Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/usb/core/usb.c
   4 *
   5 * (C) Copyright Linus Torvalds 1999
   6 * (C) Copyright Johannes Erdfelt 1999-2001
   7 * (C) Copyright Andreas Gal 1999
   8 * (C) Copyright Gregory P. Smith 1999
   9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
  10 * (C) Copyright Randy Dunlap 2000
  11 * (C) Copyright David Brownell 2000-2004
  12 * (C) Copyright Yggdrasil Computing, Inc. 2000
  13 *     (usb_device_id matching changes by Adam J. Richter)
  14 * (C) Copyright Greg Kroah-Hartman 2002-2003
  15 *
  16 * Released under the GPLv2 only.
  17 *
  18 * NOTE! This is not actually a driver at all, rather this is
  19 * just a collection of helper routines that implement the
  20 * generic USB things that the real drivers can use..
  21 *
  22 * Think of this as a "USB library" rather than anything else.
  23 * It should be considered a slave, with no callbacks. Callbacks
  24 * are evil.
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/string.h>
  30#include <linux/bitops.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>  /* for in_interrupt() */
  33#include <linux/kmod.h>
  34#include <linux/init.h>
  35#include <linux/spinlock.h>
  36#include <linux/errno.h>
  37#include <linux/usb.h>
  38#include <linux/usb/hcd.h>
  39#include <linux/mutex.h>
  40#include <linux/workqueue.h>
  41#include <linux/debugfs.h>
  42#include <linux/usb/of.h>
  43
  44#include <asm/io.h>
  45#include <linux/scatterlist.h>
  46#include <linux/mm.h>
  47#include <linux/dma-mapping.h>
  48
  49#include "hub.h"
  50
  51const char *usbcore_name = "usbcore";
  52
  53static bool nousb;	/* Disable USB when built into kernel image */
  54
  55module_param(nousb, bool, 0444);
  56
  57/*
  58 * for external read access to <nousb>
  59 */
  60int usb_disabled(void)
  61{
  62	return nousb;
  63}
  64EXPORT_SYMBOL_GPL(usb_disabled);
  65
  66#ifdef	CONFIG_PM
  67/* Default delay value, in seconds */
  68static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
  69module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  70MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  71
  72#else
  73#define usb_autosuspend_delay		0
  74#endif
  75
  76static bool match_endpoint(struct usb_endpoint_descriptor *epd,
  77		struct usb_endpoint_descriptor **bulk_in,
  78		struct usb_endpoint_descriptor **bulk_out,
  79		struct usb_endpoint_descriptor **int_in,
  80		struct usb_endpoint_descriptor **int_out)
  81{
  82	switch (usb_endpoint_type(epd)) {
  83	case USB_ENDPOINT_XFER_BULK:
  84		if (usb_endpoint_dir_in(epd)) {
  85			if (bulk_in && !*bulk_in) {
  86				*bulk_in = epd;
  87				break;
  88			}
  89		} else {
  90			if (bulk_out && !*bulk_out) {
  91				*bulk_out = epd;
  92				break;
  93			}
  94		}
  95
  96		return false;
  97	case USB_ENDPOINT_XFER_INT:
  98		if (usb_endpoint_dir_in(epd)) {
  99			if (int_in && !*int_in) {
 100				*int_in = epd;
 101				break;
 102			}
 103		} else {
 104			if (int_out && !*int_out) {
 105				*int_out = epd;
 106				break;
 107			}
 108		}
 109
 110		return false;
 111	default:
 112		return false;
 113	}
 114
 115	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
 116			(!int_in || *int_in) && (!int_out || *int_out);
 117}
 118
 119/**
 120 * usb_find_common_endpoints() -- look up common endpoint descriptors
 121 * @alt:	alternate setting to search
 122 * @bulk_in:	pointer to descriptor pointer, or NULL
 123 * @bulk_out:	pointer to descriptor pointer, or NULL
 124 * @int_in:	pointer to descriptor pointer, or NULL
 125 * @int_out:	pointer to descriptor pointer, or NULL
 126 *
 127 * Search the alternate setting's endpoint descriptors for the first bulk-in,
 128 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 129 * provided pointers (unless they are NULL).
 130 *
 131 * If a requested endpoint is not found, the corresponding pointer is set to
 132 * NULL.
 133 *
 134 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 135 */
 136int usb_find_common_endpoints(struct usb_host_interface *alt,
 137		struct usb_endpoint_descriptor **bulk_in,
 138		struct usb_endpoint_descriptor **bulk_out,
 139		struct usb_endpoint_descriptor **int_in,
 140		struct usb_endpoint_descriptor **int_out)
 141{
 142	struct usb_endpoint_descriptor *epd;
 143	int i;
 144
 145	if (bulk_in)
 146		*bulk_in = NULL;
 147	if (bulk_out)
 148		*bulk_out = NULL;
 149	if (int_in)
 150		*int_in = NULL;
 151	if (int_out)
 152		*int_out = NULL;
 153
 154	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
 155		epd = &alt->endpoint[i].desc;
 156
 157		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 158			return 0;
 159	}
 160
 161	return -ENXIO;
 162}
 163EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
 164
 165/**
 166 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
 167 * @alt:	alternate setting to search
 168 * @bulk_in:	pointer to descriptor pointer, or NULL
 169 * @bulk_out:	pointer to descriptor pointer, or NULL
 170 * @int_in:	pointer to descriptor pointer, or NULL
 171 * @int_out:	pointer to descriptor pointer, or NULL
 172 *
 173 * Search the alternate setting's endpoint descriptors for the last bulk-in,
 174 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 175 * provided pointers (unless they are NULL).
 176 *
 177 * If a requested endpoint is not found, the corresponding pointer is set to
 178 * NULL.
 179 *
 180 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 181 */
 182int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 183		struct usb_endpoint_descriptor **bulk_in,
 184		struct usb_endpoint_descriptor **bulk_out,
 185		struct usb_endpoint_descriptor **int_in,
 186		struct usb_endpoint_descriptor **int_out)
 187{
 188	struct usb_endpoint_descriptor *epd;
 189	int i;
 190
 191	if (bulk_in)
 192		*bulk_in = NULL;
 193	if (bulk_out)
 194		*bulk_out = NULL;
 195	if (int_in)
 196		*int_in = NULL;
 197	if (int_out)
 198		*int_out = NULL;
 199
 200	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
 201		epd = &alt->endpoint[i].desc;
 202
 203		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 204			return 0;
 205	}
 206
 207	return -ENXIO;
 208}
 209EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
 210
 211/**
 212 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 213 * for the given interface.
 214 * @config: the configuration to search (not necessarily the current config).
 215 * @iface_num: interface number to search in
 216 * @alt_num: alternate interface setting number to search for.
 217 *
 218 * Search the configuration's interface cache for the given alt setting.
 219 *
 220 * Return: The alternate setting, if found. %NULL otherwise.
 221 */
 222struct usb_host_interface *usb_find_alt_setting(
 223		struct usb_host_config *config,
 224		unsigned int iface_num,
 225		unsigned int alt_num)
 226{
 227	struct usb_interface_cache *intf_cache = NULL;
 228	int i;
 229
 230	if (!config)
 231		return NULL;
 232	for (i = 0; i < config->desc.bNumInterfaces; i++) {
 233		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
 234				== iface_num) {
 235			intf_cache = config->intf_cache[i];
 236			break;
 237		}
 238	}
 239	if (!intf_cache)
 240		return NULL;
 241	for (i = 0; i < intf_cache->num_altsetting; i++)
 242		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 243			return &intf_cache->altsetting[i];
 244
 245	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 246			"config %u\n", alt_num, iface_num,
 247			config->desc.bConfigurationValue);
 248	return NULL;
 249}
 250EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 251
 252/**
 253 * usb_ifnum_to_if - get the interface object with a given interface number
 254 * @dev: the device whose current configuration is considered
 255 * @ifnum: the desired interface
 256 *
 257 * This walks the device descriptor for the currently active configuration
 258 * to find the interface object with the particular interface number.
 259 *
 260 * Note that configuration descriptors are not required to assign interface
 261 * numbers sequentially, so that it would be incorrect to assume that
 262 * the first interface in that descriptor corresponds to interface zero.
 263 * This routine helps device drivers avoid such mistakes.
 264 * However, you should make sure that you do the right thing with any
 265 * alternate settings available for this interfaces.
 266 *
 267 * Don't call this function unless you are bound to one of the interfaces
 268 * on this device or you have locked the device!
 269 *
 270 * Return: A pointer to the interface that has @ifnum as interface number,
 271 * if found. %NULL otherwise.
 272 */
 273struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 274				      unsigned ifnum)
 275{
 276	struct usb_host_config *config = dev->actconfig;
 277	int i;
 278
 279	if (!config)
 280		return NULL;
 281	for (i = 0; i < config->desc.bNumInterfaces; i++)
 282		if (config->interface[i]->altsetting[0]
 283				.desc.bInterfaceNumber == ifnum)
 284			return config->interface[i];
 285
 286	return NULL;
 287}
 288EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 289
 290/**
 291 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 292 * @intf: the interface containing the altsetting in question
 293 * @altnum: the desired alternate setting number
 294 *
 295 * This searches the altsetting array of the specified interface for
 296 * an entry with the correct bAlternateSetting value.
 297 *
 298 * Note that altsettings need not be stored sequentially by number, so
 299 * it would be incorrect to assume that the first altsetting entry in
 300 * the array corresponds to altsetting zero.  This routine helps device
 301 * drivers avoid such mistakes.
 302 *
 303 * Don't call this function unless you are bound to the intf interface
 304 * or you have locked the device!
 305 *
 306 * Return: A pointer to the entry of the altsetting array of @intf that
 307 * has @altnum as the alternate setting number. %NULL if not found.
 308 */
 309struct usb_host_interface *usb_altnum_to_altsetting(
 310					const struct usb_interface *intf,
 311					unsigned int altnum)
 312{
 313	int i;
 314
 315	for (i = 0; i < intf->num_altsetting; i++) {
 316		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 317			return &intf->altsetting[i];
 318	}
 319	return NULL;
 320}
 321EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 322
 323struct find_interface_arg {
 324	int minor;
 325	struct device_driver *drv;
 326};
 327
 328static int __find_interface(struct device *dev, const void *data)
 329{
 330	const struct find_interface_arg *arg = data;
 331	struct usb_interface *intf;
 332
 333	if (!is_usb_interface(dev))
 334		return 0;
 335
 336	if (dev->driver != arg->drv)
 337		return 0;
 338	intf = to_usb_interface(dev);
 339	return intf->minor == arg->minor;
 340}
 341
 342/**
 343 * usb_find_interface - find usb_interface pointer for driver and device
 344 * @drv: the driver whose current configuration is considered
 345 * @minor: the minor number of the desired device
 346 *
 347 * This walks the bus device list and returns a pointer to the interface
 348 * with the matching minor and driver.  Note, this only works for devices
 349 * that share the USB major number.
 350 *
 351 * Return: A pointer to the interface with the matching major and @minor.
 352 */
 353struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 354{
 355	struct find_interface_arg argb;
 356	struct device *dev;
 357
 358	argb.minor = minor;
 359	argb.drv = &drv->drvwrap.driver;
 360
 361	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 362
 363	/* Drop reference count from bus_find_device */
 364	put_device(dev);
 365
 366	return dev ? to_usb_interface(dev) : NULL;
 367}
 368EXPORT_SYMBOL_GPL(usb_find_interface);
 369
 370struct each_dev_arg {
 371	void *data;
 372	int (*fn)(struct usb_device *, void *);
 373};
 374
 375static int __each_dev(struct device *dev, void *data)
 376{
 377	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 378
 379	/* There are struct usb_interface on the same bus, filter them out */
 380	if (!is_usb_device(dev))
 381		return 0;
 382
 383	return arg->fn(to_usb_device(dev), arg->data);
 384}
 385
 386/**
 387 * usb_for_each_dev - iterate over all USB devices in the system
 388 * @data: data pointer that will be handed to the callback function
 389 * @fn: callback function to be called for each USB device
 390 *
 391 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 392 * returns anything other than 0, we break the iteration prematurely and return
 393 * that value.
 394 */
 395int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 396{
 397	struct each_dev_arg arg = {data, fn};
 398
 399	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 400}
 401EXPORT_SYMBOL_GPL(usb_for_each_dev);
 402
 403/**
 404 * usb_release_dev - free a usb device structure when all users of it are finished.
 405 * @dev: device that's been disconnected
 406 *
 407 * Will be called only by the device core when all users of this usb device are
 408 * done.
 409 */
 410static void usb_release_dev(struct device *dev)
 411{
 412	struct usb_device *udev;
 413	struct usb_hcd *hcd;
 414
 415	udev = to_usb_device(dev);
 416	hcd = bus_to_hcd(udev->bus);
 417
 418	usb_destroy_configuration(udev);
 419	usb_release_bos_descriptor(udev);
 420	of_node_put(dev->of_node);
 421	usb_put_hcd(hcd);
 422	kfree(udev->product);
 423	kfree(udev->manufacturer);
 424	kfree(udev->serial);
 425	kfree(udev);
 426}
 427
 428static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 429{
 430	struct usb_device *usb_dev;
 431
 432	usb_dev = to_usb_device(dev);
 433
 434	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 435		return -ENOMEM;
 436
 437	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 438		return -ENOMEM;
 439
 440	return 0;
 441}
 442
 443#ifdef	CONFIG_PM
 444
 445/* USB device Power-Management thunks.
 446 * There's no need to distinguish here between quiescing a USB device
 447 * and powering it down; the generic_suspend() routine takes care of
 448 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 449 * USB interfaces there's no difference at all.
 450 */
 451
 452static int usb_dev_prepare(struct device *dev)
 453{
 454	return 0;		/* Implement eventually? */
 455}
 456
 457static void usb_dev_complete(struct device *dev)
 458{
 459	/* Currently used only for rebinding interfaces */
 460	usb_resume_complete(dev);
 461}
 462
 463static int usb_dev_suspend(struct device *dev)
 464{
 465	return usb_suspend(dev, PMSG_SUSPEND);
 466}
 467
 468static int usb_dev_resume(struct device *dev)
 469{
 470	return usb_resume(dev, PMSG_RESUME);
 471}
 472
 473static int usb_dev_freeze(struct device *dev)
 474{
 475	return usb_suspend(dev, PMSG_FREEZE);
 476}
 477
 478static int usb_dev_thaw(struct device *dev)
 479{
 480	return usb_resume(dev, PMSG_THAW);
 481}
 482
 483static int usb_dev_poweroff(struct device *dev)
 484{
 485	return usb_suspend(dev, PMSG_HIBERNATE);
 486}
 487
 488static int usb_dev_restore(struct device *dev)
 489{
 490	return usb_resume(dev, PMSG_RESTORE);
 491}
 492
 493static const struct dev_pm_ops usb_device_pm_ops = {
 494	.prepare =	usb_dev_prepare,
 495	.complete =	usb_dev_complete,
 496	.suspend =	usb_dev_suspend,
 497	.resume =	usb_dev_resume,
 498	.freeze =	usb_dev_freeze,
 499	.thaw =		usb_dev_thaw,
 500	.poweroff =	usb_dev_poweroff,
 501	.restore =	usb_dev_restore,
 502	.runtime_suspend =	usb_runtime_suspend,
 503	.runtime_resume =	usb_runtime_resume,
 504	.runtime_idle =		usb_runtime_idle,
 505};
 506
 507#endif	/* CONFIG_PM */
 508
 509
 510static char *usb_devnode(struct device *dev,
 511			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 512{
 513	struct usb_device *usb_dev;
 514
 515	usb_dev = to_usb_device(dev);
 516	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 517			 usb_dev->bus->busnum, usb_dev->devnum);
 518}
 519
 520struct device_type usb_device_type = {
 521	.name =		"usb_device",
 522	.release =	usb_release_dev,
 523	.uevent =	usb_dev_uevent,
 524	.devnode = 	usb_devnode,
 525#ifdef CONFIG_PM
 526	.pm =		&usb_device_pm_ops,
 527#endif
 528};
 529
 530
 531/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 532static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 533{
 534	struct usb_hcd *hcd = bus_to_hcd(bus);
 535	return hcd->wireless;
 536}
 537
 538static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
 539{
 540	struct usb_hub *hub;
 541
 542	if (!dev->parent)
 543		return true; /* Root hub always ok [and always wired] */
 544
 545	switch (hcd->dev_policy) {
 546	case USB_DEVICE_AUTHORIZE_NONE:
 547	default:
 548		return false;
 549
 550	case USB_DEVICE_AUTHORIZE_ALL:
 551		return true;
 552
 553	case USB_DEVICE_AUTHORIZE_INTERNAL:
 554		hub = usb_hub_to_struct_hub(dev->parent);
 555		return hub->ports[dev->portnum - 1]->connect_type ==
 556				USB_PORT_CONNECT_TYPE_HARD_WIRED;
 557	}
 558}
 559
 560/**
 561 * usb_alloc_dev - usb device constructor (usbcore-internal)
 562 * @parent: hub to which device is connected; null to allocate a root hub
 563 * @bus: bus used to access the device
 564 * @port1: one-based index of port; ignored for root hubs
 565 * Context: !in_interrupt()
 566 *
 567 * Only hub drivers (including virtual root hub drivers for host
 568 * controllers) should ever call this.
 569 *
 570 * This call may not be used in a non-sleeping context.
 571 *
 572 * Return: On success, a pointer to the allocated usb device. %NULL on
 573 * failure.
 574 */
 575struct usb_device *usb_alloc_dev(struct usb_device *parent,
 576				 struct usb_bus *bus, unsigned port1)
 577{
 578	struct usb_device *dev;
 579	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 580	unsigned root_hub = 0;
 581	unsigned raw_port = port1;
 582
 583	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 584	if (!dev)
 585		return NULL;
 586
 587	if (!usb_get_hcd(usb_hcd)) {
 588		kfree(dev);
 589		return NULL;
 590	}
 591	/* Root hubs aren't true devices, so don't allocate HCD resources */
 592	if (usb_hcd->driver->alloc_dev && parent &&
 593		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 594		usb_put_hcd(bus_to_hcd(bus));
 595		kfree(dev);
 596		return NULL;
 597	}
 598
 599	device_initialize(&dev->dev);
 600	dev->dev.bus = &usb_bus_type;
 601	dev->dev.type = &usb_device_type;
 602	dev->dev.groups = usb_device_groups;
 603	/*
 604	 * Fake a dma_mask/offset for the USB device:
 605	 * We cannot really use the dma-mapping API (dma_alloc_* and
 606	 * dma_map_*) for USB devices but instead need to use
 607	 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
 608	 * manually look into the mask/offset pair to determine whether
 609	 * they need bounce buffers.
 610	 * Note: calling dma_set_mask() on a USB device would set the
 611	 * mask for the entire HCD, so don't do that.
 612	 */
 613	dev->dev.dma_mask = bus->sysdev->dma_mask;
 614	dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
 615	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
 616	dev->state = USB_STATE_ATTACHED;
 617	dev->lpm_disable_count = 1;
 618	atomic_set(&dev->urbnum, 0);
 619
 620	INIT_LIST_HEAD(&dev->ep0.urb_list);
 621	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 622	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 623	/* ep0 maxpacket comes later, from device descriptor */
 624	usb_enable_endpoint(dev, &dev->ep0, false);
 625	dev->can_submit = 1;
 626
 627	/* Save readable and stable topology id, distinguishing devices
 628	 * by location for diagnostics, tools, driver model, etc.  The
 629	 * string is a path along hub ports, from the root.  Each device's
 630	 * dev->devpath will be stable until USB is re-cabled, and hubs
 631	 * are often labeled with these port numbers.  The name isn't
 632	 * as stable:  bus->busnum changes easily from modprobe order,
 633	 * cardbus or pci hotplugging, and so on.
 634	 */
 635	if (unlikely(!parent)) {
 636		dev->devpath[0] = '0';
 637		dev->route = 0;
 638
 639		dev->dev.parent = bus->controller;
 640		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
 641		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 642		root_hub = 1;
 643	} else {
 644		/* match any labeling on the hubs; it's one-based */
 645		if (parent->devpath[0] == '0') {
 646			snprintf(dev->devpath, sizeof dev->devpath,
 647				"%d", port1);
 648			/* Root ports are not counted in route string */
 649			dev->route = 0;
 650		} else {
 651			snprintf(dev->devpath, sizeof dev->devpath,
 652				"%s.%d", parent->devpath, port1);
 653			/* Route string assumes hubs have less than 16 ports */
 654			if (port1 < 15)
 655				dev->route = parent->route +
 656					(port1 << ((parent->level - 1)*4));
 657			else
 658				dev->route = parent->route +
 659					(15 << ((parent->level - 1)*4));
 660		}
 661
 662		dev->dev.parent = &parent->dev;
 663		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 664
 665		if (!parent->parent) {
 666			/* device under root hub's port */
 667			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 668				port1);
 669		}
 670		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
 671
 672		/* hub driver sets up TT records */
 673	}
 674
 675	dev->portnum = port1;
 676	dev->bus = bus;
 677	dev->parent = parent;
 678	INIT_LIST_HEAD(&dev->filelist);
 679
 680#ifdef	CONFIG_PM
 681	pm_runtime_set_autosuspend_delay(&dev->dev,
 682			usb_autosuspend_delay * 1000);
 683	dev->connect_time = jiffies;
 684	dev->active_duration = -jiffies;
 685#endif
 686
 687	dev->authorized = usb_dev_authorized(dev, usb_hcd);
 688	if (!root_hub)
 689		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 690
 691	return dev;
 692}
 693EXPORT_SYMBOL_GPL(usb_alloc_dev);
 694
 695/**
 696 * usb_get_dev - increments the reference count of the usb device structure
 697 * @dev: the device being referenced
 698 *
 699 * Each live reference to a device should be refcounted.
 700 *
 701 * Drivers for USB interfaces should normally record such references in
 702 * their probe() methods, when they bind to an interface, and release
 703 * them by calling usb_put_dev(), in their disconnect() methods.
 704 *
 705 * Return: A pointer to the device with the incremented reference counter.
 706 */
 707struct usb_device *usb_get_dev(struct usb_device *dev)
 708{
 709	if (dev)
 710		get_device(&dev->dev);
 711	return dev;
 712}
 713EXPORT_SYMBOL_GPL(usb_get_dev);
 714
 715/**
 716 * usb_put_dev - release a use of the usb device structure
 717 * @dev: device that's been disconnected
 718 *
 719 * Must be called when a user of a device is finished with it.  When the last
 720 * user of the device calls this function, the memory of the device is freed.
 721 */
 722void usb_put_dev(struct usb_device *dev)
 723{
 724	if (dev)
 725		put_device(&dev->dev);
 726}
 727EXPORT_SYMBOL_GPL(usb_put_dev);
 728
 729/**
 730 * usb_get_intf - increments the reference count of the usb interface structure
 731 * @intf: the interface being referenced
 732 *
 733 * Each live reference to a interface must be refcounted.
 734 *
 735 * Drivers for USB interfaces should normally record such references in
 736 * their probe() methods, when they bind to an interface, and release
 737 * them by calling usb_put_intf(), in their disconnect() methods.
 738 *
 739 * Return: A pointer to the interface with the incremented reference counter.
 740 */
 741struct usb_interface *usb_get_intf(struct usb_interface *intf)
 742{
 743	if (intf)
 744		get_device(&intf->dev);
 745	return intf;
 746}
 747EXPORT_SYMBOL_GPL(usb_get_intf);
 748
 749/**
 750 * usb_put_intf - release a use of the usb interface structure
 751 * @intf: interface that's been decremented
 752 *
 753 * Must be called when a user of an interface is finished with it.  When the
 754 * last user of the interface calls this function, the memory of the interface
 755 * is freed.
 756 */
 757void usb_put_intf(struct usb_interface *intf)
 758{
 759	if (intf)
 760		put_device(&intf->dev);
 761}
 762EXPORT_SYMBOL_GPL(usb_put_intf);
 763
 764/*			USB device locking
 765 *
 766 * USB devices and interfaces are locked using the semaphore in their
 767 * embedded struct device.  The hub driver guarantees that whenever a
 768 * device is connected or disconnected, drivers are called with the
 769 * USB device locked as well as their particular interface.
 770 *
 771 * Complications arise when several devices are to be locked at the same
 772 * time.  Only hub-aware drivers that are part of usbcore ever have to
 773 * do this; nobody else needs to worry about it.  The rule for locking
 774 * is simple:
 775 *
 776 *	When locking both a device and its parent, always lock the
 777 *	the parent first.
 778 */
 779
 780/**
 781 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 782 * @udev: device that's being locked
 783 * @iface: interface bound to the driver making the request (optional)
 784 *
 785 * Attempts to acquire the device lock, but fails if the device is
 786 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 787 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 788 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 789 * disconnect; in some drivers (such as usb-storage) the disconnect()
 790 * or suspend() method will block waiting for a device reset to complete.
 791 *
 792 * Return: A negative error code for failure, otherwise 0.
 793 */
 794int usb_lock_device_for_reset(struct usb_device *udev,
 795			      const struct usb_interface *iface)
 796{
 797	unsigned long jiffies_expire = jiffies + HZ;
 798
 799	if (udev->state == USB_STATE_NOTATTACHED)
 800		return -ENODEV;
 801	if (udev->state == USB_STATE_SUSPENDED)
 802		return -EHOSTUNREACH;
 803	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 804			iface->condition == USB_INTERFACE_UNBOUND))
 805		return -EINTR;
 806
 807	while (!usb_trylock_device(udev)) {
 808
 809		/* If we can't acquire the lock after waiting one second,
 810		 * we're probably deadlocked */
 811		if (time_after(jiffies, jiffies_expire))
 812			return -EBUSY;
 813
 814		msleep(15);
 815		if (udev->state == USB_STATE_NOTATTACHED)
 816			return -ENODEV;
 817		if (udev->state == USB_STATE_SUSPENDED)
 818			return -EHOSTUNREACH;
 819		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 820				iface->condition == USB_INTERFACE_UNBOUND))
 821			return -EINTR;
 822	}
 823	return 0;
 824}
 825EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 826
 827/**
 828 * usb_get_current_frame_number - return current bus frame number
 829 * @dev: the device whose bus is being queried
 830 *
 831 * Return: The current frame number for the USB host controller used
 832 * with the given USB device. This can be used when scheduling
 833 * isochronous requests.
 834 *
 835 * Note: Different kinds of host controller have different "scheduling
 836 * horizons". While one type might support scheduling only 32 frames
 837 * into the future, others could support scheduling up to 1024 frames
 838 * into the future.
 839 *
 840 */
 841int usb_get_current_frame_number(struct usb_device *dev)
 842{
 843	return usb_hcd_get_frame_number(dev);
 844}
 845EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 846
 847/*-------------------------------------------------------------------*/
 848/*
 849 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 850 * extra field of the interface and endpoint descriptor structs.
 851 */
 852
 853int __usb_get_extra_descriptor(char *buffer, unsigned size,
 854			       unsigned char type, void **ptr, size_t minsize)
 855{
 856	struct usb_descriptor_header *header;
 857
 858	while (size >= sizeof(struct usb_descriptor_header)) {
 859		header = (struct usb_descriptor_header *)buffer;
 860
 861		if (header->bLength < 2 || header->bLength > size) {
 862			printk(KERN_ERR
 863				"%s: bogus descriptor, type %d length %d\n",
 864				usbcore_name,
 865				header->bDescriptorType,
 866				header->bLength);
 867			return -1;
 868		}
 869
 870		if (header->bDescriptorType == type && header->bLength >= minsize) {
 871			*ptr = header;
 872			return 0;
 873		}
 874
 875		buffer += header->bLength;
 876		size -= header->bLength;
 877	}
 878	return -1;
 879}
 880EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 881
 882/**
 883 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 884 * @dev: device the buffer will be used with
 885 * @size: requested buffer size
 886 * @mem_flags: affect whether allocation may block
 887 * @dma: used to return DMA address of buffer
 888 *
 889 * Return: Either null (indicating no buffer could be allocated), or the
 890 * cpu-space pointer to a buffer that may be used to perform DMA to the
 891 * specified device.  Such cpu-space buffers are returned along with the DMA
 892 * address (through the pointer provided).
 893 *
 894 * Note:
 895 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 896 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 897 * hardware during URB completion/resubmit.  The implementation varies between
 898 * platforms, depending on details of how DMA will work to this device.
 899 * Using these buffers also eliminates cacheline sharing problems on
 900 * architectures where CPU caches are not DMA-coherent.  On systems without
 901 * bus-snooping caches, these buffers are uncached.
 902 *
 903 * When the buffer is no longer used, free it with usb_free_coherent().
 904 */
 905void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 906			 dma_addr_t *dma)
 907{
 908	if (!dev || !dev->bus)
 909		return NULL;
 910	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 911}
 912EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 913
 914/**
 915 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 916 * @dev: device the buffer was used with
 917 * @size: requested buffer size
 918 * @addr: CPU address of buffer
 919 * @dma: DMA address of buffer
 920 *
 921 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 922 * been allocated using usb_alloc_coherent(), and the parameters must match
 923 * those provided in that allocation request.
 924 */
 925void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 926		       dma_addr_t dma)
 927{
 928	if (!dev || !dev->bus)
 929		return;
 930	if (!addr)
 931		return;
 932	hcd_buffer_free(dev->bus, size, addr, dma);
 933}
 934EXPORT_SYMBOL_GPL(usb_free_coherent);
 935
 936/*
 937 * Notifications of device and interface registration
 938 */
 939static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 940		void *data)
 941{
 942	struct device *dev = data;
 943
 944	switch (action) {
 945	case BUS_NOTIFY_ADD_DEVICE:
 946		if (dev->type == &usb_device_type)
 947			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 948		else if (dev->type == &usb_if_device_type)
 949			usb_create_sysfs_intf_files(to_usb_interface(dev));
 950		break;
 951
 952	case BUS_NOTIFY_DEL_DEVICE:
 953		if (dev->type == &usb_device_type)
 954			usb_remove_sysfs_dev_files(to_usb_device(dev));
 955		else if (dev->type == &usb_if_device_type)
 956			usb_remove_sysfs_intf_files(to_usb_interface(dev));
 957		break;
 958	}
 959	return 0;
 960}
 961
 962static struct notifier_block usb_bus_nb = {
 963	.notifier_call = usb_bus_notify,
 964};
 965
 966static struct dentry *usb_devices_root;
 967
 968static void usb_debugfs_init(void)
 969{
 970	usb_devices_root = debugfs_create_file("devices", 0444, usb_debug_root,
 971					       NULL, &usbfs_devices_fops);
 972}
 973
 974static void usb_debugfs_cleanup(void)
 975{
 976	debugfs_remove(usb_devices_root);
 977}
 978
 979/*
 980 * Init
 981 */
 982static int __init usb_init(void)
 983{
 984	int retval;
 985	if (usb_disabled()) {
 986		pr_info("%s: USB support disabled\n", usbcore_name);
 987		return 0;
 988	}
 989	usb_init_pool_max();
 990
 991	usb_debugfs_init();
 992
 993	usb_acpi_register();
 994	retval = bus_register(&usb_bus_type);
 995	if (retval)
 996		goto bus_register_failed;
 997	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
 998	if (retval)
 999		goto bus_notifier_failed;
1000	retval = usb_major_init();
1001	if (retval)
1002		goto major_init_failed;
1003	retval = usb_register(&usbfs_driver);
1004	if (retval)
1005		goto driver_register_failed;
1006	retval = usb_devio_init();
1007	if (retval)
1008		goto usb_devio_init_failed;
1009	retval = usb_hub_init();
1010	if (retval)
1011		goto hub_init_failed;
1012	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1013	if (!retval)
1014		goto out;
1015
1016	usb_hub_cleanup();
1017hub_init_failed:
1018	usb_devio_cleanup();
1019usb_devio_init_failed:
1020	usb_deregister(&usbfs_driver);
1021driver_register_failed:
1022	usb_major_cleanup();
1023major_init_failed:
1024	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1025bus_notifier_failed:
1026	bus_unregister(&usb_bus_type);
1027bus_register_failed:
1028	usb_acpi_unregister();
1029	usb_debugfs_cleanup();
1030out:
1031	return retval;
1032}
1033
1034/*
1035 * Cleanup
1036 */
1037static void __exit usb_exit(void)
1038{
1039	/* This will matter if shutdown/reboot does exitcalls. */
1040	if (usb_disabled())
1041		return;
1042
1043	usb_release_quirk_list();
1044	usb_deregister_device_driver(&usb_generic_driver);
1045	usb_major_cleanup();
1046	usb_deregister(&usbfs_driver);
1047	usb_devio_cleanup();
1048	usb_hub_cleanup();
1049	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1050	bus_unregister(&usb_bus_type);
1051	usb_acpi_unregister();
1052	usb_debugfs_cleanup();
1053	idr_destroy(&usb_bus_idr);
1054}
1055
1056subsys_initcall(usb_init);
1057module_exit(usb_exit);
1058MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/usb/core/usb.c
   4 *
   5 * (C) Copyright Linus Torvalds 1999
   6 * (C) Copyright Johannes Erdfelt 1999-2001
   7 * (C) Copyright Andreas Gal 1999
   8 * (C) Copyright Gregory P. Smith 1999
   9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
  10 * (C) Copyright Randy Dunlap 2000
  11 * (C) Copyright David Brownell 2000-2004
  12 * (C) Copyright Yggdrasil Computing, Inc. 2000
  13 *     (usb_device_id matching changes by Adam J. Richter)
  14 * (C) Copyright Greg Kroah-Hartman 2002-2003
  15 *
  16 * Released under the GPLv2 only.
  17 *
  18 * NOTE! This is not actually a driver at all, rather this is
  19 * just a collection of helper routines that implement the
  20 * generic USB things that the real drivers can use..
  21 *
  22 * Think of this as a "USB library" rather than anything else,
  23 * with no callbacks.  Callbacks are evil.
 
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/string.h>
  29#include <linux/bitops.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>  /* for in_interrupt() */
  32#include <linux/kmod.h>
  33#include <linux/init.h>
  34#include <linux/spinlock.h>
  35#include <linux/errno.h>
  36#include <linux/usb.h>
  37#include <linux/usb/hcd.h>
  38#include <linux/mutex.h>
  39#include <linux/workqueue.h>
  40#include <linux/debugfs.h>
  41#include <linux/usb/of.h>
  42
  43#include <asm/io.h>
  44#include <linux/scatterlist.h>
  45#include <linux/mm.h>
  46#include <linux/dma-mapping.h>
  47
  48#include "hub.h"
  49
  50const char *usbcore_name = "usbcore";
  51
  52static bool nousb;	/* Disable USB when built into kernel image */
  53
  54module_param(nousb, bool, 0444);
  55
  56/*
  57 * for external read access to <nousb>
  58 */
  59int usb_disabled(void)
  60{
  61	return nousb;
  62}
  63EXPORT_SYMBOL_GPL(usb_disabled);
  64
  65#ifdef	CONFIG_PM
  66/* Default delay value, in seconds */
  67static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
  68module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  69MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  70
  71#else
  72#define usb_autosuspend_delay		0
  73#endif
  74
  75static bool match_endpoint(struct usb_endpoint_descriptor *epd,
  76		struct usb_endpoint_descriptor **bulk_in,
  77		struct usb_endpoint_descriptor **bulk_out,
  78		struct usb_endpoint_descriptor **int_in,
  79		struct usb_endpoint_descriptor **int_out)
  80{
  81	switch (usb_endpoint_type(epd)) {
  82	case USB_ENDPOINT_XFER_BULK:
  83		if (usb_endpoint_dir_in(epd)) {
  84			if (bulk_in && !*bulk_in) {
  85				*bulk_in = epd;
  86				break;
  87			}
  88		} else {
  89			if (bulk_out && !*bulk_out) {
  90				*bulk_out = epd;
  91				break;
  92			}
  93		}
  94
  95		return false;
  96	case USB_ENDPOINT_XFER_INT:
  97		if (usb_endpoint_dir_in(epd)) {
  98			if (int_in && !*int_in) {
  99				*int_in = epd;
 100				break;
 101			}
 102		} else {
 103			if (int_out && !*int_out) {
 104				*int_out = epd;
 105				break;
 106			}
 107		}
 108
 109		return false;
 110	default:
 111		return false;
 112	}
 113
 114	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
 115			(!int_in || *int_in) && (!int_out || *int_out);
 116}
 117
 118/**
 119 * usb_find_common_endpoints() -- look up common endpoint descriptors
 120 * @alt:	alternate setting to search
 121 * @bulk_in:	pointer to descriptor pointer, or NULL
 122 * @bulk_out:	pointer to descriptor pointer, or NULL
 123 * @int_in:	pointer to descriptor pointer, or NULL
 124 * @int_out:	pointer to descriptor pointer, or NULL
 125 *
 126 * Search the alternate setting's endpoint descriptors for the first bulk-in,
 127 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 128 * provided pointers (unless they are NULL).
 129 *
 130 * If a requested endpoint is not found, the corresponding pointer is set to
 131 * NULL.
 132 *
 133 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 134 */
 135int usb_find_common_endpoints(struct usb_host_interface *alt,
 136		struct usb_endpoint_descriptor **bulk_in,
 137		struct usb_endpoint_descriptor **bulk_out,
 138		struct usb_endpoint_descriptor **int_in,
 139		struct usb_endpoint_descriptor **int_out)
 140{
 141	struct usb_endpoint_descriptor *epd;
 142	int i;
 143
 144	if (bulk_in)
 145		*bulk_in = NULL;
 146	if (bulk_out)
 147		*bulk_out = NULL;
 148	if (int_in)
 149		*int_in = NULL;
 150	if (int_out)
 151		*int_out = NULL;
 152
 153	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
 154		epd = &alt->endpoint[i].desc;
 155
 156		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 157			return 0;
 158	}
 159
 160	return -ENXIO;
 161}
 162EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
 163
 164/**
 165 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
 166 * @alt:	alternate setting to search
 167 * @bulk_in:	pointer to descriptor pointer, or NULL
 168 * @bulk_out:	pointer to descriptor pointer, or NULL
 169 * @int_in:	pointer to descriptor pointer, or NULL
 170 * @int_out:	pointer to descriptor pointer, or NULL
 171 *
 172 * Search the alternate setting's endpoint descriptors for the last bulk-in,
 173 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 174 * provided pointers (unless they are NULL).
 175 *
 176 * If a requested endpoint is not found, the corresponding pointer is set to
 177 * NULL.
 178 *
 179 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 180 */
 181int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 182		struct usb_endpoint_descriptor **bulk_in,
 183		struct usb_endpoint_descriptor **bulk_out,
 184		struct usb_endpoint_descriptor **int_in,
 185		struct usb_endpoint_descriptor **int_out)
 186{
 187	struct usb_endpoint_descriptor *epd;
 188	int i;
 189
 190	if (bulk_in)
 191		*bulk_in = NULL;
 192	if (bulk_out)
 193		*bulk_out = NULL;
 194	if (int_in)
 195		*int_in = NULL;
 196	if (int_out)
 197		*int_out = NULL;
 198
 199	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
 200		epd = &alt->endpoint[i].desc;
 201
 202		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 203			return 0;
 204	}
 205
 206	return -ENXIO;
 207}
 208EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
 209
 210/**
 211 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 212 * for the given interface.
 213 * @config: the configuration to search (not necessarily the current config).
 214 * @iface_num: interface number to search in
 215 * @alt_num: alternate interface setting number to search for.
 216 *
 217 * Search the configuration's interface cache for the given alt setting.
 218 *
 219 * Return: The alternate setting, if found. %NULL otherwise.
 220 */
 221struct usb_host_interface *usb_find_alt_setting(
 222		struct usb_host_config *config,
 223		unsigned int iface_num,
 224		unsigned int alt_num)
 225{
 226	struct usb_interface_cache *intf_cache = NULL;
 227	int i;
 228
 229	if (!config)
 230		return NULL;
 231	for (i = 0; i < config->desc.bNumInterfaces; i++) {
 232		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
 233				== iface_num) {
 234			intf_cache = config->intf_cache[i];
 235			break;
 236		}
 237	}
 238	if (!intf_cache)
 239		return NULL;
 240	for (i = 0; i < intf_cache->num_altsetting; i++)
 241		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 242			return &intf_cache->altsetting[i];
 243
 244	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 245			"config %u\n", alt_num, iface_num,
 246			config->desc.bConfigurationValue);
 247	return NULL;
 248}
 249EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 250
 251/**
 252 * usb_ifnum_to_if - get the interface object with a given interface number
 253 * @dev: the device whose current configuration is considered
 254 * @ifnum: the desired interface
 255 *
 256 * This walks the device descriptor for the currently active configuration
 257 * to find the interface object with the particular interface number.
 258 *
 259 * Note that configuration descriptors are not required to assign interface
 260 * numbers sequentially, so that it would be incorrect to assume that
 261 * the first interface in that descriptor corresponds to interface zero.
 262 * This routine helps device drivers avoid such mistakes.
 263 * However, you should make sure that you do the right thing with any
 264 * alternate settings available for this interfaces.
 265 *
 266 * Don't call this function unless you are bound to one of the interfaces
 267 * on this device or you have locked the device!
 268 *
 269 * Return: A pointer to the interface that has @ifnum as interface number,
 270 * if found. %NULL otherwise.
 271 */
 272struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 273				      unsigned ifnum)
 274{
 275	struct usb_host_config *config = dev->actconfig;
 276	int i;
 277
 278	if (!config)
 279		return NULL;
 280	for (i = 0; i < config->desc.bNumInterfaces; i++)
 281		if (config->interface[i]->altsetting[0]
 282				.desc.bInterfaceNumber == ifnum)
 283			return config->interface[i];
 284
 285	return NULL;
 286}
 287EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 288
 289/**
 290 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 291 * @intf: the interface containing the altsetting in question
 292 * @altnum: the desired alternate setting number
 293 *
 294 * This searches the altsetting array of the specified interface for
 295 * an entry with the correct bAlternateSetting value.
 296 *
 297 * Note that altsettings need not be stored sequentially by number, so
 298 * it would be incorrect to assume that the first altsetting entry in
 299 * the array corresponds to altsetting zero.  This routine helps device
 300 * drivers avoid such mistakes.
 301 *
 302 * Don't call this function unless you are bound to the intf interface
 303 * or you have locked the device!
 304 *
 305 * Return: A pointer to the entry of the altsetting array of @intf that
 306 * has @altnum as the alternate setting number. %NULL if not found.
 307 */
 308struct usb_host_interface *usb_altnum_to_altsetting(
 309					const struct usb_interface *intf,
 310					unsigned int altnum)
 311{
 312	int i;
 313
 314	for (i = 0; i < intf->num_altsetting; i++) {
 315		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 316			return &intf->altsetting[i];
 317	}
 318	return NULL;
 319}
 320EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 321
 322struct find_interface_arg {
 323	int minor;
 324	struct device_driver *drv;
 325};
 326
 327static int __find_interface(struct device *dev, const void *data)
 328{
 329	const struct find_interface_arg *arg = data;
 330	struct usb_interface *intf;
 331
 332	if (!is_usb_interface(dev))
 333		return 0;
 334
 335	if (dev->driver != arg->drv)
 336		return 0;
 337	intf = to_usb_interface(dev);
 338	return intf->minor == arg->minor;
 339}
 340
 341/**
 342 * usb_find_interface - find usb_interface pointer for driver and device
 343 * @drv: the driver whose current configuration is considered
 344 * @minor: the minor number of the desired device
 345 *
 346 * This walks the bus device list and returns a pointer to the interface
 347 * with the matching minor and driver.  Note, this only works for devices
 348 * that share the USB major number.
 349 *
 350 * Return: A pointer to the interface with the matching major and @minor.
 351 */
 352struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 353{
 354	struct find_interface_arg argb;
 355	struct device *dev;
 356
 357	argb.minor = minor;
 358	argb.drv = &drv->drvwrap.driver;
 359
 360	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 361
 362	/* Drop reference count from bus_find_device */
 363	put_device(dev);
 364
 365	return dev ? to_usb_interface(dev) : NULL;
 366}
 367EXPORT_SYMBOL_GPL(usb_find_interface);
 368
 369struct each_dev_arg {
 370	void *data;
 371	int (*fn)(struct usb_device *, void *);
 372};
 373
 374static int __each_dev(struct device *dev, void *data)
 375{
 376	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 377
 378	/* There are struct usb_interface on the same bus, filter them out */
 379	if (!is_usb_device(dev))
 380		return 0;
 381
 382	return arg->fn(to_usb_device(dev), arg->data);
 383}
 384
 385/**
 386 * usb_for_each_dev - iterate over all USB devices in the system
 387 * @data: data pointer that will be handed to the callback function
 388 * @fn: callback function to be called for each USB device
 389 *
 390 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 391 * returns anything other than 0, we break the iteration prematurely and return
 392 * that value.
 393 */
 394int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 395{
 396	struct each_dev_arg arg = {data, fn};
 397
 398	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 399}
 400EXPORT_SYMBOL_GPL(usb_for_each_dev);
 401
 402/**
 403 * usb_release_dev - free a usb device structure when all users of it are finished.
 404 * @dev: device that's been disconnected
 405 *
 406 * Will be called only by the device core when all users of this usb device are
 407 * done.
 408 */
 409static void usb_release_dev(struct device *dev)
 410{
 411	struct usb_device *udev;
 412	struct usb_hcd *hcd;
 413
 414	udev = to_usb_device(dev);
 415	hcd = bus_to_hcd(udev->bus);
 416
 417	usb_destroy_configuration(udev);
 418	usb_release_bos_descriptor(udev);
 419	of_node_put(dev->of_node);
 420	usb_put_hcd(hcd);
 421	kfree(udev->product);
 422	kfree(udev->manufacturer);
 423	kfree(udev->serial);
 424	kfree(udev);
 425}
 426
 427static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 428{
 429	struct usb_device *usb_dev;
 430
 431	usb_dev = to_usb_device(dev);
 432
 433	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 434		return -ENOMEM;
 435
 436	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 437		return -ENOMEM;
 438
 439	return 0;
 440}
 441
 442#ifdef	CONFIG_PM
 443
 444/* USB device Power-Management thunks.
 445 * There's no need to distinguish here between quiescing a USB device
 446 * and powering it down; the generic_suspend() routine takes care of
 447 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 448 * USB interfaces there's no difference at all.
 449 */
 450
 451static int usb_dev_prepare(struct device *dev)
 452{
 453	return 0;		/* Implement eventually? */
 454}
 455
 456static void usb_dev_complete(struct device *dev)
 457{
 458	/* Currently used only for rebinding interfaces */
 459	usb_resume_complete(dev);
 460}
 461
 462static int usb_dev_suspend(struct device *dev)
 463{
 464	return usb_suspend(dev, PMSG_SUSPEND);
 465}
 466
 467static int usb_dev_resume(struct device *dev)
 468{
 469	return usb_resume(dev, PMSG_RESUME);
 470}
 471
 472static int usb_dev_freeze(struct device *dev)
 473{
 474	return usb_suspend(dev, PMSG_FREEZE);
 475}
 476
 477static int usb_dev_thaw(struct device *dev)
 478{
 479	return usb_resume(dev, PMSG_THAW);
 480}
 481
 482static int usb_dev_poweroff(struct device *dev)
 483{
 484	return usb_suspend(dev, PMSG_HIBERNATE);
 485}
 486
 487static int usb_dev_restore(struct device *dev)
 488{
 489	return usb_resume(dev, PMSG_RESTORE);
 490}
 491
 492static const struct dev_pm_ops usb_device_pm_ops = {
 493	.prepare =	usb_dev_prepare,
 494	.complete =	usb_dev_complete,
 495	.suspend =	usb_dev_suspend,
 496	.resume =	usb_dev_resume,
 497	.freeze =	usb_dev_freeze,
 498	.thaw =		usb_dev_thaw,
 499	.poweroff =	usb_dev_poweroff,
 500	.restore =	usb_dev_restore,
 501	.runtime_suspend =	usb_runtime_suspend,
 502	.runtime_resume =	usb_runtime_resume,
 503	.runtime_idle =		usb_runtime_idle,
 504};
 505
 506#endif	/* CONFIG_PM */
 507
 508
 509static char *usb_devnode(struct device *dev,
 510			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 511{
 512	struct usb_device *usb_dev;
 513
 514	usb_dev = to_usb_device(dev);
 515	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 516			 usb_dev->bus->busnum, usb_dev->devnum);
 517}
 518
 519struct device_type usb_device_type = {
 520	.name =		"usb_device",
 521	.release =	usb_release_dev,
 522	.uevent =	usb_dev_uevent,
 523	.devnode = 	usb_devnode,
 524#ifdef CONFIG_PM
 525	.pm =		&usb_device_pm_ops,
 526#endif
 527};
 528
 529
 530/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 531static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 532{
 533	struct usb_hcd *hcd = bus_to_hcd(bus);
 534	return hcd->wireless;
 535}
 536
 537static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
 538{
 539	struct usb_hub *hub;
 540
 541	if (!dev->parent)
 542		return true; /* Root hub always ok [and always wired] */
 543
 544	switch (hcd->dev_policy) {
 545	case USB_DEVICE_AUTHORIZE_NONE:
 546	default:
 547		return false;
 548
 549	case USB_DEVICE_AUTHORIZE_ALL:
 550		return true;
 551
 552	case USB_DEVICE_AUTHORIZE_INTERNAL:
 553		hub = usb_hub_to_struct_hub(dev->parent);
 554		return hub->ports[dev->portnum - 1]->connect_type ==
 555				USB_PORT_CONNECT_TYPE_HARD_WIRED;
 556	}
 557}
 558
 559/**
 560 * usb_alloc_dev - usb device constructor (usbcore-internal)
 561 * @parent: hub to which device is connected; null to allocate a root hub
 562 * @bus: bus used to access the device
 563 * @port1: one-based index of port; ignored for root hubs
 564 * Context: !in_interrupt()
 565 *
 566 * Only hub drivers (including virtual root hub drivers for host
 567 * controllers) should ever call this.
 568 *
 569 * This call may not be used in a non-sleeping context.
 570 *
 571 * Return: On success, a pointer to the allocated usb device. %NULL on
 572 * failure.
 573 */
 574struct usb_device *usb_alloc_dev(struct usb_device *parent,
 575				 struct usb_bus *bus, unsigned port1)
 576{
 577	struct usb_device *dev;
 578	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 579	unsigned root_hub = 0;
 580	unsigned raw_port = port1;
 581
 582	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 583	if (!dev)
 584		return NULL;
 585
 586	if (!usb_get_hcd(usb_hcd)) {
 587		kfree(dev);
 588		return NULL;
 589	}
 590	/* Root hubs aren't true devices, so don't allocate HCD resources */
 591	if (usb_hcd->driver->alloc_dev && parent &&
 592		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 593		usb_put_hcd(bus_to_hcd(bus));
 594		kfree(dev);
 595		return NULL;
 596	}
 597
 598	device_initialize(&dev->dev);
 599	dev->dev.bus = &usb_bus_type;
 600	dev->dev.type = &usb_device_type;
 601	dev->dev.groups = usb_device_groups;
 602	/*
 603	 * Fake a dma_mask/offset for the USB device:
 604	 * We cannot really use the dma-mapping API (dma_alloc_* and
 605	 * dma_map_*) for USB devices but instead need to use
 606	 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
 607	 * manually look into the mask/offset pair to determine whether
 608	 * they need bounce buffers.
 609	 * Note: calling dma_set_mask() on a USB device would set the
 610	 * mask for the entire HCD, so don't do that.
 611	 */
 612	dev->dev.dma_mask = bus->sysdev->dma_mask;
 613	dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
 614	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
 615	dev->state = USB_STATE_ATTACHED;
 616	dev->lpm_disable_count = 1;
 617	atomic_set(&dev->urbnum, 0);
 618
 619	INIT_LIST_HEAD(&dev->ep0.urb_list);
 620	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 621	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 622	/* ep0 maxpacket comes later, from device descriptor */
 623	usb_enable_endpoint(dev, &dev->ep0, false);
 624	dev->can_submit = 1;
 625
 626	/* Save readable and stable topology id, distinguishing devices
 627	 * by location for diagnostics, tools, driver model, etc.  The
 628	 * string is a path along hub ports, from the root.  Each device's
 629	 * dev->devpath will be stable until USB is re-cabled, and hubs
 630	 * are often labeled with these port numbers.  The name isn't
 631	 * as stable:  bus->busnum changes easily from modprobe order,
 632	 * cardbus or pci hotplugging, and so on.
 633	 */
 634	if (unlikely(!parent)) {
 635		dev->devpath[0] = '0';
 636		dev->route = 0;
 637
 638		dev->dev.parent = bus->controller;
 639		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
 640		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 641		root_hub = 1;
 642	} else {
 643		/* match any labeling on the hubs; it's one-based */
 644		if (parent->devpath[0] == '0') {
 645			snprintf(dev->devpath, sizeof dev->devpath,
 646				"%d", port1);
 647			/* Root ports are not counted in route string */
 648			dev->route = 0;
 649		} else {
 650			snprintf(dev->devpath, sizeof dev->devpath,
 651				"%s.%d", parent->devpath, port1);
 652			/* Route string assumes hubs have less than 16 ports */
 653			if (port1 < 15)
 654				dev->route = parent->route +
 655					(port1 << ((parent->level - 1)*4));
 656			else
 657				dev->route = parent->route +
 658					(15 << ((parent->level - 1)*4));
 659		}
 660
 661		dev->dev.parent = &parent->dev;
 662		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 663
 664		if (!parent->parent) {
 665			/* device under root hub's port */
 666			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 667				port1);
 668		}
 669		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
 670
 671		/* hub driver sets up TT records */
 672	}
 673
 674	dev->portnum = port1;
 675	dev->bus = bus;
 676	dev->parent = parent;
 677	INIT_LIST_HEAD(&dev->filelist);
 678
 679#ifdef	CONFIG_PM
 680	pm_runtime_set_autosuspend_delay(&dev->dev,
 681			usb_autosuspend_delay * 1000);
 682	dev->connect_time = jiffies;
 683	dev->active_duration = -jiffies;
 684#endif
 685
 686	dev->authorized = usb_dev_authorized(dev, usb_hcd);
 687	if (!root_hub)
 688		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 689
 690	return dev;
 691}
 692EXPORT_SYMBOL_GPL(usb_alloc_dev);
 693
 694/**
 695 * usb_get_dev - increments the reference count of the usb device structure
 696 * @dev: the device being referenced
 697 *
 698 * Each live reference to a device should be refcounted.
 699 *
 700 * Drivers for USB interfaces should normally record such references in
 701 * their probe() methods, when they bind to an interface, and release
 702 * them by calling usb_put_dev(), in their disconnect() methods.
 703 *
 704 * Return: A pointer to the device with the incremented reference counter.
 705 */
 706struct usb_device *usb_get_dev(struct usb_device *dev)
 707{
 708	if (dev)
 709		get_device(&dev->dev);
 710	return dev;
 711}
 712EXPORT_SYMBOL_GPL(usb_get_dev);
 713
 714/**
 715 * usb_put_dev - release a use of the usb device structure
 716 * @dev: device that's been disconnected
 717 *
 718 * Must be called when a user of a device is finished with it.  When the last
 719 * user of the device calls this function, the memory of the device is freed.
 720 */
 721void usb_put_dev(struct usb_device *dev)
 722{
 723	if (dev)
 724		put_device(&dev->dev);
 725}
 726EXPORT_SYMBOL_GPL(usb_put_dev);
 727
 728/**
 729 * usb_get_intf - increments the reference count of the usb interface structure
 730 * @intf: the interface being referenced
 731 *
 732 * Each live reference to a interface must be refcounted.
 733 *
 734 * Drivers for USB interfaces should normally record such references in
 735 * their probe() methods, when they bind to an interface, and release
 736 * them by calling usb_put_intf(), in their disconnect() methods.
 737 *
 738 * Return: A pointer to the interface with the incremented reference counter.
 739 */
 740struct usb_interface *usb_get_intf(struct usb_interface *intf)
 741{
 742	if (intf)
 743		get_device(&intf->dev);
 744	return intf;
 745}
 746EXPORT_SYMBOL_GPL(usb_get_intf);
 747
 748/**
 749 * usb_put_intf - release a use of the usb interface structure
 750 * @intf: interface that's been decremented
 751 *
 752 * Must be called when a user of an interface is finished with it.  When the
 753 * last user of the interface calls this function, the memory of the interface
 754 * is freed.
 755 */
 756void usb_put_intf(struct usb_interface *intf)
 757{
 758	if (intf)
 759		put_device(&intf->dev);
 760}
 761EXPORT_SYMBOL_GPL(usb_put_intf);
 762
 763/*			USB device locking
 764 *
 765 * USB devices and interfaces are locked using the semaphore in their
 766 * embedded struct device.  The hub driver guarantees that whenever a
 767 * device is connected or disconnected, drivers are called with the
 768 * USB device locked as well as their particular interface.
 769 *
 770 * Complications arise when several devices are to be locked at the same
 771 * time.  Only hub-aware drivers that are part of usbcore ever have to
 772 * do this; nobody else needs to worry about it.  The rule for locking
 773 * is simple:
 774 *
 775 *	When locking both a device and its parent, always lock the
 776 *	the parent first.
 777 */
 778
 779/**
 780 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 781 * @udev: device that's being locked
 782 * @iface: interface bound to the driver making the request (optional)
 783 *
 784 * Attempts to acquire the device lock, but fails if the device is
 785 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 786 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 787 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 788 * disconnect; in some drivers (such as usb-storage) the disconnect()
 789 * or suspend() method will block waiting for a device reset to complete.
 790 *
 791 * Return: A negative error code for failure, otherwise 0.
 792 */
 793int usb_lock_device_for_reset(struct usb_device *udev,
 794			      const struct usb_interface *iface)
 795{
 796	unsigned long jiffies_expire = jiffies + HZ;
 797
 798	if (udev->state == USB_STATE_NOTATTACHED)
 799		return -ENODEV;
 800	if (udev->state == USB_STATE_SUSPENDED)
 801		return -EHOSTUNREACH;
 802	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 803			iface->condition == USB_INTERFACE_UNBOUND))
 804		return -EINTR;
 805
 806	while (!usb_trylock_device(udev)) {
 807
 808		/* If we can't acquire the lock after waiting one second,
 809		 * we're probably deadlocked */
 810		if (time_after(jiffies, jiffies_expire))
 811			return -EBUSY;
 812
 813		msleep(15);
 814		if (udev->state == USB_STATE_NOTATTACHED)
 815			return -ENODEV;
 816		if (udev->state == USB_STATE_SUSPENDED)
 817			return -EHOSTUNREACH;
 818		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 819				iface->condition == USB_INTERFACE_UNBOUND))
 820			return -EINTR;
 821	}
 822	return 0;
 823}
 824EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 825
 826/**
 827 * usb_get_current_frame_number - return current bus frame number
 828 * @dev: the device whose bus is being queried
 829 *
 830 * Return: The current frame number for the USB host controller used
 831 * with the given USB device. This can be used when scheduling
 832 * isochronous requests.
 833 *
 834 * Note: Different kinds of host controller have different "scheduling
 835 * horizons". While one type might support scheduling only 32 frames
 836 * into the future, others could support scheduling up to 1024 frames
 837 * into the future.
 838 *
 839 */
 840int usb_get_current_frame_number(struct usb_device *dev)
 841{
 842	return usb_hcd_get_frame_number(dev);
 843}
 844EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 845
 846/*-------------------------------------------------------------------*/
 847/*
 848 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 849 * extra field of the interface and endpoint descriptor structs.
 850 */
 851
 852int __usb_get_extra_descriptor(char *buffer, unsigned size,
 853			       unsigned char type, void **ptr, size_t minsize)
 854{
 855	struct usb_descriptor_header *header;
 856
 857	while (size >= sizeof(struct usb_descriptor_header)) {
 858		header = (struct usb_descriptor_header *)buffer;
 859
 860		if (header->bLength < 2 || header->bLength > size) {
 861			printk(KERN_ERR
 862				"%s: bogus descriptor, type %d length %d\n",
 863				usbcore_name,
 864				header->bDescriptorType,
 865				header->bLength);
 866			return -1;
 867		}
 868
 869		if (header->bDescriptorType == type && header->bLength >= minsize) {
 870			*ptr = header;
 871			return 0;
 872		}
 873
 874		buffer += header->bLength;
 875		size -= header->bLength;
 876	}
 877	return -1;
 878}
 879EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 880
 881/**
 882 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 883 * @dev: device the buffer will be used with
 884 * @size: requested buffer size
 885 * @mem_flags: affect whether allocation may block
 886 * @dma: used to return DMA address of buffer
 887 *
 888 * Return: Either null (indicating no buffer could be allocated), or the
 889 * cpu-space pointer to a buffer that may be used to perform DMA to the
 890 * specified device.  Such cpu-space buffers are returned along with the DMA
 891 * address (through the pointer provided).
 892 *
 893 * Note:
 894 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 895 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 896 * hardware during URB completion/resubmit.  The implementation varies between
 897 * platforms, depending on details of how DMA will work to this device.
 898 * Using these buffers also eliminates cacheline sharing problems on
 899 * architectures where CPU caches are not DMA-coherent.  On systems without
 900 * bus-snooping caches, these buffers are uncached.
 901 *
 902 * When the buffer is no longer used, free it with usb_free_coherent().
 903 */
 904void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 905			 dma_addr_t *dma)
 906{
 907	if (!dev || !dev->bus)
 908		return NULL;
 909	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 910}
 911EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 912
 913/**
 914 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 915 * @dev: device the buffer was used with
 916 * @size: requested buffer size
 917 * @addr: CPU address of buffer
 918 * @dma: DMA address of buffer
 919 *
 920 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 921 * been allocated using usb_alloc_coherent(), and the parameters must match
 922 * those provided in that allocation request.
 923 */
 924void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 925		       dma_addr_t dma)
 926{
 927	if (!dev || !dev->bus)
 928		return;
 929	if (!addr)
 930		return;
 931	hcd_buffer_free(dev->bus, size, addr, dma);
 932}
 933EXPORT_SYMBOL_GPL(usb_free_coherent);
 934
 935/*
 936 * Notifications of device and interface registration
 937 */
 938static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 939		void *data)
 940{
 941	struct device *dev = data;
 942
 943	switch (action) {
 944	case BUS_NOTIFY_ADD_DEVICE:
 945		if (dev->type == &usb_device_type)
 946			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 947		else if (dev->type == &usb_if_device_type)
 948			usb_create_sysfs_intf_files(to_usb_interface(dev));
 949		break;
 950
 951	case BUS_NOTIFY_DEL_DEVICE:
 952		if (dev->type == &usb_device_type)
 953			usb_remove_sysfs_dev_files(to_usb_device(dev));
 954		else if (dev->type == &usb_if_device_type)
 955			usb_remove_sysfs_intf_files(to_usb_interface(dev));
 956		break;
 957	}
 958	return 0;
 959}
 960
 961static struct notifier_block usb_bus_nb = {
 962	.notifier_call = usb_bus_notify,
 963};
 964
 965static struct dentry *usb_devices_root;
 966
 967static void usb_debugfs_init(void)
 968{
 969	usb_devices_root = debugfs_create_file("devices", 0444, usb_debug_root,
 970					       NULL, &usbfs_devices_fops);
 971}
 972
 973static void usb_debugfs_cleanup(void)
 974{
 975	debugfs_remove(usb_devices_root);
 976}
 977
 978/*
 979 * Init
 980 */
 981static int __init usb_init(void)
 982{
 983	int retval;
 984	if (usb_disabled()) {
 985		pr_info("%s: USB support disabled\n", usbcore_name);
 986		return 0;
 987	}
 988	usb_init_pool_max();
 989
 990	usb_debugfs_init();
 991
 992	usb_acpi_register();
 993	retval = bus_register(&usb_bus_type);
 994	if (retval)
 995		goto bus_register_failed;
 996	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
 997	if (retval)
 998		goto bus_notifier_failed;
 999	retval = usb_major_init();
1000	if (retval)
1001		goto major_init_failed;
1002	retval = usb_register(&usbfs_driver);
1003	if (retval)
1004		goto driver_register_failed;
1005	retval = usb_devio_init();
1006	if (retval)
1007		goto usb_devio_init_failed;
1008	retval = usb_hub_init();
1009	if (retval)
1010		goto hub_init_failed;
1011	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1012	if (!retval)
1013		goto out;
1014
1015	usb_hub_cleanup();
1016hub_init_failed:
1017	usb_devio_cleanup();
1018usb_devio_init_failed:
1019	usb_deregister(&usbfs_driver);
1020driver_register_failed:
1021	usb_major_cleanup();
1022major_init_failed:
1023	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1024bus_notifier_failed:
1025	bus_unregister(&usb_bus_type);
1026bus_register_failed:
1027	usb_acpi_unregister();
1028	usb_debugfs_cleanup();
1029out:
1030	return retval;
1031}
1032
1033/*
1034 * Cleanup
1035 */
1036static void __exit usb_exit(void)
1037{
1038	/* This will matter if shutdown/reboot does exitcalls. */
1039	if (usb_disabled())
1040		return;
1041
1042	usb_release_quirk_list();
1043	usb_deregister_device_driver(&usb_generic_driver);
1044	usb_major_cleanup();
1045	usb_deregister(&usbfs_driver);
1046	usb_devio_cleanup();
1047	usb_hub_cleanup();
1048	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1049	bus_unregister(&usb_bus_type);
1050	usb_acpi_unregister();
1051	usb_debugfs_cleanup();
1052	idr_destroy(&usb_bus_idr);
1053}
1054
1055subsys_initcall(usb_init);
1056module_exit(usb_exit);
1057MODULE_LICENSE("GPL");