Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * File: mca.c
4 * Purpose: Generic MCA handling layer
5 *
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 *
21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 *
24 * Copyright (C) 2006 FUJITSU LIMITED
25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 *
27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29 * added min save state dump, added INIT handler.
30 *
31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
33 * errors, completed code for logging of corrected & uncorrected
34 * machine check errors, and updated for conformance with Nov. 2000
35 * revision of the SAL 3.0 spec.
36 *
37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39 * set SAL default return values, changed error record structure to
40 * linked list, added init call to sal_get_state_info_size().
41 *
42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
43 * GUID cleanups.
44 *
45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46 * Added INIT backtrace support.
47 *
48 * 2003-12-08 Keith Owens <kaos@sgi.com>
49 * smp_call_function() must not be called from interrupt context
50 * (can deadlock on tasklist_lock).
51 * Use keventd to call smp_call_function().
52 *
53 * 2004-02-01 Keith Owens <kaos@sgi.com>
54 * Avoid deadlock when using printk() for MCA and INIT records.
55 * Delete all record printing code, moved to salinfo_decode in user
56 * space. Mark variables and functions static where possible.
57 * Delete dead variables and functions. Reorder to remove the need
58 * for forward declarations and to consolidate related code.
59 *
60 * 2005-08-12 Keith Owens <kaos@sgi.com>
61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
62 * state.
63 *
64 * 2005-10-07 Keith Owens <kaos@sgi.com>
65 * Add notify_die() hooks.
66 *
67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68 * Add printing support for MCA/INIT.
69 *
70 * 2007-04-27 Russ Anderson <rja@sgi.com>
71 * Support multiple cpus going through OS_MCA in the same event.
72 */
73#include <linux/jiffies.h>
74#include <linux/types.h>
75#include <linux/init.h>
76#include <linux/sched/signal.h>
77#include <linux/sched/debug.h>
78#include <linux/sched/task.h>
79#include <linux/interrupt.h>
80#include <linux/irq.h>
81#include <linux/memblock.h>
82#include <linux/acpi.h>
83#include <linux/timer.h>
84#include <linux/module.h>
85#include <linux/kernel.h>
86#include <linux/smp.h>
87#include <linux/workqueue.h>
88#include <linux/cpumask.h>
89#include <linux/kdebug.h>
90#include <linux/cpu.h>
91#include <linux/gfp.h>
92
93#include <asm/delay.h>
94#include <asm/meminit.h>
95#include <asm/page.h>
96#include <asm/ptrace.h>
97#include <asm/sal.h>
98#include <asm/mca.h>
99#include <asm/kexec.h>
100
101#include <asm/irq.h>
102#include <asm/hw_irq.h>
103#include <asm/tlb.h>
104
105#include "mca_drv.h"
106#include "entry.h"
107
108#if defined(IA64_MCA_DEBUG_INFO)
109# define IA64_MCA_DEBUG(fmt...) printk(fmt)
110#else
111# define IA64_MCA_DEBUG(fmt...)
112#endif
113
114#define NOTIFY_INIT(event, regs, arg, spin) \
115do { \
116 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
117 == NOTIFY_STOP) && ((spin) == 1)) \
118 ia64_mca_spin(__func__); \
119} while (0)
120
121#define NOTIFY_MCA(event, regs, arg, spin) \
122do { \
123 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
124 == NOTIFY_STOP) && ((spin) == 1)) \
125 ia64_mca_spin(__func__); \
126} while (0)
127
128/* Used by mca_asm.S */
129DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
130DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
131DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
132DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
133DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
134
135unsigned long __per_cpu_mca[NR_CPUS];
136
137/* In mca_asm.S */
138extern void ia64_os_init_dispatch_monarch (void);
139extern void ia64_os_init_dispatch_slave (void);
140
141static int monarch_cpu = -1;
142
143static ia64_mc_info_t ia64_mc_info;
144
145#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
146#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
147#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
148#define CPE_HISTORY_LENGTH 5
149#define CMC_HISTORY_LENGTH 5
150
151static struct timer_list cpe_poll_timer;
152static struct timer_list cmc_poll_timer;
153/*
154 * This variable tells whether we are currently in polling mode.
155 * Start with this in the wrong state so we won't play w/ timers
156 * before the system is ready.
157 */
158static int cmc_polling_enabled = 1;
159
160/*
161 * Clearing this variable prevents CPE polling from getting activated
162 * in mca_late_init. Use it if your system doesn't provide a CPEI,
163 * but encounters problems retrieving CPE logs. This should only be
164 * necessary for debugging.
165 */
166static int cpe_poll_enabled = 1;
167
168extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
169
170static int mca_init __initdata;
171
172/*
173 * limited & delayed printing support for MCA/INIT handler
174 */
175
176#define mprintk(fmt...) ia64_mca_printk(fmt)
177
178#define MLOGBUF_SIZE (512+256*NR_CPUS)
179#define MLOGBUF_MSGMAX 256
180static char mlogbuf[MLOGBUF_SIZE];
181static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
182static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
183static unsigned long mlogbuf_start;
184static unsigned long mlogbuf_end;
185static unsigned int mlogbuf_finished = 0;
186static unsigned long mlogbuf_timestamp = 0;
187
188static int loglevel_save = -1;
189#define BREAK_LOGLEVEL(__console_loglevel) \
190 oops_in_progress = 1; \
191 if (loglevel_save < 0) \
192 loglevel_save = __console_loglevel; \
193 __console_loglevel = 15;
194
195#define RESTORE_LOGLEVEL(__console_loglevel) \
196 if (loglevel_save >= 0) { \
197 __console_loglevel = loglevel_save; \
198 loglevel_save = -1; \
199 } \
200 mlogbuf_finished = 0; \
201 oops_in_progress = 0;
202
203/*
204 * Push messages into buffer, print them later if not urgent.
205 */
206void ia64_mca_printk(const char *fmt, ...)
207{
208 va_list args;
209 int printed_len;
210 char temp_buf[MLOGBUF_MSGMAX];
211 char *p;
212
213 va_start(args, fmt);
214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
215 va_end(args);
216
217 /* Copy the output into mlogbuf */
218 if (oops_in_progress) {
219 /* mlogbuf was abandoned, use printk directly instead. */
220 printk("%s", temp_buf);
221 } else {
222 spin_lock(&mlogbuf_wlock);
223 for (p = temp_buf; *p; p++) {
224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225 if (next != mlogbuf_start) {
226 mlogbuf[mlogbuf_end] = *p;
227 mlogbuf_end = next;
228 } else {
229 /* buffer full */
230 break;
231 }
232 }
233 mlogbuf[mlogbuf_end] = '\0';
234 spin_unlock(&mlogbuf_wlock);
235 }
236}
237EXPORT_SYMBOL(ia64_mca_printk);
238
239/*
240 * Print buffered messages.
241 * NOTE: call this after returning normal context. (ex. from salinfod)
242 */
243void ia64_mlogbuf_dump(void)
244{
245 char temp_buf[MLOGBUF_MSGMAX];
246 char *p;
247 unsigned long index;
248 unsigned long flags;
249 unsigned int printed_len;
250
251 /* Get output from mlogbuf */
252 while (mlogbuf_start != mlogbuf_end) {
253 temp_buf[0] = '\0';
254 p = temp_buf;
255 printed_len = 0;
256
257 spin_lock_irqsave(&mlogbuf_rlock, flags);
258
259 index = mlogbuf_start;
260 while (index != mlogbuf_end) {
261 *p = mlogbuf[index];
262 index = (index + 1) % MLOGBUF_SIZE;
263 if (!*p)
264 break;
265 p++;
266 if (++printed_len >= MLOGBUF_MSGMAX - 1)
267 break;
268 }
269 *p = '\0';
270 if (temp_buf[0])
271 printk("%s", temp_buf);
272 mlogbuf_start = index;
273
274 mlogbuf_timestamp = 0;
275 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
276 }
277}
278EXPORT_SYMBOL(ia64_mlogbuf_dump);
279
280/*
281 * Call this if system is going to down or if immediate flushing messages to
282 * console is required. (ex. recovery was failed, crash dump is going to be
283 * invoked, long-wait rendezvous etc.)
284 * NOTE: this should be called from monarch.
285 */
286static void ia64_mlogbuf_finish(int wait)
287{
288 BREAK_LOGLEVEL(console_loglevel);
289
290 spin_lock_init(&mlogbuf_rlock);
291 ia64_mlogbuf_dump();
292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293 "MCA/INIT might be dodgy or fail.\n");
294
295 if (!wait)
296 return;
297
298 /* wait for console */
299 printk("Delaying for 5 seconds...\n");
300 udelay(5*1000000);
301
302 mlogbuf_finished = 1;
303}
304
305/*
306 * Print buffered messages from INIT context.
307 */
308static void ia64_mlogbuf_dump_from_init(void)
309{
310 if (mlogbuf_finished)
311 return;
312
313 if (mlogbuf_timestamp &&
314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316 " and the system seems to be messed up.\n");
317 ia64_mlogbuf_finish(0);
318 return;
319 }
320
321 if (!spin_trylock(&mlogbuf_rlock)) {
322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323 "Generated messages other than stack dump will be "
324 "buffered to mlogbuf and will be printed later.\n");
325 printk(KERN_ERR "INIT: If messages would not printed after "
326 "this INIT, wait 30sec and assert INIT again.\n");
327 if (!mlogbuf_timestamp)
328 mlogbuf_timestamp = jiffies;
329 return;
330 }
331 spin_unlock(&mlogbuf_rlock);
332 ia64_mlogbuf_dump();
333}
334
335static inline void
336ia64_mca_spin(const char *func)
337{
338 if (monarch_cpu == smp_processor_id())
339 ia64_mlogbuf_finish(0);
340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
341 while (1)
342 cpu_relax();
343}
344/*
345 * IA64_MCA log support
346 */
347#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
348#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
349
350typedef struct ia64_state_log_s
351{
352 spinlock_t isl_lock;
353 int isl_index;
354 unsigned long isl_count;
355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
356} ia64_state_log_t;
357
358static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
359
360#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
361#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
362#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
363#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
364#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
365#define IA64_LOG_INDEX_INC(it) \
366 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
367 ia64_state_log[it].isl_count++;}
368#define IA64_LOG_INDEX_DEC(it) \
369 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
370#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
371#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
372#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
373
374static inline void ia64_log_allocate(int it, u64 size)
375{
376 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
377 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
378 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
379 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
380
381 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
382 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
383 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
384 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
385}
386
387/*
388 * ia64_log_init
389 * Reset the OS ia64 log buffer
390 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
391 * Outputs : None
392 */
393static void __init
394ia64_log_init(int sal_info_type)
395{
396 u64 max_size = 0;
397
398 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
399 IA64_LOG_LOCK_INIT(sal_info_type);
400
401 // SAL will tell us the maximum size of any error record of this type
402 max_size = ia64_sal_get_state_info_size(sal_info_type);
403 if (!max_size)
404 /* alloc_bootmem() doesn't like zero-sized allocations! */
405 return;
406
407 // set up OS data structures to hold error info
408 ia64_log_allocate(sal_info_type, max_size);
409}
410
411/*
412 * ia64_log_get
413 *
414 * Get the current MCA log from SAL and copy it into the OS log buffer.
415 *
416 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
417 * irq_safe whether you can use printk at this point
418 * Outputs : size (total record length)
419 * *buffer (ptr to error record)
420 *
421 */
422static u64
423ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
424{
425 sal_log_record_header_t *log_buffer;
426 u64 total_len = 0;
427 unsigned long s;
428
429 IA64_LOG_LOCK(sal_info_type);
430
431 /* Get the process state information */
432 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
433
434 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
435
436 if (total_len) {
437 IA64_LOG_INDEX_INC(sal_info_type);
438 IA64_LOG_UNLOCK(sal_info_type);
439 if (irq_safe) {
440 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
441 __func__, sal_info_type, total_len);
442 }
443 *buffer = (u8 *) log_buffer;
444 return total_len;
445 } else {
446 IA64_LOG_UNLOCK(sal_info_type);
447 return 0;
448 }
449}
450
451/*
452 * ia64_mca_log_sal_error_record
453 *
454 * This function retrieves a specified error record type from SAL
455 * and wakes up any processes waiting for error records.
456 *
457 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
458 * FIXME: remove MCA and irq_safe.
459 */
460static void
461ia64_mca_log_sal_error_record(int sal_info_type)
462{
463 u8 *buffer;
464 sal_log_record_header_t *rh;
465 u64 size;
466 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
467#ifdef IA64_MCA_DEBUG_INFO
468 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
469#endif
470
471 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
472 if (!size)
473 return;
474
475 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
476
477 if (irq_safe)
478 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
479 smp_processor_id(),
480 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
481
482 /* Clear logs from corrected errors in case there's no user-level logger */
483 rh = (sal_log_record_header_t *)buffer;
484 if (rh->severity == sal_log_severity_corrected)
485 ia64_sal_clear_state_info(sal_info_type);
486}
487
488/*
489 * search_mca_table
490 * See if the MCA surfaced in an instruction range
491 * that has been tagged as recoverable.
492 *
493 * Inputs
494 * first First address range to check
495 * last Last address range to check
496 * ip Instruction pointer, address we are looking for
497 *
498 * Return value:
499 * 1 on Success (in the table)/ 0 on Failure (not in the table)
500 */
501int
502search_mca_table (const struct mca_table_entry *first,
503 const struct mca_table_entry *last,
504 unsigned long ip)
505{
506 const struct mca_table_entry *curr;
507 u64 curr_start, curr_end;
508
509 curr = first;
510 while (curr <= last) {
511 curr_start = (u64) &curr->start_addr + curr->start_addr;
512 curr_end = (u64) &curr->end_addr + curr->end_addr;
513
514 if ((ip >= curr_start) && (ip <= curr_end)) {
515 return 1;
516 }
517 curr++;
518 }
519 return 0;
520}
521
522/* Given an address, look for it in the mca tables. */
523int mca_recover_range(unsigned long addr)
524{
525 extern struct mca_table_entry __start___mca_table[];
526 extern struct mca_table_entry __stop___mca_table[];
527
528 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
529}
530EXPORT_SYMBOL_GPL(mca_recover_range);
531
532int cpe_vector = -1;
533int ia64_cpe_irq = -1;
534
535static irqreturn_t
536ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
537{
538 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
539 static int index;
540 static DEFINE_SPINLOCK(cpe_history_lock);
541
542 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
543 __func__, cpe_irq, smp_processor_id());
544
545 /* SAL spec states this should run w/ interrupts enabled */
546 local_irq_enable();
547
548 spin_lock(&cpe_history_lock);
549 if (!cpe_poll_enabled && cpe_vector >= 0) {
550
551 int i, count = 1; /* we know 1 happened now */
552 unsigned long now = jiffies;
553
554 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
555 if (now - cpe_history[i] <= HZ)
556 count++;
557 }
558
559 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
560 if (count >= CPE_HISTORY_LENGTH) {
561
562 cpe_poll_enabled = 1;
563 spin_unlock(&cpe_history_lock);
564 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
565
566 /*
567 * Corrected errors will still be corrected, but
568 * make sure there's a log somewhere that indicates
569 * something is generating more than we can handle.
570 */
571 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
572
573 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
574
575 /* lock already released, get out now */
576 goto out;
577 } else {
578 cpe_history[index++] = now;
579 if (index == CPE_HISTORY_LENGTH)
580 index = 0;
581 }
582 }
583 spin_unlock(&cpe_history_lock);
584out:
585 /* Get the CPE error record and log it */
586 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
587
588 local_irq_disable();
589
590 return IRQ_HANDLED;
591}
592
593/*
594 * ia64_mca_register_cpev
595 *
596 * Register the corrected platform error vector with SAL.
597 *
598 * Inputs
599 * cpev Corrected Platform Error Vector number
600 *
601 * Outputs
602 * None
603 */
604void
605ia64_mca_register_cpev (int cpev)
606{
607 /* Register the CPE interrupt vector with SAL */
608 struct ia64_sal_retval isrv;
609
610 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
611 if (isrv.status) {
612 printk(KERN_ERR "Failed to register Corrected Platform "
613 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
614 return;
615 }
616
617 IA64_MCA_DEBUG("%s: corrected platform error "
618 "vector %#x registered\n", __func__, cpev);
619}
620
621/*
622 * ia64_mca_cmc_vector_setup
623 *
624 * Setup the corrected machine check vector register in the processor.
625 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
626 * This function is invoked on a per-processor basis.
627 *
628 * Inputs
629 * None
630 *
631 * Outputs
632 * None
633 */
634void
635ia64_mca_cmc_vector_setup (void)
636{
637 cmcv_reg_t cmcv;
638
639 cmcv.cmcv_regval = 0;
640 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
641 cmcv.cmcv_vector = IA64_CMC_VECTOR;
642 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
643
644 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
645 __func__, smp_processor_id(), IA64_CMC_VECTOR);
646
647 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
648 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
649}
650
651/*
652 * ia64_mca_cmc_vector_disable
653 *
654 * Mask the corrected machine check vector register in the processor.
655 * This function is invoked on a per-processor basis.
656 *
657 * Inputs
658 * dummy(unused)
659 *
660 * Outputs
661 * None
662 */
663static void
664ia64_mca_cmc_vector_disable (void *dummy)
665{
666 cmcv_reg_t cmcv;
667
668 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
669
670 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
671 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
672
673 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
674 __func__, smp_processor_id(), cmcv.cmcv_vector);
675}
676
677/*
678 * ia64_mca_cmc_vector_enable
679 *
680 * Unmask the corrected machine check vector register in the processor.
681 * This function is invoked on a per-processor basis.
682 *
683 * Inputs
684 * dummy(unused)
685 *
686 * Outputs
687 * None
688 */
689static void
690ia64_mca_cmc_vector_enable (void *dummy)
691{
692 cmcv_reg_t cmcv;
693
694 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
695
696 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
697 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
698
699 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
700 __func__, smp_processor_id(), cmcv.cmcv_vector);
701}
702
703/*
704 * ia64_mca_cmc_vector_disable_keventd
705 *
706 * Called via keventd (smp_call_function() is not safe in interrupt context) to
707 * disable the cmc interrupt vector.
708 */
709static void
710ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
711{
712 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
713}
714
715/*
716 * ia64_mca_cmc_vector_enable_keventd
717 *
718 * Called via keventd (smp_call_function() is not safe in interrupt context) to
719 * enable the cmc interrupt vector.
720 */
721static void
722ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
723{
724 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
725}
726
727/*
728 * ia64_mca_wakeup
729 *
730 * Send an inter-cpu interrupt to wake-up a particular cpu.
731 *
732 * Inputs : cpuid
733 * Outputs : None
734 */
735static void
736ia64_mca_wakeup(int cpu)
737{
738 ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
739}
740
741/*
742 * ia64_mca_wakeup_all
743 *
744 * Wakeup all the slave cpus which have rendez'ed previously.
745 *
746 * Inputs : None
747 * Outputs : None
748 */
749static void
750ia64_mca_wakeup_all(void)
751{
752 int cpu;
753
754 /* Clear the Rendez checkin flag for all cpus */
755 for_each_online_cpu(cpu) {
756 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
757 ia64_mca_wakeup(cpu);
758 }
759
760}
761
762/*
763 * ia64_mca_rendez_interrupt_handler
764 *
765 * This is handler used to put slave processors into spinloop
766 * while the monarch processor does the mca handling and later
767 * wake each slave up once the monarch is done. The state
768 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
769 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
770 * the cpu has come out of OS rendezvous.
771 *
772 * Inputs : None
773 * Outputs : None
774 */
775static irqreturn_t
776ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
777{
778 unsigned long flags;
779 int cpu = smp_processor_id();
780 struct ia64_mca_notify_die nd =
781 { .sos = NULL, .monarch_cpu = &monarch_cpu };
782
783 /* Mask all interrupts */
784 local_irq_save(flags);
785
786 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
787
788 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
789 /* Register with the SAL monarch that the slave has
790 * reached SAL
791 */
792 ia64_sal_mc_rendez();
793
794 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
795
796 /* Wait for the monarch cpu to exit. */
797 while (monarch_cpu != -1)
798 cpu_relax(); /* spin until monarch leaves */
799
800 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
801
802 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
803 /* Enable all interrupts */
804 local_irq_restore(flags);
805 return IRQ_HANDLED;
806}
807
808/*
809 * ia64_mca_wakeup_int_handler
810 *
811 * The interrupt handler for processing the inter-cpu interrupt to the
812 * slave cpu which was spinning in the rendez loop.
813 * Since this spinning is done by turning off the interrupts and
814 * polling on the wakeup-interrupt bit in the IRR, there is
815 * nothing useful to be done in the handler.
816 *
817 * Inputs : wakeup_irq (Wakeup-interrupt bit)
818 * arg (Interrupt handler specific argument)
819 * Outputs : None
820 *
821 */
822static irqreturn_t
823ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
824{
825 return IRQ_HANDLED;
826}
827
828/* Function pointer for extra MCA recovery */
829int (*ia64_mca_ucmc_extension)
830 (void*,struct ia64_sal_os_state*)
831 = NULL;
832
833int
834ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
835{
836 if (ia64_mca_ucmc_extension)
837 return 1;
838
839 ia64_mca_ucmc_extension = fn;
840 return 0;
841}
842
843void
844ia64_unreg_MCA_extension(void)
845{
846 if (ia64_mca_ucmc_extension)
847 ia64_mca_ucmc_extension = NULL;
848}
849
850EXPORT_SYMBOL(ia64_reg_MCA_extension);
851EXPORT_SYMBOL(ia64_unreg_MCA_extension);
852
853
854static inline void
855copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
856{
857 u64 fslot, tslot, nat;
858 *tr = *fr;
859 fslot = ((unsigned long)fr >> 3) & 63;
860 tslot = ((unsigned long)tr >> 3) & 63;
861 *tnat &= ~(1UL << tslot);
862 nat = (fnat >> fslot) & 1;
863 *tnat |= (nat << tslot);
864}
865
866/* Change the comm field on the MCA/INT task to include the pid that
867 * was interrupted, it makes for easier debugging. If that pid was 0
868 * (swapper or nested MCA/INIT) then use the start of the previous comm
869 * field suffixed with its cpu.
870 */
871
872static void
873ia64_mca_modify_comm(const struct task_struct *previous_current)
874{
875 char *p, comm[sizeof(current->comm)];
876 if (previous_current->pid)
877 snprintf(comm, sizeof(comm), "%s %d",
878 current->comm, previous_current->pid);
879 else {
880 int l;
881 if ((p = strchr(previous_current->comm, ' ')))
882 l = p - previous_current->comm;
883 else
884 l = strlen(previous_current->comm);
885 snprintf(comm, sizeof(comm), "%s %*s %d",
886 current->comm, l, previous_current->comm,
887 task_thread_info(previous_current)->cpu);
888 }
889 memcpy(current->comm, comm, sizeof(current->comm));
890}
891
892static void
893finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
894 unsigned long *nat)
895{
896 const pal_min_state_area_t *ms = sos->pal_min_state;
897 const u64 *bank;
898
899 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
900 * pmsa_{xip,xpsr,xfs}
901 */
902 if (ia64_psr(regs)->ic) {
903 regs->cr_iip = ms->pmsa_iip;
904 regs->cr_ipsr = ms->pmsa_ipsr;
905 regs->cr_ifs = ms->pmsa_ifs;
906 } else {
907 regs->cr_iip = ms->pmsa_xip;
908 regs->cr_ipsr = ms->pmsa_xpsr;
909 regs->cr_ifs = ms->pmsa_xfs;
910
911 sos->iip = ms->pmsa_iip;
912 sos->ipsr = ms->pmsa_ipsr;
913 sos->ifs = ms->pmsa_ifs;
914 }
915 regs->pr = ms->pmsa_pr;
916 regs->b0 = ms->pmsa_br0;
917 regs->ar_rsc = ms->pmsa_rsc;
918 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat);
919 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat);
920 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat);
921 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat);
922 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat);
923 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat);
924 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat);
925 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat);
926 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat);
927 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat);
928 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat);
929 if (ia64_psr(regs)->bn)
930 bank = ms->pmsa_bank1_gr;
931 else
932 bank = ms->pmsa_bank0_gr;
933 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat);
934 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat);
935 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat);
936 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat);
937 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat);
938 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat);
939 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat);
940 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat);
941 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat);
942 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat);
943 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat);
944 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat);
945 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat);
946 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat);
947 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat);
948 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat);
949}
950
951/* On entry to this routine, we are running on the per cpu stack, see
952 * mca_asm.h. The original stack has not been touched by this event. Some of
953 * the original stack's registers will be in the RBS on this stack. This stack
954 * also contains a partial pt_regs and switch_stack, the rest of the data is in
955 * PAL minstate.
956 *
957 * The first thing to do is modify the original stack to look like a blocked
958 * task so we can run backtrace on the original task. Also mark the per cpu
959 * stack as current to ensure that we use the correct task state, it also means
960 * that we can do backtrace on the MCA/INIT handler code itself.
961 */
962
963static struct task_struct *
964ia64_mca_modify_original_stack(struct pt_regs *regs,
965 const struct switch_stack *sw,
966 struct ia64_sal_os_state *sos,
967 const char *type)
968{
969 char *p;
970 ia64_va va;
971 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
972 const pal_min_state_area_t *ms = sos->pal_min_state;
973 struct task_struct *previous_current;
974 struct pt_regs *old_regs;
975 struct switch_stack *old_sw;
976 unsigned size = sizeof(struct pt_regs) +
977 sizeof(struct switch_stack) + 16;
978 unsigned long *old_bspstore, *old_bsp;
979 unsigned long *new_bspstore, *new_bsp;
980 unsigned long old_unat, old_rnat, new_rnat, nat;
981 u64 slots, loadrs = regs->loadrs;
982 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
983 u64 ar_bspstore = regs->ar_bspstore;
984 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
985 const char *msg;
986 int cpu = smp_processor_id();
987
988 previous_current = curr_task(cpu);
989 ia64_set_curr_task(cpu, current);
990 if ((p = strchr(current->comm, ' ')))
991 *p = '\0';
992
993 /* Best effort attempt to cope with MCA/INIT delivered while in
994 * physical mode.
995 */
996 regs->cr_ipsr = ms->pmsa_ipsr;
997 if (ia64_psr(regs)->dt == 0) {
998 va.l = r12;
999 if (va.f.reg == 0) {
1000 va.f.reg = 7;
1001 r12 = va.l;
1002 }
1003 va.l = r13;
1004 if (va.f.reg == 0) {
1005 va.f.reg = 7;
1006 r13 = va.l;
1007 }
1008 }
1009 if (ia64_psr(regs)->rt == 0) {
1010 va.l = ar_bspstore;
1011 if (va.f.reg == 0) {
1012 va.f.reg = 7;
1013 ar_bspstore = va.l;
1014 }
1015 va.l = ar_bsp;
1016 if (va.f.reg == 0) {
1017 va.f.reg = 7;
1018 ar_bsp = va.l;
1019 }
1020 }
1021
1022 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1023 * have been copied to the old stack, the old stack may fail the
1024 * validation tests below. So ia64_old_stack() must restore the dirty
1025 * registers from the new stack. The old and new bspstore probably
1026 * have different alignments, so loadrs calculated on the old bsp
1027 * cannot be used to restore from the new bsp. Calculate a suitable
1028 * loadrs for the new stack and save it in the new pt_regs, where
1029 * ia64_old_stack() can get it.
1030 */
1031 old_bspstore = (unsigned long *)ar_bspstore;
1032 old_bsp = (unsigned long *)ar_bsp;
1033 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1034 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1035 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1036 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1037
1038 /* Verify the previous stack state before we change it */
1039 if (user_mode(regs)) {
1040 msg = "occurred in user space";
1041 /* previous_current is guaranteed to be valid when the task was
1042 * in user space, so ...
1043 */
1044 ia64_mca_modify_comm(previous_current);
1045 goto no_mod;
1046 }
1047
1048 if (r13 != sos->prev_IA64_KR_CURRENT) {
1049 msg = "inconsistent previous current and r13";
1050 goto no_mod;
1051 }
1052
1053 if (!mca_recover_range(ms->pmsa_iip)) {
1054 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1055 msg = "inconsistent r12 and r13";
1056 goto no_mod;
1057 }
1058 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1059 msg = "inconsistent ar.bspstore and r13";
1060 goto no_mod;
1061 }
1062 va.p = old_bspstore;
1063 if (va.f.reg < 5) {
1064 msg = "old_bspstore is in the wrong region";
1065 goto no_mod;
1066 }
1067 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1068 msg = "inconsistent ar.bsp and r13";
1069 goto no_mod;
1070 }
1071 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1072 if (ar_bspstore + size > r12) {
1073 msg = "no room for blocked state";
1074 goto no_mod;
1075 }
1076 }
1077
1078 ia64_mca_modify_comm(previous_current);
1079
1080 /* Make the original task look blocked. First stack a struct pt_regs,
1081 * describing the state at the time of interrupt. mca_asm.S built a
1082 * partial pt_regs, copy it and fill in the blanks using minstate.
1083 */
1084 p = (char *)r12 - sizeof(*regs);
1085 old_regs = (struct pt_regs *)p;
1086 memcpy(old_regs, regs, sizeof(*regs));
1087 old_regs->loadrs = loadrs;
1088 old_unat = old_regs->ar_unat;
1089 finish_pt_regs(old_regs, sos, &old_unat);
1090
1091 /* Next stack a struct switch_stack. mca_asm.S built a partial
1092 * switch_stack, copy it and fill in the blanks using pt_regs and
1093 * minstate.
1094 *
1095 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1096 * ar.pfs is set to 0.
1097 *
1098 * unwind.c::unw_unwind() does special processing for interrupt frames.
1099 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1100 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1101 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1102 * switch_stack on the original stack so it will unwind correctly when
1103 * unwind.c reads pt_regs.
1104 *
1105 * thread.ksp is updated to point to the synthesized switch_stack.
1106 */
1107 p -= sizeof(struct switch_stack);
1108 old_sw = (struct switch_stack *)p;
1109 memcpy(old_sw, sw, sizeof(*sw));
1110 old_sw->caller_unat = old_unat;
1111 old_sw->ar_fpsr = old_regs->ar_fpsr;
1112 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1113 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1114 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1115 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1116 old_sw->b0 = (u64)ia64_leave_kernel;
1117 old_sw->b1 = ms->pmsa_br1;
1118 old_sw->ar_pfs = 0;
1119 old_sw->ar_unat = old_unat;
1120 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1121 previous_current->thread.ksp = (u64)p - 16;
1122
1123 /* Finally copy the original stack's registers back to its RBS.
1124 * Registers from ar.bspstore through ar.bsp at the time of the event
1125 * are in the current RBS, copy them back to the original stack. The
1126 * copy must be done register by register because the original bspstore
1127 * and the current one have different alignments, so the saved RNAT
1128 * data occurs at different places.
1129 *
1130 * mca_asm does cover, so the old_bsp already includes all registers at
1131 * the time of MCA/INIT. It also does flushrs, so all registers before
1132 * this function have been written to backing store on the MCA/INIT
1133 * stack.
1134 */
1135 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1136 old_rnat = regs->ar_rnat;
1137 while (slots--) {
1138 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1139 new_rnat = ia64_get_rnat(new_bspstore++);
1140 }
1141 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1142 *old_bspstore++ = old_rnat;
1143 old_rnat = 0;
1144 }
1145 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1146 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1147 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1148 *old_bspstore++ = *new_bspstore++;
1149 }
1150 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1151 old_sw->ar_rnat = old_rnat;
1152
1153 sos->prev_task = previous_current;
1154 return previous_current;
1155
1156no_mod:
1157 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1158 smp_processor_id(), type, msg);
1159 old_unat = regs->ar_unat;
1160 finish_pt_regs(regs, sos, &old_unat);
1161 return previous_current;
1162}
1163
1164/* The monarch/slave interaction is based on monarch_cpu and requires that all
1165 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1166 * not entered rendezvous yet then wait a bit. The assumption is that any
1167 * slave that has not rendezvoused after a reasonable time is never going to do
1168 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1169 * interrupt, as well as cpus that receive the INIT slave event.
1170 */
1171
1172static void
1173ia64_wait_for_slaves(int monarch, const char *type)
1174{
1175 int c, i , wait;
1176
1177 /*
1178 * wait 5 seconds total for slaves (arbitrary)
1179 */
1180 for (i = 0; i < 5000; i++) {
1181 wait = 0;
1182 for_each_online_cpu(c) {
1183 if (c == monarch)
1184 continue;
1185 if (ia64_mc_info.imi_rendez_checkin[c]
1186 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1187 udelay(1000); /* short wait */
1188 wait = 1;
1189 break;
1190 }
1191 }
1192 if (!wait)
1193 goto all_in;
1194 }
1195
1196 /*
1197 * Maybe slave(s) dead. Print buffered messages immediately.
1198 */
1199 ia64_mlogbuf_finish(0);
1200 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1201 for_each_online_cpu(c) {
1202 if (c == monarch)
1203 continue;
1204 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1205 mprintk(" %d", c);
1206 }
1207 mprintk("\n");
1208 return;
1209
1210all_in:
1211 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1212 return;
1213}
1214
1215/* mca_insert_tr
1216 *
1217 * Switch rid when TR reload and needed!
1218 * iord: 1: itr, 2: itr;
1219 *
1220*/
1221static void mca_insert_tr(u64 iord)
1222{
1223
1224 int i;
1225 u64 old_rr;
1226 struct ia64_tr_entry *p;
1227 unsigned long psr;
1228 int cpu = smp_processor_id();
1229
1230 if (!ia64_idtrs[cpu])
1231 return;
1232
1233 psr = ia64_clear_ic();
1234 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1235 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1236 if (p->pte & 0x1) {
1237 old_rr = ia64_get_rr(p->ifa);
1238 if (old_rr != p->rr) {
1239 ia64_set_rr(p->ifa, p->rr);
1240 ia64_srlz_d();
1241 }
1242 ia64_ptr(iord, p->ifa, p->itir >> 2);
1243 ia64_srlz_i();
1244 if (iord & 0x1) {
1245 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1246 ia64_srlz_i();
1247 }
1248 if (iord & 0x2) {
1249 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1250 ia64_srlz_i();
1251 }
1252 if (old_rr != p->rr) {
1253 ia64_set_rr(p->ifa, old_rr);
1254 ia64_srlz_d();
1255 }
1256 }
1257 }
1258 ia64_set_psr(psr);
1259}
1260
1261/*
1262 * ia64_mca_handler
1263 *
1264 * This is uncorrectable machine check handler called from OS_MCA
1265 * dispatch code which is in turn called from SAL_CHECK().
1266 * This is the place where the core of OS MCA handling is done.
1267 * Right now the logs are extracted and displayed in a well-defined
1268 * format. This handler code is supposed to be run only on the
1269 * monarch processor. Once the monarch is done with MCA handling
1270 * further MCA logging is enabled by clearing logs.
1271 * Monarch also has the duty of sending wakeup-IPIs to pull the
1272 * slave processors out of rendezvous spinloop.
1273 *
1274 * If multiple processors call into OS_MCA, the first will become
1275 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1276 * bitmask. After the first monarch has processed its MCA, it
1277 * will wake up the next cpu in the mca_cpu bitmask and then go
1278 * into the rendezvous loop. When all processors have serviced
1279 * their MCA, the last monarch frees up the rest of the processors.
1280 */
1281void
1282ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1283 struct ia64_sal_os_state *sos)
1284{
1285 int recover, cpu = smp_processor_id();
1286 struct task_struct *previous_current;
1287 struct ia64_mca_notify_die nd =
1288 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1289 static atomic_t mca_count;
1290 static cpumask_t mca_cpu;
1291
1292 if (atomic_add_return(1, &mca_count) == 1) {
1293 monarch_cpu = cpu;
1294 sos->monarch = 1;
1295 } else {
1296 cpumask_set_cpu(cpu, &mca_cpu);
1297 sos->monarch = 0;
1298 }
1299 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1300 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1301
1302 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1303
1304 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1305
1306 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1307 if (sos->monarch) {
1308 ia64_wait_for_slaves(cpu, "MCA");
1309
1310 /* Wakeup all the processors which are spinning in the
1311 * rendezvous loop. They will leave SAL, then spin in the OS
1312 * with interrupts disabled until this monarch cpu leaves the
1313 * MCA handler. That gets control back to the OS so we can
1314 * backtrace the other cpus, backtrace when spinning in SAL
1315 * does not work.
1316 */
1317 ia64_mca_wakeup_all();
1318 } else {
1319 while (cpumask_test_cpu(cpu, &mca_cpu))
1320 cpu_relax(); /* spin until monarch wakes us */
1321 }
1322
1323 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1324
1325 /* Get the MCA error record and log it */
1326 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1327
1328 /* MCA error recovery */
1329 recover = (ia64_mca_ucmc_extension
1330 && ia64_mca_ucmc_extension(
1331 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1332 sos));
1333
1334 if (recover) {
1335 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1336 rh->severity = sal_log_severity_corrected;
1337 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1338 sos->os_status = IA64_MCA_CORRECTED;
1339 } else {
1340 /* Dump buffered message to console */
1341 ia64_mlogbuf_finish(1);
1342 }
1343
1344 if (__this_cpu_read(ia64_mca_tr_reload)) {
1345 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1346 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1347 }
1348
1349 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1350
1351 if (atomic_dec_return(&mca_count) > 0) {
1352 int i;
1353
1354 /* wake up the next monarch cpu,
1355 * and put this cpu in the rendez loop.
1356 */
1357 for_each_online_cpu(i) {
1358 if (cpumask_test_cpu(i, &mca_cpu)) {
1359 monarch_cpu = i;
1360 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1361 while (monarch_cpu != -1)
1362 cpu_relax(); /* spin until last cpu leaves */
1363 ia64_set_curr_task(cpu, previous_current);
1364 ia64_mc_info.imi_rendez_checkin[cpu]
1365 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1366 return;
1367 }
1368 }
1369 }
1370 ia64_set_curr_task(cpu, previous_current);
1371 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1372 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1373}
1374
1375static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1376static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1377
1378/*
1379 * ia64_mca_cmc_int_handler
1380 *
1381 * This is corrected machine check interrupt handler.
1382 * Right now the logs are extracted and displayed in a well-defined
1383 * format.
1384 *
1385 * Inputs
1386 * interrupt number
1387 * client data arg ptr
1388 *
1389 * Outputs
1390 * None
1391 */
1392static irqreturn_t
1393ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1394{
1395 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1396 static int index;
1397 static DEFINE_SPINLOCK(cmc_history_lock);
1398
1399 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1400 __func__, cmc_irq, smp_processor_id());
1401
1402 /* SAL spec states this should run w/ interrupts enabled */
1403 local_irq_enable();
1404
1405 spin_lock(&cmc_history_lock);
1406 if (!cmc_polling_enabled) {
1407 int i, count = 1; /* we know 1 happened now */
1408 unsigned long now = jiffies;
1409
1410 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1411 if (now - cmc_history[i] <= HZ)
1412 count++;
1413 }
1414
1415 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1416 if (count >= CMC_HISTORY_LENGTH) {
1417
1418 cmc_polling_enabled = 1;
1419 spin_unlock(&cmc_history_lock);
1420 /* If we're being hit with CMC interrupts, we won't
1421 * ever execute the schedule_work() below. Need to
1422 * disable CMC interrupts on this processor now.
1423 */
1424 ia64_mca_cmc_vector_disable(NULL);
1425 schedule_work(&cmc_disable_work);
1426
1427 /*
1428 * Corrected errors will still be corrected, but
1429 * make sure there's a log somewhere that indicates
1430 * something is generating more than we can handle.
1431 */
1432 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1433
1434 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1435
1436 /* lock already released, get out now */
1437 goto out;
1438 } else {
1439 cmc_history[index++] = now;
1440 if (index == CMC_HISTORY_LENGTH)
1441 index = 0;
1442 }
1443 }
1444 spin_unlock(&cmc_history_lock);
1445out:
1446 /* Get the CMC error record and log it */
1447 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1448
1449 local_irq_disable();
1450
1451 return IRQ_HANDLED;
1452}
1453
1454/*
1455 * ia64_mca_cmc_int_caller
1456 *
1457 * Triggered by sw interrupt from CMC polling routine. Calls
1458 * real interrupt handler and either triggers a sw interrupt
1459 * on the next cpu or does cleanup at the end.
1460 *
1461 * Inputs
1462 * interrupt number
1463 * client data arg ptr
1464 * Outputs
1465 * handled
1466 */
1467static irqreturn_t
1468ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1469{
1470 static int start_count = -1;
1471 unsigned int cpuid;
1472
1473 cpuid = smp_processor_id();
1474
1475 /* If first cpu, update count */
1476 if (start_count == -1)
1477 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1478
1479 ia64_mca_cmc_int_handler(cmc_irq, arg);
1480
1481 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1482
1483 if (cpuid < nr_cpu_ids) {
1484 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1485 } else {
1486 /* If no log record, switch out of polling mode */
1487 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1488
1489 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1490 schedule_work(&cmc_enable_work);
1491 cmc_polling_enabled = 0;
1492
1493 } else {
1494
1495 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1496 }
1497
1498 start_count = -1;
1499 }
1500
1501 return IRQ_HANDLED;
1502}
1503
1504/*
1505 * ia64_mca_cmc_poll
1506 *
1507 * Poll for Corrected Machine Checks (CMCs)
1508 *
1509 * Inputs : dummy(unused)
1510 * Outputs : None
1511 *
1512 */
1513static void
1514ia64_mca_cmc_poll (struct timer_list *unused)
1515{
1516 /* Trigger a CMC interrupt cascade */
1517 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1518 IA64_IPI_DM_INT, 0);
1519}
1520
1521/*
1522 * ia64_mca_cpe_int_caller
1523 *
1524 * Triggered by sw interrupt from CPE polling routine. Calls
1525 * real interrupt handler and either triggers a sw interrupt
1526 * on the next cpu or does cleanup at the end.
1527 *
1528 * Inputs
1529 * interrupt number
1530 * client data arg ptr
1531 * Outputs
1532 * handled
1533 */
1534static irqreturn_t
1535ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1536{
1537 static int start_count = -1;
1538 static int poll_time = MIN_CPE_POLL_INTERVAL;
1539 unsigned int cpuid;
1540
1541 cpuid = smp_processor_id();
1542
1543 /* If first cpu, update count */
1544 if (start_count == -1)
1545 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1546
1547 ia64_mca_cpe_int_handler(cpe_irq, arg);
1548
1549 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1550
1551 if (cpuid < NR_CPUS) {
1552 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1553 } else {
1554 /*
1555 * If a log was recorded, increase our polling frequency,
1556 * otherwise, backoff or return to interrupt mode.
1557 */
1558 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1559 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1560 } else if (cpe_vector < 0) {
1561 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1562 } else {
1563 poll_time = MIN_CPE_POLL_INTERVAL;
1564
1565 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1566 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1567 cpe_poll_enabled = 0;
1568 }
1569
1570 if (cpe_poll_enabled)
1571 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1572 start_count = -1;
1573 }
1574
1575 return IRQ_HANDLED;
1576}
1577
1578/*
1579 * ia64_mca_cpe_poll
1580 *
1581 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1582 * on first cpu, from there it will trickle through all the cpus.
1583 *
1584 * Inputs : dummy(unused)
1585 * Outputs : None
1586 *
1587 */
1588static void
1589ia64_mca_cpe_poll (struct timer_list *unused)
1590{
1591 /* Trigger a CPE interrupt cascade */
1592 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1593 IA64_IPI_DM_INT, 0);
1594}
1595
1596static int
1597default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1598{
1599 int c;
1600 struct task_struct *g, *t;
1601 if (val != DIE_INIT_MONARCH_PROCESS)
1602 return NOTIFY_DONE;
1603#ifdef CONFIG_KEXEC
1604 if (atomic_read(&kdump_in_progress))
1605 return NOTIFY_DONE;
1606#endif
1607
1608 /*
1609 * FIXME: mlogbuf will brim over with INIT stack dumps.
1610 * To enable show_stack from INIT, we use oops_in_progress which should
1611 * be used in real oops. This would cause something wrong after INIT.
1612 */
1613 BREAK_LOGLEVEL(console_loglevel);
1614 ia64_mlogbuf_dump_from_init();
1615
1616 printk(KERN_ERR "Processes interrupted by INIT -");
1617 for_each_online_cpu(c) {
1618 struct ia64_sal_os_state *s;
1619 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1620 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1621 g = s->prev_task;
1622 if (g) {
1623 if (g->pid)
1624 printk(" %d", g->pid);
1625 else
1626 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1627 }
1628 }
1629 printk("\n\n");
1630 if (read_trylock(&tasklist_lock)) {
1631 do_each_thread (g, t) {
1632 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1633 show_stack(t, NULL);
1634 } while_each_thread (g, t);
1635 read_unlock(&tasklist_lock);
1636 }
1637 /* FIXME: This will not restore zapped printk locks. */
1638 RESTORE_LOGLEVEL(console_loglevel);
1639 return NOTIFY_DONE;
1640}
1641
1642/*
1643 * C portion of the OS INIT handler
1644 *
1645 * Called from ia64_os_init_dispatch
1646 *
1647 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1648 * this event. This code is used for both monarch and slave INIT events, see
1649 * sos->monarch.
1650 *
1651 * All INIT events switch to the INIT stack and change the previous process to
1652 * blocked status. If one of the INIT events is the monarch then we are
1653 * probably processing the nmi button/command. Use the monarch cpu to dump all
1654 * the processes. The slave INIT events all spin until the monarch cpu
1655 * returns. We can also get INIT slave events for MCA, in which case the MCA
1656 * process is the monarch.
1657 */
1658
1659void
1660ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1661 struct ia64_sal_os_state *sos)
1662{
1663 static atomic_t slaves;
1664 static atomic_t monarchs;
1665 struct task_struct *previous_current;
1666 int cpu = smp_processor_id();
1667 struct ia64_mca_notify_die nd =
1668 { .sos = sos, .monarch_cpu = &monarch_cpu };
1669
1670 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1671
1672 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1673 sos->proc_state_param, cpu, sos->monarch);
1674 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1675
1676 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1677 sos->os_status = IA64_INIT_RESUME;
1678
1679 /* FIXME: Workaround for broken proms that drive all INIT events as
1680 * slaves. The last slave that enters is promoted to be a monarch.
1681 * Remove this code in September 2006, that gives platforms a year to
1682 * fix their proms and get their customers updated.
1683 */
1684 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1685 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1686 __func__, cpu);
1687 atomic_dec(&slaves);
1688 sos->monarch = 1;
1689 }
1690
1691 /* FIXME: Workaround for broken proms that drive all INIT events as
1692 * monarchs. Second and subsequent monarchs are demoted to slaves.
1693 * Remove this code in September 2006, that gives platforms a year to
1694 * fix their proms and get their customers updated.
1695 */
1696 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1697 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1698 __func__, cpu);
1699 atomic_dec(&monarchs);
1700 sos->monarch = 0;
1701 }
1702
1703 if (!sos->monarch) {
1704 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1705
1706#ifdef CONFIG_KEXEC
1707 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1708 udelay(1000);
1709#else
1710 while (monarch_cpu == -1)
1711 cpu_relax(); /* spin until monarch enters */
1712#endif
1713
1714 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1715 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1716
1717#ifdef CONFIG_KEXEC
1718 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1719 udelay(1000);
1720#else
1721 while (monarch_cpu != -1)
1722 cpu_relax(); /* spin until monarch leaves */
1723#endif
1724
1725 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1726
1727 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1728 ia64_set_curr_task(cpu, previous_current);
1729 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1730 atomic_dec(&slaves);
1731 return;
1732 }
1733
1734 monarch_cpu = cpu;
1735 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1736
1737 /*
1738 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1739 * generated via the BMC's command-line interface, but since the console is on the
1740 * same serial line, the user will need some time to switch out of the BMC before
1741 * the dump begins.
1742 */
1743 mprintk("Delaying for 5 seconds...\n");
1744 udelay(5*1000000);
1745 ia64_wait_for_slaves(cpu, "INIT");
1746 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1747 * to default_monarch_init_process() above and just print all the
1748 * tasks.
1749 */
1750 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1751 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1752
1753 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1754 atomic_dec(&monarchs);
1755 ia64_set_curr_task(cpu, previous_current);
1756 monarch_cpu = -1;
1757 return;
1758}
1759
1760static int __init
1761ia64_mca_disable_cpe_polling(char *str)
1762{
1763 cpe_poll_enabled = 0;
1764 return 1;
1765}
1766
1767__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1768
1769static struct irqaction cmci_irqaction = {
1770 .handler = ia64_mca_cmc_int_handler,
1771 .name = "cmc_hndlr"
1772};
1773
1774static struct irqaction cmcp_irqaction = {
1775 .handler = ia64_mca_cmc_int_caller,
1776 .name = "cmc_poll"
1777};
1778
1779static struct irqaction mca_rdzv_irqaction = {
1780 .handler = ia64_mca_rendez_int_handler,
1781 .name = "mca_rdzv"
1782};
1783
1784static struct irqaction mca_wkup_irqaction = {
1785 .handler = ia64_mca_wakeup_int_handler,
1786 .name = "mca_wkup"
1787};
1788
1789static struct irqaction mca_cpe_irqaction = {
1790 .handler = ia64_mca_cpe_int_handler,
1791 .name = "cpe_hndlr"
1792};
1793
1794static struct irqaction mca_cpep_irqaction = {
1795 .handler = ia64_mca_cpe_int_caller,
1796 .name = "cpe_poll"
1797};
1798
1799/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1800 * these stacks can never sleep, they cannot return from the kernel to user
1801 * space, they do not appear in a normal ps listing. So there is no need to
1802 * format most of the fields.
1803 */
1804
1805static void
1806format_mca_init_stack(void *mca_data, unsigned long offset,
1807 const char *type, int cpu)
1808{
1809 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1810 struct thread_info *ti;
1811 memset(p, 0, KERNEL_STACK_SIZE);
1812 ti = task_thread_info(p);
1813 ti->flags = _TIF_MCA_INIT;
1814 ti->preempt_count = 1;
1815 ti->task = p;
1816 ti->cpu = cpu;
1817 p->stack = ti;
1818 p->state = TASK_UNINTERRUPTIBLE;
1819 cpumask_set_cpu(cpu, &p->cpus_mask);
1820 INIT_LIST_HEAD(&p->tasks);
1821 p->parent = p->real_parent = p->group_leader = p;
1822 INIT_LIST_HEAD(&p->children);
1823 INIT_LIST_HEAD(&p->sibling);
1824 strncpy(p->comm, type, sizeof(p->comm)-1);
1825}
1826
1827/* Caller prevents this from being called after init */
1828static void * __ref mca_bootmem(void)
1829{
1830 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1831}
1832
1833/* Do per-CPU MCA-related initialization. */
1834void
1835ia64_mca_cpu_init(void *cpu_data)
1836{
1837 void *pal_vaddr;
1838 void *data;
1839 long sz = sizeof(struct ia64_mca_cpu);
1840 int cpu = smp_processor_id();
1841 static int first_time = 1;
1842
1843 /*
1844 * Structure will already be allocated if cpu has been online,
1845 * then offlined.
1846 */
1847 if (__per_cpu_mca[cpu]) {
1848 data = __va(__per_cpu_mca[cpu]);
1849 } else {
1850 if (first_time) {
1851 data = mca_bootmem();
1852 first_time = 0;
1853 } else
1854 data = (void *)__get_free_pages(GFP_KERNEL,
1855 get_order(sz));
1856 if (!data)
1857 panic("Could not allocate MCA memory for cpu %d\n",
1858 cpu);
1859 }
1860 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1861 "MCA", cpu);
1862 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1863 "INIT", cpu);
1864 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1865
1866 /*
1867 * Stash away a copy of the PTE needed to map the per-CPU page.
1868 * We may need it during MCA recovery.
1869 */
1870 __this_cpu_write(ia64_mca_per_cpu_pte,
1871 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1872
1873 /*
1874 * Also, stash away a copy of the PAL address and the PTE
1875 * needed to map it.
1876 */
1877 pal_vaddr = efi_get_pal_addr();
1878 if (!pal_vaddr)
1879 return;
1880 __this_cpu_write(ia64_mca_pal_base,
1881 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1882 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1883 PAGE_KERNEL)));
1884}
1885
1886static int ia64_mca_cpu_online(unsigned int cpu)
1887{
1888 unsigned long flags;
1889
1890 local_irq_save(flags);
1891 if (!cmc_polling_enabled)
1892 ia64_mca_cmc_vector_enable(NULL);
1893 local_irq_restore(flags);
1894 return 0;
1895}
1896
1897/*
1898 * ia64_mca_init
1899 *
1900 * Do all the system level mca specific initialization.
1901 *
1902 * 1. Register spinloop and wakeup request interrupt vectors
1903 *
1904 * 2. Register OS_MCA handler entry point
1905 *
1906 * 3. Register OS_INIT handler entry point
1907 *
1908 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1909 *
1910 * Note that this initialization is done very early before some kernel
1911 * services are available.
1912 *
1913 * Inputs : None
1914 *
1915 * Outputs : None
1916 */
1917void __init
1918ia64_mca_init(void)
1919{
1920 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1921 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1922 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1923 int i;
1924 long rc;
1925 struct ia64_sal_retval isrv;
1926 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1927 static struct notifier_block default_init_monarch_nb = {
1928 .notifier_call = default_monarch_init_process,
1929 .priority = 0/* we need to notified last */
1930 };
1931
1932 IA64_MCA_DEBUG("%s: begin\n", __func__);
1933
1934 /* Clear the Rendez checkin flag for all cpus */
1935 for(i = 0 ; i < NR_CPUS; i++)
1936 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1937
1938 /*
1939 * Register the rendezvous spinloop and wakeup mechanism with SAL
1940 */
1941
1942 /* Register the rendezvous interrupt vector with SAL */
1943 while (1) {
1944 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1945 SAL_MC_PARAM_MECHANISM_INT,
1946 IA64_MCA_RENDEZ_VECTOR,
1947 timeout,
1948 SAL_MC_PARAM_RZ_ALWAYS);
1949 rc = isrv.status;
1950 if (rc == 0)
1951 break;
1952 if (rc == -2) {
1953 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1954 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1955 timeout = isrv.v0;
1956 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1957 continue;
1958 }
1959 printk(KERN_ERR "Failed to register rendezvous interrupt "
1960 "with SAL (status %ld)\n", rc);
1961 return;
1962 }
1963
1964 /* Register the wakeup interrupt vector with SAL */
1965 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1966 SAL_MC_PARAM_MECHANISM_INT,
1967 IA64_MCA_WAKEUP_VECTOR,
1968 0, 0);
1969 rc = isrv.status;
1970 if (rc) {
1971 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1972 "(status %ld)\n", rc);
1973 return;
1974 }
1975
1976 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1977
1978 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1979 /*
1980 * XXX - disable SAL checksum by setting size to 0; should be
1981 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1982 */
1983 ia64_mc_info.imi_mca_handler_size = 0;
1984
1985 /* Register the os mca handler with SAL */
1986 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1987 ia64_mc_info.imi_mca_handler,
1988 ia64_tpa(mca_hldlr_ptr->gp),
1989 ia64_mc_info.imi_mca_handler_size,
1990 0, 0, 0)))
1991 {
1992 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1993 "(status %ld)\n", rc);
1994 return;
1995 }
1996
1997 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1998 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1999
2000 /*
2001 * XXX - disable SAL checksum by setting size to 0, should be
2002 * size of the actual init handler in mca_asm.S.
2003 */
2004 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2005 ia64_mc_info.imi_monarch_init_handler_size = 0;
2006 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2007 ia64_mc_info.imi_slave_init_handler_size = 0;
2008
2009 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2010 ia64_mc_info.imi_monarch_init_handler);
2011
2012 /* Register the os init handler with SAL */
2013 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2014 ia64_mc_info.imi_monarch_init_handler,
2015 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2016 ia64_mc_info.imi_monarch_init_handler_size,
2017 ia64_mc_info.imi_slave_init_handler,
2018 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2019 ia64_mc_info.imi_slave_init_handler_size)))
2020 {
2021 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2022 "(status %ld)\n", rc);
2023 return;
2024 }
2025 if (register_die_notifier(&default_init_monarch_nb)) {
2026 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2027 return;
2028 }
2029
2030 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2031
2032 /* Initialize the areas set aside by the OS to buffer the
2033 * platform/processor error states for MCA/INIT/CMC
2034 * handling.
2035 */
2036 ia64_log_init(SAL_INFO_TYPE_MCA);
2037 ia64_log_init(SAL_INFO_TYPE_INIT);
2038 ia64_log_init(SAL_INFO_TYPE_CMC);
2039 ia64_log_init(SAL_INFO_TYPE_CPE);
2040
2041 mca_init = 1;
2042 printk(KERN_INFO "MCA related initialization done\n");
2043}
2044
2045
2046/*
2047 * These pieces cannot be done in ia64_mca_init() because it is called before
2048 * early_irq_init() which would wipe out our percpu irq registrations. But we
2049 * cannot leave them until ia64_mca_late_init() because by then all the other
2050 * processors have been brought online and have set their own CMC vectors to
2051 * point at a non-existant action. Called from arch_early_irq_init().
2052 */
2053void __init ia64_mca_irq_init(void)
2054{
2055 /*
2056 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2057 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2058 */
2059 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2060 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2061 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2062
2063 /* Setup the MCA rendezvous interrupt vector */
2064 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2065
2066 /* Setup the MCA wakeup interrupt vector */
2067 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2068
2069 /* Setup the CPEI/P handler */
2070 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2071}
2072
2073/*
2074 * ia64_mca_late_init
2075 *
2076 * Opportunity to setup things that require initialization later
2077 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2078 * platform doesn't support an interrupt driven mechanism.
2079 *
2080 * Inputs : None
2081 * Outputs : Status
2082 */
2083static int __init
2084ia64_mca_late_init(void)
2085{
2086 if (!mca_init)
2087 return 0;
2088
2089 /* Setup the CMCI/P vector and handler */
2090 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2091
2092 /* Unmask/enable the vector */
2093 cmc_polling_enabled = 0;
2094 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2095 ia64_mca_cpu_online, NULL);
2096 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2097
2098 /* Setup the CPEI/P vector and handler */
2099 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2100 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2101
2102 {
2103 unsigned int irq;
2104
2105 if (cpe_vector >= 0) {
2106 /* If platform supports CPEI, enable the irq. */
2107 irq = local_vector_to_irq(cpe_vector);
2108 if (irq > 0) {
2109 cpe_poll_enabled = 0;
2110 irq_set_status_flags(irq, IRQ_PER_CPU);
2111 setup_irq(irq, &mca_cpe_irqaction);
2112 ia64_cpe_irq = irq;
2113 ia64_mca_register_cpev(cpe_vector);
2114 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2115 __func__);
2116 return 0;
2117 }
2118 printk(KERN_ERR "%s: Failed to find irq for CPE "
2119 "interrupt handler, vector %d\n",
2120 __func__, cpe_vector);
2121 }
2122 /* If platform doesn't support CPEI, get the timer going. */
2123 if (cpe_poll_enabled) {
2124 ia64_mca_cpe_poll(0UL);
2125 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2126 }
2127 }
2128
2129 return 0;
2130}
2131
2132device_initcall(ia64_mca_late_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * File: mca.c
4 * Purpose: Generic MCA handling layer
5 *
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 *
21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 *
24 * Copyright (C) 2006 FUJITSU LIMITED
25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 *
27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29 * added min save state dump, added INIT handler.
30 *
31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
33 * errors, completed code for logging of corrected & uncorrected
34 * machine check errors, and updated for conformance with Nov. 2000
35 * revision of the SAL 3.0 spec.
36 *
37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39 * set SAL default return values, changed error record structure to
40 * linked list, added init call to sal_get_state_info_size().
41 *
42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
43 * GUID cleanups.
44 *
45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46 * Added INIT backtrace support.
47 *
48 * 2003-12-08 Keith Owens <kaos@sgi.com>
49 * smp_call_function() must not be called from interrupt context
50 * (can deadlock on tasklist_lock).
51 * Use keventd to call smp_call_function().
52 *
53 * 2004-02-01 Keith Owens <kaos@sgi.com>
54 * Avoid deadlock when using printk() for MCA and INIT records.
55 * Delete all record printing code, moved to salinfo_decode in user
56 * space. Mark variables and functions static where possible.
57 * Delete dead variables and functions. Reorder to remove the need
58 * for forward declarations and to consolidate related code.
59 *
60 * 2005-08-12 Keith Owens <kaos@sgi.com>
61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
62 * state.
63 *
64 * 2005-10-07 Keith Owens <kaos@sgi.com>
65 * Add notify_die() hooks.
66 *
67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68 * Add printing support for MCA/INIT.
69 *
70 * 2007-04-27 Russ Anderson <rja@sgi.com>
71 * Support multiple cpus going through OS_MCA in the same event.
72 */
73#include <linux/jiffies.h>
74#include <linux/types.h>
75#include <linux/init.h>
76#include <linux/sched/signal.h>
77#include <linux/sched/debug.h>
78#include <linux/sched/task.h>
79#include <linux/interrupt.h>
80#include <linux/irq.h>
81#include <linux/memblock.h>
82#include <linux/acpi.h>
83#include <linux/timer.h>
84#include <linux/module.h>
85#include <linux/kernel.h>
86#include <linux/smp.h>
87#include <linux/workqueue.h>
88#include <linux/cpumask.h>
89#include <linux/kdebug.h>
90#include <linux/cpu.h>
91#include <linux/gfp.h>
92
93#include <asm/delay.h>
94#include <asm/meminit.h>
95#include <asm/page.h>
96#include <asm/ptrace.h>
97#include <asm/sal.h>
98#include <asm/mca.h>
99#include <asm/kexec.h>
100
101#include <asm/irq.h>
102#include <asm/hw_irq.h>
103#include <asm/tlb.h>
104
105#include "mca_drv.h"
106#include "entry.h"
107#include "irq.h"
108
109#if defined(IA64_MCA_DEBUG_INFO)
110# define IA64_MCA_DEBUG(fmt...) printk(fmt)
111#else
112# define IA64_MCA_DEBUG(fmt...)
113#endif
114
115#define NOTIFY_INIT(event, regs, arg, spin) \
116do { \
117 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
118 == NOTIFY_STOP) && ((spin) == 1)) \
119 ia64_mca_spin(__func__); \
120} while (0)
121
122#define NOTIFY_MCA(event, regs, arg, spin) \
123do { \
124 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
125 == NOTIFY_STOP) && ((spin) == 1)) \
126 ia64_mca_spin(__func__); \
127} while (0)
128
129/* Used by mca_asm.S */
130DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
131DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
132DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
133DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
134DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
135
136unsigned long __per_cpu_mca[NR_CPUS];
137
138/* In mca_asm.S */
139extern void ia64_os_init_dispatch_monarch (void);
140extern void ia64_os_init_dispatch_slave (void);
141
142static int monarch_cpu = -1;
143
144static ia64_mc_info_t ia64_mc_info;
145
146#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
147#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
148#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
149#define CPE_HISTORY_LENGTH 5
150#define CMC_HISTORY_LENGTH 5
151
152static struct timer_list cpe_poll_timer;
153static struct timer_list cmc_poll_timer;
154/*
155 * This variable tells whether we are currently in polling mode.
156 * Start with this in the wrong state so we won't play w/ timers
157 * before the system is ready.
158 */
159static int cmc_polling_enabled = 1;
160
161/*
162 * Clearing this variable prevents CPE polling from getting activated
163 * in mca_late_init. Use it if your system doesn't provide a CPEI,
164 * but encounters problems retrieving CPE logs. This should only be
165 * necessary for debugging.
166 */
167static int cpe_poll_enabled = 1;
168
169extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170
171static int mca_init __initdata;
172
173/*
174 * limited & delayed printing support for MCA/INIT handler
175 */
176
177#define mprintk(fmt...) ia64_mca_printk(fmt)
178
179#define MLOGBUF_SIZE (512+256*NR_CPUS)
180#define MLOGBUF_MSGMAX 256
181static char mlogbuf[MLOGBUF_SIZE];
182static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
183static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
184static unsigned long mlogbuf_start;
185static unsigned long mlogbuf_end;
186static unsigned int mlogbuf_finished = 0;
187static unsigned long mlogbuf_timestamp = 0;
188
189static int loglevel_save = -1;
190#define BREAK_LOGLEVEL(__console_loglevel) \
191 oops_in_progress = 1; \
192 if (loglevel_save < 0) \
193 loglevel_save = __console_loglevel; \
194 __console_loglevel = 15;
195
196#define RESTORE_LOGLEVEL(__console_loglevel) \
197 if (loglevel_save >= 0) { \
198 __console_loglevel = loglevel_save; \
199 loglevel_save = -1; \
200 } \
201 mlogbuf_finished = 0; \
202 oops_in_progress = 0;
203
204/*
205 * Push messages into buffer, print them later if not urgent.
206 */
207void ia64_mca_printk(const char *fmt, ...)
208{
209 va_list args;
210 int printed_len;
211 char temp_buf[MLOGBUF_MSGMAX];
212 char *p;
213
214 va_start(args, fmt);
215 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
216 va_end(args);
217
218 /* Copy the output into mlogbuf */
219 if (oops_in_progress) {
220 /* mlogbuf was abandoned, use printk directly instead. */
221 printk("%s", temp_buf);
222 } else {
223 spin_lock(&mlogbuf_wlock);
224 for (p = temp_buf; *p; p++) {
225 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
226 if (next != mlogbuf_start) {
227 mlogbuf[mlogbuf_end] = *p;
228 mlogbuf_end = next;
229 } else {
230 /* buffer full */
231 break;
232 }
233 }
234 mlogbuf[mlogbuf_end] = '\0';
235 spin_unlock(&mlogbuf_wlock);
236 }
237}
238EXPORT_SYMBOL(ia64_mca_printk);
239
240/*
241 * Print buffered messages.
242 * NOTE: call this after returning normal context. (ex. from salinfod)
243 */
244void ia64_mlogbuf_dump(void)
245{
246 char temp_buf[MLOGBUF_MSGMAX];
247 char *p;
248 unsigned long index;
249 unsigned long flags;
250 unsigned int printed_len;
251
252 /* Get output from mlogbuf */
253 while (mlogbuf_start != mlogbuf_end) {
254 temp_buf[0] = '\0';
255 p = temp_buf;
256 printed_len = 0;
257
258 spin_lock_irqsave(&mlogbuf_rlock, flags);
259
260 index = mlogbuf_start;
261 while (index != mlogbuf_end) {
262 *p = mlogbuf[index];
263 index = (index + 1) % MLOGBUF_SIZE;
264 if (!*p)
265 break;
266 p++;
267 if (++printed_len >= MLOGBUF_MSGMAX - 1)
268 break;
269 }
270 *p = '\0';
271 if (temp_buf[0])
272 printk("%s", temp_buf);
273 mlogbuf_start = index;
274
275 mlogbuf_timestamp = 0;
276 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
277 }
278}
279EXPORT_SYMBOL(ia64_mlogbuf_dump);
280
281/*
282 * Call this if system is going to down or if immediate flushing messages to
283 * console is required. (ex. recovery was failed, crash dump is going to be
284 * invoked, long-wait rendezvous etc.)
285 * NOTE: this should be called from monarch.
286 */
287static void ia64_mlogbuf_finish(int wait)
288{
289 BREAK_LOGLEVEL(console_loglevel);
290
291 spin_lock_init(&mlogbuf_rlock);
292 ia64_mlogbuf_dump();
293 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
294 "MCA/INIT might be dodgy or fail.\n");
295
296 if (!wait)
297 return;
298
299 /* wait for console */
300 printk("Delaying for 5 seconds...\n");
301 udelay(5*1000000);
302
303 mlogbuf_finished = 1;
304}
305
306/*
307 * Print buffered messages from INIT context.
308 */
309static void ia64_mlogbuf_dump_from_init(void)
310{
311 if (mlogbuf_finished)
312 return;
313
314 if (mlogbuf_timestamp &&
315 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
316 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
317 " and the system seems to be messed up.\n");
318 ia64_mlogbuf_finish(0);
319 return;
320 }
321
322 if (!spin_trylock(&mlogbuf_rlock)) {
323 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
324 "Generated messages other than stack dump will be "
325 "buffered to mlogbuf and will be printed later.\n");
326 printk(KERN_ERR "INIT: If messages would not printed after "
327 "this INIT, wait 30sec and assert INIT again.\n");
328 if (!mlogbuf_timestamp)
329 mlogbuf_timestamp = jiffies;
330 return;
331 }
332 spin_unlock(&mlogbuf_rlock);
333 ia64_mlogbuf_dump();
334}
335
336static inline void
337ia64_mca_spin(const char *func)
338{
339 if (monarch_cpu == smp_processor_id())
340 ia64_mlogbuf_finish(0);
341 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
342 while (1)
343 cpu_relax();
344}
345/*
346 * IA64_MCA log support
347 */
348#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
349#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
350
351typedef struct ia64_state_log_s
352{
353 spinlock_t isl_lock;
354 int isl_index;
355 unsigned long isl_count;
356 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
357} ia64_state_log_t;
358
359static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360
361#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
362#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
363#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
364#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
365#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
366#define IA64_LOG_INDEX_INC(it) \
367 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
368 ia64_state_log[it].isl_count++;}
369#define IA64_LOG_INDEX_DEC(it) \
370 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
371#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
372#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
373#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
374
375static inline void ia64_log_allocate(int it, u64 size)
376{
377 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
378 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
379 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
380 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
381
382 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
383 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
384 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
385 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
386}
387
388/*
389 * ia64_log_init
390 * Reset the OS ia64 log buffer
391 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
392 * Outputs : None
393 */
394static void __init
395ia64_log_init(int sal_info_type)
396{
397 u64 max_size = 0;
398
399 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
400 IA64_LOG_LOCK_INIT(sal_info_type);
401
402 // SAL will tell us the maximum size of any error record of this type
403 max_size = ia64_sal_get_state_info_size(sal_info_type);
404 if (!max_size)
405 /* alloc_bootmem() doesn't like zero-sized allocations! */
406 return;
407
408 // set up OS data structures to hold error info
409 ia64_log_allocate(sal_info_type, max_size);
410}
411
412/*
413 * ia64_log_get
414 *
415 * Get the current MCA log from SAL and copy it into the OS log buffer.
416 *
417 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
418 * irq_safe whether you can use printk at this point
419 * Outputs : size (total record length)
420 * *buffer (ptr to error record)
421 *
422 */
423static u64
424ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
425{
426 sal_log_record_header_t *log_buffer;
427 u64 total_len = 0;
428 unsigned long s;
429
430 IA64_LOG_LOCK(sal_info_type);
431
432 /* Get the process state information */
433 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
434
435 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
436
437 if (total_len) {
438 IA64_LOG_INDEX_INC(sal_info_type);
439 IA64_LOG_UNLOCK(sal_info_type);
440 if (irq_safe) {
441 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
442 __func__, sal_info_type, total_len);
443 }
444 *buffer = (u8 *) log_buffer;
445 return total_len;
446 } else {
447 IA64_LOG_UNLOCK(sal_info_type);
448 return 0;
449 }
450}
451
452/*
453 * ia64_mca_log_sal_error_record
454 *
455 * This function retrieves a specified error record type from SAL
456 * and wakes up any processes waiting for error records.
457 *
458 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
459 * FIXME: remove MCA and irq_safe.
460 */
461static void
462ia64_mca_log_sal_error_record(int sal_info_type)
463{
464 u8 *buffer;
465 sal_log_record_header_t *rh;
466 u64 size;
467 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
468#ifdef IA64_MCA_DEBUG_INFO
469 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
470#endif
471
472 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
473 if (!size)
474 return;
475
476 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
477
478 if (irq_safe)
479 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
480 smp_processor_id(),
481 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
482
483 /* Clear logs from corrected errors in case there's no user-level logger */
484 rh = (sal_log_record_header_t *)buffer;
485 if (rh->severity == sal_log_severity_corrected)
486 ia64_sal_clear_state_info(sal_info_type);
487}
488
489/*
490 * search_mca_table
491 * See if the MCA surfaced in an instruction range
492 * that has been tagged as recoverable.
493 *
494 * Inputs
495 * first First address range to check
496 * last Last address range to check
497 * ip Instruction pointer, address we are looking for
498 *
499 * Return value:
500 * 1 on Success (in the table)/ 0 on Failure (not in the table)
501 */
502int
503search_mca_table (const struct mca_table_entry *first,
504 const struct mca_table_entry *last,
505 unsigned long ip)
506{
507 const struct mca_table_entry *curr;
508 u64 curr_start, curr_end;
509
510 curr = first;
511 while (curr <= last) {
512 curr_start = (u64) &curr->start_addr + curr->start_addr;
513 curr_end = (u64) &curr->end_addr + curr->end_addr;
514
515 if ((ip >= curr_start) && (ip <= curr_end)) {
516 return 1;
517 }
518 curr++;
519 }
520 return 0;
521}
522
523/* Given an address, look for it in the mca tables. */
524int mca_recover_range(unsigned long addr)
525{
526 extern struct mca_table_entry __start___mca_table[];
527 extern struct mca_table_entry __stop___mca_table[];
528
529 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
530}
531EXPORT_SYMBOL_GPL(mca_recover_range);
532
533int cpe_vector = -1;
534int ia64_cpe_irq = -1;
535
536static irqreturn_t
537ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
538{
539 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
540 static int index;
541 static DEFINE_SPINLOCK(cpe_history_lock);
542
543 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
544 __func__, cpe_irq, smp_processor_id());
545
546 /* SAL spec states this should run w/ interrupts enabled */
547 local_irq_enable();
548
549 spin_lock(&cpe_history_lock);
550 if (!cpe_poll_enabled && cpe_vector >= 0) {
551
552 int i, count = 1; /* we know 1 happened now */
553 unsigned long now = jiffies;
554
555 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
556 if (now - cpe_history[i] <= HZ)
557 count++;
558 }
559
560 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
561 if (count >= CPE_HISTORY_LENGTH) {
562
563 cpe_poll_enabled = 1;
564 spin_unlock(&cpe_history_lock);
565 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
566
567 /*
568 * Corrected errors will still be corrected, but
569 * make sure there's a log somewhere that indicates
570 * something is generating more than we can handle.
571 */
572 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
573
574 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
575
576 /* lock already released, get out now */
577 goto out;
578 } else {
579 cpe_history[index++] = now;
580 if (index == CPE_HISTORY_LENGTH)
581 index = 0;
582 }
583 }
584 spin_unlock(&cpe_history_lock);
585out:
586 /* Get the CPE error record and log it */
587 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
588
589 local_irq_disable();
590
591 return IRQ_HANDLED;
592}
593
594/*
595 * ia64_mca_register_cpev
596 *
597 * Register the corrected platform error vector with SAL.
598 *
599 * Inputs
600 * cpev Corrected Platform Error Vector number
601 *
602 * Outputs
603 * None
604 */
605void
606ia64_mca_register_cpev (int cpev)
607{
608 /* Register the CPE interrupt vector with SAL */
609 struct ia64_sal_retval isrv;
610
611 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
612 if (isrv.status) {
613 printk(KERN_ERR "Failed to register Corrected Platform "
614 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
615 return;
616 }
617
618 IA64_MCA_DEBUG("%s: corrected platform error "
619 "vector %#x registered\n", __func__, cpev);
620}
621
622/*
623 * ia64_mca_cmc_vector_setup
624 *
625 * Setup the corrected machine check vector register in the processor.
626 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
627 * This function is invoked on a per-processor basis.
628 *
629 * Inputs
630 * None
631 *
632 * Outputs
633 * None
634 */
635void
636ia64_mca_cmc_vector_setup (void)
637{
638 cmcv_reg_t cmcv;
639
640 cmcv.cmcv_regval = 0;
641 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
642 cmcv.cmcv_vector = IA64_CMC_VECTOR;
643 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
644
645 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
646 __func__, smp_processor_id(), IA64_CMC_VECTOR);
647
648 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
649 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
650}
651
652/*
653 * ia64_mca_cmc_vector_disable
654 *
655 * Mask the corrected machine check vector register in the processor.
656 * This function is invoked on a per-processor basis.
657 *
658 * Inputs
659 * dummy(unused)
660 *
661 * Outputs
662 * None
663 */
664static void
665ia64_mca_cmc_vector_disable (void *dummy)
666{
667 cmcv_reg_t cmcv;
668
669 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
670
671 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
672 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
673
674 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
675 __func__, smp_processor_id(), cmcv.cmcv_vector);
676}
677
678/*
679 * ia64_mca_cmc_vector_enable
680 *
681 * Unmask the corrected machine check vector register in the processor.
682 * This function is invoked on a per-processor basis.
683 *
684 * Inputs
685 * dummy(unused)
686 *
687 * Outputs
688 * None
689 */
690static void
691ia64_mca_cmc_vector_enable (void *dummy)
692{
693 cmcv_reg_t cmcv;
694
695 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
696
697 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
698 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
699
700 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
701 __func__, smp_processor_id(), cmcv.cmcv_vector);
702}
703
704/*
705 * ia64_mca_cmc_vector_disable_keventd
706 *
707 * Called via keventd (smp_call_function() is not safe in interrupt context) to
708 * disable the cmc interrupt vector.
709 */
710static void
711ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
712{
713 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
714}
715
716/*
717 * ia64_mca_cmc_vector_enable_keventd
718 *
719 * Called via keventd (smp_call_function() is not safe in interrupt context) to
720 * enable the cmc interrupt vector.
721 */
722static void
723ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
724{
725 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
726}
727
728/*
729 * ia64_mca_wakeup
730 *
731 * Send an inter-cpu interrupt to wake-up a particular cpu.
732 *
733 * Inputs : cpuid
734 * Outputs : None
735 */
736static void
737ia64_mca_wakeup(int cpu)
738{
739 ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
740}
741
742/*
743 * ia64_mca_wakeup_all
744 *
745 * Wakeup all the slave cpus which have rendez'ed previously.
746 *
747 * Inputs : None
748 * Outputs : None
749 */
750static void
751ia64_mca_wakeup_all(void)
752{
753 int cpu;
754
755 /* Clear the Rendez checkin flag for all cpus */
756 for_each_online_cpu(cpu) {
757 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
758 ia64_mca_wakeup(cpu);
759 }
760
761}
762
763/*
764 * ia64_mca_rendez_interrupt_handler
765 *
766 * This is handler used to put slave processors into spinloop
767 * while the monarch processor does the mca handling and later
768 * wake each slave up once the monarch is done. The state
769 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
770 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
771 * the cpu has come out of OS rendezvous.
772 *
773 * Inputs : None
774 * Outputs : None
775 */
776static irqreturn_t
777ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
778{
779 unsigned long flags;
780 int cpu = smp_processor_id();
781 struct ia64_mca_notify_die nd =
782 { .sos = NULL, .monarch_cpu = &monarch_cpu };
783
784 /* Mask all interrupts */
785 local_irq_save(flags);
786
787 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
788
789 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
790 /* Register with the SAL monarch that the slave has
791 * reached SAL
792 */
793 ia64_sal_mc_rendez();
794
795 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
796
797 /* Wait for the monarch cpu to exit. */
798 while (monarch_cpu != -1)
799 cpu_relax(); /* spin until monarch leaves */
800
801 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
802
803 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
804 /* Enable all interrupts */
805 local_irq_restore(flags);
806 return IRQ_HANDLED;
807}
808
809/*
810 * ia64_mca_wakeup_int_handler
811 *
812 * The interrupt handler for processing the inter-cpu interrupt to the
813 * slave cpu which was spinning in the rendez loop.
814 * Since this spinning is done by turning off the interrupts and
815 * polling on the wakeup-interrupt bit in the IRR, there is
816 * nothing useful to be done in the handler.
817 *
818 * Inputs : wakeup_irq (Wakeup-interrupt bit)
819 * arg (Interrupt handler specific argument)
820 * Outputs : None
821 *
822 */
823static irqreturn_t
824ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
825{
826 return IRQ_HANDLED;
827}
828
829/* Function pointer for extra MCA recovery */
830int (*ia64_mca_ucmc_extension)
831 (void*,struct ia64_sal_os_state*)
832 = NULL;
833
834int
835ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
836{
837 if (ia64_mca_ucmc_extension)
838 return 1;
839
840 ia64_mca_ucmc_extension = fn;
841 return 0;
842}
843
844void
845ia64_unreg_MCA_extension(void)
846{
847 if (ia64_mca_ucmc_extension)
848 ia64_mca_ucmc_extension = NULL;
849}
850
851EXPORT_SYMBOL(ia64_reg_MCA_extension);
852EXPORT_SYMBOL(ia64_unreg_MCA_extension);
853
854
855static inline void
856copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
857{
858 u64 fslot, tslot, nat;
859 *tr = *fr;
860 fslot = ((unsigned long)fr >> 3) & 63;
861 tslot = ((unsigned long)tr >> 3) & 63;
862 *tnat &= ~(1UL << tslot);
863 nat = (fnat >> fslot) & 1;
864 *tnat |= (nat << tslot);
865}
866
867/* Change the comm field on the MCA/INT task to include the pid that
868 * was interrupted, it makes for easier debugging. If that pid was 0
869 * (swapper or nested MCA/INIT) then use the start of the previous comm
870 * field suffixed with its cpu.
871 */
872
873static void
874ia64_mca_modify_comm(const struct task_struct *previous_current)
875{
876 char *p, comm[sizeof(current->comm)];
877 if (previous_current->pid)
878 snprintf(comm, sizeof(comm), "%s %d",
879 current->comm, previous_current->pid);
880 else {
881 int l;
882 if ((p = strchr(previous_current->comm, ' ')))
883 l = p - previous_current->comm;
884 else
885 l = strlen(previous_current->comm);
886 snprintf(comm, sizeof(comm), "%s %*s %d",
887 current->comm, l, previous_current->comm,
888 task_thread_info(previous_current)->cpu);
889 }
890 memcpy(current->comm, comm, sizeof(current->comm));
891}
892
893static void
894finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
895 unsigned long *nat)
896{
897 const pal_min_state_area_t *ms = sos->pal_min_state;
898 const u64 *bank;
899
900 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
901 * pmsa_{xip,xpsr,xfs}
902 */
903 if (ia64_psr(regs)->ic) {
904 regs->cr_iip = ms->pmsa_iip;
905 regs->cr_ipsr = ms->pmsa_ipsr;
906 regs->cr_ifs = ms->pmsa_ifs;
907 } else {
908 regs->cr_iip = ms->pmsa_xip;
909 regs->cr_ipsr = ms->pmsa_xpsr;
910 regs->cr_ifs = ms->pmsa_xfs;
911
912 sos->iip = ms->pmsa_iip;
913 sos->ipsr = ms->pmsa_ipsr;
914 sos->ifs = ms->pmsa_ifs;
915 }
916 regs->pr = ms->pmsa_pr;
917 regs->b0 = ms->pmsa_br0;
918 regs->ar_rsc = ms->pmsa_rsc;
919 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat);
920 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat);
921 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat);
922 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat);
923 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat);
924 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat);
925 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat);
926 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat);
927 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat);
928 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat);
929 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat);
930 if (ia64_psr(regs)->bn)
931 bank = ms->pmsa_bank1_gr;
932 else
933 bank = ms->pmsa_bank0_gr;
934 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat);
935 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat);
936 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat);
937 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat);
938 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat);
939 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat);
940 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat);
941 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat);
942 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat);
943 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat);
944 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat);
945 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat);
946 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat);
947 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat);
948 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat);
949 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat);
950}
951
952/* On entry to this routine, we are running on the per cpu stack, see
953 * mca_asm.h. The original stack has not been touched by this event. Some of
954 * the original stack's registers will be in the RBS on this stack. This stack
955 * also contains a partial pt_regs and switch_stack, the rest of the data is in
956 * PAL minstate.
957 *
958 * The first thing to do is modify the original stack to look like a blocked
959 * task so we can run backtrace on the original task. Also mark the per cpu
960 * stack as current to ensure that we use the correct task state, it also means
961 * that we can do backtrace on the MCA/INIT handler code itself.
962 */
963
964static struct task_struct *
965ia64_mca_modify_original_stack(struct pt_regs *regs,
966 const struct switch_stack *sw,
967 struct ia64_sal_os_state *sos,
968 const char *type)
969{
970 char *p;
971 ia64_va va;
972 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
973 const pal_min_state_area_t *ms = sos->pal_min_state;
974 struct task_struct *previous_current;
975 struct pt_regs *old_regs;
976 struct switch_stack *old_sw;
977 unsigned size = sizeof(struct pt_regs) +
978 sizeof(struct switch_stack) + 16;
979 unsigned long *old_bspstore, *old_bsp;
980 unsigned long *new_bspstore, *new_bsp;
981 unsigned long old_unat, old_rnat, new_rnat, nat;
982 u64 slots, loadrs = regs->loadrs;
983 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
984 u64 ar_bspstore = regs->ar_bspstore;
985 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
986 const char *msg;
987 int cpu = smp_processor_id();
988
989 previous_current = curr_task(cpu);
990 ia64_set_curr_task(cpu, current);
991 if ((p = strchr(current->comm, ' ')))
992 *p = '\0';
993
994 /* Best effort attempt to cope with MCA/INIT delivered while in
995 * physical mode.
996 */
997 regs->cr_ipsr = ms->pmsa_ipsr;
998 if (ia64_psr(regs)->dt == 0) {
999 va.l = r12;
1000 if (va.f.reg == 0) {
1001 va.f.reg = 7;
1002 r12 = va.l;
1003 }
1004 va.l = r13;
1005 if (va.f.reg == 0) {
1006 va.f.reg = 7;
1007 r13 = va.l;
1008 }
1009 }
1010 if (ia64_psr(regs)->rt == 0) {
1011 va.l = ar_bspstore;
1012 if (va.f.reg == 0) {
1013 va.f.reg = 7;
1014 ar_bspstore = va.l;
1015 }
1016 va.l = ar_bsp;
1017 if (va.f.reg == 0) {
1018 va.f.reg = 7;
1019 ar_bsp = va.l;
1020 }
1021 }
1022
1023 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1024 * have been copied to the old stack, the old stack may fail the
1025 * validation tests below. So ia64_old_stack() must restore the dirty
1026 * registers from the new stack. The old and new bspstore probably
1027 * have different alignments, so loadrs calculated on the old bsp
1028 * cannot be used to restore from the new bsp. Calculate a suitable
1029 * loadrs for the new stack and save it in the new pt_regs, where
1030 * ia64_old_stack() can get it.
1031 */
1032 old_bspstore = (unsigned long *)ar_bspstore;
1033 old_bsp = (unsigned long *)ar_bsp;
1034 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1035 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1036 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1037 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1038
1039 /* Verify the previous stack state before we change it */
1040 if (user_mode(regs)) {
1041 msg = "occurred in user space";
1042 /* previous_current is guaranteed to be valid when the task was
1043 * in user space, so ...
1044 */
1045 ia64_mca_modify_comm(previous_current);
1046 goto no_mod;
1047 }
1048
1049 if (r13 != sos->prev_IA64_KR_CURRENT) {
1050 msg = "inconsistent previous current and r13";
1051 goto no_mod;
1052 }
1053
1054 if (!mca_recover_range(ms->pmsa_iip)) {
1055 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1056 msg = "inconsistent r12 and r13";
1057 goto no_mod;
1058 }
1059 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1060 msg = "inconsistent ar.bspstore and r13";
1061 goto no_mod;
1062 }
1063 va.p = old_bspstore;
1064 if (va.f.reg < 5) {
1065 msg = "old_bspstore is in the wrong region";
1066 goto no_mod;
1067 }
1068 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1069 msg = "inconsistent ar.bsp and r13";
1070 goto no_mod;
1071 }
1072 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1073 if (ar_bspstore + size > r12) {
1074 msg = "no room for blocked state";
1075 goto no_mod;
1076 }
1077 }
1078
1079 ia64_mca_modify_comm(previous_current);
1080
1081 /* Make the original task look blocked. First stack a struct pt_regs,
1082 * describing the state at the time of interrupt. mca_asm.S built a
1083 * partial pt_regs, copy it and fill in the blanks using minstate.
1084 */
1085 p = (char *)r12 - sizeof(*regs);
1086 old_regs = (struct pt_regs *)p;
1087 memcpy(old_regs, regs, sizeof(*regs));
1088 old_regs->loadrs = loadrs;
1089 old_unat = old_regs->ar_unat;
1090 finish_pt_regs(old_regs, sos, &old_unat);
1091
1092 /* Next stack a struct switch_stack. mca_asm.S built a partial
1093 * switch_stack, copy it and fill in the blanks using pt_regs and
1094 * minstate.
1095 *
1096 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1097 * ar.pfs is set to 0.
1098 *
1099 * unwind.c::unw_unwind() does special processing for interrupt frames.
1100 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1101 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1102 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1103 * switch_stack on the original stack so it will unwind correctly when
1104 * unwind.c reads pt_regs.
1105 *
1106 * thread.ksp is updated to point to the synthesized switch_stack.
1107 */
1108 p -= sizeof(struct switch_stack);
1109 old_sw = (struct switch_stack *)p;
1110 memcpy(old_sw, sw, sizeof(*sw));
1111 old_sw->caller_unat = old_unat;
1112 old_sw->ar_fpsr = old_regs->ar_fpsr;
1113 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1114 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1115 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1116 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1117 old_sw->b0 = (u64)ia64_leave_kernel;
1118 old_sw->b1 = ms->pmsa_br1;
1119 old_sw->ar_pfs = 0;
1120 old_sw->ar_unat = old_unat;
1121 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1122 previous_current->thread.ksp = (u64)p - 16;
1123
1124 /* Finally copy the original stack's registers back to its RBS.
1125 * Registers from ar.bspstore through ar.bsp at the time of the event
1126 * are in the current RBS, copy them back to the original stack. The
1127 * copy must be done register by register because the original bspstore
1128 * and the current one have different alignments, so the saved RNAT
1129 * data occurs at different places.
1130 *
1131 * mca_asm does cover, so the old_bsp already includes all registers at
1132 * the time of MCA/INIT. It also does flushrs, so all registers before
1133 * this function have been written to backing store on the MCA/INIT
1134 * stack.
1135 */
1136 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1137 old_rnat = regs->ar_rnat;
1138 while (slots--) {
1139 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1140 new_rnat = ia64_get_rnat(new_bspstore++);
1141 }
1142 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1143 *old_bspstore++ = old_rnat;
1144 old_rnat = 0;
1145 }
1146 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1147 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1148 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1149 *old_bspstore++ = *new_bspstore++;
1150 }
1151 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1152 old_sw->ar_rnat = old_rnat;
1153
1154 sos->prev_task = previous_current;
1155 return previous_current;
1156
1157no_mod:
1158 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1159 smp_processor_id(), type, msg);
1160 old_unat = regs->ar_unat;
1161 finish_pt_regs(regs, sos, &old_unat);
1162 return previous_current;
1163}
1164
1165/* The monarch/slave interaction is based on monarch_cpu and requires that all
1166 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1167 * not entered rendezvous yet then wait a bit. The assumption is that any
1168 * slave that has not rendezvoused after a reasonable time is never going to do
1169 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1170 * interrupt, as well as cpus that receive the INIT slave event.
1171 */
1172
1173static void
1174ia64_wait_for_slaves(int monarch, const char *type)
1175{
1176 int c, i , wait;
1177
1178 /*
1179 * wait 5 seconds total for slaves (arbitrary)
1180 */
1181 for (i = 0; i < 5000; i++) {
1182 wait = 0;
1183 for_each_online_cpu(c) {
1184 if (c == monarch)
1185 continue;
1186 if (ia64_mc_info.imi_rendez_checkin[c]
1187 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1188 udelay(1000); /* short wait */
1189 wait = 1;
1190 break;
1191 }
1192 }
1193 if (!wait)
1194 goto all_in;
1195 }
1196
1197 /*
1198 * Maybe slave(s) dead. Print buffered messages immediately.
1199 */
1200 ia64_mlogbuf_finish(0);
1201 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1202 for_each_online_cpu(c) {
1203 if (c == monarch)
1204 continue;
1205 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1206 mprintk(" %d", c);
1207 }
1208 mprintk("\n");
1209 return;
1210
1211all_in:
1212 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1213 return;
1214}
1215
1216/* mca_insert_tr
1217 *
1218 * Switch rid when TR reload and needed!
1219 * iord: 1: itr, 2: itr;
1220 *
1221*/
1222static void mca_insert_tr(u64 iord)
1223{
1224
1225 int i;
1226 u64 old_rr;
1227 struct ia64_tr_entry *p;
1228 unsigned long psr;
1229 int cpu = smp_processor_id();
1230
1231 if (!ia64_idtrs[cpu])
1232 return;
1233
1234 psr = ia64_clear_ic();
1235 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1236 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1237 if (p->pte & 0x1) {
1238 old_rr = ia64_get_rr(p->ifa);
1239 if (old_rr != p->rr) {
1240 ia64_set_rr(p->ifa, p->rr);
1241 ia64_srlz_d();
1242 }
1243 ia64_ptr(iord, p->ifa, p->itir >> 2);
1244 ia64_srlz_i();
1245 if (iord & 0x1) {
1246 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1247 ia64_srlz_i();
1248 }
1249 if (iord & 0x2) {
1250 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1251 ia64_srlz_i();
1252 }
1253 if (old_rr != p->rr) {
1254 ia64_set_rr(p->ifa, old_rr);
1255 ia64_srlz_d();
1256 }
1257 }
1258 }
1259 ia64_set_psr(psr);
1260}
1261
1262/*
1263 * ia64_mca_handler
1264 *
1265 * This is uncorrectable machine check handler called from OS_MCA
1266 * dispatch code which is in turn called from SAL_CHECK().
1267 * This is the place where the core of OS MCA handling is done.
1268 * Right now the logs are extracted and displayed in a well-defined
1269 * format. This handler code is supposed to be run only on the
1270 * monarch processor. Once the monarch is done with MCA handling
1271 * further MCA logging is enabled by clearing logs.
1272 * Monarch also has the duty of sending wakeup-IPIs to pull the
1273 * slave processors out of rendezvous spinloop.
1274 *
1275 * If multiple processors call into OS_MCA, the first will become
1276 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1277 * bitmask. After the first monarch has processed its MCA, it
1278 * will wake up the next cpu in the mca_cpu bitmask and then go
1279 * into the rendezvous loop. When all processors have serviced
1280 * their MCA, the last monarch frees up the rest of the processors.
1281 */
1282void
1283ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1284 struct ia64_sal_os_state *sos)
1285{
1286 int recover, cpu = smp_processor_id();
1287 struct task_struct *previous_current;
1288 struct ia64_mca_notify_die nd =
1289 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1290 static atomic_t mca_count;
1291 static cpumask_t mca_cpu;
1292
1293 if (atomic_add_return(1, &mca_count) == 1) {
1294 monarch_cpu = cpu;
1295 sos->monarch = 1;
1296 } else {
1297 cpumask_set_cpu(cpu, &mca_cpu);
1298 sos->monarch = 0;
1299 }
1300 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1301 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1302
1303 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1304
1305 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1306
1307 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1308 if (sos->monarch) {
1309 ia64_wait_for_slaves(cpu, "MCA");
1310
1311 /* Wakeup all the processors which are spinning in the
1312 * rendezvous loop. They will leave SAL, then spin in the OS
1313 * with interrupts disabled until this monarch cpu leaves the
1314 * MCA handler. That gets control back to the OS so we can
1315 * backtrace the other cpus, backtrace when spinning in SAL
1316 * does not work.
1317 */
1318 ia64_mca_wakeup_all();
1319 } else {
1320 while (cpumask_test_cpu(cpu, &mca_cpu))
1321 cpu_relax(); /* spin until monarch wakes us */
1322 }
1323
1324 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1325
1326 /* Get the MCA error record and log it */
1327 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1328
1329 /* MCA error recovery */
1330 recover = (ia64_mca_ucmc_extension
1331 && ia64_mca_ucmc_extension(
1332 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1333 sos));
1334
1335 if (recover) {
1336 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1337 rh->severity = sal_log_severity_corrected;
1338 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1339 sos->os_status = IA64_MCA_CORRECTED;
1340 } else {
1341 /* Dump buffered message to console */
1342 ia64_mlogbuf_finish(1);
1343 }
1344
1345 if (__this_cpu_read(ia64_mca_tr_reload)) {
1346 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1347 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1348 }
1349
1350 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1351
1352 if (atomic_dec_return(&mca_count) > 0) {
1353 int i;
1354
1355 /* wake up the next monarch cpu,
1356 * and put this cpu in the rendez loop.
1357 */
1358 for_each_online_cpu(i) {
1359 if (cpumask_test_cpu(i, &mca_cpu)) {
1360 monarch_cpu = i;
1361 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1362 while (monarch_cpu != -1)
1363 cpu_relax(); /* spin until last cpu leaves */
1364 ia64_set_curr_task(cpu, previous_current);
1365 ia64_mc_info.imi_rendez_checkin[cpu]
1366 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1367 return;
1368 }
1369 }
1370 }
1371 ia64_set_curr_task(cpu, previous_current);
1372 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1373 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1374}
1375
1376static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1377static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1378
1379/*
1380 * ia64_mca_cmc_int_handler
1381 *
1382 * This is corrected machine check interrupt handler.
1383 * Right now the logs are extracted and displayed in a well-defined
1384 * format.
1385 *
1386 * Inputs
1387 * interrupt number
1388 * client data arg ptr
1389 *
1390 * Outputs
1391 * None
1392 */
1393static irqreturn_t
1394ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1395{
1396 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1397 static int index;
1398 static DEFINE_SPINLOCK(cmc_history_lock);
1399
1400 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1401 __func__, cmc_irq, smp_processor_id());
1402
1403 /* SAL spec states this should run w/ interrupts enabled */
1404 local_irq_enable();
1405
1406 spin_lock(&cmc_history_lock);
1407 if (!cmc_polling_enabled) {
1408 int i, count = 1; /* we know 1 happened now */
1409 unsigned long now = jiffies;
1410
1411 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1412 if (now - cmc_history[i] <= HZ)
1413 count++;
1414 }
1415
1416 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1417 if (count >= CMC_HISTORY_LENGTH) {
1418
1419 cmc_polling_enabled = 1;
1420 spin_unlock(&cmc_history_lock);
1421 /* If we're being hit with CMC interrupts, we won't
1422 * ever execute the schedule_work() below. Need to
1423 * disable CMC interrupts on this processor now.
1424 */
1425 ia64_mca_cmc_vector_disable(NULL);
1426 schedule_work(&cmc_disable_work);
1427
1428 /*
1429 * Corrected errors will still be corrected, but
1430 * make sure there's a log somewhere that indicates
1431 * something is generating more than we can handle.
1432 */
1433 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1434
1435 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1436
1437 /* lock already released, get out now */
1438 goto out;
1439 } else {
1440 cmc_history[index++] = now;
1441 if (index == CMC_HISTORY_LENGTH)
1442 index = 0;
1443 }
1444 }
1445 spin_unlock(&cmc_history_lock);
1446out:
1447 /* Get the CMC error record and log it */
1448 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1449
1450 local_irq_disable();
1451
1452 return IRQ_HANDLED;
1453}
1454
1455/*
1456 * ia64_mca_cmc_int_caller
1457 *
1458 * Triggered by sw interrupt from CMC polling routine. Calls
1459 * real interrupt handler and either triggers a sw interrupt
1460 * on the next cpu or does cleanup at the end.
1461 *
1462 * Inputs
1463 * interrupt number
1464 * client data arg ptr
1465 * Outputs
1466 * handled
1467 */
1468static irqreturn_t
1469ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1470{
1471 static int start_count = -1;
1472 unsigned int cpuid;
1473
1474 cpuid = smp_processor_id();
1475
1476 /* If first cpu, update count */
1477 if (start_count == -1)
1478 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1479
1480 ia64_mca_cmc_int_handler(cmc_irq, arg);
1481
1482 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1483
1484 if (cpuid < nr_cpu_ids) {
1485 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1486 } else {
1487 /* If no log record, switch out of polling mode */
1488 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1489
1490 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1491 schedule_work(&cmc_enable_work);
1492 cmc_polling_enabled = 0;
1493
1494 } else {
1495
1496 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1497 }
1498
1499 start_count = -1;
1500 }
1501
1502 return IRQ_HANDLED;
1503}
1504
1505/*
1506 * ia64_mca_cmc_poll
1507 *
1508 * Poll for Corrected Machine Checks (CMCs)
1509 *
1510 * Inputs : dummy(unused)
1511 * Outputs : None
1512 *
1513 */
1514static void
1515ia64_mca_cmc_poll (struct timer_list *unused)
1516{
1517 /* Trigger a CMC interrupt cascade */
1518 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1519 IA64_IPI_DM_INT, 0);
1520}
1521
1522/*
1523 * ia64_mca_cpe_int_caller
1524 *
1525 * Triggered by sw interrupt from CPE polling routine. Calls
1526 * real interrupt handler and either triggers a sw interrupt
1527 * on the next cpu or does cleanup at the end.
1528 *
1529 * Inputs
1530 * interrupt number
1531 * client data arg ptr
1532 * Outputs
1533 * handled
1534 */
1535static irqreturn_t
1536ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1537{
1538 static int start_count = -1;
1539 static int poll_time = MIN_CPE_POLL_INTERVAL;
1540 unsigned int cpuid;
1541
1542 cpuid = smp_processor_id();
1543
1544 /* If first cpu, update count */
1545 if (start_count == -1)
1546 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1547
1548 ia64_mca_cpe_int_handler(cpe_irq, arg);
1549
1550 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1551
1552 if (cpuid < NR_CPUS) {
1553 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1554 } else {
1555 /*
1556 * If a log was recorded, increase our polling frequency,
1557 * otherwise, backoff or return to interrupt mode.
1558 */
1559 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1560 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1561 } else if (cpe_vector < 0) {
1562 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1563 } else {
1564 poll_time = MIN_CPE_POLL_INTERVAL;
1565
1566 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1567 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1568 cpe_poll_enabled = 0;
1569 }
1570
1571 if (cpe_poll_enabled)
1572 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1573 start_count = -1;
1574 }
1575
1576 return IRQ_HANDLED;
1577}
1578
1579/*
1580 * ia64_mca_cpe_poll
1581 *
1582 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1583 * on first cpu, from there it will trickle through all the cpus.
1584 *
1585 * Inputs : dummy(unused)
1586 * Outputs : None
1587 *
1588 */
1589static void
1590ia64_mca_cpe_poll (struct timer_list *unused)
1591{
1592 /* Trigger a CPE interrupt cascade */
1593 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1594 IA64_IPI_DM_INT, 0);
1595}
1596
1597static int
1598default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1599{
1600 int c;
1601 struct task_struct *g, *t;
1602 if (val != DIE_INIT_MONARCH_PROCESS)
1603 return NOTIFY_DONE;
1604#ifdef CONFIG_KEXEC
1605 if (atomic_read(&kdump_in_progress))
1606 return NOTIFY_DONE;
1607#endif
1608
1609 /*
1610 * FIXME: mlogbuf will brim over with INIT stack dumps.
1611 * To enable show_stack from INIT, we use oops_in_progress which should
1612 * be used in real oops. This would cause something wrong after INIT.
1613 */
1614 BREAK_LOGLEVEL(console_loglevel);
1615 ia64_mlogbuf_dump_from_init();
1616
1617 printk(KERN_ERR "Processes interrupted by INIT -");
1618 for_each_online_cpu(c) {
1619 struct ia64_sal_os_state *s;
1620 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1621 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1622 g = s->prev_task;
1623 if (g) {
1624 if (g->pid)
1625 printk(" %d", g->pid);
1626 else
1627 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1628 }
1629 }
1630 printk("\n\n");
1631 if (read_trylock(&tasklist_lock)) {
1632 do_each_thread (g, t) {
1633 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1634 show_stack(t, NULL, KERN_DEFAULT);
1635 } while_each_thread (g, t);
1636 read_unlock(&tasklist_lock);
1637 }
1638 /* FIXME: This will not restore zapped printk locks. */
1639 RESTORE_LOGLEVEL(console_loglevel);
1640 return NOTIFY_DONE;
1641}
1642
1643/*
1644 * C portion of the OS INIT handler
1645 *
1646 * Called from ia64_os_init_dispatch
1647 *
1648 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1649 * this event. This code is used for both monarch and slave INIT events, see
1650 * sos->monarch.
1651 *
1652 * All INIT events switch to the INIT stack and change the previous process to
1653 * blocked status. If one of the INIT events is the monarch then we are
1654 * probably processing the nmi button/command. Use the monarch cpu to dump all
1655 * the processes. The slave INIT events all spin until the monarch cpu
1656 * returns. We can also get INIT slave events for MCA, in which case the MCA
1657 * process is the monarch.
1658 */
1659
1660void
1661ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1662 struct ia64_sal_os_state *sos)
1663{
1664 static atomic_t slaves;
1665 static atomic_t monarchs;
1666 struct task_struct *previous_current;
1667 int cpu = smp_processor_id();
1668 struct ia64_mca_notify_die nd =
1669 { .sos = sos, .monarch_cpu = &monarch_cpu };
1670
1671 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1672
1673 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1674 sos->proc_state_param, cpu, sos->monarch);
1675 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1676
1677 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1678 sos->os_status = IA64_INIT_RESUME;
1679
1680 /* FIXME: Workaround for broken proms that drive all INIT events as
1681 * slaves. The last slave that enters is promoted to be a monarch.
1682 * Remove this code in September 2006, that gives platforms a year to
1683 * fix their proms and get their customers updated.
1684 */
1685 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1686 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1687 __func__, cpu);
1688 atomic_dec(&slaves);
1689 sos->monarch = 1;
1690 }
1691
1692 /* FIXME: Workaround for broken proms that drive all INIT events as
1693 * monarchs. Second and subsequent monarchs are demoted to slaves.
1694 * Remove this code in September 2006, that gives platforms a year to
1695 * fix their proms and get their customers updated.
1696 */
1697 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1698 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1699 __func__, cpu);
1700 atomic_dec(&monarchs);
1701 sos->monarch = 0;
1702 }
1703
1704 if (!sos->monarch) {
1705 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1706
1707#ifdef CONFIG_KEXEC
1708 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1709 udelay(1000);
1710#else
1711 while (monarch_cpu == -1)
1712 cpu_relax(); /* spin until monarch enters */
1713#endif
1714
1715 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1716 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1717
1718#ifdef CONFIG_KEXEC
1719 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1720 udelay(1000);
1721#else
1722 while (monarch_cpu != -1)
1723 cpu_relax(); /* spin until monarch leaves */
1724#endif
1725
1726 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1727
1728 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1729 ia64_set_curr_task(cpu, previous_current);
1730 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1731 atomic_dec(&slaves);
1732 return;
1733 }
1734
1735 monarch_cpu = cpu;
1736 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1737
1738 /*
1739 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1740 * generated via the BMC's command-line interface, but since the console is on the
1741 * same serial line, the user will need some time to switch out of the BMC before
1742 * the dump begins.
1743 */
1744 mprintk("Delaying for 5 seconds...\n");
1745 udelay(5*1000000);
1746 ia64_wait_for_slaves(cpu, "INIT");
1747 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1748 * to default_monarch_init_process() above and just print all the
1749 * tasks.
1750 */
1751 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1752 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1753
1754 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1755 atomic_dec(&monarchs);
1756 ia64_set_curr_task(cpu, previous_current);
1757 monarch_cpu = -1;
1758 return;
1759}
1760
1761static int __init
1762ia64_mca_disable_cpe_polling(char *str)
1763{
1764 cpe_poll_enabled = 0;
1765 return 1;
1766}
1767
1768__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1769
1770/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1771 * these stacks can never sleep, they cannot return from the kernel to user
1772 * space, they do not appear in a normal ps listing. So there is no need to
1773 * format most of the fields.
1774 */
1775
1776static void
1777format_mca_init_stack(void *mca_data, unsigned long offset,
1778 const char *type, int cpu)
1779{
1780 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1781 struct thread_info *ti;
1782 memset(p, 0, KERNEL_STACK_SIZE);
1783 ti = task_thread_info(p);
1784 ti->flags = _TIF_MCA_INIT;
1785 ti->preempt_count = 1;
1786 ti->task = p;
1787 ti->cpu = cpu;
1788 p->stack = ti;
1789 p->state = TASK_UNINTERRUPTIBLE;
1790 cpumask_set_cpu(cpu, &p->cpus_mask);
1791 INIT_LIST_HEAD(&p->tasks);
1792 p->parent = p->real_parent = p->group_leader = p;
1793 INIT_LIST_HEAD(&p->children);
1794 INIT_LIST_HEAD(&p->sibling);
1795 strncpy(p->comm, type, sizeof(p->comm)-1);
1796}
1797
1798/* Caller prevents this from being called after init */
1799static void * __ref mca_bootmem(void)
1800{
1801 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1802}
1803
1804/* Do per-CPU MCA-related initialization. */
1805void
1806ia64_mca_cpu_init(void *cpu_data)
1807{
1808 void *pal_vaddr;
1809 void *data;
1810 long sz = sizeof(struct ia64_mca_cpu);
1811 int cpu = smp_processor_id();
1812 static int first_time = 1;
1813
1814 /*
1815 * Structure will already be allocated if cpu has been online,
1816 * then offlined.
1817 */
1818 if (__per_cpu_mca[cpu]) {
1819 data = __va(__per_cpu_mca[cpu]);
1820 } else {
1821 if (first_time) {
1822 data = mca_bootmem();
1823 first_time = 0;
1824 } else
1825 data = (void *)__get_free_pages(GFP_KERNEL,
1826 get_order(sz));
1827 if (!data)
1828 panic("Could not allocate MCA memory for cpu %d\n",
1829 cpu);
1830 }
1831 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1832 "MCA", cpu);
1833 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1834 "INIT", cpu);
1835 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1836
1837 /*
1838 * Stash away a copy of the PTE needed to map the per-CPU page.
1839 * We may need it during MCA recovery.
1840 */
1841 __this_cpu_write(ia64_mca_per_cpu_pte,
1842 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1843
1844 /*
1845 * Also, stash away a copy of the PAL address and the PTE
1846 * needed to map it.
1847 */
1848 pal_vaddr = efi_get_pal_addr();
1849 if (!pal_vaddr)
1850 return;
1851 __this_cpu_write(ia64_mca_pal_base,
1852 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1853 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1854 PAGE_KERNEL)));
1855}
1856
1857static int ia64_mca_cpu_online(unsigned int cpu)
1858{
1859 unsigned long flags;
1860
1861 local_irq_save(flags);
1862 if (!cmc_polling_enabled)
1863 ia64_mca_cmc_vector_enable(NULL);
1864 local_irq_restore(flags);
1865 return 0;
1866}
1867
1868/*
1869 * ia64_mca_init
1870 *
1871 * Do all the system level mca specific initialization.
1872 *
1873 * 1. Register spinloop and wakeup request interrupt vectors
1874 *
1875 * 2. Register OS_MCA handler entry point
1876 *
1877 * 3. Register OS_INIT handler entry point
1878 *
1879 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1880 *
1881 * Note that this initialization is done very early before some kernel
1882 * services are available.
1883 *
1884 * Inputs : None
1885 *
1886 * Outputs : None
1887 */
1888void __init
1889ia64_mca_init(void)
1890{
1891 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1892 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1893 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1894 int i;
1895 long rc;
1896 struct ia64_sal_retval isrv;
1897 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1898 static struct notifier_block default_init_monarch_nb = {
1899 .notifier_call = default_monarch_init_process,
1900 .priority = 0/* we need to notified last */
1901 };
1902
1903 IA64_MCA_DEBUG("%s: begin\n", __func__);
1904
1905 /* Clear the Rendez checkin flag for all cpus */
1906 for(i = 0 ; i < NR_CPUS; i++)
1907 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1908
1909 /*
1910 * Register the rendezvous spinloop and wakeup mechanism with SAL
1911 */
1912
1913 /* Register the rendezvous interrupt vector with SAL */
1914 while (1) {
1915 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1916 SAL_MC_PARAM_MECHANISM_INT,
1917 IA64_MCA_RENDEZ_VECTOR,
1918 timeout,
1919 SAL_MC_PARAM_RZ_ALWAYS);
1920 rc = isrv.status;
1921 if (rc == 0)
1922 break;
1923 if (rc == -2) {
1924 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1925 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1926 timeout = isrv.v0;
1927 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1928 continue;
1929 }
1930 printk(KERN_ERR "Failed to register rendezvous interrupt "
1931 "with SAL (status %ld)\n", rc);
1932 return;
1933 }
1934
1935 /* Register the wakeup interrupt vector with SAL */
1936 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1937 SAL_MC_PARAM_MECHANISM_INT,
1938 IA64_MCA_WAKEUP_VECTOR,
1939 0, 0);
1940 rc = isrv.status;
1941 if (rc) {
1942 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1943 "(status %ld)\n", rc);
1944 return;
1945 }
1946
1947 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1948
1949 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1950 /*
1951 * XXX - disable SAL checksum by setting size to 0; should be
1952 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1953 */
1954 ia64_mc_info.imi_mca_handler_size = 0;
1955
1956 /* Register the os mca handler with SAL */
1957 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1958 ia64_mc_info.imi_mca_handler,
1959 ia64_tpa(mca_hldlr_ptr->gp),
1960 ia64_mc_info.imi_mca_handler_size,
1961 0, 0, 0)))
1962 {
1963 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1964 "(status %ld)\n", rc);
1965 return;
1966 }
1967
1968 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1969 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1970
1971 /*
1972 * XXX - disable SAL checksum by setting size to 0, should be
1973 * size of the actual init handler in mca_asm.S.
1974 */
1975 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1976 ia64_mc_info.imi_monarch_init_handler_size = 0;
1977 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1978 ia64_mc_info.imi_slave_init_handler_size = 0;
1979
1980 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1981 ia64_mc_info.imi_monarch_init_handler);
1982
1983 /* Register the os init handler with SAL */
1984 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1985 ia64_mc_info.imi_monarch_init_handler,
1986 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1987 ia64_mc_info.imi_monarch_init_handler_size,
1988 ia64_mc_info.imi_slave_init_handler,
1989 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1990 ia64_mc_info.imi_slave_init_handler_size)))
1991 {
1992 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1993 "(status %ld)\n", rc);
1994 return;
1995 }
1996 if (register_die_notifier(&default_init_monarch_nb)) {
1997 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1998 return;
1999 }
2000
2001 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2002
2003 /* Initialize the areas set aside by the OS to buffer the
2004 * platform/processor error states for MCA/INIT/CMC
2005 * handling.
2006 */
2007 ia64_log_init(SAL_INFO_TYPE_MCA);
2008 ia64_log_init(SAL_INFO_TYPE_INIT);
2009 ia64_log_init(SAL_INFO_TYPE_CMC);
2010 ia64_log_init(SAL_INFO_TYPE_CPE);
2011
2012 mca_init = 1;
2013 printk(KERN_INFO "MCA related initialization done\n");
2014}
2015
2016
2017/*
2018 * These pieces cannot be done in ia64_mca_init() because it is called before
2019 * early_irq_init() which would wipe out our percpu irq registrations. But we
2020 * cannot leave them until ia64_mca_late_init() because by then all the other
2021 * processors have been brought online and have set their own CMC vectors to
2022 * point at a non-existant action. Called from arch_early_irq_init().
2023 */
2024void __init ia64_mca_irq_init(void)
2025{
2026 /*
2027 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2028 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2029 */
2030 register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
2031 "cmc_hndlr");
2032 register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
2033 "cmc_poll");
2034 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2035
2036 /* Setup the MCA rendezvous interrupt vector */
2037 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
2038 0, "mca_rdzv");
2039
2040 /* Setup the MCA wakeup interrupt vector */
2041 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
2042 0, "mca_wkup");
2043
2044 /* Setup the CPEI/P handler */
2045 register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
2046 "cpe_poll");
2047}
2048
2049/*
2050 * ia64_mca_late_init
2051 *
2052 * Opportunity to setup things that require initialization later
2053 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2054 * platform doesn't support an interrupt driven mechanism.
2055 *
2056 * Inputs : None
2057 * Outputs : Status
2058 */
2059static int __init
2060ia64_mca_late_init(void)
2061{
2062 if (!mca_init)
2063 return 0;
2064
2065 /* Setup the CMCI/P vector and handler */
2066 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2067
2068 /* Unmask/enable the vector */
2069 cmc_polling_enabled = 0;
2070 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2071 ia64_mca_cpu_online, NULL);
2072 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2073
2074 /* Setup the CPEI/P vector and handler */
2075 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2076 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2077
2078 {
2079 unsigned int irq;
2080
2081 if (cpe_vector >= 0) {
2082 /* If platform supports CPEI, enable the irq. */
2083 irq = local_vector_to_irq(cpe_vector);
2084 if (irq > 0) {
2085 cpe_poll_enabled = 0;
2086 irq_set_status_flags(irq, IRQ_PER_CPU);
2087 if (request_irq(irq, ia64_mca_cpe_int_handler,
2088 0, "cpe_hndlr", NULL))
2089 pr_err("Failed to register cpe_hndlr interrupt\n");
2090 ia64_cpe_irq = irq;
2091 ia64_mca_register_cpev(cpe_vector);
2092 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2093 __func__);
2094 return 0;
2095 }
2096 printk(KERN_ERR "%s: Failed to find irq for CPE "
2097 "interrupt handler, vector %d\n",
2098 __func__, cpe_vector);
2099 }
2100 /* If platform doesn't support CPEI, get the timer going. */
2101 if (cpe_poll_enabled) {
2102 ia64_mca_cpe_poll(0UL);
2103 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2104 }
2105 }
2106
2107 return 0;
2108}
2109
2110device_initcall(ia64_mca_late_init);