Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_common.h"
5
6/**
7 * ice_aq_read_nvm
8 * @hw: pointer to the HW struct
9 * @module_typeid: module pointer location in words from the NVM beginning
10 * @offset: byte offset from the module beginning
11 * @length: length of the section to be read (in bytes from the offset)
12 * @data: command buffer (size [bytes] = length)
13 * @last_command: tells if this is the last command in a series
14 * @cd: pointer to command details structure or NULL
15 *
16 * Read the NVM using the admin queue commands (0x0701)
17 */
18static enum ice_status
19ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
20 void *data, bool last_command, struct ice_sq_cd *cd)
21{
22 struct ice_aq_desc desc;
23 struct ice_aqc_nvm *cmd;
24
25 cmd = &desc.params.nvm;
26
27 /* In offset the highest byte must be zeroed. */
28 if (offset & 0xFF000000)
29 return ICE_ERR_PARAM;
30
31 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
32
33 /* If this is the last command in a series, set the proper flag. */
34 if (last_command)
35 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
36 cmd->module_typeid = cpu_to_le16(module_typeid);
37 cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
38 cmd->offset_high = (offset >> 16) & 0xFF;
39 cmd->length = cpu_to_le16(length);
40
41 return ice_aq_send_cmd(hw, &desc, data, length, cd);
42}
43
44/**
45 * ice_check_sr_access_params - verify params for Shadow RAM R/W operations.
46 * @hw: pointer to the HW structure
47 * @offset: offset in words from module start
48 * @words: number of words to access
49 */
50static enum ice_status
51ice_check_sr_access_params(struct ice_hw *hw, u32 offset, u16 words)
52{
53 if ((offset + words) > hw->nvm.sr_words) {
54 ice_debug(hw, ICE_DBG_NVM,
55 "NVM error: offset beyond SR lmt.\n");
56 return ICE_ERR_PARAM;
57 }
58
59 if (words > ICE_SR_SECTOR_SIZE_IN_WORDS) {
60 /* We can access only up to 4KB (one sector), in one AQ write */
61 ice_debug(hw, ICE_DBG_NVM,
62 "NVM error: tried to access %d words, limit is %d.\n",
63 words, ICE_SR_SECTOR_SIZE_IN_WORDS);
64 return ICE_ERR_PARAM;
65 }
66
67 if (((offset + (words - 1)) / ICE_SR_SECTOR_SIZE_IN_WORDS) !=
68 (offset / ICE_SR_SECTOR_SIZE_IN_WORDS)) {
69 /* A single access cannot spread over two sectors */
70 ice_debug(hw, ICE_DBG_NVM,
71 "NVM error: cannot spread over two sectors.\n");
72 return ICE_ERR_PARAM;
73 }
74
75 return 0;
76}
77
78/**
79 * ice_read_sr_aq - Read Shadow RAM.
80 * @hw: pointer to the HW structure
81 * @offset: offset in words from module start
82 * @words: number of words to read
83 * @data: buffer for words reads from Shadow RAM
84 * @last_command: tells the AdminQ that this is the last command
85 *
86 * Reads 16-bit word buffers from the Shadow RAM using the admin command.
87 */
88static enum ice_status
89ice_read_sr_aq(struct ice_hw *hw, u32 offset, u16 words, u16 *data,
90 bool last_command)
91{
92 enum ice_status status;
93
94 status = ice_check_sr_access_params(hw, offset, words);
95
96 /* values in "offset" and "words" parameters are sized as words
97 * (16 bits) but ice_aq_read_nvm expects these values in bytes.
98 * So do this conversion while calling ice_aq_read_nvm.
99 */
100 if (!status)
101 status = ice_aq_read_nvm(hw, 0, 2 * offset, 2 * words, data,
102 last_command, NULL);
103
104 return status;
105}
106
107/**
108 * ice_read_sr_word_aq - Reads Shadow RAM via AQ
109 * @hw: pointer to the HW structure
110 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
111 * @data: word read from the Shadow RAM
112 *
113 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_aq method.
114 */
115static enum ice_status
116ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
117{
118 enum ice_status status;
119
120 status = ice_read_sr_aq(hw, offset, 1, data, true);
121 if (!status)
122 *data = le16_to_cpu(*(__force __le16 *)data);
123
124 return status;
125}
126
127/**
128 * ice_read_sr_buf_aq - Reads Shadow RAM buf via AQ
129 * @hw: pointer to the HW structure
130 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
131 * @words: (in) number of words to read; (out) number of words actually read
132 * @data: words read from the Shadow RAM
133 *
134 * Reads 16 bit words (data buf) from the SR using the ice_read_sr_aq
135 * method. Ownership of the NVM is taken before reading the buffer and later
136 * released.
137 */
138static enum ice_status
139ice_read_sr_buf_aq(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
140{
141 enum ice_status status;
142 bool last_cmd = false;
143 u16 words_read = 0;
144 u16 i = 0;
145
146 do {
147 u16 read_size, off_w;
148
149 /* Calculate number of bytes we should read in this step.
150 * It's not allowed to read more than one page at a time or
151 * to cross page boundaries.
152 */
153 off_w = offset % ICE_SR_SECTOR_SIZE_IN_WORDS;
154 read_size = off_w ?
155 min_t(u16, *words,
156 (ICE_SR_SECTOR_SIZE_IN_WORDS - off_w)) :
157 min_t(u16, (*words - words_read),
158 ICE_SR_SECTOR_SIZE_IN_WORDS);
159
160 /* Check if this is last command, if so set proper flag */
161 if ((words_read + read_size) >= *words)
162 last_cmd = true;
163
164 status = ice_read_sr_aq(hw, offset, read_size,
165 data + words_read, last_cmd);
166 if (status)
167 goto read_nvm_buf_aq_exit;
168
169 /* Increment counter for words already read and move offset to
170 * new read location
171 */
172 words_read += read_size;
173 offset += read_size;
174 } while (words_read < *words);
175
176 for (i = 0; i < *words; i++)
177 data[i] = le16_to_cpu(((__force __le16 *)data)[i]);
178
179read_nvm_buf_aq_exit:
180 *words = words_read;
181 return status;
182}
183
184/**
185 * ice_acquire_nvm - Generic request for acquiring the NVM ownership
186 * @hw: pointer to the HW structure
187 * @access: NVM access type (read or write)
188 *
189 * This function will request NVM ownership.
190 */
191static enum ice_status
192ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
193{
194 if (hw->nvm.blank_nvm_mode)
195 return 0;
196
197 return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
198}
199
200/**
201 * ice_release_nvm - Generic request for releasing the NVM ownership
202 * @hw: pointer to the HW structure
203 *
204 * This function will release NVM ownership.
205 */
206static void ice_release_nvm(struct ice_hw *hw)
207{
208 if (hw->nvm.blank_nvm_mode)
209 return;
210
211 ice_release_res(hw, ICE_NVM_RES_ID);
212}
213
214/**
215 * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
216 * @hw: pointer to the HW structure
217 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
218 * @data: word read from the Shadow RAM
219 *
220 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
221 */
222static enum ice_status
223ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
224{
225 enum ice_status status;
226
227 status = ice_acquire_nvm(hw, ICE_RES_READ);
228 if (!status) {
229 status = ice_read_sr_word_aq(hw, offset, data);
230 ice_release_nvm(hw);
231 }
232
233 return status;
234}
235
236/**
237 * ice_init_nvm - initializes NVM setting
238 * @hw: pointer to the HW struct
239 *
240 * This function reads and populates NVM settings such as Shadow RAM size,
241 * max_timeout, and blank_nvm_mode
242 */
243enum ice_status ice_init_nvm(struct ice_hw *hw)
244{
245 struct ice_nvm_info *nvm = &hw->nvm;
246 u16 eetrack_lo, eetrack_hi;
247 enum ice_status status = 0;
248 u32 fla, gens_stat;
249 u8 sr_size;
250
251 /* The SR size is stored regardless of the NVM programming mode
252 * as the blank mode may be used in the factory line.
253 */
254 gens_stat = rd32(hw, GLNVM_GENS);
255 sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
256
257 /* Switching to words (sr_size contains power of 2) */
258 nvm->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
259
260 /* Check if we are in the normal or blank NVM programming mode */
261 fla = rd32(hw, GLNVM_FLA);
262 if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
263 nvm->blank_nvm_mode = false;
264 } else { /* Blank programming mode */
265 nvm->blank_nvm_mode = true;
266 status = ICE_ERR_NVM_BLANK_MODE;
267 ice_debug(hw, ICE_DBG_NVM,
268 "NVM init error: unsupported blank mode.\n");
269 return status;
270 }
271
272 status = ice_read_sr_word(hw, ICE_SR_NVM_DEV_STARTER_VER, &hw->nvm.ver);
273 if (status) {
274 ice_debug(hw, ICE_DBG_INIT,
275 "Failed to read DEV starter version.\n");
276 return status;
277 }
278
279 status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
280 if (status) {
281 ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK lo.\n");
282 return status;
283 }
284 status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
285 if (status) {
286 ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK hi.\n");
287 return status;
288 }
289
290 hw->nvm.eetrack = (eetrack_hi << 16) | eetrack_lo;
291
292 return status;
293}
294
295/**
296 * ice_read_sr_buf - Reads Shadow RAM buf and acquire lock if necessary
297 * @hw: pointer to the HW structure
298 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
299 * @words: (in) number of words to read; (out) number of words actually read
300 * @data: words read from the Shadow RAM
301 *
302 * Reads 16 bit words (data buf) from the SR using the ice_read_nvm_buf_aq
303 * method. The buf read is preceded by the NVM ownership take
304 * and followed by the release.
305 */
306enum ice_status
307ice_read_sr_buf(struct ice_hw *hw, u16 offset, u16 *words, u16 *data)
308{
309 enum ice_status status;
310
311 status = ice_acquire_nvm(hw, ICE_RES_READ);
312 if (!status) {
313 status = ice_read_sr_buf_aq(hw, offset, words, data);
314 ice_release_nvm(hw);
315 }
316
317 return status;
318}
319
320/**
321 * ice_nvm_validate_checksum
322 * @hw: pointer to the HW struct
323 *
324 * Verify NVM PFA checksum validity (0x0706)
325 */
326enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw)
327{
328 struct ice_aqc_nvm_checksum *cmd;
329 struct ice_aq_desc desc;
330 enum ice_status status;
331
332 status = ice_acquire_nvm(hw, ICE_RES_READ);
333 if (status)
334 return status;
335
336 cmd = &desc.params.nvm_checksum;
337
338 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
339 cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
340
341 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
342 ice_release_nvm(hw);
343
344 if (!status)
345 if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
346 status = ICE_ERR_NVM_CHECKSUM;
347
348 return status;
349}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_common.h"
5
6/**
7 * ice_aq_read_nvm
8 * @hw: pointer to the HW struct
9 * @module_typeid: module pointer location in words from the NVM beginning
10 * @offset: byte offset from the module beginning
11 * @length: length of the section to be read (in bytes from the offset)
12 * @data: command buffer (size [bytes] = length)
13 * @last_command: tells if this is the last command in a series
14 * @read_shadow_ram: tell if this is a shadow RAM read
15 * @cd: pointer to command details structure or NULL
16 *
17 * Read the NVM using the admin queue commands (0x0701)
18 */
19static enum ice_status
20ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
21 void *data, bool last_command, bool read_shadow_ram,
22 struct ice_sq_cd *cd)
23{
24 struct ice_aq_desc desc;
25 struct ice_aqc_nvm *cmd;
26
27 cmd = &desc.params.nvm;
28
29 if (offset > ICE_AQC_NVM_MAX_OFFSET)
30 return ICE_ERR_PARAM;
31
32 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
33
34 if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
35 cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
36
37 /* If this is the last command in a series, set the proper flag. */
38 if (last_command)
39 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
40 cmd->module_typeid = cpu_to_le16(module_typeid);
41 cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
42 cmd->offset_high = (offset >> 16) & 0xFF;
43 cmd->length = cpu_to_le16(length);
44
45 return ice_aq_send_cmd(hw, &desc, data, length, cd);
46}
47
48/**
49 * ice_read_flat_nvm - Read portion of NVM by flat offset
50 * @hw: pointer to the HW struct
51 * @offset: offset from beginning of NVM
52 * @length: (in) number of bytes to read; (out) number of bytes actually read
53 * @data: buffer to return data in (sized to fit the specified length)
54 * @read_shadow_ram: if true, read from shadow RAM instead of NVM
55 *
56 * Reads a portion of the NVM, as a flat memory space. This function correctly
57 * breaks read requests across Shadow RAM sectors and ensures that no single
58 * read request exceeds the maximum 4Kb read for a single AdminQ command.
59 *
60 * Returns a status code on failure. Note that the data pointer may be
61 * partially updated if some reads succeed before a failure.
62 */
63enum ice_status
64ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
65 bool read_shadow_ram)
66{
67 enum ice_status status;
68 u32 inlen = *length;
69 u32 bytes_read = 0;
70 bool last_cmd;
71
72 *length = 0;
73
74 /* Verify the length of the read if this is for the Shadow RAM */
75 if (read_shadow_ram && ((offset + inlen) > (hw->nvm.sr_words * 2u))) {
76 ice_debug(hw, ICE_DBG_NVM,
77 "NVM error: requested offset is beyond Shadow RAM limit\n");
78 return ICE_ERR_PARAM;
79 }
80
81 do {
82 u32 read_size, sector_offset;
83
84 /* ice_aq_read_nvm cannot read more than 4Kb at a time.
85 * Additionally, a read from the Shadow RAM may not cross over
86 * a sector boundary. Conveniently, the sector size is also
87 * 4Kb.
88 */
89 sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
90 read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
91 inlen - bytes_read);
92
93 last_cmd = !(bytes_read + read_size < inlen);
94
95 status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
96 offset, read_size,
97 data + bytes_read, last_cmd,
98 read_shadow_ram, NULL);
99 if (status)
100 break;
101
102 bytes_read += read_size;
103 offset += read_size;
104 } while (!last_cmd);
105
106 *length = bytes_read;
107 return status;
108}
109
110/**
111 * ice_aq_update_nvm
112 * @hw: pointer to the HW struct
113 * @module_typeid: module pointer location in words from the NVM beginning
114 * @offset: byte offset from the module beginning
115 * @length: length of the section to be written (in bytes from the offset)
116 * @data: command buffer (size [bytes] = length)
117 * @last_command: tells if this is the last command in a series
118 * @command_flags: command parameters
119 * @cd: pointer to command details structure or NULL
120 *
121 * Update the NVM using the admin queue commands (0x0703)
122 */
123enum ice_status
124ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
125 u16 length, void *data, bool last_command, u8 command_flags,
126 struct ice_sq_cd *cd)
127{
128 struct ice_aq_desc desc;
129 struct ice_aqc_nvm *cmd;
130
131 cmd = &desc.params.nvm;
132
133 /* In offset the highest byte must be zeroed. */
134 if (offset & 0xFF000000)
135 return ICE_ERR_PARAM;
136
137 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
138
139 cmd->cmd_flags |= command_flags;
140
141 /* If this is the last command in a series, set the proper flag. */
142 if (last_command)
143 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
144 cmd->module_typeid = cpu_to_le16(module_typeid);
145 cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
146 cmd->offset_high = (offset >> 16) & 0xFF;
147 cmd->length = cpu_to_le16(length);
148
149 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
150
151 return ice_aq_send_cmd(hw, &desc, data, length, cd);
152}
153
154/**
155 * ice_aq_erase_nvm
156 * @hw: pointer to the HW struct
157 * @module_typeid: module pointer location in words from the NVM beginning
158 * @cd: pointer to command details structure or NULL
159 *
160 * Erase the NVM sector using the admin queue commands (0x0702)
161 */
162enum ice_status
163ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
164{
165 struct ice_aq_desc desc;
166 struct ice_aqc_nvm *cmd;
167
168 cmd = &desc.params.nvm;
169
170 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
171
172 cmd->module_typeid = cpu_to_le16(module_typeid);
173 cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
174 cmd->offset_low = 0;
175 cmd->offset_high = 0;
176
177 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
178}
179
180/**
181 * ice_read_sr_word_aq - Reads Shadow RAM via AQ
182 * @hw: pointer to the HW structure
183 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
184 * @data: word read from the Shadow RAM
185 *
186 * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
187 */
188static enum ice_status
189ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
190{
191 u32 bytes = sizeof(u16);
192 enum ice_status status;
193 __le16 data_local;
194
195 /* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
196 * Shadow RAM sector restrictions necessary when reading from the NVM.
197 */
198 status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
199 (u8 *)&data_local, true);
200 if (status)
201 return status;
202
203 *data = le16_to_cpu(data_local);
204 return 0;
205}
206
207/**
208 * ice_acquire_nvm - Generic request for acquiring the NVM ownership
209 * @hw: pointer to the HW structure
210 * @access: NVM access type (read or write)
211 *
212 * This function will request NVM ownership.
213 */
214enum ice_status
215ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
216{
217 if (hw->nvm.blank_nvm_mode)
218 return 0;
219
220 return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
221}
222
223/**
224 * ice_release_nvm - Generic request for releasing the NVM ownership
225 * @hw: pointer to the HW structure
226 *
227 * This function will release NVM ownership.
228 */
229void ice_release_nvm(struct ice_hw *hw)
230{
231 if (hw->nvm.blank_nvm_mode)
232 return;
233
234 ice_release_res(hw, ICE_NVM_RES_ID);
235}
236
237/**
238 * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
239 * @hw: pointer to the HW structure
240 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
241 * @data: word read from the Shadow RAM
242 *
243 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
244 */
245enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
246{
247 enum ice_status status;
248
249 status = ice_acquire_nvm(hw, ICE_RES_READ);
250 if (!status) {
251 status = ice_read_sr_word_aq(hw, offset, data);
252 ice_release_nvm(hw);
253 }
254
255 return status;
256}
257
258/**
259 * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
260 * @hw: pointer to hardware structure
261 * @module_tlv: pointer to module TLV to return
262 * @module_tlv_len: pointer to module TLV length to return
263 * @module_type: module type requested
264 *
265 * Finds the requested sub module TLV type from the Preserved Field
266 * Area (PFA) and returns the TLV pointer and length. The caller can
267 * use these to read the variable length TLV value.
268 */
269enum ice_status
270ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
271 u16 module_type)
272{
273 enum ice_status status;
274 u16 pfa_len, pfa_ptr;
275 u16 next_tlv;
276
277 status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
278 if (status) {
279 ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
280 return status;
281 }
282 status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
283 if (status) {
284 ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
285 return status;
286 }
287 /* Starting with first TLV after PFA length, iterate through the list
288 * of TLVs to find the requested one.
289 */
290 next_tlv = pfa_ptr + 1;
291 while (next_tlv < pfa_ptr + pfa_len) {
292 u16 tlv_sub_module_type;
293 u16 tlv_len;
294
295 /* Read TLV type */
296 status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
297 if (status) {
298 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
299 break;
300 }
301 /* Read TLV length */
302 status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
303 if (status) {
304 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
305 break;
306 }
307 if (tlv_sub_module_type == module_type) {
308 if (tlv_len) {
309 *module_tlv = next_tlv;
310 *module_tlv_len = tlv_len;
311 return 0;
312 }
313 return ICE_ERR_INVAL_SIZE;
314 }
315 /* Check next TLV, i.e. current TLV pointer + length + 2 words
316 * (for current TLV's type and length)
317 */
318 next_tlv = next_tlv + tlv_len + 2;
319 }
320 /* Module does not exist */
321 return ICE_ERR_DOES_NOT_EXIST;
322}
323
324/**
325 * ice_read_pba_string - Reads part number string from NVM
326 * @hw: pointer to hardware structure
327 * @pba_num: stores the part number string from the NVM
328 * @pba_num_size: part number string buffer length
329 *
330 * Reads the part number string from the NVM.
331 */
332enum ice_status
333ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
334{
335 u16 pba_tlv, pba_tlv_len;
336 enum ice_status status;
337 u16 pba_word, pba_size;
338 u16 i;
339
340 status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
341 ICE_SR_PBA_BLOCK_PTR);
342 if (status) {
343 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
344 return status;
345 }
346
347 /* pba_size is the next word */
348 status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
349 if (status) {
350 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
351 return status;
352 }
353
354 if (pba_tlv_len < pba_size) {
355 ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
356 return ICE_ERR_INVAL_SIZE;
357 }
358
359 /* Subtract one to get PBA word count (PBA Size word is included in
360 * total size)
361 */
362 pba_size--;
363 if (pba_num_size < (((u32)pba_size * 2) + 1)) {
364 ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
365 return ICE_ERR_PARAM;
366 }
367
368 for (i = 0; i < pba_size; i++) {
369 status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
370 if (status) {
371 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
372 return status;
373 }
374
375 pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
376 pba_num[(i * 2) + 1] = pba_word & 0xFF;
377 }
378 pba_num[(pba_size * 2)] = '\0';
379
380 return status;
381}
382
383/**
384 * ice_get_orom_ver_info - Read Option ROM version information
385 * @hw: pointer to the HW struct
386 *
387 * Read the Combo Image version data from the Boot Configuration TLV and fill
388 * in the option ROM version data.
389 */
390static enum ice_status ice_get_orom_ver_info(struct ice_hw *hw)
391{
392 u16 combo_hi, combo_lo, boot_cfg_tlv, boot_cfg_tlv_len;
393 struct ice_orom_info *orom = &hw->nvm.orom;
394 enum ice_status status;
395 u32 combo_ver;
396
397 status = ice_get_pfa_module_tlv(hw, &boot_cfg_tlv, &boot_cfg_tlv_len,
398 ICE_SR_BOOT_CFG_PTR);
399 if (status) {
400 ice_debug(hw, ICE_DBG_INIT,
401 "Failed to read Boot Configuration Block TLV.\n");
402 return status;
403 }
404
405 /* Boot Configuration Block must have length at least 2 words
406 * (Combo Image Version High and Combo Image Version Low)
407 */
408 if (boot_cfg_tlv_len < 2) {
409 ice_debug(hw, ICE_DBG_INIT,
410 "Invalid Boot Configuration Block TLV size.\n");
411 return ICE_ERR_INVAL_SIZE;
412 }
413
414 status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF),
415 &combo_hi);
416 if (status) {
417 ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER hi.\n");
418 return status;
419 }
420
421 status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF + 1),
422 &combo_lo);
423 if (status) {
424 ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER lo.\n");
425 return status;
426 }
427
428 combo_ver = ((u32)combo_hi << 16) | combo_lo;
429
430 orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >>
431 ICE_OROM_VER_SHIFT);
432 orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
433 orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >>
434 ICE_OROM_VER_BUILD_SHIFT);
435
436 return 0;
437}
438
439/**
440 * ice_get_netlist_ver_info
441 * @hw: pointer to the HW struct
442 *
443 * Get the netlist version information
444 */
445static enum ice_status ice_get_netlist_ver_info(struct ice_hw *hw)
446{
447 struct ice_netlist_ver_info *ver = &hw->netlist_ver;
448 enum ice_status ret;
449 u32 id_blk_start;
450 __le16 raw_data;
451 u16 data, i;
452 u16 *buff;
453
454 ret = ice_acquire_nvm(hw, ICE_RES_READ);
455 if (ret)
456 return ret;
457 buff = kcalloc(ICE_AQC_NVM_NETLIST_ID_BLK_LEN, sizeof(*buff),
458 GFP_KERNEL);
459 if (!buff) {
460 ret = ICE_ERR_NO_MEMORY;
461 goto exit_no_mem;
462 }
463
464 /* read module length */
465 ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
466 ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN_OFFSET * 2,
467 ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN, &raw_data,
468 false, false, NULL);
469 if (ret)
470 goto exit_error;
471
472 data = le16_to_cpu(raw_data);
473 /* exit if length is = 0 */
474 if (!data)
475 goto exit_error;
476
477 /* read node count */
478 ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
479 ICE_AQC_NVM_NETLIST_NODE_COUNT_OFFSET * 2,
480 ICE_AQC_NVM_NETLIST_NODE_COUNT_LEN, &raw_data,
481 false, false, NULL);
482 if (ret)
483 goto exit_error;
484 data = le16_to_cpu(raw_data) & ICE_AQC_NVM_NETLIST_NODE_COUNT_M;
485
486 /* netlist ID block starts from offset 4 + node count * 2 */
487 id_blk_start = ICE_AQC_NVM_NETLIST_ID_BLK_START_OFFSET + data * 2;
488
489 /* read the entire netlist ID block */
490 ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
491 id_blk_start * 2,
492 ICE_AQC_NVM_NETLIST_ID_BLK_LEN * 2, buff, false,
493 false, NULL);
494 if (ret)
495 goto exit_error;
496
497 for (i = 0; i < ICE_AQC_NVM_NETLIST_ID_BLK_LEN; i++)
498 buff[i] = le16_to_cpu(((__force __le16 *)buff)[i]);
499
500 ver->major = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16) |
501 buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_LOW];
502 ver->minor = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16) |
503 buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_LOW];
504 ver->type = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_HIGH] << 16) |
505 buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_LOW];
506 ver->rev = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_HIGH] << 16) |
507 buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_LOW];
508 ver->cust_ver = buff[ICE_AQC_NVM_NETLIST_ID_BLK_CUST_VER];
509 /* Read the left most 4 bytes of SHA */
510 ver->hash = buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 15] << 16 |
511 buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 14];
512
513exit_error:
514 kfree(buff);
515exit_no_mem:
516 ice_release_nvm(hw);
517 return ret;
518}
519
520/**
521 * ice_discover_flash_size - Discover the available flash size.
522 * @hw: pointer to the HW struct
523 *
524 * The device flash could be up to 16MB in size. However, it is possible that
525 * the actual size is smaller. Use bisection to determine the accessible size
526 * of flash memory.
527 */
528static enum ice_status ice_discover_flash_size(struct ice_hw *hw)
529{
530 u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
531 enum ice_status status;
532
533 status = ice_acquire_nvm(hw, ICE_RES_READ);
534 if (status)
535 return status;
536
537 while ((max_size - min_size) > 1) {
538 u32 offset = (max_size + min_size) / 2;
539 u32 len = 1;
540 u8 data;
541
542 status = ice_read_flat_nvm(hw, offset, &len, &data, false);
543 if (status == ICE_ERR_AQ_ERROR &&
544 hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
545 ice_debug(hw, ICE_DBG_NVM,
546 "%s: New upper bound of %u bytes\n",
547 __func__, offset);
548 status = 0;
549 max_size = offset;
550 } else if (!status) {
551 ice_debug(hw, ICE_DBG_NVM,
552 "%s: New lower bound of %u bytes\n",
553 __func__, offset);
554 min_size = offset;
555 } else {
556 /* an unexpected error occurred */
557 goto err_read_flat_nvm;
558 }
559 }
560
561 ice_debug(hw, ICE_DBG_NVM,
562 "Predicted flash size is %u bytes\n", max_size);
563
564 hw->nvm.flash_size = max_size;
565
566err_read_flat_nvm:
567 ice_release_nvm(hw);
568
569 return status;
570}
571
572/**
573 * ice_init_nvm - initializes NVM setting
574 * @hw: pointer to the HW struct
575 *
576 * This function reads and populates NVM settings such as Shadow RAM size,
577 * max_timeout, and blank_nvm_mode
578 */
579enum ice_status ice_init_nvm(struct ice_hw *hw)
580{
581 struct ice_nvm_info *nvm = &hw->nvm;
582 u16 eetrack_lo, eetrack_hi, ver;
583 enum ice_status status;
584 u32 fla, gens_stat;
585 u8 sr_size;
586
587 /* The SR size is stored regardless of the NVM programming mode
588 * as the blank mode may be used in the factory line.
589 */
590 gens_stat = rd32(hw, GLNVM_GENS);
591 sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
592
593 /* Switching to words (sr_size contains power of 2) */
594 nvm->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
595
596 /* Check if we are in the normal or blank NVM programming mode */
597 fla = rd32(hw, GLNVM_FLA);
598 if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
599 nvm->blank_nvm_mode = false;
600 } else {
601 /* Blank programming mode */
602 nvm->blank_nvm_mode = true;
603 ice_debug(hw, ICE_DBG_NVM,
604 "NVM init error: unsupported blank mode.\n");
605 return ICE_ERR_NVM_BLANK_MODE;
606 }
607
608 status = ice_read_sr_word(hw, ICE_SR_NVM_DEV_STARTER_VER, &ver);
609 if (status) {
610 ice_debug(hw, ICE_DBG_INIT,
611 "Failed to read DEV starter version.\n");
612 return status;
613 }
614 nvm->major_ver = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
615 nvm->minor_ver = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
616
617 status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
618 if (status) {
619 ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK lo.\n");
620 return status;
621 }
622 status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
623 if (status) {
624 ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK hi.\n");
625 return status;
626 }
627
628 nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
629
630 status = ice_discover_flash_size(hw);
631 if (status) {
632 ice_debug(hw, ICE_DBG_NVM,
633 "NVM init error: failed to discover flash size.\n");
634 return status;
635 }
636
637 switch (hw->device_id) {
638 /* the following devices do not have boot_cfg_tlv yet */
639 case ICE_DEV_ID_E823C_BACKPLANE:
640 case ICE_DEV_ID_E823C_QSFP:
641 case ICE_DEV_ID_E823C_SFP:
642 case ICE_DEV_ID_E823C_10G_BASE_T:
643 case ICE_DEV_ID_E823C_SGMII:
644 case ICE_DEV_ID_E822C_BACKPLANE:
645 case ICE_DEV_ID_E822C_QSFP:
646 case ICE_DEV_ID_E822C_10G_BASE_T:
647 case ICE_DEV_ID_E822C_SGMII:
648 case ICE_DEV_ID_E822C_SFP:
649 case ICE_DEV_ID_E822L_BACKPLANE:
650 case ICE_DEV_ID_E822L_SFP:
651 case ICE_DEV_ID_E822L_10G_BASE_T:
652 case ICE_DEV_ID_E822L_SGMII:
653 case ICE_DEV_ID_E823L_BACKPLANE:
654 case ICE_DEV_ID_E823L_SFP:
655 case ICE_DEV_ID_E823L_10G_BASE_T:
656 case ICE_DEV_ID_E823L_1GBE:
657 case ICE_DEV_ID_E823L_QSFP:
658 return status;
659 default:
660 break;
661 }
662
663 status = ice_get_orom_ver_info(hw);
664 if (status) {
665 ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
666 return status;
667 }
668
669 /* read the netlist version information */
670 status = ice_get_netlist_ver_info(hw);
671 if (status)
672 ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
673
674 return 0;
675}
676
677/**
678 * ice_nvm_validate_checksum
679 * @hw: pointer to the HW struct
680 *
681 * Verify NVM PFA checksum validity (0x0706)
682 */
683enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw)
684{
685 struct ice_aqc_nvm_checksum *cmd;
686 struct ice_aq_desc desc;
687 enum ice_status status;
688
689 status = ice_acquire_nvm(hw, ICE_RES_READ);
690 if (status)
691 return status;
692
693 cmd = &desc.params.nvm_checksum;
694
695 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
696 cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
697
698 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
699 ice_release_nvm(hw);
700
701 if (!status)
702 if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
703 status = ICE_ERR_NVM_CHECKSUM;
704
705 return status;
706}
707
708/**
709 * ice_nvm_write_activate
710 * @hw: pointer to the HW struct
711 * @cmd_flags: NVM activate admin command bits (banks to be validated)
712 *
713 * Update the control word with the required banks' validity bits
714 * and dumps the Shadow RAM to flash (0x0707)
715 */
716enum ice_status ice_nvm_write_activate(struct ice_hw *hw, u8 cmd_flags)
717{
718 struct ice_aqc_nvm *cmd;
719 struct ice_aq_desc desc;
720
721 cmd = &desc.params.nvm;
722 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
723
724 cmd->cmd_flags = cmd_flags;
725
726 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
727}
728
729/**
730 * ice_aq_nvm_update_empr
731 * @hw: pointer to the HW struct
732 *
733 * Update empr (0x0709). This command allows SW to
734 * request an EMPR to activate new FW.
735 */
736enum ice_status ice_aq_nvm_update_empr(struct ice_hw *hw)
737{
738 struct ice_aq_desc desc;
739
740 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
741
742 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
743}
744
745/* ice_nvm_set_pkg_data
746 * @hw: pointer to the HW struct
747 * @del_pkg_data_flag: If is set then the current pkg_data store by FW
748 * is deleted.
749 * If bit is set to 1, then buffer should be size 0.
750 * @data: pointer to buffer
751 * @length: length of the buffer
752 * @cd: pointer to command details structure or NULL
753 *
754 * Set package data (0x070A). This command is equivalent to the reception
755 * of a PLDM FW Update GetPackageData cmd. This command should be sent
756 * as part of the NVM update as the first cmd in the flow.
757 */
758
759enum ice_status
760ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
761 u16 length, struct ice_sq_cd *cd)
762{
763 struct ice_aqc_nvm_pkg_data *cmd;
764 struct ice_aq_desc desc;
765
766 if (length != 0 && !data)
767 return ICE_ERR_PARAM;
768
769 cmd = &desc.params.pkg_data;
770
771 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
772 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
773
774 if (del_pkg_data_flag)
775 cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
776
777 return ice_aq_send_cmd(hw, &desc, data, length, cd);
778}
779
780/* ice_nvm_pass_component_tbl
781 * @hw: pointer to the HW struct
782 * @data: pointer to buffer
783 * @length: length of the buffer
784 * @transfer_flag: parameter for determining stage of the update
785 * @comp_response: a pointer to the response from the 0x070B AQC.
786 * @comp_response_code: a pointer to the response code from the 0x070B AQC.
787 * @cd: pointer to command details structure or NULL
788 *
789 * Pass component table (0x070B). This command is equivalent to the reception
790 * of a PLDM FW Update PassComponentTable cmd. This command should be sent once
791 * per component. It can be only sent after Set Package Data cmd and before
792 * actual update. FW will assume these commands are going to be sent until
793 * the TransferFlag is set to End or StartAndEnd.
794 */
795
796enum ice_status
797ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
798 u8 transfer_flag, u8 *comp_response,
799 u8 *comp_response_code, struct ice_sq_cd *cd)
800{
801 struct ice_aqc_nvm_pass_comp_tbl *cmd;
802 struct ice_aq_desc desc;
803 enum ice_status status;
804
805 if (!data || !comp_response || !comp_response_code)
806 return ICE_ERR_PARAM;
807
808 cmd = &desc.params.pass_comp_tbl;
809
810 ice_fill_dflt_direct_cmd_desc(&desc,
811 ice_aqc_opc_nvm_pass_component_tbl);
812 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
813
814 cmd->transfer_flag = transfer_flag;
815 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
816
817 if (!status) {
818 *comp_response = cmd->component_response;
819 *comp_response_code = cmd->component_response_code;
820 }
821 return status;
822}