Loading...
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/hmm.h>
36#include <linux/pagemap.h>
37#include <linux/sched/task.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swiotlb.h>
42
43#include <drm/ttm/ttm_bo_api.h>
44#include <drm/ttm/ttm_bo_driver.h>
45#include <drm/ttm/ttm_placement.h>
46#include <drm/ttm/ttm_module.h>
47#include <drm/ttm/ttm_page_alloc.h>
48
49#include <drm/drm_debugfs.h>
50#include <drm/amdgpu_drm.h>
51
52#include "amdgpu.h"
53#include "amdgpu_object.h"
54#include "amdgpu_trace.h"
55#include "amdgpu_amdkfd.h"
56#include "amdgpu_sdma.h"
57#include "bif/bif_4_1_d.h"
58
59static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
60 struct ttm_mem_reg *mem, unsigned num_pages,
61 uint64_t offset, unsigned window,
62 struct amdgpu_ring *ring,
63 uint64_t *addr);
64
65static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
66static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
67
68static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
69{
70 return 0;
71}
72
73/**
74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
75 * memory request.
76 *
77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
78 * @type: The type of memory requested
79 * @man: The memory type manager for each domain
80 *
81 * This is called by ttm_bo_init_mm() when a buffer object is being
82 * initialized.
83 */
84static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
85 struct ttm_mem_type_manager *man)
86{
87 struct amdgpu_device *adev;
88
89 adev = amdgpu_ttm_adev(bdev);
90
91 switch (type) {
92 case TTM_PL_SYSTEM:
93 /* System memory */
94 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
95 man->available_caching = TTM_PL_MASK_CACHING;
96 man->default_caching = TTM_PL_FLAG_CACHED;
97 break;
98 case TTM_PL_TT:
99 /* GTT memory */
100 man->func = &amdgpu_gtt_mgr_func;
101 man->gpu_offset = adev->gmc.gart_start;
102 man->available_caching = TTM_PL_MASK_CACHING;
103 man->default_caching = TTM_PL_FLAG_CACHED;
104 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
105 break;
106 case TTM_PL_VRAM:
107 /* "On-card" video ram */
108 man->func = &amdgpu_vram_mgr_func;
109 man->gpu_offset = adev->gmc.vram_start;
110 man->flags = TTM_MEMTYPE_FLAG_FIXED |
111 TTM_MEMTYPE_FLAG_MAPPABLE;
112 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
113 man->default_caching = TTM_PL_FLAG_WC;
114 break;
115 case AMDGPU_PL_GDS:
116 case AMDGPU_PL_GWS:
117 case AMDGPU_PL_OA:
118 /* On-chip GDS memory*/
119 man->func = &ttm_bo_manager_func;
120 man->gpu_offset = 0;
121 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
122 man->available_caching = TTM_PL_FLAG_UNCACHED;
123 man->default_caching = TTM_PL_FLAG_UNCACHED;
124 break;
125 default:
126 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
127 return -EINVAL;
128 }
129 return 0;
130}
131
132/**
133 * amdgpu_evict_flags - Compute placement flags
134 *
135 * @bo: The buffer object to evict
136 * @placement: Possible destination(s) for evicted BO
137 *
138 * Fill in placement data when ttm_bo_evict() is called
139 */
140static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
141 struct ttm_placement *placement)
142{
143 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
144 struct amdgpu_bo *abo;
145 static const struct ttm_place placements = {
146 .fpfn = 0,
147 .lpfn = 0,
148 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
149 };
150
151 /* Don't handle scatter gather BOs */
152 if (bo->type == ttm_bo_type_sg) {
153 placement->num_placement = 0;
154 placement->num_busy_placement = 0;
155 return;
156 }
157
158 /* Object isn't an AMDGPU object so ignore */
159 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
160 placement->placement = &placements;
161 placement->busy_placement = &placements;
162 placement->num_placement = 1;
163 placement->num_busy_placement = 1;
164 return;
165 }
166
167 abo = ttm_to_amdgpu_bo(bo);
168 switch (bo->mem.mem_type) {
169 case AMDGPU_PL_GDS:
170 case AMDGPU_PL_GWS:
171 case AMDGPU_PL_OA:
172 placement->num_placement = 0;
173 placement->num_busy_placement = 0;
174 return;
175
176 case TTM_PL_VRAM:
177 if (!adev->mman.buffer_funcs_enabled) {
178 /* Move to system memory */
179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
180 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
181 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
182 amdgpu_bo_in_cpu_visible_vram(abo)) {
183
184 /* Try evicting to the CPU inaccessible part of VRAM
185 * first, but only set GTT as busy placement, so this
186 * BO will be evicted to GTT rather than causing other
187 * BOs to be evicted from VRAM
188 */
189 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
190 AMDGPU_GEM_DOMAIN_GTT);
191 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
192 abo->placements[0].lpfn = 0;
193 abo->placement.busy_placement = &abo->placements[1];
194 abo->placement.num_busy_placement = 1;
195 } else {
196 /* Move to GTT memory */
197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
198 }
199 break;
200 case TTM_PL_TT:
201 default:
202 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
203 break;
204 }
205 *placement = abo->placement;
206}
207
208/**
209 * amdgpu_verify_access - Verify access for a mmap call
210 *
211 * @bo: The buffer object to map
212 * @filp: The file pointer from the process performing the mmap
213 *
214 * This is called by ttm_bo_mmap() to verify whether a process
215 * has the right to mmap a BO to their process space.
216 */
217static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
218{
219 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
220
221 /*
222 * Don't verify access for KFD BOs. They don't have a GEM
223 * object associated with them.
224 */
225 if (abo->kfd_bo)
226 return 0;
227
228 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
229 return -EPERM;
230 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
231 filp->private_data);
232}
233
234/**
235 * amdgpu_move_null - Register memory for a buffer object
236 *
237 * @bo: The bo to assign the memory to
238 * @new_mem: The memory to be assigned.
239 *
240 * Assign the memory from new_mem to the memory of the buffer object bo.
241 */
242static void amdgpu_move_null(struct ttm_buffer_object *bo,
243 struct ttm_mem_reg *new_mem)
244{
245 struct ttm_mem_reg *old_mem = &bo->mem;
246
247 BUG_ON(old_mem->mm_node != NULL);
248 *old_mem = *new_mem;
249 new_mem->mm_node = NULL;
250}
251
252/**
253 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
254 *
255 * @bo: The bo to assign the memory to.
256 * @mm_node: Memory manager node for drm allocator.
257 * @mem: The region where the bo resides.
258 *
259 */
260static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
261 struct drm_mm_node *mm_node,
262 struct ttm_mem_reg *mem)
263{
264 uint64_t addr = 0;
265
266 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
267 addr = mm_node->start << PAGE_SHIFT;
268 addr += bo->bdev->man[mem->mem_type].gpu_offset;
269 }
270 return addr;
271}
272
273/**
274 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
275 * @offset. It also modifies the offset to be within the drm_mm_node returned
276 *
277 * @mem: The region where the bo resides.
278 * @offset: The offset that drm_mm_node is used for finding.
279 *
280 */
281static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
282 unsigned long *offset)
283{
284 struct drm_mm_node *mm_node = mem->mm_node;
285
286 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
287 *offset -= (mm_node->size << PAGE_SHIFT);
288 ++mm_node;
289 }
290 return mm_node;
291}
292
293/**
294 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
295 *
296 * The function copies @size bytes from {src->mem + src->offset} to
297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298 * move and different for a BO to BO copy.
299 *
300 * @f: Returns the last fence if multiple jobs are submitted.
301 */
302int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
303 struct amdgpu_copy_mem *src,
304 struct amdgpu_copy_mem *dst,
305 uint64_t size,
306 struct dma_resv *resv,
307 struct dma_fence **f)
308{
309 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
310 struct drm_mm_node *src_mm, *dst_mm;
311 uint64_t src_node_start, dst_node_start, src_node_size,
312 dst_node_size, src_page_offset, dst_page_offset;
313 struct dma_fence *fence = NULL;
314 int r = 0;
315 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
316 AMDGPU_GPU_PAGE_SIZE);
317
318 if (!adev->mman.buffer_funcs_enabled) {
319 DRM_ERROR("Trying to move memory with ring turned off.\n");
320 return -EINVAL;
321 }
322
323 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
324 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
325 src->offset;
326 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
327 src_page_offset = src_node_start & (PAGE_SIZE - 1);
328
329 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
330 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
331 dst->offset;
332 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
333 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
334
335 mutex_lock(&adev->mman.gtt_window_lock);
336
337 while (size) {
338 unsigned long cur_size;
339 uint64_t from = src_node_start, to = dst_node_start;
340 struct dma_fence *next;
341
342 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343 * begins at an offset, then adjust the size accordingly
344 */
345 cur_size = min3(min(src_node_size, dst_node_size), size,
346 GTT_MAX_BYTES);
347 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
348 cur_size + dst_page_offset > GTT_MAX_BYTES)
349 cur_size -= max(src_page_offset, dst_page_offset);
350
351 /* Map only what needs to be accessed. Map src to window 0 and
352 * dst to window 1
353 */
354 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
355 r = amdgpu_map_buffer(src->bo, src->mem,
356 PFN_UP(cur_size + src_page_offset),
357 src_node_start, 0, ring,
358 &from);
359 if (r)
360 goto error;
361 /* Adjust the offset because amdgpu_map_buffer returns
362 * start of mapped page
363 */
364 from += src_page_offset;
365 }
366
367 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
368 r = amdgpu_map_buffer(dst->bo, dst->mem,
369 PFN_UP(cur_size + dst_page_offset),
370 dst_node_start, 1, ring,
371 &to);
372 if (r)
373 goto error;
374 to += dst_page_offset;
375 }
376
377 r = amdgpu_copy_buffer(ring, from, to, cur_size,
378 resv, &next, false, true);
379 if (r)
380 goto error;
381
382 dma_fence_put(fence);
383 fence = next;
384
385 size -= cur_size;
386 if (!size)
387 break;
388
389 src_node_size -= cur_size;
390 if (!src_node_size) {
391 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
392 src->mem);
393 src_node_size = (src_mm->size << PAGE_SHIFT);
394 src_page_offset = 0;
395 } else {
396 src_node_start += cur_size;
397 src_page_offset = src_node_start & (PAGE_SIZE - 1);
398 }
399 dst_node_size -= cur_size;
400 if (!dst_node_size) {
401 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
402 dst->mem);
403 dst_node_size = (dst_mm->size << PAGE_SHIFT);
404 dst_page_offset = 0;
405 } else {
406 dst_node_start += cur_size;
407 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
408 }
409 }
410error:
411 mutex_unlock(&adev->mman.gtt_window_lock);
412 if (f)
413 *f = dma_fence_get(fence);
414 dma_fence_put(fence);
415 return r;
416}
417
418/**
419 * amdgpu_move_blit - Copy an entire buffer to another buffer
420 *
421 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
422 * help move buffers to and from VRAM.
423 */
424static int amdgpu_move_blit(struct ttm_buffer_object *bo,
425 bool evict, bool no_wait_gpu,
426 struct ttm_mem_reg *new_mem,
427 struct ttm_mem_reg *old_mem)
428{
429 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
430 struct amdgpu_copy_mem src, dst;
431 struct dma_fence *fence = NULL;
432 int r;
433
434 src.bo = bo;
435 dst.bo = bo;
436 src.mem = old_mem;
437 dst.mem = new_mem;
438 src.offset = 0;
439 dst.offset = 0;
440
441 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
442 new_mem->num_pages << PAGE_SHIFT,
443 bo->base.resv, &fence);
444 if (r)
445 goto error;
446
447 /* clear the space being freed */
448 if (old_mem->mem_type == TTM_PL_VRAM &&
449 (ttm_to_amdgpu_bo(bo)->flags &
450 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
451 struct dma_fence *wipe_fence = NULL;
452
453 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
454 NULL, &wipe_fence);
455 if (r) {
456 goto error;
457 } else if (wipe_fence) {
458 dma_fence_put(fence);
459 fence = wipe_fence;
460 }
461 }
462
463 /* Always block for VM page tables before committing the new location */
464 if (bo->type == ttm_bo_type_kernel)
465 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
466 else
467 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
468 dma_fence_put(fence);
469 return r;
470
471error:
472 if (fence)
473 dma_fence_wait(fence, false);
474 dma_fence_put(fence);
475 return r;
476}
477
478/**
479 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
480 *
481 * Called by amdgpu_bo_move().
482 */
483static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
484 struct ttm_operation_ctx *ctx,
485 struct ttm_mem_reg *new_mem)
486{
487 struct amdgpu_device *adev;
488 struct ttm_mem_reg *old_mem = &bo->mem;
489 struct ttm_mem_reg tmp_mem;
490 struct ttm_place placements;
491 struct ttm_placement placement;
492 int r;
493
494 adev = amdgpu_ttm_adev(bo->bdev);
495
496 /* create space/pages for new_mem in GTT space */
497 tmp_mem = *new_mem;
498 tmp_mem.mm_node = NULL;
499 placement.num_placement = 1;
500 placement.placement = &placements;
501 placement.num_busy_placement = 1;
502 placement.busy_placement = &placements;
503 placements.fpfn = 0;
504 placements.lpfn = 0;
505 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
506 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
507 if (unlikely(r)) {
508 pr_err("Failed to find GTT space for blit from VRAM\n");
509 return r;
510 }
511
512 /* set caching flags */
513 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
514 if (unlikely(r)) {
515 goto out_cleanup;
516 }
517
518 /* Bind the memory to the GTT space */
519 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
520 if (unlikely(r)) {
521 goto out_cleanup;
522 }
523
524 /* blit VRAM to GTT */
525 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
526 if (unlikely(r)) {
527 goto out_cleanup;
528 }
529
530 /* move BO (in tmp_mem) to new_mem */
531 r = ttm_bo_move_ttm(bo, ctx, new_mem);
532out_cleanup:
533 ttm_bo_mem_put(bo, &tmp_mem);
534 return r;
535}
536
537/**
538 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
539 *
540 * Called by amdgpu_bo_move().
541 */
542static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
543 struct ttm_operation_ctx *ctx,
544 struct ttm_mem_reg *new_mem)
545{
546 struct amdgpu_device *adev;
547 struct ttm_mem_reg *old_mem = &bo->mem;
548 struct ttm_mem_reg tmp_mem;
549 struct ttm_placement placement;
550 struct ttm_place placements;
551 int r;
552
553 adev = amdgpu_ttm_adev(bo->bdev);
554
555 /* make space in GTT for old_mem buffer */
556 tmp_mem = *new_mem;
557 tmp_mem.mm_node = NULL;
558 placement.num_placement = 1;
559 placement.placement = &placements;
560 placement.num_busy_placement = 1;
561 placement.busy_placement = &placements;
562 placements.fpfn = 0;
563 placements.lpfn = 0;
564 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
565 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
566 if (unlikely(r)) {
567 pr_err("Failed to find GTT space for blit to VRAM\n");
568 return r;
569 }
570
571 /* move/bind old memory to GTT space */
572 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
573 if (unlikely(r)) {
574 goto out_cleanup;
575 }
576
577 /* copy to VRAM */
578 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
579 if (unlikely(r)) {
580 goto out_cleanup;
581 }
582out_cleanup:
583 ttm_bo_mem_put(bo, &tmp_mem);
584 return r;
585}
586
587/**
588 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
589 *
590 * Called by amdgpu_bo_move()
591 */
592static bool amdgpu_mem_visible(struct amdgpu_device *adev,
593 struct ttm_mem_reg *mem)
594{
595 struct drm_mm_node *nodes = mem->mm_node;
596
597 if (mem->mem_type == TTM_PL_SYSTEM ||
598 mem->mem_type == TTM_PL_TT)
599 return true;
600 if (mem->mem_type != TTM_PL_VRAM)
601 return false;
602
603 /* ttm_mem_reg_ioremap only supports contiguous memory */
604 if (nodes->size != mem->num_pages)
605 return false;
606
607 return ((nodes->start + nodes->size) << PAGE_SHIFT)
608 <= adev->gmc.visible_vram_size;
609}
610
611/**
612 * amdgpu_bo_move - Move a buffer object to a new memory location
613 *
614 * Called by ttm_bo_handle_move_mem()
615 */
616static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
617 struct ttm_operation_ctx *ctx,
618 struct ttm_mem_reg *new_mem)
619{
620 struct amdgpu_device *adev;
621 struct amdgpu_bo *abo;
622 struct ttm_mem_reg *old_mem = &bo->mem;
623 int r;
624
625 /* Can't move a pinned BO */
626 abo = ttm_to_amdgpu_bo(bo);
627 if (WARN_ON_ONCE(abo->pin_count > 0))
628 return -EINVAL;
629
630 adev = amdgpu_ttm_adev(bo->bdev);
631
632 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
633 amdgpu_move_null(bo, new_mem);
634 return 0;
635 }
636 if ((old_mem->mem_type == TTM_PL_TT &&
637 new_mem->mem_type == TTM_PL_SYSTEM) ||
638 (old_mem->mem_type == TTM_PL_SYSTEM &&
639 new_mem->mem_type == TTM_PL_TT)) {
640 /* bind is enough */
641 amdgpu_move_null(bo, new_mem);
642 return 0;
643 }
644 if (old_mem->mem_type == AMDGPU_PL_GDS ||
645 old_mem->mem_type == AMDGPU_PL_GWS ||
646 old_mem->mem_type == AMDGPU_PL_OA ||
647 new_mem->mem_type == AMDGPU_PL_GDS ||
648 new_mem->mem_type == AMDGPU_PL_GWS ||
649 new_mem->mem_type == AMDGPU_PL_OA) {
650 /* Nothing to save here */
651 amdgpu_move_null(bo, new_mem);
652 return 0;
653 }
654
655 if (!adev->mman.buffer_funcs_enabled) {
656 r = -ENODEV;
657 goto memcpy;
658 }
659
660 if (old_mem->mem_type == TTM_PL_VRAM &&
661 new_mem->mem_type == TTM_PL_SYSTEM) {
662 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
663 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
664 new_mem->mem_type == TTM_PL_VRAM) {
665 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
666 } else {
667 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
668 new_mem, old_mem);
669 }
670
671 if (r) {
672memcpy:
673 /* Check that all memory is CPU accessible */
674 if (!amdgpu_mem_visible(adev, old_mem) ||
675 !amdgpu_mem_visible(adev, new_mem)) {
676 pr_err("Move buffer fallback to memcpy unavailable\n");
677 return r;
678 }
679
680 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
681 if (r)
682 return r;
683 }
684
685 if (bo->type == ttm_bo_type_device &&
686 new_mem->mem_type == TTM_PL_VRAM &&
687 old_mem->mem_type != TTM_PL_VRAM) {
688 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
689 * accesses the BO after it's moved.
690 */
691 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
692 }
693
694 /* update statistics */
695 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
696 return 0;
697}
698
699/**
700 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
701 *
702 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
703 */
704static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
705{
706 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
707 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
708 struct drm_mm_node *mm_node = mem->mm_node;
709
710 mem->bus.addr = NULL;
711 mem->bus.offset = 0;
712 mem->bus.size = mem->num_pages << PAGE_SHIFT;
713 mem->bus.base = 0;
714 mem->bus.is_iomem = false;
715 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
716 return -EINVAL;
717 switch (mem->mem_type) {
718 case TTM_PL_SYSTEM:
719 /* system memory */
720 return 0;
721 case TTM_PL_TT:
722 break;
723 case TTM_PL_VRAM:
724 mem->bus.offset = mem->start << PAGE_SHIFT;
725 /* check if it's visible */
726 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
727 return -EINVAL;
728 /* Only physically contiguous buffers apply. In a contiguous
729 * buffer, size of the first mm_node would match the number of
730 * pages in ttm_mem_reg.
731 */
732 if (adev->mman.aper_base_kaddr &&
733 (mm_node->size == mem->num_pages))
734 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
735 mem->bus.offset;
736
737 mem->bus.base = adev->gmc.aper_base;
738 mem->bus.is_iomem = true;
739 break;
740 default:
741 return -EINVAL;
742 }
743 return 0;
744}
745
746static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
747{
748}
749
750static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
751 unsigned long page_offset)
752{
753 struct drm_mm_node *mm;
754 unsigned long offset = (page_offset << PAGE_SHIFT);
755
756 mm = amdgpu_find_mm_node(&bo->mem, &offset);
757 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
758 (offset >> PAGE_SHIFT);
759}
760
761/*
762 * TTM backend functions.
763 */
764struct amdgpu_ttm_tt {
765 struct ttm_dma_tt ttm;
766 u64 offset;
767 uint64_t userptr;
768 struct task_struct *usertask;
769 uint32_t userflags;
770#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
771 struct hmm_range *range;
772#endif
773};
774
775/**
776 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
777 * memory and start HMM tracking CPU page table update
778 *
779 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
780 * once afterwards to stop HMM tracking
781 */
782#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
783
784#define MAX_RETRY_HMM_RANGE_FAULT 16
785
786int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
787{
788 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
789 struct ttm_tt *ttm = bo->tbo.ttm;
790 struct amdgpu_ttm_tt *gtt = (void *)ttm;
791 struct mm_struct *mm = gtt->usertask->mm;
792 unsigned long start = gtt->userptr;
793 struct vm_area_struct *vma;
794 struct hmm_range *range;
795 unsigned long i;
796 uint64_t *pfns;
797 int r = 0;
798
799 if (!mm) /* Happens during process shutdown */
800 return -ESRCH;
801
802 if (unlikely(!mirror)) {
803 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
804 r = -EFAULT;
805 goto out;
806 }
807
808 vma = find_vma(mm, start);
809 if (unlikely(!vma || start < vma->vm_start)) {
810 r = -EFAULT;
811 goto out;
812 }
813 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
814 vma->vm_file)) {
815 r = -EPERM;
816 goto out;
817 }
818
819 range = kzalloc(sizeof(*range), GFP_KERNEL);
820 if (unlikely(!range)) {
821 r = -ENOMEM;
822 goto out;
823 }
824
825 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
826 if (unlikely(!pfns)) {
827 r = -ENOMEM;
828 goto out_free_ranges;
829 }
830
831 amdgpu_hmm_init_range(range);
832 range->default_flags = range->flags[HMM_PFN_VALID];
833 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
834 0 : range->flags[HMM_PFN_WRITE];
835 range->pfn_flags_mask = 0;
836 range->pfns = pfns;
837 range->start = start;
838 range->end = start + ttm->num_pages * PAGE_SIZE;
839
840 hmm_range_register(range, mirror);
841
842 /*
843 * Just wait for range to be valid, safe to ignore return value as we
844 * will use the return value of hmm_range_fault() below under the
845 * mmap_sem to ascertain the validity of the range.
846 */
847 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
848
849 down_read(&mm->mmap_sem);
850 r = hmm_range_fault(range, 0);
851 up_read(&mm->mmap_sem);
852
853 if (unlikely(r < 0))
854 goto out_free_pfns;
855
856 for (i = 0; i < ttm->num_pages; i++) {
857 pages[i] = hmm_device_entry_to_page(range, pfns[i]);
858 if (unlikely(!pages[i])) {
859 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
860 i, pfns[i]);
861 r = -ENOMEM;
862
863 goto out_free_pfns;
864 }
865 }
866
867 gtt->range = range;
868
869 return 0;
870
871out_free_pfns:
872 hmm_range_unregister(range);
873 kvfree(pfns);
874out_free_ranges:
875 kfree(range);
876out:
877 return r;
878}
879
880/**
881 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
882 * Check if the pages backing this ttm range have been invalidated
883 *
884 * Returns: true if pages are still valid
885 */
886bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
887{
888 struct amdgpu_ttm_tt *gtt = (void *)ttm;
889 bool r = false;
890
891 if (!gtt || !gtt->userptr)
892 return false;
893
894 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
895 gtt->userptr, ttm->num_pages);
896
897 WARN_ONCE(!gtt->range || !gtt->range->pfns,
898 "No user pages to check\n");
899
900 if (gtt->range) {
901 r = hmm_range_valid(gtt->range);
902 hmm_range_unregister(gtt->range);
903
904 kvfree(gtt->range->pfns);
905 kfree(gtt->range);
906 gtt->range = NULL;
907 }
908
909 return r;
910}
911#endif
912
913/**
914 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
915 *
916 * Called by amdgpu_cs_list_validate(). This creates the page list
917 * that backs user memory and will ultimately be mapped into the device
918 * address space.
919 */
920void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
921{
922 unsigned long i;
923
924 for (i = 0; i < ttm->num_pages; ++i)
925 ttm->pages[i] = pages ? pages[i] : NULL;
926}
927
928/**
929 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
930 *
931 * Called by amdgpu_ttm_backend_bind()
932 **/
933static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
934{
935 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
936 struct amdgpu_ttm_tt *gtt = (void *)ttm;
937 unsigned nents;
938 int r;
939
940 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
941 enum dma_data_direction direction = write ?
942 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
943
944 /* Allocate an SG array and squash pages into it */
945 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
946 ttm->num_pages << PAGE_SHIFT,
947 GFP_KERNEL);
948 if (r)
949 goto release_sg;
950
951 /* Map SG to device */
952 r = -ENOMEM;
953 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
954 if (nents != ttm->sg->nents)
955 goto release_sg;
956
957 /* convert SG to linear array of pages and dma addresses */
958 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
959 gtt->ttm.dma_address, ttm->num_pages);
960
961 return 0;
962
963release_sg:
964 kfree(ttm->sg);
965 return r;
966}
967
968/**
969 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
970 */
971static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
972{
973 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
974 struct amdgpu_ttm_tt *gtt = (void *)ttm;
975
976 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
977 enum dma_data_direction direction = write ?
978 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
979
980 /* double check that we don't free the table twice */
981 if (!ttm->sg->sgl)
982 return;
983
984 /* unmap the pages mapped to the device */
985 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
986
987 sg_free_table(ttm->sg);
988
989#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
990 if (gtt->range &&
991 ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
992 gtt->range->pfns[0]))
993 WARN_ONCE(1, "Missing get_user_page_done\n");
994#endif
995}
996
997int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
998 struct ttm_buffer_object *tbo,
999 uint64_t flags)
1000{
1001 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1002 struct ttm_tt *ttm = tbo->ttm;
1003 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1004 int r;
1005
1006 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1007 uint64_t page_idx = 1;
1008
1009 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1010 ttm->pages, gtt->ttm.dma_address, flags);
1011 if (r)
1012 goto gart_bind_fail;
1013
1014 /* Patch mtype of the second part BO */
1015 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1016 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1017
1018 r = amdgpu_gart_bind(adev,
1019 gtt->offset + (page_idx << PAGE_SHIFT),
1020 ttm->num_pages - page_idx,
1021 &ttm->pages[page_idx],
1022 &(gtt->ttm.dma_address[page_idx]), flags);
1023 } else {
1024 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1025 ttm->pages, gtt->ttm.dma_address, flags);
1026 }
1027
1028gart_bind_fail:
1029 if (r)
1030 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1031 ttm->num_pages, gtt->offset);
1032
1033 return r;
1034}
1035
1036/**
1037 * amdgpu_ttm_backend_bind - Bind GTT memory
1038 *
1039 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1040 * This handles binding GTT memory to the device address space.
1041 */
1042static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1043 struct ttm_mem_reg *bo_mem)
1044{
1045 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1046 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1047 uint64_t flags;
1048 int r = 0;
1049
1050 if (gtt->userptr) {
1051 r = amdgpu_ttm_tt_pin_userptr(ttm);
1052 if (r) {
1053 DRM_ERROR("failed to pin userptr\n");
1054 return r;
1055 }
1056 }
1057 if (!ttm->num_pages) {
1058 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1059 ttm->num_pages, bo_mem, ttm);
1060 }
1061
1062 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1063 bo_mem->mem_type == AMDGPU_PL_GWS ||
1064 bo_mem->mem_type == AMDGPU_PL_OA)
1065 return -EINVAL;
1066
1067 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1068 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1069 return 0;
1070 }
1071
1072 /* compute PTE flags relevant to this BO memory */
1073 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1074
1075 /* bind pages into GART page tables */
1076 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1077 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1078 ttm->pages, gtt->ttm.dma_address, flags);
1079
1080 if (r)
1081 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1082 ttm->num_pages, gtt->offset);
1083 return r;
1084}
1085
1086/**
1087 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1088 */
1089int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1090{
1091 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1092 struct ttm_operation_ctx ctx = { false, false };
1093 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1094 struct ttm_mem_reg tmp;
1095 struct ttm_placement placement;
1096 struct ttm_place placements;
1097 uint64_t addr, flags;
1098 int r;
1099
1100 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1101 return 0;
1102
1103 addr = amdgpu_gmc_agp_addr(bo);
1104 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1105 bo->mem.start = addr >> PAGE_SHIFT;
1106 } else {
1107
1108 /* allocate GART space */
1109 tmp = bo->mem;
1110 tmp.mm_node = NULL;
1111 placement.num_placement = 1;
1112 placement.placement = &placements;
1113 placement.num_busy_placement = 1;
1114 placement.busy_placement = &placements;
1115 placements.fpfn = 0;
1116 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1117 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1118 TTM_PL_FLAG_TT;
1119
1120 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1121 if (unlikely(r))
1122 return r;
1123
1124 /* compute PTE flags for this buffer object */
1125 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1126
1127 /* Bind pages */
1128 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1129 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1130 if (unlikely(r)) {
1131 ttm_bo_mem_put(bo, &tmp);
1132 return r;
1133 }
1134
1135 ttm_bo_mem_put(bo, &bo->mem);
1136 bo->mem = tmp;
1137 }
1138
1139 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1140 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1141
1142 return 0;
1143}
1144
1145/**
1146 * amdgpu_ttm_recover_gart - Rebind GTT pages
1147 *
1148 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1149 * rebind GTT pages during a GPU reset.
1150 */
1151int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1152{
1153 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1154 uint64_t flags;
1155 int r;
1156
1157 if (!tbo->ttm)
1158 return 0;
1159
1160 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1161 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1162
1163 return r;
1164}
1165
1166/**
1167 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1168 *
1169 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1170 * ttm_tt_destroy().
1171 */
1172static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1173{
1174 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1175 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1176 int r;
1177
1178 /* if the pages have userptr pinning then clear that first */
1179 if (gtt->userptr)
1180 amdgpu_ttm_tt_unpin_userptr(ttm);
1181
1182 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1183 return 0;
1184
1185 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1186 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1187 if (r)
1188 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1189 gtt->ttm.ttm.num_pages, gtt->offset);
1190 return r;
1191}
1192
1193static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1194{
1195 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1196
1197 if (gtt->usertask)
1198 put_task_struct(gtt->usertask);
1199
1200 ttm_dma_tt_fini(>t->ttm);
1201 kfree(gtt);
1202}
1203
1204static struct ttm_backend_func amdgpu_backend_func = {
1205 .bind = &amdgpu_ttm_backend_bind,
1206 .unbind = &amdgpu_ttm_backend_unbind,
1207 .destroy = &amdgpu_ttm_backend_destroy,
1208};
1209
1210/**
1211 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1212 *
1213 * @bo: The buffer object to create a GTT ttm_tt object around
1214 *
1215 * Called by ttm_tt_create().
1216 */
1217static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1218 uint32_t page_flags)
1219{
1220 struct amdgpu_device *adev;
1221 struct amdgpu_ttm_tt *gtt;
1222
1223 adev = amdgpu_ttm_adev(bo->bdev);
1224
1225 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1226 if (gtt == NULL) {
1227 return NULL;
1228 }
1229 gtt->ttm.ttm.func = &amdgpu_backend_func;
1230
1231 /* allocate space for the uninitialized page entries */
1232 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1233 kfree(gtt);
1234 return NULL;
1235 }
1236 return >t->ttm.ttm;
1237}
1238
1239/**
1240 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1241 *
1242 * Map the pages of a ttm_tt object to an address space visible
1243 * to the underlying device.
1244 */
1245static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1246 struct ttm_operation_ctx *ctx)
1247{
1248 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1249 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1250 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1251
1252 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1253 if (gtt && gtt->userptr) {
1254 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1255 if (!ttm->sg)
1256 return -ENOMEM;
1257
1258 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1259 ttm->state = tt_unbound;
1260 return 0;
1261 }
1262
1263 if (slave && ttm->sg) {
1264 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1265 gtt->ttm.dma_address,
1266 ttm->num_pages);
1267 ttm->state = tt_unbound;
1268 return 0;
1269 }
1270
1271#ifdef CONFIG_SWIOTLB
1272 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1273 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1274 }
1275#endif
1276
1277 /* fall back to generic helper to populate the page array
1278 * and map them to the device */
1279 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1280}
1281
1282/**
1283 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1284 *
1285 * Unmaps pages of a ttm_tt object from the device address space and
1286 * unpopulates the page array backing it.
1287 */
1288static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1289{
1290 struct amdgpu_device *adev;
1291 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1292 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1293
1294 if (gtt && gtt->userptr) {
1295 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1296 kfree(ttm->sg);
1297 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1298 return;
1299 }
1300
1301 if (slave)
1302 return;
1303
1304 adev = amdgpu_ttm_adev(ttm->bdev);
1305
1306#ifdef CONFIG_SWIOTLB
1307 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1308 ttm_dma_unpopulate(>t->ttm, adev->dev);
1309 return;
1310 }
1311#endif
1312
1313 /* fall back to generic helper to unmap and unpopulate array */
1314 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1315}
1316
1317/**
1318 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1319 * task
1320 *
1321 * @ttm: The ttm_tt object to bind this userptr object to
1322 * @addr: The address in the current tasks VM space to use
1323 * @flags: Requirements of userptr object.
1324 *
1325 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1326 * to current task
1327 */
1328int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1329 uint32_t flags)
1330{
1331 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1332
1333 if (gtt == NULL)
1334 return -EINVAL;
1335
1336 gtt->userptr = addr;
1337 gtt->userflags = flags;
1338
1339 if (gtt->usertask)
1340 put_task_struct(gtt->usertask);
1341 gtt->usertask = current->group_leader;
1342 get_task_struct(gtt->usertask);
1343
1344 return 0;
1345}
1346
1347/**
1348 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1349 */
1350struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1351{
1352 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1353
1354 if (gtt == NULL)
1355 return NULL;
1356
1357 if (gtt->usertask == NULL)
1358 return NULL;
1359
1360 return gtt->usertask->mm;
1361}
1362
1363/**
1364 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1365 * address range for the current task.
1366 *
1367 */
1368bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1369 unsigned long end)
1370{
1371 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372 unsigned long size;
1373
1374 if (gtt == NULL || !gtt->userptr)
1375 return false;
1376
1377 /* Return false if no part of the ttm_tt object lies within
1378 * the range
1379 */
1380 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1381 if (gtt->userptr > end || gtt->userptr + size <= start)
1382 return false;
1383
1384 return true;
1385}
1386
1387/**
1388 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1389 */
1390bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1391{
1392 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1393
1394 if (gtt == NULL || !gtt->userptr)
1395 return false;
1396
1397 return true;
1398}
1399
1400/**
1401 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1402 */
1403bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1404{
1405 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1406
1407 if (gtt == NULL)
1408 return false;
1409
1410 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1411}
1412
1413/**
1414 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1415 *
1416 * @ttm: The ttm_tt object to compute the flags for
1417 * @mem: The memory registry backing this ttm_tt object
1418 *
1419 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1420 */
1421uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1422{
1423 uint64_t flags = 0;
1424
1425 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1426 flags |= AMDGPU_PTE_VALID;
1427
1428 if (mem && mem->mem_type == TTM_PL_TT) {
1429 flags |= AMDGPU_PTE_SYSTEM;
1430
1431 if (ttm->caching_state == tt_cached)
1432 flags |= AMDGPU_PTE_SNOOPED;
1433 }
1434
1435 return flags;
1436}
1437
1438/**
1439 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1440 *
1441 * @ttm: The ttm_tt object to compute the flags for
1442 * @mem: The memory registry backing this ttm_tt object
1443
1444 * Figure out the flags to use for a VM PTE (Page Table Entry).
1445 */
1446uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1447 struct ttm_mem_reg *mem)
1448{
1449 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1450
1451 flags |= adev->gart.gart_pte_flags;
1452 flags |= AMDGPU_PTE_READABLE;
1453
1454 if (!amdgpu_ttm_tt_is_readonly(ttm))
1455 flags |= AMDGPU_PTE_WRITEABLE;
1456
1457 return flags;
1458}
1459
1460/**
1461 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1462 * object.
1463 *
1464 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1465 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1466 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1467 * used to clean out a memory space.
1468 */
1469static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1470 const struct ttm_place *place)
1471{
1472 unsigned long num_pages = bo->mem.num_pages;
1473 struct drm_mm_node *node = bo->mem.mm_node;
1474 struct dma_resv_list *flist;
1475 struct dma_fence *f;
1476 int i;
1477
1478 /* Don't evict VM page tables while they are busy, otherwise we can't
1479 * cleanly handle page faults.
1480 */
1481 if (bo->type == ttm_bo_type_kernel &&
1482 !dma_resv_test_signaled_rcu(bo->base.resv, true))
1483 return false;
1484
1485 /* If bo is a KFD BO, check if the bo belongs to the current process.
1486 * If true, then return false as any KFD process needs all its BOs to
1487 * be resident to run successfully
1488 */
1489 flist = dma_resv_get_list(bo->base.resv);
1490 if (flist) {
1491 for (i = 0; i < flist->shared_count; ++i) {
1492 f = rcu_dereference_protected(flist->shared[i],
1493 dma_resv_held(bo->base.resv));
1494 if (amdkfd_fence_check_mm(f, current->mm))
1495 return false;
1496 }
1497 }
1498
1499 switch (bo->mem.mem_type) {
1500 case TTM_PL_TT:
1501 return true;
1502
1503 case TTM_PL_VRAM:
1504 /* Check each drm MM node individually */
1505 while (num_pages) {
1506 if (place->fpfn < (node->start + node->size) &&
1507 !(place->lpfn && place->lpfn <= node->start))
1508 return true;
1509
1510 num_pages -= node->size;
1511 ++node;
1512 }
1513 return false;
1514
1515 default:
1516 break;
1517 }
1518
1519 return ttm_bo_eviction_valuable(bo, place);
1520}
1521
1522/**
1523 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1524 *
1525 * @bo: The buffer object to read/write
1526 * @offset: Offset into buffer object
1527 * @buf: Secondary buffer to write/read from
1528 * @len: Length in bytes of access
1529 * @write: true if writing
1530 *
1531 * This is used to access VRAM that backs a buffer object via MMIO
1532 * access for debugging purposes.
1533 */
1534static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1535 unsigned long offset,
1536 void *buf, int len, int write)
1537{
1538 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1539 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1540 struct drm_mm_node *nodes;
1541 uint32_t value = 0;
1542 int ret = 0;
1543 uint64_t pos;
1544 unsigned long flags;
1545
1546 if (bo->mem.mem_type != TTM_PL_VRAM)
1547 return -EIO;
1548
1549 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1550 pos = (nodes->start << PAGE_SHIFT) + offset;
1551
1552 while (len && pos < adev->gmc.mc_vram_size) {
1553 uint64_t aligned_pos = pos & ~(uint64_t)3;
1554 uint32_t bytes = 4 - (pos & 3);
1555 uint32_t shift = (pos & 3) * 8;
1556 uint32_t mask = 0xffffffff << shift;
1557
1558 if (len < bytes) {
1559 mask &= 0xffffffff >> (bytes - len) * 8;
1560 bytes = len;
1561 }
1562
1563 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1564 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1565 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1566 if (!write || mask != 0xffffffff)
1567 value = RREG32_NO_KIQ(mmMM_DATA);
1568 if (write) {
1569 value &= ~mask;
1570 value |= (*(uint32_t *)buf << shift) & mask;
1571 WREG32_NO_KIQ(mmMM_DATA, value);
1572 }
1573 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1574 if (!write) {
1575 value = (value & mask) >> shift;
1576 memcpy(buf, &value, bytes);
1577 }
1578
1579 ret += bytes;
1580 buf = (uint8_t *)buf + bytes;
1581 pos += bytes;
1582 len -= bytes;
1583 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1584 ++nodes;
1585 pos = (nodes->start << PAGE_SHIFT);
1586 }
1587 }
1588
1589 return ret;
1590}
1591
1592static struct ttm_bo_driver amdgpu_bo_driver = {
1593 .ttm_tt_create = &amdgpu_ttm_tt_create,
1594 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1595 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1596 .invalidate_caches = &amdgpu_invalidate_caches,
1597 .init_mem_type = &amdgpu_init_mem_type,
1598 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1599 .evict_flags = &amdgpu_evict_flags,
1600 .move = &amdgpu_bo_move,
1601 .verify_access = &amdgpu_verify_access,
1602 .move_notify = &amdgpu_bo_move_notify,
1603 .release_notify = &amdgpu_bo_release_notify,
1604 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1605 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1606 .io_mem_free = &amdgpu_ttm_io_mem_free,
1607 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1608 .access_memory = &amdgpu_ttm_access_memory,
1609 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1610};
1611
1612/*
1613 * Firmware Reservation functions
1614 */
1615/**
1616 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1617 *
1618 * @adev: amdgpu_device pointer
1619 *
1620 * free fw reserved vram if it has been reserved.
1621 */
1622static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1623{
1624 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1625 NULL, &adev->fw_vram_usage.va);
1626}
1627
1628/**
1629 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1630 *
1631 * @adev: amdgpu_device pointer
1632 *
1633 * create bo vram reservation from fw.
1634 */
1635static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1636{
1637 struct ttm_operation_ctx ctx = { false, false };
1638 struct amdgpu_bo_param bp;
1639 int r = 0;
1640 int i;
1641 u64 vram_size = adev->gmc.visible_vram_size;
1642 u64 offset = adev->fw_vram_usage.start_offset;
1643 u64 size = adev->fw_vram_usage.size;
1644 struct amdgpu_bo *bo;
1645
1646 memset(&bp, 0, sizeof(bp));
1647 bp.size = adev->fw_vram_usage.size;
1648 bp.byte_align = PAGE_SIZE;
1649 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1650 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1651 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1652 bp.type = ttm_bo_type_kernel;
1653 bp.resv = NULL;
1654 adev->fw_vram_usage.va = NULL;
1655 adev->fw_vram_usage.reserved_bo = NULL;
1656
1657 if (adev->fw_vram_usage.size > 0 &&
1658 adev->fw_vram_usage.size <= vram_size) {
1659
1660 r = amdgpu_bo_create(adev, &bp,
1661 &adev->fw_vram_usage.reserved_bo);
1662 if (r)
1663 goto error_create;
1664
1665 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1666 if (r)
1667 goto error_reserve;
1668
1669 /* remove the original mem node and create a new one at the
1670 * request position
1671 */
1672 bo = adev->fw_vram_usage.reserved_bo;
1673 offset = ALIGN(offset, PAGE_SIZE);
1674 for (i = 0; i < bo->placement.num_placement; ++i) {
1675 bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1676 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1677 }
1678
1679 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1680 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1681 &bo->tbo.mem, &ctx);
1682 if (r)
1683 goto error_pin;
1684
1685 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1686 AMDGPU_GEM_DOMAIN_VRAM,
1687 adev->fw_vram_usage.start_offset,
1688 (adev->fw_vram_usage.start_offset +
1689 adev->fw_vram_usage.size));
1690 if (r)
1691 goto error_pin;
1692 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1693 &adev->fw_vram_usage.va);
1694 if (r)
1695 goto error_kmap;
1696
1697 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1698 }
1699 return r;
1700
1701error_kmap:
1702 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1703error_pin:
1704 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1705error_reserve:
1706 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1707error_create:
1708 adev->fw_vram_usage.va = NULL;
1709 adev->fw_vram_usage.reserved_bo = NULL;
1710 return r;
1711}
1712/**
1713 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1714 * gtt/vram related fields.
1715 *
1716 * This initializes all of the memory space pools that the TTM layer
1717 * will need such as the GTT space (system memory mapped to the device),
1718 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1719 * can be mapped per VMID.
1720 */
1721int amdgpu_ttm_init(struct amdgpu_device *adev)
1722{
1723 uint64_t gtt_size;
1724 int r;
1725 u64 vis_vram_limit;
1726 void *stolen_vga_buf;
1727
1728 mutex_init(&adev->mman.gtt_window_lock);
1729
1730 /* No others user of address space so set it to 0 */
1731 r = ttm_bo_device_init(&adev->mman.bdev,
1732 &amdgpu_bo_driver,
1733 adev->ddev->anon_inode->i_mapping,
1734 dma_addressing_limited(adev->dev));
1735 if (r) {
1736 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1737 return r;
1738 }
1739 adev->mman.initialized = true;
1740
1741 /* We opt to avoid OOM on system pages allocations */
1742 adev->mman.bdev.no_retry = true;
1743
1744 /* Initialize VRAM pool with all of VRAM divided into pages */
1745 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1746 adev->gmc.real_vram_size >> PAGE_SHIFT);
1747 if (r) {
1748 DRM_ERROR("Failed initializing VRAM heap.\n");
1749 return r;
1750 }
1751
1752 /* Reduce size of CPU-visible VRAM if requested */
1753 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1754 if (amdgpu_vis_vram_limit > 0 &&
1755 vis_vram_limit <= adev->gmc.visible_vram_size)
1756 adev->gmc.visible_vram_size = vis_vram_limit;
1757
1758 /* Change the size here instead of the init above so only lpfn is affected */
1759 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1760#ifdef CONFIG_64BIT
1761 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1762 adev->gmc.visible_vram_size);
1763#endif
1764
1765 /*
1766 *The reserved vram for firmware must be pinned to the specified
1767 *place on the VRAM, so reserve it early.
1768 */
1769 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1770 if (r) {
1771 return r;
1772 }
1773
1774 /* allocate memory as required for VGA
1775 * This is used for VGA emulation and pre-OS scanout buffers to
1776 * avoid display artifacts while transitioning between pre-OS
1777 * and driver. */
1778 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1779 AMDGPU_GEM_DOMAIN_VRAM,
1780 &adev->stolen_vga_memory,
1781 NULL, &stolen_vga_buf);
1782 if (r)
1783 return r;
1784 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1785 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1786
1787 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1788 * or whatever the user passed on module init */
1789 if (amdgpu_gtt_size == -1) {
1790 struct sysinfo si;
1791
1792 si_meminfo(&si);
1793 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1794 adev->gmc.mc_vram_size),
1795 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1796 }
1797 else
1798 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1799
1800 /* Initialize GTT memory pool */
1801 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1802 if (r) {
1803 DRM_ERROR("Failed initializing GTT heap.\n");
1804 return r;
1805 }
1806 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1807 (unsigned)(gtt_size / (1024 * 1024)));
1808
1809 /* Initialize various on-chip memory pools */
1810 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1811 adev->gds.gds_size);
1812 if (r) {
1813 DRM_ERROR("Failed initializing GDS heap.\n");
1814 return r;
1815 }
1816
1817 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1818 adev->gds.gws_size);
1819 if (r) {
1820 DRM_ERROR("Failed initializing gws heap.\n");
1821 return r;
1822 }
1823
1824 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1825 adev->gds.oa_size);
1826 if (r) {
1827 DRM_ERROR("Failed initializing oa heap.\n");
1828 return r;
1829 }
1830
1831 /* Register debugfs entries for amdgpu_ttm */
1832 r = amdgpu_ttm_debugfs_init(adev);
1833 if (r) {
1834 DRM_ERROR("Failed to init debugfs\n");
1835 return r;
1836 }
1837 return 0;
1838}
1839
1840/**
1841 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1842 */
1843void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1844{
1845 void *stolen_vga_buf;
1846 /* return the VGA stolen memory (if any) back to VRAM */
1847 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1848}
1849
1850/**
1851 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1852 */
1853void amdgpu_ttm_fini(struct amdgpu_device *adev)
1854{
1855 if (!adev->mman.initialized)
1856 return;
1857
1858 amdgpu_ttm_debugfs_fini(adev);
1859 amdgpu_ttm_fw_reserve_vram_fini(adev);
1860 if (adev->mman.aper_base_kaddr)
1861 iounmap(adev->mman.aper_base_kaddr);
1862 adev->mman.aper_base_kaddr = NULL;
1863
1864 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1865 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1866 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1867 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1868 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1869 ttm_bo_device_release(&adev->mman.bdev);
1870 adev->mman.initialized = false;
1871 DRM_INFO("amdgpu: ttm finalized\n");
1872}
1873
1874/**
1875 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1876 *
1877 * @adev: amdgpu_device pointer
1878 * @enable: true when we can use buffer functions.
1879 *
1880 * Enable/disable use of buffer functions during suspend/resume. This should
1881 * only be called at bootup or when userspace isn't running.
1882 */
1883void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1884{
1885 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1886 uint64_t size;
1887 int r;
1888
1889 if (!adev->mman.initialized || adev->in_gpu_reset ||
1890 adev->mman.buffer_funcs_enabled == enable)
1891 return;
1892
1893 if (enable) {
1894 struct amdgpu_ring *ring;
1895 struct drm_sched_rq *rq;
1896
1897 ring = adev->mman.buffer_funcs_ring;
1898 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1899 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1900 if (r) {
1901 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1902 r);
1903 return;
1904 }
1905 } else {
1906 drm_sched_entity_destroy(&adev->mman.entity);
1907 dma_fence_put(man->move);
1908 man->move = NULL;
1909 }
1910
1911 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1912 if (enable)
1913 size = adev->gmc.real_vram_size;
1914 else
1915 size = adev->gmc.visible_vram_size;
1916 man->size = size >> PAGE_SHIFT;
1917 adev->mman.buffer_funcs_enabled = enable;
1918}
1919
1920int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1921{
1922 struct drm_file *file_priv = filp->private_data;
1923 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1924
1925 if (adev == NULL)
1926 return -EINVAL;
1927
1928 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1929}
1930
1931static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1932 struct ttm_mem_reg *mem, unsigned num_pages,
1933 uint64_t offset, unsigned window,
1934 struct amdgpu_ring *ring,
1935 uint64_t *addr)
1936{
1937 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1938 struct amdgpu_device *adev = ring->adev;
1939 struct ttm_tt *ttm = bo->ttm;
1940 struct amdgpu_job *job;
1941 unsigned num_dw, num_bytes;
1942 dma_addr_t *dma_address;
1943 struct dma_fence *fence;
1944 uint64_t src_addr, dst_addr;
1945 uint64_t flags;
1946 int r;
1947
1948 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1949 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1950
1951 *addr = adev->gmc.gart_start;
1952 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1953 AMDGPU_GPU_PAGE_SIZE;
1954
1955 num_dw = adev->mman.buffer_funcs->copy_num_dw;
1956 while (num_dw & 0x7)
1957 num_dw++;
1958
1959 num_bytes = num_pages * 8;
1960
1961 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1962 if (r)
1963 return r;
1964
1965 src_addr = num_dw * 4;
1966 src_addr += job->ibs[0].gpu_addr;
1967
1968 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1969 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1970 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1971 dst_addr, num_bytes);
1972
1973 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1974 WARN_ON(job->ibs[0].length_dw > num_dw);
1975
1976 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT];
1977 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1978 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1979 &job->ibs[0].ptr[num_dw]);
1980 if (r)
1981 goto error_free;
1982
1983 r = amdgpu_job_submit(job, &adev->mman.entity,
1984 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1985 if (r)
1986 goto error_free;
1987
1988 dma_fence_put(fence);
1989
1990 return r;
1991
1992error_free:
1993 amdgpu_job_free(job);
1994 return r;
1995}
1996
1997int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1998 uint64_t dst_offset, uint32_t byte_count,
1999 struct dma_resv *resv,
2000 struct dma_fence **fence, bool direct_submit,
2001 bool vm_needs_flush)
2002{
2003 struct amdgpu_device *adev = ring->adev;
2004 struct amdgpu_job *job;
2005
2006 uint32_t max_bytes;
2007 unsigned num_loops, num_dw;
2008 unsigned i;
2009 int r;
2010
2011 if (direct_submit && !ring->sched.ready) {
2012 DRM_ERROR("Trying to move memory with ring turned off.\n");
2013 return -EINVAL;
2014 }
2015
2016 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2017 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2018 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2019
2020 /* for IB padding */
2021 while (num_dw & 0x7)
2022 num_dw++;
2023
2024 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2025 if (r)
2026 return r;
2027
2028 if (vm_needs_flush) {
2029 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2030 job->vm_needs_flush = true;
2031 }
2032 if (resv) {
2033 r = amdgpu_sync_resv(adev, &job->sync, resv,
2034 AMDGPU_FENCE_OWNER_UNDEFINED,
2035 false);
2036 if (r) {
2037 DRM_ERROR("sync failed (%d).\n", r);
2038 goto error_free;
2039 }
2040 }
2041
2042 for (i = 0; i < num_loops; i++) {
2043 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2044
2045 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2046 dst_offset, cur_size_in_bytes);
2047
2048 src_offset += cur_size_in_bytes;
2049 dst_offset += cur_size_in_bytes;
2050 byte_count -= cur_size_in_bytes;
2051 }
2052
2053 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2054 WARN_ON(job->ibs[0].length_dw > num_dw);
2055 if (direct_submit)
2056 r = amdgpu_job_submit_direct(job, ring, fence);
2057 else
2058 r = amdgpu_job_submit(job, &adev->mman.entity,
2059 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2060 if (r)
2061 goto error_free;
2062
2063 return r;
2064
2065error_free:
2066 amdgpu_job_free(job);
2067 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2068 return r;
2069}
2070
2071int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2072 uint32_t src_data,
2073 struct dma_resv *resv,
2074 struct dma_fence **fence)
2075{
2076 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2077 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2078 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2079
2080 struct drm_mm_node *mm_node;
2081 unsigned long num_pages;
2082 unsigned int num_loops, num_dw;
2083
2084 struct amdgpu_job *job;
2085 int r;
2086
2087 if (!adev->mman.buffer_funcs_enabled) {
2088 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2089 return -EINVAL;
2090 }
2091
2092 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2093 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2094 if (r)
2095 return r;
2096 }
2097
2098 num_pages = bo->tbo.num_pages;
2099 mm_node = bo->tbo.mem.mm_node;
2100 num_loops = 0;
2101 while (num_pages) {
2102 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2103
2104 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2105 num_pages -= mm_node->size;
2106 ++mm_node;
2107 }
2108 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2109
2110 /* for IB padding */
2111 num_dw += 64;
2112
2113 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2114 if (r)
2115 return r;
2116
2117 if (resv) {
2118 r = amdgpu_sync_resv(adev, &job->sync, resv,
2119 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2120 if (r) {
2121 DRM_ERROR("sync failed (%d).\n", r);
2122 goto error_free;
2123 }
2124 }
2125
2126 num_pages = bo->tbo.num_pages;
2127 mm_node = bo->tbo.mem.mm_node;
2128
2129 while (num_pages) {
2130 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2131 uint64_t dst_addr;
2132
2133 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2134 while (byte_count) {
2135 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2136 max_bytes);
2137
2138 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2139 dst_addr, cur_size_in_bytes);
2140
2141 dst_addr += cur_size_in_bytes;
2142 byte_count -= cur_size_in_bytes;
2143 }
2144
2145 num_pages -= mm_node->size;
2146 ++mm_node;
2147 }
2148
2149 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2150 WARN_ON(job->ibs[0].length_dw > num_dw);
2151 r = amdgpu_job_submit(job, &adev->mman.entity,
2152 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2153 if (r)
2154 goto error_free;
2155
2156 return 0;
2157
2158error_free:
2159 amdgpu_job_free(job);
2160 return r;
2161}
2162
2163#if defined(CONFIG_DEBUG_FS)
2164
2165static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2166{
2167 struct drm_info_node *node = (struct drm_info_node *)m->private;
2168 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2169 struct drm_device *dev = node->minor->dev;
2170 struct amdgpu_device *adev = dev->dev_private;
2171 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2172 struct drm_printer p = drm_seq_file_printer(m);
2173
2174 man->func->debug(man, &p);
2175 return 0;
2176}
2177
2178static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2179 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2180 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2181 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2182 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2183 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2184 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2185#ifdef CONFIG_SWIOTLB
2186 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2187#endif
2188};
2189
2190/**
2191 * amdgpu_ttm_vram_read - Linear read access to VRAM
2192 *
2193 * Accesses VRAM via MMIO for debugging purposes.
2194 */
2195static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2196 size_t size, loff_t *pos)
2197{
2198 struct amdgpu_device *adev = file_inode(f)->i_private;
2199 ssize_t result = 0;
2200 int r;
2201
2202 if (size & 0x3 || *pos & 0x3)
2203 return -EINVAL;
2204
2205 if (*pos >= adev->gmc.mc_vram_size)
2206 return -ENXIO;
2207
2208 while (size) {
2209 unsigned long flags;
2210 uint32_t value;
2211
2212 if (*pos >= adev->gmc.mc_vram_size)
2213 return result;
2214
2215 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2216 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2217 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2218 value = RREG32_NO_KIQ(mmMM_DATA);
2219 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2220
2221 r = put_user(value, (uint32_t *)buf);
2222 if (r)
2223 return r;
2224
2225 result += 4;
2226 buf += 4;
2227 *pos += 4;
2228 size -= 4;
2229 }
2230
2231 return result;
2232}
2233
2234/**
2235 * amdgpu_ttm_vram_write - Linear write access to VRAM
2236 *
2237 * Accesses VRAM via MMIO for debugging purposes.
2238 */
2239static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2240 size_t size, loff_t *pos)
2241{
2242 struct amdgpu_device *adev = file_inode(f)->i_private;
2243 ssize_t result = 0;
2244 int r;
2245
2246 if (size & 0x3 || *pos & 0x3)
2247 return -EINVAL;
2248
2249 if (*pos >= adev->gmc.mc_vram_size)
2250 return -ENXIO;
2251
2252 while (size) {
2253 unsigned long flags;
2254 uint32_t value;
2255
2256 if (*pos >= adev->gmc.mc_vram_size)
2257 return result;
2258
2259 r = get_user(value, (uint32_t *)buf);
2260 if (r)
2261 return r;
2262
2263 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2264 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2265 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2266 WREG32_NO_KIQ(mmMM_DATA, value);
2267 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2268
2269 result += 4;
2270 buf += 4;
2271 *pos += 4;
2272 size -= 4;
2273 }
2274
2275 return result;
2276}
2277
2278static const struct file_operations amdgpu_ttm_vram_fops = {
2279 .owner = THIS_MODULE,
2280 .read = amdgpu_ttm_vram_read,
2281 .write = amdgpu_ttm_vram_write,
2282 .llseek = default_llseek,
2283};
2284
2285#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2286
2287/**
2288 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2289 */
2290static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2291 size_t size, loff_t *pos)
2292{
2293 struct amdgpu_device *adev = file_inode(f)->i_private;
2294 ssize_t result = 0;
2295 int r;
2296
2297 while (size) {
2298 loff_t p = *pos / PAGE_SIZE;
2299 unsigned off = *pos & ~PAGE_MASK;
2300 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2301 struct page *page;
2302 void *ptr;
2303
2304 if (p >= adev->gart.num_cpu_pages)
2305 return result;
2306
2307 page = adev->gart.pages[p];
2308 if (page) {
2309 ptr = kmap(page);
2310 ptr += off;
2311
2312 r = copy_to_user(buf, ptr, cur_size);
2313 kunmap(adev->gart.pages[p]);
2314 } else
2315 r = clear_user(buf, cur_size);
2316
2317 if (r)
2318 return -EFAULT;
2319
2320 result += cur_size;
2321 buf += cur_size;
2322 *pos += cur_size;
2323 size -= cur_size;
2324 }
2325
2326 return result;
2327}
2328
2329static const struct file_operations amdgpu_ttm_gtt_fops = {
2330 .owner = THIS_MODULE,
2331 .read = amdgpu_ttm_gtt_read,
2332 .llseek = default_llseek
2333};
2334
2335#endif
2336
2337/**
2338 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2339 *
2340 * This function is used to read memory that has been mapped to the
2341 * GPU and the known addresses are not physical addresses but instead
2342 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2343 */
2344static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2345 size_t size, loff_t *pos)
2346{
2347 struct amdgpu_device *adev = file_inode(f)->i_private;
2348 struct iommu_domain *dom;
2349 ssize_t result = 0;
2350 int r;
2351
2352 /* retrieve the IOMMU domain if any for this device */
2353 dom = iommu_get_domain_for_dev(adev->dev);
2354
2355 while (size) {
2356 phys_addr_t addr = *pos & PAGE_MASK;
2357 loff_t off = *pos & ~PAGE_MASK;
2358 size_t bytes = PAGE_SIZE - off;
2359 unsigned long pfn;
2360 struct page *p;
2361 void *ptr;
2362
2363 bytes = bytes < size ? bytes : size;
2364
2365 /* Translate the bus address to a physical address. If
2366 * the domain is NULL it means there is no IOMMU active
2367 * and the address translation is the identity
2368 */
2369 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2370
2371 pfn = addr >> PAGE_SHIFT;
2372 if (!pfn_valid(pfn))
2373 return -EPERM;
2374
2375 p = pfn_to_page(pfn);
2376 if (p->mapping != adev->mman.bdev.dev_mapping)
2377 return -EPERM;
2378
2379 ptr = kmap(p);
2380 r = copy_to_user(buf, ptr + off, bytes);
2381 kunmap(p);
2382 if (r)
2383 return -EFAULT;
2384
2385 size -= bytes;
2386 *pos += bytes;
2387 result += bytes;
2388 }
2389
2390 return result;
2391}
2392
2393/**
2394 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2395 *
2396 * This function is used to write memory that has been mapped to the
2397 * GPU and the known addresses are not physical addresses but instead
2398 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2399 */
2400static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2401 size_t size, loff_t *pos)
2402{
2403 struct amdgpu_device *adev = file_inode(f)->i_private;
2404 struct iommu_domain *dom;
2405 ssize_t result = 0;
2406 int r;
2407
2408 dom = iommu_get_domain_for_dev(adev->dev);
2409
2410 while (size) {
2411 phys_addr_t addr = *pos & PAGE_MASK;
2412 loff_t off = *pos & ~PAGE_MASK;
2413 size_t bytes = PAGE_SIZE - off;
2414 unsigned long pfn;
2415 struct page *p;
2416 void *ptr;
2417
2418 bytes = bytes < size ? bytes : size;
2419
2420 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2421
2422 pfn = addr >> PAGE_SHIFT;
2423 if (!pfn_valid(pfn))
2424 return -EPERM;
2425
2426 p = pfn_to_page(pfn);
2427 if (p->mapping != adev->mman.bdev.dev_mapping)
2428 return -EPERM;
2429
2430 ptr = kmap(p);
2431 r = copy_from_user(ptr + off, buf, bytes);
2432 kunmap(p);
2433 if (r)
2434 return -EFAULT;
2435
2436 size -= bytes;
2437 *pos += bytes;
2438 result += bytes;
2439 }
2440
2441 return result;
2442}
2443
2444static const struct file_operations amdgpu_ttm_iomem_fops = {
2445 .owner = THIS_MODULE,
2446 .read = amdgpu_iomem_read,
2447 .write = amdgpu_iomem_write,
2448 .llseek = default_llseek
2449};
2450
2451static const struct {
2452 char *name;
2453 const struct file_operations *fops;
2454 int domain;
2455} ttm_debugfs_entries[] = {
2456 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2457#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2458 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2459#endif
2460 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2461};
2462
2463#endif
2464
2465static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2466{
2467#if defined(CONFIG_DEBUG_FS)
2468 unsigned count;
2469
2470 struct drm_minor *minor = adev->ddev->primary;
2471 struct dentry *ent, *root = minor->debugfs_root;
2472
2473 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2474 ent = debugfs_create_file(
2475 ttm_debugfs_entries[count].name,
2476 S_IFREG | S_IRUGO, root,
2477 adev,
2478 ttm_debugfs_entries[count].fops);
2479 if (IS_ERR(ent))
2480 return PTR_ERR(ent);
2481 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2482 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2483 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2484 i_size_write(ent->d_inode, adev->gmc.gart_size);
2485 adev->mman.debugfs_entries[count] = ent;
2486 }
2487
2488 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2489
2490#ifdef CONFIG_SWIOTLB
2491 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2492 --count;
2493#endif
2494
2495 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2496#else
2497 return 0;
2498#endif
2499}
2500
2501static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2502{
2503#if defined(CONFIG_DEBUG_FS)
2504 unsigned i;
2505
2506 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2507 debugfs_remove(adev->mman.debugfs_entries[i]);
2508#endif
2509}
1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/hmm.h>
36#include <linux/pagemap.h>
37#include <linux/sched/task.h>
38#include <linux/sched/mm.h>
39#include <linux/seq_file.h>
40#include <linux/slab.h>
41#include <linux/swap.h>
42#include <linux/swiotlb.h>
43#include <linux/dma-buf.h>
44#include <linux/sizes.h>
45
46#include <drm/ttm/ttm_bo_api.h>
47#include <drm/ttm/ttm_bo_driver.h>
48#include <drm/ttm/ttm_placement.h>
49#include <drm/ttm/ttm_module.h>
50#include <drm/ttm/ttm_page_alloc.h>
51
52#include <drm/drm_debugfs.h>
53#include <drm/amdgpu_drm.h>
54
55#include "amdgpu.h"
56#include "amdgpu_object.h"
57#include "amdgpu_trace.h"
58#include "amdgpu_amdkfd.h"
59#include "amdgpu_sdma.h"
60#include "amdgpu_ras.h"
61#include "amdgpu_atomfirmware.h"
62#include "bif/bif_4_1_d.h"
63
64#define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
65
66
67/**
68 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
69 * memory request.
70 *
71 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
72 * @type: The type of memory requested
73 * @man: The memory type manager for each domain
74 *
75 * This is called by ttm_bo_init_mm() when a buffer object is being
76 * initialized.
77 */
78static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
79 struct ttm_mem_type_manager *man)
80{
81 struct amdgpu_device *adev;
82
83 adev = amdgpu_ttm_adev(bdev);
84
85 switch (type) {
86 case TTM_PL_SYSTEM:
87 /* System memory */
88 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
89 man->available_caching = TTM_PL_MASK_CACHING;
90 man->default_caching = TTM_PL_FLAG_CACHED;
91 break;
92 case TTM_PL_TT:
93 /* GTT memory */
94 man->func = &amdgpu_gtt_mgr_func;
95 man->available_caching = TTM_PL_MASK_CACHING;
96 man->default_caching = TTM_PL_FLAG_CACHED;
97 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
98 break;
99 case TTM_PL_VRAM:
100 /* "On-card" video ram */
101 man->func = &amdgpu_vram_mgr_func;
102 man->flags = TTM_MEMTYPE_FLAG_FIXED |
103 TTM_MEMTYPE_FLAG_MAPPABLE;
104 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
105 man->default_caching = TTM_PL_FLAG_WC;
106 break;
107 case AMDGPU_PL_GDS:
108 case AMDGPU_PL_GWS:
109 case AMDGPU_PL_OA:
110 /* On-chip GDS memory*/
111 man->func = &ttm_bo_manager_func;
112 man->flags = TTM_MEMTYPE_FLAG_FIXED;
113 man->available_caching = TTM_PL_FLAG_UNCACHED;
114 man->default_caching = TTM_PL_FLAG_UNCACHED;
115 break;
116 default:
117 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
118 return -EINVAL;
119 }
120 return 0;
121}
122
123/**
124 * amdgpu_evict_flags - Compute placement flags
125 *
126 * @bo: The buffer object to evict
127 * @placement: Possible destination(s) for evicted BO
128 *
129 * Fill in placement data when ttm_bo_evict() is called
130 */
131static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
132 struct ttm_placement *placement)
133{
134 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
135 struct amdgpu_bo *abo;
136 static const struct ttm_place placements = {
137 .fpfn = 0,
138 .lpfn = 0,
139 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
140 };
141
142 /* Don't handle scatter gather BOs */
143 if (bo->type == ttm_bo_type_sg) {
144 placement->num_placement = 0;
145 placement->num_busy_placement = 0;
146 return;
147 }
148
149 /* Object isn't an AMDGPU object so ignore */
150 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
151 placement->placement = &placements;
152 placement->busy_placement = &placements;
153 placement->num_placement = 1;
154 placement->num_busy_placement = 1;
155 return;
156 }
157
158 abo = ttm_to_amdgpu_bo(bo);
159 switch (bo->mem.mem_type) {
160 case AMDGPU_PL_GDS:
161 case AMDGPU_PL_GWS:
162 case AMDGPU_PL_OA:
163 placement->num_placement = 0;
164 placement->num_busy_placement = 0;
165 return;
166
167 case TTM_PL_VRAM:
168 if (!adev->mman.buffer_funcs_enabled) {
169 /* Move to system memory */
170 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
171 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
172 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
173 amdgpu_bo_in_cpu_visible_vram(abo)) {
174
175 /* Try evicting to the CPU inaccessible part of VRAM
176 * first, but only set GTT as busy placement, so this
177 * BO will be evicted to GTT rather than causing other
178 * BOs to be evicted from VRAM
179 */
180 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
181 AMDGPU_GEM_DOMAIN_GTT);
182 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
183 abo->placements[0].lpfn = 0;
184 abo->placement.busy_placement = &abo->placements[1];
185 abo->placement.num_busy_placement = 1;
186 } else {
187 /* Move to GTT memory */
188 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
189 }
190 break;
191 case TTM_PL_TT:
192 default:
193 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
194 break;
195 }
196 *placement = abo->placement;
197}
198
199/**
200 * amdgpu_verify_access - Verify access for a mmap call
201 *
202 * @bo: The buffer object to map
203 * @filp: The file pointer from the process performing the mmap
204 *
205 * This is called by ttm_bo_mmap() to verify whether a process
206 * has the right to mmap a BO to their process space.
207 */
208static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
209{
210 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
211
212 /*
213 * Don't verify access for KFD BOs. They don't have a GEM
214 * object associated with them.
215 */
216 if (abo->kfd_bo)
217 return 0;
218
219 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
220 return -EPERM;
221 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
222 filp->private_data);
223}
224
225/**
226 * amdgpu_move_null - Register memory for a buffer object
227 *
228 * @bo: The bo to assign the memory to
229 * @new_mem: The memory to be assigned.
230 *
231 * Assign the memory from new_mem to the memory of the buffer object bo.
232 */
233static void amdgpu_move_null(struct ttm_buffer_object *bo,
234 struct ttm_mem_reg *new_mem)
235{
236 struct ttm_mem_reg *old_mem = &bo->mem;
237
238 BUG_ON(old_mem->mm_node != NULL);
239 *old_mem = *new_mem;
240 new_mem->mm_node = NULL;
241}
242
243/**
244 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
245 *
246 * @bo: The bo to assign the memory to.
247 * @mm_node: Memory manager node for drm allocator.
248 * @mem: The region where the bo resides.
249 *
250 */
251static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
252 struct drm_mm_node *mm_node,
253 struct ttm_mem_reg *mem)
254{
255 uint64_t addr = 0;
256
257 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
258 addr = mm_node->start << PAGE_SHIFT;
259 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
260 mem->mem_type);
261 }
262 return addr;
263}
264
265/**
266 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
267 * @offset. It also modifies the offset to be within the drm_mm_node returned
268 *
269 * @mem: The region where the bo resides.
270 * @offset: The offset that drm_mm_node is used for finding.
271 *
272 */
273static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
274 uint64_t *offset)
275{
276 struct drm_mm_node *mm_node = mem->mm_node;
277
278 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
279 *offset -= (mm_node->size << PAGE_SHIFT);
280 ++mm_node;
281 }
282 return mm_node;
283}
284
285/**
286 * amdgpu_ttm_map_buffer - Map memory into the GART windows
287 * @bo: buffer object to map
288 * @mem: memory object to map
289 * @mm_node: drm_mm node object to map
290 * @num_pages: number of pages to map
291 * @offset: offset into @mm_node where to start
292 * @window: which GART window to use
293 * @ring: DMA ring to use for the copy
294 * @tmz: if we should setup a TMZ enabled mapping
295 * @addr: resulting address inside the MC address space
296 *
297 * Setup one of the GART windows to access a specific piece of memory or return
298 * the physical address for local memory.
299 */
300static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
301 struct ttm_mem_reg *mem,
302 struct drm_mm_node *mm_node,
303 unsigned num_pages, uint64_t offset,
304 unsigned window, struct amdgpu_ring *ring,
305 bool tmz, uint64_t *addr)
306{
307 struct amdgpu_device *adev = ring->adev;
308 struct amdgpu_job *job;
309 unsigned num_dw, num_bytes;
310 struct dma_fence *fence;
311 uint64_t src_addr, dst_addr;
312 void *cpu_addr;
313 uint64_t flags;
314 unsigned int i;
315 int r;
316
317 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
318 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
319
320 /* Map only what can't be accessed directly */
321 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
322 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
323 return 0;
324 }
325
326 *addr = adev->gmc.gart_start;
327 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
328 AMDGPU_GPU_PAGE_SIZE;
329 *addr += offset & ~PAGE_MASK;
330
331 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
332 num_bytes = num_pages * 8;
333
334 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
335 AMDGPU_IB_POOL_DELAYED, &job);
336 if (r)
337 return r;
338
339 src_addr = num_dw * 4;
340 src_addr += job->ibs[0].gpu_addr;
341
342 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
343 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
344 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
345 dst_addr, num_bytes, false);
346
347 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
348 WARN_ON(job->ibs[0].length_dw > num_dw);
349
350 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
351 if (tmz)
352 flags |= AMDGPU_PTE_TMZ;
353
354 cpu_addr = &job->ibs[0].ptr[num_dw];
355
356 if (mem->mem_type == TTM_PL_TT) {
357 struct ttm_dma_tt *dma;
358 dma_addr_t *dma_address;
359
360 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
361 dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
362 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
363 cpu_addr);
364 if (r)
365 goto error_free;
366 } else {
367 dma_addr_t dma_address;
368
369 dma_address = (mm_node->start << PAGE_SHIFT) + offset;
370 dma_address += adev->vm_manager.vram_base_offset;
371
372 for (i = 0; i < num_pages; ++i) {
373 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
374 &dma_address, flags, cpu_addr);
375 if (r)
376 goto error_free;
377
378 dma_address += PAGE_SIZE;
379 }
380 }
381
382 r = amdgpu_job_submit(job, &adev->mman.entity,
383 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
384 if (r)
385 goto error_free;
386
387 dma_fence_put(fence);
388
389 return r;
390
391error_free:
392 amdgpu_job_free(job);
393 return r;
394}
395
396/**
397 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
398 * @adev: amdgpu device
399 * @src: buffer/address where to read from
400 * @dst: buffer/address where to write to
401 * @size: number of bytes to copy
402 * @tmz: if a secure copy should be used
403 * @resv: resv object to sync to
404 * @f: Returns the last fence if multiple jobs are submitted.
405 *
406 * The function copies @size bytes from {src->mem + src->offset} to
407 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
408 * move and different for a BO to BO copy.
409 *
410 */
411int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
412 const struct amdgpu_copy_mem *src,
413 const struct amdgpu_copy_mem *dst,
414 uint64_t size, bool tmz,
415 struct dma_resv *resv,
416 struct dma_fence **f)
417{
418 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
419 AMDGPU_GPU_PAGE_SIZE);
420
421 uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
422 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
423 struct drm_mm_node *src_mm, *dst_mm;
424 struct dma_fence *fence = NULL;
425 int r = 0;
426
427 if (!adev->mman.buffer_funcs_enabled) {
428 DRM_ERROR("Trying to move memory with ring turned off.\n");
429 return -EINVAL;
430 }
431
432 src_offset = src->offset;
433 if (src->mem->mm_node) {
434 src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
435 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
436 } else {
437 src_mm = NULL;
438 src_node_size = ULLONG_MAX;
439 }
440
441 dst_offset = dst->offset;
442 if (dst->mem->mm_node) {
443 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
444 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
445 } else {
446 dst_mm = NULL;
447 dst_node_size = ULLONG_MAX;
448 }
449
450 mutex_lock(&adev->mman.gtt_window_lock);
451
452 while (size) {
453 uint32_t src_page_offset = src_offset & ~PAGE_MASK;
454 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
455 struct dma_fence *next;
456 uint32_t cur_size;
457 uint64_t from, to;
458
459 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
460 * begins at an offset, then adjust the size accordingly
461 */
462 cur_size = max(src_page_offset, dst_page_offset);
463 cur_size = min(min3(src_node_size, dst_node_size, size),
464 (uint64_t)(GTT_MAX_BYTES - cur_size));
465
466 /* Map src to window 0 and dst to window 1. */
467 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
468 PFN_UP(cur_size + src_page_offset),
469 src_offset, 0, ring, tmz, &from);
470 if (r)
471 goto error;
472
473 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
474 PFN_UP(cur_size + dst_page_offset),
475 dst_offset, 1, ring, tmz, &to);
476 if (r)
477 goto error;
478
479 r = amdgpu_copy_buffer(ring, from, to, cur_size,
480 resv, &next, false, true, tmz);
481 if (r)
482 goto error;
483
484 dma_fence_put(fence);
485 fence = next;
486
487 size -= cur_size;
488 if (!size)
489 break;
490
491 src_node_size -= cur_size;
492 if (!src_node_size) {
493 ++src_mm;
494 src_node_size = src_mm->size << PAGE_SHIFT;
495 src_offset = 0;
496 } else {
497 src_offset += cur_size;
498 }
499
500 dst_node_size -= cur_size;
501 if (!dst_node_size) {
502 ++dst_mm;
503 dst_node_size = dst_mm->size << PAGE_SHIFT;
504 dst_offset = 0;
505 } else {
506 dst_offset += cur_size;
507 }
508 }
509error:
510 mutex_unlock(&adev->mman.gtt_window_lock);
511 if (f)
512 *f = dma_fence_get(fence);
513 dma_fence_put(fence);
514 return r;
515}
516
517/**
518 * amdgpu_move_blit - Copy an entire buffer to another buffer
519 *
520 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
521 * help move buffers to and from VRAM.
522 */
523static int amdgpu_move_blit(struct ttm_buffer_object *bo,
524 bool evict, bool no_wait_gpu,
525 struct ttm_mem_reg *new_mem,
526 struct ttm_mem_reg *old_mem)
527{
528 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
529 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
530 struct amdgpu_copy_mem src, dst;
531 struct dma_fence *fence = NULL;
532 int r;
533
534 src.bo = bo;
535 dst.bo = bo;
536 src.mem = old_mem;
537 dst.mem = new_mem;
538 src.offset = 0;
539 dst.offset = 0;
540
541 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
542 new_mem->num_pages << PAGE_SHIFT,
543 amdgpu_bo_encrypted(abo),
544 bo->base.resv, &fence);
545 if (r)
546 goto error;
547
548 /* clear the space being freed */
549 if (old_mem->mem_type == TTM_PL_VRAM &&
550 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
551 struct dma_fence *wipe_fence = NULL;
552
553 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
554 NULL, &wipe_fence);
555 if (r) {
556 goto error;
557 } else if (wipe_fence) {
558 dma_fence_put(fence);
559 fence = wipe_fence;
560 }
561 }
562
563 /* Always block for VM page tables before committing the new location */
564 if (bo->type == ttm_bo_type_kernel)
565 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
566 else
567 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
568 dma_fence_put(fence);
569 return r;
570
571error:
572 if (fence)
573 dma_fence_wait(fence, false);
574 dma_fence_put(fence);
575 return r;
576}
577
578/**
579 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
580 *
581 * Called by amdgpu_bo_move().
582 */
583static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
584 struct ttm_operation_ctx *ctx,
585 struct ttm_mem_reg *new_mem)
586{
587 struct ttm_mem_reg *old_mem = &bo->mem;
588 struct ttm_mem_reg tmp_mem;
589 struct ttm_place placements;
590 struct ttm_placement placement;
591 int r;
592
593 /* create space/pages for new_mem in GTT space */
594 tmp_mem = *new_mem;
595 tmp_mem.mm_node = NULL;
596 placement.num_placement = 1;
597 placement.placement = &placements;
598 placement.num_busy_placement = 1;
599 placement.busy_placement = &placements;
600 placements.fpfn = 0;
601 placements.lpfn = 0;
602 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
603 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
604 if (unlikely(r)) {
605 pr_err("Failed to find GTT space for blit from VRAM\n");
606 return r;
607 }
608
609 /* set caching flags */
610 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
611 if (unlikely(r)) {
612 goto out_cleanup;
613 }
614
615 /* Bind the memory to the GTT space */
616 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
617 if (unlikely(r)) {
618 goto out_cleanup;
619 }
620
621 /* blit VRAM to GTT */
622 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
623 if (unlikely(r)) {
624 goto out_cleanup;
625 }
626
627 /* move BO (in tmp_mem) to new_mem */
628 r = ttm_bo_move_ttm(bo, ctx, new_mem);
629out_cleanup:
630 ttm_bo_mem_put(bo, &tmp_mem);
631 return r;
632}
633
634/**
635 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
636 *
637 * Called by amdgpu_bo_move().
638 */
639static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
640 struct ttm_operation_ctx *ctx,
641 struct ttm_mem_reg *new_mem)
642{
643 struct ttm_mem_reg *old_mem = &bo->mem;
644 struct ttm_mem_reg tmp_mem;
645 struct ttm_placement placement;
646 struct ttm_place placements;
647 int r;
648
649 /* make space in GTT for old_mem buffer */
650 tmp_mem = *new_mem;
651 tmp_mem.mm_node = NULL;
652 placement.num_placement = 1;
653 placement.placement = &placements;
654 placement.num_busy_placement = 1;
655 placement.busy_placement = &placements;
656 placements.fpfn = 0;
657 placements.lpfn = 0;
658 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
659 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
660 if (unlikely(r)) {
661 pr_err("Failed to find GTT space for blit to VRAM\n");
662 return r;
663 }
664
665 /* move/bind old memory to GTT space */
666 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
667 if (unlikely(r)) {
668 goto out_cleanup;
669 }
670
671 /* copy to VRAM */
672 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
673 if (unlikely(r)) {
674 goto out_cleanup;
675 }
676out_cleanup:
677 ttm_bo_mem_put(bo, &tmp_mem);
678 return r;
679}
680
681/**
682 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
683 *
684 * Called by amdgpu_bo_move()
685 */
686static bool amdgpu_mem_visible(struct amdgpu_device *adev,
687 struct ttm_mem_reg *mem)
688{
689 struct drm_mm_node *nodes = mem->mm_node;
690
691 if (mem->mem_type == TTM_PL_SYSTEM ||
692 mem->mem_type == TTM_PL_TT)
693 return true;
694 if (mem->mem_type != TTM_PL_VRAM)
695 return false;
696
697 /* ttm_mem_reg_ioremap only supports contiguous memory */
698 if (nodes->size != mem->num_pages)
699 return false;
700
701 return ((nodes->start + nodes->size) << PAGE_SHIFT)
702 <= adev->gmc.visible_vram_size;
703}
704
705/**
706 * amdgpu_bo_move - Move a buffer object to a new memory location
707 *
708 * Called by ttm_bo_handle_move_mem()
709 */
710static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
711 struct ttm_operation_ctx *ctx,
712 struct ttm_mem_reg *new_mem)
713{
714 struct amdgpu_device *adev;
715 struct amdgpu_bo *abo;
716 struct ttm_mem_reg *old_mem = &bo->mem;
717 int r;
718
719 /* Can't move a pinned BO */
720 abo = ttm_to_amdgpu_bo(bo);
721 if (WARN_ON_ONCE(abo->pin_count > 0))
722 return -EINVAL;
723
724 adev = amdgpu_ttm_adev(bo->bdev);
725
726 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
727 amdgpu_move_null(bo, new_mem);
728 return 0;
729 }
730 if ((old_mem->mem_type == TTM_PL_TT &&
731 new_mem->mem_type == TTM_PL_SYSTEM) ||
732 (old_mem->mem_type == TTM_PL_SYSTEM &&
733 new_mem->mem_type == TTM_PL_TT)) {
734 /* bind is enough */
735 amdgpu_move_null(bo, new_mem);
736 return 0;
737 }
738 if (old_mem->mem_type == AMDGPU_PL_GDS ||
739 old_mem->mem_type == AMDGPU_PL_GWS ||
740 old_mem->mem_type == AMDGPU_PL_OA ||
741 new_mem->mem_type == AMDGPU_PL_GDS ||
742 new_mem->mem_type == AMDGPU_PL_GWS ||
743 new_mem->mem_type == AMDGPU_PL_OA) {
744 /* Nothing to save here */
745 amdgpu_move_null(bo, new_mem);
746 return 0;
747 }
748
749 if (!adev->mman.buffer_funcs_enabled) {
750 r = -ENODEV;
751 goto memcpy;
752 }
753
754 if (old_mem->mem_type == TTM_PL_VRAM &&
755 new_mem->mem_type == TTM_PL_SYSTEM) {
756 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
757 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
758 new_mem->mem_type == TTM_PL_VRAM) {
759 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
760 } else {
761 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
762 new_mem, old_mem);
763 }
764
765 if (r) {
766memcpy:
767 /* Check that all memory is CPU accessible */
768 if (!amdgpu_mem_visible(adev, old_mem) ||
769 !amdgpu_mem_visible(adev, new_mem)) {
770 pr_err("Move buffer fallback to memcpy unavailable\n");
771 return r;
772 }
773
774 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
775 if (r)
776 return r;
777 }
778
779 if (bo->type == ttm_bo_type_device &&
780 new_mem->mem_type == TTM_PL_VRAM &&
781 old_mem->mem_type != TTM_PL_VRAM) {
782 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
783 * accesses the BO after it's moved.
784 */
785 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
786 }
787
788 /* update statistics */
789 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
790 return 0;
791}
792
793/**
794 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
795 *
796 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
797 */
798static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
799{
800 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
801 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
802 struct drm_mm_node *mm_node = mem->mm_node;
803
804 mem->bus.addr = NULL;
805 mem->bus.offset = 0;
806 mem->bus.size = mem->num_pages << PAGE_SHIFT;
807 mem->bus.base = 0;
808 mem->bus.is_iomem = false;
809 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
810 return -EINVAL;
811 switch (mem->mem_type) {
812 case TTM_PL_SYSTEM:
813 /* system memory */
814 return 0;
815 case TTM_PL_TT:
816 break;
817 case TTM_PL_VRAM:
818 mem->bus.offset = mem->start << PAGE_SHIFT;
819 /* check if it's visible */
820 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
821 return -EINVAL;
822 /* Only physically contiguous buffers apply. In a contiguous
823 * buffer, size of the first mm_node would match the number of
824 * pages in ttm_mem_reg.
825 */
826 if (adev->mman.aper_base_kaddr &&
827 (mm_node->size == mem->num_pages))
828 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
829 mem->bus.offset;
830
831 mem->bus.base = adev->gmc.aper_base;
832 mem->bus.is_iomem = true;
833 break;
834 default:
835 return -EINVAL;
836 }
837 return 0;
838}
839
840static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
841 unsigned long page_offset)
842{
843 uint64_t offset = (page_offset << PAGE_SHIFT);
844 struct drm_mm_node *mm;
845
846 mm = amdgpu_find_mm_node(&bo->mem, &offset);
847 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
848 (offset >> PAGE_SHIFT);
849}
850
851/**
852 * amdgpu_ttm_domain_start - Returns GPU start address
853 * @adev: amdgpu device object
854 * @type: type of the memory
855 *
856 * Returns:
857 * GPU start address of a memory domain
858 */
859
860uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
861{
862 switch (type) {
863 case TTM_PL_TT:
864 return adev->gmc.gart_start;
865 case TTM_PL_VRAM:
866 return adev->gmc.vram_start;
867 }
868
869 return 0;
870}
871
872/*
873 * TTM backend functions.
874 */
875struct amdgpu_ttm_tt {
876 struct ttm_dma_tt ttm;
877 struct drm_gem_object *gobj;
878 u64 offset;
879 uint64_t userptr;
880 struct task_struct *usertask;
881 uint32_t userflags;
882#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
883 struct hmm_range *range;
884#endif
885};
886
887#ifdef CONFIG_DRM_AMDGPU_USERPTR
888/**
889 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
890 * memory and start HMM tracking CPU page table update
891 *
892 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
893 * once afterwards to stop HMM tracking
894 */
895int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
896{
897 struct ttm_tt *ttm = bo->tbo.ttm;
898 struct amdgpu_ttm_tt *gtt = (void *)ttm;
899 unsigned long start = gtt->userptr;
900 struct vm_area_struct *vma;
901 struct hmm_range *range;
902 unsigned long timeout;
903 struct mm_struct *mm;
904 unsigned long i;
905 int r = 0;
906
907 mm = bo->notifier.mm;
908 if (unlikely(!mm)) {
909 DRM_DEBUG_DRIVER("BO is not registered?\n");
910 return -EFAULT;
911 }
912
913 /* Another get_user_pages is running at the same time?? */
914 if (WARN_ON(gtt->range))
915 return -EFAULT;
916
917 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
918 return -ESRCH;
919
920 range = kzalloc(sizeof(*range), GFP_KERNEL);
921 if (unlikely(!range)) {
922 r = -ENOMEM;
923 goto out;
924 }
925 range->notifier = &bo->notifier;
926 range->start = bo->notifier.interval_tree.start;
927 range->end = bo->notifier.interval_tree.last + 1;
928 range->default_flags = HMM_PFN_REQ_FAULT;
929 if (!amdgpu_ttm_tt_is_readonly(ttm))
930 range->default_flags |= HMM_PFN_REQ_WRITE;
931
932 range->hmm_pfns = kvmalloc_array(ttm->num_pages,
933 sizeof(*range->hmm_pfns), GFP_KERNEL);
934 if (unlikely(!range->hmm_pfns)) {
935 r = -ENOMEM;
936 goto out_free_ranges;
937 }
938
939 mmap_read_lock(mm);
940 vma = find_vma(mm, start);
941 if (unlikely(!vma || start < vma->vm_start)) {
942 r = -EFAULT;
943 goto out_unlock;
944 }
945 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
946 vma->vm_file)) {
947 r = -EPERM;
948 goto out_unlock;
949 }
950 mmap_read_unlock(mm);
951 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
952
953retry:
954 range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
955
956 mmap_read_lock(mm);
957 r = hmm_range_fault(range);
958 mmap_read_unlock(mm);
959 if (unlikely(r)) {
960 /*
961 * FIXME: This timeout should encompass the retry from
962 * mmu_interval_read_retry() as well.
963 */
964 if (r == -EBUSY && !time_after(jiffies, timeout))
965 goto retry;
966 goto out_free_pfns;
967 }
968
969 /*
970 * Due to default_flags, all pages are HMM_PFN_VALID or
971 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
972 * the notifier_lock, and mmu_interval_read_retry() must be done first.
973 */
974 for (i = 0; i < ttm->num_pages; i++)
975 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
976
977 gtt->range = range;
978 mmput(mm);
979
980 return 0;
981
982out_unlock:
983 mmap_read_unlock(mm);
984out_free_pfns:
985 kvfree(range->hmm_pfns);
986out_free_ranges:
987 kfree(range);
988out:
989 mmput(mm);
990 return r;
991}
992
993/**
994 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
995 * Check if the pages backing this ttm range have been invalidated
996 *
997 * Returns: true if pages are still valid
998 */
999bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
1000{
1001 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1002 bool r = false;
1003
1004 if (!gtt || !gtt->userptr)
1005 return false;
1006
1007 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
1008 gtt->userptr, ttm->num_pages);
1009
1010 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
1011 "No user pages to check\n");
1012
1013 if (gtt->range) {
1014 /*
1015 * FIXME: Must always hold notifier_lock for this, and must
1016 * not ignore the return code.
1017 */
1018 r = mmu_interval_read_retry(gtt->range->notifier,
1019 gtt->range->notifier_seq);
1020 kvfree(gtt->range->hmm_pfns);
1021 kfree(gtt->range);
1022 gtt->range = NULL;
1023 }
1024
1025 return !r;
1026}
1027#endif
1028
1029/**
1030 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1031 *
1032 * Called by amdgpu_cs_list_validate(). This creates the page list
1033 * that backs user memory and will ultimately be mapped into the device
1034 * address space.
1035 */
1036void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1037{
1038 unsigned long i;
1039
1040 for (i = 0; i < ttm->num_pages; ++i)
1041 ttm->pages[i] = pages ? pages[i] : NULL;
1042}
1043
1044/**
1045 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
1046 *
1047 * Called by amdgpu_ttm_backend_bind()
1048 **/
1049static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
1050{
1051 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1052 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1053 int r;
1054
1055 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1056 enum dma_data_direction direction = write ?
1057 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1058
1059 /* Allocate an SG array and squash pages into it */
1060 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1061 ttm->num_pages << PAGE_SHIFT,
1062 GFP_KERNEL);
1063 if (r)
1064 goto release_sg;
1065
1066 /* Map SG to device */
1067 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1068 if (r)
1069 goto release_sg;
1070
1071 /* convert SG to linear array of pages and dma addresses */
1072 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1073 gtt->ttm.dma_address, ttm->num_pages);
1074
1075 return 0;
1076
1077release_sg:
1078 kfree(ttm->sg);
1079 ttm->sg = NULL;
1080 return r;
1081}
1082
1083/**
1084 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1085 */
1086static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1087{
1088 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1089 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1090
1091 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1092 enum dma_data_direction direction = write ?
1093 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1094
1095 /* double check that we don't free the table twice */
1096 if (!ttm->sg->sgl)
1097 return;
1098
1099 /* unmap the pages mapped to the device */
1100 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1101 sg_free_table(ttm->sg);
1102
1103#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1104 if (gtt->range) {
1105 unsigned long i;
1106
1107 for (i = 0; i < ttm->num_pages; i++) {
1108 if (ttm->pages[i] !=
1109 hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1110 break;
1111 }
1112
1113 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1114 }
1115#endif
1116}
1117
1118static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1119 struct ttm_buffer_object *tbo,
1120 uint64_t flags)
1121{
1122 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1123 struct ttm_tt *ttm = tbo->ttm;
1124 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1125 int r;
1126
1127 if (amdgpu_bo_encrypted(abo))
1128 flags |= AMDGPU_PTE_TMZ;
1129
1130 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1131 uint64_t page_idx = 1;
1132
1133 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1134 ttm->pages, gtt->ttm.dma_address, flags);
1135 if (r)
1136 goto gart_bind_fail;
1137
1138 /* The memory type of the first page defaults to UC. Now
1139 * modify the memory type to NC from the second page of
1140 * the BO onward.
1141 */
1142 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1143 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1144
1145 r = amdgpu_gart_bind(adev,
1146 gtt->offset + (page_idx << PAGE_SHIFT),
1147 ttm->num_pages - page_idx,
1148 &ttm->pages[page_idx],
1149 &(gtt->ttm.dma_address[page_idx]), flags);
1150 } else {
1151 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1152 ttm->pages, gtt->ttm.dma_address, flags);
1153 }
1154
1155gart_bind_fail:
1156 if (r)
1157 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1158 ttm->num_pages, gtt->offset);
1159
1160 return r;
1161}
1162
1163/**
1164 * amdgpu_ttm_backend_bind - Bind GTT memory
1165 *
1166 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1167 * This handles binding GTT memory to the device address space.
1168 */
1169static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1170 struct ttm_mem_reg *bo_mem)
1171{
1172 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1173 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1174 uint64_t flags;
1175 int r = 0;
1176
1177 if (gtt->userptr) {
1178 r = amdgpu_ttm_tt_pin_userptr(ttm);
1179 if (r) {
1180 DRM_ERROR("failed to pin userptr\n");
1181 return r;
1182 }
1183 }
1184 if (!ttm->num_pages) {
1185 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1186 ttm->num_pages, bo_mem, ttm);
1187 }
1188
1189 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1190 bo_mem->mem_type == AMDGPU_PL_GWS ||
1191 bo_mem->mem_type == AMDGPU_PL_OA)
1192 return -EINVAL;
1193
1194 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1195 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1196 return 0;
1197 }
1198
1199 /* compute PTE flags relevant to this BO memory */
1200 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1201
1202 /* bind pages into GART page tables */
1203 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1204 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1205 ttm->pages, gtt->ttm.dma_address, flags);
1206
1207 if (r)
1208 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1209 ttm->num_pages, gtt->offset);
1210 return r;
1211}
1212
1213/**
1214 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1215 */
1216int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1217{
1218 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1219 struct ttm_operation_ctx ctx = { false, false };
1220 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1221 struct ttm_mem_reg tmp;
1222 struct ttm_placement placement;
1223 struct ttm_place placements;
1224 uint64_t addr, flags;
1225 int r;
1226
1227 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1228 return 0;
1229
1230 addr = amdgpu_gmc_agp_addr(bo);
1231 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1232 bo->mem.start = addr >> PAGE_SHIFT;
1233 } else {
1234
1235 /* allocate GART space */
1236 tmp = bo->mem;
1237 tmp.mm_node = NULL;
1238 placement.num_placement = 1;
1239 placement.placement = &placements;
1240 placement.num_busy_placement = 1;
1241 placement.busy_placement = &placements;
1242 placements.fpfn = 0;
1243 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1244 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1245 TTM_PL_FLAG_TT;
1246
1247 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1248 if (unlikely(r))
1249 return r;
1250
1251 /* compute PTE flags for this buffer object */
1252 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1253
1254 /* Bind pages */
1255 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1256 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1257 if (unlikely(r)) {
1258 ttm_bo_mem_put(bo, &tmp);
1259 return r;
1260 }
1261
1262 ttm_bo_mem_put(bo, &bo->mem);
1263 bo->mem = tmp;
1264 }
1265
1266 return 0;
1267}
1268
1269/**
1270 * amdgpu_ttm_recover_gart - Rebind GTT pages
1271 *
1272 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1273 * rebind GTT pages during a GPU reset.
1274 */
1275int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1276{
1277 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1278 uint64_t flags;
1279 int r;
1280
1281 if (!tbo->ttm)
1282 return 0;
1283
1284 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1285 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1286
1287 return r;
1288}
1289
1290/**
1291 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1292 *
1293 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1294 * ttm_tt_destroy().
1295 */
1296static void amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1297{
1298 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1299 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1300 int r;
1301
1302 /* if the pages have userptr pinning then clear that first */
1303 if (gtt->userptr)
1304 amdgpu_ttm_tt_unpin_userptr(ttm);
1305
1306 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1307 return;
1308
1309 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1310 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1311 if (r)
1312 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1313 gtt->ttm.ttm.num_pages, gtt->offset);
1314}
1315
1316static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1317{
1318 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1319
1320 if (gtt->usertask)
1321 put_task_struct(gtt->usertask);
1322
1323 ttm_dma_tt_fini(>t->ttm);
1324 kfree(gtt);
1325}
1326
1327static struct ttm_backend_func amdgpu_backend_func = {
1328 .bind = &amdgpu_ttm_backend_bind,
1329 .unbind = &amdgpu_ttm_backend_unbind,
1330 .destroy = &amdgpu_ttm_backend_destroy,
1331};
1332
1333/**
1334 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1335 *
1336 * @bo: The buffer object to create a GTT ttm_tt object around
1337 *
1338 * Called by ttm_tt_create().
1339 */
1340static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1341 uint32_t page_flags)
1342{
1343 struct amdgpu_ttm_tt *gtt;
1344
1345 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1346 if (gtt == NULL) {
1347 return NULL;
1348 }
1349 gtt->ttm.ttm.func = &amdgpu_backend_func;
1350 gtt->gobj = &bo->base;
1351
1352 /* allocate space for the uninitialized page entries */
1353 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1354 kfree(gtt);
1355 return NULL;
1356 }
1357 return >t->ttm.ttm;
1358}
1359
1360/**
1361 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1362 *
1363 * Map the pages of a ttm_tt object to an address space visible
1364 * to the underlying device.
1365 */
1366static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1367 struct ttm_operation_ctx *ctx)
1368{
1369 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1370 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1371
1372 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1373 if (gtt && gtt->userptr) {
1374 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1375 if (!ttm->sg)
1376 return -ENOMEM;
1377
1378 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1379 ttm->state = tt_unbound;
1380 return 0;
1381 }
1382
1383 if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1384 if (!ttm->sg) {
1385 struct dma_buf_attachment *attach;
1386 struct sg_table *sgt;
1387
1388 attach = gtt->gobj->import_attach;
1389 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1390 if (IS_ERR(sgt))
1391 return PTR_ERR(sgt);
1392
1393 ttm->sg = sgt;
1394 }
1395
1396 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1397 gtt->ttm.dma_address,
1398 ttm->num_pages);
1399 ttm->state = tt_unbound;
1400 return 0;
1401 }
1402
1403#ifdef CONFIG_SWIOTLB
1404 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1405 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1406 }
1407#endif
1408
1409 /* fall back to generic helper to populate the page array
1410 * and map them to the device */
1411 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1412}
1413
1414/**
1415 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1416 *
1417 * Unmaps pages of a ttm_tt object from the device address space and
1418 * unpopulates the page array backing it.
1419 */
1420static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1421{
1422 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1423 struct amdgpu_device *adev;
1424
1425 if (gtt && gtt->userptr) {
1426 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1427 kfree(ttm->sg);
1428 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1429 return;
1430 }
1431
1432 if (ttm->sg && gtt->gobj->import_attach) {
1433 struct dma_buf_attachment *attach;
1434
1435 attach = gtt->gobj->import_attach;
1436 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1437 ttm->sg = NULL;
1438 return;
1439 }
1440
1441 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1442 return;
1443
1444 adev = amdgpu_ttm_adev(ttm->bdev);
1445
1446#ifdef CONFIG_SWIOTLB
1447 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1448 ttm_dma_unpopulate(>t->ttm, adev->dev);
1449 return;
1450 }
1451#endif
1452
1453 /* fall back to generic helper to unmap and unpopulate array */
1454 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1455}
1456
1457/**
1458 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1459 * task
1460 *
1461 * @ttm: The ttm_tt object to bind this userptr object to
1462 * @addr: The address in the current tasks VM space to use
1463 * @flags: Requirements of userptr object.
1464 *
1465 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1466 * to current task
1467 */
1468int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1469 uint32_t flags)
1470{
1471 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1472
1473 if (gtt == NULL)
1474 return -EINVAL;
1475
1476 gtt->userptr = addr;
1477 gtt->userflags = flags;
1478
1479 if (gtt->usertask)
1480 put_task_struct(gtt->usertask);
1481 gtt->usertask = current->group_leader;
1482 get_task_struct(gtt->usertask);
1483
1484 return 0;
1485}
1486
1487/**
1488 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1489 */
1490struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1491{
1492 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1493
1494 if (gtt == NULL)
1495 return NULL;
1496
1497 if (gtt->usertask == NULL)
1498 return NULL;
1499
1500 return gtt->usertask->mm;
1501}
1502
1503/**
1504 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1505 * address range for the current task.
1506 *
1507 */
1508bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1509 unsigned long end)
1510{
1511 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1512 unsigned long size;
1513
1514 if (gtt == NULL || !gtt->userptr)
1515 return false;
1516
1517 /* Return false if no part of the ttm_tt object lies within
1518 * the range
1519 */
1520 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1521 if (gtt->userptr > end || gtt->userptr + size <= start)
1522 return false;
1523
1524 return true;
1525}
1526
1527/**
1528 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1529 */
1530bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1531{
1532 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1533
1534 if (gtt == NULL || !gtt->userptr)
1535 return false;
1536
1537 return true;
1538}
1539
1540/**
1541 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1542 */
1543bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1544{
1545 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1546
1547 if (gtt == NULL)
1548 return false;
1549
1550 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1551}
1552
1553/**
1554 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1555 *
1556 * @ttm: The ttm_tt object to compute the flags for
1557 * @mem: The memory registry backing this ttm_tt object
1558 *
1559 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1560 */
1561uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1562{
1563 uint64_t flags = 0;
1564
1565 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1566 flags |= AMDGPU_PTE_VALID;
1567
1568 if (mem && mem->mem_type == TTM_PL_TT) {
1569 flags |= AMDGPU_PTE_SYSTEM;
1570
1571 if (ttm->caching_state == tt_cached)
1572 flags |= AMDGPU_PTE_SNOOPED;
1573 }
1574
1575 return flags;
1576}
1577
1578/**
1579 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1580 *
1581 * @ttm: The ttm_tt object to compute the flags for
1582 * @mem: The memory registry backing this ttm_tt object
1583
1584 * Figure out the flags to use for a VM PTE (Page Table Entry).
1585 */
1586uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1587 struct ttm_mem_reg *mem)
1588{
1589 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1590
1591 flags |= adev->gart.gart_pte_flags;
1592 flags |= AMDGPU_PTE_READABLE;
1593
1594 if (!amdgpu_ttm_tt_is_readonly(ttm))
1595 flags |= AMDGPU_PTE_WRITEABLE;
1596
1597 return flags;
1598}
1599
1600/**
1601 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1602 * object.
1603 *
1604 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1605 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1606 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1607 * used to clean out a memory space.
1608 */
1609static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1610 const struct ttm_place *place)
1611{
1612 unsigned long num_pages = bo->mem.num_pages;
1613 struct drm_mm_node *node = bo->mem.mm_node;
1614 struct dma_resv_list *flist;
1615 struct dma_fence *f;
1616 int i;
1617
1618 if (bo->type == ttm_bo_type_kernel &&
1619 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1620 return false;
1621
1622 /* If bo is a KFD BO, check if the bo belongs to the current process.
1623 * If true, then return false as any KFD process needs all its BOs to
1624 * be resident to run successfully
1625 */
1626 flist = dma_resv_get_list(bo->base.resv);
1627 if (flist) {
1628 for (i = 0; i < flist->shared_count; ++i) {
1629 f = rcu_dereference_protected(flist->shared[i],
1630 dma_resv_held(bo->base.resv));
1631 if (amdkfd_fence_check_mm(f, current->mm))
1632 return false;
1633 }
1634 }
1635
1636 switch (bo->mem.mem_type) {
1637 case TTM_PL_TT:
1638 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1639 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1640 return false;
1641 return true;
1642
1643 case TTM_PL_VRAM:
1644 /* Check each drm MM node individually */
1645 while (num_pages) {
1646 if (place->fpfn < (node->start + node->size) &&
1647 !(place->lpfn && place->lpfn <= node->start))
1648 return true;
1649
1650 num_pages -= node->size;
1651 ++node;
1652 }
1653 return false;
1654
1655 default:
1656 break;
1657 }
1658
1659 return ttm_bo_eviction_valuable(bo, place);
1660}
1661
1662/**
1663 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1664 *
1665 * @bo: The buffer object to read/write
1666 * @offset: Offset into buffer object
1667 * @buf: Secondary buffer to write/read from
1668 * @len: Length in bytes of access
1669 * @write: true if writing
1670 *
1671 * This is used to access VRAM that backs a buffer object via MMIO
1672 * access for debugging purposes.
1673 */
1674static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1675 unsigned long offset,
1676 void *buf, int len, int write)
1677{
1678 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1679 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1680 struct drm_mm_node *nodes;
1681 uint32_t value = 0;
1682 int ret = 0;
1683 uint64_t pos;
1684 unsigned long flags;
1685
1686 if (bo->mem.mem_type != TTM_PL_VRAM)
1687 return -EIO;
1688
1689 pos = offset;
1690 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1691 pos += (nodes->start << PAGE_SHIFT);
1692
1693 while (len && pos < adev->gmc.mc_vram_size) {
1694 uint64_t aligned_pos = pos & ~(uint64_t)3;
1695 uint64_t bytes = 4 - (pos & 3);
1696 uint32_t shift = (pos & 3) * 8;
1697 uint32_t mask = 0xffffffff << shift;
1698
1699 if (len < bytes) {
1700 mask &= 0xffffffff >> (bytes - len) * 8;
1701 bytes = len;
1702 }
1703
1704 if (mask != 0xffffffff) {
1705 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1706 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1707 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1708 if (!write || mask != 0xffffffff)
1709 value = RREG32_NO_KIQ(mmMM_DATA);
1710 if (write) {
1711 value &= ~mask;
1712 value |= (*(uint32_t *)buf << shift) & mask;
1713 WREG32_NO_KIQ(mmMM_DATA, value);
1714 }
1715 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1716 if (!write) {
1717 value = (value & mask) >> shift;
1718 memcpy(buf, &value, bytes);
1719 }
1720 } else {
1721 bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1722 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1723
1724 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1725 bytes, write);
1726 }
1727
1728 ret += bytes;
1729 buf = (uint8_t *)buf + bytes;
1730 pos += bytes;
1731 len -= bytes;
1732 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1733 ++nodes;
1734 pos = (nodes->start << PAGE_SHIFT);
1735 }
1736 }
1737
1738 return ret;
1739}
1740
1741static struct ttm_bo_driver amdgpu_bo_driver = {
1742 .ttm_tt_create = &amdgpu_ttm_tt_create,
1743 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1744 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1745 .init_mem_type = &amdgpu_init_mem_type,
1746 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1747 .evict_flags = &amdgpu_evict_flags,
1748 .move = &amdgpu_bo_move,
1749 .verify_access = &amdgpu_verify_access,
1750 .move_notify = &amdgpu_bo_move_notify,
1751 .release_notify = &amdgpu_bo_release_notify,
1752 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1753 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1754 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1755 .access_memory = &amdgpu_ttm_access_memory,
1756 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1757};
1758
1759/*
1760 * Firmware Reservation functions
1761 */
1762/**
1763 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1764 *
1765 * @adev: amdgpu_device pointer
1766 *
1767 * free fw reserved vram if it has been reserved.
1768 */
1769static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1770{
1771 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1772 NULL, &adev->fw_vram_usage.va);
1773}
1774
1775/**
1776 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1777 *
1778 * @adev: amdgpu_device pointer
1779 *
1780 * create bo vram reservation from fw.
1781 */
1782static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1783{
1784 uint64_t vram_size = adev->gmc.visible_vram_size;
1785
1786 adev->fw_vram_usage.va = NULL;
1787 adev->fw_vram_usage.reserved_bo = NULL;
1788
1789 if (adev->fw_vram_usage.size == 0 ||
1790 adev->fw_vram_usage.size > vram_size)
1791 return 0;
1792
1793 return amdgpu_bo_create_kernel_at(adev,
1794 adev->fw_vram_usage.start_offset,
1795 adev->fw_vram_usage.size,
1796 AMDGPU_GEM_DOMAIN_VRAM,
1797 &adev->fw_vram_usage.reserved_bo,
1798 &adev->fw_vram_usage.va);
1799}
1800
1801/*
1802 * Memoy training reservation functions
1803 */
1804
1805/**
1806 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1807 *
1808 * @adev: amdgpu_device pointer
1809 *
1810 * free memory training reserved vram if it has been reserved.
1811 */
1812static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1813{
1814 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1815
1816 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1817 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1818 ctx->c2p_bo = NULL;
1819
1820 return 0;
1821}
1822
1823static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1824{
1825 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1826
1827 memset(ctx, 0, sizeof(*ctx));
1828
1829 ctx->c2p_train_data_offset =
1830 ALIGN((adev->gmc.mc_vram_size - adev->discovery_tmr_size - SZ_1M), SZ_1M);
1831 ctx->p2c_train_data_offset =
1832 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1833 ctx->train_data_size =
1834 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1835
1836 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1837 ctx->train_data_size,
1838 ctx->p2c_train_data_offset,
1839 ctx->c2p_train_data_offset);
1840}
1841
1842/*
1843 * reserve TMR memory at the top of VRAM which holds
1844 * IP Discovery data and is protected by PSP.
1845 */
1846static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1847{
1848 int ret;
1849 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1850 bool mem_train_support = false;
1851
1852 if (!amdgpu_sriov_vf(adev)) {
1853 ret = amdgpu_mem_train_support(adev);
1854 if (ret == 1)
1855 mem_train_support = true;
1856 else if (ret == -1)
1857 return -EINVAL;
1858 else
1859 DRM_DEBUG("memory training does not support!\n");
1860 }
1861
1862 /*
1863 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1864 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1865 *
1866 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1867 * discovery data and G6 memory training data respectively
1868 */
1869 adev->discovery_tmr_size =
1870 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1871 if (!adev->discovery_tmr_size)
1872 adev->discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1873
1874 if (mem_train_support) {
1875 /* reserve vram for mem train according to TMR location */
1876 amdgpu_ttm_training_data_block_init(adev);
1877 ret = amdgpu_bo_create_kernel_at(adev,
1878 ctx->c2p_train_data_offset,
1879 ctx->train_data_size,
1880 AMDGPU_GEM_DOMAIN_VRAM,
1881 &ctx->c2p_bo,
1882 NULL);
1883 if (ret) {
1884 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1885 amdgpu_ttm_training_reserve_vram_fini(adev);
1886 return ret;
1887 }
1888 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1889 }
1890
1891 ret = amdgpu_bo_create_kernel_at(adev,
1892 adev->gmc.real_vram_size - adev->discovery_tmr_size,
1893 adev->discovery_tmr_size,
1894 AMDGPU_GEM_DOMAIN_VRAM,
1895 &adev->discovery_memory,
1896 NULL);
1897 if (ret) {
1898 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1899 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1900 return ret;
1901 }
1902
1903 return 0;
1904}
1905
1906/**
1907 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1908 * gtt/vram related fields.
1909 *
1910 * This initializes all of the memory space pools that the TTM layer
1911 * will need such as the GTT space (system memory mapped to the device),
1912 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1913 * can be mapped per VMID.
1914 */
1915int amdgpu_ttm_init(struct amdgpu_device *adev)
1916{
1917 uint64_t gtt_size;
1918 int r;
1919 u64 vis_vram_limit;
1920 void *stolen_vga_buf;
1921
1922 mutex_init(&adev->mman.gtt_window_lock);
1923
1924 /* No others user of address space so set it to 0 */
1925 r = ttm_bo_device_init(&adev->mman.bdev,
1926 &amdgpu_bo_driver,
1927 adev->ddev->anon_inode->i_mapping,
1928 adev->ddev->vma_offset_manager,
1929 dma_addressing_limited(adev->dev));
1930 if (r) {
1931 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1932 return r;
1933 }
1934 adev->mman.initialized = true;
1935
1936 /* We opt to avoid OOM on system pages allocations */
1937 adev->mman.bdev.no_retry = true;
1938
1939 /* Initialize VRAM pool with all of VRAM divided into pages */
1940 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1941 adev->gmc.real_vram_size >> PAGE_SHIFT);
1942 if (r) {
1943 DRM_ERROR("Failed initializing VRAM heap.\n");
1944 return r;
1945 }
1946
1947 /* Reduce size of CPU-visible VRAM if requested */
1948 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1949 if (amdgpu_vis_vram_limit > 0 &&
1950 vis_vram_limit <= adev->gmc.visible_vram_size)
1951 adev->gmc.visible_vram_size = vis_vram_limit;
1952
1953 /* Change the size here instead of the init above so only lpfn is affected */
1954 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1955#ifdef CONFIG_64BIT
1956 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1957 adev->gmc.visible_vram_size);
1958#endif
1959
1960 /*
1961 *The reserved vram for firmware must be pinned to the specified
1962 *place on the VRAM, so reserve it early.
1963 */
1964 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1965 if (r) {
1966 return r;
1967 }
1968
1969 /*
1970 * only NAVI10 and onwards ASIC support for IP discovery.
1971 * If IP discovery enabled, a block of memory should be
1972 * reserved for IP discovey.
1973 */
1974 if (adev->discovery_bin) {
1975 r = amdgpu_ttm_reserve_tmr(adev);
1976 if (r)
1977 return r;
1978 }
1979
1980 /* allocate memory as required for VGA
1981 * This is used for VGA emulation and pre-OS scanout buffers to
1982 * avoid display artifacts while transitioning between pre-OS
1983 * and driver. */
1984 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1985 AMDGPU_GEM_DOMAIN_VRAM,
1986 &adev->stolen_vga_memory,
1987 NULL, &stolen_vga_buf);
1988 if (r)
1989 return r;
1990
1991 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1992 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1993
1994 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1995 * or whatever the user passed on module init */
1996 if (amdgpu_gtt_size == -1) {
1997 struct sysinfo si;
1998
1999 si_meminfo(&si);
2000 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
2001 adev->gmc.mc_vram_size),
2002 ((uint64_t)si.totalram * si.mem_unit * 3/4));
2003 }
2004 else
2005 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
2006
2007 /* Initialize GTT memory pool */
2008 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
2009 if (r) {
2010 DRM_ERROR("Failed initializing GTT heap.\n");
2011 return r;
2012 }
2013 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2014 (unsigned)(gtt_size / (1024 * 1024)));
2015
2016 /* Initialize various on-chip memory pools */
2017 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
2018 adev->gds.gds_size);
2019 if (r) {
2020 DRM_ERROR("Failed initializing GDS heap.\n");
2021 return r;
2022 }
2023
2024 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2025 adev->gds.gws_size);
2026 if (r) {
2027 DRM_ERROR("Failed initializing gws heap.\n");
2028 return r;
2029 }
2030
2031 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2032 adev->gds.oa_size);
2033 if (r) {
2034 DRM_ERROR("Failed initializing oa heap.\n");
2035 return r;
2036 }
2037
2038 return 0;
2039}
2040
2041/**
2042 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2043 */
2044void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2045{
2046 void *stolen_vga_buf;
2047 /* return the VGA stolen memory (if any) back to VRAM */
2048 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2049}
2050
2051/**
2052 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2053 */
2054void amdgpu_ttm_fini(struct amdgpu_device *adev)
2055{
2056 if (!adev->mman.initialized)
2057 return;
2058
2059 amdgpu_ttm_training_reserve_vram_fini(adev);
2060 /* return the IP Discovery TMR memory back to VRAM */
2061 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2062 amdgpu_ttm_fw_reserve_vram_fini(adev);
2063
2064 if (adev->mman.aper_base_kaddr)
2065 iounmap(adev->mman.aper_base_kaddr);
2066 adev->mman.aper_base_kaddr = NULL;
2067
2068 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2069 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2070 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2071 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2072 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2073 ttm_bo_device_release(&adev->mman.bdev);
2074 adev->mman.initialized = false;
2075 DRM_INFO("amdgpu: ttm finalized\n");
2076}
2077
2078/**
2079 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2080 *
2081 * @adev: amdgpu_device pointer
2082 * @enable: true when we can use buffer functions.
2083 *
2084 * Enable/disable use of buffer functions during suspend/resume. This should
2085 * only be called at bootup or when userspace isn't running.
2086 */
2087void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2088{
2089 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2090 uint64_t size;
2091 int r;
2092
2093 if (!adev->mman.initialized || adev->in_gpu_reset ||
2094 adev->mman.buffer_funcs_enabled == enable)
2095 return;
2096
2097 if (enable) {
2098 struct amdgpu_ring *ring;
2099 struct drm_gpu_scheduler *sched;
2100
2101 ring = adev->mman.buffer_funcs_ring;
2102 sched = &ring->sched;
2103 r = drm_sched_entity_init(&adev->mman.entity,
2104 DRM_SCHED_PRIORITY_KERNEL, &sched,
2105 1, NULL);
2106 if (r) {
2107 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2108 r);
2109 return;
2110 }
2111 } else {
2112 drm_sched_entity_destroy(&adev->mman.entity);
2113 dma_fence_put(man->move);
2114 man->move = NULL;
2115 }
2116
2117 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2118 if (enable)
2119 size = adev->gmc.real_vram_size;
2120 else
2121 size = adev->gmc.visible_vram_size;
2122 man->size = size >> PAGE_SHIFT;
2123 adev->mman.buffer_funcs_enabled = enable;
2124}
2125
2126int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2127{
2128 struct drm_file *file_priv = filp->private_data;
2129 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2130
2131 if (adev == NULL)
2132 return -EINVAL;
2133
2134 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2135}
2136
2137int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2138 uint64_t dst_offset, uint32_t byte_count,
2139 struct dma_resv *resv,
2140 struct dma_fence **fence, bool direct_submit,
2141 bool vm_needs_flush, bool tmz)
2142{
2143 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2144 AMDGPU_IB_POOL_DELAYED;
2145 struct amdgpu_device *adev = ring->adev;
2146 struct amdgpu_job *job;
2147
2148 uint32_t max_bytes;
2149 unsigned num_loops, num_dw;
2150 unsigned i;
2151 int r;
2152
2153 if (direct_submit && !ring->sched.ready) {
2154 DRM_ERROR("Trying to move memory with ring turned off.\n");
2155 return -EINVAL;
2156 }
2157
2158 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2159 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2160 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2161
2162 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2163 if (r)
2164 return r;
2165
2166 if (vm_needs_flush) {
2167 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2168 job->vm_needs_flush = true;
2169 }
2170 if (resv) {
2171 r = amdgpu_sync_resv(adev, &job->sync, resv,
2172 AMDGPU_SYNC_ALWAYS,
2173 AMDGPU_FENCE_OWNER_UNDEFINED);
2174 if (r) {
2175 DRM_ERROR("sync failed (%d).\n", r);
2176 goto error_free;
2177 }
2178 }
2179
2180 for (i = 0; i < num_loops; i++) {
2181 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2182
2183 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2184 dst_offset, cur_size_in_bytes, tmz);
2185
2186 src_offset += cur_size_in_bytes;
2187 dst_offset += cur_size_in_bytes;
2188 byte_count -= cur_size_in_bytes;
2189 }
2190
2191 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2192 WARN_ON(job->ibs[0].length_dw > num_dw);
2193 if (direct_submit)
2194 r = amdgpu_job_submit_direct(job, ring, fence);
2195 else
2196 r = amdgpu_job_submit(job, &adev->mman.entity,
2197 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2198 if (r)
2199 goto error_free;
2200
2201 return r;
2202
2203error_free:
2204 amdgpu_job_free(job);
2205 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2206 return r;
2207}
2208
2209int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2210 uint32_t src_data,
2211 struct dma_resv *resv,
2212 struct dma_fence **fence)
2213{
2214 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2215 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2216 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2217
2218 struct drm_mm_node *mm_node;
2219 unsigned long num_pages;
2220 unsigned int num_loops, num_dw;
2221
2222 struct amdgpu_job *job;
2223 int r;
2224
2225 if (!adev->mman.buffer_funcs_enabled) {
2226 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2227 return -EINVAL;
2228 }
2229
2230 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2231 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2232 if (r)
2233 return r;
2234 }
2235
2236 num_pages = bo->tbo.num_pages;
2237 mm_node = bo->tbo.mem.mm_node;
2238 num_loops = 0;
2239 while (num_pages) {
2240 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2241
2242 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2243 num_pages -= mm_node->size;
2244 ++mm_node;
2245 }
2246 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2247
2248 /* for IB padding */
2249 num_dw += 64;
2250
2251 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2252 &job);
2253 if (r)
2254 return r;
2255
2256 if (resv) {
2257 r = amdgpu_sync_resv(adev, &job->sync, resv,
2258 AMDGPU_SYNC_ALWAYS,
2259 AMDGPU_FENCE_OWNER_UNDEFINED);
2260 if (r) {
2261 DRM_ERROR("sync failed (%d).\n", r);
2262 goto error_free;
2263 }
2264 }
2265
2266 num_pages = bo->tbo.num_pages;
2267 mm_node = bo->tbo.mem.mm_node;
2268
2269 while (num_pages) {
2270 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2271 uint64_t dst_addr;
2272
2273 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2274 while (byte_count) {
2275 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2276 max_bytes);
2277
2278 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2279 dst_addr, cur_size_in_bytes);
2280
2281 dst_addr += cur_size_in_bytes;
2282 byte_count -= cur_size_in_bytes;
2283 }
2284
2285 num_pages -= mm_node->size;
2286 ++mm_node;
2287 }
2288
2289 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2290 WARN_ON(job->ibs[0].length_dw > num_dw);
2291 r = amdgpu_job_submit(job, &adev->mman.entity,
2292 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2293 if (r)
2294 goto error_free;
2295
2296 return 0;
2297
2298error_free:
2299 amdgpu_job_free(job);
2300 return r;
2301}
2302
2303#if defined(CONFIG_DEBUG_FS)
2304
2305static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2306{
2307 struct drm_info_node *node = (struct drm_info_node *)m->private;
2308 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2309 struct drm_device *dev = node->minor->dev;
2310 struct amdgpu_device *adev = dev->dev_private;
2311 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2312 struct drm_printer p = drm_seq_file_printer(m);
2313
2314 man->func->debug(man, &p);
2315 return 0;
2316}
2317
2318static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2319 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2320 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2321 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2322 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2323 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2324 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2325#ifdef CONFIG_SWIOTLB
2326 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2327#endif
2328};
2329
2330/**
2331 * amdgpu_ttm_vram_read - Linear read access to VRAM
2332 *
2333 * Accesses VRAM via MMIO for debugging purposes.
2334 */
2335static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2336 size_t size, loff_t *pos)
2337{
2338 struct amdgpu_device *adev = file_inode(f)->i_private;
2339 ssize_t result = 0;
2340
2341 if (size & 0x3 || *pos & 0x3)
2342 return -EINVAL;
2343
2344 if (*pos >= adev->gmc.mc_vram_size)
2345 return -ENXIO;
2346
2347 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2348 while (size) {
2349 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2350 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2351
2352 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2353 if (copy_to_user(buf, value, bytes))
2354 return -EFAULT;
2355
2356 result += bytes;
2357 buf += bytes;
2358 *pos += bytes;
2359 size -= bytes;
2360 }
2361
2362 return result;
2363}
2364
2365/**
2366 * amdgpu_ttm_vram_write - Linear write access to VRAM
2367 *
2368 * Accesses VRAM via MMIO for debugging purposes.
2369 */
2370static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2371 size_t size, loff_t *pos)
2372{
2373 struct amdgpu_device *adev = file_inode(f)->i_private;
2374 ssize_t result = 0;
2375 int r;
2376
2377 if (size & 0x3 || *pos & 0x3)
2378 return -EINVAL;
2379
2380 if (*pos >= adev->gmc.mc_vram_size)
2381 return -ENXIO;
2382
2383 while (size) {
2384 unsigned long flags;
2385 uint32_t value;
2386
2387 if (*pos >= adev->gmc.mc_vram_size)
2388 return result;
2389
2390 r = get_user(value, (uint32_t *)buf);
2391 if (r)
2392 return r;
2393
2394 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2395 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2396 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2397 WREG32_NO_KIQ(mmMM_DATA, value);
2398 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2399
2400 result += 4;
2401 buf += 4;
2402 *pos += 4;
2403 size -= 4;
2404 }
2405
2406 return result;
2407}
2408
2409static const struct file_operations amdgpu_ttm_vram_fops = {
2410 .owner = THIS_MODULE,
2411 .read = amdgpu_ttm_vram_read,
2412 .write = amdgpu_ttm_vram_write,
2413 .llseek = default_llseek,
2414};
2415
2416#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2417
2418/**
2419 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2420 */
2421static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2422 size_t size, loff_t *pos)
2423{
2424 struct amdgpu_device *adev = file_inode(f)->i_private;
2425 ssize_t result = 0;
2426 int r;
2427
2428 while (size) {
2429 loff_t p = *pos / PAGE_SIZE;
2430 unsigned off = *pos & ~PAGE_MASK;
2431 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2432 struct page *page;
2433 void *ptr;
2434
2435 if (p >= adev->gart.num_cpu_pages)
2436 return result;
2437
2438 page = adev->gart.pages[p];
2439 if (page) {
2440 ptr = kmap(page);
2441 ptr += off;
2442
2443 r = copy_to_user(buf, ptr, cur_size);
2444 kunmap(adev->gart.pages[p]);
2445 } else
2446 r = clear_user(buf, cur_size);
2447
2448 if (r)
2449 return -EFAULT;
2450
2451 result += cur_size;
2452 buf += cur_size;
2453 *pos += cur_size;
2454 size -= cur_size;
2455 }
2456
2457 return result;
2458}
2459
2460static const struct file_operations amdgpu_ttm_gtt_fops = {
2461 .owner = THIS_MODULE,
2462 .read = amdgpu_ttm_gtt_read,
2463 .llseek = default_llseek
2464};
2465
2466#endif
2467
2468/**
2469 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2470 *
2471 * This function is used to read memory that has been mapped to the
2472 * GPU and the known addresses are not physical addresses but instead
2473 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2474 */
2475static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2476 size_t size, loff_t *pos)
2477{
2478 struct amdgpu_device *adev = file_inode(f)->i_private;
2479 struct iommu_domain *dom;
2480 ssize_t result = 0;
2481 int r;
2482
2483 /* retrieve the IOMMU domain if any for this device */
2484 dom = iommu_get_domain_for_dev(adev->dev);
2485
2486 while (size) {
2487 phys_addr_t addr = *pos & PAGE_MASK;
2488 loff_t off = *pos & ~PAGE_MASK;
2489 size_t bytes = PAGE_SIZE - off;
2490 unsigned long pfn;
2491 struct page *p;
2492 void *ptr;
2493
2494 bytes = bytes < size ? bytes : size;
2495
2496 /* Translate the bus address to a physical address. If
2497 * the domain is NULL it means there is no IOMMU active
2498 * and the address translation is the identity
2499 */
2500 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2501
2502 pfn = addr >> PAGE_SHIFT;
2503 if (!pfn_valid(pfn))
2504 return -EPERM;
2505
2506 p = pfn_to_page(pfn);
2507 if (p->mapping != adev->mman.bdev.dev_mapping)
2508 return -EPERM;
2509
2510 ptr = kmap(p);
2511 r = copy_to_user(buf, ptr + off, bytes);
2512 kunmap(p);
2513 if (r)
2514 return -EFAULT;
2515
2516 size -= bytes;
2517 *pos += bytes;
2518 result += bytes;
2519 }
2520
2521 return result;
2522}
2523
2524/**
2525 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2526 *
2527 * This function is used to write memory that has been mapped to the
2528 * GPU and the known addresses are not physical addresses but instead
2529 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2530 */
2531static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2532 size_t size, loff_t *pos)
2533{
2534 struct amdgpu_device *adev = file_inode(f)->i_private;
2535 struct iommu_domain *dom;
2536 ssize_t result = 0;
2537 int r;
2538
2539 dom = iommu_get_domain_for_dev(adev->dev);
2540
2541 while (size) {
2542 phys_addr_t addr = *pos & PAGE_MASK;
2543 loff_t off = *pos & ~PAGE_MASK;
2544 size_t bytes = PAGE_SIZE - off;
2545 unsigned long pfn;
2546 struct page *p;
2547 void *ptr;
2548
2549 bytes = bytes < size ? bytes : size;
2550
2551 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2552
2553 pfn = addr >> PAGE_SHIFT;
2554 if (!pfn_valid(pfn))
2555 return -EPERM;
2556
2557 p = pfn_to_page(pfn);
2558 if (p->mapping != adev->mman.bdev.dev_mapping)
2559 return -EPERM;
2560
2561 ptr = kmap(p);
2562 r = copy_from_user(ptr + off, buf, bytes);
2563 kunmap(p);
2564 if (r)
2565 return -EFAULT;
2566
2567 size -= bytes;
2568 *pos += bytes;
2569 result += bytes;
2570 }
2571
2572 return result;
2573}
2574
2575static const struct file_operations amdgpu_ttm_iomem_fops = {
2576 .owner = THIS_MODULE,
2577 .read = amdgpu_iomem_read,
2578 .write = amdgpu_iomem_write,
2579 .llseek = default_llseek
2580};
2581
2582static const struct {
2583 char *name;
2584 const struct file_operations *fops;
2585 int domain;
2586} ttm_debugfs_entries[] = {
2587 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2588#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2589 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2590#endif
2591 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2592};
2593
2594#endif
2595
2596int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2597{
2598#if defined(CONFIG_DEBUG_FS)
2599 unsigned count;
2600
2601 struct drm_minor *minor = adev->ddev->primary;
2602 struct dentry *ent, *root = minor->debugfs_root;
2603
2604 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2605 ent = debugfs_create_file(
2606 ttm_debugfs_entries[count].name,
2607 S_IFREG | S_IRUGO, root,
2608 adev,
2609 ttm_debugfs_entries[count].fops);
2610 if (IS_ERR(ent))
2611 return PTR_ERR(ent);
2612 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2613 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2614 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2615 i_size_write(ent->d_inode, adev->gmc.gart_size);
2616 adev->mman.debugfs_entries[count] = ent;
2617 }
2618
2619 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2620
2621#ifdef CONFIG_SWIOTLB
2622 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2623 --count;
2624#endif
2625
2626 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2627#else
2628 return 0;
2629#endif
2630}