Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Manage cache of swap slots to be used for and returned from
  4 * swap.
  5 *
  6 * Copyright(c) 2016 Intel Corporation.
  7 *
  8 * Author: Tim Chen <tim.c.chen@linux.intel.com>
  9 *
 10 * We allocate the swap slots from the global pool and put
 11 * it into local per cpu caches.  This has the advantage
 12 * of no needing to acquire the swap_info lock every time
 13 * we need a new slot.
 14 *
 15 * There is also opportunity to simply return the slot
 16 * to local caches without needing to acquire swap_info
 17 * lock.  We do not reuse the returned slots directly but
 18 * move them back to the global pool in a batch.  This
 19 * allows the slots to coaellesce and reduce fragmentation.
 20 *
 21 * The swap entry allocated is marked with SWAP_HAS_CACHE
 22 * flag in map_count that prevents it from being allocated
 23 * again from the global pool.
 24 *
 25 * The swap slots cache is protected by a mutex instead of
 26 * a spin lock as when we search for slots with scan_swap_map,
 27 * we can possibly sleep.
 28 */
 29
 30#include <linux/swap_slots.h>
 31#include <linux/cpu.h>
 32#include <linux/cpumask.h>
 33#include <linux/vmalloc.h>
 34#include <linux/mutex.h>
 35#include <linux/mm.h>
 36
 37static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
 38static bool	swap_slot_cache_active;
 39bool	swap_slot_cache_enabled;
 40static bool	swap_slot_cache_initialized;
 41static DEFINE_MUTEX(swap_slots_cache_mutex);
 42/* Serialize swap slots cache enable/disable operations */
 43static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
 44
 45static void __drain_swap_slots_cache(unsigned int type);
 46static void deactivate_swap_slots_cache(void);
 47static void reactivate_swap_slots_cache(void);
 48
 49#define use_swap_slot_cache (swap_slot_cache_active && \
 50		swap_slot_cache_enabled && swap_slot_cache_initialized)
 51#define SLOTS_CACHE 0x1
 52#define SLOTS_CACHE_RET 0x2
 53
 54static void deactivate_swap_slots_cache(void)
 55{
 56	mutex_lock(&swap_slots_cache_mutex);
 57	swap_slot_cache_active = false;
 58	__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
 59	mutex_unlock(&swap_slots_cache_mutex);
 60}
 61
 62static void reactivate_swap_slots_cache(void)
 63{
 64	mutex_lock(&swap_slots_cache_mutex);
 65	swap_slot_cache_active = true;
 66	mutex_unlock(&swap_slots_cache_mutex);
 67}
 68
 69/* Must not be called with cpu hot plug lock */
 70void disable_swap_slots_cache_lock(void)
 71{
 72	mutex_lock(&swap_slots_cache_enable_mutex);
 73	swap_slot_cache_enabled = false;
 74	if (swap_slot_cache_initialized) {
 75		/* serialize with cpu hotplug operations */
 76		get_online_cpus();
 77		__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
 78		put_online_cpus();
 79	}
 80}
 81
 82static void __reenable_swap_slots_cache(void)
 83{
 84	swap_slot_cache_enabled = has_usable_swap();
 85}
 86
 87void reenable_swap_slots_cache_unlock(void)
 88{
 89	__reenable_swap_slots_cache();
 90	mutex_unlock(&swap_slots_cache_enable_mutex);
 91}
 92
 93static bool check_cache_active(void)
 94{
 95	long pages;
 96
 97	if (!swap_slot_cache_enabled || !swap_slot_cache_initialized)
 98		return false;
 99
100	pages = get_nr_swap_pages();
101	if (!swap_slot_cache_active) {
102		if (pages > num_online_cpus() *
103		    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
104			reactivate_swap_slots_cache();
105		goto out;
106	}
107
108	/* if global pool of slot caches too low, deactivate cache */
109	if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
110		deactivate_swap_slots_cache();
111out:
112	return swap_slot_cache_active;
113}
114
115static int alloc_swap_slot_cache(unsigned int cpu)
116{
117	struct swap_slots_cache *cache;
118	swp_entry_t *slots, *slots_ret;
119
120	/*
121	 * Do allocation outside swap_slots_cache_mutex
122	 * as kvzalloc could trigger reclaim and get_swap_page,
123	 * which can lock swap_slots_cache_mutex.
124	 */
125	slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
126			 GFP_KERNEL);
127	if (!slots)
128		return -ENOMEM;
129
130	slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
131			     GFP_KERNEL);
132	if (!slots_ret) {
133		kvfree(slots);
134		return -ENOMEM;
135	}
136
137	mutex_lock(&swap_slots_cache_mutex);
138	cache = &per_cpu(swp_slots, cpu);
139	if (cache->slots || cache->slots_ret)
140		/* cache already allocated */
141		goto out;
 
 
 
 
 
 
 
142	if (!cache->lock_initialized) {
143		mutex_init(&cache->alloc_lock);
144		spin_lock_init(&cache->free_lock);
145		cache->lock_initialized = true;
146	}
147	cache->nr = 0;
148	cache->cur = 0;
149	cache->n_ret = 0;
150	/*
151	 * We initialized alloc_lock and free_lock earlier.  We use
152	 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
153	 * the corresponding lock and use the cache.  Memory barrier below
154	 * ensures the assumption.
155	 */
156	mb();
157	cache->slots = slots;
158	slots = NULL;
159	cache->slots_ret = slots_ret;
160	slots_ret = NULL;
161out:
162	mutex_unlock(&swap_slots_cache_mutex);
163	if (slots)
164		kvfree(slots);
165	if (slots_ret)
166		kvfree(slots_ret);
167	return 0;
168}
169
170static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
171				  bool free_slots)
172{
173	struct swap_slots_cache *cache;
174	swp_entry_t *slots = NULL;
175
176	cache = &per_cpu(swp_slots, cpu);
177	if ((type & SLOTS_CACHE) && cache->slots) {
178		mutex_lock(&cache->alloc_lock);
179		swapcache_free_entries(cache->slots + cache->cur, cache->nr);
180		cache->cur = 0;
181		cache->nr = 0;
182		if (free_slots && cache->slots) {
183			kvfree(cache->slots);
184			cache->slots = NULL;
185		}
186		mutex_unlock(&cache->alloc_lock);
187	}
188	if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
189		spin_lock_irq(&cache->free_lock);
190		swapcache_free_entries(cache->slots_ret, cache->n_ret);
191		cache->n_ret = 0;
192		if (free_slots && cache->slots_ret) {
193			slots = cache->slots_ret;
194			cache->slots_ret = NULL;
195		}
196		spin_unlock_irq(&cache->free_lock);
197		if (slots)
198			kvfree(slots);
199	}
200}
201
202static void __drain_swap_slots_cache(unsigned int type)
203{
204	unsigned int cpu;
205
206	/*
207	 * This function is called during
208	 *	1) swapoff, when we have to make sure no
209	 *	   left over slots are in cache when we remove
210	 *	   a swap device;
211	 *      2) disabling of swap slot cache, when we run low
212	 *	   on swap slots when allocating memory and need
213	 *	   to return swap slots to global pool.
214	 *
215	 * We cannot acquire cpu hot plug lock here as
216	 * this function can be invoked in the cpu
217	 * hot plug path:
218	 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
219	 *   -> memory allocation -> direct reclaim -> get_swap_page
220	 *   -> drain_swap_slots_cache
221	 *
222	 * Hence the loop over current online cpu below could miss cpu that
223	 * is being brought online but not yet marked as online.
224	 * That is okay as we do not schedule and run anything on a
225	 * cpu before it has been marked online. Hence, we will not
226	 * fill any swap slots in slots cache of such cpu.
227	 * There are no slots on such cpu that need to be drained.
228	 */
229	for_each_online_cpu(cpu)
230		drain_slots_cache_cpu(cpu, type, false);
231}
232
233static int free_slot_cache(unsigned int cpu)
234{
235	mutex_lock(&swap_slots_cache_mutex);
236	drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
237	mutex_unlock(&swap_slots_cache_mutex);
238	return 0;
239}
240
241int enable_swap_slots_cache(void)
242{
243	int ret = 0;
244
245	mutex_lock(&swap_slots_cache_enable_mutex);
246	if (swap_slot_cache_initialized) {
247		__reenable_swap_slots_cache();
248		goto out_unlock;
249	}
250
251	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
252				alloc_swap_slot_cache, free_slot_cache);
253	if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
254			       "without swap slots cache.\n", __func__))
255		goto out_unlock;
 
 
 
256
257	swap_slot_cache_initialized = true;
258	__reenable_swap_slots_cache();
259out_unlock:
260	mutex_unlock(&swap_slots_cache_enable_mutex);
261	return 0;
262}
263
264/* called with swap slot cache's alloc lock held */
265static int refill_swap_slots_cache(struct swap_slots_cache *cache)
266{
267	if (!use_swap_slot_cache || cache->nr)
268		return 0;
269
270	cache->cur = 0;
271	if (swap_slot_cache_active)
272		cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
273					   cache->slots, 1);
274
275	return cache->nr;
276}
277
278int free_swap_slot(swp_entry_t entry)
279{
280	struct swap_slots_cache *cache;
281
282	cache = raw_cpu_ptr(&swp_slots);
283	if (likely(use_swap_slot_cache && cache->slots_ret)) {
284		spin_lock_irq(&cache->free_lock);
285		/* Swap slots cache may be deactivated before acquiring lock */
286		if (!use_swap_slot_cache || !cache->slots_ret) {
287			spin_unlock_irq(&cache->free_lock);
288			goto direct_free;
289		}
290		if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
291			/*
292			 * Return slots to global pool.
293			 * The current swap_map value is SWAP_HAS_CACHE.
294			 * Set it to 0 to indicate it is available for
295			 * allocation in global pool
296			 */
297			swapcache_free_entries(cache->slots_ret, cache->n_ret);
298			cache->n_ret = 0;
299		}
300		cache->slots_ret[cache->n_ret++] = entry;
301		spin_unlock_irq(&cache->free_lock);
302	} else {
303direct_free:
304		swapcache_free_entries(&entry, 1);
305	}
306
307	return 0;
308}
309
310swp_entry_t get_swap_page(struct page *page)
311{
312	swp_entry_t entry, *pentry;
313	struct swap_slots_cache *cache;
314
315	entry.val = 0;
316
317	if (PageTransHuge(page)) {
318		if (IS_ENABLED(CONFIG_THP_SWAP))
319			get_swap_pages(1, &entry, HPAGE_PMD_NR);
320		goto out;
321	}
322
323	/*
324	 * Preemption is allowed here, because we may sleep
325	 * in refill_swap_slots_cache().  But it is safe, because
326	 * accesses to the per-CPU data structure are protected by the
327	 * mutex cache->alloc_lock.
328	 *
329	 * The alloc path here does not touch cache->slots_ret
330	 * so cache->free_lock is not taken.
331	 */
332	cache = raw_cpu_ptr(&swp_slots);
333
334	if (likely(check_cache_active() && cache->slots)) {
335		mutex_lock(&cache->alloc_lock);
336		if (cache->slots) {
337repeat:
338			if (cache->nr) {
339				pentry = &cache->slots[cache->cur++];
340				entry = *pentry;
341				pentry->val = 0;
342				cache->nr--;
343			} else {
344				if (refill_swap_slots_cache(cache))
345					goto repeat;
346			}
347		}
348		mutex_unlock(&cache->alloc_lock);
349		if (entry.val)
350			goto out;
351	}
352
353	get_swap_pages(1, &entry, 1);
354out:
355	if (mem_cgroup_try_charge_swap(page, entry)) {
356		put_swap_page(page, entry);
357		entry.val = 0;
358	}
359	return entry;
360}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Manage cache of swap slots to be used for and returned from
  4 * swap.
  5 *
  6 * Copyright(c) 2016 Intel Corporation.
  7 *
  8 * Author: Tim Chen <tim.c.chen@linux.intel.com>
  9 *
 10 * We allocate the swap slots from the global pool and put
 11 * it into local per cpu caches.  This has the advantage
 12 * of no needing to acquire the swap_info lock every time
 13 * we need a new slot.
 14 *
 15 * There is also opportunity to simply return the slot
 16 * to local caches without needing to acquire swap_info
 17 * lock.  We do not reuse the returned slots directly but
 18 * move them back to the global pool in a batch.  This
 19 * allows the slots to coaellesce and reduce fragmentation.
 20 *
 21 * The swap entry allocated is marked with SWAP_HAS_CACHE
 22 * flag in map_count that prevents it from being allocated
 23 * again from the global pool.
 24 *
 25 * The swap slots cache is protected by a mutex instead of
 26 * a spin lock as when we search for slots with scan_swap_map,
 27 * we can possibly sleep.
 28 */
 29
 30#include <linux/swap_slots.h>
 31#include <linux/cpu.h>
 32#include <linux/cpumask.h>
 33#include <linux/vmalloc.h>
 34#include <linux/mutex.h>
 35#include <linux/mm.h>
 36
 37static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
 38static bool	swap_slot_cache_active;
 39bool	swap_slot_cache_enabled;
 40static bool	swap_slot_cache_initialized;
 41static DEFINE_MUTEX(swap_slots_cache_mutex);
 42/* Serialize swap slots cache enable/disable operations */
 43static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
 44
 45static void __drain_swap_slots_cache(unsigned int type);
 46static void deactivate_swap_slots_cache(void);
 47static void reactivate_swap_slots_cache(void);
 48
 49#define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
 
 50#define SLOTS_CACHE 0x1
 51#define SLOTS_CACHE_RET 0x2
 52
 53static void deactivate_swap_slots_cache(void)
 54{
 55	mutex_lock(&swap_slots_cache_mutex);
 56	swap_slot_cache_active = false;
 57	__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
 58	mutex_unlock(&swap_slots_cache_mutex);
 59}
 60
 61static void reactivate_swap_slots_cache(void)
 62{
 63	mutex_lock(&swap_slots_cache_mutex);
 64	swap_slot_cache_active = true;
 65	mutex_unlock(&swap_slots_cache_mutex);
 66}
 67
 68/* Must not be called with cpu hot plug lock */
 69void disable_swap_slots_cache_lock(void)
 70{
 71	mutex_lock(&swap_slots_cache_enable_mutex);
 72	swap_slot_cache_enabled = false;
 73	if (swap_slot_cache_initialized) {
 74		/* serialize with cpu hotplug operations */
 75		get_online_cpus();
 76		__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
 77		put_online_cpus();
 78	}
 79}
 80
 81static void __reenable_swap_slots_cache(void)
 82{
 83	swap_slot_cache_enabled = has_usable_swap();
 84}
 85
 86void reenable_swap_slots_cache_unlock(void)
 87{
 88	__reenable_swap_slots_cache();
 89	mutex_unlock(&swap_slots_cache_enable_mutex);
 90}
 91
 92static bool check_cache_active(void)
 93{
 94	long pages;
 95
 96	if (!swap_slot_cache_enabled)
 97		return false;
 98
 99	pages = get_nr_swap_pages();
100	if (!swap_slot_cache_active) {
101		if (pages > num_online_cpus() *
102		    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
103			reactivate_swap_slots_cache();
104		goto out;
105	}
106
107	/* if global pool of slot caches too low, deactivate cache */
108	if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
109		deactivate_swap_slots_cache();
110out:
111	return swap_slot_cache_active;
112}
113
114static int alloc_swap_slot_cache(unsigned int cpu)
115{
116	struct swap_slots_cache *cache;
117	swp_entry_t *slots, *slots_ret;
118
119	/*
120	 * Do allocation outside swap_slots_cache_mutex
121	 * as kvzalloc could trigger reclaim and get_swap_page,
122	 * which can lock swap_slots_cache_mutex.
123	 */
124	slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
125			 GFP_KERNEL);
126	if (!slots)
127		return -ENOMEM;
128
129	slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
130			     GFP_KERNEL);
131	if (!slots_ret) {
132		kvfree(slots);
133		return -ENOMEM;
134	}
135
136	mutex_lock(&swap_slots_cache_mutex);
137	cache = &per_cpu(swp_slots, cpu);
138	if (cache->slots || cache->slots_ret) {
139		/* cache already allocated */
140		mutex_unlock(&swap_slots_cache_mutex);
141
142		kvfree(slots);
143		kvfree(slots_ret);
144
145		return 0;
146	}
147
148	if (!cache->lock_initialized) {
149		mutex_init(&cache->alloc_lock);
150		spin_lock_init(&cache->free_lock);
151		cache->lock_initialized = true;
152	}
153	cache->nr = 0;
154	cache->cur = 0;
155	cache->n_ret = 0;
156	/*
157	 * We initialized alloc_lock and free_lock earlier.  We use
158	 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
159	 * the corresponding lock and use the cache.  Memory barrier below
160	 * ensures the assumption.
161	 */
162	mb();
163	cache->slots = slots;
 
164	cache->slots_ret = slots_ret;
 
 
165	mutex_unlock(&swap_slots_cache_mutex);
 
 
 
 
166	return 0;
167}
168
169static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
170				  bool free_slots)
171{
172	struct swap_slots_cache *cache;
173	swp_entry_t *slots = NULL;
174
175	cache = &per_cpu(swp_slots, cpu);
176	if ((type & SLOTS_CACHE) && cache->slots) {
177		mutex_lock(&cache->alloc_lock);
178		swapcache_free_entries(cache->slots + cache->cur, cache->nr);
179		cache->cur = 0;
180		cache->nr = 0;
181		if (free_slots && cache->slots) {
182			kvfree(cache->slots);
183			cache->slots = NULL;
184		}
185		mutex_unlock(&cache->alloc_lock);
186	}
187	if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
188		spin_lock_irq(&cache->free_lock);
189		swapcache_free_entries(cache->slots_ret, cache->n_ret);
190		cache->n_ret = 0;
191		if (free_slots && cache->slots_ret) {
192			slots = cache->slots_ret;
193			cache->slots_ret = NULL;
194		}
195		spin_unlock_irq(&cache->free_lock);
196		if (slots)
197			kvfree(slots);
198	}
199}
200
201static void __drain_swap_slots_cache(unsigned int type)
202{
203	unsigned int cpu;
204
205	/*
206	 * This function is called during
207	 *	1) swapoff, when we have to make sure no
208	 *	   left over slots are in cache when we remove
209	 *	   a swap device;
210	 *      2) disabling of swap slot cache, when we run low
211	 *	   on swap slots when allocating memory and need
212	 *	   to return swap slots to global pool.
213	 *
214	 * We cannot acquire cpu hot plug lock here as
215	 * this function can be invoked in the cpu
216	 * hot plug path:
217	 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
218	 *   -> memory allocation -> direct reclaim -> get_swap_page
219	 *   -> drain_swap_slots_cache
220	 *
221	 * Hence the loop over current online cpu below could miss cpu that
222	 * is being brought online but not yet marked as online.
223	 * That is okay as we do not schedule and run anything on a
224	 * cpu before it has been marked online. Hence, we will not
225	 * fill any swap slots in slots cache of such cpu.
226	 * There are no slots on such cpu that need to be drained.
227	 */
228	for_each_online_cpu(cpu)
229		drain_slots_cache_cpu(cpu, type, false);
230}
231
232static int free_slot_cache(unsigned int cpu)
233{
234	mutex_lock(&swap_slots_cache_mutex);
235	drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
236	mutex_unlock(&swap_slots_cache_mutex);
237	return 0;
238}
239
240int enable_swap_slots_cache(void)
241{
 
 
242	mutex_lock(&swap_slots_cache_enable_mutex);
243	if (!swap_slot_cache_initialized) {
244		int ret;
 
 
245
246		ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
247					alloc_swap_slot_cache, free_slot_cache);
248		if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
249				       "without swap slots cache.\n", __func__))
250			goto out_unlock;
251
252		swap_slot_cache_initialized = true;
253	}
254
 
255	__reenable_swap_slots_cache();
256out_unlock:
257	mutex_unlock(&swap_slots_cache_enable_mutex);
258	return 0;
259}
260
261/* called with swap slot cache's alloc lock held */
262static int refill_swap_slots_cache(struct swap_slots_cache *cache)
263{
264	if (!use_swap_slot_cache || cache->nr)
265		return 0;
266
267	cache->cur = 0;
268	if (swap_slot_cache_active)
269		cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
270					   cache->slots, 1);
271
272	return cache->nr;
273}
274
275int free_swap_slot(swp_entry_t entry)
276{
277	struct swap_slots_cache *cache;
278
279	cache = raw_cpu_ptr(&swp_slots);
280	if (likely(use_swap_slot_cache && cache->slots_ret)) {
281		spin_lock_irq(&cache->free_lock);
282		/* Swap slots cache may be deactivated before acquiring lock */
283		if (!use_swap_slot_cache || !cache->slots_ret) {
284			spin_unlock_irq(&cache->free_lock);
285			goto direct_free;
286		}
287		if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
288			/*
289			 * Return slots to global pool.
290			 * The current swap_map value is SWAP_HAS_CACHE.
291			 * Set it to 0 to indicate it is available for
292			 * allocation in global pool
293			 */
294			swapcache_free_entries(cache->slots_ret, cache->n_ret);
295			cache->n_ret = 0;
296		}
297		cache->slots_ret[cache->n_ret++] = entry;
298		spin_unlock_irq(&cache->free_lock);
299	} else {
300direct_free:
301		swapcache_free_entries(&entry, 1);
302	}
303
304	return 0;
305}
306
307swp_entry_t get_swap_page(struct page *page)
308{
309	swp_entry_t entry;
310	struct swap_slots_cache *cache;
311
312	entry.val = 0;
313
314	if (PageTransHuge(page)) {
315		if (IS_ENABLED(CONFIG_THP_SWAP))
316			get_swap_pages(1, &entry, HPAGE_PMD_NR);
317		goto out;
318	}
319
320	/*
321	 * Preemption is allowed here, because we may sleep
322	 * in refill_swap_slots_cache().  But it is safe, because
323	 * accesses to the per-CPU data structure are protected by the
324	 * mutex cache->alloc_lock.
325	 *
326	 * The alloc path here does not touch cache->slots_ret
327	 * so cache->free_lock is not taken.
328	 */
329	cache = raw_cpu_ptr(&swp_slots);
330
331	if (likely(check_cache_active() && cache->slots)) {
332		mutex_lock(&cache->alloc_lock);
333		if (cache->slots) {
334repeat:
335			if (cache->nr) {
336				entry = cache->slots[cache->cur];
337				cache->slots[cache->cur++].val = 0;
 
338				cache->nr--;
339			} else if (refill_swap_slots_cache(cache)) {
340				goto repeat;
 
341			}
342		}
343		mutex_unlock(&cache->alloc_lock);
344		if (entry.val)
345			goto out;
346	}
347
348	get_swap_pages(1, &entry, 1);
349out:
350	if (mem_cgroup_try_charge_swap(page, entry)) {
351		put_swap_page(page, entry);
352		entry.val = 0;
353	}
354	return entry;
355}