Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2018, Intel Corporation. */
  3
  4#include "ice_common.h"
  5
  6/**
  7 * ice_aq_read_nvm
  8 * @hw: pointer to the HW struct
  9 * @module_typeid: module pointer location in words from the NVM beginning
 10 * @offset: byte offset from the module beginning
 11 * @length: length of the section to be read (in bytes from the offset)
 12 * @data: command buffer (size [bytes] = length)
 13 * @last_command: tells if this is the last command in a series
 
 14 * @cd: pointer to command details structure or NULL
 15 *
 16 * Read the NVM using the admin queue commands (0x0701)
 17 */
 18static enum ice_status
 19ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
 20		void *data, bool last_command, struct ice_sq_cd *cd)
 
 21{
 22	struct ice_aq_desc desc;
 23	struct ice_aqc_nvm *cmd;
 24
 25	cmd = &desc.params.nvm;
 26
 27	/* In offset the highest byte must be zeroed. */
 28	if (offset & 0xFF000000)
 29		return ICE_ERR_PARAM;
 30
 31	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
 32
 
 
 
 33	/* If this is the last command in a series, set the proper flag. */
 34	if (last_command)
 35		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
 36	cmd->module_typeid = cpu_to_le16(module_typeid);
 37	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
 38	cmd->offset_high = (offset >> 16) & 0xFF;
 39	cmd->length = cpu_to_le16(length);
 40
 41	return ice_aq_send_cmd(hw, &desc, data, length, cd);
 42}
 43
 44/**
 45 * ice_check_sr_access_params - verify params for Shadow RAM R/W operations.
 46 * @hw: pointer to the HW structure
 47 * @offset: offset in words from module start
 48 * @words: number of words to access
 
 
 
 
 
 
 
 
 
 49 */
 50static enum ice_status
 51ice_check_sr_access_params(struct ice_hw *hw, u32 offset, u16 words)
 
 52{
 53	if ((offset + words) > hw->nvm.sr_words) {
 54		ice_debug(hw, ICE_DBG_NVM,
 55			  "NVM error: offset beyond SR lmt.\n");
 56		return ICE_ERR_PARAM;
 57	}
 58
 59	if (words > ICE_SR_SECTOR_SIZE_IN_WORDS) {
 60		/* We can access only up to 4KB (one sector), in one AQ write */
 61		ice_debug(hw, ICE_DBG_NVM,
 62			  "NVM error: tried to access %d words, limit is %d.\n",
 63			  words, ICE_SR_SECTOR_SIZE_IN_WORDS);
 64		return ICE_ERR_PARAM;
 65	}
 66
 67	if (((offset + (words - 1)) / ICE_SR_SECTOR_SIZE_IN_WORDS) !=
 68	    (offset / ICE_SR_SECTOR_SIZE_IN_WORDS)) {
 69		/* A single access cannot spread over two sectors */
 70		ice_debug(hw, ICE_DBG_NVM,
 71			  "NVM error: cannot spread over two sectors.\n");
 72		return ICE_ERR_PARAM;
 73	}
 74
 75	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76}
 77
 78/**
 79 * ice_read_sr_aq - Read Shadow RAM.
 80 * @hw: pointer to the HW structure
 81 * @offset: offset in words from module start
 82 * @words: number of words to read
 83 * @data: buffer for words reads from Shadow RAM
 84 * @last_command: tells the AdminQ that this is the last command
 
 
 
 85 *
 86 * Reads 16-bit word buffers from the Shadow RAM using the admin command.
 87 */
 88static enum ice_status
 89ice_read_sr_aq(struct ice_hw *hw, u32 offset, u16 words, u16 *data,
 90	       bool last_command)
 
 91{
 92	enum ice_status status;
 
 93
 94	status = ice_check_sr_access_params(hw, offset, words);
 95
 96	/* values in "offset" and "words" parameters are sized as words
 97	 * (16 bits) but ice_aq_read_nvm expects these values in bytes.
 98	 * So do this conversion while calling ice_aq_read_nvm.
 99	 */
100	if (!status)
101		status = ice_aq_read_nvm(hw, 0, 2 * offset, 2 * words, data,
102					 last_command, NULL);
103
104	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105}
106
107/**
108 * ice_read_sr_word_aq - Reads Shadow RAM via AQ
109 * @hw: pointer to the HW structure
110 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
111 * @data: word read from the Shadow RAM
112 *
113 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_aq method.
114 */
115static enum ice_status
116ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
117{
118	enum ice_status status;
 
119
120	status = ice_read_sr_aq(hw, offset, 1, data, true);
121	if (!status)
122		*data = le16_to_cpu(*(__force __le16 *)data);
123
124	return status;
 
 
 
 
 
 
 
125}
126
127/**
128 * ice_read_sr_buf_aq - Reads Shadow RAM buf via AQ
129 * @hw: pointer to the HW structure
130 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
131 * @words: (in) number of words to read; (out) number of words actually read
132 * @data: words read from the Shadow RAM
133 *
134 * Reads 16 bit words (data buf) from the SR using the ice_read_sr_aq
135 * method. Ownership of the NVM is taken before reading the buffer and later
136 * released.
137 */
138static enum ice_status
139ice_read_sr_buf_aq(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
140{
 
141	enum ice_status status;
142	bool last_cmd = false;
143	u16 words_read = 0;
144	u16 i = 0;
145
146	do {
147		u16 read_size, off_w;
148
149		/* Calculate number of bytes we should read in this step.
150		 * It's not allowed to read more than one page at a time or
151		 * to cross page boundaries.
152		 */
153		off_w = offset % ICE_SR_SECTOR_SIZE_IN_WORDS;
154		read_size = off_w ?
155			min_t(u16, *words,
156			      (ICE_SR_SECTOR_SIZE_IN_WORDS - off_w)) :
157			min_t(u16, (*words - words_read),
158			      ICE_SR_SECTOR_SIZE_IN_WORDS);
159
160		/* Check if this is last command, if so set proper flag */
161		if ((words_read + read_size) >= *words)
162			last_cmd = true;
163
164		status = ice_read_sr_aq(hw, offset, read_size,
165					data + words_read, last_cmd);
166		if (status)
167			goto read_nvm_buf_aq_exit;
168
169		/* Increment counter for words already read and move offset to
170		 * new read location
171		 */
172		words_read += read_size;
173		offset += read_size;
174	} while (words_read < *words);
175
176	for (i = 0; i < *words; i++)
177		data[i] = le16_to_cpu(((__force __le16 *)data)[i]);
 
 
 
 
 
178
179read_nvm_buf_aq_exit:
180	*words = words_read;
181	return status;
182}
183
184/**
185 * ice_acquire_nvm - Generic request for acquiring the NVM ownership
186 * @hw: pointer to the HW structure
187 * @access: NVM access type (read or write)
188 *
189 * This function will request NVM ownership.
190 */
191static enum ice_status
192ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
193{
194	if (hw->nvm.blank_nvm_mode)
195		return 0;
196
197	return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
198}
199
200/**
201 * ice_release_nvm - Generic request for releasing the NVM ownership
202 * @hw: pointer to the HW structure
203 *
204 * This function will release NVM ownership.
205 */
206static void ice_release_nvm(struct ice_hw *hw)
207{
208	if (hw->nvm.blank_nvm_mode)
209		return;
210
211	ice_release_res(hw, ICE_NVM_RES_ID);
212}
213
214/**
215 * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
216 * @hw: pointer to the HW structure
217 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
218 * @data: word read from the Shadow RAM
219 *
220 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
221 */
222static enum ice_status
223ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
224{
225	enum ice_status status;
226
227	status = ice_acquire_nvm(hw, ICE_RES_READ);
228	if (!status) {
229		status = ice_read_sr_word_aq(hw, offset, data);
230		ice_release_nvm(hw);
231	}
232
233	return status;
234}
235
236/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237 * ice_init_nvm - initializes NVM setting
238 * @hw: pointer to the HW struct
239 *
240 * This function reads and populates NVM settings such as Shadow RAM size,
241 * max_timeout, and blank_nvm_mode
242 */
243enum ice_status ice_init_nvm(struct ice_hw *hw)
244{
245	struct ice_nvm_info *nvm = &hw->nvm;
246	u16 eetrack_lo, eetrack_hi;
247	enum ice_status status = 0;
248	u32 fla, gens_stat;
249	u8 sr_size;
250
251	/* The SR size is stored regardless of the NVM programming mode
252	 * as the blank mode may be used in the factory line.
253	 */
254	gens_stat = rd32(hw, GLNVM_GENS);
255	sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
256
257	/* Switching to words (sr_size contains power of 2) */
258	nvm->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
259
260	/* Check if we are in the normal or blank NVM programming mode */
261	fla = rd32(hw, GLNVM_FLA);
262	if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
263		nvm->blank_nvm_mode = false;
264	} else { /* Blank programming mode */
 
265		nvm->blank_nvm_mode = true;
266		status = ICE_ERR_NVM_BLANK_MODE;
267		ice_debug(hw, ICE_DBG_NVM,
268			  "NVM init error: unsupported blank mode.\n");
269		return status;
270	}
271
272	status = ice_read_sr_word(hw, ICE_SR_NVM_DEV_STARTER_VER, &hw->nvm.ver);
273	if (status) {
274		ice_debug(hw, ICE_DBG_INIT,
275			  "Failed to read DEV starter version.\n");
276		return status;
277	}
 
 
278
279	status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
280	if (status) {
281		ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK lo.\n");
282		return status;
283	}
284	status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
285	if (status) {
286		ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK hi.\n");
287		return status;
288	}
289
290	hw->nvm.eetrack = (eetrack_hi << 16) | eetrack_lo;
291
292	return status;
293}
 
 
 
 
294
295/**
296 * ice_read_sr_buf - Reads Shadow RAM buf and acquire lock if necessary
297 * @hw: pointer to the HW structure
298 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
299 * @words: (in) number of words to read; (out) number of words actually read
300 * @data: words read from the Shadow RAM
301 *
302 * Reads 16 bit words (data buf) from the SR using the ice_read_nvm_buf_aq
303 * method. The buf read is preceded by the NVM ownership take
304 * and followed by the release.
305 */
306enum ice_status
307ice_read_sr_buf(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
308{
309	enum ice_status status;
 
 
 
 
 
 
 
 
 
 
310
311	status = ice_acquire_nvm(hw, ICE_RES_READ);
312	if (!status) {
313		status = ice_read_sr_buf_aq(hw, offset, words, data);
314		ice_release_nvm(hw);
315	}
316
317	return status;
 
 
 
 
 
318}
319
320/**
321 * ice_nvm_validate_checksum
322 * @hw: pointer to the HW struct
323 *
324 * Verify NVM PFA checksum validity (0x0706)
325 */
326enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw)
327{
328	struct ice_aqc_nvm_checksum *cmd;
329	struct ice_aq_desc desc;
330	enum ice_status status;
331
332	status = ice_acquire_nvm(hw, ICE_RES_READ);
333	if (status)
334		return status;
335
336	cmd = &desc.params.nvm_checksum;
337
338	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
339	cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
340
341	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
342	ice_release_nvm(hw);
343
344	if (!status)
345		if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
346			status = ICE_ERR_NVM_CHECKSUM;
347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348	return status;
349}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2018, Intel Corporation. */
  3
  4#include "ice_common.h"
  5
  6/**
  7 * ice_aq_read_nvm
  8 * @hw: pointer to the HW struct
  9 * @module_typeid: module pointer location in words from the NVM beginning
 10 * @offset: byte offset from the module beginning
 11 * @length: length of the section to be read (in bytes from the offset)
 12 * @data: command buffer (size [bytes] = length)
 13 * @last_command: tells if this is the last command in a series
 14 * @read_shadow_ram: tell if this is a shadow RAM read
 15 * @cd: pointer to command details structure or NULL
 16 *
 17 * Read the NVM using the admin queue commands (0x0701)
 18 */
 19static enum ice_status
 20ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
 21		void *data, bool last_command, bool read_shadow_ram,
 22		struct ice_sq_cd *cd)
 23{
 24	struct ice_aq_desc desc;
 25	struct ice_aqc_nvm *cmd;
 26
 27	cmd = &desc.params.nvm;
 28
 29	if (offset > ICE_AQC_NVM_MAX_OFFSET)
 
 30		return ICE_ERR_PARAM;
 31
 32	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
 33
 34	if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
 35		cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
 36
 37	/* If this is the last command in a series, set the proper flag. */
 38	if (last_command)
 39		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
 40	cmd->module_typeid = cpu_to_le16(module_typeid);
 41	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
 42	cmd->offset_high = (offset >> 16) & 0xFF;
 43	cmd->length = cpu_to_le16(length);
 44
 45	return ice_aq_send_cmd(hw, &desc, data, length, cd);
 46}
 47
 48/**
 49 * ice_read_flat_nvm - Read portion of NVM by flat offset
 50 * @hw: pointer to the HW struct
 51 * @offset: offset from beginning of NVM
 52 * @length: (in) number of bytes to read; (out) number of bytes actually read
 53 * @data: buffer to return data in (sized to fit the specified length)
 54 * @read_shadow_ram: if true, read from shadow RAM instead of NVM
 55 *
 56 * Reads a portion of the NVM, as a flat memory space. This function correctly
 57 * breaks read requests across Shadow RAM sectors and ensures that no single
 58 * read request exceeds the maximum 4Kb read for a single AdminQ command.
 59 *
 60 * Returns a status code on failure. Note that the data pointer may be
 61 * partially updated if some reads succeed before a failure.
 62 */
 63enum ice_status
 64ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
 65		  bool read_shadow_ram)
 66{
 67	enum ice_status status;
 68	u32 inlen = *length;
 69	u32 bytes_read = 0;
 70	bool last_cmd;
 
 71
 72	*length = 0;
 
 
 
 
 
 
 73
 74	/* Verify the length of the read if this is for the Shadow RAM */
 75	if (read_shadow_ram && ((offset + inlen) > (hw->nvm.sr_words * 2u))) {
 
 76		ice_debug(hw, ICE_DBG_NVM,
 77			  "NVM error: requested offset is beyond Shadow RAM limit\n");
 78		return ICE_ERR_PARAM;
 79	}
 80
 81	do {
 82		u32 read_size, sector_offset;
 83
 84		/* ice_aq_read_nvm cannot read more than 4Kb at a time.
 85		 * Additionally, a read from the Shadow RAM may not cross over
 86		 * a sector boundary. Conveniently, the sector size is also
 87		 * 4Kb.
 88		 */
 89		sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
 90		read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
 91				  inlen - bytes_read);
 92
 93		last_cmd = !(bytes_read + read_size < inlen);
 94
 95		status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
 96					 offset, read_size,
 97					 data + bytes_read, last_cmd,
 98					 read_shadow_ram, NULL);
 99		if (status)
100			break;
101
102		bytes_read += read_size;
103		offset += read_size;
104	} while (!last_cmd);
105
106	*length = bytes_read;
107	return status;
108}
109
110/**
111 * ice_aq_update_nvm
112 * @hw: pointer to the HW struct
113 * @module_typeid: module pointer location in words from the NVM beginning
114 * @offset: byte offset from the module beginning
115 * @length: length of the section to be written (in bytes from the offset)
116 * @data: command buffer (size [bytes] = length)
117 * @last_command: tells if this is the last command in a series
118 * @command_flags: command parameters
119 * @cd: pointer to command details structure or NULL
120 *
121 * Update the NVM using the admin queue commands (0x0703)
122 */
123enum ice_status
124ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
125		  u16 length, void *data, bool last_command, u8 command_flags,
126		  struct ice_sq_cd *cd)
127{
128	struct ice_aq_desc desc;
129	struct ice_aqc_nvm *cmd;
130
131	cmd = &desc.params.nvm;
132
133	/* In offset the highest byte must be zeroed. */
134	if (offset & 0xFF000000)
135		return ICE_ERR_PARAM;
 
 
 
 
136
137	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
138
139	cmd->cmd_flags |= command_flags;
140
141	/* If this is the last command in a series, set the proper flag. */
142	if (last_command)
143		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
144	cmd->module_typeid = cpu_to_le16(module_typeid);
145	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
146	cmd->offset_high = (offset >> 16) & 0xFF;
147	cmd->length = cpu_to_le16(length);
148
149	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
150
151	return ice_aq_send_cmd(hw, &desc, data, length, cd);
152}
153
154/**
155 * ice_aq_erase_nvm
156 * @hw: pointer to the HW struct
157 * @module_typeid: module pointer location in words from the NVM beginning
158 * @cd: pointer to command details structure or NULL
159 *
160 * Erase the NVM sector using the admin queue commands (0x0702)
161 */
162enum ice_status
163ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
164{
165	struct ice_aq_desc desc;
166	struct ice_aqc_nvm *cmd;
167
168	cmd = &desc.params.nvm;
 
 
169
170	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
171
172	cmd->module_typeid = cpu_to_le16(module_typeid);
173	cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
174	cmd->offset_low = 0;
175	cmd->offset_high = 0;
176
177	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
178}
179
180/**
181 * ice_read_sr_word_aq - Reads Shadow RAM via AQ
182 * @hw: pointer to the HW structure
183 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
184 * @data: word read from the Shadow RAM
 
185 *
186 * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
 
 
187 */
188static enum ice_status
189ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
190{
191	u32 bytes = sizeof(u16);
192	enum ice_status status;
193	__le16 data_local;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
195	/* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
196	 * Shadow RAM sector restrictions necessary when reading from the NVM.
197	 */
198	status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
199				   (u8 *)&data_local, true);
200	if (status)
201		return status;
202
203	*data = le16_to_cpu(data_local);
204	return 0;
 
205}
206
207/**
208 * ice_acquire_nvm - Generic request for acquiring the NVM ownership
209 * @hw: pointer to the HW structure
210 * @access: NVM access type (read or write)
211 *
212 * This function will request NVM ownership.
213 */
214enum ice_status
215ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
216{
217	if (hw->nvm.blank_nvm_mode)
218		return 0;
219
220	return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
221}
222
223/**
224 * ice_release_nvm - Generic request for releasing the NVM ownership
225 * @hw: pointer to the HW structure
226 *
227 * This function will release NVM ownership.
228 */
229void ice_release_nvm(struct ice_hw *hw)
230{
231	if (hw->nvm.blank_nvm_mode)
232		return;
233
234	ice_release_res(hw, ICE_NVM_RES_ID);
235}
236
237/**
238 * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
239 * @hw: pointer to the HW structure
240 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
241 * @data: word read from the Shadow RAM
242 *
243 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
244 */
245enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
 
246{
247	enum ice_status status;
248
249	status = ice_acquire_nvm(hw, ICE_RES_READ);
250	if (!status) {
251		status = ice_read_sr_word_aq(hw, offset, data);
252		ice_release_nvm(hw);
253	}
254
255	return status;
256}
257
258/**
259 * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
260 * @hw: pointer to hardware structure
261 * @module_tlv: pointer to module TLV to return
262 * @module_tlv_len: pointer to module TLV length to return
263 * @module_type: module type requested
264 *
265 * Finds the requested sub module TLV type from the Preserved Field
266 * Area (PFA) and returns the TLV pointer and length. The caller can
267 * use these to read the variable length TLV value.
268 */
269enum ice_status
270ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
271		       u16 module_type)
272{
273	enum ice_status status;
274	u16 pfa_len, pfa_ptr;
275	u16 next_tlv;
276
277	status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
278	if (status) {
279		ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
280		return status;
281	}
282	status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
283	if (status) {
284		ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
285		return status;
286	}
287	/* Starting with first TLV after PFA length, iterate through the list
288	 * of TLVs to find the requested one.
289	 */
290	next_tlv = pfa_ptr + 1;
291	while (next_tlv < pfa_ptr + pfa_len) {
292		u16 tlv_sub_module_type;
293		u16 tlv_len;
294
295		/* Read TLV type */
296		status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
297		if (status) {
298			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
299			break;
300		}
301		/* Read TLV length */
302		status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
303		if (status) {
304			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
305			break;
306		}
307		if (tlv_sub_module_type == module_type) {
308			if (tlv_len) {
309				*module_tlv = next_tlv;
310				*module_tlv_len = tlv_len;
311				return 0;
312			}
313			return ICE_ERR_INVAL_SIZE;
314		}
315		/* Check next TLV, i.e. current TLV pointer + length + 2 words
316		 * (for current TLV's type and length)
317		 */
318		next_tlv = next_tlv + tlv_len + 2;
319	}
320	/* Module does not exist */
321	return ICE_ERR_DOES_NOT_EXIST;
322}
323
324/**
325 * ice_read_pba_string - Reads part number string from NVM
326 * @hw: pointer to hardware structure
327 * @pba_num: stores the part number string from the NVM
328 * @pba_num_size: part number string buffer length
329 *
330 * Reads the part number string from the NVM.
331 */
332enum ice_status
333ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
334{
335	u16 pba_tlv, pba_tlv_len;
336	enum ice_status status;
337	u16 pba_word, pba_size;
338	u16 i;
339
340	status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
341					ICE_SR_PBA_BLOCK_PTR);
342	if (status) {
343		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
344		return status;
345	}
346
347	/* pba_size is the next word */
348	status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
349	if (status) {
350		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
351		return status;
352	}
353
354	if (pba_tlv_len < pba_size) {
355		ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
356		return ICE_ERR_INVAL_SIZE;
357	}
358
359	/* Subtract one to get PBA word count (PBA Size word is included in
360	 * total size)
361	 */
362	pba_size--;
363	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
364		ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
365		return ICE_ERR_PARAM;
366	}
367
368	for (i = 0; i < pba_size; i++) {
369		status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
370		if (status) {
371			ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
372			return status;
373		}
374
375		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
376		pba_num[(i * 2) + 1] = pba_word & 0xFF;
377	}
378	pba_num[(pba_size * 2)] = '\0';
379
380	return status;
381}
382
383/**
384 * ice_get_orom_ver_info - Read Option ROM version information
385 * @hw: pointer to the HW struct
386 *
387 * Read the Combo Image version data from the Boot Configuration TLV and fill
388 * in the option ROM version data.
389 */
390static enum ice_status ice_get_orom_ver_info(struct ice_hw *hw)
391{
392	u16 combo_hi, combo_lo, boot_cfg_tlv, boot_cfg_tlv_len;
393	struct ice_orom_info *orom = &hw->nvm.orom;
394	enum ice_status status;
395	u32 combo_ver;
396
397	status = ice_get_pfa_module_tlv(hw, &boot_cfg_tlv, &boot_cfg_tlv_len,
398					ICE_SR_BOOT_CFG_PTR);
399	if (status) {
400		ice_debug(hw, ICE_DBG_INIT,
401			  "Failed to read Boot Configuration Block TLV.\n");
402		return status;
403	}
404
405	/* Boot Configuration Block must have length at least 2 words
406	 * (Combo Image Version High and Combo Image Version Low)
407	 */
408	if (boot_cfg_tlv_len < 2) {
409		ice_debug(hw, ICE_DBG_INIT,
410			  "Invalid Boot Configuration Block TLV size.\n");
411		return ICE_ERR_INVAL_SIZE;
412	}
413
414	status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF),
415				  &combo_hi);
416	if (status) {
417		ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER hi.\n");
418		return status;
419	}
420
421	status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF + 1),
422				  &combo_lo);
423	if (status) {
424		ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER lo.\n");
425		return status;
426	}
427
428	combo_ver = ((u32)combo_hi << 16) | combo_lo;
429
430	orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >>
431			   ICE_OROM_VER_SHIFT);
432	orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
433	orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >>
434			    ICE_OROM_VER_BUILD_SHIFT);
435
436	return 0;
437}
438
439/**
440 * ice_get_netlist_ver_info
441 * @hw: pointer to the HW struct
442 *
443 * Get the netlist version information
444 */
445static enum ice_status ice_get_netlist_ver_info(struct ice_hw *hw)
446{
447	struct ice_netlist_ver_info *ver = &hw->netlist_ver;
448	enum ice_status ret;
449	u32 id_blk_start;
450	__le16 raw_data;
451	u16 data, i;
452	u16 *buff;
453
454	ret = ice_acquire_nvm(hw, ICE_RES_READ);
455	if (ret)
456		return ret;
457	buff = kcalloc(ICE_AQC_NVM_NETLIST_ID_BLK_LEN, sizeof(*buff),
458		       GFP_KERNEL);
459	if (!buff) {
460		ret = ICE_ERR_NO_MEMORY;
461		goto exit_no_mem;
462	}
463
464	/* read module length */
465	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
466			      ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN_OFFSET * 2,
467			      ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN, &raw_data,
468			      false, false, NULL);
469	if (ret)
470		goto exit_error;
471
472	data = le16_to_cpu(raw_data);
473	/* exit if length is = 0 */
474	if (!data)
475		goto exit_error;
476
477	/* read node count */
478	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
479			      ICE_AQC_NVM_NETLIST_NODE_COUNT_OFFSET * 2,
480			      ICE_AQC_NVM_NETLIST_NODE_COUNT_LEN, &raw_data,
481			      false, false, NULL);
482	if (ret)
483		goto exit_error;
484	data = le16_to_cpu(raw_data) & ICE_AQC_NVM_NETLIST_NODE_COUNT_M;
485
486	/* netlist ID block starts from offset 4 + node count * 2 */
487	id_blk_start = ICE_AQC_NVM_NETLIST_ID_BLK_START_OFFSET + data * 2;
488
489	/* read the entire netlist ID block */
490	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
491			      id_blk_start * 2,
492			      ICE_AQC_NVM_NETLIST_ID_BLK_LEN * 2, buff, false,
493			      false, NULL);
494	if (ret)
495		goto exit_error;
496
497	for (i = 0; i < ICE_AQC_NVM_NETLIST_ID_BLK_LEN; i++)
498		buff[i] = le16_to_cpu(((__force __le16 *)buff)[i]);
499
500	ver->major = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16) |
501		buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_LOW];
502	ver->minor = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16) |
503		buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_LOW];
504	ver->type = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_HIGH] << 16) |
505		buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_LOW];
506	ver->rev = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_HIGH] << 16) |
507		buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_LOW];
508	ver->cust_ver = buff[ICE_AQC_NVM_NETLIST_ID_BLK_CUST_VER];
509	/* Read the left most 4 bytes of SHA */
510	ver->hash = buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 15] << 16 |
511		buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 14];
512
513exit_error:
514	kfree(buff);
515exit_no_mem:
516	ice_release_nvm(hw);
517	return ret;
518}
519
520/**
521 * ice_discover_flash_size - Discover the available flash size.
522 * @hw: pointer to the HW struct
523 *
524 * The device flash could be up to 16MB in size. However, it is possible that
525 * the actual size is smaller. Use bisection to determine the accessible size
526 * of flash memory.
527 */
528static enum ice_status ice_discover_flash_size(struct ice_hw *hw)
529{
530	u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
531	enum ice_status status;
532
533	status = ice_acquire_nvm(hw, ICE_RES_READ);
534	if (status)
535		return status;
536
537	while ((max_size - min_size) > 1) {
538		u32 offset = (max_size + min_size) / 2;
539		u32 len = 1;
540		u8 data;
541
542		status = ice_read_flat_nvm(hw, offset, &len, &data, false);
543		if (status == ICE_ERR_AQ_ERROR &&
544		    hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
545			ice_debug(hw, ICE_DBG_NVM,
546				  "%s: New upper bound of %u bytes\n",
547				  __func__, offset);
548			status = 0;
549			max_size = offset;
550		} else if (!status) {
551			ice_debug(hw, ICE_DBG_NVM,
552				  "%s: New lower bound of %u bytes\n",
553				  __func__, offset);
554			min_size = offset;
555		} else {
556			/* an unexpected error occurred */
557			goto err_read_flat_nvm;
558		}
559	}
560
561	ice_debug(hw, ICE_DBG_NVM,
562		  "Predicted flash size is %u bytes\n", max_size);
563
564	hw->nvm.flash_size = max_size;
565
566err_read_flat_nvm:
567	ice_release_nvm(hw);
568
569	return status;
570}
571
572/**
573 * ice_init_nvm - initializes NVM setting
574 * @hw: pointer to the HW struct
575 *
576 * This function reads and populates NVM settings such as Shadow RAM size,
577 * max_timeout, and blank_nvm_mode
578 */
579enum ice_status ice_init_nvm(struct ice_hw *hw)
580{
581	struct ice_nvm_info *nvm = &hw->nvm;
582	u16 eetrack_lo, eetrack_hi, ver;
583	enum ice_status status;
584	u32 fla, gens_stat;
585	u8 sr_size;
586
587	/* The SR size is stored regardless of the NVM programming mode
588	 * as the blank mode may be used in the factory line.
589	 */
590	gens_stat = rd32(hw, GLNVM_GENS);
591	sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
592
593	/* Switching to words (sr_size contains power of 2) */
594	nvm->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
595
596	/* Check if we are in the normal or blank NVM programming mode */
597	fla = rd32(hw, GLNVM_FLA);
598	if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
599		nvm->blank_nvm_mode = false;
600	} else {
601		/* Blank programming mode */
602		nvm->blank_nvm_mode = true;
 
603		ice_debug(hw, ICE_DBG_NVM,
604			  "NVM init error: unsupported blank mode.\n");
605		return ICE_ERR_NVM_BLANK_MODE;
606	}
607
608	status = ice_read_sr_word(hw, ICE_SR_NVM_DEV_STARTER_VER, &ver);
609	if (status) {
610		ice_debug(hw, ICE_DBG_INIT,
611			  "Failed to read DEV starter version.\n");
612		return status;
613	}
614	nvm->major_ver = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
615	nvm->minor_ver = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
616
617	status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
618	if (status) {
619		ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK lo.\n");
620		return status;
621	}
622	status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
623	if (status) {
624		ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK hi.\n");
625		return status;
626	}
627
628	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
629
630	status = ice_discover_flash_size(hw);
631	if (status) {
632		ice_debug(hw, ICE_DBG_NVM,
633			  "NVM init error: failed to discover flash size.\n");
634		return status;
635	}
636
637	switch (hw->device_id) {
638	/* the following devices do not have boot_cfg_tlv yet */
639	case ICE_DEV_ID_E823C_BACKPLANE:
640	case ICE_DEV_ID_E823C_QSFP:
641	case ICE_DEV_ID_E823C_SFP:
642	case ICE_DEV_ID_E823C_10G_BASE_T:
643	case ICE_DEV_ID_E823C_SGMII:
644	case ICE_DEV_ID_E822C_BACKPLANE:
645	case ICE_DEV_ID_E822C_QSFP:
646	case ICE_DEV_ID_E822C_10G_BASE_T:
647	case ICE_DEV_ID_E822C_SGMII:
648	case ICE_DEV_ID_E822C_SFP:
649	case ICE_DEV_ID_E822L_BACKPLANE:
650	case ICE_DEV_ID_E822L_SFP:
651	case ICE_DEV_ID_E822L_10G_BASE_T:
652	case ICE_DEV_ID_E822L_SGMII:
653	case ICE_DEV_ID_E823L_BACKPLANE:
654	case ICE_DEV_ID_E823L_SFP:
655	case ICE_DEV_ID_E823L_10G_BASE_T:
656	case ICE_DEV_ID_E823L_1GBE:
657	case ICE_DEV_ID_E823L_QSFP:
658		return status;
659	default:
660		break;
661	}
662
663	status = ice_get_orom_ver_info(hw);
664	if (status) {
665		ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
666		return status;
667	}
668
669	/* read the netlist version information */
670	status = ice_get_netlist_ver_info(hw);
671	if (status)
672		ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
673
674	return 0;
675}
676
677/**
678 * ice_nvm_validate_checksum
679 * @hw: pointer to the HW struct
680 *
681 * Verify NVM PFA checksum validity (0x0706)
682 */
683enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw)
684{
685	struct ice_aqc_nvm_checksum *cmd;
686	struct ice_aq_desc desc;
687	enum ice_status status;
688
689	status = ice_acquire_nvm(hw, ICE_RES_READ);
690	if (status)
691		return status;
692
693	cmd = &desc.params.nvm_checksum;
694
695	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
696	cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
697
698	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
699	ice_release_nvm(hw);
700
701	if (!status)
702		if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
703			status = ICE_ERR_NVM_CHECKSUM;
704
705	return status;
706}
707
708/**
709 * ice_nvm_write_activate
710 * @hw: pointer to the HW struct
711 * @cmd_flags: NVM activate admin command bits (banks to be validated)
712 *
713 * Update the control word with the required banks' validity bits
714 * and dumps the Shadow RAM to flash (0x0707)
715 */
716enum ice_status ice_nvm_write_activate(struct ice_hw *hw, u8 cmd_flags)
717{
718	struct ice_aqc_nvm *cmd;
719	struct ice_aq_desc desc;
720
721	cmd = &desc.params.nvm;
722	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
723
724	cmd->cmd_flags = cmd_flags;
725
726	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
727}
728
729/**
730 * ice_aq_nvm_update_empr
731 * @hw: pointer to the HW struct
732 *
733 * Update empr (0x0709). This command allows SW to
734 * request an EMPR to activate new FW.
735 */
736enum ice_status ice_aq_nvm_update_empr(struct ice_hw *hw)
737{
738	struct ice_aq_desc desc;
739
740	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
741
742	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
743}
744
745/* ice_nvm_set_pkg_data
746 * @hw: pointer to the HW struct
747 * @del_pkg_data_flag: If is set then the current pkg_data store by FW
748 *		       is deleted.
749 *		       If bit is set to 1, then buffer should be size 0.
750 * @data: pointer to buffer
751 * @length: length of the buffer
752 * @cd: pointer to command details structure or NULL
753 *
754 * Set package data (0x070A). This command is equivalent to the reception
755 * of a PLDM FW Update GetPackageData cmd. This command should be sent
756 * as part of the NVM update as the first cmd in the flow.
757 */
758
759enum ice_status
760ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
761		     u16 length, struct ice_sq_cd *cd)
762{
763	struct ice_aqc_nvm_pkg_data *cmd;
764	struct ice_aq_desc desc;
765
766	if (length != 0 && !data)
767		return ICE_ERR_PARAM;
768
769	cmd = &desc.params.pkg_data;
770
771	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
772	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
773
774	if (del_pkg_data_flag)
775		cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
776
777	return ice_aq_send_cmd(hw, &desc, data, length, cd);
778}
779
780/* ice_nvm_pass_component_tbl
781 * @hw: pointer to the HW struct
782 * @data: pointer to buffer
783 * @length: length of the buffer
784 * @transfer_flag: parameter for determining stage of the update
785 * @comp_response: a pointer to the response from the 0x070B AQC.
786 * @comp_response_code: a pointer to the response code from the 0x070B AQC.
787 * @cd: pointer to command details structure or NULL
788 *
789 * Pass component table (0x070B). This command is equivalent to the reception
790 * of a PLDM FW Update PassComponentTable cmd. This command should be sent once
791 * per component. It can be only sent after Set Package Data cmd and before
792 * actual update. FW will assume these commands are going to be sent until
793 * the TransferFlag is set to End or StartAndEnd.
794 */
795
796enum ice_status
797ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
798			   u8 transfer_flag, u8 *comp_response,
799			   u8 *comp_response_code, struct ice_sq_cd *cd)
800{
801	struct ice_aqc_nvm_pass_comp_tbl *cmd;
802	struct ice_aq_desc desc;
803	enum ice_status status;
804
805	if (!data || !comp_response || !comp_response_code)
806		return ICE_ERR_PARAM;
807
808	cmd = &desc.params.pass_comp_tbl;
809
810	ice_fill_dflt_direct_cmd_desc(&desc,
811				      ice_aqc_opc_nvm_pass_component_tbl);
812	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
813
814	cmd->transfer_flag = transfer_flag;
815	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
816
817	if (!status) {
818		*comp_response = cmd->component_response;
819		*comp_response_code = cmd->component_response_code;
820	}
821	return status;
822}