg.header.payload_size = sizeof(*rescind);
1099
1100 /* These values are actually used by Linux. */
1101 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload;
1102 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1103 rescind->child_relid = channel->offermsg.child_relid;
1104
1105 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1106
1107 queue_work_on(vmbus_connection.connect_cpu,
1108 vmbus_connection.work_queue,
1109 &ctx->work);
1110}
1111#endif /* CONFIG_PM_SLEEP */
1112
1113/*
1114 * Direct callback for channels using other deferred processing
1115 */
1116static void vmbus_channel_isr(struct vmbus_channel *channel)
1117{
1118 void (*callback_fn)(void *);
1119
1120 callback_fn = READ_ONCE(channel->onchannel_callback);
1121 if (likely(callback_fn != NULL))
1122 (*callback_fn)(channel->channel_callback_context);
1123}
1124
1125/*
1126 * Schedule all channels with events pending
1127 */
1128static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1129{
1130 unsigned long *recv_int_page;
1131 u32 maxbits, relid;
1132
1133 if (vmbus_proto_version < VERSION_WIN8) {
1134 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1135 recv_int_page = vmbus_connection.recv_int_page;
1136 } else {
1137 /*
1138 * When the host is win8 and beyond, the event page
1139 * can be directly checked to get the id of the channel
1140 * that has the interrupt pending.
1141 */
1142 void *page_addr = hv_cpu->synic_event_page;
1143 union hv_synic_event_flags *event
1144 = (union hv_synic_event_flags *)page_addr +
1145 VMBUS_MESSAGE_SINT;
1146
1147 maxbits = HV_EVENT_FLAGS_COUNT;
1148 recv_int_page = event->flags;
1149 }
1150
1151 if (unlikely(!recv_int_page))
1152 return;
1153
1154 for_each_set_bit(relid, recv_int_page, maxbits) {
1155 struct vmbus_channel *channel;
1156
1157 if (!sync_test_and_clear_bit(relid, recv_int_page))
1158 continue;
1159
1160 /* Special case - vmbus channel protocol msg */
1161 if (relid == 0)
1162 continue;
1163
1164 rcu_read_lock();
1165
1166 /* Find channel based on relid */
1167 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1168 if (channel->offermsg.child_relid != relid)
1169 continue;
1170
1171 if (channel->rescind)
1172 continue;
1173
1174 trace_vmbus_chan_sched(channel);
1175
1176 ++channel->interrupts;
1177
1178 switch (channel->callback_mode) {
1179 case HV_CALL_ISR:
1180 vmbus_channel_isr(channel);
1181 break;
1182
1183 case HV_CALL_BATCHED:
1184 hv_begin_read(&channel->inbound);
1185 /* fallthrough */
1186 case HV_CALL_DIRECT:
1187 tasklet_schedule(&channel->callback_event);
1188 }
1189 }
1190
1191 rcu_read_unlock();
1192 }
1193}
1194
1195static void vmbus_isr(void)
1196{
1197 struct hv_per_cpu_context *hv_cpu
1198 = this_cpu_ptr(hv_context.cpu_context);
1199 void *page_addr = hv_cpu->synic_event_page;
1200 struct hv_message *msg;
1201 union hv_synic_event_flags *event;
1202 bool handled = false;
1203
1204 if (unlikely(page_addr == NULL))
1205 return;
1206
1207 event = (union hv_synic_event_flags *)page_addr +
1208 VMBUS_MESSAGE_SINT;
1209 /*
1210 * Check for events before checking for messages. This is the order
1211 * in which events and messages are checked in Windows guests on
1212 * Hyper-V, and the Windows team suggested we do the same.
1213 */
1214
1215 if ((vmbus_proto_version == VERSION_WS2008) ||
1216 (vmbus_proto_version == VERSION_WIN7)) {
1217
1218 /* Since we are a child, we only need to check bit 0 */
1219 if (sync_test_and_clear_bit(0, event->flags))
1220 handled = true;
1221 } else {
1222 /*
1223 * Our host is win8 or above. The signaling mechanism
1224 * has changed and we can directly look at the event page.
1225 * If bit n is set then we have an interrup on the channel
1226 * whose id is n.
1227 */
1228 handled = true;
1229 }
1230
1231 if (handled)
1232 vmbus_chan_sched(hv_cpu);
1233
1234 page_addr = hv_cpu->synic_message_page;
1235 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1236
1237 /* Check if there are actual msgs to be processed */
1238 if (msg->header.message_type != HVMSG_NONE) {
1239 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1240 hv_stimer0_isr();
1241 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1242 } else
1243 tasklet_schedule(&hv_cpu->msg_dpc);
1244 }
1245
1246 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1247}
1248
1249/*
1250 * Boolean to control whether to report panic messages over Hyper-V.
1251 *
1252 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1253 */
1254static int sysctl_record_panic_msg = 1;
1255
1256/*
1257 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1258 * buffer and call into Hyper-V to transfer the data.
1259 */
1260static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1261 enum kmsg_dump_reason reason)
1262{
1263 size_t bytes_written;
1264 phys_addr_t panic_pa;
1265
1266 /* We are only interested in panics. */
1267 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1268 return;
1269
1270 panic_pa = virt_to_phys(hv_panic_page);
1271
1272 /*
1273 * Write dump contents to the page. No need to synchronize; panic should
1274 * be single-threaded.
1275 */
1276 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1277 &bytes_written);
1278 if (bytes_written)
1279 hyperv_report_panic_msg(panic_pa, bytes_written);
1280}
1281
1282static struct kmsg_dumper hv_kmsg_dumper = {
1283 .dump = hv_kmsg_dump,
1284};
1285
1286static struct ctl_table_header *hv_ctl_table_hdr;
1287
1288/*
1289 * sysctl option to allow the user to control whether kmsg data should be
1290 * reported to Hyper-V on panic.
1291 */
1292static struct ctl_table hv_ctl_table[] = {
1293 {
1294 .procname = "hyperv_record_panic_msg",
1295 .data = &sysctl_record_panic_msg,
1296 .maxlen = sizeof(int),
1297 .mode = 0644,
1298 .proc_handler = proc_dointvec_minmax,
1299 .extra1 = SYSCTL_ZERO,
1300 .extra2 = SYSCTL_ONE
1301 },
1302 {}
1303};
1304
1305static struct ctl_table hv_root_table[] = {
1306 {
1307 .procname = "kernel",
1308 .mode = 0555,
1309 .child = hv_ctl_table
1310 },
1311 {}
1312};
1313
1314/*
1315 * vmbus_bus_init -Main vmbus driver initialization routine.
1316 *
1317 * Here, we
1318 * - initialize the vmbus driver context
1319 * - invoke the vmbus hv main init routine
1320 * - retrieve the channel offers
1321 */
1322static int vmbus_bus_init(void)
1323{
1324 int ret;
1325
1326 /* Hypervisor initialization...setup hypercall page..etc */
1327 ret = hv_init();
1328 if (ret != 0) {
1329 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1330 return ret;
1331 }
1332
1333 ret = bus_register(&hv_bus);
1334 if (ret)
1335 return ret;
1336
1337 hv_setup_vmbus_irq(vmbus_isr);
1338
1339 ret = hv_synic_alloc();
1340 if (ret)
1341 goto err_alloc;
1342
1343 ret = hv_stimer_alloc(VMBUS_MESSAGE_SINT);
1344 if (ret < 0)
1345 goto err_alloc;
1346
1347 /*
1348 * Initialize the per-cpu interrupt state and stimer state.
1349 * Then connect to the host.
1350 */
1351 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1352 hv_synic_init, hv_synic_cleanup);
1353 if (ret < 0)
1354 goto err_cpuhp;
1355 hyperv_cpuhp_online = ret;
1356
1357 ret = vmbus_connect();
1358 if (ret)
1359 goto err_connect;
1360
1361 /*
1362 * Only register if the crash MSRs are available
1363 */
1364 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1365 u64 hyperv_crash_ctl;
1366 /*
1367 * Sysctl registration is not fatal, since by default
1368 * reporting is enabled.
1369 */
1370 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1371 if (!hv_ctl_table_hdr)
1372 pr_err("Hyper-V: sysctl table register error");
1373
1374 /*
1375 * Register for panic kmsg callback only if the right
1376 * capability is supported by the hypervisor.
1377 */
1378 hv_get_crash_ctl(hyperv_crash_ctl);
1379 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1380 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1381 if (hv_panic_page) {
1382 ret = kmsg_dump_register(&hv_kmsg_dumper);
1383 if (ret)
1384 pr_err("Hyper-V: kmsg dump register "
1385 "error 0x%x\n", ret);
1386 } else
1387 pr_err("Hyper-V: panic message page memory "
1388 "allocation failed");
1389 }
1390
1391 register_die_notifier(&hyperv_die_block);
1392 atomic_notifier_chain_register(&panic_notifier_list,
1393 &hyperv_panic_block);
1394 }
1395
1396 vmbus_request_offers();
1397
1398 return 0;
1399
1400err_connect:
1401 cpuhp_remove_state(hyperv_cpuhp_online);
1402err_cpuhp:
1403 hv_stimer_free();
1404err_alloc:
1405 hv_synic_free();
1406 hv_remove_vmbus_irq();
1407
1408 bus_unregister(&hv_bus);
1409 free_page((unsigned long)hv_panic_page);
1410 unregister_sysctl_table(hv_ctl_table_hdr);
1411 hv_ctl_table_hdr = NULL;
1412 return ret;
1413}
1414
1415/**
1416 * __vmbus_child_driver_register() - Register a vmbus's driver
1417 * @hv_driver: Pointer to driver structure you want to register
1418 * @owner: owner module of the drv
1419 * @mod_name: module name string
1420 *
1421 * Registers the given driver with Linux through the 'driver_register()' call
1422 * and sets up the hyper-v vmbus handling for this driver.
1423 * It will return the state of the 'driver_register()' call.
1424 *
1425 */
1426int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1427{
1428 int ret;
1429
1430 pr_info("registering driver %s\n", hv_driver->name);
1431
1432 ret = vmbus_exists();
1433 if (ret < 0)
1434 return ret;
1435
1436 hv_driver->driver.name = hv_driver->name;
1437 hv_driver->driver.owner = owner;
1438 hv_driver->driver.mod_name = mod_name;
1439 hv_driver->driver.bus = &hv_bus;
1440
1441 spin_lock_init(&hv_driver->dynids.lock);
1442 INIT_LIST_HEAD(&hv_driver->dynids.list);
1443
1444 ret = driver_register(&hv_driver->driver);
1445
1446 return ret;
1447}
1448EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1449
1450/**
1451 * vmbus_driver_unregister() - Unregister a vmbus's driver
1452 * @hv_driver: Pointer to driver structure you want to
1453 * un-register
1454 *
1455 * Un-register the given driver that was previous registered with a call to
1456 * vmbus_driver_register()
1457 */
1458void vmbus_driver_unregister(struct hv_driver *hv_driver)
1459{
1460 pr_info("unregistering driver %s\n", hv_driver->name);
1461
1462 if (!vmbus_exists()) {
1463 driver_unregister(&hv_driver->driver);
1464 vmbus_free_dynids(hv_driver);
1465 }
1466}
1467EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1468
1469
1470/*
1471 * Called when last reference to channel is gone.
1472 */
1473static void vmbus_chan_release(struct kobject *kobj)
1474{
1475 struct vmbus_channel *channel
1476 = container_of(kobj, struct vmbus_channel, kobj);
1477
1478 kfree_rcu(channel, rcu);
1479}
1480
1481struct vmbus_chan_attribute {
1482 struct attribute attr;
1483 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1484 ssize_t (*store)(struct vmbus_channel *chan,
1485 const char *buf, size_t count);
1486};
1487#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1488 struct vmbus_chan_attribute chan_attr_##_name \
1489 = __ATTR(_name, _mode, _show, _store)
1490#define VMBUS_CHAN_ATTR_RW(_name) \
1491 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1492#define VMBUS_CHAN_ATTR_RO(_name) \
1493 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1494#define VMBUS_CHAN_ATTR_WO(_name) \
1495 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1496
1497static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1498 struct attribute *attr, char *buf)
1499{
1500 const struct vmbus_chan_attribute *attribute
1501 = container_of(attr, struct vmbus_chan_attribute, attr);
1502 struct vmbus_channel *chan
1503 = container_of(kobj, struct vmbus_channel, kobj);
1504
1505 if (!attribute->show)
1506 return -EIO;
1507
1508 return attribute->show(chan, buf);
1509}
1510
1511static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1512 .show = vmbus_chan_attr_show,
1513};
1514
1515static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1516{
1517 struct hv_ring_buffer_info *rbi = &channel->outbound;
1518 ssize_t ret;
1519
1520 mutex_lock(&rbi->ring_buffer_mutex);
1521 if (!rbi->ring_buffer) {
1522 mutex_unlock(&rbi->ring_buffer_mutex);
1523 return -EINVAL;
1524 }
1525
1526 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1527 mutex_unlock(&rbi->ring_buffer_mutex);
1528 return ret;
1529}
1530static VMBUS_CHAN_ATTR_RO(out_mask);
1531
1532static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1533{
1534 struct hv_ring_buffer_info *rbi = &channel->inbound;
1535 ssize_t ret;
1536
1537 mutex_lock(&rbi->ring_buffer_mutex);
1538 if (!rbi->ring_buffer) {
1539 mutex_unlock(&rbi->ring_buffer_mutex);
1540 return -EINVAL;
1541 }
1542
1543 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1544 mutex_unlock(&rbi->ring_buffer_mutex);
1545 return ret;
1546}
1547static VMBUS_CHAN_ATTR_RO(in_mask);
1548
1549static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1550{
1551 struct hv_ring_buffer_info *rbi = &channel->inbound;
1552 ssize_t ret;
1553
1554 mutex_lock(&rbi->ring_buffer_mutex);
1555 if (!rbi->ring_buffer) {
1556 mutex_unlock(&rbi->ring_buffer_mutex);
1557 return -EINVAL;
1558 }
1559
1560 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1561 mutex_unlock(&rbi->ring_buffer_mutex);
1562 return ret;
1563}
1564static VMBUS_CHAN_ATTR_RO(read_avail);
1565
1566static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1567{
1568 struct hv_ring_buffer_info *rbi = &channel->outbound;
1569 ssize_t ret;
1570
1571 mutex_lock(&rbi->ring_buffer_mutex);
1572 if (!rbi->ring_buffer) {
1573 mutex_unlock(&rbi->ring_buffer_mutex);
1574 return -EINVAL;
1575 }
1576
1577 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1578 mutex_unlock(&rbi->ring_buffer_mutex);
1579 return ret;
1580}
1581static VMBUS_CHAN_ATTR_RO(write_avail);
1582
1583static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1584{
1585 return sprintf(buf, "%u\n", channel->target_cpu);
1586}
1587static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1588
1589static ssize_t channel_pending_show(struct vmbus_channel *channel,
1590 char *buf)
1591{
1592 return sprintf(buf, "%d\n",
1593 channel_pending(channel,
1594 vmbus_connection.monitor_pages[1]));
1595}
1596static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1597
1598static ssize_t channel_latency_show(struct vmbus_channel *channel,
1599 char *buf)
1600{
1601 return sprintf(buf, "%d\n",
1602 channel_latency(channel,
1603 vmbus_connection.monitor_pages[1]));
1604}
1605static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1606
1607static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1608{
1609 return sprintf(buf, "%llu\n", channel->interrupts);
1610}
1611static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1612
1613static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1614{
1615 return sprintf(buf, "%llu\n", channel->sig_events);
1616}
1617static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1618
1619static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1620 char *buf)
1621{
1622 return sprintf(buf, "%llu\n",
1623 (unsigned long long)channel->intr_in_full);
1624}
1625static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1626
1627static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1628 char *buf)
1629{
1630 return sprintf(buf, "%llu\n",
1631 (unsigned long long)channel->intr_out_empty);
1632}
1633static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1634
1635static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1636 char *buf)
1637{
1638 return sprintf(buf, "%llu\n",
1639 (unsigned long long)channel->out_full_first);
1640}
1641static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1642
1643static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1644 char *buf)
1645{
1646 return sprintf(buf, "%llu\n",
1647 (unsigned long long)channel->out_full_total);
1648}
1649static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1650
1651static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1652 char *buf)
1653{
1654 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1655}
1656static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1657
1658static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1659 char *buf)
1660{
1661 return sprintf(buf, "%u\n",
1662 channel->offermsg.offer.sub_channel_index);
1663}
1664static VMBUS_CHAN_ATTR_RO(subchannel_id);
1665
1666static struct attribute *vmbus_chan_attrs[] = {
1667 &chan_attr_out_mask.attr,
1668 &chan_attr_in_mask.attr,
1669 &chan_attr_read_avail.attr,
1670 &chan_attr_write_avail.attr,
1671 &chan_attr_cpu.attr,
1672 &chan_attr_pending.attr,
1673 &chan_attr_latency.attr,
1674 &chan_attr_interrupts.attr,
1675 &chan_attr_events.attr,
1676 &chan_attr_intr_in_full.attr,
1677 &chan_attr_intr_out_empty.attr,
1678 &chan_attr_out_full_first.attr,
1679 &chan_attr_out_full_total.attr,
1680 &chan_attr_monitor_id.attr,
1681 &chan_attr_subchannel_id.attr,
1682 NULL
1683};
1684
1685/*
1686 * Channel-level attribute_group callback function. Returns the permission for
1687 * each attribute, and returns 0 if an attribute is not visible.
1688 */
1689static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1690 struct attribute *attr, int idx)
1691{
1692 const struct vmbus_channel *channel =
1693 container_of(kobj, struct vmbus_channel, kobj);
1694
1695 /* Hide the monitor attributes if the monitor mechanism is not used. */
1696 if (!channel->offermsg.monitor_allocated &&
1697 (attr == &chan_attr_pending.attr ||
1698 attr == &chan_attr_latency.attr ||
1699 attr == &chan_attr_monitor_id.attr))
1700 return 0;
1701
1702 return attr->mode;
1703}
1704
1705static struct attribute_group vmbus_chan_group = {
1706 .attrs = vmbus_chan_attrs,
1707 .is_visible = vmbus_chan_attr_is_visible
1708};
1709
1710static struct kobj_type vmbus_chan_ktype = {
1711 .sysfs_ops = &vmbus_chan_sysfs_ops,
1712 .release = vmbus_chan_release,
1713};
1714
1715/*
1716 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1717 */
1718int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1719{
1720 const struct device *device = &dev->device;
1721 struct kobject *kobj = &channel->kobj;
1722 u32 relid = channel->offermsg.child_relid;
1723 int ret;
1724
1725 kobj->kset = dev->channels_kset;
1726 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1727 "%u", relid);
1728 if (ret)
1729 return ret;
1730
1731 ret = sysfs_create_group(kobj, &vmbus_chan_group);
1732
1733 if (ret) {
1734 /*
1735 * The calling functions' error handling paths will cleanup the
1736 * empty channel directory.
1737 */
1738 dev_err(device, "Unable to set up channel sysfs files\n");
1739 return ret;
1740 }
1741
1742 kobject_uevent(kobj, KOBJ_ADD);
1743
1744 return 0;
1745}
1746
1747/*
1748 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1749 */
1750void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1751{
1752 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1753}
1754
1755/*
1756 * vmbus_device_create - Creates and registers a new child device
1757 * on the vmbus.
1758 */
1759struct hv_device *vmbus_device_create(const guid_t *type,
1760 const guid_t *instance,
1761 struct vmbus_channel *channel)
1762{
1763 struct hv_device *child_device_obj;
1764
1765 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1766 if (!child_device_obj) {
1767 pr_err("Unable to allocate device object for child device\n");
1768 return NULL;
1769 }
1770
1771 child_device_obj->channel = channel;
1772 guid_copy(&child_device_obj->dev_type, type);
1773 guid_copy(&child_device_obj->dev_instance, instance);
1774 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1775
1776 return child_device_obj;
1777}
1778
1779/*
1780 * vmbus_device_register - Register the child device
1781 */
1782int vmbus_device_register(struct hv_device *child_device_obj)
1783{
1784 struct kobject *kobj = &child_device_obj->device.kobj;
1785 int ret;
1786
1787 dev_set_name(&child_device_obj->device, "%pUl",
1788 child_device_obj->channel->offermsg.offer.if_instance.b);
1789
1790 child_device_obj->device.bus = &hv_bus;
1791 child_device_obj->device.parent = &hv_acpi_dev->dev;
1792 child_device_obj->device.release = vmbus_device_release;
1793
1794 /*
1795 * Register with the LDM. This will kick off the driver/device
1796 * binding...which will eventually call vmbus_match() and vmbus_probe()
1797 */
1798 ret = device_register(&child_device_obj->device);
1799 if (ret) {
1800 pr_err("Unable to register child device\n");
1801 return ret;
1802 }
1803
1804 child_device_obj->channels_kset = kset_create_and_add("channels",
1805 NULL, kobj);
1806 if (!child_device_obj->channels_kset) {
1807 ret = -ENOMEM;
1808 goto err_dev_unregister;
1809 }
1810
1811 ret = vmbus_add_channel_kobj(child_device_obj,
1812 child_device_obj->channel);
1813 if (ret) {
1814 pr_err("Unable to register primary channeln");
1815 goto err_kset_unregister;
1816 }
1817
1818 return 0;
1819
1820err_kset_unregister:
1821 kset_unregister(child_device_obj->channels_kset);
1822
1823err_dev_unregister:
1824 device_unregister(&child_device_obj->device);
1825 return ret;
1826}
1827
1828/*
1829 * vmbus_device_unregister - Remove the specified child device
1830 * from the vmbus.
1831 */
1832void vmbus_device_unregister(struct hv_device *device_obj)
1833{
1834 pr_debug("child device %s unregistered\n",
1835 dev_name(&device_obj->device));
1836
1837 kset_unregister(device_obj->channels_kset);
1838
1839 /*
1840 * Kick off the process of unregistering the device.
1841 * This will call vmbus_remove() and eventually vmbus_device_release()
1842 */
1843 device_unregister(&device_obj->device);
1844}
1845
1846
1847/*
1848 * VMBUS is an acpi enumerated device. Get the information we
1849 * need from DSDT.
1850 */
1851#define VTPM_BASE_ADDRESS 0xfed40000
1852static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1853{
1854 resource_size_t start = 0;
1855 resource_size_t end = 0;
1856 struct resource *new_res;
1857 struct resource **old_res = &hyperv_mmio;
1858 struct resource **prev_res = NULL;
1859
1860 switch (res->type) {
1861
1862 /*
1863 * "Address" descriptors are for bus windows. Ignore
1864 * "memory" descriptors, which are for registers on
1865 * devices.
1866 */
1867 case ACPI_RESOURCE_TYPE_ADDRESS32:
1868 start = res->data.address32.address.minimum;
1869 end = res->data.address32.address.maximum;
1870 break;
1871
1872 case ACPI_RESOURCE_TYPE_ADDRESS64:
1873 start = res->data.address64.address.minimum;
1874 end = res->data.address64.address.maximum;
1875 break;
1876
1877 default:
1878 /* Unused resource type */
1879 return AE_OK;
1880
1881 }
1882 /*
1883 * Ignore ranges that are below 1MB, as they're not
1884 * necessary or useful here.
1885 */
1886 if (end < 0x100000)
1887 return AE_OK;
1888
1889 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1890 if (!new_res)
1891 return AE_NO_MEMORY;
1892
1893 /* If this range overlaps the virtual TPM, truncate it. */
1894 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1895 end = VTPM_BASE_ADDRESS;
1896
1897 new_res->name = "hyperv mmio";
1898 new_res->flags = IORESOURCE_MEM;
1899 new_res->start = start;
1900 new_res->end = end;
1901
1902 /*
1903 * If two ranges are adjacent, merge them.
1904 */
1905 do {
1906 if (!*old_res) {
1907 *old_res = new_res;
1908 break;
1909 }
1910
1911 if (((*old_res)->end + 1) == new_res->start) {
1912 (*old_res)->end = new_res->end;
1913 kfree(new_res);
1914 break;
1915 }
1916
1917 if ((*old_res)->start == new_res->end + 1) {
1918 (*old_res)->start = new_res->start;
1919 kfree(new_res);
1920 break;
1921 }
1922
1923 if ((*old_res)->start > new_res->end) {
1924 new_res->sibling = *old_res;
1925 if (prev_res)
1926 (*prev_res)->sibling = new_res;
1927 *old_res = new_res;
1928 break;
1929 }
1930
1931 prev_res = old_res;
1932 old_res = &(*old_res)->sibling;
1933
1934 } while (1);
1935
1936 return AE_OK;
1937}
1938
1939static int vmbus_acpi_remove(struct acpi_device *device)
1940{
1941 struct resource *cur_res;
1942 struct resource *next_res;
1943
1944 if (hyperv_mmio) {
1945 if (fb_mmio) {
1946 __release_region(hyperv_mmio, fb_mmio->start,
1947 resource_size(fb_mmio));
1948 fb_mmio = NULL;
1949 }
1950
1951 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1952 next_res = cur_res->sibling;
1953 kfree(cur_res);
1954 }
1955 }
1956
1957 return 0;
1958}
1959
1960static void vmbus_reserve_fb(void)
1961{
1962 int size;
1963 /*
1964 * Make a claim for the frame buffer in the resource tree under the
1965 * first node, which will be the one below 4GB. The length seems to
1966 * be underreported, particularly in a Generation 1 VM. So start out
1967 * reserving a larger area and make it smaller until it succeeds.
1968 */
1969
1970 if (screen_info.lfb_base) {
1971 if (efi_enabled(EFI_BOOT))
1972 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1973 else
1974 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1975
1976 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1977 fb_mmio = __request_region(hyperv_mmio,
1978 screen_info.lfb_base, size,
1979 fb_mmio_name, 0);
1980 }
1981 }
1982}
1983
1984/**
1985 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1986 * @new: If successful, supplied a pointer to the
1987 * allocated MMIO space.
1988 * @device_obj: Identifies the caller
1989 * @min: Minimum guest physical address of the
1990 * allocation
1991 * @max: Maximum guest physical address
1992 * @size: Size of the range to be allocated
1993 * @align: Alignment of the range to be allocated
1994 * @fb_overlap_ok: Whether this allocation can be allowed
1995 * to overlap the video frame buffer.
1996 *
1997 * This function walks the resources granted to VMBus by the
1998 * _CRS object in the ACPI namespace underneath the parent
1999 * "bridge" whether that's a root PCI bus in the Generation 1
2000 * case or a Module Device in the Generation 2 case. It then
2001 * attempts to allocate from the global MMIO pool in a way that
2002 * matches the constraints supplied in these parameters and by
2003 * that _CRS.
2004 *
2005 * Return: 0 on success, -errno on failure
2006 */
2007int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2008 resource_size_t min, resource_size_t max,
2009 resource_size_t size, resource_size_t align,
2010 bool fb_overlap_ok)
2011{
2012 struct resource *iter, *shadow;
2013 resource_size_t range_min, range_max, start;
2014 const char *dev_n = dev_name(&device_obj->device);
2015 int retval;
2016
2017 retval = -ENXIO;
2018 down(&hyperv_mmio_lock);
2019
2020 /*
2021 * If overlaps with frame buffers are allowed, then first attempt to
2022 * make the allocation from within the reserved region. Because it
2023 * is already reserved, no shadow allocation is necessary.
2024 */
2025 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2026 !(max < fb_mmio->start)) {
2027
2028 range_min = fb_mmio->start;
2029 range_max = fb_mmio->end;
2030 start = (range_min + align - 1) & ~(align - 1);
2031 for (; start + size - 1 <= range_max; start += align) {
2032 *new = request_mem_region_exclusive(start, size, dev_n);
2033 if (*new) {
2034 retval = 0;
2035 goto exit;
2036 }
2037 }
2038 }
2039
2040 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2041 if ((iter->start >= max) || (iter->end <= min))
2042 continue;
2043
2044 range_min = iter->start;
2045 range_max = iter->end;
2046 start = (range_min + align - 1) & ~(align - 1);
2047 for (; start + size - 1 <= range_max; start += align) {
2048 shadow = __request_region(iter, start, size, NULL,
2049 IORESOURCE_BUSY);
2050 if (!shadow)
2051 continue;
2052
2053 *new = request_mem_region_exclusive(start, size, dev_n);
2054 if (*new) {
2055 shadow->name = (char *)*new;
2056 retval = 0;
2057 goto exit;
2058 }
2059
2060 __release_region(iter, start, size);
2061 }
2062 }
2063
2064exit:
2065 up(&hyperv_mmio_lock);
2066 return retval;
2067}
2068EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2069
2070/**
2071 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2072 * @start: Base address of region to release.
2073 * @size: Size of the range to be allocated
2074 *
2075 * This function releases anything requested by
2076 * vmbus_mmio_allocate().
2077 */
2078void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2079{
2080 struct resource *iter;
2081
2082 down(&hyperv_mmio_lock);
2083 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2084 if ((iter->start >= start + size) || (iter->end <= start))
2085 continue;
2086
2087 __release_region(iter, start, size);
2088 }
2089 release_mem_region(start, size);
2090 up(&hyperv_mmio_lock);
2091
2092}
2093EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2094
2095static int vmbus_acpi_add(struct acpi_device *device)
2096{
2097 acpi_status result;
2098 int ret_val = -ENODEV;
2099 struct acpi_device *ancestor;
2100
2101 hv_acpi_dev = device;
2102
2103 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2104 vmbus_walk_resources, NULL);
2105
2106 if (ACPI_FAILURE(result))
2107 goto acpi_walk_err;
2108 /*
2109 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2110 * firmware) is the VMOD that has the mmio ranges. Get that.
2111 */
2112 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2113 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2114 vmbus_walk_resources, NULL);
2115
2116 if (ACPI_FAILURE(result))
2117 continue;
2118 if (hyperv_mmio) {
2119 vmbus_reserve_fb();
2120 break;
2121 }
2122 }
2123 ret_val = 0;
2124
2125acpi_walk_err:
2126 complete(&probe_event);
2127 if (ret_val)
2128 vmbus_acpi_remove(device);
2129 return ret_val;
2130}
2131
2132#ifdef CONFIG_PM_SLEEP
2133static int vmbus_bus_suspend(struct device *dev)
2134{
2135 struct vmbus_channel *channel, *sc;
2136 unsigned long flags;
2137
2138 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2139 /*
2140 * We wait here until the completion of any channel
2141 * offers that are currently in progress.
2142 */
2143 msleep(1);
2144 }
2145
2146 mutex_lock(&vmbus_connection.channel_mutex);
2147 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2148 if (!is_hvsock_channel(channel))
2149 continue;
2150
2151 vmbus_force_channel_rescinded(channel);
2152 }
2153 mutex_unlock(&vmbus_connection.channel_mutex);
2154
2155 /*
2156 * Wait until all the sub-channels and hv_sock channels have been
2157 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2158 * they would conflict with the new sub-channels that will be created
2159 * in the resume path. hv_sock channels should also be destroyed, but
2160 * a hv_sock channel of an established hv_sock connection can not be
2161 * really destroyed since it may still be referenced by the userspace
2162 * application, so we just force the hv_sock channel to be rescinded
2163 * by vmbus_force_channel_rescinded(), and the userspace application
2164 * will thoroughly destroy the channel after hibernation.
2165 *
2166 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2167 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2168 */
2169 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2170 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2171
2172 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);
2173
2174 mutex_lock(&vmbus_connection.channel_mutex);
2175
2176 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2177 /*
2178 * Invalidate the field. Upon resume, vmbus_onoffer() will fix
2179 * up the field, and the other fields (if necessary).
2180 */
2181 channel->offermsg.child_relid = INVALID_RELID;
2182
2183 if (is_hvsock_channel(channel)) {
2184 if (!channel->rescind) {
2185 pr_err("hv_sock channel not rescinded!\n");
2186 WARN_ON_ONCE(1);
2187 }
2188 continue;
2189 }
2190
2191 spin_lock_irqsave(&channel->lock, flags);
2192 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2193 pr_err("Sub-channel not deleted!\n");
2194 WARN_ON_ONCE(1);
2195 }
2196 spin_unlock_irqrestore(&channel->lock, flags);
2197
2198 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2199 }
2200
2201 mutex_unlock(&vmbus_connection.channel_mutex);
2202
2203 vmbus_initiate_unload(false);
2204
2205 vmbus_connection.conn_state = DISCONNECTED;
2206
2207 /* Reset the event for the next resume. */
2208 reinit_completion(&vmbus_connection.ready_for_resume_event);
2209
2210 return 0;
2211}
2212
2213static int vmbus_bus_resume(struct device *dev)
2214{
2215 struct vmbus_channel_msginfo *msginfo;
2216 size_t msgsize;
2217 int ret;
2218
2219 /*
2220 * We only use the 'vmbus_proto_version', which was in use before
2221 * hibernation, to re-negotiate with the host.
2222 */
2223 if (vmbus_proto_version == VERSION_INVAL ||
2224 vmbus_proto_version == 0) {
2225 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2226 return -EINVAL;
2227 }
2228
2229 msgsize = sizeof(*msginfo) +
2230 sizeof(struct vmbus_channel_initiate_contact);
2231
2232 msginfo = kzalloc(msgsize, GFP_KERNEL);
2233
2234 if (msginfo == NULL)
2235 return -ENOMEM;
2236
2237 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2238
2239 kfree(msginfo);
2240
2241 if (ret != 0)
2242 return ret;
2243
2244 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2245
2246 vmbus_request_offers();
2247
2248 wait_for_completion(&vmbus_connection.ready_for_resume_event);
2249
2250 /* Reset the event for the next suspend. */
2251 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2252
2253 return 0;
2254}
2255#endif /* CONFIG_PM_SLEEP */
2256
2257static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2258 {"VMBUS", 0},
2259 {"VMBus", 0},
2260 {"", 0},
2261};
2262MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2263
2264/*
2265 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than
2266 * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the
2267 * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the
2268 * pci "noirq" restore callback runs before "non-noirq" callbacks (see
2269 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2270 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2271 * resume callback must also run via the "noirq" callbacks.
2272 */
2273static const struct dev_pm_ops vmbus_bus_pm = {
2274 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume)
2275};
2276
2277static struct acpi_driver vmbus_acpi_driver = {
2278 .name = "vmbus",
2279 .ids = vmbus_acpi_device_ids,
2280 .ops = {
2281 .add = vmbus_acpi_add,
2282 .remove = vmbus_acpi_remove,
2283 },
2284 .drv.pm = &vmbus_bus_pm,
2285};
2286
2287static void hv_kexec_handler(void)
2288{
2289 hv_stimer_global_cleanup();
2290 vmbus_initiate_unload(false);
2291 vmbus_connection.conn_state = DISCONNECTED;
2292 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2293 mb();
2294 cpuhp_remove_state(hyperv_cpuhp_online);
2295 hyperv_cleanup();
2296};
2297
2298static void hv_crash_handler(struct pt_regs *regs)
2299{
2300 int cpu;
2301
2302 vmbus_initiate_unload(true);
2303 /*
2304 * In crash handler we can't schedule synic cleanup for all CPUs,
2305 * doing the cleanup for current CPU only. This should be sufficient
2306 * for kdump.
2307 */
2308 vmbus_connection.conn_state = DISCONNECTED;
2309 cpu = smp_processor_id();
2310 hv_stimer_cleanup(cpu);
2311 hv_synic_cleanup(cpu);
2312 hyperv_cleanup();
2313};
2314
2315static int hv_synic_suspend(void)
2316{
2317 /*
2318 * When we reach here, all the non-boot CPUs have been offlined, and
2319 * the stimers on them have been unbound in hv_synic_cleanup() ->
2320 * hv_stimer_cleanup() -> clockevents_unbind_device().
2321 *
2322 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. Here
2323 * we do not unbind the stimer on CPU0 because: 1) it's unnecessary
2324 * because the interrupts remain disabled between syscore_suspend()
2325 * and syscore_resume(): see create_image() and resume_target_kernel();
2326 * 2) the stimer on CPU0 is automatically disabled later by
2327 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2328 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown(); 3) a warning
2329 * would be triggered if we call clockevents_unbind_device(), which
2330 * may sleep, in an interrupts-disabled context. So, we intentionally
2331 * don't call hv_stimer_cleanup(0) here.
2332 */
2333
2334 hv_synic_disable_regs(0);
2335
2336 return 0;
2337}
2338
2339static void hv_synic_resume(void)
2340{
2341 hv_synic_enable_regs(0);
2342
2343 /*
2344 * Note: we don't need to call hv_stimer_init(0), because the timer
2345 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2346 * automatically re-enabled in timekeeping_resume().
2347 */
2348}
2349
2350/* The callbacks run only on CPU0, with irqs_disabled. */
2351static struct syscore_ops hv_synic_syscore_ops = {
2352 .suspend = hv_synic_suspend,
2353 .resume = hv_synic_resume,
2354};
2355
2356static int __init hv_acpi_init(void)
2357{
2358 int ret, t;
2359
2360 if (!hv_is_hyperv_initialized())
2361 return -ENODEV;
2362
2363 init_completion(&probe_event);
2364
2365 /*
2366 * Get ACPI resources first.
2367 */
2368 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2369
2370 if (ret)
2371 return ret;
2372
2373 t = wait_for_completion_timeout(&probe_event, 5*HZ);
2374 if (t == 0) {
2375 ret = -ETIMEDOUT;
2376 goto cleanup;
2377 }
2378
2379 ret = vmbus_bus_init();
2380 if (ret)
2381 goto cleanup;
2382
2383 hv_setup_kexec_handler(hv_kexec_handler);
2384 hv_setup_crash_handler(hv_crash_handler);
2385
2386 register_syscore_ops(&hv_synic_syscore_ops);
2387
2388 return 0;
2389
2390cleanup:
2391 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2392 hv_acpi_dev = NULL;
2393 return ret;
2394}
2395
2396static void __exit vmbus_exit(void)
2397{
2398 int cpu;
2399
2400 unregister_syscore_ops(&hv_synic_syscore_ops);
2401
2402 hv_remove_kexec_handler();
2403 hv_remove_crash_handler();
2404 vmbus_connection.conn_state = DISCONNECTED;
2405 hv_stimer_global_cleanup();
2406 vmbus_disconnect();
2407 hv_remove_vmbus_irq();
2408 for_each_online_cpu(cpu) {
2409 struct hv_per_cpu_context *hv_cpu
2410 = per_cpu_ptr(hv_context.cpu_context, cpu);
2411
2412 tasklet_kill(&hv_cpu->msg_dpc);
2413 }
2414 vmbus_free_channels();
2415
2416 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2417 kmsg_dump_unregister(&hv_kmsg_dumper);
2418 unregister_die_notifier(&hyperv_die_block);
2419 atomic_notifier_chain_unregister(&panic_notifier_list,
2420 &hyperv_panic_block);
2421 }
2422
2423 free_page((unsigned long)hv_panic_page);
2424 unregister_sysctl_table(hv_ctl_table_hdr);
2425 hv_ctl_table_hdr = NULL;
2426 bus_unregister(&hv_bus);
2427
2428 cpuhp_remove_state(hyperv_cpuhp_online);
2429 hv_synic_free();
2430 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2431}
2432
2433
2434MODULE_LICENSE("GPL");
2435MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2436
2437subsys_initcall(hv_acpi_init);
2438module_exit(vmbus_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/device.h>
15#include <linux/interrupt.h>
16#include <linux/sysctl.h>
17#include <linux/slab.h>
18#include <linux/acpi.h>
19#include <linux/completion.h>
20#include <linux/hyperv.h>
21#include <linux/kernel_stat.h>
22#include <linux/clockchips.h>
23#include <linux/cpu.h>
24#include <linux/sched/task_stack.h>
25
26#include <linux/delay.h>
27#include <linux/notifier.h>
28#include <linux/ptrace.h>
29#include <linux/screen_info.h>
30#include <linux/kdebug.h>
31#include <linux/efi.h>
32#include <linux/random.h>
33#include <linux/kernel.h>
34#include <linux/syscore_ops.h>
35#include <clocksource/hyperv_timer.h>
36#include "hyperv_vmbus.h"
37
38struct vmbus_dynid {
39 struct list_head node;
40 struct hv_vmbus_device_id id;
41};
42
43static struct acpi_device *hv_acpi_dev;
44
45static struct completion probe_event;
46
47static int hyperv_cpuhp_online;
48
49static void *hv_panic_page;
50
51/*
52 * Boolean to control whether to report panic messages over Hyper-V.
53 *
54 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
55 */
56static int sysctl_record_panic_msg = 1;
57
58static int hyperv_report_reg(void)
59{
60 return !sysctl_record_panic_msg || !hv_panic_page;
61}
62
63static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
64 void *args)
65{
66 struct pt_regs *regs;
67
68 vmbus_initiate_unload(true);
69
70 /*
71 * Hyper-V should be notified only once about a panic. If we will be
72 * doing hyperv_report_panic_msg() later with kmsg data, don't do
73 * the notification here.
74 */
75 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
76 && hyperv_report_reg()) {
77 regs = current_pt_regs();
78 hyperv_report_panic(regs, val, false);
79 }
80 return NOTIFY_DONE;
81}
82
83static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
84 void *args)
85{
86 struct die_args *die = (struct die_args *)args;
87 struct pt_regs *regs = die->regs;
88
89 /* Don't notify Hyper-V if the die event is other than oops */
90 if (val != DIE_OOPS)
91 return NOTIFY_DONE;
92
93 /*
94 * Hyper-V should be notified only once about a panic. If we will be
95 * doing hyperv_report_panic_msg() later with kmsg data, don't do
96 * the notification here.
97 */
98 if (hyperv_report_reg())
99 hyperv_report_panic(regs, val, true);
100 return NOTIFY_DONE;
101}
102
103static struct notifier_block hyperv_die_block = {
104 .notifier_call = hyperv_die_event,
105};
106static struct notifier_block hyperv_panic_block = {
107 .notifier_call = hyperv_panic_event,
108};
109
110static const char *fb_mmio_name = "fb_range";
111static struct resource *fb_mmio;
112static struct resource *hyperv_mmio;
113static DEFINE_MUTEX(hyperv_mmio_lock);
114
115static int vmbus_exists(void)
116{
117 if (hv_acpi_dev == NULL)
118 return -ENODEV;
119
120 return 0;
121}
122
123static u8 channel_monitor_group(const struct vmbus_channel *channel)
124{
125 return (u8)channel->offermsg.monitorid / 32;
126}
127
128static u8 channel_monitor_offset(const struct vmbus_channel *channel)
129{
130 return (u8)channel->offermsg.monitorid % 32;
131}
132
133static u32 channel_pending(const struct vmbus_channel *channel,
134 const struct hv_monitor_page *monitor_page)
135{
136 u8 monitor_group = channel_monitor_group(channel);
137
138 return monitor_page->trigger_group[monitor_group].pending;
139}
140
141static u32 channel_latency(const struct vmbus_channel *channel,
142 const struct hv_monitor_page *monitor_page)
143{
144 u8 monitor_group = channel_monitor_group(channel);
145 u8 monitor_offset = channel_monitor_offset(channel);
146
147 return monitor_page->latency[monitor_group][monitor_offset];
148}
149
150static u32 channel_conn_id(struct vmbus_channel *channel,
151 struct hv_monitor_page *monitor_page)
152{
153 u8 monitor_group = channel_monitor_group(channel);
154 u8 monitor_offset = channel_monitor_offset(channel);
155 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
156}
157
158static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
159 char *buf)
160{
161 struct hv_device *hv_dev = device_to_hv_device(dev);
162
163 if (!hv_dev->channel)
164 return -ENODEV;
165 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
166}
167static DEVICE_ATTR_RO(id);
168
169static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
170 char *buf)
171{
172 struct hv_device *hv_dev = device_to_hv_device(dev);
173
174 if (!hv_dev->channel)
175 return -ENODEV;
176 return sprintf(buf, "%d\n", hv_dev->channel->state);
177}
178static DEVICE_ATTR_RO(state);
179
180static ssize_t monitor_id_show(struct device *dev,
181 struct device_attribute *dev_attr, char *buf)
182{
183 struct hv_device *hv_dev = device_to_hv_device(dev);
184
185 if (!hv_dev->channel)
186 return -ENODEV;
187 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
188}
189static DEVICE_ATTR_RO(monitor_id);
190
191static ssize_t class_id_show(struct device *dev,
192 struct device_attribute *dev_attr, char *buf)
193{
194 struct hv_device *hv_dev = device_to_hv_device(dev);
195
196 if (!hv_dev->channel)
197 return -ENODEV;
198 return sprintf(buf, "{%pUl}\n",
199 &hv_dev->channel->offermsg.offer.if_type);
200}
201static DEVICE_ATTR_RO(class_id);
202
203static ssize_t device_id_show(struct device *dev,
204 struct device_attribute *dev_attr, char *buf)
205{
206 struct hv_device *hv_dev = device_to_hv_device(dev);
207
208 if (!hv_dev->channel)
209 return -ENODEV;
210 return sprintf(buf, "{%pUl}\n",
211 &hv_dev->channel->offermsg.offer.if_instance);
212}
213static DEVICE_ATTR_RO(device_id);
214
215static ssize_t modalias_show(struct device *dev,
216 struct device_attribute *dev_attr, char *buf)
217{
218 struct hv_device *hv_dev = device_to_hv_device(dev);
219
220 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
221}
222static DEVICE_ATTR_RO(modalias);
223
224#ifdef CONFIG_NUMA
225static ssize_t numa_node_show(struct device *dev,
226 struct device_attribute *attr, char *buf)
227{
228 struct hv_device *hv_dev = device_to_hv_device(dev);
229
230 if (!hv_dev->channel)
231 return -ENODEV;
232
233 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
234}
235static DEVICE_ATTR_RO(numa_node);
236#endif
237
238static ssize_t server_monitor_pending_show(struct device *dev,
239 struct device_attribute *dev_attr,
240 char *buf)
241{
242 struct hv_device *hv_dev = device_to_hv_device(dev);
243
244 if (!hv_dev->channel)
245 return -ENODEV;
246 return sprintf(buf, "%d\n",
247 channel_pending(hv_dev->channel,
248 vmbus_connection.monitor_pages[0]));
249}
250static DEVICE_ATTR_RO(server_monitor_pending);
251
252static ssize_t client_monitor_pending_show(struct device *dev,
253 struct device_attribute *dev_attr,
254 char *buf)
255{
256 struct hv_device *hv_dev = device_to_hv_device(dev);
257
258 if (!hv_dev->channel)
259 return -ENODEV;
260 return sprintf(buf, "%d\n",
261 channel_pending(hv_dev->channel,
262 vmbus_connection.monitor_pages[1]));
263}
264static DEVICE_ATTR_RO(client_monitor_pending);
265
266static ssize_t server_monitor_latency_show(struct device *dev,
267 struct device_attribute *dev_attr,
268 char *buf)
269{
270 struct hv_device *hv_dev = device_to_hv_device(dev);
271
272 if (!hv_dev->channel)
273 return -ENODEV;
274 return sprintf(buf, "%d\n",
275 channel_latency(hv_dev->channel,
276 vmbus_connection.monitor_pages[0]));
277}
278static DEVICE_ATTR_RO(server_monitor_latency);
279
280static ssize_t client_monitor_latency_show(struct device *dev,
281 struct device_attribute *dev_attr,
282 char *buf)
283{
284 struct hv_device *hv_dev = device_to_hv_device(dev);
285
286 if (!hv_dev->channel)
287 return -ENODEV;
288 return sprintf(buf, "%d\n",
289 channel_latency(hv_dev->channel,
290 vmbus_connection.monitor_pages[1]));
291}
292static DEVICE_ATTR_RO(client_monitor_latency);
293
294static ssize_t server_monitor_conn_id_show(struct device *dev,
295 struct device_attribute *dev_attr,
296 char *buf)
297{
298 struct hv_device *hv_dev = device_to_hv_device(dev);
299
300 if (!hv_dev->channel)
301 return -ENODEV;
302 return sprintf(buf, "%d\n",
303 channel_conn_id(hv_dev->channel,
304 vmbus_connection.monitor_pages[0]));
305}
306static DEVICE_ATTR_RO(server_monitor_conn_id);
307
308static ssize_t client_monitor_conn_id_show(struct device *dev,
309 struct device_attribute *dev_attr,
310 char *buf)
311{
312 struct hv_device *hv_dev = device_to_hv_device(dev);
313
314 if (!hv_dev->channel)
315 return -ENODEV;
316 return sprintf(buf, "%d\n",
317 channel_conn_id(hv_dev->channel,
318 vmbus_connection.monitor_pages[1]));
319}
320static DEVICE_ATTR_RO(client_monitor_conn_id);
321
322static ssize_t out_intr_mask_show(struct device *dev,
323 struct device_attribute *dev_attr, char *buf)
324{
325 struct hv_device *hv_dev = device_to_hv_device(dev);
326 struct hv_ring_buffer_debug_info outbound;
327 int ret;
328
329 if (!hv_dev->channel)
330 return -ENODEV;
331
332 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
333 &outbound);
334 if (ret < 0)
335 return ret;
336
337 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
338}
339static DEVICE_ATTR_RO(out_intr_mask);
340
341static ssize_t out_read_index_show(struct device *dev,
342 struct device_attribute *dev_attr, char *buf)
343{
344 struct hv_device *hv_dev = device_to_hv_device(dev);
345 struct hv_ring_buffer_debug_info outbound;
346 int ret;
347
348 if (!hv_dev->channel)
349 return -ENODEV;
350
351 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
352 &outbound);
353 if (ret < 0)
354 return ret;
355 return sprintf(buf, "%d\n", outbound.current_read_index);
356}
357static DEVICE_ATTR_RO(out_read_index);
358
359static ssize_t out_write_index_show(struct device *dev,
360 struct device_attribute *dev_attr,
361 char *buf)
362{
363 struct hv_device *hv_dev = device_to_hv_device(dev);
364 struct hv_ring_buffer_debug_info outbound;
365 int ret;
366
367 if (!hv_dev->channel)
368 return -ENODEV;
369
370 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
371 &outbound);
372 if (ret < 0)
373 return ret;
374 return sprintf(buf, "%d\n", outbound.current_write_index);
375}
376static DEVICE_ATTR_RO(out_write_index);
377
378static ssize_t out_read_bytes_avail_show(struct device *dev,
379 struct device_attribute *dev_attr,
380 char *buf)
381{
382 struct hv_device *hv_dev = device_to_hv_device(dev);
383 struct hv_ring_buffer_debug_info outbound;
384 int ret;
385
386 if (!hv_dev->channel)
387 return -ENODEV;
388
389 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
390 &outbound);
391 if (ret < 0)
392 return ret;
393 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
394}
395static DEVICE_ATTR_RO(out_read_bytes_avail);
396
397static ssize_t out_write_bytes_avail_show(struct device *dev,
398 struct device_attribute *dev_attr,
399 char *buf)
400{
401 struct hv_device *hv_dev = device_to_hv_device(dev);
402 struct hv_ring_buffer_debug_info outbound;
403 int ret;
404
405 if (!hv_dev->channel)
406 return -ENODEV;
407
408 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
409 &outbound);
410 if (ret < 0)
411 return ret;
412 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
413}
414static DEVICE_ATTR_RO(out_write_bytes_avail);
415
416static ssize_t in_intr_mask_show(struct device *dev,
417 struct device_attribute *dev_attr, char *buf)
418{
419 struct hv_device *hv_dev = device_to_hv_device(dev);
420 struct hv_ring_buffer_debug_info inbound;
421 int ret;
422
423 if (!hv_dev->channel)
424 return -ENODEV;
425
426 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
427 if (ret < 0)
428 return ret;
429
430 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
431}
432static DEVICE_ATTR_RO(in_intr_mask);
433
434static ssize_t in_read_index_show(struct device *dev,
435 struct device_attribute *dev_attr, char *buf)
436{
437 struct hv_device *hv_dev = device_to_hv_device(dev);
438 struct hv_ring_buffer_debug_info inbound;
439 int ret;
440
441 if (!hv_dev->channel)
442 return -ENODEV;
443
444 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
445 if (ret < 0)
446 return ret;
447
448 return sprintf(buf, "%d\n", inbound.current_read_index);
449}
450static DEVICE_ATTR_RO(in_read_index);
451
452static ssize_t in_write_index_show(struct device *dev,
453 struct device_attribute *dev_attr, char *buf)
454{
455 struct hv_device *hv_dev = device_to_hv_device(dev);
456 struct hv_ring_buffer_debug_info inbound;
457 int ret;
458
459 if (!hv_dev->channel)
460 return -ENODEV;
461
462 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
463 if (ret < 0)
464 return ret;
465
466 return sprintf(buf, "%d\n", inbound.current_write_index);
467}
468static DEVICE_ATTR_RO(in_write_index);
469
470static ssize_t in_read_bytes_avail_show(struct device *dev,
471 struct device_attribute *dev_attr,
472 char *buf)
473{
474 struct hv_device *hv_dev = device_to_hv_device(dev);
475 struct hv_ring_buffer_debug_info inbound;
476 int ret;
477
478 if (!hv_dev->channel)
479 return -ENODEV;
480
481 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
482 if (ret < 0)
483 return ret;
484
485 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
486}
487static DEVICE_ATTR_RO(in_read_bytes_avail);
488
489static ssize_t in_write_bytes_avail_show(struct device *dev,
490 struct device_attribute *dev_attr,
491 char *buf)
492{
493 struct hv_device *hv_dev = device_to_hv_device(dev);
494 struct hv_ring_buffer_debug_info inbound;
495 int ret;
496
497 if (!hv_dev->channel)
498 return -ENODEV;
499
500 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
501 if (ret < 0)
502 return ret;
503
504 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
505}
506static DEVICE_ATTR_RO(in_write_bytes_avail);
507
508static ssize_t channel_vp_mapping_show(struct device *dev,
509 struct device_attribute *dev_attr,
510 char *buf)
511{
512 struct hv_device *hv_dev = device_to_hv_device(dev);
513 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
514 int buf_size = PAGE_SIZE, n_written, tot_written;
515 struct list_head *cur;
516
517 if (!channel)
518 return -ENODEV;
519
520 mutex_lock(&vmbus_connection.channel_mutex);
521
522 tot_written = snprintf(buf, buf_size, "%u:%u\n",
523 channel->offermsg.child_relid, channel->target_cpu);
524
525 list_for_each(cur, &channel->sc_list) {
526 if (tot_written >= buf_size - 1)
527 break;
528
529 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
530 n_written = scnprintf(buf + tot_written,
531 buf_size - tot_written,
532 "%u:%u\n",
533 cur_sc->offermsg.child_relid,
534 cur_sc->target_cpu);
535 tot_written += n_written;
536 }
537
538 mutex_unlock(&vmbus_connection.channel_mutex);
539
540 return tot_written;
541}
542static DEVICE_ATTR_RO(channel_vp_mapping);
543
544static ssize_t vendor_show(struct device *dev,
545 struct device_attribute *dev_attr,
546 char *buf)
547{
548 struct hv_device *hv_dev = device_to_hv_device(dev);
549 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
550}
551static DEVICE_ATTR_RO(vendor);
552
553static ssize_t device_show(struct device *dev,
554 struct device_attribute *dev_attr,
555 char *buf)
556{
557 struct hv_device *hv_dev = device_to_hv_device(dev);
558 return sprintf(buf, "0x%x\n", hv_dev->device_id);
559}
560static DEVICE_ATTR_RO(device);
561
562static ssize_t driver_override_store(struct device *dev,
563 struct device_attribute *attr,
564 const char *buf, size_t count)
565{
566 struct hv_device *hv_dev = device_to_hv_device(dev);
567 char *driver_override, *old, *cp;
568
569 /* We need to keep extra room for a newline */
570 if (count >= (PAGE_SIZE - 1))
571 return -EINVAL;
572
573 driver_override = kstrndup(buf, count, GFP_KERNEL);
574 if (!driver_override)
575 return -ENOMEM;
576
577 cp = strchr(driver_override, '\n');
578 if (cp)
579 *cp = '\0';
580
581 device_lock(dev);
582 old = hv_dev->driver_override;
583 if (strlen(driver_override)) {
584 hv_dev->driver_override = driver_override;
585 } else {
586 kfree(driver_override);
587 hv_dev->driver_override = NULL;
588 }
589 device_unlock(dev);
590
591 kfree(old);
592
593 return count;
594}
595
596static ssize_t driver_override_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598{
599 struct hv_device *hv_dev = device_to_hv_device(dev);
600 ssize_t len;
601
602 device_lock(dev);
603 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
604 device_unlock(dev);
605
606 return len;
607}
608static DEVICE_ATTR_RW(driver_override);
609
610/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
611static struct attribute *vmbus_dev_attrs[] = {
612 &dev_attr_id.attr,
613 &dev_attr_state.attr,
614 &dev_attr_monitor_id.attr,
615 &dev_attr_class_id.attr,
616 &dev_attr_device_id.attr,
617 &dev_attr_modalias.attr,
618#ifdef CONFIG_NUMA
619 &dev_attr_numa_node.attr,
620#endif
621 &dev_attr_server_monitor_pending.attr,
622 &dev_attr_client_monitor_pending.attr,
623 &dev_attr_server_monitor_latency.attr,
624 &dev_attr_client_monitor_latency.attr,
625 &dev_attr_server_monitor_conn_id.attr,
626 &dev_attr_client_monitor_conn_id.attr,
627 &dev_attr_out_intr_mask.attr,
628 &dev_attr_out_read_index.attr,
629 &dev_attr_out_write_index.attr,
630 &dev_attr_out_read_bytes_avail.attr,
631 &dev_attr_out_write_bytes_avail.attr,
632 &dev_attr_in_intr_mask.attr,
633 &dev_attr_in_read_index.attr,
634 &dev_attr_in_write_index.attr,
635 &dev_attr_in_read_bytes_avail.attr,
636 &dev_attr_in_write_bytes_avail.attr,
637 &dev_attr_channel_vp_mapping.attr,
638 &dev_attr_vendor.attr,
639 &dev_attr_device.attr,
640 &dev_attr_driver_override.attr,
641 NULL,
642};
643
644/*
645 * Device-level attribute_group callback function. Returns the permission for
646 * each attribute, and returns 0 if an attribute is not visible.
647 */
648static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
649 struct attribute *attr, int idx)
650{
651 struct device *dev = kobj_to_dev(kobj);
652 const struct hv_device *hv_dev = device_to_hv_device(dev);
653
654 /* Hide the monitor attributes if the monitor mechanism is not used. */
655 if (!hv_dev->channel->offermsg.monitor_allocated &&
656 (attr == &dev_attr_monitor_id.attr ||
657 attr == &dev_attr_server_monitor_pending.attr ||
658 attr == &dev_attr_client_monitor_pending.attr ||
659 attr == &dev_attr_server_monitor_latency.attr ||
660 attr == &dev_attr_client_monitor_latency.attr ||
661 attr == &dev_attr_server_monitor_conn_id.attr ||
662 attr == &dev_attr_client_monitor_conn_id.attr))
663 return 0;
664
665 return attr->mode;
666}
667
668static const struct attribute_group vmbus_dev_group = {
669 .attrs = vmbus_dev_attrs,
670 .is_visible = vmbus_dev_attr_is_visible
671};
672__ATTRIBUTE_GROUPS(vmbus_dev);
673
674/*
675 * vmbus_uevent - add uevent for our device
676 *
677 * This routine is invoked when a device is added or removed on the vmbus to
678 * generate a uevent to udev in the userspace. The udev will then look at its
679 * rule and the uevent generated here to load the appropriate driver
680 *
681 * The alias string will be of the form vmbus:guid where guid is the string
682 * representation of the device guid (each byte of the guid will be
683 * represented with two hex characters.
684 */
685static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
686{
687 struct hv_device *dev = device_to_hv_device(device);
688 const char *format = "MODALIAS=vmbus:%*phN";
689
690 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
691}
692
693static const struct hv_vmbus_device_id *
694hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
695{
696 if (id == NULL)
697 return NULL; /* empty device table */
698
699 for (; !guid_is_null(&id->guid); id++)
700 if (guid_equal(&id->guid, guid))
701 return id;
702
703 return NULL;
704}
705
706static const struct hv_vmbus_device_id *
707hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
708{
709 const struct hv_vmbus_device_id *id = NULL;
710 struct vmbus_dynid *dynid;
711
712 spin_lock(&drv->dynids.lock);
713 list_for_each_entry(dynid, &drv->dynids.list, node) {
714 if (guid_equal(&dynid->id.guid, guid)) {
715 id = &dynid->id;
716 break;
717 }
718 }
719 spin_unlock(&drv->dynids.lock);
720
721 return id;
722}
723
724static const struct hv_vmbus_device_id vmbus_device_null;
725
726/*
727 * Return a matching hv_vmbus_device_id pointer.
728 * If there is no match, return NULL.
729 */
730static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
731 struct hv_device *dev)
732{
733 const guid_t *guid = &dev->dev_type;
734 const struct hv_vmbus_device_id *id;
735
736 /* When driver_override is set, only bind to the matching driver */
737 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
738 return NULL;
739
740 /* Look at the dynamic ids first, before the static ones */
741 id = hv_vmbus_dynid_match(drv, guid);
742 if (!id)
743 id = hv_vmbus_dev_match(drv->id_table, guid);
744
745 /* driver_override will always match, send a dummy id */
746 if (!id && dev->driver_override)
747 id = &vmbus_device_null;
748
749 return id;
750}
751
752/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
753static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
754{
755 struct vmbus_dynid *dynid;
756
757 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
758 if (!dynid)
759 return -ENOMEM;
760
761 dynid->id.guid = *guid;
762
763 spin_lock(&drv->dynids.lock);
764 list_add_tail(&dynid->node, &drv->dynids.list);
765 spin_unlock(&drv->dynids.lock);
766
767 return driver_attach(&drv->driver);
768}
769
770static void vmbus_free_dynids(struct hv_driver *drv)
771{
772 struct vmbus_dynid *dynid, *n;
773
774 spin_lock(&drv->dynids.lock);
775 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
776 list_del(&dynid->node);
777 kfree(dynid);
778 }
779 spin_unlock(&drv->dynids.lock);
780}
781
782/*
783 * store_new_id - sysfs frontend to vmbus_add_dynid()
784 *
785 * Allow GUIDs to be added to an existing driver via sysfs.
786 */
787static ssize_t new_id_store(struct device_driver *driver, const char *buf,
788 size_t count)
789{
790 struct hv_driver *drv = drv_to_hv_drv(driver);
791 guid_t guid;
792 ssize_t retval;
793
794 retval = guid_parse(buf, &guid);
795 if (retval)
796 return retval;
797
798 if (hv_vmbus_dynid_match(drv, &guid))
799 return -EEXIST;
800
801 retval = vmbus_add_dynid(drv, &guid);
802 if (retval)
803 return retval;
804 return count;
805}
806static DRIVER_ATTR_WO(new_id);
807
808/*
809 * store_remove_id - remove a PCI device ID from this driver
810 *
811 * Removes a dynamic pci device ID to this driver.
812 */
813static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
814 size_t count)
815{
816 struct hv_driver *drv = drv_to_hv_drv(driver);
817 struct vmbus_dynid *dynid, *n;
818 guid_t guid;
819 ssize_t retval;
820
821 retval = guid_parse(buf, &guid);
822 if (retval)
823 return retval;
824
825 retval = -ENODEV;
826 spin_lock(&drv->dynids.lock);
827 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
828 struct hv_vmbus_device_id *id = &dynid->id;
829
830 if (guid_equal(&id->guid, &guid)) {
831 list_del(&dynid->node);
832 kfree(dynid);
833 retval = count;
834 break;
835 }
836 }
837 spin_unlock(&drv->dynids.lock);
838
839 return retval;
840}
841static DRIVER_ATTR_WO(remove_id);
842
843static struct attribute *vmbus_drv_attrs[] = {
844 &driver_attr_new_id.attr,
845 &driver_attr_remove_id.attr,
846 NULL,
847};
848ATTRIBUTE_GROUPS(vmbus_drv);
849
850
851/*
852 * vmbus_match - Attempt to match the specified device to the specified driver
853 */
854static int vmbus_match(struct device *device, struct device_driver *driver)
855{
856 struct hv_driver *drv = drv_to_hv_drv(driver);
857 struct hv_device *hv_dev = device_to_hv_device(device);
858
859 /* The hv_sock driver handles all hv_sock offers. */
860 if (is_hvsock_channel(hv_dev->channel))
861 return drv->hvsock;
862
863 if (hv_vmbus_get_id(drv, hv_dev))
864 return 1;
865
866 return 0;
867}
868
869/*
870 * vmbus_probe - Add the new vmbus's child device
871 */
872static int vmbus_probe(struct device *child_device)
873{
874 int ret = 0;
875 struct hv_driver *drv =
876 drv_to_hv_drv(child_device->driver);
877 struct hv_device *dev = device_to_hv_device(child_device);
878 const struct hv_vmbus_device_id *dev_id;
879
880 dev_id = hv_vmbus_get_id(drv, dev);
881 if (drv->probe) {
882 ret = drv->probe(dev, dev_id);
883 if (ret != 0)
884 pr_err("probe failed for device %s (%d)\n",
885 dev_name(child_device), ret);
886
887 } else {
888 pr_err("probe not set for driver %s\n",
889 dev_name(child_device));
890 ret = -ENODEV;
891 }
892 return ret;
893}
894
895/*
896 * vmbus_remove - Remove a vmbus device
897 */
898static int vmbus_remove(struct device *child_device)
899{
900 struct hv_driver *drv;
901 struct hv_device *dev = device_to_hv_device(child_device);
902
903 if (child_device->driver) {
904 drv = drv_to_hv_drv(child_device->driver);
905 if (drv->remove)
906 drv->remove(dev);
907 }
908
909 return 0;
910}
911
912
913/*
914 * vmbus_shutdown - Shutdown a vmbus device
915 */
916static void vmbus_shutdown(struct device *child_device)
917{
918 struct hv_driver *drv;
919 struct hv_device *dev = device_to_hv_device(child_device);
920
921
922 /* The device may not be attached yet */
923 if (!child_device->driver)
924 return;
925
926 drv = drv_to_hv_drv(child_device->driver);
927
928 if (drv->shutdown)
929 drv->shutdown(dev);
930}
931
932#ifdef CONFIG_PM_SLEEP
933/*
934 * vmbus_suspend - Suspend a vmbus device
935 */
936static int vmbus_suspend(struct device *child_device)
937{
938 struct hv_driver *drv;
939 struct hv_device *dev = device_to_hv_device(child_device);
940
941 /* The device may not be attached yet */
942 if (!child_device->driver)
943 return 0;
944
945 drv = drv_to_hv_drv(child_device->driver);
946 if (!drv->suspend)
947 return -EOPNOTSUPP;
948
949 return drv->suspend(dev);
950}
951
952/*
953 * vmbus_resume - Resume a vmbus device
954 */
955static int vmbus_resume(struct device *child_device)
956{
957 struct hv_driver *drv;
958 struct hv_device *dev = device_to_hv_device(child_device);
959
960 /* The device may not be attached yet */
961 if (!child_device->driver)
962 return 0;
963
964 drv = drv_to_hv_drv(child_device->driver);
965 if (!drv->resume)
966 return -EOPNOTSUPP;
967
968 return drv->resume(dev);
969}
970#else
971#define vmbus_suspend NULL
972#define vmbus_resume NULL
973#endif /* CONFIG_PM_SLEEP */
974
975/*
976 * vmbus_device_release - Final callback release of the vmbus child device
977 */
978static void vmbus_device_release(struct device *device)
979{
980 struct hv_device *hv_dev = device_to_hv_device(device);
981 struct vmbus_channel *channel = hv_dev->channel;
982
983 hv_debug_rm_dev_dir(hv_dev);
984
985 mutex_lock(&vmbus_connection.channel_mutex);
986 hv_process_channel_removal(channel);
987 mutex_unlock(&vmbus_connection.channel_mutex);
988 kfree(hv_dev);
989}
990
991/*
992 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
993 *
994 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
995 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
996 * is no way to wake up a Generation-2 VM.
997 *
998 * The other 4 ops are for hibernation.
999 */
1000
1001static const struct dev_pm_ops vmbus_pm = {
1002 .suspend_noirq = NULL,
1003 .resume_noirq = NULL,
1004 .freeze_noirq = vmbus_suspend,
1005 .thaw_noirq = vmbus_resume,
1006 .poweroff_noirq = vmbus_suspend,
1007 .restore_noirq = vmbus_resume,
1008};
1009
1010/* The one and only one */
1011static struct bus_type hv_bus = {
1012 .name = "vmbus",
1013 .match = vmbus_match,
1014 .shutdown = vmbus_shutdown,
1015 .remove = vmbus_remove,
1016 .probe = vmbus_probe,
1017 .uevent = vmbus_uevent,
1018 .dev_groups = vmbus_dev_groups,
1019 .drv_groups = vmbus_drv_groups,
1020 .pm = &vmbus_pm,
1021};
1022
1023struct onmessage_work_context {
1024 struct work_struct work;
1025 struct {
1026 struct hv_message_header header;
1027 u8 payload[];
1028 } msg;
1029};
1030
1031static void vmbus_onmessage_work(struct work_struct *work)
1032{
1033 struct onmessage_work_context *ctx;
1034
1035 /* Do not process messages if we're in DISCONNECTED state */
1036 if (vmbus_connection.conn_state == DISCONNECTED)
1037 return;
1038
1039 ctx = container_of(work, struct onmessage_work_context,
1040 work);
1041 vmbus_onmessage((struct vmbus_channel_message_header *)
1042 &ctx->msg.payload);
1043 kfree(ctx);
1044}
1045
1046void vmbus_on_msg_dpc(unsigned long data)
1047{
1048 struct hv_per_cpu_context *hv_cpu = (void *)data;
1049 void *page_addr = hv_cpu->synic_message_page;
1050 struct hv_message *msg = (struct hv_message *)page_addr +
1051 VMBUS_MESSAGE_SINT;
1052 struct vmbus_channel_message_header *hdr;
1053 const struct vmbus_channel_message_table_entry *entry;
1054 struct onmessage_work_context *ctx;
1055 u32 message_type = msg->header.message_type;
1056
1057 /*
1058 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1059 * it is being used in 'struct vmbus_channel_message_header' definition
1060 * which is supposed to match hypervisor ABI.
1061 */
1062 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1063
1064 if (message_type == HVMSG_NONE)
1065 /* no msg */
1066 return;
1067
1068 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1069
1070 trace_vmbus_on_msg_dpc(hdr);
1071
1072 if (hdr->msgtype >= CHANNELMSG_COUNT) {
1073 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1074 goto msg_handled;
1075 }
1076
1077 if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1078 WARN_ONCE(1, "payload size is too large (%d)\n",
1079 msg->header.payload_size);
1080 goto msg_handled;
1081 }
1082
1083 entry = &channel_message_table[hdr->msgtype];
1084
1085 if (!entry->message_handler)
1086 goto msg_handled;
1087
1088 if (msg->header.payload_size < entry->min_payload_len) {
1089 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n",
1090 hdr->msgtype, msg->header.payload_size);
1091 goto msg_handled;
1092 }
1093
1094 if (entry->handler_type == VMHT_BLOCKING) {
1095 ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
1096 GFP_ATOMIC);
1097 if (ctx == NULL)
1098 return;
1099
1100 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1101 memcpy(&ctx->msg, msg, sizeof(msg->header) +
1102 msg->header.payload_size);
1103
1104 /*
1105 * The host can generate a rescind message while we
1106 * may still be handling the original offer. We deal with
1107 * this condition by relying on the synchronization provided
1108 * by offer_in_progress and by channel_mutex. See also the
1109 * inline comments in vmbus_onoffer_rescind().
1110 */
1111 switch (hdr->msgtype) {
1112 case CHANNELMSG_RESCIND_CHANNELOFFER:
1113 /*
1114 * If we are handling the rescind message;
1115 * schedule the work on the global work queue.
1116 *
1117 * The OFFER message and the RESCIND message should
1118 * not be handled by the same serialized work queue,
1119 * because the OFFER handler may call vmbus_open(),
1120 * which tries to open the channel by sending an
1121 * OPEN_CHANNEL message to the host and waits for
1122 * the host's response; however, if the host has
1123 * rescinded the channel before it receives the
1124 * OPEN_CHANNEL message, the host just silently
1125 * ignores the OPEN_CHANNEL message; as a result,
1126 * the guest's OFFER handler hangs for ever, if we
1127 * handle the RESCIND message in the same serialized
1128 * work queue: the RESCIND handler can not start to
1129 * run before the OFFER handler finishes.
1130 */
1131 schedule_work(&ctx->work);
1132 break;
1133
1134 case CHANNELMSG_OFFERCHANNEL:
1135 /*
1136 * The host sends the offer message of a given channel
1137 * before sending the rescind message of the same
1138 * channel. These messages are sent to the guest's
1139 * connect CPU; the guest then starts processing them
1140 * in the tasklet handler on this CPU:
1141 *
1142 * VMBUS_CONNECT_CPU
1143 *
1144 * [vmbus_on_msg_dpc()]
1145 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1146 * queue_work()
1147 * ...
1148 * [vmbus_on_msg_dpc()]
1149 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1150 *
1151 * We rely on the memory-ordering properties of the
1152 * queue_work() and schedule_work() primitives, which
1153 * guarantee that the atomic increment will be visible
1154 * to the CPUs which will execute the offer & rescind
1155 * works by the time these works will start execution.
1156 */
1157 atomic_inc(&vmbus_connection.offer_in_progress);
1158 fallthrough;
1159
1160 default:
1161 queue_work(vmbus_connection.work_queue, &ctx->work);
1162 }
1163 } else
1164 entry->message_handler(hdr);
1165
1166msg_handled:
1167 vmbus_signal_eom(msg, message_type);
1168}
1169
1170#ifdef CONFIG_PM_SLEEP
1171/*
1172 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1173 * hibernation, because hv_sock connections can not persist across hibernation.
1174 */
1175static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1176{
1177 struct onmessage_work_context *ctx;
1178 struct vmbus_channel_rescind_offer *rescind;
1179
1180 WARN_ON(!is_hvsock_channel(channel));
1181
1182 /*
1183 * Allocation size is small and the allocation should really not fail,
1184 * otherwise the state of the hv_sock connections ends up in limbo.
1185 */
1186 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1187 GFP_KERNEL | __GFP_NOFAIL);
1188
1189 /*
1190 * So far, these are not really used by Linux. Just set them to the
1191 * reasonable values conforming to the definitions of the fields.
1192 */
1193 ctx->msg.header.message_type = 1;
1194 ctx->msg.header.payload_size = sizeof(*rescind);
1195
1196 /* These values are actually used by Linux. */
1197 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1198 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1199 rescind->child_relid = channel->offermsg.child_relid;
1200
1201 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1202
1203 queue_work(vmbus_connection.work_queue, &ctx->work);
1204}
1205#endif /* CONFIG_PM_SLEEP */
1206
1207/*
1208 * Schedule all channels with events pending
1209 */
1210static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1211{
1212 unsigned long *recv_int_page;
1213 u32 maxbits, relid;
1214
1215 if (vmbus_proto_version < VERSION_WIN8) {
1216 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1217 recv_int_page = vmbus_connection.recv_int_page;
1218 } else {
1219 /*
1220 * When the host is win8 and beyond, the event page
1221 * can be directly checked to get the id of the channel
1222 * that has the interrupt pending.
1223 */
1224 void *page_addr = hv_cpu->synic_event_page;
1225 union hv_synic_event_flags *event
1226 = (union hv_synic_event_flags *)page_addr +
1227 VMBUS_MESSAGE_SINT;
1228
1229 maxbits = HV_EVENT_FLAGS_COUNT;
1230 recv_int_page = event->flags;
1231 }
1232
1233 if (unlikely(!recv_int_page))
1234 return;
1235
1236 for_each_set_bit(relid, recv_int_page, maxbits) {
1237 void (*callback_fn)(void *context);
1238 struct vmbus_channel *channel;
1239
1240 if (!sync_test_and_clear_bit(relid, recv_int_page))
1241 continue;
1242
1243 /* Special case - vmbus channel protocol msg */
1244 if (relid == 0)
1245 continue;
1246
1247 /*
1248 * Pairs with the kfree_rcu() in vmbus_chan_release().
1249 * Guarantees that the channel data structure doesn't
1250 * get freed while the channel pointer below is being
1251 * dereferenced.
1252 */
1253 rcu_read_lock();
1254
1255 /* Find channel based on relid */
1256 channel = relid2channel(relid);
1257 if (channel == NULL)
1258 goto sched_unlock_rcu;
1259
1260 if (channel->rescind)
1261 goto sched_unlock_rcu;
1262
1263 /*
1264 * Make sure that the ring buffer data structure doesn't get
1265 * freed while we dereference the ring buffer pointer. Test
1266 * for the channel's onchannel_callback being NULL within a
1267 * sched_lock critical section. See also the inline comments
1268 * in vmbus_reset_channel_cb().
1269 */
1270 spin_lock(&channel->sched_lock);
1271
1272 callback_fn = channel->onchannel_callback;
1273 if (unlikely(callback_fn == NULL))
1274 goto sched_unlock;
1275
1276 trace_vmbus_chan_sched(channel);
1277
1278 ++channel->interrupts;
1279
1280 switch (channel->callback_mode) {
1281 case HV_CALL_ISR:
1282 (*callback_fn)(channel->channel_callback_context);
1283 break;
1284
1285 case HV_CALL_BATCHED:
1286 hv_begin_read(&channel->inbound);
1287 fallthrough;
1288 case HV_CALL_DIRECT:
1289 tasklet_schedule(&channel->callback_event);
1290 }
1291
1292sched_unlock:
1293 spin_unlock(&channel->sched_lock);
1294sched_unlock_rcu:
1295 rcu_read_unlock();
1296 }
1297}
1298
1299static void vmbus_isr(void)
1300{
1301 struct hv_per_cpu_context *hv_cpu
1302 = this_cpu_ptr(hv_context.cpu_context);
1303 void *page_addr = hv_cpu->synic_event_page;
1304 struct hv_message *msg;
1305 union hv_synic_event_flags *event;
1306 bool handled = false;
1307
1308 if (unlikely(page_addr == NULL))
1309 return;
1310
1311 event = (union hv_synic_event_flags *)page_addr +
1312 VMBUS_MESSAGE_SINT;
1313 /*
1314 * Check for events before checking for messages. This is the order
1315 * in which events and messages are checked in Windows guests on
1316 * Hyper-V, and the Windows team suggested we do the same.
1317 */
1318
1319 if ((vmbus_proto_version == VERSION_WS2008) ||
1320 (vmbus_proto_version == VERSION_WIN7)) {
1321
1322 /* Since we are a child, we only need to check bit 0 */
1323 if (sync_test_and_clear_bit(0, event->flags))
1324 handled = true;
1325 } else {
1326 /*
1327 * Our host is win8 or above. The signaling mechanism
1328 * has changed and we can directly look at the event page.
1329 * If bit n is set then we have an interrup on the channel
1330 * whose id is n.
1331 */
1332 handled = true;
1333 }
1334
1335 if (handled)
1336 vmbus_chan_sched(hv_cpu);
1337
1338 page_addr = hv_cpu->synic_message_page;
1339 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1340
1341 /* Check if there are actual msgs to be processed */
1342 if (msg->header.message_type != HVMSG_NONE) {
1343 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1344 hv_stimer0_isr();
1345 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1346 } else
1347 tasklet_schedule(&hv_cpu->msg_dpc);
1348 }
1349
1350 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1351}
1352
1353/*
1354 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1355 * buffer and call into Hyper-V to transfer the data.
1356 */
1357static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1358 enum kmsg_dump_reason reason)
1359{
1360 size_t bytes_written;
1361 phys_addr_t panic_pa;
1362
1363 /* We are only interested in panics. */
1364 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1365 return;
1366
1367 panic_pa = virt_to_phys(hv_panic_page);
1368
1369 /*
1370 * Write dump contents to the page. No need to synchronize; panic should
1371 * be single-threaded.
1372 */
1373 kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1374 &bytes_written);
1375 if (bytes_written)
1376 hyperv_report_panic_msg(panic_pa, bytes_written);
1377}
1378
1379static struct kmsg_dumper hv_kmsg_dumper = {
1380 .dump = hv_kmsg_dump,
1381};
1382
1383static struct ctl_table_header *hv_ctl_table_hdr;
1384
1385/*
1386 * sysctl option to allow the user to control whether kmsg data should be
1387 * reported to Hyper-V on panic.
1388 */
1389static struct ctl_table hv_ctl_table[] = {
1390 {
1391 .procname = "hyperv_record_panic_msg",
1392 .data = &sysctl_record_panic_msg,
1393 .maxlen = sizeof(int),
1394 .mode = 0644,
1395 .proc_handler = proc_dointvec_minmax,
1396 .extra1 = SYSCTL_ZERO,
1397 .extra2 = SYSCTL_ONE
1398 },
1399 {}
1400};
1401
1402static struct ctl_table hv_root_table[] = {
1403 {
1404 .procname = "kernel",
1405 .mode = 0555,
1406 .child = hv_ctl_table
1407 },
1408 {}
1409};
1410
1411/*
1412 * vmbus_bus_init -Main vmbus driver initialization routine.
1413 *
1414 * Here, we
1415 * - initialize the vmbus driver context
1416 * - invoke the vmbus hv main init routine
1417 * - retrieve the channel offers
1418 */
1419static int vmbus_bus_init(void)
1420{
1421 int ret;
1422
1423 ret = hv_init();
1424 if (ret != 0) {
1425 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1426 return ret;
1427 }
1428
1429 ret = bus_register(&hv_bus);
1430 if (ret)
1431 return ret;
1432
1433 hv_setup_vmbus_irq(vmbus_isr);
1434
1435 ret = hv_synic_alloc();
1436 if (ret)
1437 goto err_alloc;
1438
1439 /*
1440 * Initialize the per-cpu interrupt state and stimer state.
1441 * Then connect to the host.
1442 */
1443 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1444 hv_synic_init, hv_synic_cleanup);
1445 if (ret < 0)
1446 goto err_cpuhp;
1447 hyperv_cpuhp_online = ret;
1448
1449 ret = vmbus_connect();
1450 if (ret)
1451 goto err_connect;
1452
1453 /*
1454 * Only register if the crash MSRs are available
1455 */
1456 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1457 u64 hyperv_crash_ctl;
1458 /*
1459 * Sysctl registration is not fatal, since by default
1460 * reporting is enabled.
1461 */
1462 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1463 if (!hv_ctl_table_hdr)
1464 pr_err("Hyper-V: sysctl table register error");
1465
1466 /*
1467 * Register for panic kmsg callback only if the right
1468 * capability is supported by the hypervisor.
1469 */
1470 hv_get_crash_ctl(hyperv_crash_ctl);
1471 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1472 hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1473 if (hv_panic_page) {
1474 ret = kmsg_dump_register(&hv_kmsg_dumper);
1475 if (ret) {
1476 pr_err("Hyper-V: kmsg dump register "
1477 "error 0x%x\n", ret);
1478 hv_free_hyperv_page(
1479 (unsigned long)hv_panic_page);
1480 hv_panic_page = NULL;
1481 }
1482 } else
1483 pr_err("Hyper-V: panic message page memory "
1484 "allocation failed");
1485 }
1486
1487 register_die_notifier(&hyperv_die_block);
1488 }
1489
1490 /*
1491 * Always register the panic notifier because we need to unload
1492 * the VMbus channel connection to prevent any VMbus
1493 * activity after the VM panics.
1494 */
1495 atomic_notifier_chain_register(&panic_notifier_list,
1496 &hyperv_panic_block);
1497
1498 vmbus_request_offers();
1499
1500 return 0;
1501
1502err_connect:
1503 cpuhp_remove_state(hyperv_cpuhp_online);
1504err_cpuhp:
1505 hv_synic_free();
1506err_alloc:
1507 hv_remove_vmbus_irq();
1508
1509 bus_unregister(&hv_bus);
1510 unregister_sysctl_table(hv_ctl_table_hdr);
1511 hv_ctl_table_hdr = NULL;
1512 return ret;
1513}
1514
1515/**
1516 * __vmbus_child_driver_register() - Register a vmbus's driver
1517 * @hv_driver: Pointer to driver structure you want to register
1518 * @owner: owner module of the drv
1519 * @mod_name: module name string
1520 *
1521 * Registers the given driver with Linux through the 'driver_register()' call
1522 * and sets up the hyper-v vmbus handling for this driver.
1523 * It will return the state of the 'driver_register()' call.
1524 *
1525 */
1526int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1527{
1528 int ret;
1529
1530 pr_info("registering driver %s\n", hv_driver->name);
1531
1532 ret = vmbus_exists();
1533 if (ret < 0)
1534 return ret;
1535
1536 hv_driver->driver.name = hv_driver->name;
1537 hv_driver->driver.owner = owner;
1538 hv_driver->driver.mod_name = mod_name;
1539 hv_driver->driver.bus = &hv_bus;
1540
1541 spin_lock_init(&hv_driver->dynids.lock);
1542 INIT_LIST_HEAD(&hv_driver->dynids.list);
1543
1544 ret = driver_register(&hv_driver->driver);
1545
1546 return ret;
1547}
1548EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1549
1550/**
1551 * vmbus_driver_unregister() - Unregister a vmbus's driver
1552 * @hv_driver: Pointer to driver structure you want to
1553 * un-register
1554 *
1555 * Un-register the given driver that was previous registered with a call to
1556 * vmbus_driver_register()
1557 */
1558void vmbus_driver_unregister(struct hv_driver *hv_driver)
1559{
1560 pr_info("unregistering driver %s\n", hv_driver->name);
1561
1562 if (!vmbus_exists()) {
1563 driver_unregister(&hv_driver->driver);
1564 vmbus_free_dynids(hv_driver);
1565 }
1566}
1567EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1568
1569
1570/*
1571 * Called when last reference to channel is gone.
1572 */
1573static void vmbus_chan_release(struct kobject *kobj)
1574{
1575 struct vmbus_channel *channel
1576 = container_of(kobj, struct vmbus_channel, kobj);
1577
1578 kfree_rcu(channel, rcu);
1579}
1580
1581struct vmbus_chan_attribute {
1582 struct attribute attr;
1583 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1584 ssize_t (*store)(struct vmbus_channel *chan,
1585 const char *buf, size_t count);
1586};
1587#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1588 struct vmbus_chan_attribute chan_attr_##_name \
1589 = __ATTR(_name, _mode, _show, _store)
1590#define VMBUS_CHAN_ATTR_RW(_name) \
1591 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1592#define VMBUS_CHAN_ATTR_RO(_name) \
1593 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1594#define VMBUS_CHAN_ATTR_WO(_name) \
1595 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1596
1597static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1598 struct attribute *attr, char *buf)
1599{
1600 const struct vmbus_chan_attribute *attribute
1601 = container_of(attr, struct vmbus_chan_attribute, attr);
1602 struct vmbus_channel *chan
1603 = container_of(kobj, struct vmbus_channel, kobj);
1604
1605 if (!attribute->show)
1606 return -EIO;
1607
1608 return attribute->show(chan, buf);
1609}
1610
1611static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1612 struct attribute *attr, const char *buf,
1613 size_t count)
1614{
1615 const struct vmbus_chan_attribute *attribute
1616 = container_of(attr, struct vmbus_chan_attribute, attr);
1617 struct vmbus_channel *chan
1618 = container_of(kobj, struct vmbus_channel, kobj);
1619
1620 if (!attribute->store)
1621 return -EIO;
1622
1623 return attribute->store(chan, buf, count);
1624}
1625
1626static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1627 .show = vmbus_chan_attr_show,
1628 .store = vmbus_chan_attr_store,
1629};
1630
1631static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1632{
1633 struct hv_ring_buffer_info *rbi = &channel->outbound;
1634 ssize_t ret;
1635
1636 mutex_lock(&rbi->ring_buffer_mutex);
1637 if (!rbi->ring_buffer) {
1638 mutex_unlock(&rbi->ring_buffer_mutex);
1639 return -EINVAL;
1640 }
1641
1642 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1643 mutex_unlock(&rbi->ring_buffer_mutex);
1644 return ret;
1645}
1646static VMBUS_CHAN_ATTR_RO(out_mask);
1647
1648static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1649{
1650 struct hv_ring_buffer_info *rbi = &channel->inbound;
1651 ssize_t ret;
1652
1653 mutex_lock(&rbi->ring_buffer_mutex);
1654 if (!rbi->ring_buffer) {
1655 mutex_unlock(&rbi->ring_buffer_mutex);
1656 return -EINVAL;
1657 }
1658
1659 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1660 mutex_unlock(&rbi->ring_buffer_mutex);
1661 return ret;
1662}
1663static VMBUS_CHAN_ATTR_RO(in_mask);
1664
1665static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1666{
1667 struct hv_ring_buffer_info *rbi = &channel->inbound;
1668 ssize_t ret;
1669
1670 mutex_lock(&rbi->ring_buffer_mutex);
1671 if (!rbi->ring_buffer) {
1672 mutex_unlock(&rbi->ring_buffer_mutex);
1673 return -EINVAL;
1674 }
1675
1676 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1677 mutex_unlock(&rbi->ring_buffer_mutex);
1678 return ret;
1679}
1680static VMBUS_CHAN_ATTR_RO(read_avail);
1681
1682static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1683{
1684 struct hv_ring_buffer_info *rbi = &channel->outbound;
1685 ssize_t ret;
1686
1687 mutex_lock(&rbi->ring_buffer_mutex);
1688 if (!rbi->ring_buffer) {
1689 mutex_unlock(&rbi->ring_buffer_mutex);
1690 return -EINVAL;
1691 }
1692
1693 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1694 mutex_unlock(&rbi->ring_buffer_mutex);
1695 return ret;
1696}
1697static VMBUS_CHAN_ATTR_RO(write_avail);
1698
1699static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1700{
1701 return sprintf(buf, "%u\n", channel->target_cpu);
1702}
1703static ssize_t target_cpu_store(struct vmbus_channel *channel,
1704 const char *buf, size_t count)
1705{
1706 u32 target_cpu, origin_cpu;
1707 ssize_t ret = count;
1708
1709 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1710 return -EIO;
1711
1712 if (sscanf(buf, "%uu", &target_cpu) != 1)
1713 return -EIO;
1714
1715 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1716 if (target_cpu >= nr_cpumask_bits)
1717 return -EINVAL;
1718
1719 /* No CPUs should come up or down during this. */
1720 cpus_read_lock();
1721
1722 if (!cpu_online(target_cpu)) {
1723 cpus_read_unlock();
1724 return -EINVAL;
1725 }
1726
1727 /*
1728 * Synchronizes target_cpu_store() and channel closure:
1729 *
1730 * { Initially: state = CHANNEL_OPENED }
1731 *
1732 * CPU1 CPU2
1733 *
1734 * [target_cpu_store()] [vmbus_disconnect_ring()]
1735 *
1736 * LOCK channel_mutex LOCK channel_mutex
1737 * LOAD r1 = state LOAD r2 = state
1738 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1739 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1740 * [...] SEND CLOSECHANNEL
1741 * UNLOCK channel_mutex UNLOCK channel_mutex
1742 *
1743 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1744 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1745 *
1746 * Note. The host processes the channel messages "sequentially", in
1747 * the order in which they are received on a per-partition basis.
1748 */
1749 mutex_lock(&vmbus_connection.channel_mutex);
1750
1751 /*
1752 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1753 * avoid sending the message and fail here for such channels.
1754 */
1755 if (channel->state != CHANNEL_OPENED_STATE) {
1756 ret = -EIO;
1757 goto cpu_store_unlock;
1758 }
1759
1760 origin_cpu = channel->target_cpu;
1761 if (target_cpu == origin_cpu)
1762 goto cpu_store_unlock;
1763
1764 if (vmbus_send_modifychannel(channel->offermsg.child_relid,
1765 hv_cpu_number_to_vp_number(target_cpu))) {
1766 ret = -EIO;
1767 goto cpu_store_unlock;
1768 }
1769
1770 /*
1771 * Warning. At this point, there is *no* guarantee that the host will
1772 * have successfully processed the vmbus_send_modifychannel() request.
1773 * See the header comment of vmbus_send_modifychannel() for more info.
1774 *
1775 * Lags in the processing of the above vmbus_send_modifychannel() can
1776 * result in missed interrupts if the "old" target CPU is taken offline
1777 * before Hyper-V starts sending interrupts to the "new" target CPU.
1778 * But apart from this offlining scenario, the code tolerates such
1779 * lags. It will function correctly even if a channel interrupt comes
1780 * in on a CPU that is different from the channel target_cpu value.
1781 */
1782
1783 channel->target_cpu = target_cpu;
1784
1785 /* See init_vp_index(). */
1786 if (hv_is_perf_channel(channel))
1787 hv_update_alloced_cpus(origin_cpu, target_cpu);
1788
1789 /* Currently set only for storvsc channels. */
1790 if (channel->change_target_cpu_callback) {
1791 (*channel->change_target_cpu_callback)(channel,
1792 origin_cpu, target_cpu);
1793 }
1794
1795cpu_store_unlock:
1796 mutex_unlock(&vmbus_connection.channel_mutex);
1797 cpus_read_unlock();
1798 return ret;
1799}
1800static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1801
1802static ssize_t channel_pending_show(struct vmbus_channel *channel,
1803 char *buf)
1804{
1805 return sprintf(buf, "%d\n",
1806 channel_pending(channel,
1807 vmbus_connection.monitor_pages[1]));
1808}
1809static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1810
1811static ssize_t channel_latency_show(struct vmbus_channel *channel,
1812 char *buf)
1813{
1814 return sprintf(buf, "%d\n",
1815 channel_latency(channel,
1816 vmbus_connection.monitor_pages[1]));
1817}
1818static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1819
1820static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1821{
1822 return sprintf(buf, "%llu\n", channel->interrupts);
1823}
1824static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1825
1826static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1827{
1828 return sprintf(buf, "%llu\n", channel->sig_events);
1829}
1830static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1831
1832static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1833 char *buf)
1834{
1835 return sprintf(buf, "%llu\n",
1836 (unsigned long long)channel->intr_in_full);
1837}
1838static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1839
1840static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1841 char *buf)
1842{
1843 return sprintf(buf, "%llu\n",
1844 (unsigned long long)channel->intr_out_empty);
1845}
1846static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1847
1848static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1849 char *buf)
1850{
1851 return sprintf(buf, "%llu\n",
1852 (unsigned long long)channel->out_full_first);
1853}
1854static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1855
1856static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1857 char *buf)
1858{
1859 return sprintf(buf, "%llu\n",
1860 (unsigned long long)channel->out_full_total);
1861}
1862static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1863
1864static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1865 char *buf)
1866{
1867 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1868}
1869static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1870
1871static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1872 char *buf)
1873{
1874 return sprintf(buf, "%u\n",
1875 channel->offermsg.offer.sub_channel_index);
1876}
1877static VMBUS_CHAN_ATTR_RO(subchannel_id);
1878
1879static struct attribute *vmbus_chan_attrs[] = {
1880 &chan_attr_out_mask.attr,
1881 &chan_attr_in_mask.attr,
1882 &chan_attr_read_avail.attr,
1883 &chan_attr_write_avail.attr,
1884 &chan_attr_cpu.attr,
1885 &chan_attr_pending.attr,
1886 &chan_attr_latency.attr,
1887 &chan_attr_interrupts.attr,
1888 &chan_attr_events.attr,
1889 &chan_attr_intr_in_full.attr,
1890 &chan_attr_intr_out_empty.attr,
1891 &chan_attr_out_full_first.attr,
1892 &chan_attr_out_full_total.attr,
1893 &chan_attr_monitor_id.attr,
1894 &chan_attr_subchannel_id.attr,
1895 NULL
1896};
1897
1898/*
1899 * Channel-level attribute_group callback function. Returns the permission for
1900 * each attribute, and returns 0 if an attribute is not visible.
1901 */
1902static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1903 struct attribute *attr, int idx)
1904{
1905 const struct vmbus_channel *channel =
1906 container_of(kobj, struct vmbus_channel, kobj);
1907
1908 /* Hide the monitor attributes if the monitor mechanism is not used. */
1909 if (!channel->offermsg.monitor_allocated &&
1910 (attr == &chan_attr_pending.attr ||
1911 attr == &chan_attr_latency.attr ||
1912 attr == &chan_attr_monitor_id.attr))
1913 return 0;
1914
1915 return attr->mode;
1916}
1917
1918static struct attribute_group vmbus_chan_group = {
1919 .attrs = vmbus_chan_attrs,
1920 .is_visible = vmbus_chan_attr_is_visible
1921};
1922
1923static struct kobj_type vmbus_chan_ktype = {
1924 .sysfs_ops = &vmbus_chan_sysfs_ops,
1925 .release = vmbus_chan_release,
1926};
1927
1928/*
1929 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1930 */
1931int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1932{
1933 const struct device *device = &dev->device;
1934 struct kobject *kobj = &channel->kobj;
1935 u32 relid = channel->offermsg.child_relid;
1936 int ret;
1937
1938 kobj->kset = dev->channels_kset;
1939 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1940 "%u", relid);
1941 if (ret)
1942 return ret;
1943
1944 ret = sysfs_create_group(kobj, &vmbus_chan_group);
1945
1946 if (ret) {
1947 /*
1948 * The calling functions' error handling paths will cleanup the
1949 * empty channel directory.
1950 */
1951 dev_err(device, "Unable to set up channel sysfs files\n");
1952 return ret;
1953 }
1954
1955 kobject_uevent(kobj, KOBJ_ADD);
1956
1957 return 0;
1958}
1959
1960/*
1961 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1962 */
1963void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1964{
1965 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1966}
1967
1968/*
1969 * vmbus_device_create - Creates and registers a new child device
1970 * on the vmbus.
1971 */
1972struct hv_device *vmbus_device_create(const guid_t *type,
1973 const guid_t *instance,
1974 struct vmbus_channel *channel)
1975{
1976 struct hv_device *child_device_obj;
1977
1978 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1979 if (!child_device_obj) {
1980 pr_err("Unable to allocate device object for child device\n");
1981 return NULL;
1982 }
1983
1984 child_device_obj->channel = channel;
1985 guid_copy(&child_device_obj->dev_type, type);
1986 guid_copy(&child_device_obj->dev_instance, instance);
1987 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1988
1989 return child_device_obj;
1990}
1991
1992/*
1993 * vmbus_device_register - Register the child device
1994 */
1995int vmbus_device_register(struct hv_device *child_device_obj)
1996{
1997 struct kobject *kobj = &child_device_obj->device.kobj;
1998 int ret;
1999
2000 dev_set_name(&child_device_obj->device, "%pUl",
2001 &child_device_obj->channel->offermsg.offer.if_instance);
2002
2003 child_device_obj->device.bus = &hv_bus;
2004 child_device_obj->device.parent = &hv_acpi_dev->dev;
2005 child_device_obj->device.release = vmbus_device_release;
2006
2007 /*
2008 * Register with the LDM. This will kick off the driver/device
2009 * binding...which will eventually call vmbus_match() and vmbus_probe()
2010 */
2011 ret = device_register(&child_device_obj->device);
2012 if (ret) {
2013 pr_err("Unable to register child device\n");
2014 return ret;
2015 }
2016
2017 child_device_obj->channels_kset = kset_create_and_add("channels",
2018 NULL, kobj);
2019 if (!child_device_obj->channels_kset) {
2020 ret = -ENOMEM;
2021 goto err_dev_unregister;
2022 }
2023
2024 ret = vmbus_add_channel_kobj(child_device_obj,
2025 child_device_obj->channel);
2026 if (ret) {
2027 pr_err("Unable to register primary channeln");
2028 goto err_kset_unregister;
2029 }
2030 hv_debug_add_dev_dir(child_device_obj);
2031
2032 return 0;
2033
2034err_kset_unregister:
2035 kset_unregister(child_device_obj->channels_kset);
2036
2037err_dev_unregister:
2038 device_unregister(&child_device_obj->device);
2039 return ret;
2040}
2041
2042/*
2043 * vmbus_device_unregister - Remove the specified child device
2044 * from the vmbus.
2045 */
2046void vmbus_device_unregister(struct hv_device *device_obj)
2047{
2048 pr_debug("child device %s unregistered\n",
2049 dev_name(&device_obj->device));
2050
2051 kset_unregister(device_obj->channels_kset);
2052
2053 /*
2054 * Kick off the process of unregistering the device.
2055 * This will call vmbus_remove() and eventually vmbus_device_release()
2056 */
2057 device_unregister(&device_obj->device);
2058}
2059
2060
2061/*
2062 * VMBUS is an acpi enumerated device. Get the information we
2063 * need from DSDT.
2064 */
2065#define VTPM_BASE_ADDRESS 0xfed40000
2066static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2067{
2068 resource_size_t start = 0;
2069 resource_size_t end = 0;
2070 struct resource *new_res;
2071 struct resource **old_res = &hyperv_mmio;
2072 struct resource **prev_res = NULL;
2073
2074 switch (res->type) {
2075
2076 /*
2077 * "Address" descriptors are for bus windows. Ignore
2078 * "memory" descriptors, which are for registers on
2079 * devices.
2080 */
2081 case ACPI_RESOURCE_TYPE_ADDRESS32:
2082 start = res->data.address32.address.minimum;
2083 end = res->data.address32.address.maximum;
2084 break;
2085
2086 case ACPI_RESOURCE_TYPE_ADDRESS64:
2087 start = res->data.address64.address.minimum;
2088 end = res->data.address64.address.maximum;
2089 break;
2090
2091 default:
2092 /* Unused resource type */
2093 return AE_OK;
2094
2095 }
2096 /*
2097 * Ignore ranges that are below 1MB, as they're not
2098 * necessary or useful here.
2099 */
2100 if (end < 0x100000)
2101 return AE_OK;
2102
2103 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2104 if (!new_res)
2105 return AE_NO_MEMORY;
2106
2107 /* If this range overlaps the virtual TPM, truncate it. */
2108 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2109 end = VTPM_BASE_ADDRESS;
2110
2111 new_res->name = "hyperv mmio";
2112 new_res->flags = IORESOURCE_MEM;
2113 new_res->start = start;
2114 new_res->end = end;
2115
2116 /*
2117 * If two ranges are adjacent, merge them.
2118 */
2119 do {
2120 if (!*old_res) {
2121 *old_res = new_res;
2122 break;
2123 }
2124
2125 if (((*old_res)->end + 1) == new_res->start) {
2126 (*old_res)->end = new_res->end;
2127 kfree(new_res);
2128 break;
2129 }
2130
2131 if ((*old_res)->start == new_res->end + 1) {
2132 (*old_res)->start = new_res->start;
2133 kfree(new_res);
2134 break;
2135 }
2136
2137 if ((*old_res)->start > new_res->end) {
2138 new_res->sibling = *old_res;
2139 if (prev_res)
2140 (*prev_res)->sibling = new_res;
2141 *old_res = new_res;
2142 break;
2143 }
2144
2145 prev_res = old_res;
2146 old_res = &(*old_res)->sibling;
2147
2148 } while (1);
2149
2150 return AE_OK;
2151}
2152
2153static int vmbus_acpi_remove(struct acpi_device *device)
2154{
2155 struct resource *cur_res;
2156 struct resource *next_res;
2157
2158 if (hyperv_mmio) {
2159 if (fb_mmio) {
2160 __release_region(hyperv_mmio, fb_mmio->start,
2161 resource_size(fb_mmio));
2162 fb_mmio = NULL;
2163 }
2164
2165 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2166 next_res = cur_res->sibling;
2167 kfree(cur_res);
2168 }
2169 }
2170
2171 return 0;
2172}
2173
2174static void vmbus_reserve_fb(void)
2175{
2176 int size;
2177 /*
2178 * Make a claim for the frame buffer in the resource tree under the
2179 * first node, which will be the one below 4GB. The length seems to
2180 * be underreported, particularly in a Generation 1 VM. So start out
2181 * reserving a larger area and make it smaller until it succeeds.
2182 */
2183
2184 if (screen_info.lfb_base) {
2185 if (efi_enabled(EFI_BOOT))
2186 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2187 else
2188 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2189
2190 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2191 fb_mmio = __request_region(hyperv_mmio,
2192 screen_info.lfb_base, size,
2193 fb_mmio_name, 0);
2194 }
2195 }
2196}
2197
2198/**
2199 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2200 * @new: If successful, supplied a pointer to the
2201 * allocated MMIO space.
2202 * @device_obj: Identifies the caller
2203 * @min: Minimum guest physical address of the
2204 * allocation
2205 * @max: Maximum guest physical address
2206 * @size: Size of the range to be allocated
2207 * @align: Alignment of the range to be allocated
2208 * @fb_overlap_ok: Whether this allocation can be allowed
2209 * to overlap the video frame buffer.
2210 *
2211 * This function walks the resources granted to VMBus by the
2212 * _CRS object in the ACPI namespace underneath the parent
2213 * "bridge" whether that's a root PCI bus in the Generation 1
2214 * case or a Module Device in the Generation 2 case. It then
2215 * attempts to allocate from the global MMIO pool in a way that
2216 * matches the constraints supplied in these parameters and by
2217 * that _CRS.
2218 *
2219 * Return: 0 on success, -errno on failure
2220 */
2221int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2222 resource_size_t min, resource_size_t max,
2223 resource_size_t size, resource_size_t align,
2224 bool fb_overlap_ok)
2225{
2226 struct resource *iter, *shadow;
2227 resource_size_t range_min, range_max, start;
2228 const char *dev_n = dev_name(&device_obj->device);
2229 int retval;
2230
2231 retval = -ENXIO;
2232 mutex_lock(&hyperv_mmio_lock);
2233
2234 /*
2235 * If overlaps with frame buffers are allowed, then first attempt to
2236 * make the allocation from within the reserved region. Because it
2237 * is already reserved, no shadow allocation is necessary.
2238 */
2239 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2240 !(max < fb_mmio->start)) {
2241
2242 range_min = fb_mmio->start;
2243 range_max = fb_mmio->end;
2244 start = (range_min + align - 1) & ~(align - 1);
2245 for (; start + size - 1 <= range_max; start += align) {
2246 *new = request_mem_region_exclusive(start, size, dev_n);
2247 if (*new) {
2248 retval = 0;
2249 goto exit;
2250 }
2251 }
2252 }
2253
2254 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2255 if ((iter->start >= max) || (iter->end <= min))
2256 continue;
2257
2258 range_min = iter->start;
2259 range_max = iter->end;
2260 start = (range_min + align - 1) & ~(align - 1);
2261 for (; start + size - 1 <= range_max; start += align) {
2262 shadow = __request_region(iter, start, size, NULL,
2263 IORESOURCE_BUSY);
2264 if (!shadow)
2265 continue;
2266
2267 *new = request_mem_region_exclusive(start, size, dev_n);
2268 if (*new) {
2269 shadow->name = (char *)*new;
2270 retval = 0;
2271 goto exit;
2272 }
2273
2274 __release_region(iter, start, size);
2275 }
2276 }
2277
2278exit:
2279 mutex_unlock(&hyperv_mmio_lock);
2280 return retval;
2281}
2282EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2283
2284/**
2285 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2286 * @start: Base address of region to release.
2287 * @size: Size of the range to be allocated
2288 *
2289 * This function releases anything requested by
2290 * vmbus_mmio_allocate().
2291 */
2292void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2293{
2294 struct resource *iter;
2295
2296 mutex_lock(&hyperv_mmio_lock);
2297 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2298 if ((iter->start >= start + size) || (iter->end <= start))
2299 continue;
2300
2301 __release_region(iter, start, size);
2302 }
2303 release_mem_region(start, size);
2304 mutex_unlock(&hyperv_mmio_lock);
2305
2306}
2307EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2308
2309static int vmbus_acpi_add(struct acpi_device *device)
2310{
2311 acpi_status result;
2312 int ret_val = -ENODEV;
2313 struct acpi_device *ancestor;
2314
2315 hv_acpi_dev = device;
2316
2317 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2318 vmbus_walk_resources, NULL);
2319
2320 if (ACPI_FAILURE(result))
2321 goto acpi_walk_err;
2322 /*
2323 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2324 * firmware) is the VMOD that has the mmio ranges. Get that.
2325 */
2326 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2327 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2328 vmbus_walk_resources, NULL);
2329
2330 if (ACPI_FAILURE(result))
2331 continue;
2332 if (hyperv_mmio) {
2333 vmbus_reserve_fb();
2334 break;
2335 }
2336 }
2337 ret_val = 0;
2338
2339acpi_walk_err:
2340 complete(&probe_event);
2341 if (ret_val)
2342 vmbus_acpi_remove(device);
2343 return ret_val;
2344}
2345
2346#ifdef CONFIG_PM_SLEEP
2347static int vmbus_bus_suspend(struct device *dev)
2348{
2349 struct vmbus_channel *channel, *sc;
2350
2351 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2352 /*
2353 * We wait here until the completion of any channel
2354 * offers that are currently in progress.
2355 */
2356 msleep(1);
2357 }
2358
2359 mutex_lock(&vmbus_connection.channel_mutex);
2360 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2361 if (!is_hvsock_channel(channel))
2362 continue;
2363
2364 vmbus_force_channel_rescinded(channel);
2365 }
2366 mutex_unlock(&vmbus_connection.channel_mutex);
2367
2368 /*
2369 * Wait until all the sub-channels and hv_sock channels have been
2370 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2371 * they would conflict with the new sub-channels that will be created
2372 * in the resume path. hv_sock channels should also be destroyed, but
2373 * a hv_sock channel of an established hv_sock connection can not be
2374 * really destroyed since it may still be referenced by the userspace
2375 * application, so we just force the hv_sock channel to be rescinded
2376 * by vmbus_force_channel_rescinded(), and the userspace application
2377 * will thoroughly destroy the channel after hibernation.
2378 *
2379 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2380 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2381 */
2382 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2383 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2384
2385 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2386 pr_err("Can not suspend due to a previous failed resuming\n");
2387 return -EBUSY;
2388 }
2389
2390 mutex_lock(&vmbus_connection.channel_mutex);
2391
2392 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2393 /*
2394 * Remove the channel from the array of channels and invalidate
2395 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2396 * up the relid (and other fields, if necessary) and add the
2397 * channel back to the array.
2398 */
2399 vmbus_channel_unmap_relid(channel);
2400 channel->offermsg.child_relid = INVALID_RELID;
2401
2402 if (is_hvsock_channel(channel)) {
2403 if (!channel->rescind) {
2404 pr_err("hv_sock channel not rescinded!\n");
2405 WARN_ON_ONCE(1);
2406 }
2407 continue;
2408 }
2409
2410 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2411 pr_err("Sub-channel not deleted!\n");
2412 WARN_ON_ONCE(1);
2413 }
2414
2415 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2416 }
2417
2418 mutex_unlock(&vmbus_connection.channel_mutex);
2419
2420 vmbus_initiate_unload(false);
2421
2422 /* Reset the event for the next resume. */
2423 reinit_completion(&vmbus_connection.ready_for_resume_event);
2424
2425 return 0;
2426}
2427
2428static int vmbus_bus_resume(struct device *dev)
2429{
2430 struct vmbus_channel_msginfo *msginfo;
2431 size_t msgsize;
2432 int ret;
2433
2434 /*
2435 * We only use the 'vmbus_proto_version', which was in use before
2436 * hibernation, to re-negotiate with the host.
2437 */
2438 if (!vmbus_proto_version) {
2439 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2440 return -EINVAL;
2441 }
2442
2443 msgsize = sizeof(*msginfo) +
2444 sizeof(struct vmbus_channel_initiate_contact);
2445
2446 msginfo = kzalloc(msgsize, GFP_KERNEL);
2447
2448 if (msginfo == NULL)
2449 return -ENOMEM;
2450
2451 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2452
2453 kfree(msginfo);
2454
2455 if (ret != 0)
2456 return ret;
2457
2458 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2459
2460 vmbus_request_offers();
2461
2462 if (wait_for_completion_timeout(
2463 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2464 pr_err("Some vmbus device is missing after suspending?\n");
2465
2466 /* Reset the event for the next suspend. */
2467 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2468
2469 return 0;
2470}
2471#else
2472#define vmbus_bus_suspend NULL
2473#define vmbus_bus_resume NULL
2474#endif /* CONFIG_PM_SLEEP */
2475
2476static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2477 {"VMBUS", 0},
2478 {"VMBus", 0},
2479 {"", 0},
2480};
2481MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2482
2483/*
2484 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2485 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2486 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2487 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2488 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2489 * resume callback must also run via the "noirq" ops.
2490 *
2491 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2492 * earlier in this file before vmbus_pm.
2493 */
2494
2495static const struct dev_pm_ops vmbus_bus_pm = {
2496 .suspend_noirq = NULL,
2497 .resume_noirq = NULL,
2498 .freeze_noirq = vmbus_bus_suspend,
2499 .thaw_noirq = vmbus_bus_resume,
2500 .poweroff_noirq = vmbus_bus_suspend,
2501 .restore_noirq = vmbus_bus_resume
2502};
2503
2504static struct acpi_driver vmbus_acpi_driver = {
2505 .name = "vmbus",
2506 .ids = vmbus_acpi_device_ids,
2507 .ops = {
2508 .add = vmbus_acpi_add,
2509 .remove = vmbus_acpi_remove,
2510 },
2511 .drv.pm = &vmbus_bus_pm,
2512};
2513
2514static void hv_kexec_handler(void)
2515{
2516 hv_stimer_global_cleanup();
2517 vmbus_initiate_unload(false);
2518 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2519 mb();
2520 cpuhp_remove_state(hyperv_cpuhp_online);
2521 hyperv_cleanup();
2522};
2523
2524static void hv_crash_handler(struct pt_regs *regs)
2525{
2526 int cpu;
2527
2528 vmbus_initiate_unload(true);
2529 /*
2530 * In crash handler we can't schedule synic cleanup for all CPUs,
2531 * doing the cleanup for current CPU only. This should be sufficient
2532 * for kdump.
2533 */
2534 cpu = smp_processor_id();
2535 hv_stimer_cleanup(cpu);
2536 hv_synic_disable_regs(cpu);
2537 hyperv_cleanup();
2538};
2539
2540static int hv_synic_suspend(void)
2541{
2542 /*
2543 * When we reach here, all the non-boot CPUs have been offlined.
2544 * If we're in a legacy configuration where stimer Direct Mode is
2545 * not enabled, the stimers on the non-boot CPUs have been unbound
2546 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2547 * hv_stimer_cleanup() -> clockevents_unbind_device().
2548 *
2549 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2550 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2551 * 1) it's unnecessary as interrupts remain disabled between
2552 * syscore_suspend() and syscore_resume(): see create_image() and
2553 * resume_target_kernel()
2554 * 2) the stimer on CPU0 is automatically disabled later by
2555 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2556 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2557 * 3) a warning would be triggered if we call
2558 * clockevents_unbind_device(), which may sleep, in an
2559 * interrupts-disabled context.
2560 */
2561
2562 hv_synic_disable_regs(0);
2563
2564 return 0;
2565}
2566
2567static void hv_synic_resume(void)
2568{
2569 hv_synic_enable_regs(0);
2570
2571 /*
2572 * Note: we don't need to call hv_stimer_init(0), because the timer
2573 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2574 * automatically re-enabled in timekeeping_resume().
2575 */
2576}
2577
2578/* The callbacks run only on CPU0, with irqs_disabled. */
2579static struct syscore_ops hv_synic_syscore_ops = {
2580 .suspend = hv_synic_suspend,
2581 .resume = hv_synic_resume,
2582};
2583
2584static int __init hv_acpi_init(void)
2585{
2586 int ret, t;
2587
2588 if (!hv_is_hyperv_initialized())
2589 return -ENODEV;
2590
2591 init_completion(&probe_event);
2592
2593 /*
2594 * Get ACPI resources first.
2595 */
2596 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2597
2598 if (ret)
2599 return ret;
2600
2601 t = wait_for_completion_timeout(&probe_event, 5*HZ);
2602 if (t == 0) {
2603 ret = -ETIMEDOUT;
2604 goto cleanup;
2605 }
2606 hv_debug_init();
2607
2608 ret = vmbus_bus_init();
2609 if (ret)
2610 goto cleanup;
2611
2612 hv_setup_kexec_handler(hv_kexec_handler);
2613 hv_setup_crash_handler(hv_crash_handler);
2614
2615 register_syscore_ops(&hv_synic_syscore_ops);
2616
2617 return 0;
2618
2619cleanup:
2620 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2621 hv_acpi_dev = NULL;
2622 return ret;
2623}
2624
2625static void __exit vmbus_exit(void)
2626{
2627 int cpu;
2628
2629 unregister_syscore_ops(&hv_synic_syscore_ops);
2630
2631 hv_remove_kexec_handler();
2632 hv_remove_crash_handler();
2633 vmbus_connection.conn_state = DISCONNECTED;
2634 hv_stimer_global_cleanup();
2635 vmbus_disconnect();
2636 hv_remove_vmbus_irq();
2637 for_each_online_cpu(cpu) {
2638 struct hv_per_cpu_context *hv_cpu
2639 = per_cpu_ptr(hv_context.cpu_context, cpu);
2640
2641 tasklet_kill(&hv_cpu->msg_dpc);
2642 }
2643 hv_debug_rm_all_dir();
2644
2645 vmbus_free_channels();
2646 kfree(vmbus_connection.channels);
2647
2648 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2649 kmsg_dump_unregister(&hv_kmsg_dumper);
2650 unregister_die_notifier(&hyperv_die_block);
2651 atomic_notifier_chain_unregister(&panic_notifier_list,
2652 &hyperv_panic_block);
2653 }
2654
2655 free_page((unsigned long)hv_panic_page);
2656 unregister_sysctl_table(hv_ctl_table_hdr);
2657 hv_ctl_table_hdr = NULL;
2658 bus_unregister(&hv_bus);
2659
2660 cpuhp_remove_state(hyperv_cpuhp_online);
2661 hv_synic_free();
2662 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2663}
2664
2665
2666MODULE_LICENSE("GPL");
2667MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2668
2669subsys_initcall(hv_acpi_init);
2670module_exit(vmbus_exit);