Loading...
1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28/**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194#include <linux/anon_inodes.h>
195#include <linux/sizes.h>
196#include <linux/uuid.h>
197
198#include "gem/i915_gem_context.h"
199#include "gem/i915_gem_pm.h"
200#include "gt/intel_lrc_reg.h"
201
202#include "i915_drv.h"
203#include "i915_perf.h"
204#include "oa/i915_oa_hsw.h"
205#include "oa/i915_oa_bdw.h"
206#include "oa/i915_oa_chv.h"
207#include "oa/i915_oa_sklgt2.h"
208#include "oa/i915_oa_sklgt3.h"
209#include "oa/i915_oa_sklgt4.h"
210#include "oa/i915_oa_bxt.h"
211#include "oa/i915_oa_kblgt2.h"
212#include "oa/i915_oa_kblgt3.h"
213#include "oa/i915_oa_glk.h"
214#include "oa/i915_oa_cflgt2.h"
215#include "oa/i915_oa_cflgt3.h"
216#include "oa/i915_oa_cnl.h"
217#include "oa/i915_oa_icl.h"
218
219/* HW requires this to be a power of two, between 128k and 16M, though driver
220 * is currently generally designed assuming the largest 16M size is used such
221 * that the overflow cases are unlikely in normal operation.
222 */
223#define OA_BUFFER_SIZE SZ_16M
224
225#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
226
227/**
228 * DOC: OA Tail Pointer Race
229 *
230 * There's a HW race condition between OA unit tail pointer register updates and
231 * writes to memory whereby the tail pointer can sometimes get ahead of what's
232 * been written out to the OA buffer so far (in terms of what's visible to the
233 * CPU).
234 *
235 * Although this can be observed explicitly while copying reports to userspace
236 * by checking for a zeroed report-id field in tail reports, we want to account
237 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
238 * read() attempts.
239 *
240 * In effect we define a tail pointer for reading that lags the real tail
241 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
242 * time for the corresponding reports to become visible to the CPU.
243 *
244 * To manage this we actually track two tail pointers:
245 * 1) An 'aging' tail with an associated timestamp that is tracked until we
246 * can trust the corresponding data is visible to the CPU; at which point
247 * it is considered 'aged'.
248 * 2) An 'aged' tail that can be used for read()ing.
249 *
250 * The two separate pointers let us decouple read()s from tail pointer aging.
251 *
252 * The tail pointers are checked and updated at a limited rate within a hrtimer
253 * callback (the same callback that is used for delivering EPOLLIN events)
254 *
255 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
256 * indicates that an updated tail pointer is needed.
257 *
258 * Most of the implementation details for this workaround are in
259 * oa_buffer_check_unlocked() and _append_oa_reports()
260 *
261 * Note for posterity: previously the driver used to define an effective tail
262 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
263 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
264 * This was flawed considering that the OA unit may also automatically generate
265 * non-periodic reports (such as on context switch) or the OA unit may be
266 * enabled without any periodic sampling.
267 */
268#define OA_TAIL_MARGIN_NSEC 100000ULL
269#define INVALID_TAIL_PTR 0xffffffff
270
271/* frequency for checking whether the OA unit has written new reports to the
272 * circular OA buffer...
273 */
274#define POLL_FREQUENCY 200
275#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
276
277/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
278static u32 i915_perf_stream_paranoid = true;
279
280/* The maximum exponent the hardware accepts is 63 (essentially it selects one
281 * of the 64bit timestamp bits to trigger reports from) but there's currently
282 * no known use case for sampling as infrequently as once per 47 thousand years.
283 *
284 * Since the timestamps included in OA reports are only 32bits it seems
285 * reasonable to limit the OA exponent where it's still possible to account for
286 * overflow in OA report timestamps.
287 */
288#define OA_EXPONENT_MAX 31
289
290#define INVALID_CTX_ID 0xffffffff
291
292/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
293#define OAREPORT_REASON_MASK 0x3f
294#define OAREPORT_REASON_SHIFT 19
295#define OAREPORT_REASON_TIMER (1<<0)
296#define OAREPORT_REASON_CTX_SWITCH (1<<3)
297#define OAREPORT_REASON_CLK_RATIO (1<<5)
298
299
300/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
301 *
302 * The highest sampling frequency we can theoretically program the OA unit
303 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
304 *
305 * Initialized just before we register the sysctl parameter.
306 */
307static int oa_sample_rate_hard_limit;
308
309/* Theoretically we can program the OA unit to sample every 160ns but don't
310 * allow that by default unless root...
311 *
312 * The default threshold of 100000Hz is based on perf's similar
313 * kernel.perf_event_max_sample_rate sysctl parameter.
314 */
315static u32 i915_oa_max_sample_rate = 100000;
316
317/* XXX: beware if future OA HW adds new report formats that the current
318 * code assumes all reports have a power-of-two size and ~(size - 1) can
319 * be used as a mask to align the OA tail pointer.
320 */
321static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
322 [I915_OA_FORMAT_A13] = { 0, 64 },
323 [I915_OA_FORMAT_A29] = { 1, 128 },
324 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
325 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
326 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
327 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
328 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
329 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
330};
331
332static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
333 [I915_OA_FORMAT_A12] = { 0, 64 },
334 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
335 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
336 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
337};
338
339#define SAMPLE_OA_REPORT (1<<0)
340
341/**
342 * struct perf_open_properties - for validated properties given to open a stream
343 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344 * @single_context: Whether a single or all gpu contexts should be monitored
345 * @ctx_handle: A gem ctx handle for use with @single_context
346 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
347 * @oa_format: An OA unit HW report format
348 * @oa_periodic: Whether to enable periodic OA unit sampling
349 * @oa_period_exponent: The OA unit sampling period is derived from this
350 *
351 * As read_properties_unlocked() enumerates and validates the properties given
352 * to open a stream of metrics the configuration is built up in the structure
353 * which starts out zero initialized.
354 */
355struct perf_open_properties {
356 u32 sample_flags;
357
358 u64 single_context:1;
359 u64 ctx_handle;
360
361 /* OA sampling state */
362 int metrics_set;
363 int oa_format;
364 bool oa_periodic;
365 int oa_period_exponent;
366};
367
368static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
369
370static void free_oa_config(struct drm_i915_private *dev_priv,
371 struct i915_oa_config *oa_config)
372{
373 if (!PTR_ERR(oa_config->flex_regs))
374 kfree(oa_config->flex_regs);
375 if (!PTR_ERR(oa_config->b_counter_regs))
376 kfree(oa_config->b_counter_regs);
377 if (!PTR_ERR(oa_config->mux_regs))
378 kfree(oa_config->mux_regs);
379 kfree(oa_config);
380}
381
382static void put_oa_config(struct drm_i915_private *dev_priv,
383 struct i915_oa_config *oa_config)
384{
385 if (!atomic_dec_and_test(&oa_config->ref_count))
386 return;
387
388 free_oa_config(dev_priv, oa_config);
389}
390
391static int get_oa_config(struct drm_i915_private *dev_priv,
392 int metrics_set,
393 struct i915_oa_config **out_config)
394{
395 int ret;
396
397 if (metrics_set == 1) {
398 *out_config = &dev_priv->perf.test_config;
399 atomic_inc(&dev_priv->perf.test_config.ref_count);
400 return 0;
401 }
402
403 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
404 if (ret)
405 return ret;
406
407 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
408 if (!*out_config)
409 ret = -EINVAL;
410 else
411 atomic_inc(&(*out_config)->ref_count);
412
413 mutex_unlock(&dev_priv->perf.metrics_lock);
414
415 return ret;
416}
417
418static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
419{
420 struct drm_i915_private *dev_priv = stream->dev_priv;
421
422 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
423}
424
425static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
426{
427 struct drm_i915_private *dev_priv = stream->dev_priv;
428 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
429
430 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
431}
432
433/**
434 * oa_buffer_check_unlocked - check for data and update tail ptr state
435 * @stream: i915 stream instance
436 *
437 * This is either called via fops (for blocking reads in user ctx) or the poll
438 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
439 * if there is data available for userspace to read.
440 *
441 * This function is central to providing a workaround for the OA unit tail
442 * pointer having a race with respect to what data is visible to the CPU.
443 * It is responsible for reading tail pointers from the hardware and giving
444 * the pointers time to 'age' before they are made available for reading.
445 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
446 *
447 * Besides returning true when there is data available to read() this function
448 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
449 * and .aged_tail_idx state used for reading.
450 *
451 * Note: It's safe to read OA config state here unlocked, assuming that this is
452 * only called while the stream is enabled, while the global OA configuration
453 * can't be modified.
454 *
455 * Returns: %true if the OA buffer contains data, else %false
456 */
457static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
458{
459 struct drm_i915_private *dev_priv = stream->dev_priv;
460 int report_size = stream->oa_buffer.format_size;
461 unsigned long flags;
462 unsigned int aged_idx;
463 u32 head, hw_tail, aged_tail, aging_tail;
464 u64 now;
465
466 /* We have to consider the (unlikely) possibility that read() errors
467 * could result in an OA buffer reset which might reset the head,
468 * tails[] and aged_tail state.
469 */
470 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
471
472 /* NB: The head we observe here might effectively be a little out of
473 * date (between head and tails[aged_idx].offset if there is currently
474 * a read() in progress.
475 */
476 head = stream->oa_buffer.head;
477
478 aged_idx = stream->oa_buffer.aged_tail_idx;
479 aged_tail = stream->oa_buffer.tails[aged_idx].offset;
480 aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
481
482 hw_tail = dev_priv->perf.ops.oa_hw_tail_read(stream);
483
484 /* The tail pointer increases in 64 byte increments,
485 * not in report_size steps...
486 */
487 hw_tail &= ~(report_size - 1);
488
489 now = ktime_get_mono_fast_ns();
490
491 /* Update the aged tail
492 *
493 * Flip the tail pointer available for read()s once the aging tail is
494 * old enough to trust that the corresponding data will be visible to
495 * the CPU...
496 *
497 * Do this before updating the aging pointer in case we may be able to
498 * immediately start aging a new pointer too (if new data has become
499 * available) without needing to wait for a later hrtimer callback.
500 */
501 if (aging_tail != INVALID_TAIL_PTR &&
502 ((now - stream->oa_buffer.aging_timestamp) >
503 OA_TAIL_MARGIN_NSEC)) {
504
505 aged_idx ^= 1;
506 stream->oa_buffer.aged_tail_idx = aged_idx;
507
508 aged_tail = aging_tail;
509
510 /* Mark that we need a new pointer to start aging... */
511 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
512 aging_tail = INVALID_TAIL_PTR;
513 }
514
515 /* Update the aging tail
516 *
517 * We throttle aging tail updates until we have a new tail that
518 * represents >= one report more data than is already available for
519 * reading. This ensures there will be enough data for a successful
520 * read once this new pointer has aged and ensures we will give the new
521 * pointer time to age.
522 */
523 if (aging_tail == INVALID_TAIL_PTR &&
524 (aged_tail == INVALID_TAIL_PTR ||
525 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
526 struct i915_vma *vma = stream->oa_buffer.vma;
527 u32 gtt_offset = i915_ggtt_offset(vma);
528
529 /* Be paranoid and do a bounds check on the pointer read back
530 * from hardware, just in case some spurious hardware condition
531 * could put the tail out of bounds...
532 */
533 if (hw_tail >= gtt_offset &&
534 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
535 stream->oa_buffer.tails[!aged_idx].offset =
536 aging_tail = hw_tail;
537 stream->oa_buffer.aging_timestamp = now;
538 } else {
539 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
540 hw_tail);
541 }
542 }
543
544 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
545
546 return aged_tail == INVALID_TAIL_PTR ?
547 false : OA_TAKEN(aged_tail, head) >= report_size;
548}
549
550/**
551 * append_oa_status - Appends a status record to a userspace read() buffer.
552 * @stream: An i915-perf stream opened for OA metrics
553 * @buf: destination buffer given by userspace
554 * @count: the number of bytes userspace wants to read
555 * @offset: (inout): the current position for writing into @buf
556 * @type: The kind of status to report to userspace
557 *
558 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
559 * into the userspace read() buffer.
560 *
561 * The @buf @offset will only be updated on success.
562 *
563 * Returns: 0 on success, negative error code on failure.
564 */
565static int append_oa_status(struct i915_perf_stream *stream,
566 char __user *buf,
567 size_t count,
568 size_t *offset,
569 enum drm_i915_perf_record_type type)
570{
571 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
572
573 if ((count - *offset) < header.size)
574 return -ENOSPC;
575
576 if (copy_to_user(buf + *offset, &header, sizeof(header)))
577 return -EFAULT;
578
579 (*offset) += header.size;
580
581 return 0;
582}
583
584/**
585 * append_oa_sample - Copies single OA report into userspace read() buffer.
586 * @stream: An i915-perf stream opened for OA metrics
587 * @buf: destination buffer given by userspace
588 * @count: the number of bytes userspace wants to read
589 * @offset: (inout): the current position for writing into @buf
590 * @report: A single OA report to (optionally) include as part of the sample
591 *
592 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
593 * properties when opening a stream, tracked as `stream->sample_flags`. This
594 * function copies the requested components of a single sample to the given
595 * read() @buf.
596 *
597 * The @buf @offset will only be updated on success.
598 *
599 * Returns: 0 on success, negative error code on failure.
600 */
601static int append_oa_sample(struct i915_perf_stream *stream,
602 char __user *buf,
603 size_t count,
604 size_t *offset,
605 const u8 *report)
606{
607 int report_size = stream->oa_buffer.format_size;
608 struct drm_i915_perf_record_header header;
609 u32 sample_flags = stream->sample_flags;
610
611 header.type = DRM_I915_PERF_RECORD_SAMPLE;
612 header.pad = 0;
613 header.size = stream->sample_size;
614
615 if ((count - *offset) < header.size)
616 return -ENOSPC;
617
618 buf += *offset;
619 if (copy_to_user(buf, &header, sizeof(header)))
620 return -EFAULT;
621 buf += sizeof(header);
622
623 if (sample_flags & SAMPLE_OA_REPORT) {
624 if (copy_to_user(buf, report, report_size))
625 return -EFAULT;
626 }
627
628 (*offset) += header.size;
629
630 return 0;
631}
632
633/**
634 * Copies all buffered OA reports into userspace read() buffer.
635 * @stream: An i915-perf stream opened for OA metrics
636 * @buf: destination buffer given by userspace
637 * @count: the number of bytes userspace wants to read
638 * @offset: (inout): the current position for writing into @buf
639 *
640 * Notably any error condition resulting in a short read (-%ENOSPC or
641 * -%EFAULT) will be returned even though one or more records may
642 * have been successfully copied. In this case it's up to the caller
643 * to decide if the error should be squashed before returning to
644 * userspace.
645 *
646 * Note: reports are consumed from the head, and appended to the
647 * tail, so the tail chases the head?... If you think that's mad
648 * and back-to-front you're not alone, but this follows the
649 * Gen PRM naming convention.
650 *
651 * Returns: 0 on success, negative error code on failure.
652 */
653static int gen8_append_oa_reports(struct i915_perf_stream *stream,
654 char __user *buf,
655 size_t count,
656 size_t *offset)
657{
658 struct drm_i915_private *dev_priv = stream->dev_priv;
659 int report_size = stream->oa_buffer.format_size;
660 u8 *oa_buf_base = stream->oa_buffer.vaddr;
661 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
662 u32 mask = (OA_BUFFER_SIZE - 1);
663 size_t start_offset = *offset;
664 unsigned long flags;
665 unsigned int aged_tail_idx;
666 u32 head, tail;
667 u32 taken;
668 int ret = 0;
669
670 if (WARN_ON(!stream->enabled))
671 return -EIO;
672
673 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
674
675 head = stream->oa_buffer.head;
676 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
677 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
678
679 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
680
681 /*
682 * An invalid tail pointer here means we're still waiting for the poll
683 * hrtimer callback to give us a pointer
684 */
685 if (tail == INVALID_TAIL_PTR)
686 return -EAGAIN;
687
688 /*
689 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
690 * while indexing relative to oa_buf_base.
691 */
692 head -= gtt_offset;
693 tail -= gtt_offset;
694
695 /*
696 * An out of bounds or misaligned head or tail pointer implies a driver
697 * bug since we validate + align the tail pointers we read from the
698 * hardware and we are in full control of the head pointer which should
699 * only be incremented by multiples of the report size (notably also
700 * all a power of two).
701 */
702 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
703 tail > OA_BUFFER_SIZE || tail % report_size,
704 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
705 head, tail))
706 return -EIO;
707
708
709 for (/* none */;
710 (taken = OA_TAKEN(tail, head));
711 head = (head + report_size) & mask) {
712 u8 *report = oa_buf_base + head;
713 u32 *report32 = (void *)report;
714 u32 ctx_id;
715 u32 reason;
716
717 /*
718 * All the report sizes factor neatly into the buffer
719 * size so we never expect to see a report split
720 * between the beginning and end of the buffer.
721 *
722 * Given the initial alignment check a misalignment
723 * here would imply a driver bug that would result
724 * in an overrun.
725 */
726 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
727 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
728 break;
729 }
730
731 /*
732 * The reason field includes flags identifying what
733 * triggered this specific report (mostly timer
734 * triggered or e.g. due to a context switch).
735 *
736 * This field is never expected to be zero so we can
737 * check that the report isn't invalid before copying
738 * it to userspace...
739 */
740 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
741 OAREPORT_REASON_MASK);
742 if (reason == 0) {
743 if (__ratelimit(&dev_priv->perf.spurious_report_rs))
744 DRM_NOTE("Skipping spurious, invalid OA report\n");
745 continue;
746 }
747
748 ctx_id = report32[2] & stream->specific_ctx_id_mask;
749
750 /*
751 * Squash whatever is in the CTX_ID field if it's marked as
752 * invalid to be sure we avoid false-positive, single-context
753 * filtering below...
754 *
755 * Note: that we don't clear the valid_ctx_bit so userspace can
756 * understand that the ID has been squashed by the kernel.
757 */
758 if (!(report32[0] & dev_priv->perf.gen8_valid_ctx_bit))
759 ctx_id = report32[2] = INVALID_CTX_ID;
760
761 /*
762 * NB: For Gen 8 the OA unit no longer supports clock gating
763 * off for a specific context and the kernel can't securely
764 * stop the counters from updating as system-wide / global
765 * values.
766 *
767 * Automatic reports now include a context ID so reports can be
768 * filtered on the cpu but it's not worth trying to
769 * automatically subtract/hide counter progress for other
770 * contexts while filtering since we can't stop userspace
771 * issuing MI_REPORT_PERF_COUNT commands which would still
772 * provide a side-band view of the real values.
773 *
774 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
775 * to normalize counters for a single filtered context then it
776 * needs be forwarded bookend context-switch reports so that it
777 * can track switches in between MI_REPORT_PERF_COUNT commands
778 * and can itself subtract/ignore the progress of counters
779 * associated with other contexts. Note that the hardware
780 * automatically triggers reports when switching to a new
781 * context which are tagged with the ID of the newly active
782 * context. To avoid the complexity (and likely fragility) of
783 * reading ahead while parsing reports to try and minimize
784 * forwarding redundant context switch reports (i.e. between
785 * other, unrelated contexts) we simply elect to forward them
786 * all.
787 *
788 * We don't rely solely on the reason field to identify context
789 * switches since it's not-uncommon for periodic samples to
790 * identify a switch before any 'context switch' report.
791 */
792 if (!dev_priv->perf.exclusive_stream->ctx ||
793 stream->specific_ctx_id == ctx_id ||
794 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
795 reason & OAREPORT_REASON_CTX_SWITCH) {
796
797 /*
798 * While filtering for a single context we avoid
799 * leaking the IDs of other contexts.
800 */
801 if (dev_priv->perf.exclusive_stream->ctx &&
802 stream->specific_ctx_id != ctx_id) {
803 report32[2] = INVALID_CTX_ID;
804 }
805
806 ret = append_oa_sample(stream, buf, count, offset,
807 report);
808 if (ret)
809 break;
810
811 stream->oa_buffer.last_ctx_id = ctx_id;
812 }
813
814 /*
815 * The above reason field sanity check is based on
816 * the assumption that the OA buffer is initially
817 * zeroed and we reset the field after copying so the
818 * check is still meaningful once old reports start
819 * being overwritten.
820 */
821 report32[0] = 0;
822 }
823
824 if (start_offset != *offset) {
825 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
826
827 /*
828 * We removed the gtt_offset for the copy loop above, indexing
829 * relative to oa_buf_base so put back here...
830 */
831 head += gtt_offset;
832
833 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
834 stream->oa_buffer.head = head;
835
836 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
837 }
838
839 return ret;
840}
841
842/**
843 * gen8_oa_read - copy status records then buffered OA reports
844 * @stream: An i915-perf stream opened for OA metrics
845 * @buf: destination buffer given by userspace
846 * @count: the number of bytes userspace wants to read
847 * @offset: (inout): the current position for writing into @buf
848 *
849 * Checks OA unit status registers and if necessary appends corresponding
850 * status records for userspace (such as for a buffer full condition) and then
851 * initiate appending any buffered OA reports.
852 *
853 * Updates @offset according to the number of bytes successfully copied into
854 * the userspace buffer.
855 *
856 * NB: some data may be successfully copied to the userspace buffer
857 * even if an error is returned, and this is reflected in the
858 * updated @offset.
859 *
860 * Returns: zero on success or a negative error code
861 */
862static int gen8_oa_read(struct i915_perf_stream *stream,
863 char __user *buf,
864 size_t count,
865 size_t *offset)
866{
867 struct drm_i915_private *dev_priv = stream->dev_priv;
868 u32 oastatus;
869 int ret;
870
871 if (WARN_ON(!stream->oa_buffer.vaddr))
872 return -EIO;
873
874 oastatus = I915_READ(GEN8_OASTATUS);
875
876 /*
877 * We treat OABUFFER_OVERFLOW as a significant error:
878 *
879 * Although theoretically we could handle this more gracefully
880 * sometimes, some Gens don't correctly suppress certain
881 * automatically triggered reports in this condition and so we
882 * have to assume that old reports are now being trampled
883 * over.
884 *
885 * Considering how we don't currently give userspace control
886 * over the OA buffer size and always configure a large 16MB
887 * buffer, then a buffer overflow does anyway likely indicate
888 * that something has gone quite badly wrong.
889 */
890 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
891 ret = append_oa_status(stream, buf, count, offset,
892 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
893 if (ret)
894 return ret;
895
896 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
897 stream->period_exponent);
898
899 dev_priv->perf.ops.oa_disable(stream);
900 dev_priv->perf.ops.oa_enable(stream);
901
902 /*
903 * Note: .oa_enable() is expected to re-init the oabuffer and
904 * reset GEN8_OASTATUS for us
905 */
906 oastatus = I915_READ(GEN8_OASTATUS);
907 }
908
909 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
910 ret = append_oa_status(stream, buf, count, offset,
911 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
912 if (ret)
913 return ret;
914 I915_WRITE(GEN8_OASTATUS,
915 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
916 }
917
918 return gen8_append_oa_reports(stream, buf, count, offset);
919}
920
921/**
922 * Copies all buffered OA reports into userspace read() buffer.
923 * @stream: An i915-perf stream opened for OA metrics
924 * @buf: destination buffer given by userspace
925 * @count: the number of bytes userspace wants to read
926 * @offset: (inout): the current position for writing into @buf
927 *
928 * Notably any error condition resulting in a short read (-%ENOSPC or
929 * -%EFAULT) will be returned even though one or more records may
930 * have been successfully copied. In this case it's up to the caller
931 * to decide if the error should be squashed before returning to
932 * userspace.
933 *
934 * Note: reports are consumed from the head, and appended to the
935 * tail, so the tail chases the head?... If you think that's mad
936 * and back-to-front you're not alone, but this follows the
937 * Gen PRM naming convention.
938 *
939 * Returns: 0 on success, negative error code on failure.
940 */
941static int gen7_append_oa_reports(struct i915_perf_stream *stream,
942 char __user *buf,
943 size_t count,
944 size_t *offset)
945{
946 struct drm_i915_private *dev_priv = stream->dev_priv;
947 int report_size = stream->oa_buffer.format_size;
948 u8 *oa_buf_base = stream->oa_buffer.vaddr;
949 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
950 u32 mask = (OA_BUFFER_SIZE - 1);
951 size_t start_offset = *offset;
952 unsigned long flags;
953 unsigned int aged_tail_idx;
954 u32 head, tail;
955 u32 taken;
956 int ret = 0;
957
958 if (WARN_ON(!stream->enabled))
959 return -EIO;
960
961 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
962
963 head = stream->oa_buffer.head;
964 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
965 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
966
967 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
968
969 /* An invalid tail pointer here means we're still waiting for the poll
970 * hrtimer callback to give us a pointer
971 */
972 if (tail == INVALID_TAIL_PTR)
973 return -EAGAIN;
974
975 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
976 * while indexing relative to oa_buf_base.
977 */
978 head -= gtt_offset;
979 tail -= gtt_offset;
980
981 /* An out of bounds or misaligned head or tail pointer implies a driver
982 * bug since we validate + align the tail pointers we read from the
983 * hardware and we are in full control of the head pointer which should
984 * only be incremented by multiples of the report size (notably also
985 * all a power of two).
986 */
987 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
988 tail > OA_BUFFER_SIZE || tail % report_size,
989 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
990 head, tail))
991 return -EIO;
992
993
994 for (/* none */;
995 (taken = OA_TAKEN(tail, head));
996 head = (head + report_size) & mask) {
997 u8 *report = oa_buf_base + head;
998 u32 *report32 = (void *)report;
999
1000 /* All the report sizes factor neatly into the buffer
1001 * size so we never expect to see a report split
1002 * between the beginning and end of the buffer.
1003 *
1004 * Given the initial alignment check a misalignment
1005 * here would imply a driver bug that would result
1006 * in an overrun.
1007 */
1008 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1009 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1010 break;
1011 }
1012
1013 /* The report-ID field for periodic samples includes
1014 * some undocumented flags related to what triggered
1015 * the report and is never expected to be zero so we
1016 * can check that the report isn't invalid before
1017 * copying it to userspace...
1018 */
1019 if (report32[0] == 0) {
1020 if (__ratelimit(&dev_priv->perf.spurious_report_rs))
1021 DRM_NOTE("Skipping spurious, invalid OA report\n");
1022 continue;
1023 }
1024
1025 ret = append_oa_sample(stream, buf, count, offset, report);
1026 if (ret)
1027 break;
1028
1029 /* The above report-id field sanity check is based on
1030 * the assumption that the OA buffer is initially
1031 * zeroed and we reset the field after copying so the
1032 * check is still meaningful once old reports start
1033 * being overwritten.
1034 */
1035 report32[0] = 0;
1036 }
1037
1038 if (start_offset != *offset) {
1039 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1040
1041 /* We removed the gtt_offset for the copy loop above, indexing
1042 * relative to oa_buf_base so put back here...
1043 */
1044 head += gtt_offset;
1045
1046 I915_WRITE(GEN7_OASTATUS2,
1047 ((head & GEN7_OASTATUS2_HEAD_MASK) |
1048 GEN7_OASTATUS2_MEM_SELECT_GGTT));
1049 stream->oa_buffer.head = head;
1050
1051 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1052 }
1053
1054 return ret;
1055}
1056
1057/**
1058 * gen7_oa_read - copy status records then buffered OA reports
1059 * @stream: An i915-perf stream opened for OA metrics
1060 * @buf: destination buffer given by userspace
1061 * @count: the number of bytes userspace wants to read
1062 * @offset: (inout): the current position for writing into @buf
1063 *
1064 * Checks Gen 7 specific OA unit status registers and if necessary appends
1065 * corresponding status records for userspace (such as for a buffer full
1066 * condition) and then initiate appending any buffered OA reports.
1067 *
1068 * Updates @offset according to the number of bytes successfully copied into
1069 * the userspace buffer.
1070 *
1071 * Returns: zero on success or a negative error code
1072 */
1073static int gen7_oa_read(struct i915_perf_stream *stream,
1074 char __user *buf,
1075 size_t count,
1076 size_t *offset)
1077{
1078 struct drm_i915_private *dev_priv = stream->dev_priv;
1079 u32 oastatus1;
1080 int ret;
1081
1082 if (WARN_ON(!stream->oa_buffer.vaddr))
1083 return -EIO;
1084
1085 oastatus1 = I915_READ(GEN7_OASTATUS1);
1086
1087 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1088 * bits while the OA unit is enabled (while the tail pointer
1089 * may be updated asynchronously) so we ignore status bits
1090 * that have already been reported to userspace.
1091 */
1092 oastatus1 &= ~dev_priv->perf.gen7_latched_oastatus1;
1093
1094 /* We treat OABUFFER_OVERFLOW as a significant error:
1095 *
1096 * - The status can be interpreted to mean that the buffer is
1097 * currently full (with a higher precedence than OA_TAKEN()
1098 * which will start to report a near-empty buffer after an
1099 * overflow) but it's awkward that we can't clear the status
1100 * on Haswell, so without a reset we won't be able to catch
1101 * the state again.
1102 *
1103 * - Since it also implies the HW has started overwriting old
1104 * reports it may also affect our sanity checks for invalid
1105 * reports when copying to userspace that assume new reports
1106 * are being written to cleared memory.
1107 *
1108 * - In the future we may want to introduce a flight recorder
1109 * mode where the driver will automatically maintain a safe
1110 * guard band between head/tail, avoiding this overflow
1111 * condition, but we avoid the added driver complexity for
1112 * now.
1113 */
1114 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1115 ret = append_oa_status(stream, buf, count, offset,
1116 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1117 if (ret)
1118 return ret;
1119
1120 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1121 stream->period_exponent);
1122
1123 dev_priv->perf.ops.oa_disable(stream);
1124 dev_priv->perf.ops.oa_enable(stream);
1125
1126 oastatus1 = I915_READ(GEN7_OASTATUS1);
1127 }
1128
1129 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1130 ret = append_oa_status(stream, buf, count, offset,
1131 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1132 if (ret)
1133 return ret;
1134 dev_priv->perf.gen7_latched_oastatus1 |=
1135 GEN7_OASTATUS1_REPORT_LOST;
1136 }
1137
1138 return gen7_append_oa_reports(stream, buf, count, offset);
1139}
1140
1141/**
1142 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1143 * @stream: An i915-perf stream opened for OA metrics
1144 *
1145 * Called when userspace tries to read() from a blocking stream FD opened
1146 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1147 * OA buffer and wakes us.
1148 *
1149 * Note: it's acceptable to have this return with some false positives
1150 * since any subsequent read handling will return -EAGAIN if there isn't
1151 * really data ready for userspace yet.
1152 *
1153 * Returns: zero on success or a negative error code
1154 */
1155static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1156{
1157 /* We would wait indefinitely if periodic sampling is not enabled */
1158 if (!stream->periodic)
1159 return -EIO;
1160
1161 return wait_event_interruptible(stream->poll_wq,
1162 oa_buffer_check_unlocked(stream));
1163}
1164
1165/**
1166 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1167 * @stream: An i915-perf stream opened for OA metrics
1168 * @file: An i915 perf stream file
1169 * @wait: poll() state table
1170 *
1171 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1172 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1173 * when it sees data ready to read in the circular OA buffer.
1174 */
1175static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1176 struct file *file,
1177 poll_table *wait)
1178{
1179 poll_wait(file, &stream->poll_wq, wait);
1180}
1181
1182/**
1183 * i915_oa_read - just calls through to &i915_oa_ops->read
1184 * @stream: An i915-perf stream opened for OA metrics
1185 * @buf: destination buffer given by userspace
1186 * @count: the number of bytes userspace wants to read
1187 * @offset: (inout): the current position for writing into @buf
1188 *
1189 * Updates @offset according to the number of bytes successfully copied into
1190 * the userspace buffer.
1191 *
1192 * Returns: zero on success or a negative error code
1193 */
1194static int i915_oa_read(struct i915_perf_stream *stream,
1195 char __user *buf,
1196 size_t count,
1197 size_t *offset)
1198{
1199 struct drm_i915_private *dev_priv = stream->dev_priv;
1200
1201 return dev_priv->perf.ops.read(stream, buf, count, offset);
1202}
1203
1204static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1205{
1206 struct i915_gem_engines_iter it;
1207 struct drm_i915_private *i915 = stream->dev_priv;
1208 struct i915_gem_context *ctx = stream->ctx;
1209 struct intel_context *ce;
1210 int err;
1211
1212 err = i915_mutex_lock_interruptible(&i915->drm);
1213 if (err)
1214 return ERR_PTR(err);
1215
1216 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1217 if (ce->engine->class != RENDER_CLASS)
1218 continue;
1219
1220 /*
1221 * As the ID is the gtt offset of the context's vma we
1222 * pin the vma to ensure the ID remains fixed.
1223 */
1224 err = intel_context_pin(ce);
1225 if (err == 0) {
1226 stream->pinned_ctx = ce;
1227 break;
1228 }
1229 }
1230 i915_gem_context_unlock_engines(ctx);
1231
1232 mutex_unlock(&i915->drm.struct_mutex);
1233 if (err)
1234 return ERR_PTR(err);
1235
1236 return stream->pinned_ctx;
1237}
1238
1239/**
1240 * oa_get_render_ctx_id - determine and hold ctx hw id
1241 * @stream: An i915-perf stream opened for OA metrics
1242 *
1243 * Determine the render context hw id, and ensure it remains fixed for the
1244 * lifetime of the stream. This ensures that we don't have to worry about
1245 * updating the context ID in OACONTROL on the fly.
1246 *
1247 * Returns: zero on success or a negative error code
1248 */
1249static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1250{
1251 struct drm_i915_private *i915 = stream->dev_priv;
1252 struct intel_context *ce;
1253
1254 ce = oa_pin_context(stream);
1255 if (IS_ERR(ce))
1256 return PTR_ERR(ce);
1257
1258 switch (INTEL_GEN(i915)) {
1259 case 7: {
1260 /*
1261 * On Haswell we don't do any post processing of the reports
1262 * and don't need to use the mask.
1263 */
1264 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1265 stream->specific_ctx_id_mask = 0;
1266 break;
1267 }
1268
1269 case 8:
1270 case 9:
1271 case 10:
1272 if (USES_GUC_SUBMISSION(i915)) {
1273 /*
1274 * When using GuC, the context descriptor we write in
1275 * i915 is read by GuC and rewritten before it's
1276 * actually written into the hardware. The LRCA is
1277 * what is put into the context id field of the
1278 * context descriptor by GuC. Because it's aligned to
1279 * a page, the lower 12bits are always at 0 and
1280 * dropped by GuC. They won't be part of the context
1281 * ID in the OA reports, so squash those lower bits.
1282 */
1283 stream->specific_ctx_id =
1284 lower_32_bits(ce->lrc_desc) >> 12;
1285
1286 /*
1287 * GuC uses the top bit to signal proxy submission, so
1288 * ignore that bit.
1289 */
1290 stream->specific_ctx_id_mask =
1291 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1292 } else {
1293 stream->specific_ctx_id_mask =
1294 (1U << GEN8_CTX_ID_WIDTH) - 1;
1295 stream->specific_ctx_id =
1296 upper_32_bits(ce->lrc_desc);
1297 stream->specific_ctx_id &=
1298 stream->specific_ctx_id_mask;
1299 }
1300 break;
1301
1302 case 11: {
1303 stream->specific_ctx_id_mask =
1304 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1305 ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1306 ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1307 stream->specific_ctx_id = upper_32_bits(ce->lrc_desc);
1308 stream->specific_ctx_id &=
1309 stream->specific_ctx_id_mask;
1310 break;
1311 }
1312
1313 default:
1314 MISSING_CASE(INTEL_GEN(i915));
1315 }
1316
1317 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1318 stream->specific_ctx_id,
1319 stream->specific_ctx_id_mask);
1320
1321 return 0;
1322}
1323
1324/**
1325 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1326 * @stream: An i915-perf stream opened for OA metrics
1327 *
1328 * In case anything needed doing to ensure the context HW ID would remain valid
1329 * for the lifetime of the stream, then that can be undone here.
1330 */
1331static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1332{
1333 struct drm_i915_private *dev_priv = stream->dev_priv;
1334 struct intel_context *ce;
1335
1336 stream->specific_ctx_id = INVALID_CTX_ID;
1337 stream->specific_ctx_id_mask = 0;
1338
1339 ce = fetch_and_zero(&stream->pinned_ctx);
1340 if (ce) {
1341 mutex_lock(&dev_priv->drm.struct_mutex);
1342 intel_context_unpin(ce);
1343 mutex_unlock(&dev_priv->drm.struct_mutex);
1344 }
1345}
1346
1347static void
1348free_oa_buffer(struct i915_perf_stream *stream)
1349{
1350 struct drm_i915_private *i915 = stream->dev_priv;
1351
1352 mutex_lock(&i915->drm.struct_mutex);
1353
1354 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1355 I915_VMA_RELEASE_MAP);
1356
1357 mutex_unlock(&i915->drm.struct_mutex);
1358
1359 stream->oa_buffer.vaddr = NULL;
1360}
1361
1362static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1363{
1364 struct drm_i915_private *dev_priv = stream->dev_priv;
1365
1366 BUG_ON(stream != dev_priv->perf.exclusive_stream);
1367
1368 /*
1369 * Unset exclusive_stream first, it will be checked while disabling
1370 * the metric set on gen8+.
1371 */
1372 mutex_lock(&dev_priv->drm.struct_mutex);
1373 dev_priv->perf.exclusive_stream = NULL;
1374 dev_priv->perf.ops.disable_metric_set(stream);
1375 mutex_unlock(&dev_priv->drm.struct_mutex);
1376
1377 free_oa_buffer(stream);
1378
1379 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1380 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
1381
1382 if (stream->ctx)
1383 oa_put_render_ctx_id(stream);
1384
1385 put_oa_config(dev_priv, stream->oa_config);
1386
1387 if (dev_priv->perf.spurious_report_rs.missed) {
1388 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1389 dev_priv->perf.spurious_report_rs.missed);
1390 }
1391}
1392
1393static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1394{
1395 struct drm_i915_private *dev_priv = stream->dev_priv;
1396 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1397 unsigned long flags;
1398
1399 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1400
1401 /* Pre-DevBDW: OABUFFER must be set with counters off,
1402 * before OASTATUS1, but after OASTATUS2
1403 */
1404 I915_WRITE(GEN7_OASTATUS2,
1405 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1406 stream->oa_buffer.head = gtt_offset;
1407
1408 I915_WRITE(GEN7_OABUFFER, gtt_offset);
1409
1410 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1411
1412 /* Mark that we need updated tail pointers to read from... */
1413 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1414 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1415
1416 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1417
1418 /* On Haswell we have to track which OASTATUS1 flags we've
1419 * already seen since they can't be cleared while periodic
1420 * sampling is enabled.
1421 */
1422 dev_priv->perf.gen7_latched_oastatus1 = 0;
1423
1424 /* NB: although the OA buffer will initially be allocated
1425 * zeroed via shmfs (and so this memset is redundant when
1426 * first allocating), we may re-init the OA buffer, either
1427 * when re-enabling a stream or in error/reset paths.
1428 *
1429 * The reason we clear the buffer for each re-init is for the
1430 * sanity check in gen7_append_oa_reports() that looks at the
1431 * report-id field to make sure it's non-zero which relies on
1432 * the assumption that new reports are being written to zeroed
1433 * memory...
1434 */
1435 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1436
1437 /* Maybe make ->pollin per-stream state if we support multiple
1438 * concurrent streams in the future.
1439 */
1440 stream->pollin = false;
1441}
1442
1443static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1444{
1445 struct drm_i915_private *dev_priv = stream->dev_priv;
1446 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1447 unsigned long flags;
1448
1449 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1450
1451 I915_WRITE(GEN8_OASTATUS, 0);
1452 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1453 stream->oa_buffer.head = gtt_offset;
1454
1455 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1456
1457 /*
1458 * PRM says:
1459 *
1460 * "This MMIO must be set before the OATAILPTR
1461 * register and after the OAHEADPTR register. This is
1462 * to enable proper functionality of the overflow
1463 * bit."
1464 */
1465 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1466 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1467 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1468
1469 /* Mark that we need updated tail pointers to read from... */
1470 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1471 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1472
1473 /*
1474 * Reset state used to recognise context switches, affecting which
1475 * reports we will forward to userspace while filtering for a single
1476 * context.
1477 */
1478 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1479
1480 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1481
1482 /*
1483 * NB: although the OA buffer will initially be allocated
1484 * zeroed via shmfs (and so this memset is redundant when
1485 * first allocating), we may re-init the OA buffer, either
1486 * when re-enabling a stream or in error/reset paths.
1487 *
1488 * The reason we clear the buffer for each re-init is for the
1489 * sanity check in gen8_append_oa_reports() that looks at the
1490 * reason field to make sure it's non-zero which relies on
1491 * the assumption that new reports are being written to zeroed
1492 * memory...
1493 */
1494 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1495
1496 /*
1497 * Maybe make ->pollin per-stream state if we support multiple
1498 * concurrent streams in the future.
1499 */
1500 stream->pollin = false;
1501}
1502
1503static int alloc_oa_buffer(struct i915_perf_stream *stream)
1504{
1505 struct drm_i915_gem_object *bo;
1506 struct drm_i915_private *dev_priv = stream->dev_priv;
1507 struct i915_vma *vma;
1508 int ret;
1509
1510 if (WARN_ON(stream->oa_buffer.vma))
1511 return -ENODEV;
1512
1513 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1514 if (ret)
1515 return ret;
1516
1517 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1518 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1519
1520 bo = i915_gem_object_create_shmem(dev_priv, OA_BUFFER_SIZE);
1521 if (IS_ERR(bo)) {
1522 DRM_ERROR("Failed to allocate OA buffer\n");
1523 ret = PTR_ERR(bo);
1524 goto unlock;
1525 }
1526
1527 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1528
1529 /* PreHSW required 512K alignment, HSW requires 16M */
1530 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1531 if (IS_ERR(vma)) {
1532 ret = PTR_ERR(vma);
1533 goto err_unref;
1534 }
1535 stream->oa_buffer.vma = vma;
1536
1537 stream->oa_buffer.vaddr =
1538 i915_gem_object_pin_map(bo, I915_MAP_WB);
1539 if (IS_ERR(stream->oa_buffer.vaddr)) {
1540 ret = PTR_ERR(stream->oa_buffer.vaddr);
1541 goto err_unpin;
1542 }
1543
1544 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1545 i915_ggtt_offset(stream->oa_buffer.vma),
1546 stream->oa_buffer.vaddr);
1547
1548 goto unlock;
1549
1550err_unpin:
1551 __i915_vma_unpin(vma);
1552
1553err_unref:
1554 i915_gem_object_put(bo);
1555
1556 stream->oa_buffer.vaddr = NULL;
1557 stream->oa_buffer.vma = NULL;
1558
1559unlock:
1560 mutex_unlock(&dev_priv->drm.struct_mutex);
1561 return ret;
1562}
1563
1564static void config_oa_regs(struct drm_i915_private *dev_priv,
1565 const struct i915_oa_reg *regs,
1566 u32 n_regs)
1567{
1568 u32 i;
1569
1570 for (i = 0; i < n_regs; i++) {
1571 const struct i915_oa_reg *reg = regs + i;
1572
1573 I915_WRITE(reg->addr, reg->value);
1574 }
1575}
1576
1577static void delay_after_mux(void)
1578{
1579 /*
1580 * It apparently takes a fairly long time for a new MUX
1581 * configuration to be be applied after these register writes.
1582 * This delay duration was derived empirically based on the
1583 * render_basic config but hopefully it covers the maximum
1584 * configuration latency.
1585 *
1586 * As a fallback, the checks in _append_oa_reports() to skip
1587 * invalid OA reports do also seem to work to discard reports
1588 * generated before this config has completed - albeit not
1589 * silently.
1590 *
1591 * Unfortunately this is essentially a magic number, since we
1592 * don't currently know of a reliable mechanism for predicting
1593 * how long the MUX config will take to apply and besides
1594 * seeing invalid reports we don't know of a reliable way to
1595 * explicitly check that the MUX config has landed.
1596 *
1597 * It's even possible we've miss characterized the underlying
1598 * problem - it just seems like the simplest explanation why
1599 * a delay at this location would mitigate any invalid reports.
1600 */
1601 usleep_range(15000, 20000);
1602}
1603
1604static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1605{
1606 struct drm_i915_private *dev_priv = stream->dev_priv;
1607 const struct i915_oa_config *oa_config = stream->oa_config;
1608
1609 /*
1610 * PRM:
1611 *
1612 * OA unit is using “crclk” for its functionality. When trunk
1613 * level clock gating takes place, OA clock would be gated,
1614 * unable to count the events from non-render clock domain.
1615 * Render clock gating must be disabled when OA is enabled to
1616 * count the events from non-render domain. Unit level clock
1617 * gating for RCS should also be disabled.
1618 */
1619 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1620 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1621 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1622 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1623
1624 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1625 delay_after_mux();
1626
1627 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1628 oa_config->b_counter_regs_len);
1629
1630 return 0;
1631}
1632
1633static void hsw_disable_metric_set(struct i915_perf_stream *stream)
1634{
1635 struct drm_i915_private *dev_priv = stream->dev_priv;
1636
1637 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1638 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1639 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1640 GEN7_DOP_CLOCK_GATE_ENABLE));
1641
1642 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1643 ~GT_NOA_ENABLE));
1644}
1645
1646static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
1647 i915_reg_t reg)
1648{
1649 u32 mmio = i915_mmio_reg_offset(reg);
1650 int i;
1651
1652 /*
1653 * This arbitrary default will select the 'EU FPU0 Pipeline
1654 * Active' event. In the future it's anticipated that there
1655 * will be an explicit 'No Event' we can select, but not yet...
1656 */
1657 if (!oa_config)
1658 return 0;
1659
1660 for (i = 0; i < oa_config->flex_regs_len; i++) {
1661 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
1662 return oa_config->flex_regs[i].value;
1663 }
1664
1665 return 0;
1666}
1667/*
1668 * NB: It must always remain pointer safe to run this even if the OA unit
1669 * has been disabled.
1670 *
1671 * It's fine to put out-of-date values into these per-context registers
1672 * in the case that the OA unit has been disabled.
1673 */
1674static void
1675gen8_update_reg_state_unlocked(struct i915_perf_stream *stream,
1676 struct intel_context *ce,
1677 u32 *reg_state,
1678 const struct i915_oa_config *oa_config)
1679{
1680 struct drm_i915_private *i915 = ce->engine->i915;
1681 u32 ctx_oactxctrl = i915->perf.ctx_oactxctrl_offset;
1682 u32 ctx_flexeu0 = i915->perf.ctx_flexeu0_offset;
1683 /* The MMIO offsets for Flex EU registers aren't contiguous */
1684 i915_reg_t flex_regs[] = {
1685 EU_PERF_CNTL0,
1686 EU_PERF_CNTL1,
1687 EU_PERF_CNTL2,
1688 EU_PERF_CNTL3,
1689 EU_PERF_CNTL4,
1690 EU_PERF_CNTL5,
1691 EU_PERF_CNTL6,
1692 };
1693 int i;
1694
1695 CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
1696 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1697 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1698 GEN8_OA_COUNTER_RESUME);
1699
1700 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
1701 CTX_REG(reg_state, ctx_flexeu0 + i * 2, flex_regs[i],
1702 oa_config_flex_reg(oa_config, flex_regs[i]));
1703 }
1704
1705 CTX_REG(reg_state,
1706 CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1707 intel_sseu_make_rpcs(i915, &ce->sseu));
1708}
1709
1710struct flex {
1711 i915_reg_t reg;
1712 u32 offset;
1713 u32 value;
1714};
1715
1716static int
1717gen8_store_flex(struct i915_request *rq,
1718 struct intel_context *ce,
1719 const struct flex *flex, unsigned int count)
1720{
1721 u32 offset;
1722 u32 *cs;
1723
1724 cs = intel_ring_begin(rq, 4 * count);
1725 if (IS_ERR(cs))
1726 return PTR_ERR(cs);
1727
1728 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
1729 do {
1730 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1731 *cs++ = offset + (flex->offset + 1) * sizeof(u32);
1732 *cs++ = 0;
1733 *cs++ = flex->value;
1734 } while (flex++, --count);
1735
1736 intel_ring_advance(rq, cs);
1737
1738 return 0;
1739}
1740
1741static int
1742gen8_load_flex(struct i915_request *rq,
1743 struct intel_context *ce,
1744 const struct flex *flex, unsigned int count)
1745{
1746 u32 *cs;
1747
1748 GEM_BUG_ON(!count || count > 63);
1749
1750 cs = intel_ring_begin(rq, 2 * count + 2);
1751 if (IS_ERR(cs))
1752 return PTR_ERR(cs);
1753
1754 *cs++ = MI_LOAD_REGISTER_IMM(count);
1755 do {
1756 *cs++ = i915_mmio_reg_offset(flex->reg);
1757 *cs++ = flex->value;
1758 } while (flex++, --count);
1759 *cs++ = MI_NOOP;
1760
1761 intel_ring_advance(rq, cs);
1762
1763 return 0;
1764}
1765
1766static int gen8_modify_context(struct intel_context *ce,
1767 const struct flex *flex, unsigned int count)
1768{
1769 struct i915_request *rq;
1770 int err;
1771
1772 lockdep_assert_held(&ce->pin_mutex);
1773
1774 rq = i915_request_create(ce->engine->kernel_context);
1775 if (IS_ERR(rq))
1776 return PTR_ERR(rq);
1777
1778 /* Serialise with the remote context */
1779 err = intel_context_prepare_remote_request(ce, rq);
1780 if (err == 0)
1781 err = gen8_store_flex(rq, ce, flex, count);
1782
1783 i915_request_add(rq);
1784 return err;
1785}
1786
1787static int gen8_modify_self(struct intel_context *ce,
1788 const struct flex *flex, unsigned int count)
1789{
1790 struct i915_request *rq;
1791 int err;
1792
1793 rq = i915_request_create(ce);
1794 if (IS_ERR(rq))
1795 return PTR_ERR(rq);
1796
1797 err = gen8_load_flex(rq, ce, flex, count);
1798
1799 i915_request_add(rq);
1800 return err;
1801}
1802
1803static int gen8_configure_context(struct i915_gem_context *ctx,
1804 struct flex *flex, unsigned int count)
1805{
1806 struct i915_gem_engines_iter it;
1807 struct intel_context *ce;
1808 int err = 0;
1809
1810 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1811 GEM_BUG_ON(ce == ce->engine->kernel_context);
1812
1813 if (ce->engine->class != RENDER_CLASS)
1814 continue;
1815
1816 err = intel_context_lock_pinned(ce);
1817 if (err)
1818 break;
1819
1820 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
1821
1822 /* Otherwise OA settings will be set upon first use */
1823 if (intel_context_is_pinned(ce))
1824 err = gen8_modify_context(ce, flex, count);
1825
1826 intel_context_unlock_pinned(ce);
1827 if (err)
1828 break;
1829 }
1830 i915_gem_context_unlock_engines(ctx);
1831
1832 return err;
1833}
1834
1835/*
1836 * Manages updating the per-context aspects of the OA stream
1837 * configuration across all contexts.
1838 *
1839 * The awkward consideration here is that OACTXCONTROL controls the
1840 * exponent for periodic sampling which is primarily used for system
1841 * wide profiling where we'd like a consistent sampling period even in
1842 * the face of context switches.
1843 *
1844 * Our approach of updating the register state context (as opposed to
1845 * say using a workaround batch buffer) ensures that the hardware
1846 * won't automatically reload an out-of-date timer exponent even
1847 * transiently before a WA BB could be parsed.
1848 *
1849 * This function needs to:
1850 * - Ensure the currently running context's per-context OA state is
1851 * updated
1852 * - Ensure that all existing contexts will have the correct per-context
1853 * OA state if they are scheduled for use.
1854 * - Ensure any new contexts will be initialized with the correct
1855 * per-context OA state.
1856 *
1857 * Note: it's only the RCS/Render context that has any OA state.
1858 */
1859static int gen8_configure_all_contexts(struct i915_perf_stream *stream,
1860 const struct i915_oa_config *oa_config)
1861{
1862 struct drm_i915_private *i915 = stream->dev_priv;
1863 /* The MMIO offsets for Flex EU registers aren't contiguous */
1864 const u32 ctx_flexeu0 = i915->perf.ctx_flexeu0_offset;
1865#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N))
1866 struct flex regs[] = {
1867 {
1868 GEN8_R_PWR_CLK_STATE,
1869 CTX_R_PWR_CLK_STATE,
1870 },
1871 {
1872 GEN8_OACTXCONTROL,
1873 i915->perf.ctx_oactxctrl_offset,
1874 ((stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1875 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1876 GEN8_OA_COUNTER_RESUME)
1877 },
1878 { EU_PERF_CNTL0, ctx_flexeuN(0) },
1879 { EU_PERF_CNTL1, ctx_flexeuN(1) },
1880 { EU_PERF_CNTL2, ctx_flexeuN(2) },
1881 { EU_PERF_CNTL3, ctx_flexeuN(3) },
1882 { EU_PERF_CNTL4, ctx_flexeuN(4) },
1883 { EU_PERF_CNTL5, ctx_flexeuN(5) },
1884 { EU_PERF_CNTL6, ctx_flexeuN(6) },
1885 };
1886#undef ctx_flexeuN
1887 struct intel_engine_cs *engine;
1888 struct i915_gem_context *ctx;
1889 int i;
1890
1891 for (i = 2; i < ARRAY_SIZE(regs); i++)
1892 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
1893
1894 lockdep_assert_held(&i915->drm.struct_mutex);
1895
1896 /*
1897 * The OA register config is setup through the context image. This image
1898 * might be written to by the GPU on context switch (in particular on
1899 * lite-restore). This means we can't safely update a context's image,
1900 * if this context is scheduled/submitted to run on the GPU.
1901 *
1902 * We could emit the OA register config through the batch buffer but
1903 * this might leave small interval of time where the OA unit is
1904 * configured at an invalid sampling period.
1905 *
1906 * Note that since we emit all requests from a single ring, there
1907 * is still an implicit global barrier here that may cause a high
1908 * priority context to wait for an otherwise independent low priority
1909 * context. Contexts idle at the time of reconfiguration are not
1910 * trapped behind the barrier.
1911 */
1912 list_for_each_entry(ctx, &i915->contexts.list, link) {
1913 int err;
1914
1915 if (ctx == i915->kernel_context)
1916 continue;
1917
1918 err = gen8_configure_context(ctx, regs, ARRAY_SIZE(regs));
1919 if (err)
1920 return err;
1921 }
1922
1923 /*
1924 * After updating all other contexts, we need to modify ourselves.
1925 * If we don't modify the kernel_context, we do not get events while
1926 * idle.
1927 */
1928 for_each_uabi_engine(engine, i915) {
1929 struct intel_context *ce = engine->kernel_context;
1930 int err;
1931
1932 if (engine->class != RENDER_CLASS)
1933 continue;
1934
1935 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
1936
1937 err = gen8_modify_self(ce, regs, ARRAY_SIZE(regs));
1938 if (err)
1939 return err;
1940 }
1941
1942 return 0;
1943}
1944
1945static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1946{
1947 struct drm_i915_private *dev_priv = stream->dev_priv;
1948 const struct i915_oa_config *oa_config = stream->oa_config;
1949 int ret;
1950
1951 /*
1952 * We disable slice/unslice clock ratio change reports on SKL since
1953 * they are too noisy. The HW generates a lot of redundant reports
1954 * where the ratio hasn't really changed causing a lot of redundant
1955 * work to processes and increasing the chances we'll hit buffer
1956 * overruns.
1957 *
1958 * Although we don't currently use the 'disable overrun' OABUFFER
1959 * feature it's worth noting that clock ratio reports have to be
1960 * disabled before considering to use that feature since the HW doesn't
1961 * correctly block these reports.
1962 *
1963 * Currently none of the high-level metrics we have depend on knowing
1964 * this ratio to normalize.
1965 *
1966 * Note: This register is not power context saved and restored, but
1967 * that's OK considering that we disable RC6 while the OA unit is
1968 * enabled.
1969 *
1970 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1971 * be read back from automatically triggered reports, as part of the
1972 * RPT_ID field.
1973 */
1974 if (IS_GEN_RANGE(dev_priv, 9, 11)) {
1975 I915_WRITE(GEN8_OA_DEBUG,
1976 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1977 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1978 }
1979
1980 /*
1981 * Update all contexts prior writing the mux configurations as we need
1982 * to make sure all slices/subslices are ON before writing to NOA
1983 * registers.
1984 */
1985 ret = gen8_configure_all_contexts(stream, oa_config);
1986 if (ret)
1987 return ret;
1988
1989 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1990 delay_after_mux();
1991
1992 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1993 oa_config->b_counter_regs_len);
1994
1995 return 0;
1996}
1997
1998static void gen8_disable_metric_set(struct i915_perf_stream *stream)
1999{
2000 struct drm_i915_private *dev_priv = stream->dev_priv;
2001
2002 /* Reset all contexts' slices/subslices configurations. */
2003 gen8_configure_all_contexts(stream, NULL);
2004
2005 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
2006 ~GT_NOA_ENABLE));
2007}
2008
2009static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2010{
2011 struct drm_i915_private *dev_priv = stream->dev_priv;
2012
2013 /* Reset all contexts' slices/subslices configurations. */
2014 gen8_configure_all_contexts(stream, NULL);
2015
2016 /* Make sure we disable noa to save power. */
2017 I915_WRITE(RPM_CONFIG1,
2018 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
2019}
2020
2021static void gen7_oa_enable(struct i915_perf_stream *stream)
2022{
2023 struct drm_i915_private *dev_priv = stream->dev_priv;
2024 struct i915_gem_context *ctx = stream->ctx;
2025 u32 ctx_id = stream->specific_ctx_id;
2026 bool periodic = stream->periodic;
2027 u32 period_exponent = stream->period_exponent;
2028 u32 report_format = stream->oa_buffer.format;
2029
2030 /*
2031 * Reset buf pointers so we don't forward reports from before now.
2032 *
2033 * Think carefully if considering trying to avoid this, since it
2034 * also ensures status flags and the buffer itself are cleared
2035 * in error paths, and we have checks for invalid reports based
2036 * on the assumption that certain fields are written to zeroed
2037 * memory which this helps maintains.
2038 */
2039 gen7_init_oa_buffer(stream);
2040
2041 I915_WRITE(GEN7_OACONTROL,
2042 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2043 (period_exponent <<
2044 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2045 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2046 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2047 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2048 GEN7_OACONTROL_ENABLE);
2049}
2050
2051static void gen8_oa_enable(struct i915_perf_stream *stream)
2052{
2053 struct drm_i915_private *dev_priv = stream->dev_priv;
2054 u32 report_format = stream->oa_buffer.format;
2055
2056 /*
2057 * Reset buf pointers so we don't forward reports from before now.
2058 *
2059 * Think carefully if considering trying to avoid this, since it
2060 * also ensures status flags and the buffer itself are cleared
2061 * in error paths, and we have checks for invalid reports based
2062 * on the assumption that certain fields are written to zeroed
2063 * memory which this helps maintains.
2064 */
2065 gen8_init_oa_buffer(stream);
2066
2067 /*
2068 * Note: we don't rely on the hardware to perform single context
2069 * filtering and instead filter on the cpu based on the context-id
2070 * field of reports
2071 */
2072 I915_WRITE(GEN8_OACONTROL, (report_format <<
2073 GEN8_OA_REPORT_FORMAT_SHIFT) |
2074 GEN8_OA_COUNTER_ENABLE);
2075}
2076
2077/**
2078 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2079 * @stream: An i915 perf stream opened for OA metrics
2080 *
2081 * [Re]enables hardware periodic sampling according to the period configured
2082 * when opening the stream. This also starts a hrtimer that will periodically
2083 * check for data in the circular OA buffer for notifying userspace (e.g.
2084 * during a read() or poll()).
2085 */
2086static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2087{
2088 struct drm_i915_private *dev_priv = stream->dev_priv;
2089
2090 dev_priv->perf.ops.oa_enable(stream);
2091
2092 if (stream->periodic)
2093 hrtimer_start(&stream->poll_check_timer,
2094 ns_to_ktime(POLL_PERIOD),
2095 HRTIMER_MODE_REL_PINNED);
2096}
2097
2098static void gen7_oa_disable(struct i915_perf_stream *stream)
2099{
2100 struct intel_uncore *uncore = &stream->dev_priv->uncore;
2101
2102 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2103 if (intel_wait_for_register(uncore,
2104 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2105 50))
2106 DRM_ERROR("wait for OA to be disabled timed out\n");
2107}
2108
2109static void gen8_oa_disable(struct i915_perf_stream *stream)
2110{
2111 struct intel_uncore *uncore = &stream->dev_priv->uncore;
2112
2113 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2114 if (intel_wait_for_register(uncore,
2115 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2116 50))
2117 DRM_ERROR("wait for OA to be disabled timed out\n");
2118}
2119
2120/**
2121 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2122 * @stream: An i915 perf stream opened for OA metrics
2123 *
2124 * Stops the OA unit from periodically writing counter reports into the
2125 * circular OA buffer. This also stops the hrtimer that periodically checks for
2126 * data in the circular OA buffer, for notifying userspace.
2127 */
2128static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2129{
2130 struct drm_i915_private *dev_priv = stream->dev_priv;
2131
2132 dev_priv->perf.ops.oa_disable(stream);
2133
2134 if (stream->periodic)
2135 hrtimer_cancel(&stream->poll_check_timer);
2136}
2137
2138static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2139 .destroy = i915_oa_stream_destroy,
2140 .enable = i915_oa_stream_enable,
2141 .disable = i915_oa_stream_disable,
2142 .wait_unlocked = i915_oa_wait_unlocked,
2143 .poll_wait = i915_oa_poll_wait,
2144 .read = i915_oa_read,
2145};
2146
2147/**
2148 * i915_oa_stream_init - validate combined props for OA stream and init
2149 * @stream: An i915 perf stream
2150 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2151 * @props: The property state that configures stream (individually validated)
2152 *
2153 * While read_properties_unlocked() validates properties in isolation it
2154 * doesn't ensure that the combination necessarily makes sense.
2155 *
2156 * At this point it has been determined that userspace wants a stream of
2157 * OA metrics, but still we need to further validate the combined
2158 * properties are OK.
2159 *
2160 * If the configuration makes sense then we can allocate memory for
2161 * a circular OA buffer and apply the requested metric set configuration.
2162 *
2163 * Returns: zero on success or a negative error code.
2164 */
2165static int i915_oa_stream_init(struct i915_perf_stream *stream,
2166 struct drm_i915_perf_open_param *param,
2167 struct perf_open_properties *props)
2168{
2169 struct drm_i915_private *dev_priv = stream->dev_priv;
2170 int format_size;
2171 int ret;
2172
2173 /* If the sysfs metrics/ directory wasn't registered for some
2174 * reason then don't let userspace try their luck with config
2175 * IDs
2176 */
2177 if (!dev_priv->perf.metrics_kobj) {
2178 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2179 return -EINVAL;
2180 }
2181
2182 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2183 DRM_DEBUG("Only OA report sampling supported\n");
2184 return -EINVAL;
2185 }
2186
2187 if (!dev_priv->perf.ops.enable_metric_set) {
2188 DRM_DEBUG("OA unit not supported\n");
2189 return -ENODEV;
2190 }
2191
2192 /* To avoid the complexity of having to accurately filter
2193 * counter reports and marshal to the appropriate client
2194 * we currently only allow exclusive access
2195 */
2196 if (dev_priv->perf.exclusive_stream) {
2197 DRM_DEBUG("OA unit already in use\n");
2198 return -EBUSY;
2199 }
2200
2201 if (!props->oa_format) {
2202 DRM_DEBUG("OA report format not specified\n");
2203 return -EINVAL;
2204 }
2205
2206 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2207
2208 format_size = dev_priv->perf.oa_formats[props->oa_format].size;
2209
2210 stream->sample_flags |= SAMPLE_OA_REPORT;
2211 stream->sample_size += format_size;
2212
2213 stream->oa_buffer.format_size = format_size;
2214 if (WARN_ON(stream->oa_buffer.format_size == 0))
2215 return -EINVAL;
2216
2217 stream->oa_buffer.format =
2218 dev_priv->perf.oa_formats[props->oa_format].format;
2219
2220 stream->periodic = props->oa_periodic;
2221 if (stream->periodic)
2222 stream->period_exponent = props->oa_period_exponent;
2223
2224 if (stream->ctx) {
2225 ret = oa_get_render_ctx_id(stream);
2226 if (ret) {
2227 DRM_DEBUG("Invalid context id to filter with\n");
2228 return ret;
2229 }
2230 }
2231
2232 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2233 if (ret) {
2234 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2235 goto err_config;
2236 }
2237
2238 /* PRM - observability performance counters:
2239 *
2240 * OACONTROL, performance counter enable, note:
2241 *
2242 * "When this bit is set, in order to have coherent counts,
2243 * RC6 power state and trunk clock gating must be disabled.
2244 * This can be achieved by programming MMIO registers as
2245 * 0xA094=0 and 0xA090[31]=1"
2246 *
2247 * In our case we are expecting that taking pm + FORCEWAKE
2248 * references will effectively disable RC6.
2249 */
2250 stream->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2251 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
2252
2253 ret = alloc_oa_buffer(stream);
2254 if (ret)
2255 goto err_oa_buf_alloc;
2256
2257 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2258 if (ret)
2259 goto err_lock;
2260
2261 stream->ops = &i915_oa_stream_ops;
2262 dev_priv->perf.exclusive_stream = stream;
2263
2264 ret = dev_priv->perf.ops.enable_metric_set(stream);
2265 if (ret) {
2266 DRM_DEBUG("Unable to enable metric set\n");
2267 goto err_enable;
2268 }
2269
2270 mutex_unlock(&dev_priv->drm.struct_mutex);
2271
2272 hrtimer_init(&stream->poll_check_timer,
2273 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2274 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2275 init_waitqueue_head(&stream->poll_wq);
2276 spin_lock_init(&stream->oa_buffer.ptr_lock);
2277
2278 return 0;
2279
2280err_enable:
2281 dev_priv->perf.exclusive_stream = NULL;
2282 dev_priv->perf.ops.disable_metric_set(stream);
2283 mutex_unlock(&dev_priv->drm.struct_mutex);
2284
2285err_lock:
2286 free_oa_buffer(stream);
2287
2288err_oa_buf_alloc:
2289 put_oa_config(dev_priv, stream->oa_config);
2290
2291 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
2292 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
2293
2294err_config:
2295 if (stream->ctx)
2296 oa_put_render_ctx_id(stream);
2297
2298 return ret;
2299}
2300
2301void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2302 struct intel_context *ce,
2303 u32 *regs)
2304{
2305 struct i915_perf_stream *stream;
2306
2307 if (engine->class != RENDER_CLASS)
2308 return;
2309
2310 stream = engine->i915->perf.exclusive_stream;
2311 if (stream)
2312 gen8_update_reg_state_unlocked(stream, ce, regs, stream->oa_config);
2313}
2314
2315/**
2316 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2317 * @stream: An i915 perf stream
2318 * @file: An i915 perf stream file
2319 * @buf: destination buffer given by userspace
2320 * @count: the number of bytes userspace wants to read
2321 * @ppos: (inout) file seek position (unused)
2322 *
2323 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2324 * ensure that if we've successfully copied any data then reporting that takes
2325 * precedence over any internal error status, so the data isn't lost.
2326 *
2327 * For example ret will be -ENOSPC whenever there is more buffered data than
2328 * can be copied to userspace, but that's only interesting if we weren't able
2329 * to copy some data because it implies the userspace buffer is too small to
2330 * receive a single record (and we never split records).
2331 *
2332 * Another case with ret == -EFAULT is more of a grey area since it would seem
2333 * like bad form for userspace to ask us to overrun its buffer, but the user
2334 * knows best:
2335 *
2336 * http://yarchive.net/comp/linux/partial_reads_writes.html
2337 *
2338 * Returns: The number of bytes copied or a negative error code on failure.
2339 */
2340static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2341 struct file *file,
2342 char __user *buf,
2343 size_t count,
2344 loff_t *ppos)
2345{
2346 /* Note we keep the offset (aka bytes read) separate from any
2347 * error status so that the final check for whether we return
2348 * the bytes read with a higher precedence than any error (see
2349 * comment below) doesn't need to be handled/duplicated in
2350 * stream->ops->read() implementations.
2351 */
2352 size_t offset = 0;
2353 int ret = stream->ops->read(stream, buf, count, &offset);
2354
2355 return offset ?: (ret ?: -EAGAIN);
2356}
2357
2358/**
2359 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2360 * @file: An i915 perf stream file
2361 * @buf: destination buffer given by userspace
2362 * @count: the number of bytes userspace wants to read
2363 * @ppos: (inout) file seek position (unused)
2364 *
2365 * The entry point for handling a read() on a stream file descriptor from
2366 * userspace. Most of the work is left to the i915_perf_read_locked() and
2367 * &i915_perf_stream_ops->read but to save having stream implementations (of
2368 * which we might have multiple later) we handle blocking read here.
2369 *
2370 * We can also consistently treat trying to read from a disabled stream
2371 * as an IO error so implementations can assume the stream is enabled
2372 * while reading.
2373 *
2374 * Returns: The number of bytes copied or a negative error code on failure.
2375 */
2376static ssize_t i915_perf_read(struct file *file,
2377 char __user *buf,
2378 size_t count,
2379 loff_t *ppos)
2380{
2381 struct i915_perf_stream *stream = file->private_data;
2382 struct drm_i915_private *dev_priv = stream->dev_priv;
2383 ssize_t ret;
2384
2385 /* To ensure it's handled consistently we simply treat all reads of a
2386 * disabled stream as an error. In particular it might otherwise lead
2387 * to a deadlock for blocking file descriptors...
2388 */
2389 if (!stream->enabled)
2390 return -EIO;
2391
2392 if (!(file->f_flags & O_NONBLOCK)) {
2393 /* There's the small chance of false positives from
2394 * stream->ops->wait_unlocked.
2395 *
2396 * E.g. with single context filtering since we only wait until
2397 * oabuffer has >= 1 report we don't immediately know whether
2398 * any reports really belong to the current context
2399 */
2400 do {
2401 ret = stream->ops->wait_unlocked(stream);
2402 if (ret)
2403 return ret;
2404
2405 mutex_lock(&dev_priv->perf.lock);
2406 ret = i915_perf_read_locked(stream, file,
2407 buf, count, ppos);
2408 mutex_unlock(&dev_priv->perf.lock);
2409 } while (ret == -EAGAIN);
2410 } else {
2411 mutex_lock(&dev_priv->perf.lock);
2412 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2413 mutex_unlock(&dev_priv->perf.lock);
2414 }
2415
2416 /* We allow the poll checking to sometimes report false positive EPOLLIN
2417 * events where we might actually report EAGAIN on read() if there's
2418 * not really any data available. In this situation though we don't
2419 * want to enter a busy loop between poll() reporting a EPOLLIN event
2420 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2421 * effectively ensures we back off until the next hrtimer callback
2422 * before reporting another EPOLLIN event.
2423 */
2424 if (ret >= 0 || ret == -EAGAIN) {
2425 /* Maybe make ->pollin per-stream state if we support multiple
2426 * concurrent streams in the future.
2427 */
2428 stream->pollin = false;
2429 }
2430
2431 return ret;
2432}
2433
2434static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2435{
2436 struct i915_perf_stream *stream =
2437 container_of(hrtimer, typeof(*stream), poll_check_timer);
2438
2439 if (oa_buffer_check_unlocked(stream)) {
2440 stream->pollin = true;
2441 wake_up(&stream->poll_wq);
2442 }
2443
2444 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2445
2446 return HRTIMER_RESTART;
2447}
2448
2449/**
2450 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2451 * @dev_priv: i915 device instance
2452 * @stream: An i915 perf stream
2453 * @file: An i915 perf stream file
2454 * @wait: poll() state table
2455 *
2456 * For handling userspace polling on an i915 perf stream, this calls through to
2457 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2458 * will be woken for new stream data.
2459 *
2460 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2461 * with any non-file-operation driver hooks.
2462 *
2463 * Returns: any poll events that are ready without sleeping
2464 */
2465static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2466 struct i915_perf_stream *stream,
2467 struct file *file,
2468 poll_table *wait)
2469{
2470 __poll_t events = 0;
2471
2472 stream->ops->poll_wait(stream, file, wait);
2473
2474 /* Note: we don't explicitly check whether there's something to read
2475 * here since this path may be very hot depending on what else
2476 * userspace is polling, or on the timeout in use. We rely solely on
2477 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2478 * samples to read.
2479 */
2480 if (stream->pollin)
2481 events |= EPOLLIN;
2482
2483 return events;
2484}
2485
2486/**
2487 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2488 * @file: An i915 perf stream file
2489 * @wait: poll() state table
2490 *
2491 * For handling userspace polling on an i915 perf stream, this ensures
2492 * poll_wait() gets called with a wait queue that will be woken for new stream
2493 * data.
2494 *
2495 * Note: Implementation deferred to i915_perf_poll_locked()
2496 *
2497 * Returns: any poll events that are ready without sleeping
2498 */
2499static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2500{
2501 struct i915_perf_stream *stream = file->private_data;
2502 struct drm_i915_private *dev_priv = stream->dev_priv;
2503 __poll_t ret;
2504
2505 mutex_lock(&dev_priv->perf.lock);
2506 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2507 mutex_unlock(&dev_priv->perf.lock);
2508
2509 return ret;
2510}
2511
2512/**
2513 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2514 * @stream: A disabled i915 perf stream
2515 *
2516 * [Re]enables the associated capture of data for this stream.
2517 *
2518 * If a stream was previously enabled then there's currently no intention
2519 * to provide userspace any guarantee about the preservation of previously
2520 * buffered data.
2521 */
2522static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2523{
2524 if (stream->enabled)
2525 return;
2526
2527 /* Allow stream->ops->enable() to refer to this */
2528 stream->enabled = true;
2529
2530 if (stream->ops->enable)
2531 stream->ops->enable(stream);
2532}
2533
2534/**
2535 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2536 * @stream: An enabled i915 perf stream
2537 *
2538 * Disables the associated capture of data for this stream.
2539 *
2540 * The intention is that disabling an re-enabling a stream will ideally be
2541 * cheaper than destroying and re-opening a stream with the same configuration,
2542 * though there are no formal guarantees about what state or buffered data
2543 * must be retained between disabling and re-enabling a stream.
2544 *
2545 * Note: while a stream is disabled it's considered an error for userspace
2546 * to attempt to read from the stream (-EIO).
2547 */
2548static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2549{
2550 if (!stream->enabled)
2551 return;
2552
2553 /* Allow stream->ops->disable() to refer to this */
2554 stream->enabled = false;
2555
2556 if (stream->ops->disable)
2557 stream->ops->disable(stream);
2558}
2559
2560/**
2561 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2562 * @stream: An i915 perf stream
2563 * @cmd: the ioctl request
2564 * @arg: the ioctl data
2565 *
2566 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2567 * with any non-file-operation driver hooks.
2568 *
2569 * Returns: zero on success or a negative error code. Returns -EINVAL for
2570 * an unknown ioctl request.
2571 */
2572static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2573 unsigned int cmd,
2574 unsigned long arg)
2575{
2576 switch (cmd) {
2577 case I915_PERF_IOCTL_ENABLE:
2578 i915_perf_enable_locked(stream);
2579 return 0;
2580 case I915_PERF_IOCTL_DISABLE:
2581 i915_perf_disable_locked(stream);
2582 return 0;
2583 }
2584
2585 return -EINVAL;
2586}
2587
2588/**
2589 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2590 * @file: An i915 perf stream file
2591 * @cmd: the ioctl request
2592 * @arg: the ioctl data
2593 *
2594 * Implementation deferred to i915_perf_ioctl_locked().
2595 *
2596 * Returns: zero on success or a negative error code. Returns -EINVAL for
2597 * an unknown ioctl request.
2598 */
2599static long i915_perf_ioctl(struct file *file,
2600 unsigned int cmd,
2601 unsigned long arg)
2602{
2603 struct i915_perf_stream *stream = file->private_data;
2604 struct drm_i915_private *dev_priv = stream->dev_priv;
2605 long ret;
2606
2607 mutex_lock(&dev_priv->perf.lock);
2608 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2609 mutex_unlock(&dev_priv->perf.lock);
2610
2611 return ret;
2612}
2613
2614/**
2615 * i915_perf_destroy_locked - destroy an i915 perf stream
2616 * @stream: An i915 perf stream
2617 *
2618 * Frees all resources associated with the given i915 perf @stream, disabling
2619 * any associated data capture in the process.
2620 *
2621 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2622 * with any non-file-operation driver hooks.
2623 */
2624static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2625{
2626 if (stream->enabled)
2627 i915_perf_disable_locked(stream);
2628
2629 if (stream->ops->destroy)
2630 stream->ops->destroy(stream);
2631
2632 list_del(&stream->link);
2633
2634 if (stream->ctx)
2635 i915_gem_context_put(stream->ctx);
2636
2637 kfree(stream);
2638}
2639
2640/**
2641 * i915_perf_release - handles userspace close() of a stream file
2642 * @inode: anonymous inode associated with file
2643 * @file: An i915 perf stream file
2644 *
2645 * Cleans up any resources associated with an open i915 perf stream file.
2646 *
2647 * NB: close() can't really fail from the userspace point of view.
2648 *
2649 * Returns: zero on success or a negative error code.
2650 */
2651static int i915_perf_release(struct inode *inode, struct file *file)
2652{
2653 struct i915_perf_stream *stream = file->private_data;
2654 struct drm_i915_private *dev_priv = stream->dev_priv;
2655
2656 mutex_lock(&dev_priv->perf.lock);
2657 i915_perf_destroy_locked(stream);
2658 mutex_unlock(&dev_priv->perf.lock);
2659
2660 /* Release the reference the perf stream kept on the driver. */
2661 drm_dev_put(&dev_priv->drm);
2662
2663 return 0;
2664}
2665
2666
2667static const struct file_operations fops = {
2668 .owner = THIS_MODULE,
2669 .llseek = no_llseek,
2670 .release = i915_perf_release,
2671 .poll = i915_perf_poll,
2672 .read = i915_perf_read,
2673 .unlocked_ioctl = i915_perf_ioctl,
2674 /* Our ioctl have no arguments, so it's safe to use the same function
2675 * to handle 32bits compatibility.
2676 */
2677 .compat_ioctl = i915_perf_ioctl,
2678};
2679
2680
2681/**
2682 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2683 * @dev_priv: i915 device instance
2684 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2685 * @props: individually validated u64 property value pairs
2686 * @file: drm file
2687 *
2688 * See i915_perf_ioctl_open() for interface details.
2689 *
2690 * Implements further stream config validation and stream initialization on
2691 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2692 * taken to serialize with any non-file-operation driver hooks.
2693 *
2694 * Note: at this point the @props have only been validated in isolation and
2695 * it's still necessary to validate that the combination of properties makes
2696 * sense.
2697 *
2698 * In the case where userspace is interested in OA unit metrics then further
2699 * config validation and stream initialization details will be handled by
2700 * i915_oa_stream_init(). The code here should only validate config state that
2701 * will be relevant to all stream types / backends.
2702 *
2703 * Returns: zero on success or a negative error code.
2704 */
2705static int
2706i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2707 struct drm_i915_perf_open_param *param,
2708 struct perf_open_properties *props,
2709 struct drm_file *file)
2710{
2711 struct i915_gem_context *specific_ctx = NULL;
2712 struct i915_perf_stream *stream = NULL;
2713 unsigned long f_flags = 0;
2714 bool privileged_op = true;
2715 int stream_fd;
2716 int ret;
2717
2718 if (props->single_context) {
2719 u32 ctx_handle = props->ctx_handle;
2720 struct drm_i915_file_private *file_priv = file->driver_priv;
2721
2722 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2723 if (!specific_ctx) {
2724 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2725 ctx_handle);
2726 ret = -ENOENT;
2727 goto err;
2728 }
2729 }
2730
2731 /*
2732 * On Haswell the OA unit supports clock gating off for a specific
2733 * context and in this mode there's no visibility of metrics for the
2734 * rest of the system, which we consider acceptable for a
2735 * non-privileged client.
2736 *
2737 * For Gen8+ the OA unit no longer supports clock gating off for a
2738 * specific context and the kernel can't securely stop the counters
2739 * from updating as system-wide / global values. Even though we can
2740 * filter reports based on the included context ID we can't block
2741 * clients from seeing the raw / global counter values via
2742 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2743 * enable the OA unit by default.
2744 */
2745 if (IS_HASWELL(dev_priv) && specific_ctx)
2746 privileged_op = false;
2747
2748 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2749 * we check a dev.i915.perf_stream_paranoid sysctl option
2750 * to determine if it's ok to access system wide OA counters
2751 * without CAP_SYS_ADMIN privileges.
2752 */
2753 if (privileged_op &&
2754 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2755 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2756 ret = -EACCES;
2757 goto err_ctx;
2758 }
2759
2760 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2761 if (!stream) {
2762 ret = -ENOMEM;
2763 goto err_ctx;
2764 }
2765
2766 stream->dev_priv = dev_priv;
2767 stream->ctx = specific_ctx;
2768
2769 ret = i915_oa_stream_init(stream, param, props);
2770 if (ret)
2771 goto err_alloc;
2772
2773 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2774 * to have _stream_init check the combination of sample flags more
2775 * thoroughly, but still this is the expected result at this point.
2776 */
2777 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2778 ret = -ENODEV;
2779 goto err_flags;
2780 }
2781
2782 list_add(&stream->link, &dev_priv->perf.streams);
2783
2784 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2785 f_flags |= O_CLOEXEC;
2786 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2787 f_flags |= O_NONBLOCK;
2788
2789 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2790 if (stream_fd < 0) {
2791 ret = stream_fd;
2792 goto err_open;
2793 }
2794
2795 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2796 i915_perf_enable_locked(stream);
2797
2798 /* Take a reference on the driver that will be kept with stream_fd
2799 * until its release.
2800 */
2801 drm_dev_get(&dev_priv->drm);
2802
2803 return stream_fd;
2804
2805err_open:
2806 list_del(&stream->link);
2807err_flags:
2808 if (stream->ops->destroy)
2809 stream->ops->destroy(stream);
2810err_alloc:
2811 kfree(stream);
2812err_ctx:
2813 if (specific_ctx)
2814 i915_gem_context_put(specific_ctx);
2815err:
2816 return ret;
2817}
2818
2819static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2820{
2821 return div64_u64(1000000000ULL * (2ULL << exponent),
2822 1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
2823}
2824
2825/**
2826 * read_properties_unlocked - validate + copy userspace stream open properties
2827 * @dev_priv: i915 device instance
2828 * @uprops: The array of u64 key value pairs given by userspace
2829 * @n_props: The number of key value pairs expected in @uprops
2830 * @props: The stream configuration built up while validating properties
2831 *
2832 * Note this function only validates properties in isolation it doesn't
2833 * validate that the combination of properties makes sense or that all
2834 * properties necessary for a particular kind of stream have been set.
2835 *
2836 * Note that there currently aren't any ordering requirements for properties so
2837 * we shouldn't validate or assume anything about ordering here. This doesn't
2838 * rule out defining new properties with ordering requirements in the future.
2839 */
2840static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2841 u64 __user *uprops,
2842 u32 n_props,
2843 struct perf_open_properties *props)
2844{
2845 u64 __user *uprop = uprops;
2846 u32 i;
2847
2848 memset(props, 0, sizeof(struct perf_open_properties));
2849
2850 if (!n_props) {
2851 DRM_DEBUG("No i915 perf properties given\n");
2852 return -EINVAL;
2853 }
2854
2855 /* Considering that ID = 0 is reserved and assuming that we don't
2856 * (currently) expect any configurations to ever specify duplicate
2857 * values for a particular property ID then the last _PROP_MAX value is
2858 * one greater than the maximum number of properties we expect to get
2859 * from userspace.
2860 */
2861 if (n_props >= DRM_I915_PERF_PROP_MAX) {
2862 DRM_DEBUG("More i915 perf properties specified than exist\n");
2863 return -EINVAL;
2864 }
2865
2866 for (i = 0; i < n_props; i++) {
2867 u64 oa_period, oa_freq_hz;
2868 u64 id, value;
2869 int ret;
2870
2871 ret = get_user(id, uprop);
2872 if (ret)
2873 return ret;
2874
2875 ret = get_user(value, uprop + 1);
2876 if (ret)
2877 return ret;
2878
2879 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2880 DRM_DEBUG("Unknown i915 perf property ID\n");
2881 return -EINVAL;
2882 }
2883
2884 switch ((enum drm_i915_perf_property_id)id) {
2885 case DRM_I915_PERF_PROP_CTX_HANDLE:
2886 props->single_context = 1;
2887 props->ctx_handle = value;
2888 break;
2889 case DRM_I915_PERF_PROP_SAMPLE_OA:
2890 if (value)
2891 props->sample_flags |= SAMPLE_OA_REPORT;
2892 break;
2893 case DRM_I915_PERF_PROP_OA_METRICS_SET:
2894 if (value == 0) {
2895 DRM_DEBUG("Unknown OA metric set ID\n");
2896 return -EINVAL;
2897 }
2898 props->metrics_set = value;
2899 break;
2900 case DRM_I915_PERF_PROP_OA_FORMAT:
2901 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2902 DRM_DEBUG("Out-of-range OA report format %llu\n",
2903 value);
2904 return -EINVAL;
2905 }
2906 if (!dev_priv->perf.oa_formats[value].size) {
2907 DRM_DEBUG("Unsupported OA report format %llu\n",
2908 value);
2909 return -EINVAL;
2910 }
2911 props->oa_format = value;
2912 break;
2913 case DRM_I915_PERF_PROP_OA_EXPONENT:
2914 if (value > OA_EXPONENT_MAX) {
2915 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2916 OA_EXPONENT_MAX);
2917 return -EINVAL;
2918 }
2919
2920 /* Theoretically we can program the OA unit to sample
2921 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2922 * for BXT. We don't allow such high sampling
2923 * frequencies by default unless root.
2924 */
2925
2926 BUILD_BUG_ON(sizeof(oa_period) != 8);
2927 oa_period = oa_exponent_to_ns(dev_priv, value);
2928
2929 /* This check is primarily to ensure that oa_period <=
2930 * UINT32_MAX (before passing to do_div which only
2931 * accepts a u32 denominator), but we can also skip
2932 * checking anything < 1Hz which implicitly can't be
2933 * limited via an integer oa_max_sample_rate.
2934 */
2935 if (oa_period <= NSEC_PER_SEC) {
2936 u64 tmp = NSEC_PER_SEC;
2937 do_div(tmp, oa_period);
2938 oa_freq_hz = tmp;
2939 } else
2940 oa_freq_hz = 0;
2941
2942 if (oa_freq_hz > i915_oa_max_sample_rate &&
2943 !capable(CAP_SYS_ADMIN)) {
2944 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2945 i915_oa_max_sample_rate);
2946 return -EACCES;
2947 }
2948
2949 props->oa_periodic = true;
2950 props->oa_period_exponent = value;
2951 break;
2952 case DRM_I915_PERF_PROP_MAX:
2953 MISSING_CASE(id);
2954 return -EINVAL;
2955 }
2956
2957 uprop += 2;
2958 }
2959
2960 return 0;
2961}
2962
2963/**
2964 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2965 * @dev: drm device
2966 * @data: ioctl data copied from userspace (unvalidated)
2967 * @file: drm file
2968 *
2969 * Validates the stream open parameters given by userspace including flags
2970 * and an array of u64 key, value pair properties.
2971 *
2972 * Very little is assumed up front about the nature of the stream being
2973 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2974 * i915-perf stream is expected to be a suitable interface for other forms of
2975 * buffered data written by the GPU besides periodic OA metrics.
2976 *
2977 * Note we copy the properties from userspace outside of the i915 perf
2978 * mutex to avoid an awkward lockdep with mmap_sem.
2979 *
2980 * Most of the implementation details are handled by
2981 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2982 * mutex for serializing with any non-file-operation driver hooks.
2983 *
2984 * Return: A newly opened i915 Perf stream file descriptor or negative
2985 * error code on failure.
2986 */
2987int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2988 struct drm_file *file)
2989{
2990 struct drm_i915_private *dev_priv = dev->dev_private;
2991 struct drm_i915_perf_open_param *param = data;
2992 struct perf_open_properties props;
2993 u32 known_open_flags;
2994 int ret;
2995
2996 if (!dev_priv->perf.initialized) {
2997 DRM_DEBUG("i915 perf interface not available for this system\n");
2998 return -ENOTSUPP;
2999 }
3000
3001 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3002 I915_PERF_FLAG_FD_NONBLOCK |
3003 I915_PERF_FLAG_DISABLED;
3004 if (param->flags & ~known_open_flags) {
3005 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3006 return -EINVAL;
3007 }
3008
3009 ret = read_properties_unlocked(dev_priv,
3010 u64_to_user_ptr(param->properties_ptr),
3011 param->num_properties,
3012 &props);
3013 if (ret)
3014 return ret;
3015
3016 mutex_lock(&dev_priv->perf.lock);
3017 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
3018 mutex_unlock(&dev_priv->perf.lock);
3019
3020 return ret;
3021}
3022
3023/**
3024 * i915_perf_register - exposes i915-perf to userspace
3025 * @dev_priv: i915 device instance
3026 *
3027 * In particular OA metric sets are advertised under a sysfs metrics/
3028 * directory allowing userspace to enumerate valid IDs that can be
3029 * used to open an i915-perf stream.
3030 */
3031void i915_perf_register(struct drm_i915_private *dev_priv)
3032{
3033 int ret;
3034
3035 if (!dev_priv->perf.initialized)
3036 return;
3037
3038 /* To be sure we're synchronized with an attempted
3039 * i915_perf_open_ioctl(); considering that we register after
3040 * being exposed to userspace.
3041 */
3042 mutex_lock(&dev_priv->perf.lock);
3043
3044 dev_priv->perf.metrics_kobj =
3045 kobject_create_and_add("metrics",
3046 &dev_priv->drm.primary->kdev->kobj);
3047 if (!dev_priv->perf.metrics_kobj)
3048 goto exit;
3049
3050 sysfs_attr_init(&dev_priv->perf.test_config.sysfs_metric_id.attr);
3051
3052 if (INTEL_GEN(dev_priv) >= 11) {
3053 i915_perf_load_test_config_icl(dev_priv);
3054 } else if (IS_CANNONLAKE(dev_priv)) {
3055 i915_perf_load_test_config_cnl(dev_priv);
3056 } else if (IS_COFFEELAKE(dev_priv)) {
3057 if (IS_CFL_GT2(dev_priv))
3058 i915_perf_load_test_config_cflgt2(dev_priv);
3059 if (IS_CFL_GT3(dev_priv))
3060 i915_perf_load_test_config_cflgt3(dev_priv);
3061 } else if (IS_GEMINILAKE(dev_priv)) {
3062 i915_perf_load_test_config_glk(dev_priv);
3063 } else if (IS_KABYLAKE(dev_priv)) {
3064 if (IS_KBL_GT2(dev_priv))
3065 i915_perf_load_test_config_kblgt2(dev_priv);
3066 else if (IS_KBL_GT3(dev_priv))
3067 i915_perf_load_test_config_kblgt3(dev_priv);
3068 } else if (IS_BROXTON(dev_priv)) {
3069 i915_perf_load_test_config_bxt(dev_priv);
3070 } else if (IS_SKYLAKE(dev_priv)) {
3071 if (IS_SKL_GT2(dev_priv))
3072 i915_perf_load_test_config_sklgt2(dev_priv);
3073 else if (IS_SKL_GT3(dev_priv))
3074 i915_perf_load_test_config_sklgt3(dev_priv);
3075 else if (IS_SKL_GT4(dev_priv))
3076 i915_perf_load_test_config_sklgt4(dev_priv);
3077 } else if (IS_CHERRYVIEW(dev_priv)) {
3078 i915_perf_load_test_config_chv(dev_priv);
3079 } else if (IS_BROADWELL(dev_priv)) {
3080 i915_perf_load_test_config_bdw(dev_priv);
3081 } else if (IS_HASWELL(dev_priv)) {
3082 i915_perf_load_test_config_hsw(dev_priv);
3083}
3084
3085 if (dev_priv->perf.test_config.id == 0)
3086 goto sysfs_error;
3087
3088 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
3089 &dev_priv->perf.test_config.sysfs_metric);
3090 if (ret)
3091 goto sysfs_error;
3092
3093 atomic_set(&dev_priv->perf.test_config.ref_count, 1);
3094
3095 goto exit;
3096
3097sysfs_error:
3098 kobject_put(dev_priv->perf.metrics_kobj);
3099 dev_priv->perf.metrics_kobj = NULL;
3100
3101exit:
3102 mutex_unlock(&dev_priv->perf.lock);
3103}
3104
3105/**
3106 * i915_perf_unregister - hide i915-perf from userspace
3107 * @dev_priv: i915 device instance
3108 *
3109 * i915-perf state cleanup is split up into an 'unregister' and
3110 * 'deinit' phase where the interface is first hidden from
3111 * userspace by i915_perf_unregister() before cleaning up
3112 * remaining state in i915_perf_fini().
3113 */
3114void i915_perf_unregister(struct drm_i915_private *dev_priv)
3115{
3116 if (!dev_priv->perf.metrics_kobj)
3117 return;
3118
3119 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3120 &dev_priv->perf.test_config.sysfs_metric);
3121
3122 kobject_put(dev_priv->perf.metrics_kobj);
3123 dev_priv->perf.metrics_kobj = NULL;
3124}
3125
3126static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
3127{
3128 static const i915_reg_t flex_eu_regs[] = {
3129 EU_PERF_CNTL0,
3130 EU_PERF_CNTL1,
3131 EU_PERF_CNTL2,
3132 EU_PERF_CNTL3,
3133 EU_PERF_CNTL4,
3134 EU_PERF_CNTL5,
3135 EU_PERF_CNTL6,
3136 };
3137 int i;
3138
3139 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3140 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3141 return true;
3142 }
3143 return false;
3144}
3145
3146static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3147{
3148 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3149 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3150 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3151 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3152 (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3153 addr <= i915_mmio_reg_offset(OACEC7_1));
3154}
3155
3156static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3157{
3158 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3159 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3160 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3161 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3162 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3163 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3164 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3165}
3166
3167static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3168{
3169 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3170 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3171 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3172 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3173}
3174
3175static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3176{
3177 return gen8_is_valid_mux_addr(dev_priv, addr) ||
3178 addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) ||
3179 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3180 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3181}
3182
3183static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3184{
3185 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3186 (addr >= 0x25100 && addr <= 0x2FF90) ||
3187 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3188 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3189 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3190}
3191
3192static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3193{
3194 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3195 (addr >= 0x182300 && addr <= 0x1823A4);
3196}
3197
3198static u32 mask_reg_value(u32 reg, u32 val)
3199{
3200 /* HALF_SLICE_CHICKEN2 is programmed with a the
3201 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3202 * programmed by userspace doesn't change this.
3203 */
3204 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3205 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3206
3207 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3208 * indicated by its name and a bunch of selection fields used by OA
3209 * configs.
3210 */
3211 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3212 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3213
3214 return val;
3215}
3216
3217static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3218 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3219 u32 __user *regs,
3220 u32 n_regs)
3221{
3222 struct i915_oa_reg *oa_regs;
3223 int err;
3224 u32 i;
3225
3226 if (!n_regs)
3227 return NULL;
3228
3229 if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3230 return ERR_PTR(-EFAULT);
3231
3232 /* No is_valid function means we're not allowing any register to be programmed. */
3233 GEM_BUG_ON(!is_valid);
3234 if (!is_valid)
3235 return ERR_PTR(-EINVAL);
3236
3237 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3238 if (!oa_regs)
3239 return ERR_PTR(-ENOMEM);
3240
3241 for (i = 0; i < n_regs; i++) {
3242 u32 addr, value;
3243
3244 err = get_user(addr, regs);
3245 if (err)
3246 goto addr_err;
3247
3248 if (!is_valid(dev_priv, addr)) {
3249 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3250 err = -EINVAL;
3251 goto addr_err;
3252 }
3253
3254 err = get_user(value, regs + 1);
3255 if (err)
3256 goto addr_err;
3257
3258 oa_regs[i].addr = _MMIO(addr);
3259 oa_regs[i].value = mask_reg_value(addr, value);
3260
3261 regs += 2;
3262 }
3263
3264 return oa_regs;
3265
3266addr_err:
3267 kfree(oa_regs);
3268 return ERR_PTR(err);
3269}
3270
3271static ssize_t show_dynamic_id(struct device *dev,
3272 struct device_attribute *attr,
3273 char *buf)
3274{
3275 struct i915_oa_config *oa_config =
3276 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3277
3278 return sprintf(buf, "%d\n", oa_config->id);
3279}
3280
3281static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3282 struct i915_oa_config *oa_config)
3283{
3284 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3285 oa_config->sysfs_metric_id.attr.name = "id";
3286 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3287 oa_config->sysfs_metric_id.show = show_dynamic_id;
3288 oa_config->sysfs_metric_id.store = NULL;
3289
3290 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3291 oa_config->attrs[1] = NULL;
3292
3293 oa_config->sysfs_metric.name = oa_config->uuid;
3294 oa_config->sysfs_metric.attrs = oa_config->attrs;
3295
3296 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3297 &oa_config->sysfs_metric);
3298}
3299
3300/**
3301 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3302 * @dev: drm device
3303 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3304 * userspace (unvalidated)
3305 * @file: drm file
3306 *
3307 * Validates the submitted OA register to be saved into a new OA config that
3308 * can then be used for programming the OA unit and its NOA network.
3309 *
3310 * Returns: A new allocated config number to be used with the perf open ioctl
3311 * or a negative error code on failure.
3312 */
3313int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3314 struct drm_file *file)
3315{
3316 struct drm_i915_private *dev_priv = dev->dev_private;
3317 struct drm_i915_perf_oa_config *args = data;
3318 struct i915_oa_config *oa_config, *tmp;
3319 int err, id;
3320
3321 if (!dev_priv->perf.initialized) {
3322 DRM_DEBUG("i915 perf interface not available for this system\n");
3323 return -ENOTSUPP;
3324 }
3325
3326 if (!dev_priv->perf.metrics_kobj) {
3327 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3328 return -EINVAL;
3329 }
3330
3331 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3332 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3333 return -EACCES;
3334 }
3335
3336 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3337 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3338 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3339 DRM_DEBUG("No OA registers given\n");
3340 return -EINVAL;
3341 }
3342
3343 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3344 if (!oa_config) {
3345 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3346 return -ENOMEM;
3347 }
3348
3349 atomic_set(&oa_config->ref_count, 1);
3350
3351 if (!uuid_is_valid(args->uuid)) {
3352 DRM_DEBUG("Invalid uuid format for OA config\n");
3353 err = -EINVAL;
3354 goto reg_err;
3355 }
3356
3357 /* Last character in oa_config->uuid will be 0 because oa_config is
3358 * kzalloc.
3359 */
3360 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3361
3362 oa_config->mux_regs_len = args->n_mux_regs;
3363 oa_config->mux_regs =
3364 alloc_oa_regs(dev_priv,
3365 dev_priv->perf.ops.is_valid_mux_reg,
3366 u64_to_user_ptr(args->mux_regs_ptr),
3367 args->n_mux_regs);
3368
3369 if (IS_ERR(oa_config->mux_regs)) {
3370 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3371 err = PTR_ERR(oa_config->mux_regs);
3372 goto reg_err;
3373 }
3374
3375 oa_config->b_counter_regs_len = args->n_boolean_regs;
3376 oa_config->b_counter_regs =
3377 alloc_oa_regs(dev_priv,
3378 dev_priv->perf.ops.is_valid_b_counter_reg,
3379 u64_to_user_ptr(args->boolean_regs_ptr),
3380 args->n_boolean_regs);
3381
3382 if (IS_ERR(oa_config->b_counter_regs)) {
3383 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3384 err = PTR_ERR(oa_config->b_counter_regs);
3385 goto reg_err;
3386 }
3387
3388 if (INTEL_GEN(dev_priv) < 8) {
3389 if (args->n_flex_regs != 0) {
3390 err = -EINVAL;
3391 goto reg_err;
3392 }
3393 } else {
3394 oa_config->flex_regs_len = args->n_flex_regs;
3395 oa_config->flex_regs =
3396 alloc_oa_regs(dev_priv,
3397 dev_priv->perf.ops.is_valid_flex_reg,
3398 u64_to_user_ptr(args->flex_regs_ptr),
3399 args->n_flex_regs);
3400
3401 if (IS_ERR(oa_config->flex_regs)) {
3402 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3403 err = PTR_ERR(oa_config->flex_regs);
3404 goto reg_err;
3405 }
3406 }
3407
3408 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3409 if (err)
3410 goto reg_err;
3411
3412 /* We shouldn't have too many configs, so this iteration shouldn't be
3413 * too costly.
3414 */
3415 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3416 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3417 DRM_DEBUG("OA config already exists with this uuid\n");
3418 err = -EADDRINUSE;
3419 goto sysfs_err;
3420 }
3421 }
3422
3423 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3424 if (err) {
3425 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3426 goto sysfs_err;
3427 }
3428
3429 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3430 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3431 oa_config, 2,
3432 0, GFP_KERNEL);
3433 if (oa_config->id < 0) {
3434 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3435 err = oa_config->id;
3436 goto sysfs_err;
3437 }
3438
3439 mutex_unlock(&dev_priv->perf.metrics_lock);
3440
3441 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3442
3443 return oa_config->id;
3444
3445sysfs_err:
3446 mutex_unlock(&dev_priv->perf.metrics_lock);
3447reg_err:
3448 put_oa_config(dev_priv, oa_config);
3449 DRM_DEBUG("Failed to add new OA config\n");
3450 return err;
3451}
3452
3453/**
3454 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3455 * @dev: drm device
3456 * @data: ioctl data (pointer to u64 integer) copied from userspace
3457 * @file: drm file
3458 *
3459 * Configs can be removed while being used, the will stop appearing in sysfs
3460 * and their content will be freed when the stream using the config is closed.
3461 *
3462 * Returns: 0 on success or a negative error code on failure.
3463 */
3464int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3465 struct drm_file *file)
3466{
3467 struct drm_i915_private *dev_priv = dev->dev_private;
3468 u64 *arg = data;
3469 struct i915_oa_config *oa_config;
3470 int ret;
3471
3472 if (!dev_priv->perf.initialized) {
3473 DRM_DEBUG("i915 perf interface not available for this system\n");
3474 return -ENOTSUPP;
3475 }
3476
3477 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3478 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3479 return -EACCES;
3480 }
3481
3482 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3483 if (ret)
3484 goto lock_err;
3485
3486 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3487 if (!oa_config) {
3488 DRM_DEBUG("Failed to remove unknown OA config\n");
3489 ret = -ENOENT;
3490 goto config_err;
3491 }
3492
3493 GEM_BUG_ON(*arg != oa_config->id);
3494
3495 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3496 &oa_config->sysfs_metric);
3497
3498 idr_remove(&dev_priv->perf.metrics_idr, *arg);
3499
3500 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3501
3502 put_oa_config(dev_priv, oa_config);
3503
3504config_err:
3505 mutex_unlock(&dev_priv->perf.metrics_lock);
3506lock_err:
3507 return ret;
3508}
3509
3510static struct ctl_table oa_table[] = {
3511 {
3512 .procname = "perf_stream_paranoid",
3513 .data = &i915_perf_stream_paranoid,
3514 .maxlen = sizeof(i915_perf_stream_paranoid),
3515 .mode = 0644,
3516 .proc_handler = proc_dointvec_minmax,
3517 .extra1 = SYSCTL_ZERO,
3518 .extra2 = SYSCTL_ONE,
3519 },
3520 {
3521 .procname = "oa_max_sample_rate",
3522 .data = &i915_oa_max_sample_rate,
3523 .maxlen = sizeof(i915_oa_max_sample_rate),
3524 .mode = 0644,
3525 .proc_handler = proc_dointvec_minmax,
3526 .extra1 = SYSCTL_ZERO,
3527 .extra2 = &oa_sample_rate_hard_limit,
3528 },
3529 {}
3530};
3531
3532static struct ctl_table i915_root[] = {
3533 {
3534 .procname = "i915",
3535 .maxlen = 0,
3536 .mode = 0555,
3537 .child = oa_table,
3538 },
3539 {}
3540};
3541
3542static struct ctl_table dev_root[] = {
3543 {
3544 .procname = "dev",
3545 .maxlen = 0,
3546 .mode = 0555,
3547 .child = i915_root,
3548 },
3549 {}
3550};
3551
3552/**
3553 * i915_perf_init - initialize i915-perf state on module load
3554 * @dev_priv: i915 device instance
3555 *
3556 * Initializes i915-perf state without exposing anything to userspace.
3557 *
3558 * Note: i915-perf initialization is split into an 'init' and 'register'
3559 * phase with the i915_perf_register() exposing state to userspace.
3560 */
3561void i915_perf_init(struct drm_i915_private *dev_priv)
3562{
3563 if (IS_HASWELL(dev_priv)) {
3564 dev_priv->perf.ops.is_valid_b_counter_reg =
3565 gen7_is_valid_b_counter_addr;
3566 dev_priv->perf.ops.is_valid_mux_reg =
3567 hsw_is_valid_mux_addr;
3568 dev_priv->perf.ops.is_valid_flex_reg = NULL;
3569 dev_priv->perf.ops.enable_metric_set = hsw_enable_metric_set;
3570 dev_priv->perf.ops.disable_metric_set = hsw_disable_metric_set;
3571 dev_priv->perf.ops.oa_enable = gen7_oa_enable;
3572 dev_priv->perf.ops.oa_disable = gen7_oa_disable;
3573 dev_priv->perf.ops.read = gen7_oa_read;
3574 dev_priv->perf.ops.oa_hw_tail_read =
3575 gen7_oa_hw_tail_read;
3576
3577 dev_priv->perf.oa_formats = hsw_oa_formats;
3578 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3579 /* Note: that although we could theoretically also support the
3580 * legacy ringbuffer mode on BDW (and earlier iterations of
3581 * this driver, before upstreaming did this) it didn't seem
3582 * worth the complexity to maintain now that BDW+ enable
3583 * execlist mode by default.
3584 */
3585 dev_priv->perf.oa_formats = gen8_plus_oa_formats;
3586
3587 dev_priv->perf.ops.oa_enable = gen8_oa_enable;
3588 dev_priv->perf.ops.oa_disable = gen8_oa_disable;
3589 dev_priv->perf.ops.read = gen8_oa_read;
3590 dev_priv->perf.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3591
3592 if (IS_GEN_RANGE(dev_priv, 8, 9)) {
3593 dev_priv->perf.ops.is_valid_b_counter_reg =
3594 gen7_is_valid_b_counter_addr;
3595 dev_priv->perf.ops.is_valid_mux_reg =
3596 gen8_is_valid_mux_addr;
3597 dev_priv->perf.ops.is_valid_flex_reg =
3598 gen8_is_valid_flex_addr;
3599
3600 if (IS_CHERRYVIEW(dev_priv)) {
3601 dev_priv->perf.ops.is_valid_mux_reg =
3602 chv_is_valid_mux_addr;
3603 }
3604
3605 dev_priv->perf.ops.enable_metric_set = gen8_enable_metric_set;
3606 dev_priv->perf.ops.disable_metric_set = gen8_disable_metric_set;
3607
3608 if (IS_GEN(dev_priv, 8)) {
3609 dev_priv->perf.ctx_oactxctrl_offset = 0x120;
3610 dev_priv->perf.ctx_flexeu0_offset = 0x2ce;
3611
3612 dev_priv->perf.gen8_valid_ctx_bit = BIT(25);
3613 } else {
3614 dev_priv->perf.ctx_oactxctrl_offset = 0x128;
3615 dev_priv->perf.ctx_flexeu0_offset = 0x3de;
3616
3617 dev_priv->perf.gen8_valid_ctx_bit = BIT(16);
3618 }
3619 } else if (IS_GEN_RANGE(dev_priv, 10, 11)) {
3620 dev_priv->perf.ops.is_valid_b_counter_reg =
3621 gen7_is_valid_b_counter_addr;
3622 dev_priv->perf.ops.is_valid_mux_reg =
3623 gen10_is_valid_mux_addr;
3624 dev_priv->perf.ops.is_valid_flex_reg =
3625 gen8_is_valid_flex_addr;
3626
3627 dev_priv->perf.ops.enable_metric_set = gen8_enable_metric_set;
3628 dev_priv->perf.ops.disable_metric_set = gen10_disable_metric_set;
3629
3630 if (IS_GEN(dev_priv, 10)) {
3631 dev_priv->perf.ctx_oactxctrl_offset = 0x128;
3632 dev_priv->perf.ctx_flexeu0_offset = 0x3de;
3633 } else {
3634 dev_priv->perf.ctx_oactxctrl_offset = 0x124;
3635 dev_priv->perf.ctx_flexeu0_offset = 0x78e;
3636 }
3637 dev_priv->perf.gen8_valid_ctx_bit = BIT(16);
3638 }
3639 }
3640
3641 if (dev_priv->perf.ops.enable_metric_set) {
3642 INIT_LIST_HEAD(&dev_priv->perf.streams);
3643 mutex_init(&dev_priv->perf.lock);
3644
3645 oa_sample_rate_hard_limit = 1000 *
3646 (RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3647 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3648
3649 mutex_init(&dev_priv->perf.metrics_lock);
3650 idr_init(&dev_priv->perf.metrics_idr);
3651
3652 /* We set up some ratelimit state to potentially throttle any
3653 * _NOTES about spurious, invalid OA reports which we don't
3654 * forward to userspace.
3655 *
3656 * We print a _NOTE about any throttling when closing the
3657 * stream instead of waiting until driver _fini which no one
3658 * would ever see.
3659 *
3660 * Using the same limiting factors as printk_ratelimit()
3661 */
3662 ratelimit_state_init(&dev_priv->perf.spurious_report_rs,
3663 5 * HZ, 10);
3664 /* Since we use a DRM_NOTE for spurious reports it would be
3665 * inconsistent to let __ratelimit() automatically print a
3666 * warning for throttling.
3667 */
3668 ratelimit_set_flags(&dev_priv->perf.spurious_report_rs,
3669 RATELIMIT_MSG_ON_RELEASE);
3670
3671 dev_priv->perf.initialized = true;
3672 }
3673}
3674
3675static int destroy_config(int id, void *p, void *data)
3676{
3677 struct drm_i915_private *dev_priv = data;
3678 struct i915_oa_config *oa_config = p;
3679
3680 put_oa_config(dev_priv, oa_config);
3681
3682 return 0;
3683}
3684
3685/**
3686 * i915_perf_fini - Counter part to i915_perf_init()
3687 * @dev_priv: i915 device instance
3688 */
3689void i915_perf_fini(struct drm_i915_private *dev_priv)
3690{
3691 if (!dev_priv->perf.initialized)
3692 return;
3693
3694 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3695 idr_destroy(&dev_priv->perf.metrics_idr);
3696
3697 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3698
3699 memset(&dev_priv->perf.ops, 0, sizeof(dev_priv->perf.ops));
3700
3701 dev_priv->perf.initialized = false;
3702}
1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28/**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194#include <linux/anon_inodes.h>
195#include <linux/sizes.h>
196#include <linux/uuid.h>
197
198#include "gem/i915_gem_context.h"
199#include "gt/intel_engine_pm.h"
200#include "gt/intel_engine_user.h"
201#include "gt/intel_gt.h"
202#include "gt/intel_lrc_reg.h"
203#include "gt/intel_ring.h"
204
205#include "i915_drv.h"
206#include "i915_perf.h"
207
208/* HW requires this to be a power of two, between 128k and 16M, though driver
209 * is currently generally designed assuming the largest 16M size is used such
210 * that the overflow cases are unlikely in normal operation.
211 */
212#define OA_BUFFER_SIZE SZ_16M
213
214#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
215
216/**
217 * DOC: OA Tail Pointer Race
218 *
219 * There's a HW race condition between OA unit tail pointer register updates and
220 * writes to memory whereby the tail pointer can sometimes get ahead of what's
221 * been written out to the OA buffer so far (in terms of what's visible to the
222 * CPU).
223 *
224 * Although this can be observed explicitly while copying reports to userspace
225 * by checking for a zeroed report-id field in tail reports, we want to account
226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227 * redundant read() attempts.
228 *
229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230 * in the OA buffer, starting from the tail reported by the HW until we find a
231 * report with its first 2 dwords not 0 meaning its previous report is
232 * completely in memory and ready to be read. Those dwords are also set to 0
233 * once read and the whole buffer is cleared upon OA buffer initialization. The
234 * first dword is the reason for this report while the second is the timestamp,
235 * making the chances of having those 2 fields at 0 fairly unlikely. A more
236 * detailed explanation is available in oa_buffer_check_unlocked().
237 *
238 * Most of the implementation details for this workaround are in
239 * oa_buffer_check_unlocked() and _append_oa_reports()
240 *
241 * Note for posterity: previously the driver used to define an effective tail
242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244 * This was flawed considering that the OA unit may also automatically generate
245 * non-periodic reports (such as on context switch) or the OA unit may be
246 * enabled without any periodic sampling.
247 */
248#define OA_TAIL_MARGIN_NSEC 100000ULL
249#define INVALID_TAIL_PTR 0xffffffff
250
251/* The default frequency for checking whether the OA unit has written new
252 * reports to the circular OA buffer...
253 */
254#define DEFAULT_POLL_FREQUENCY_HZ 200
255#define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
256
257/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258static u32 i915_perf_stream_paranoid = true;
259
260/* The maximum exponent the hardware accepts is 63 (essentially it selects one
261 * of the 64bit timestamp bits to trigger reports from) but there's currently
262 * no known use case for sampling as infrequently as once per 47 thousand years.
263 *
264 * Since the timestamps included in OA reports are only 32bits it seems
265 * reasonable to limit the OA exponent where it's still possible to account for
266 * overflow in OA report timestamps.
267 */
268#define OA_EXPONENT_MAX 31
269
270#define INVALID_CTX_ID 0xffffffff
271
272/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273#define OAREPORT_REASON_MASK 0x3f
274#define OAREPORT_REASON_MASK_EXTENDED 0x7f
275#define OAREPORT_REASON_SHIFT 19
276#define OAREPORT_REASON_TIMER (1<<0)
277#define OAREPORT_REASON_CTX_SWITCH (1<<3)
278#define OAREPORT_REASON_CLK_RATIO (1<<5)
279
280
281/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
282 *
283 * The highest sampling frequency we can theoretically program the OA unit
284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
285 *
286 * Initialized just before we register the sysctl parameter.
287 */
288static int oa_sample_rate_hard_limit;
289
290/* Theoretically we can program the OA unit to sample every 160ns but don't
291 * allow that by default unless root...
292 *
293 * The default threshold of 100000Hz is based on perf's similar
294 * kernel.perf_event_max_sample_rate sysctl parameter.
295 */
296static u32 i915_oa_max_sample_rate = 100000;
297
298/* XXX: beware if future OA HW adds new report formats that the current
299 * code assumes all reports have a power-of-two size and ~(size - 1) can
300 * be used as a mask to align the OA tail pointer.
301 */
302static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303 [I915_OA_FORMAT_A13] = { 0, 64 },
304 [I915_OA_FORMAT_A29] = { 1, 128 },
305 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
306 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
308 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
309 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
310 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
311};
312
313static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314 [I915_OA_FORMAT_A12] = { 0, 64 },
315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
318};
319
320static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
321 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
322};
323
324#define SAMPLE_OA_REPORT (1<<0)
325
326/**
327 * struct perf_open_properties - for validated properties given to open a stream
328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329 * @single_context: Whether a single or all gpu contexts should be monitored
330 * @hold_preemption: Whether the preemption is disabled for the filtered
331 * context
332 * @ctx_handle: A gem ctx handle for use with @single_context
333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334 * @oa_format: An OA unit HW report format
335 * @oa_periodic: Whether to enable periodic OA unit sampling
336 * @oa_period_exponent: The OA unit sampling period is derived from this
337 * @engine: The engine (typically rcs0) being monitored by the OA unit
338 * @has_sseu: Whether @sseu was specified by userspace
339 * @sseu: internal SSEU configuration computed either from the userspace
340 * specified configuration in the opening parameters or a default value
341 * (see get_default_sseu_config())
342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
343 * data availability
344 *
345 * As read_properties_unlocked() enumerates and validates the properties given
346 * to open a stream of metrics the configuration is built up in the structure
347 * which starts out zero initialized.
348 */
349struct perf_open_properties {
350 u32 sample_flags;
351
352 u64 single_context:1;
353 u64 hold_preemption:1;
354 u64 ctx_handle;
355
356 /* OA sampling state */
357 int metrics_set;
358 int oa_format;
359 bool oa_periodic;
360 int oa_period_exponent;
361
362 struct intel_engine_cs *engine;
363
364 bool has_sseu;
365 struct intel_sseu sseu;
366
367 u64 poll_oa_period;
368};
369
370struct i915_oa_config_bo {
371 struct llist_node node;
372
373 struct i915_oa_config *oa_config;
374 struct i915_vma *vma;
375};
376
377static struct ctl_table_header *sysctl_header;
378
379static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
380
381void i915_oa_config_release(struct kref *ref)
382{
383 struct i915_oa_config *oa_config =
384 container_of(ref, typeof(*oa_config), ref);
385
386 kfree(oa_config->flex_regs);
387 kfree(oa_config->b_counter_regs);
388 kfree(oa_config->mux_regs);
389
390 kfree_rcu(oa_config, rcu);
391}
392
393struct i915_oa_config *
394i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
395{
396 struct i915_oa_config *oa_config;
397
398 rcu_read_lock();
399 oa_config = idr_find(&perf->metrics_idr, metrics_set);
400 if (oa_config)
401 oa_config = i915_oa_config_get(oa_config);
402 rcu_read_unlock();
403
404 return oa_config;
405}
406
407static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
408{
409 i915_oa_config_put(oa_bo->oa_config);
410 i915_vma_put(oa_bo->vma);
411 kfree(oa_bo);
412}
413
414static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
415{
416 struct intel_uncore *uncore = stream->uncore;
417
418 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
419 GEN12_OAG_OATAILPTR_MASK;
420}
421
422static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
423{
424 struct intel_uncore *uncore = stream->uncore;
425
426 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
427}
428
429static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
430{
431 struct intel_uncore *uncore = stream->uncore;
432 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
433
434 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
435}
436
437/**
438 * oa_buffer_check_unlocked - check for data and update tail ptr state
439 * @stream: i915 stream instance
440 *
441 * This is either called via fops (for blocking reads in user ctx) or the poll
442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443 * if there is data available for userspace to read.
444 *
445 * This function is central to providing a workaround for the OA unit tail
446 * pointer having a race with respect to what data is visible to the CPU.
447 * It is responsible for reading tail pointers from the hardware and giving
448 * the pointers time to 'age' before they are made available for reading.
449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
450 *
451 * Besides returning true when there is data available to read() this function
452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
453 * object.
454 *
455 * Note: It's safe to read OA config state here unlocked, assuming that this is
456 * only called while the stream is enabled, while the global OA configuration
457 * can't be modified.
458 *
459 * Returns: %true if the OA buffer contains data, else %false
460 */
461static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
462{
463 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464 int report_size = stream->oa_buffer.format_size;
465 unsigned long flags;
466 bool pollin;
467 u32 hw_tail;
468 u64 now;
469
470 /* We have to consider the (unlikely) possibility that read() errors
471 * could result in an OA buffer reset which might reset the head and
472 * tail state.
473 */
474 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
475
476 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
477
478 /* The tail pointer increases in 64 byte increments,
479 * not in report_size steps...
480 */
481 hw_tail &= ~(report_size - 1);
482
483 now = ktime_get_mono_fast_ns();
484
485 if (hw_tail == stream->oa_buffer.aging_tail &&
486 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
487 /* If the HW tail hasn't move since the last check and the HW
488 * tail has been aging for long enough, declare it the new
489 * tail.
490 */
491 stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
492 } else {
493 u32 head, tail, aged_tail;
494
495 /* NB: The head we observe here might effectively be a little
496 * out of date. If a read() is in progress, the head could be
497 * anywhere between this head and stream->oa_buffer.tail.
498 */
499 head = stream->oa_buffer.head - gtt_offset;
500 aged_tail = stream->oa_buffer.tail - gtt_offset;
501
502 hw_tail -= gtt_offset;
503 tail = hw_tail;
504
505 /* Walk the stream backward until we find a report with dword 0
506 * & 1 not at 0. Since the circular buffer pointers progress by
507 * increments of 64 bytes and that reports can be up to 256
508 * bytes long, we can't tell whether a report has fully landed
509 * in memory before the first 2 dwords of the following report
510 * have effectively landed.
511 *
512 * This is assuming that the writes of the OA unit land in
513 * memory in the order they were written to.
514 * If not : (╯°□°)╯︵ ┻━┻
515 */
516 while (OA_TAKEN(tail, aged_tail) >= report_size) {
517 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
518
519 if (report32[0] != 0 || report32[1] != 0)
520 break;
521
522 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
523 }
524
525 if (OA_TAKEN(hw_tail, tail) > report_size &&
526 __ratelimit(&stream->perf->tail_pointer_race))
527 DRM_NOTE("unlanded report(s) head=0x%x "
528 "tail=0x%x hw_tail=0x%x\n",
529 head, tail, hw_tail);
530
531 stream->oa_buffer.tail = gtt_offset + tail;
532 stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
533 stream->oa_buffer.aging_timestamp = now;
534 }
535
536 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
537 stream->oa_buffer.head - gtt_offset) >= report_size;
538
539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
540
541 return pollin;
542}
543
544/**
545 * append_oa_status - Appends a status record to a userspace read() buffer.
546 * @stream: An i915-perf stream opened for OA metrics
547 * @buf: destination buffer given by userspace
548 * @count: the number of bytes userspace wants to read
549 * @offset: (inout): the current position for writing into @buf
550 * @type: The kind of status to report to userspace
551 *
552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553 * into the userspace read() buffer.
554 *
555 * The @buf @offset will only be updated on success.
556 *
557 * Returns: 0 on success, negative error code on failure.
558 */
559static int append_oa_status(struct i915_perf_stream *stream,
560 char __user *buf,
561 size_t count,
562 size_t *offset,
563 enum drm_i915_perf_record_type type)
564{
565 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
566
567 if ((count - *offset) < header.size)
568 return -ENOSPC;
569
570 if (copy_to_user(buf + *offset, &header, sizeof(header)))
571 return -EFAULT;
572
573 (*offset) += header.size;
574
575 return 0;
576}
577
578/**
579 * append_oa_sample - Copies single OA report into userspace read() buffer.
580 * @stream: An i915-perf stream opened for OA metrics
581 * @buf: destination buffer given by userspace
582 * @count: the number of bytes userspace wants to read
583 * @offset: (inout): the current position for writing into @buf
584 * @report: A single OA report to (optionally) include as part of the sample
585 *
586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587 * properties when opening a stream, tracked as `stream->sample_flags`. This
588 * function copies the requested components of a single sample to the given
589 * read() @buf.
590 *
591 * The @buf @offset will only be updated on success.
592 *
593 * Returns: 0 on success, negative error code on failure.
594 */
595static int append_oa_sample(struct i915_perf_stream *stream,
596 char __user *buf,
597 size_t count,
598 size_t *offset,
599 const u8 *report)
600{
601 int report_size = stream->oa_buffer.format_size;
602 struct drm_i915_perf_record_header header;
603 u32 sample_flags = stream->sample_flags;
604
605 header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 header.pad = 0;
607 header.size = stream->sample_size;
608
609 if ((count - *offset) < header.size)
610 return -ENOSPC;
611
612 buf += *offset;
613 if (copy_to_user(buf, &header, sizeof(header)))
614 return -EFAULT;
615 buf += sizeof(header);
616
617 if (sample_flags & SAMPLE_OA_REPORT) {
618 if (copy_to_user(buf, report, report_size))
619 return -EFAULT;
620 }
621
622 (*offset) += header.size;
623
624 return 0;
625}
626
627/**
628 * Copies all buffered OA reports into userspace read() buffer.
629 * @stream: An i915-perf stream opened for OA metrics
630 * @buf: destination buffer given by userspace
631 * @count: the number of bytes userspace wants to read
632 * @offset: (inout): the current position for writing into @buf
633 *
634 * Notably any error condition resulting in a short read (-%ENOSPC or
635 * -%EFAULT) will be returned even though one or more records may
636 * have been successfully copied. In this case it's up to the caller
637 * to decide if the error should be squashed before returning to
638 * userspace.
639 *
640 * Note: reports are consumed from the head, and appended to the
641 * tail, so the tail chases the head?... If you think that's mad
642 * and back-to-front you're not alone, but this follows the
643 * Gen PRM naming convention.
644 *
645 * Returns: 0 on success, negative error code on failure.
646 */
647static int gen8_append_oa_reports(struct i915_perf_stream *stream,
648 char __user *buf,
649 size_t count,
650 size_t *offset)
651{
652 struct intel_uncore *uncore = stream->uncore;
653 int report_size = stream->oa_buffer.format_size;
654 u8 *oa_buf_base = stream->oa_buffer.vaddr;
655 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
656 u32 mask = (OA_BUFFER_SIZE - 1);
657 size_t start_offset = *offset;
658 unsigned long flags;
659 u32 head, tail;
660 u32 taken;
661 int ret = 0;
662
663 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
664 return -EIO;
665
666 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
667
668 head = stream->oa_buffer.head;
669 tail = stream->oa_buffer.tail;
670
671 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
672
673 /*
674 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
675 * while indexing relative to oa_buf_base.
676 */
677 head -= gtt_offset;
678 tail -= gtt_offset;
679
680 /*
681 * An out of bounds or misaligned head or tail pointer implies a driver
682 * bug since we validate + align the tail pointers we read from the
683 * hardware and we are in full control of the head pointer which should
684 * only be incremented by multiples of the report size (notably also
685 * all a power of two).
686 */
687 if (drm_WARN_ONCE(&uncore->i915->drm,
688 head > OA_BUFFER_SIZE || head % report_size ||
689 tail > OA_BUFFER_SIZE || tail % report_size,
690 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
691 head, tail))
692 return -EIO;
693
694
695 for (/* none */;
696 (taken = OA_TAKEN(tail, head));
697 head = (head + report_size) & mask) {
698 u8 *report = oa_buf_base + head;
699 u32 *report32 = (void *)report;
700 u32 ctx_id;
701 u32 reason;
702
703 /*
704 * All the report sizes factor neatly into the buffer
705 * size so we never expect to see a report split
706 * between the beginning and end of the buffer.
707 *
708 * Given the initial alignment check a misalignment
709 * here would imply a driver bug that would result
710 * in an overrun.
711 */
712 if (drm_WARN_ON(&uncore->i915->drm,
713 (OA_BUFFER_SIZE - head) < report_size)) {
714 drm_err(&uncore->i915->drm,
715 "Spurious OA head ptr: non-integral report offset\n");
716 break;
717 }
718
719 /*
720 * The reason field includes flags identifying what
721 * triggered this specific report (mostly timer
722 * triggered or e.g. due to a context switch).
723 *
724 * This field is never expected to be zero so we can
725 * check that the report isn't invalid before copying
726 * it to userspace...
727 */
728 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
729 (IS_GEN(stream->perf->i915, 12) ?
730 OAREPORT_REASON_MASK_EXTENDED :
731 OAREPORT_REASON_MASK));
732 if (reason == 0) {
733 if (__ratelimit(&stream->perf->spurious_report_rs))
734 DRM_NOTE("Skipping spurious, invalid OA report\n");
735 continue;
736 }
737
738 ctx_id = report32[2] & stream->specific_ctx_id_mask;
739
740 /*
741 * Squash whatever is in the CTX_ID field if it's marked as
742 * invalid to be sure we avoid false-positive, single-context
743 * filtering below...
744 *
745 * Note: that we don't clear the valid_ctx_bit so userspace can
746 * understand that the ID has been squashed by the kernel.
747 */
748 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
749 INTEL_GEN(stream->perf->i915) <= 11)
750 ctx_id = report32[2] = INVALID_CTX_ID;
751
752 /*
753 * NB: For Gen 8 the OA unit no longer supports clock gating
754 * off for a specific context and the kernel can't securely
755 * stop the counters from updating as system-wide / global
756 * values.
757 *
758 * Automatic reports now include a context ID so reports can be
759 * filtered on the cpu but it's not worth trying to
760 * automatically subtract/hide counter progress for other
761 * contexts while filtering since we can't stop userspace
762 * issuing MI_REPORT_PERF_COUNT commands which would still
763 * provide a side-band view of the real values.
764 *
765 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
766 * to normalize counters for a single filtered context then it
767 * needs be forwarded bookend context-switch reports so that it
768 * can track switches in between MI_REPORT_PERF_COUNT commands
769 * and can itself subtract/ignore the progress of counters
770 * associated with other contexts. Note that the hardware
771 * automatically triggers reports when switching to a new
772 * context which are tagged with the ID of the newly active
773 * context. To avoid the complexity (and likely fragility) of
774 * reading ahead while parsing reports to try and minimize
775 * forwarding redundant context switch reports (i.e. between
776 * other, unrelated contexts) we simply elect to forward them
777 * all.
778 *
779 * We don't rely solely on the reason field to identify context
780 * switches since it's not-uncommon for periodic samples to
781 * identify a switch before any 'context switch' report.
782 */
783 if (!stream->perf->exclusive_stream->ctx ||
784 stream->specific_ctx_id == ctx_id ||
785 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
786 reason & OAREPORT_REASON_CTX_SWITCH) {
787
788 /*
789 * While filtering for a single context we avoid
790 * leaking the IDs of other contexts.
791 */
792 if (stream->perf->exclusive_stream->ctx &&
793 stream->specific_ctx_id != ctx_id) {
794 report32[2] = INVALID_CTX_ID;
795 }
796
797 ret = append_oa_sample(stream, buf, count, offset,
798 report);
799 if (ret)
800 break;
801
802 stream->oa_buffer.last_ctx_id = ctx_id;
803 }
804
805 /*
806 * Clear out the first 2 dword as a mean to detect unlanded
807 * reports.
808 */
809 report32[0] = 0;
810 report32[1] = 0;
811 }
812
813 if (start_offset != *offset) {
814 i915_reg_t oaheadptr;
815
816 oaheadptr = IS_GEN(stream->perf->i915, 12) ?
817 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
818
819 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
820
821 /*
822 * We removed the gtt_offset for the copy loop above, indexing
823 * relative to oa_buf_base so put back here...
824 */
825 head += gtt_offset;
826 intel_uncore_write(uncore, oaheadptr,
827 head & GEN12_OAG_OAHEADPTR_MASK);
828 stream->oa_buffer.head = head;
829
830 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
831 }
832
833 return ret;
834}
835
836/**
837 * gen8_oa_read - copy status records then buffered OA reports
838 * @stream: An i915-perf stream opened for OA metrics
839 * @buf: destination buffer given by userspace
840 * @count: the number of bytes userspace wants to read
841 * @offset: (inout): the current position for writing into @buf
842 *
843 * Checks OA unit status registers and if necessary appends corresponding
844 * status records for userspace (such as for a buffer full condition) and then
845 * initiate appending any buffered OA reports.
846 *
847 * Updates @offset according to the number of bytes successfully copied into
848 * the userspace buffer.
849 *
850 * NB: some data may be successfully copied to the userspace buffer
851 * even if an error is returned, and this is reflected in the
852 * updated @offset.
853 *
854 * Returns: zero on success or a negative error code
855 */
856static int gen8_oa_read(struct i915_perf_stream *stream,
857 char __user *buf,
858 size_t count,
859 size_t *offset)
860{
861 struct intel_uncore *uncore = stream->uncore;
862 u32 oastatus;
863 i915_reg_t oastatus_reg;
864 int ret;
865
866 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
867 return -EIO;
868
869 oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
870 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
871
872 oastatus = intel_uncore_read(uncore, oastatus_reg);
873
874 /*
875 * We treat OABUFFER_OVERFLOW as a significant error:
876 *
877 * Although theoretically we could handle this more gracefully
878 * sometimes, some Gens don't correctly suppress certain
879 * automatically triggered reports in this condition and so we
880 * have to assume that old reports are now being trampled
881 * over.
882 *
883 * Considering how we don't currently give userspace control
884 * over the OA buffer size and always configure a large 16MB
885 * buffer, then a buffer overflow does anyway likely indicate
886 * that something has gone quite badly wrong.
887 */
888 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
889 ret = append_oa_status(stream, buf, count, offset,
890 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
891 if (ret)
892 return ret;
893
894 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
895 stream->period_exponent);
896
897 stream->perf->ops.oa_disable(stream);
898 stream->perf->ops.oa_enable(stream);
899
900 /*
901 * Note: .oa_enable() is expected to re-init the oabuffer and
902 * reset GEN8_OASTATUS for us
903 */
904 oastatus = intel_uncore_read(uncore, oastatus_reg);
905 }
906
907 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
908 ret = append_oa_status(stream, buf, count, offset,
909 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
910 if (ret)
911 return ret;
912 intel_uncore_write(uncore, oastatus_reg,
913 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
914 }
915
916 return gen8_append_oa_reports(stream, buf, count, offset);
917}
918
919/**
920 * Copies all buffered OA reports into userspace read() buffer.
921 * @stream: An i915-perf stream opened for OA metrics
922 * @buf: destination buffer given by userspace
923 * @count: the number of bytes userspace wants to read
924 * @offset: (inout): the current position for writing into @buf
925 *
926 * Notably any error condition resulting in a short read (-%ENOSPC or
927 * -%EFAULT) will be returned even though one or more records may
928 * have been successfully copied. In this case it's up to the caller
929 * to decide if the error should be squashed before returning to
930 * userspace.
931 *
932 * Note: reports are consumed from the head, and appended to the
933 * tail, so the tail chases the head?... If you think that's mad
934 * and back-to-front you're not alone, but this follows the
935 * Gen PRM naming convention.
936 *
937 * Returns: 0 on success, negative error code on failure.
938 */
939static int gen7_append_oa_reports(struct i915_perf_stream *stream,
940 char __user *buf,
941 size_t count,
942 size_t *offset)
943{
944 struct intel_uncore *uncore = stream->uncore;
945 int report_size = stream->oa_buffer.format_size;
946 u8 *oa_buf_base = stream->oa_buffer.vaddr;
947 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
948 u32 mask = (OA_BUFFER_SIZE - 1);
949 size_t start_offset = *offset;
950 unsigned long flags;
951 u32 head, tail;
952 u32 taken;
953 int ret = 0;
954
955 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
956 return -EIO;
957
958 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
959
960 head = stream->oa_buffer.head;
961 tail = stream->oa_buffer.tail;
962
963 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
964
965 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
966 * while indexing relative to oa_buf_base.
967 */
968 head -= gtt_offset;
969 tail -= gtt_offset;
970
971 /* An out of bounds or misaligned head or tail pointer implies a driver
972 * bug since we validate + align the tail pointers we read from the
973 * hardware and we are in full control of the head pointer which should
974 * only be incremented by multiples of the report size (notably also
975 * all a power of two).
976 */
977 if (drm_WARN_ONCE(&uncore->i915->drm,
978 head > OA_BUFFER_SIZE || head % report_size ||
979 tail > OA_BUFFER_SIZE || tail % report_size,
980 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
981 head, tail))
982 return -EIO;
983
984
985 for (/* none */;
986 (taken = OA_TAKEN(tail, head));
987 head = (head + report_size) & mask) {
988 u8 *report = oa_buf_base + head;
989 u32 *report32 = (void *)report;
990
991 /* All the report sizes factor neatly into the buffer
992 * size so we never expect to see a report split
993 * between the beginning and end of the buffer.
994 *
995 * Given the initial alignment check a misalignment
996 * here would imply a driver bug that would result
997 * in an overrun.
998 */
999 if (drm_WARN_ON(&uncore->i915->drm,
1000 (OA_BUFFER_SIZE - head) < report_size)) {
1001 drm_err(&uncore->i915->drm,
1002 "Spurious OA head ptr: non-integral report offset\n");
1003 break;
1004 }
1005
1006 /* The report-ID field for periodic samples includes
1007 * some undocumented flags related to what triggered
1008 * the report and is never expected to be zero so we
1009 * can check that the report isn't invalid before
1010 * copying it to userspace...
1011 */
1012 if (report32[0] == 0) {
1013 if (__ratelimit(&stream->perf->spurious_report_rs))
1014 DRM_NOTE("Skipping spurious, invalid OA report\n");
1015 continue;
1016 }
1017
1018 ret = append_oa_sample(stream, buf, count, offset, report);
1019 if (ret)
1020 break;
1021
1022 /* Clear out the first 2 dwords as a mean to detect unlanded
1023 * reports.
1024 */
1025 report32[0] = 0;
1026 report32[1] = 0;
1027 }
1028
1029 if (start_offset != *offset) {
1030 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1031
1032 /* We removed the gtt_offset for the copy loop above, indexing
1033 * relative to oa_buf_base so put back here...
1034 */
1035 head += gtt_offset;
1036
1037 intel_uncore_write(uncore, GEN7_OASTATUS2,
1038 (head & GEN7_OASTATUS2_HEAD_MASK) |
1039 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1040 stream->oa_buffer.head = head;
1041
1042 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1043 }
1044
1045 return ret;
1046}
1047
1048/**
1049 * gen7_oa_read - copy status records then buffered OA reports
1050 * @stream: An i915-perf stream opened for OA metrics
1051 * @buf: destination buffer given by userspace
1052 * @count: the number of bytes userspace wants to read
1053 * @offset: (inout): the current position for writing into @buf
1054 *
1055 * Checks Gen 7 specific OA unit status registers and if necessary appends
1056 * corresponding status records for userspace (such as for a buffer full
1057 * condition) and then initiate appending any buffered OA reports.
1058 *
1059 * Updates @offset according to the number of bytes successfully copied into
1060 * the userspace buffer.
1061 *
1062 * Returns: zero on success or a negative error code
1063 */
1064static int gen7_oa_read(struct i915_perf_stream *stream,
1065 char __user *buf,
1066 size_t count,
1067 size_t *offset)
1068{
1069 struct intel_uncore *uncore = stream->uncore;
1070 u32 oastatus1;
1071 int ret;
1072
1073 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1074 return -EIO;
1075
1076 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1077
1078 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1079 * bits while the OA unit is enabled (while the tail pointer
1080 * may be updated asynchronously) so we ignore status bits
1081 * that have already been reported to userspace.
1082 */
1083 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1084
1085 /* We treat OABUFFER_OVERFLOW as a significant error:
1086 *
1087 * - The status can be interpreted to mean that the buffer is
1088 * currently full (with a higher precedence than OA_TAKEN()
1089 * which will start to report a near-empty buffer after an
1090 * overflow) but it's awkward that we can't clear the status
1091 * on Haswell, so without a reset we won't be able to catch
1092 * the state again.
1093 *
1094 * - Since it also implies the HW has started overwriting old
1095 * reports it may also affect our sanity checks for invalid
1096 * reports when copying to userspace that assume new reports
1097 * are being written to cleared memory.
1098 *
1099 * - In the future we may want to introduce a flight recorder
1100 * mode where the driver will automatically maintain a safe
1101 * guard band between head/tail, avoiding this overflow
1102 * condition, but we avoid the added driver complexity for
1103 * now.
1104 */
1105 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1106 ret = append_oa_status(stream, buf, count, offset,
1107 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1108 if (ret)
1109 return ret;
1110
1111 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1112 stream->period_exponent);
1113
1114 stream->perf->ops.oa_disable(stream);
1115 stream->perf->ops.oa_enable(stream);
1116
1117 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1118 }
1119
1120 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1121 ret = append_oa_status(stream, buf, count, offset,
1122 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1123 if (ret)
1124 return ret;
1125 stream->perf->gen7_latched_oastatus1 |=
1126 GEN7_OASTATUS1_REPORT_LOST;
1127 }
1128
1129 return gen7_append_oa_reports(stream, buf, count, offset);
1130}
1131
1132/**
1133 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1134 * @stream: An i915-perf stream opened for OA metrics
1135 *
1136 * Called when userspace tries to read() from a blocking stream FD opened
1137 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1138 * OA buffer and wakes us.
1139 *
1140 * Note: it's acceptable to have this return with some false positives
1141 * since any subsequent read handling will return -EAGAIN if there isn't
1142 * really data ready for userspace yet.
1143 *
1144 * Returns: zero on success or a negative error code
1145 */
1146static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1147{
1148 /* We would wait indefinitely if periodic sampling is not enabled */
1149 if (!stream->periodic)
1150 return -EIO;
1151
1152 return wait_event_interruptible(stream->poll_wq,
1153 oa_buffer_check_unlocked(stream));
1154}
1155
1156/**
1157 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1158 * @stream: An i915-perf stream opened for OA metrics
1159 * @file: An i915 perf stream file
1160 * @wait: poll() state table
1161 *
1162 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1163 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1164 * when it sees data ready to read in the circular OA buffer.
1165 */
1166static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1167 struct file *file,
1168 poll_table *wait)
1169{
1170 poll_wait(file, &stream->poll_wq, wait);
1171}
1172
1173/**
1174 * i915_oa_read - just calls through to &i915_oa_ops->read
1175 * @stream: An i915-perf stream opened for OA metrics
1176 * @buf: destination buffer given by userspace
1177 * @count: the number of bytes userspace wants to read
1178 * @offset: (inout): the current position for writing into @buf
1179 *
1180 * Updates @offset according to the number of bytes successfully copied into
1181 * the userspace buffer.
1182 *
1183 * Returns: zero on success or a negative error code
1184 */
1185static int i915_oa_read(struct i915_perf_stream *stream,
1186 char __user *buf,
1187 size_t count,
1188 size_t *offset)
1189{
1190 return stream->perf->ops.read(stream, buf, count, offset);
1191}
1192
1193static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1194{
1195 struct i915_gem_engines_iter it;
1196 struct i915_gem_context *ctx = stream->ctx;
1197 struct intel_context *ce;
1198 int err;
1199
1200 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1201 if (ce->engine != stream->engine) /* first match! */
1202 continue;
1203
1204 /*
1205 * As the ID is the gtt offset of the context's vma we
1206 * pin the vma to ensure the ID remains fixed.
1207 */
1208 err = intel_context_pin(ce);
1209 if (err == 0) {
1210 stream->pinned_ctx = ce;
1211 break;
1212 }
1213 }
1214 i915_gem_context_unlock_engines(ctx);
1215
1216 return stream->pinned_ctx;
1217}
1218
1219/**
1220 * oa_get_render_ctx_id - determine and hold ctx hw id
1221 * @stream: An i915-perf stream opened for OA metrics
1222 *
1223 * Determine the render context hw id, and ensure it remains fixed for the
1224 * lifetime of the stream. This ensures that we don't have to worry about
1225 * updating the context ID in OACONTROL on the fly.
1226 *
1227 * Returns: zero on success or a negative error code
1228 */
1229static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1230{
1231 struct intel_context *ce;
1232
1233 ce = oa_pin_context(stream);
1234 if (IS_ERR(ce))
1235 return PTR_ERR(ce);
1236
1237 switch (INTEL_GEN(ce->engine->i915)) {
1238 case 7: {
1239 /*
1240 * On Haswell we don't do any post processing of the reports
1241 * and don't need to use the mask.
1242 */
1243 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1244 stream->specific_ctx_id_mask = 0;
1245 break;
1246 }
1247
1248 case 8:
1249 case 9:
1250 case 10:
1251 if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1252 stream->specific_ctx_id_mask =
1253 (1U << GEN8_CTX_ID_WIDTH) - 1;
1254 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1255 } else {
1256 /*
1257 * When using GuC, the context descriptor we write in
1258 * i915 is read by GuC and rewritten before it's
1259 * actually written into the hardware. The LRCA is
1260 * what is put into the context id field of the
1261 * context descriptor by GuC. Because it's aligned to
1262 * a page, the lower 12bits are always at 0 and
1263 * dropped by GuC. They won't be part of the context
1264 * ID in the OA reports, so squash those lower bits.
1265 */
1266 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1267
1268 /*
1269 * GuC uses the top bit to signal proxy submission, so
1270 * ignore that bit.
1271 */
1272 stream->specific_ctx_id_mask =
1273 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1274 }
1275 break;
1276
1277 case 11:
1278 case 12: {
1279 stream->specific_ctx_id_mask =
1280 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1281 /*
1282 * Pick an unused context id
1283 * 0 - BITS_PER_LONG are used by other contexts
1284 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1285 */
1286 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1287 break;
1288 }
1289
1290 default:
1291 MISSING_CASE(INTEL_GEN(ce->engine->i915));
1292 }
1293
1294 ce->tag = stream->specific_ctx_id;
1295
1296 drm_dbg(&stream->perf->i915->drm,
1297 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1298 stream->specific_ctx_id,
1299 stream->specific_ctx_id_mask);
1300
1301 return 0;
1302}
1303
1304/**
1305 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1306 * @stream: An i915-perf stream opened for OA metrics
1307 *
1308 * In case anything needed doing to ensure the context HW ID would remain valid
1309 * for the lifetime of the stream, then that can be undone here.
1310 */
1311static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1312{
1313 struct intel_context *ce;
1314
1315 ce = fetch_and_zero(&stream->pinned_ctx);
1316 if (ce) {
1317 ce->tag = 0; /* recomputed on next submission after parking */
1318 intel_context_unpin(ce);
1319 }
1320
1321 stream->specific_ctx_id = INVALID_CTX_ID;
1322 stream->specific_ctx_id_mask = 0;
1323}
1324
1325static void
1326free_oa_buffer(struct i915_perf_stream *stream)
1327{
1328 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1329 I915_VMA_RELEASE_MAP);
1330
1331 stream->oa_buffer.vaddr = NULL;
1332}
1333
1334static void
1335free_oa_configs(struct i915_perf_stream *stream)
1336{
1337 struct i915_oa_config_bo *oa_bo, *tmp;
1338
1339 i915_oa_config_put(stream->oa_config);
1340 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1341 free_oa_config_bo(oa_bo);
1342}
1343
1344static void
1345free_noa_wait(struct i915_perf_stream *stream)
1346{
1347 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1348}
1349
1350static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1351{
1352 struct i915_perf *perf = stream->perf;
1353
1354 BUG_ON(stream != perf->exclusive_stream);
1355
1356 /*
1357 * Unset exclusive_stream first, it will be checked while disabling
1358 * the metric set on gen8+.
1359 *
1360 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1361 */
1362 WRITE_ONCE(perf->exclusive_stream, NULL);
1363 perf->ops.disable_metric_set(stream);
1364
1365 free_oa_buffer(stream);
1366
1367 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1368 intel_engine_pm_put(stream->engine);
1369
1370 if (stream->ctx)
1371 oa_put_render_ctx_id(stream);
1372
1373 free_oa_configs(stream);
1374 free_noa_wait(stream);
1375
1376 if (perf->spurious_report_rs.missed) {
1377 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1378 perf->spurious_report_rs.missed);
1379 }
1380}
1381
1382static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1383{
1384 struct intel_uncore *uncore = stream->uncore;
1385 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1386 unsigned long flags;
1387
1388 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1389
1390 /* Pre-DevBDW: OABUFFER must be set with counters off,
1391 * before OASTATUS1, but after OASTATUS2
1392 */
1393 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1394 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1395 stream->oa_buffer.head = gtt_offset;
1396
1397 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1398
1399 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1400 gtt_offset | OABUFFER_SIZE_16M);
1401
1402 /* Mark that we need updated tail pointers to read from... */
1403 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1404 stream->oa_buffer.tail = gtt_offset;
1405
1406 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1407
1408 /* On Haswell we have to track which OASTATUS1 flags we've
1409 * already seen since they can't be cleared while periodic
1410 * sampling is enabled.
1411 */
1412 stream->perf->gen7_latched_oastatus1 = 0;
1413
1414 /* NB: although the OA buffer will initially be allocated
1415 * zeroed via shmfs (and so this memset is redundant when
1416 * first allocating), we may re-init the OA buffer, either
1417 * when re-enabling a stream or in error/reset paths.
1418 *
1419 * The reason we clear the buffer for each re-init is for the
1420 * sanity check in gen7_append_oa_reports() that looks at the
1421 * report-id field to make sure it's non-zero which relies on
1422 * the assumption that new reports are being written to zeroed
1423 * memory...
1424 */
1425 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1426}
1427
1428static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1429{
1430 struct intel_uncore *uncore = stream->uncore;
1431 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1432 unsigned long flags;
1433
1434 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1435
1436 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1437 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1438 stream->oa_buffer.head = gtt_offset;
1439
1440 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1441
1442 /*
1443 * PRM says:
1444 *
1445 * "This MMIO must be set before the OATAILPTR
1446 * register and after the OAHEADPTR register. This is
1447 * to enable proper functionality of the overflow
1448 * bit."
1449 */
1450 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1451 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1452 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1453
1454 /* Mark that we need updated tail pointers to read from... */
1455 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1456 stream->oa_buffer.tail = gtt_offset;
1457
1458 /*
1459 * Reset state used to recognise context switches, affecting which
1460 * reports we will forward to userspace while filtering for a single
1461 * context.
1462 */
1463 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1464
1465 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1466
1467 /*
1468 * NB: although the OA buffer will initially be allocated
1469 * zeroed via shmfs (and so this memset is redundant when
1470 * first allocating), we may re-init the OA buffer, either
1471 * when re-enabling a stream or in error/reset paths.
1472 *
1473 * The reason we clear the buffer for each re-init is for the
1474 * sanity check in gen8_append_oa_reports() that looks at the
1475 * reason field to make sure it's non-zero which relies on
1476 * the assumption that new reports are being written to zeroed
1477 * memory...
1478 */
1479 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1480}
1481
1482static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1483{
1484 struct intel_uncore *uncore = stream->uncore;
1485 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1486 unsigned long flags;
1487
1488 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1489
1490 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1491 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1492 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1493 stream->oa_buffer.head = gtt_offset;
1494
1495 /*
1496 * PRM says:
1497 *
1498 * "This MMIO must be set before the OATAILPTR
1499 * register and after the OAHEADPTR register. This is
1500 * to enable proper functionality of the overflow
1501 * bit."
1502 */
1503 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1504 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1505 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1506 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1507
1508 /* Mark that we need updated tail pointers to read from... */
1509 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1510 stream->oa_buffer.tail = gtt_offset;
1511
1512 /*
1513 * Reset state used to recognise context switches, affecting which
1514 * reports we will forward to userspace while filtering for a single
1515 * context.
1516 */
1517 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1518
1519 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1520
1521 /*
1522 * NB: although the OA buffer will initially be allocated
1523 * zeroed via shmfs (and so this memset is redundant when
1524 * first allocating), we may re-init the OA buffer, either
1525 * when re-enabling a stream or in error/reset paths.
1526 *
1527 * The reason we clear the buffer for each re-init is for the
1528 * sanity check in gen8_append_oa_reports() that looks at the
1529 * reason field to make sure it's non-zero which relies on
1530 * the assumption that new reports are being written to zeroed
1531 * memory...
1532 */
1533 memset(stream->oa_buffer.vaddr, 0,
1534 stream->oa_buffer.vma->size);
1535}
1536
1537static int alloc_oa_buffer(struct i915_perf_stream *stream)
1538{
1539 struct drm_i915_private *i915 = stream->perf->i915;
1540 struct drm_i915_gem_object *bo;
1541 struct i915_vma *vma;
1542 int ret;
1543
1544 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1545 return -ENODEV;
1546
1547 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1548 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1549
1550 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1551 if (IS_ERR(bo)) {
1552 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1553 return PTR_ERR(bo);
1554 }
1555
1556 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1557
1558 /* PreHSW required 512K alignment, HSW requires 16M */
1559 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1560 if (IS_ERR(vma)) {
1561 ret = PTR_ERR(vma);
1562 goto err_unref;
1563 }
1564 stream->oa_buffer.vma = vma;
1565
1566 stream->oa_buffer.vaddr =
1567 i915_gem_object_pin_map(bo, I915_MAP_WB);
1568 if (IS_ERR(stream->oa_buffer.vaddr)) {
1569 ret = PTR_ERR(stream->oa_buffer.vaddr);
1570 goto err_unpin;
1571 }
1572
1573 return 0;
1574
1575err_unpin:
1576 __i915_vma_unpin(vma);
1577
1578err_unref:
1579 i915_gem_object_put(bo);
1580
1581 stream->oa_buffer.vaddr = NULL;
1582 stream->oa_buffer.vma = NULL;
1583
1584 return ret;
1585}
1586
1587static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1588 bool save, i915_reg_t reg, u32 offset,
1589 u32 dword_count)
1590{
1591 u32 cmd;
1592 u32 d;
1593
1594 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1595 cmd |= MI_SRM_LRM_GLOBAL_GTT;
1596 if (INTEL_GEN(stream->perf->i915) >= 8)
1597 cmd++;
1598
1599 for (d = 0; d < dword_count; d++) {
1600 *cs++ = cmd;
1601 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1602 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1603 offset) + 4 * d;
1604 *cs++ = 0;
1605 }
1606
1607 return cs;
1608}
1609
1610static int alloc_noa_wait(struct i915_perf_stream *stream)
1611{
1612 struct drm_i915_private *i915 = stream->perf->i915;
1613 struct drm_i915_gem_object *bo;
1614 struct i915_vma *vma;
1615 const u64 delay_ticks = 0xffffffffffffffff -
1616 i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1617 const u32 base = stream->engine->mmio_base;
1618#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1619 u32 *batch, *ts0, *cs, *jump;
1620 int ret, i;
1621 enum {
1622 START_TS,
1623 NOW_TS,
1624 DELTA_TS,
1625 JUMP_PREDICATE,
1626 DELTA_TARGET,
1627 N_CS_GPR
1628 };
1629
1630 bo = i915_gem_object_create_internal(i915, 4096);
1631 if (IS_ERR(bo)) {
1632 drm_err(&i915->drm,
1633 "Failed to allocate NOA wait batchbuffer\n");
1634 return PTR_ERR(bo);
1635 }
1636
1637 /*
1638 * We pin in GGTT because we jump into this buffer now because
1639 * multiple OA config BOs will have a jump to this address and it
1640 * needs to be fixed during the lifetime of the i915/perf stream.
1641 */
1642 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1643 if (IS_ERR(vma)) {
1644 ret = PTR_ERR(vma);
1645 goto err_unref;
1646 }
1647
1648 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1649 if (IS_ERR(batch)) {
1650 ret = PTR_ERR(batch);
1651 goto err_unpin;
1652 }
1653
1654 /* Save registers. */
1655 for (i = 0; i < N_CS_GPR; i++)
1656 cs = save_restore_register(
1657 stream, cs, true /* save */, CS_GPR(i),
1658 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1659 cs = save_restore_register(
1660 stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1661 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1662
1663 /* First timestamp snapshot location. */
1664 ts0 = cs;
1665
1666 /*
1667 * Initial snapshot of the timestamp register to implement the wait.
1668 * We work with 32b values, so clear out the top 32b bits of the
1669 * register because the ALU works 64bits.
1670 */
1671 *cs++ = MI_LOAD_REGISTER_IMM(1);
1672 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1673 *cs++ = 0;
1674 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1675 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1676 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1677
1678 /*
1679 * This is the location we're going to jump back into until the
1680 * required amount of time has passed.
1681 */
1682 jump = cs;
1683
1684 /*
1685 * Take another snapshot of the timestamp register. Take care to clear
1686 * up the top 32bits of CS_GPR(1) as we're using it for other
1687 * operations below.
1688 */
1689 *cs++ = MI_LOAD_REGISTER_IMM(1);
1690 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1691 *cs++ = 0;
1692 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1693 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1694 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1695
1696 /*
1697 * Do a diff between the 2 timestamps and store the result back into
1698 * CS_GPR(1).
1699 */
1700 *cs++ = MI_MATH(5);
1701 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1702 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1703 *cs++ = MI_MATH_SUB;
1704 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1705 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1706
1707 /*
1708 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1709 * timestamp have rolled over the 32bits) into the predicate register
1710 * to be used for the predicated jump.
1711 */
1712 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1713 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1714 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1715
1716 /* Restart from the beginning if we had timestamps roll over. */
1717 *cs++ = (INTEL_GEN(i915) < 8 ?
1718 MI_BATCH_BUFFER_START :
1719 MI_BATCH_BUFFER_START_GEN8) |
1720 MI_BATCH_PREDICATE;
1721 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1722 *cs++ = 0;
1723
1724 /*
1725 * Now add the diff between to previous timestamps and add it to :
1726 * (((1 * << 64) - 1) - delay_ns)
1727 *
1728 * When the Carry Flag contains 1 this means the elapsed time is
1729 * longer than the expected delay, and we can exit the wait loop.
1730 */
1731 *cs++ = MI_LOAD_REGISTER_IMM(2);
1732 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1733 *cs++ = lower_32_bits(delay_ticks);
1734 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1735 *cs++ = upper_32_bits(delay_ticks);
1736
1737 *cs++ = MI_MATH(4);
1738 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1739 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1740 *cs++ = MI_MATH_ADD;
1741 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1742
1743 *cs++ = MI_ARB_CHECK;
1744
1745 /*
1746 * Transfer the result into the predicate register to be used for the
1747 * predicated jump.
1748 */
1749 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1750 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1751 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1752
1753 /* Predicate the jump. */
1754 *cs++ = (INTEL_GEN(i915) < 8 ?
1755 MI_BATCH_BUFFER_START :
1756 MI_BATCH_BUFFER_START_GEN8) |
1757 MI_BATCH_PREDICATE;
1758 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1759 *cs++ = 0;
1760
1761 /* Restore registers. */
1762 for (i = 0; i < N_CS_GPR; i++)
1763 cs = save_restore_register(
1764 stream, cs, false /* restore */, CS_GPR(i),
1765 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1766 cs = save_restore_register(
1767 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1768 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1769
1770 /* And return to the ring. */
1771 *cs++ = MI_BATCH_BUFFER_END;
1772
1773 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1774
1775 i915_gem_object_flush_map(bo);
1776 __i915_gem_object_release_map(bo);
1777
1778 stream->noa_wait = vma;
1779 return 0;
1780
1781err_unpin:
1782 i915_vma_unpin_and_release(&vma, 0);
1783err_unref:
1784 i915_gem_object_put(bo);
1785 return ret;
1786}
1787
1788static u32 *write_cs_mi_lri(u32 *cs,
1789 const struct i915_oa_reg *reg_data,
1790 u32 n_regs)
1791{
1792 u32 i;
1793
1794 for (i = 0; i < n_regs; i++) {
1795 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1796 u32 n_lri = min_t(u32,
1797 n_regs - i,
1798 MI_LOAD_REGISTER_IMM_MAX_REGS);
1799
1800 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1801 }
1802 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1803 *cs++ = reg_data[i].value;
1804 }
1805
1806 return cs;
1807}
1808
1809static int num_lri_dwords(int num_regs)
1810{
1811 int count = 0;
1812
1813 if (num_regs > 0) {
1814 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1815 count += num_regs * 2;
1816 }
1817
1818 return count;
1819}
1820
1821static struct i915_oa_config_bo *
1822alloc_oa_config_buffer(struct i915_perf_stream *stream,
1823 struct i915_oa_config *oa_config)
1824{
1825 struct drm_i915_gem_object *obj;
1826 struct i915_oa_config_bo *oa_bo;
1827 size_t config_length = 0;
1828 u32 *cs;
1829 int err;
1830
1831 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1832 if (!oa_bo)
1833 return ERR_PTR(-ENOMEM);
1834
1835 config_length += num_lri_dwords(oa_config->mux_regs_len);
1836 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1837 config_length += num_lri_dwords(oa_config->flex_regs_len);
1838 config_length += 3; /* MI_BATCH_BUFFER_START */
1839 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1840
1841 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1842 if (IS_ERR(obj)) {
1843 err = PTR_ERR(obj);
1844 goto err_free;
1845 }
1846
1847 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1848 if (IS_ERR(cs)) {
1849 err = PTR_ERR(cs);
1850 goto err_oa_bo;
1851 }
1852
1853 cs = write_cs_mi_lri(cs,
1854 oa_config->mux_regs,
1855 oa_config->mux_regs_len);
1856 cs = write_cs_mi_lri(cs,
1857 oa_config->b_counter_regs,
1858 oa_config->b_counter_regs_len);
1859 cs = write_cs_mi_lri(cs,
1860 oa_config->flex_regs,
1861 oa_config->flex_regs_len);
1862
1863 /* Jump into the active wait. */
1864 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1865 MI_BATCH_BUFFER_START :
1866 MI_BATCH_BUFFER_START_GEN8);
1867 *cs++ = i915_ggtt_offset(stream->noa_wait);
1868 *cs++ = 0;
1869
1870 i915_gem_object_flush_map(obj);
1871 __i915_gem_object_release_map(obj);
1872
1873 oa_bo->vma = i915_vma_instance(obj,
1874 &stream->engine->gt->ggtt->vm,
1875 NULL);
1876 if (IS_ERR(oa_bo->vma)) {
1877 err = PTR_ERR(oa_bo->vma);
1878 goto err_oa_bo;
1879 }
1880
1881 oa_bo->oa_config = i915_oa_config_get(oa_config);
1882 llist_add(&oa_bo->node, &stream->oa_config_bos);
1883
1884 return oa_bo;
1885
1886err_oa_bo:
1887 i915_gem_object_put(obj);
1888err_free:
1889 kfree(oa_bo);
1890 return ERR_PTR(err);
1891}
1892
1893static struct i915_vma *
1894get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1895{
1896 struct i915_oa_config_bo *oa_bo;
1897
1898 /*
1899 * Look for the buffer in the already allocated BOs attached
1900 * to the stream.
1901 */
1902 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1903 if (oa_bo->oa_config == oa_config &&
1904 memcmp(oa_bo->oa_config->uuid,
1905 oa_config->uuid,
1906 sizeof(oa_config->uuid)) == 0)
1907 goto out;
1908 }
1909
1910 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1911 if (IS_ERR(oa_bo))
1912 return ERR_CAST(oa_bo);
1913
1914out:
1915 return i915_vma_get(oa_bo->vma);
1916}
1917
1918static int
1919emit_oa_config(struct i915_perf_stream *stream,
1920 struct i915_oa_config *oa_config,
1921 struct intel_context *ce,
1922 struct i915_active *active)
1923{
1924 struct i915_request *rq;
1925 struct i915_vma *vma;
1926 int err;
1927
1928 vma = get_oa_vma(stream, oa_config);
1929 if (IS_ERR(vma))
1930 return PTR_ERR(vma);
1931
1932 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1933 if (err)
1934 goto err_vma_put;
1935
1936 intel_engine_pm_get(ce->engine);
1937 rq = i915_request_create(ce);
1938 intel_engine_pm_put(ce->engine);
1939 if (IS_ERR(rq)) {
1940 err = PTR_ERR(rq);
1941 goto err_vma_unpin;
1942 }
1943
1944 if (!IS_ERR_OR_NULL(active)) {
1945 /* After all individual context modifications */
1946 err = i915_request_await_active(rq, active,
1947 I915_ACTIVE_AWAIT_ACTIVE);
1948 if (err)
1949 goto err_add_request;
1950
1951 err = i915_active_add_request(active, rq);
1952 if (err)
1953 goto err_add_request;
1954 }
1955
1956 i915_vma_lock(vma);
1957 err = i915_request_await_object(rq, vma->obj, 0);
1958 if (!err)
1959 err = i915_vma_move_to_active(vma, rq, 0);
1960 i915_vma_unlock(vma);
1961 if (err)
1962 goto err_add_request;
1963
1964 err = rq->engine->emit_bb_start(rq,
1965 vma->node.start, 0,
1966 I915_DISPATCH_SECURE);
1967 if (err)
1968 goto err_add_request;
1969
1970err_add_request:
1971 i915_request_add(rq);
1972err_vma_unpin:
1973 i915_vma_unpin(vma);
1974err_vma_put:
1975 i915_vma_put(vma);
1976 return err;
1977}
1978
1979static struct intel_context *oa_context(struct i915_perf_stream *stream)
1980{
1981 return stream->pinned_ctx ?: stream->engine->kernel_context;
1982}
1983
1984static int
1985hsw_enable_metric_set(struct i915_perf_stream *stream,
1986 struct i915_active *active)
1987{
1988 struct intel_uncore *uncore = stream->uncore;
1989
1990 /*
1991 * PRM:
1992 *
1993 * OA unit is using “crclk” for its functionality. When trunk
1994 * level clock gating takes place, OA clock would be gated,
1995 * unable to count the events from non-render clock domain.
1996 * Render clock gating must be disabled when OA is enabled to
1997 * count the events from non-render domain. Unit level clock
1998 * gating for RCS should also be disabled.
1999 */
2000 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2001 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2002 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2003 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2004
2005 return emit_oa_config(stream,
2006 stream->oa_config, oa_context(stream),
2007 active);
2008}
2009
2010static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2011{
2012 struct intel_uncore *uncore = stream->uncore;
2013
2014 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2015 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2016 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2017 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2018
2019 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2020}
2021
2022static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2023 i915_reg_t reg)
2024{
2025 u32 mmio = i915_mmio_reg_offset(reg);
2026 int i;
2027
2028 /*
2029 * This arbitrary default will select the 'EU FPU0 Pipeline
2030 * Active' event. In the future it's anticipated that there
2031 * will be an explicit 'No Event' we can select, but not yet...
2032 */
2033 if (!oa_config)
2034 return 0;
2035
2036 for (i = 0; i < oa_config->flex_regs_len; i++) {
2037 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2038 return oa_config->flex_regs[i].value;
2039 }
2040
2041 return 0;
2042}
2043/*
2044 * NB: It must always remain pointer safe to run this even if the OA unit
2045 * has been disabled.
2046 *
2047 * It's fine to put out-of-date values into these per-context registers
2048 * in the case that the OA unit has been disabled.
2049 */
2050static void
2051gen8_update_reg_state_unlocked(const struct intel_context *ce,
2052 const struct i915_perf_stream *stream)
2053{
2054 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2055 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2056 /* The MMIO offsets for Flex EU registers aren't contiguous */
2057 i915_reg_t flex_regs[] = {
2058 EU_PERF_CNTL0,
2059 EU_PERF_CNTL1,
2060 EU_PERF_CNTL2,
2061 EU_PERF_CNTL3,
2062 EU_PERF_CNTL4,
2063 EU_PERF_CNTL5,
2064 EU_PERF_CNTL6,
2065 };
2066 u32 *reg_state = ce->lrc_reg_state;
2067 int i;
2068
2069 reg_state[ctx_oactxctrl + 1] =
2070 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2071 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2072 GEN8_OA_COUNTER_RESUME;
2073
2074 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2075 reg_state[ctx_flexeu0 + i * 2 + 1] =
2076 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2077}
2078
2079struct flex {
2080 i915_reg_t reg;
2081 u32 offset;
2082 u32 value;
2083};
2084
2085static int
2086gen8_store_flex(struct i915_request *rq,
2087 struct intel_context *ce,
2088 const struct flex *flex, unsigned int count)
2089{
2090 u32 offset;
2091 u32 *cs;
2092
2093 cs = intel_ring_begin(rq, 4 * count);
2094 if (IS_ERR(cs))
2095 return PTR_ERR(cs);
2096
2097 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2098 do {
2099 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2100 *cs++ = offset + flex->offset * sizeof(u32);
2101 *cs++ = 0;
2102 *cs++ = flex->value;
2103 } while (flex++, --count);
2104
2105 intel_ring_advance(rq, cs);
2106
2107 return 0;
2108}
2109
2110static int
2111gen8_load_flex(struct i915_request *rq,
2112 struct intel_context *ce,
2113 const struct flex *flex, unsigned int count)
2114{
2115 u32 *cs;
2116
2117 GEM_BUG_ON(!count || count > 63);
2118
2119 cs = intel_ring_begin(rq, 2 * count + 2);
2120 if (IS_ERR(cs))
2121 return PTR_ERR(cs);
2122
2123 *cs++ = MI_LOAD_REGISTER_IMM(count);
2124 do {
2125 *cs++ = i915_mmio_reg_offset(flex->reg);
2126 *cs++ = flex->value;
2127 } while (flex++, --count);
2128 *cs++ = MI_NOOP;
2129
2130 intel_ring_advance(rq, cs);
2131
2132 return 0;
2133}
2134
2135static int gen8_modify_context(struct intel_context *ce,
2136 const struct flex *flex, unsigned int count)
2137{
2138 struct i915_request *rq;
2139 int err;
2140
2141 rq = intel_engine_create_kernel_request(ce->engine);
2142 if (IS_ERR(rq))
2143 return PTR_ERR(rq);
2144
2145 /* Serialise with the remote context */
2146 err = intel_context_prepare_remote_request(ce, rq);
2147 if (err == 0)
2148 err = gen8_store_flex(rq, ce, flex, count);
2149
2150 i915_request_add(rq);
2151 return err;
2152}
2153
2154static int
2155gen8_modify_self(struct intel_context *ce,
2156 const struct flex *flex, unsigned int count,
2157 struct i915_active *active)
2158{
2159 struct i915_request *rq;
2160 int err;
2161
2162 intel_engine_pm_get(ce->engine);
2163 rq = i915_request_create(ce);
2164 intel_engine_pm_put(ce->engine);
2165 if (IS_ERR(rq))
2166 return PTR_ERR(rq);
2167
2168 if (!IS_ERR_OR_NULL(active)) {
2169 err = i915_active_add_request(active, rq);
2170 if (err)
2171 goto err_add_request;
2172 }
2173
2174 err = gen8_load_flex(rq, ce, flex, count);
2175 if (err)
2176 goto err_add_request;
2177
2178err_add_request:
2179 i915_request_add(rq);
2180 return err;
2181}
2182
2183static int gen8_configure_context(struct i915_gem_context *ctx,
2184 struct flex *flex, unsigned int count)
2185{
2186 struct i915_gem_engines_iter it;
2187 struct intel_context *ce;
2188 int err = 0;
2189
2190 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2191 GEM_BUG_ON(ce == ce->engine->kernel_context);
2192
2193 if (ce->engine->class != RENDER_CLASS)
2194 continue;
2195
2196 /* Otherwise OA settings will be set upon first use */
2197 if (!intel_context_pin_if_active(ce))
2198 continue;
2199
2200 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2201 err = gen8_modify_context(ce, flex, count);
2202
2203 intel_context_unpin(ce);
2204 if (err)
2205 break;
2206 }
2207 i915_gem_context_unlock_engines(ctx);
2208
2209 return err;
2210}
2211
2212static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2213 struct i915_active *active)
2214{
2215 int err;
2216 struct intel_context *ce = stream->pinned_ctx;
2217 u32 format = stream->oa_buffer.format;
2218 struct flex regs_context[] = {
2219 {
2220 GEN8_OACTXCONTROL,
2221 stream->perf->ctx_oactxctrl_offset + 1,
2222 active ? GEN8_OA_COUNTER_RESUME : 0,
2223 },
2224 };
2225 /* Offsets in regs_lri are not used since this configuration is only
2226 * applied using LRI. Initialize the correct offsets for posterity.
2227 */
2228#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2229 struct flex regs_lri[] = {
2230 {
2231 GEN12_OAR_OACONTROL,
2232 GEN12_OAR_OACONTROL_OFFSET + 1,
2233 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2234 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2235 },
2236 {
2237 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2238 CTX_CONTEXT_CONTROL,
2239 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2240 active ?
2241 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2242 0)
2243 },
2244 };
2245
2246 /* Modify the context image of pinned context with regs_context*/
2247 err = intel_context_lock_pinned(ce);
2248 if (err)
2249 return err;
2250
2251 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2252 intel_context_unlock_pinned(ce);
2253 if (err)
2254 return err;
2255
2256 /* Apply regs_lri using LRI with pinned context */
2257 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2258}
2259
2260/*
2261 * Manages updating the per-context aspects of the OA stream
2262 * configuration across all contexts.
2263 *
2264 * The awkward consideration here is that OACTXCONTROL controls the
2265 * exponent for periodic sampling which is primarily used for system
2266 * wide profiling where we'd like a consistent sampling period even in
2267 * the face of context switches.
2268 *
2269 * Our approach of updating the register state context (as opposed to
2270 * say using a workaround batch buffer) ensures that the hardware
2271 * won't automatically reload an out-of-date timer exponent even
2272 * transiently before a WA BB could be parsed.
2273 *
2274 * This function needs to:
2275 * - Ensure the currently running context's per-context OA state is
2276 * updated
2277 * - Ensure that all existing contexts will have the correct per-context
2278 * OA state if they are scheduled for use.
2279 * - Ensure any new contexts will be initialized with the correct
2280 * per-context OA state.
2281 *
2282 * Note: it's only the RCS/Render context that has any OA state.
2283 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2284 */
2285static int
2286oa_configure_all_contexts(struct i915_perf_stream *stream,
2287 struct flex *regs,
2288 size_t num_regs,
2289 struct i915_active *active)
2290{
2291 struct drm_i915_private *i915 = stream->perf->i915;
2292 struct intel_engine_cs *engine;
2293 struct i915_gem_context *ctx, *cn;
2294 int err;
2295
2296 lockdep_assert_held(&stream->perf->lock);
2297
2298 /*
2299 * The OA register config is setup through the context image. This image
2300 * might be written to by the GPU on context switch (in particular on
2301 * lite-restore). This means we can't safely update a context's image,
2302 * if this context is scheduled/submitted to run on the GPU.
2303 *
2304 * We could emit the OA register config through the batch buffer but
2305 * this might leave small interval of time where the OA unit is
2306 * configured at an invalid sampling period.
2307 *
2308 * Note that since we emit all requests from a single ring, there
2309 * is still an implicit global barrier here that may cause a high
2310 * priority context to wait for an otherwise independent low priority
2311 * context. Contexts idle at the time of reconfiguration are not
2312 * trapped behind the barrier.
2313 */
2314 spin_lock(&i915->gem.contexts.lock);
2315 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2316 if (!kref_get_unless_zero(&ctx->ref))
2317 continue;
2318
2319 spin_unlock(&i915->gem.contexts.lock);
2320
2321 err = gen8_configure_context(ctx, regs, num_regs);
2322 if (err) {
2323 i915_gem_context_put(ctx);
2324 return err;
2325 }
2326
2327 spin_lock(&i915->gem.contexts.lock);
2328 list_safe_reset_next(ctx, cn, link);
2329 i915_gem_context_put(ctx);
2330 }
2331 spin_unlock(&i915->gem.contexts.lock);
2332
2333 /*
2334 * After updating all other contexts, we need to modify ourselves.
2335 * If we don't modify the kernel_context, we do not get events while
2336 * idle.
2337 */
2338 for_each_uabi_engine(engine, i915) {
2339 struct intel_context *ce = engine->kernel_context;
2340
2341 if (engine->class != RENDER_CLASS)
2342 continue;
2343
2344 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2345
2346 err = gen8_modify_self(ce, regs, num_regs, active);
2347 if (err)
2348 return err;
2349 }
2350
2351 return 0;
2352}
2353
2354static int
2355gen12_configure_all_contexts(struct i915_perf_stream *stream,
2356 const struct i915_oa_config *oa_config,
2357 struct i915_active *active)
2358{
2359 struct flex regs[] = {
2360 {
2361 GEN8_R_PWR_CLK_STATE,
2362 CTX_R_PWR_CLK_STATE,
2363 },
2364 };
2365
2366 return oa_configure_all_contexts(stream,
2367 regs, ARRAY_SIZE(regs),
2368 active);
2369}
2370
2371static int
2372lrc_configure_all_contexts(struct i915_perf_stream *stream,
2373 const struct i915_oa_config *oa_config,
2374 struct i915_active *active)
2375{
2376 /* The MMIO offsets for Flex EU registers aren't contiguous */
2377 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2378#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2379 struct flex regs[] = {
2380 {
2381 GEN8_R_PWR_CLK_STATE,
2382 CTX_R_PWR_CLK_STATE,
2383 },
2384 {
2385 GEN8_OACTXCONTROL,
2386 stream->perf->ctx_oactxctrl_offset + 1,
2387 },
2388 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2389 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2390 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2391 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2392 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2393 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2394 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2395 };
2396#undef ctx_flexeuN
2397 int i;
2398
2399 regs[1].value =
2400 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2401 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2402 GEN8_OA_COUNTER_RESUME;
2403
2404 for (i = 2; i < ARRAY_SIZE(regs); i++)
2405 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2406
2407 return oa_configure_all_contexts(stream,
2408 regs, ARRAY_SIZE(regs),
2409 active);
2410}
2411
2412static int
2413gen8_enable_metric_set(struct i915_perf_stream *stream,
2414 struct i915_active *active)
2415{
2416 struct intel_uncore *uncore = stream->uncore;
2417 struct i915_oa_config *oa_config = stream->oa_config;
2418 int ret;
2419
2420 /*
2421 * We disable slice/unslice clock ratio change reports on SKL since
2422 * they are too noisy. The HW generates a lot of redundant reports
2423 * where the ratio hasn't really changed causing a lot of redundant
2424 * work to processes and increasing the chances we'll hit buffer
2425 * overruns.
2426 *
2427 * Although we don't currently use the 'disable overrun' OABUFFER
2428 * feature it's worth noting that clock ratio reports have to be
2429 * disabled before considering to use that feature since the HW doesn't
2430 * correctly block these reports.
2431 *
2432 * Currently none of the high-level metrics we have depend on knowing
2433 * this ratio to normalize.
2434 *
2435 * Note: This register is not power context saved and restored, but
2436 * that's OK considering that we disable RC6 while the OA unit is
2437 * enabled.
2438 *
2439 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2440 * be read back from automatically triggered reports, as part of the
2441 * RPT_ID field.
2442 */
2443 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2444 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2445 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2446 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2447 }
2448
2449 /*
2450 * Update all contexts prior writing the mux configurations as we need
2451 * to make sure all slices/subslices are ON before writing to NOA
2452 * registers.
2453 */
2454 ret = lrc_configure_all_contexts(stream, oa_config, active);
2455 if (ret)
2456 return ret;
2457
2458 return emit_oa_config(stream,
2459 stream->oa_config, oa_context(stream),
2460 active);
2461}
2462
2463static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2464{
2465 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2466 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2467 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2468}
2469
2470static int
2471gen12_enable_metric_set(struct i915_perf_stream *stream,
2472 struct i915_active *active)
2473{
2474 struct intel_uncore *uncore = stream->uncore;
2475 struct i915_oa_config *oa_config = stream->oa_config;
2476 bool periodic = stream->periodic;
2477 u32 period_exponent = stream->period_exponent;
2478 int ret;
2479
2480 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2481 /* Disable clk ratio reports, like previous Gens. */
2482 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2483 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2484 /*
2485 * If the user didn't require OA reports, instruct
2486 * the hardware not to emit ctx switch reports.
2487 */
2488 oag_report_ctx_switches(stream));
2489
2490 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2491 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2492 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2493 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2494 : 0);
2495
2496 /*
2497 * Update all contexts prior writing the mux configurations as we need
2498 * to make sure all slices/subslices are ON before writing to NOA
2499 * registers.
2500 */
2501 ret = gen12_configure_all_contexts(stream, oa_config, active);
2502 if (ret)
2503 return ret;
2504
2505 /*
2506 * For Gen12, performance counters are context
2507 * saved/restored. Only enable it for the context that
2508 * requested this.
2509 */
2510 if (stream->ctx) {
2511 ret = gen12_configure_oar_context(stream, active);
2512 if (ret)
2513 return ret;
2514 }
2515
2516 return emit_oa_config(stream,
2517 stream->oa_config, oa_context(stream),
2518 active);
2519}
2520
2521static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2522{
2523 struct intel_uncore *uncore = stream->uncore;
2524
2525 /* Reset all contexts' slices/subslices configurations. */
2526 lrc_configure_all_contexts(stream, NULL, NULL);
2527
2528 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2529}
2530
2531static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2532{
2533 struct intel_uncore *uncore = stream->uncore;
2534
2535 /* Reset all contexts' slices/subslices configurations. */
2536 lrc_configure_all_contexts(stream, NULL, NULL);
2537
2538 /* Make sure we disable noa to save power. */
2539 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2540}
2541
2542static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2543{
2544 struct intel_uncore *uncore = stream->uncore;
2545
2546 /* Reset all contexts' slices/subslices configurations. */
2547 gen12_configure_all_contexts(stream, NULL, NULL);
2548
2549 /* disable the context save/restore or OAR counters */
2550 if (stream->ctx)
2551 gen12_configure_oar_context(stream, NULL);
2552
2553 /* Make sure we disable noa to save power. */
2554 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2555}
2556
2557static void gen7_oa_enable(struct i915_perf_stream *stream)
2558{
2559 struct intel_uncore *uncore = stream->uncore;
2560 struct i915_gem_context *ctx = stream->ctx;
2561 u32 ctx_id = stream->specific_ctx_id;
2562 bool periodic = stream->periodic;
2563 u32 period_exponent = stream->period_exponent;
2564 u32 report_format = stream->oa_buffer.format;
2565
2566 /*
2567 * Reset buf pointers so we don't forward reports from before now.
2568 *
2569 * Think carefully if considering trying to avoid this, since it
2570 * also ensures status flags and the buffer itself are cleared
2571 * in error paths, and we have checks for invalid reports based
2572 * on the assumption that certain fields are written to zeroed
2573 * memory which this helps maintains.
2574 */
2575 gen7_init_oa_buffer(stream);
2576
2577 intel_uncore_write(uncore, GEN7_OACONTROL,
2578 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2579 (period_exponent <<
2580 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2581 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2582 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2583 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2584 GEN7_OACONTROL_ENABLE);
2585}
2586
2587static void gen8_oa_enable(struct i915_perf_stream *stream)
2588{
2589 struct intel_uncore *uncore = stream->uncore;
2590 u32 report_format = stream->oa_buffer.format;
2591
2592 /*
2593 * Reset buf pointers so we don't forward reports from before now.
2594 *
2595 * Think carefully if considering trying to avoid this, since it
2596 * also ensures status flags and the buffer itself are cleared
2597 * in error paths, and we have checks for invalid reports based
2598 * on the assumption that certain fields are written to zeroed
2599 * memory which this helps maintains.
2600 */
2601 gen8_init_oa_buffer(stream);
2602
2603 /*
2604 * Note: we don't rely on the hardware to perform single context
2605 * filtering and instead filter on the cpu based on the context-id
2606 * field of reports
2607 */
2608 intel_uncore_write(uncore, GEN8_OACONTROL,
2609 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2610 GEN8_OA_COUNTER_ENABLE);
2611}
2612
2613static void gen12_oa_enable(struct i915_perf_stream *stream)
2614{
2615 struct intel_uncore *uncore = stream->uncore;
2616 u32 report_format = stream->oa_buffer.format;
2617
2618 /*
2619 * If we don't want OA reports from the OA buffer, then we don't even
2620 * need to program the OAG unit.
2621 */
2622 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2623 return;
2624
2625 gen12_init_oa_buffer(stream);
2626
2627 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2628 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2629 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2630}
2631
2632/**
2633 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2634 * @stream: An i915 perf stream opened for OA metrics
2635 *
2636 * [Re]enables hardware periodic sampling according to the period configured
2637 * when opening the stream. This also starts a hrtimer that will periodically
2638 * check for data in the circular OA buffer for notifying userspace (e.g.
2639 * during a read() or poll()).
2640 */
2641static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2642{
2643 stream->pollin = false;
2644
2645 stream->perf->ops.oa_enable(stream);
2646
2647 if (stream->periodic)
2648 hrtimer_start(&stream->poll_check_timer,
2649 ns_to_ktime(stream->poll_oa_period),
2650 HRTIMER_MODE_REL_PINNED);
2651}
2652
2653static void gen7_oa_disable(struct i915_perf_stream *stream)
2654{
2655 struct intel_uncore *uncore = stream->uncore;
2656
2657 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2658 if (intel_wait_for_register(uncore,
2659 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2660 50))
2661 drm_err(&stream->perf->i915->drm,
2662 "wait for OA to be disabled timed out\n");
2663}
2664
2665static void gen8_oa_disable(struct i915_perf_stream *stream)
2666{
2667 struct intel_uncore *uncore = stream->uncore;
2668
2669 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2670 if (intel_wait_for_register(uncore,
2671 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2672 50))
2673 drm_err(&stream->perf->i915->drm,
2674 "wait for OA to be disabled timed out\n");
2675}
2676
2677static void gen12_oa_disable(struct i915_perf_stream *stream)
2678{
2679 struct intel_uncore *uncore = stream->uncore;
2680
2681 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2682 if (intel_wait_for_register(uncore,
2683 GEN12_OAG_OACONTROL,
2684 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2685 50))
2686 drm_err(&stream->perf->i915->drm,
2687 "wait for OA to be disabled timed out\n");
2688
2689 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2690 if (intel_wait_for_register(uncore,
2691 GEN12_OA_TLB_INV_CR,
2692 1, 0,
2693 50))
2694 drm_err(&stream->perf->i915->drm,
2695 "wait for OA tlb invalidate timed out\n");
2696}
2697
2698/**
2699 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2700 * @stream: An i915 perf stream opened for OA metrics
2701 *
2702 * Stops the OA unit from periodically writing counter reports into the
2703 * circular OA buffer. This also stops the hrtimer that periodically checks for
2704 * data in the circular OA buffer, for notifying userspace.
2705 */
2706static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2707{
2708 stream->perf->ops.oa_disable(stream);
2709
2710 if (stream->periodic)
2711 hrtimer_cancel(&stream->poll_check_timer);
2712}
2713
2714static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2715 .destroy = i915_oa_stream_destroy,
2716 .enable = i915_oa_stream_enable,
2717 .disable = i915_oa_stream_disable,
2718 .wait_unlocked = i915_oa_wait_unlocked,
2719 .poll_wait = i915_oa_poll_wait,
2720 .read = i915_oa_read,
2721};
2722
2723static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2724{
2725 struct i915_active *active;
2726 int err;
2727
2728 active = i915_active_create();
2729 if (!active)
2730 return -ENOMEM;
2731
2732 err = stream->perf->ops.enable_metric_set(stream, active);
2733 if (err == 0)
2734 __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2735
2736 i915_active_put(active);
2737 return err;
2738}
2739
2740static void
2741get_default_sseu_config(struct intel_sseu *out_sseu,
2742 struct intel_engine_cs *engine)
2743{
2744 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2745
2746 *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2747
2748 if (IS_GEN(engine->i915, 11)) {
2749 /*
2750 * We only need subslice count so it doesn't matter which ones
2751 * we select - just turn off low bits in the amount of half of
2752 * all available subslices per slice.
2753 */
2754 out_sseu->subslice_mask =
2755 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2756 out_sseu->slice_mask = 0x1;
2757 }
2758}
2759
2760static int
2761get_sseu_config(struct intel_sseu *out_sseu,
2762 struct intel_engine_cs *engine,
2763 const struct drm_i915_gem_context_param_sseu *drm_sseu)
2764{
2765 if (drm_sseu->engine.engine_class != engine->uabi_class ||
2766 drm_sseu->engine.engine_instance != engine->uabi_instance)
2767 return -EINVAL;
2768
2769 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2770}
2771
2772/**
2773 * i915_oa_stream_init - validate combined props for OA stream and init
2774 * @stream: An i915 perf stream
2775 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2776 * @props: The property state that configures stream (individually validated)
2777 *
2778 * While read_properties_unlocked() validates properties in isolation it
2779 * doesn't ensure that the combination necessarily makes sense.
2780 *
2781 * At this point it has been determined that userspace wants a stream of
2782 * OA metrics, but still we need to further validate the combined
2783 * properties are OK.
2784 *
2785 * If the configuration makes sense then we can allocate memory for
2786 * a circular OA buffer and apply the requested metric set configuration.
2787 *
2788 * Returns: zero on success or a negative error code.
2789 */
2790static int i915_oa_stream_init(struct i915_perf_stream *stream,
2791 struct drm_i915_perf_open_param *param,
2792 struct perf_open_properties *props)
2793{
2794 struct drm_i915_private *i915 = stream->perf->i915;
2795 struct i915_perf *perf = stream->perf;
2796 int format_size;
2797 int ret;
2798
2799 if (!props->engine) {
2800 DRM_DEBUG("OA engine not specified\n");
2801 return -EINVAL;
2802 }
2803
2804 /*
2805 * If the sysfs metrics/ directory wasn't registered for some
2806 * reason then don't let userspace try their luck with config
2807 * IDs
2808 */
2809 if (!perf->metrics_kobj) {
2810 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2811 return -EINVAL;
2812 }
2813
2814 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2815 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2816 DRM_DEBUG("Only OA report sampling supported\n");
2817 return -EINVAL;
2818 }
2819
2820 if (!perf->ops.enable_metric_set) {
2821 DRM_DEBUG("OA unit not supported\n");
2822 return -ENODEV;
2823 }
2824
2825 /*
2826 * To avoid the complexity of having to accurately filter
2827 * counter reports and marshal to the appropriate client
2828 * we currently only allow exclusive access
2829 */
2830 if (perf->exclusive_stream) {
2831 DRM_DEBUG("OA unit already in use\n");
2832 return -EBUSY;
2833 }
2834
2835 if (!props->oa_format) {
2836 DRM_DEBUG("OA report format not specified\n");
2837 return -EINVAL;
2838 }
2839
2840 stream->engine = props->engine;
2841 stream->uncore = stream->engine->gt->uncore;
2842
2843 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2844
2845 format_size = perf->oa_formats[props->oa_format].size;
2846
2847 stream->sample_flags = props->sample_flags;
2848 stream->sample_size += format_size;
2849
2850 stream->oa_buffer.format_size = format_size;
2851 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2852 return -EINVAL;
2853
2854 stream->hold_preemption = props->hold_preemption;
2855
2856 stream->oa_buffer.format =
2857 perf->oa_formats[props->oa_format].format;
2858
2859 stream->periodic = props->oa_periodic;
2860 if (stream->periodic)
2861 stream->period_exponent = props->oa_period_exponent;
2862
2863 if (stream->ctx) {
2864 ret = oa_get_render_ctx_id(stream);
2865 if (ret) {
2866 DRM_DEBUG("Invalid context id to filter with\n");
2867 return ret;
2868 }
2869 }
2870
2871 ret = alloc_noa_wait(stream);
2872 if (ret) {
2873 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2874 goto err_noa_wait_alloc;
2875 }
2876
2877 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2878 if (!stream->oa_config) {
2879 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2880 ret = -EINVAL;
2881 goto err_config;
2882 }
2883
2884 /* PRM - observability performance counters:
2885 *
2886 * OACONTROL, performance counter enable, note:
2887 *
2888 * "When this bit is set, in order to have coherent counts,
2889 * RC6 power state and trunk clock gating must be disabled.
2890 * This can be achieved by programming MMIO registers as
2891 * 0xA094=0 and 0xA090[31]=1"
2892 *
2893 * In our case we are expecting that taking pm + FORCEWAKE
2894 * references will effectively disable RC6.
2895 */
2896 intel_engine_pm_get(stream->engine);
2897 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2898
2899 ret = alloc_oa_buffer(stream);
2900 if (ret)
2901 goto err_oa_buf_alloc;
2902
2903 stream->ops = &i915_oa_stream_ops;
2904
2905 perf->sseu = props->sseu;
2906 WRITE_ONCE(perf->exclusive_stream, stream);
2907
2908 ret = i915_perf_stream_enable_sync(stream);
2909 if (ret) {
2910 DRM_DEBUG("Unable to enable metric set\n");
2911 goto err_enable;
2912 }
2913
2914 DRM_DEBUG("opening stream oa config uuid=%s\n",
2915 stream->oa_config->uuid);
2916
2917 hrtimer_init(&stream->poll_check_timer,
2918 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2919 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2920 init_waitqueue_head(&stream->poll_wq);
2921 spin_lock_init(&stream->oa_buffer.ptr_lock);
2922
2923 return 0;
2924
2925err_enable:
2926 WRITE_ONCE(perf->exclusive_stream, NULL);
2927 perf->ops.disable_metric_set(stream);
2928
2929 free_oa_buffer(stream);
2930
2931err_oa_buf_alloc:
2932 free_oa_configs(stream);
2933
2934 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2935 intel_engine_pm_put(stream->engine);
2936
2937err_config:
2938 free_noa_wait(stream);
2939
2940err_noa_wait_alloc:
2941 if (stream->ctx)
2942 oa_put_render_ctx_id(stream);
2943
2944 return ret;
2945}
2946
2947void i915_oa_init_reg_state(const struct intel_context *ce,
2948 const struct intel_engine_cs *engine)
2949{
2950 struct i915_perf_stream *stream;
2951
2952 if (engine->class != RENDER_CLASS)
2953 return;
2954
2955 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2956 stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2957 if (stream && INTEL_GEN(stream->perf->i915) < 12)
2958 gen8_update_reg_state_unlocked(ce, stream);
2959}
2960
2961/**
2962 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2963 * @file: An i915 perf stream file
2964 * @buf: destination buffer given by userspace
2965 * @count: the number of bytes userspace wants to read
2966 * @ppos: (inout) file seek position (unused)
2967 *
2968 * The entry point for handling a read() on a stream file descriptor from
2969 * userspace. Most of the work is left to the i915_perf_read_locked() and
2970 * &i915_perf_stream_ops->read but to save having stream implementations (of
2971 * which we might have multiple later) we handle blocking read here.
2972 *
2973 * We can also consistently treat trying to read from a disabled stream
2974 * as an IO error so implementations can assume the stream is enabled
2975 * while reading.
2976 *
2977 * Returns: The number of bytes copied or a negative error code on failure.
2978 */
2979static ssize_t i915_perf_read(struct file *file,
2980 char __user *buf,
2981 size_t count,
2982 loff_t *ppos)
2983{
2984 struct i915_perf_stream *stream = file->private_data;
2985 struct i915_perf *perf = stream->perf;
2986 size_t offset = 0;
2987 int ret;
2988
2989 /* To ensure it's handled consistently we simply treat all reads of a
2990 * disabled stream as an error. In particular it might otherwise lead
2991 * to a deadlock for blocking file descriptors...
2992 */
2993 if (!stream->enabled)
2994 return -EIO;
2995
2996 if (!(file->f_flags & O_NONBLOCK)) {
2997 /* There's the small chance of false positives from
2998 * stream->ops->wait_unlocked.
2999 *
3000 * E.g. with single context filtering since we only wait until
3001 * oabuffer has >= 1 report we don't immediately know whether
3002 * any reports really belong to the current context
3003 */
3004 do {
3005 ret = stream->ops->wait_unlocked(stream);
3006 if (ret)
3007 return ret;
3008
3009 mutex_lock(&perf->lock);
3010 ret = stream->ops->read(stream, buf, count, &offset);
3011 mutex_unlock(&perf->lock);
3012 } while (!offset && !ret);
3013 } else {
3014 mutex_lock(&perf->lock);
3015 ret = stream->ops->read(stream, buf, count, &offset);
3016 mutex_unlock(&perf->lock);
3017 }
3018
3019 /* We allow the poll checking to sometimes report false positive EPOLLIN
3020 * events where we might actually report EAGAIN on read() if there's
3021 * not really any data available. In this situation though we don't
3022 * want to enter a busy loop between poll() reporting a EPOLLIN event
3023 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3024 * effectively ensures we back off until the next hrtimer callback
3025 * before reporting another EPOLLIN event.
3026 * The exception to this is if ops->read() returned -ENOSPC which means
3027 * that more OA data is available than could fit in the user provided
3028 * buffer. In this case we want the next poll() call to not block.
3029 */
3030 if (ret != -ENOSPC)
3031 stream->pollin = false;
3032
3033 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3034 return offset ?: (ret ?: -EAGAIN);
3035}
3036
3037static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3038{
3039 struct i915_perf_stream *stream =
3040 container_of(hrtimer, typeof(*stream), poll_check_timer);
3041
3042 if (oa_buffer_check_unlocked(stream)) {
3043 stream->pollin = true;
3044 wake_up(&stream->poll_wq);
3045 }
3046
3047 hrtimer_forward_now(hrtimer,
3048 ns_to_ktime(stream->poll_oa_period));
3049
3050 return HRTIMER_RESTART;
3051}
3052
3053/**
3054 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3055 * @stream: An i915 perf stream
3056 * @file: An i915 perf stream file
3057 * @wait: poll() state table
3058 *
3059 * For handling userspace polling on an i915 perf stream, this calls through to
3060 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3061 * will be woken for new stream data.
3062 *
3063 * Note: The &perf->lock mutex has been taken to serialize
3064 * with any non-file-operation driver hooks.
3065 *
3066 * Returns: any poll events that are ready without sleeping
3067 */
3068static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3069 struct file *file,
3070 poll_table *wait)
3071{
3072 __poll_t events = 0;
3073
3074 stream->ops->poll_wait(stream, file, wait);
3075
3076 /* Note: we don't explicitly check whether there's something to read
3077 * here since this path may be very hot depending on what else
3078 * userspace is polling, or on the timeout in use. We rely solely on
3079 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3080 * samples to read.
3081 */
3082 if (stream->pollin)
3083 events |= EPOLLIN;
3084
3085 return events;
3086}
3087
3088/**
3089 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3090 * @file: An i915 perf stream file
3091 * @wait: poll() state table
3092 *
3093 * For handling userspace polling on an i915 perf stream, this ensures
3094 * poll_wait() gets called with a wait queue that will be woken for new stream
3095 * data.
3096 *
3097 * Note: Implementation deferred to i915_perf_poll_locked()
3098 *
3099 * Returns: any poll events that are ready without sleeping
3100 */
3101static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3102{
3103 struct i915_perf_stream *stream = file->private_data;
3104 struct i915_perf *perf = stream->perf;
3105 __poll_t ret;
3106
3107 mutex_lock(&perf->lock);
3108 ret = i915_perf_poll_locked(stream, file, wait);
3109 mutex_unlock(&perf->lock);
3110
3111 return ret;
3112}
3113
3114/**
3115 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3116 * @stream: A disabled i915 perf stream
3117 *
3118 * [Re]enables the associated capture of data for this stream.
3119 *
3120 * If a stream was previously enabled then there's currently no intention
3121 * to provide userspace any guarantee about the preservation of previously
3122 * buffered data.
3123 */
3124static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3125{
3126 if (stream->enabled)
3127 return;
3128
3129 /* Allow stream->ops->enable() to refer to this */
3130 stream->enabled = true;
3131
3132 if (stream->ops->enable)
3133 stream->ops->enable(stream);
3134
3135 if (stream->hold_preemption)
3136 intel_context_set_nopreempt(stream->pinned_ctx);
3137}
3138
3139/**
3140 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3141 * @stream: An enabled i915 perf stream
3142 *
3143 * Disables the associated capture of data for this stream.
3144 *
3145 * The intention is that disabling an re-enabling a stream will ideally be
3146 * cheaper than destroying and re-opening a stream with the same configuration,
3147 * though there are no formal guarantees about what state or buffered data
3148 * must be retained between disabling and re-enabling a stream.
3149 *
3150 * Note: while a stream is disabled it's considered an error for userspace
3151 * to attempt to read from the stream (-EIO).
3152 */
3153static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3154{
3155 if (!stream->enabled)
3156 return;
3157
3158 /* Allow stream->ops->disable() to refer to this */
3159 stream->enabled = false;
3160
3161 if (stream->hold_preemption)
3162 intel_context_clear_nopreempt(stream->pinned_ctx);
3163
3164 if (stream->ops->disable)
3165 stream->ops->disable(stream);
3166}
3167
3168static long i915_perf_config_locked(struct i915_perf_stream *stream,
3169 unsigned long metrics_set)
3170{
3171 struct i915_oa_config *config;
3172 long ret = stream->oa_config->id;
3173
3174 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3175 if (!config)
3176 return -EINVAL;
3177
3178 if (config != stream->oa_config) {
3179 int err;
3180
3181 /*
3182 * If OA is bound to a specific context, emit the
3183 * reconfiguration inline from that context. The update
3184 * will then be ordered with respect to submission on that
3185 * context.
3186 *
3187 * When set globally, we use a low priority kernel context,
3188 * so it will effectively take effect when idle.
3189 */
3190 err = emit_oa_config(stream, config, oa_context(stream), NULL);
3191 if (!err)
3192 config = xchg(&stream->oa_config, config);
3193 else
3194 ret = err;
3195 }
3196
3197 i915_oa_config_put(config);
3198
3199 return ret;
3200}
3201
3202/**
3203 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3204 * @stream: An i915 perf stream
3205 * @cmd: the ioctl request
3206 * @arg: the ioctl data
3207 *
3208 * Note: The &perf->lock mutex has been taken to serialize
3209 * with any non-file-operation driver hooks.
3210 *
3211 * Returns: zero on success or a negative error code. Returns -EINVAL for
3212 * an unknown ioctl request.
3213 */
3214static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3215 unsigned int cmd,
3216 unsigned long arg)
3217{
3218 switch (cmd) {
3219 case I915_PERF_IOCTL_ENABLE:
3220 i915_perf_enable_locked(stream);
3221 return 0;
3222 case I915_PERF_IOCTL_DISABLE:
3223 i915_perf_disable_locked(stream);
3224 return 0;
3225 case I915_PERF_IOCTL_CONFIG:
3226 return i915_perf_config_locked(stream, arg);
3227 }
3228
3229 return -EINVAL;
3230}
3231
3232/**
3233 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3234 * @file: An i915 perf stream file
3235 * @cmd: the ioctl request
3236 * @arg: the ioctl data
3237 *
3238 * Implementation deferred to i915_perf_ioctl_locked().
3239 *
3240 * Returns: zero on success or a negative error code. Returns -EINVAL for
3241 * an unknown ioctl request.
3242 */
3243static long i915_perf_ioctl(struct file *file,
3244 unsigned int cmd,
3245 unsigned long arg)
3246{
3247 struct i915_perf_stream *stream = file->private_data;
3248 struct i915_perf *perf = stream->perf;
3249 long ret;
3250
3251 mutex_lock(&perf->lock);
3252 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3253 mutex_unlock(&perf->lock);
3254
3255 return ret;
3256}
3257
3258/**
3259 * i915_perf_destroy_locked - destroy an i915 perf stream
3260 * @stream: An i915 perf stream
3261 *
3262 * Frees all resources associated with the given i915 perf @stream, disabling
3263 * any associated data capture in the process.
3264 *
3265 * Note: The &perf->lock mutex has been taken to serialize
3266 * with any non-file-operation driver hooks.
3267 */
3268static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3269{
3270 if (stream->enabled)
3271 i915_perf_disable_locked(stream);
3272
3273 if (stream->ops->destroy)
3274 stream->ops->destroy(stream);
3275
3276 if (stream->ctx)
3277 i915_gem_context_put(stream->ctx);
3278
3279 kfree(stream);
3280}
3281
3282/**
3283 * i915_perf_release - handles userspace close() of a stream file
3284 * @inode: anonymous inode associated with file
3285 * @file: An i915 perf stream file
3286 *
3287 * Cleans up any resources associated with an open i915 perf stream file.
3288 *
3289 * NB: close() can't really fail from the userspace point of view.
3290 *
3291 * Returns: zero on success or a negative error code.
3292 */
3293static int i915_perf_release(struct inode *inode, struct file *file)
3294{
3295 struct i915_perf_stream *stream = file->private_data;
3296 struct i915_perf *perf = stream->perf;
3297
3298 mutex_lock(&perf->lock);
3299 i915_perf_destroy_locked(stream);
3300 mutex_unlock(&perf->lock);
3301
3302 /* Release the reference the perf stream kept on the driver. */
3303 drm_dev_put(&perf->i915->drm);
3304
3305 return 0;
3306}
3307
3308
3309static const struct file_operations fops = {
3310 .owner = THIS_MODULE,
3311 .llseek = no_llseek,
3312 .release = i915_perf_release,
3313 .poll = i915_perf_poll,
3314 .read = i915_perf_read,
3315 .unlocked_ioctl = i915_perf_ioctl,
3316 /* Our ioctl have no arguments, so it's safe to use the same function
3317 * to handle 32bits compatibility.
3318 */
3319 .compat_ioctl = i915_perf_ioctl,
3320};
3321
3322
3323/**
3324 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3325 * @perf: i915 perf instance
3326 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3327 * @props: individually validated u64 property value pairs
3328 * @file: drm file
3329 *
3330 * See i915_perf_ioctl_open() for interface details.
3331 *
3332 * Implements further stream config validation and stream initialization on
3333 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3334 * taken to serialize with any non-file-operation driver hooks.
3335 *
3336 * Note: at this point the @props have only been validated in isolation and
3337 * it's still necessary to validate that the combination of properties makes
3338 * sense.
3339 *
3340 * In the case where userspace is interested in OA unit metrics then further
3341 * config validation and stream initialization details will be handled by
3342 * i915_oa_stream_init(). The code here should only validate config state that
3343 * will be relevant to all stream types / backends.
3344 *
3345 * Returns: zero on success or a negative error code.
3346 */
3347static int
3348i915_perf_open_ioctl_locked(struct i915_perf *perf,
3349 struct drm_i915_perf_open_param *param,
3350 struct perf_open_properties *props,
3351 struct drm_file *file)
3352{
3353 struct i915_gem_context *specific_ctx = NULL;
3354 struct i915_perf_stream *stream = NULL;
3355 unsigned long f_flags = 0;
3356 bool privileged_op = true;
3357 int stream_fd;
3358 int ret;
3359
3360 if (props->single_context) {
3361 u32 ctx_handle = props->ctx_handle;
3362 struct drm_i915_file_private *file_priv = file->driver_priv;
3363
3364 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3365 if (!specific_ctx) {
3366 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3367 ctx_handle);
3368 ret = -ENOENT;
3369 goto err;
3370 }
3371 }
3372
3373 /*
3374 * On Haswell the OA unit supports clock gating off for a specific
3375 * context and in this mode there's no visibility of metrics for the
3376 * rest of the system, which we consider acceptable for a
3377 * non-privileged client.
3378 *
3379 * For Gen8->11 the OA unit no longer supports clock gating off for a
3380 * specific context and the kernel can't securely stop the counters
3381 * from updating as system-wide / global values. Even though we can
3382 * filter reports based on the included context ID we can't block
3383 * clients from seeing the raw / global counter values via
3384 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3385 * enable the OA unit by default.
3386 *
3387 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3388 * per context basis. So we can relax requirements there if the user
3389 * doesn't request global stream access (i.e. query based sampling
3390 * using MI_RECORD_PERF_COUNT.
3391 */
3392 if (IS_HASWELL(perf->i915) && specific_ctx)
3393 privileged_op = false;
3394 else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3395 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3396 privileged_op = false;
3397
3398 if (props->hold_preemption) {
3399 if (!props->single_context) {
3400 DRM_DEBUG("preemption disable with no context\n");
3401 ret = -EINVAL;
3402 goto err;
3403 }
3404 privileged_op = true;
3405 }
3406
3407 /*
3408 * Asking for SSEU configuration is a priviliged operation.
3409 */
3410 if (props->has_sseu)
3411 privileged_op = true;
3412 else
3413 get_default_sseu_config(&props->sseu, props->engine);
3414
3415 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3416 * we check a dev.i915.perf_stream_paranoid sysctl option
3417 * to determine if it's ok to access system wide OA counters
3418 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3419 */
3420 if (privileged_op &&
3421 i915_perf_stream_paranoid && !perfmon_capable()) {
3422 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3423 ret = -EACCES;
3424 goto err_ctx;
3425 }
3426
3427 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3428 if (!stream) {
3429 ret = -ENOMEM;
3430 goto err_ctx;
3431 }
3432
3433 stream->perf = perf;
3434 stream->ctx = specific_ctx;
3435 stream->poll_oa_period = props->poll_oa_period;
3436
3437 ret = i915_oa_stream_init(stream, param, props);
3438 if (ret)
3439 goto err_alloc;
3440
3441 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3442 * to have _stream_init check the combination of sample flags more
3443 * thoroughly, but still this is the expected result at this point.
3444 */
3445 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3446 ret = -ENODEV;
3447 goto err_flags;
3448 }
3449
3450 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3451 f_flags |= O_CLOEXEC;
3452 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3453 f_flags |= O_NONBLOCK;
3454
3455 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3456 if (stream_fd < 0) {
3457 ret = stream_fd;
3458 goto err_flags;
3459 }
3460
3461 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3462 i915_perf_enable_locked(stream);
3463
3464 /* Take a reference on the driver that will be kept with stream_fd
3465 * until its release.
3466 */
3467 drm_dev_get(&perf->i915->drm);
3468
3469 return stream_fd;
3470
3471err_flags:
3472 if (stream->ops->destroy)
3473 stream->ops->destroy(stream);
3474err_alloc:
3475 kfree(stream);
3476err_ctx:
3477 if (specific_ctx)
3478 i915_gem_context_put(specific_ctx);
3479err:
3480 return ret;
3481}
3482
3483static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3484{
3485 return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3486}
3487
3488/**
3489 * read_properties_unlocked - validate + copy userspace stream open properties
3490 * @perf: i915 perf instance
3491 * @uprops: The array of u64 key value pairs given by userspace
3492 * @n_props: The number of key value pairs expected in @uprops
3493 * @props: The stream configuration built up while validating properties
3494 *
3495 * Note this function only validates properties in isolation it doesn't
3496 * validate that the combination of properties makes sense or that all
3497 * properties necessary for a particular kind of stream have been set.
3498 *
3499 * Note that there currently aren't any ordering requirements for properties so
3500 * we shouldn't validate or assume anything about ordering here. This doesn't
3501 * rule out defining new properties with ordering requirements in the future.
3502 */
3503static int read_properties_unlocked(struct i915_perf *perf,
3504 u64 __user *uprops,
3505 u32 n_props,
3506 struct perf_open_properties *props)
3507{
3508 u64 __user *uprop = uprops;
3509 u32 i;
3510 int ret;
3511
3512 memset(props, 0, sizeof(struct perf_open_properties));
3513 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3514
3515 if (!n_props) {
3516 DRM_DEBUG("No i915 perf properties given\n");
3517 return -EINVAL;
3518 }
3519
3520 /* At the moment we only support using i915-perf on the RCS. */
3521 props->engine = intel_engine_lookup_user(perf->i915,
3522 I915_ENGINE_CLASS_RENDER,
3523 0);
3524 if (!props->engine) {
3525 DRM_DEBUG("No RENDER-capable engines\n");
3526 return -EINVAL;
3527 }
3528
3529 /* Considering that ID = 0 is reserved and assuming that we don't
3530 * (currently) expect any configurations to ever specify duplicate
3531 * values for a particular property ID then the last _PROP_MAX value is
3532 * one greater than the maximum number of properties we expect to get
3533 * from userspace.
3534 */
3535 if (n_props >= DRM_I915_PERF_PROP_MAX) {
3536 DRM_DEBUG("More i915 perf properties specified than exist\n");
3537 return -EINVAL;
3538 }
3539
3540 for (i = 0; i < n_props; i++) {
3541 u64 oa_period, oa_freq_hz;
3542 u64 id, value;
3543
3544 ret = get_user(id, uprop);
3545 if (ret)
3546 return ret;
3547
3548 ret = get_user(value, uprop + 1);
3549 if (ret)
3550 return ret;
3551
3552 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3553 DRM_DEBUG("Unknown i915 perf property ID\n");
3554 return -EINVAL;
3555 }
3556
3557 switch ((enum drm_i915_perf_property_id)id) {
3558 case DRM_I915_PERF_PROP_CTX_HANDLE:
3559 props->single_context = 1;
3560 props->ctx_handle = value;
3561 break;
3562 case DRM_I915_PERF_PROP_SAMPLE_OA:
3563 if (value)
3564 props->sample_flags |= SAMPLE_OA_REPORT;
3565 break;
3566 case DRM_I915_PERF_PROP_OA_METRICS_SET:
3567 if (value == 0) {
3568 DRM_DEBUG("Unknown OA metric set ID\n");
3569 return -EINVAL;
3570 }
3571 props->metrics_set = value;
3572 break;
3573 case DRM_I915_PERF_PROP_OA_FORMAT:
3574 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3575 DRM_DEBUG("Out-of-range OA report format %llu\n",
3576 value);
3577 return -EINVAL;
3578 }
3579 if (!perf->oa_formats[value].size) {
3580 DRM_DEBUG("Unsupported OA report format %llu\n",
3581 value);
3582 return -EINVAL;
3583 }
3584 props->oa_format = value;
3585 break;
3586 case DRM_I915_PERF_PROP_OA_EXPONENT:
3587 if (value > OA_EXPONENT_MAX) {
3588 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3589 OA_EXPONENT_MAX);
3590 return -EINVAL;
3591 }
3592
3593 /* Theoretically we can program the OA unit to sample
3594 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3595 * for BXT. We don't allow such high sampling
3596 * frequencies by default unless root.
3597 */
3598
3599 BUILD_BUG_ON(sizeof(oa_period) != 8);
3600 oa_period = oa_exponent_to_ns(perf, value);
3601
3602 /* This check is primarily to ensure that oa_period <=
3603 * UINT32_MAX (before passing to do_div which only
3604 * accepts a u32 denominator), but we can also skip
3605 * checking anything < 1Hz which implicitly can't be
3606 * limited via an integer oa_max_sample_rate.
3607 */
3608 if (oa_period <= NSEC_PER_SEC) {
3609 u64 tmp = NSEC_PER_SEC;
3610 do_div(tmp, oa_period);
3611 oa_freq_hz = tmp;
3612 } else
3613 oa_freq_hz = 0;
3614
3615 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3616 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3617 i915_oa_max_sample_rate);
3618 return -EACCES;
3619 }
3620
3621 props->oa_periodic = true;
3622 props->oa_period_exponent = value;
3623 break;
3624 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3625 props->hold_preemption = !!value;
3626 break;
3627 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3628 struct drm_i915_gem_context_param_sseu user_sseu;
3629
3630 if (copy_from_user(&user_sseu,
3631 u64_to_user_ptr(value),
3632 sizeof(user_sseu))) {
3633 DRM_DEBUG("Unable to copy global sseu parameter\n");
3634 return -EFAULT;
3635 }
3636
3637 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3638 if (ret) {
3639 DRM_DEBUG("Invalid SSEU configuration\n");
3640 return ret;
3641 }
3642 props->has_sseu = true;
3643 break;
3644 }
3645 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3646 if (value < 100000 /* 100us */) {
3647 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3648 value);
3649 return -EINVAL;
3650 }
3651 props->poll_oa_period = value;
3652 break;
3653 case DRM_I915_PERF_PROP_MAX:
3654 MISSING_CASE(id);
3655 return -EINVAL;
3656 }
3657
3658 uprop += 2;
3659 }
3660
3661 return 0;
3662}
3663
3664/**
3665 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3666 * @dev: drm device
3667 * @data: ioctl data copied from userspace (unvalidated)
3668 * @file: drm file
3669 *
3670 * Validates the stream open parameters given by userspace including flags
3671 * and an array of u64 key, value pair properties.
3672 *
3673 * Very little is assumed up front about the nature of the stream being
3674 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3675 * i915-perf stream is expected to be a suitable interface for other forms of
3676 * buffered data written by the GPU besides periodic OA metrics.
3677 *
3678 * Note we copy the properties from userspace outside of the i915 perf
3679 * mutex to avoid an awkward lockdep with mmap_lock.
3680 *
3681 * Most of the implementation details are handled by
3682 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3683 * mutex for serializing with any non-file-operation driver hooks.
3684 *
3685 * Return: A newly opened i915 Perf stream file descriptor or negative
3686 * error code on failure.
3687 */
3688int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3689 struct drm_file *file)
3690{
3691 struct i915_perf *perf = &to_i915(dev)->perf;
3692 struct drm_i915_perf_open_param *param = data;
3693 struct perf_open_properties props;
3694 u32 known_open_flags;
3695 int ret;
3696
3697 if (!perf->i915) {
3698 DRM_DEBUG("i915 perf interface not available for this system\n");
3699 return -ENOTSUPP;
3700 }
3701
3702 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3703 I915_PERF_FLAG_FD_NONBLOCK |
3704 I915_PERF_FLAG_DISABLED;
3705 if (param->flags & ~known_open_flags) {
3706 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3707 return -EINVAL;
3708 }
3709
3710 ret = read_properties_unlocked(perf,
3711 u64_to_user_ptr(param->properties_ptr),
3712 param->num_properties,
3713 &props);
3714 if (ret)
3715 return ret;
3716
3717 mutex_lock(&perf->lock);
3718 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3719 mutex_unlock(&perf->lock);
3720
3721 return ret;
3722}
3723
3724/**
3725 * i915_perf_register - exposes i915-perf to userspace
3726 * @i915: i915 device instance
3727 *
3728 * In particular OA metric sets are advertised under a sysfs metrics/
3729 * directory allowing userspace to enumerate valid IDs that can be
3730 * used to open an i915-perf stream.
3731 */
3732void i915_perf_register(struct drm_i915_private *i915)
3733{
3734 struct i915_perf *perf = &i915->perf;
3735
3736 if (!perf->i915)
3737 return;
3738
3739 /* To be sure we're synchronized with an attempted
3740 * i915_perf_open_ioctl(); considering that we register after
3741 * being exposed to userspace.
3742 */
3743 mutex_lock(&perf->lock);
3744
3745 perf->metrics_kobj =
3746 kobject_create_and_add("metrics",
3747 &i915->drm.primary->kdev->kobj);
3748
3749 mutex_unlock(&perf->lock);
3750}
3751
3752/**
3753 * i915_perf_unregister - hide i915-perf from userspace
3754 * @i915: i915 device instance
3755 *
3756 * i915-perf state cleanup is split up into an 'unregister' and
3757 * 'deinit' phase where the interface is first hidden from
3758 * userspace by i915_perf_unregister() before cleaning up
3759 * remaining state in i915_perf_fini().
3760 */
3761void i915_perf_unregister(struct drm_i915_private *i915)
3762{
3763 struct i915_perf *perf = &i915->perf;
3764
3765 if (!perf->metrics_kobj)
3766 return;
3767
3768 kobject_put(perf->metrics_kobj);
3769 perf->metrics_kobj = NULL;
3770}
3771
3772static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3773{
3774 static const i915_reg_t flex_eu_regs[] = {
3775 EU_PERF_CNTL0,
3776 EU_PERF_CNTL1,
3777 EU_PERF_CNTL2,
3778 EU_PERF_CNTL3,
3779 EU_PERF_CNTL4,
3780 EU_PERF_CNTL5,
3781 EU_PERF_CNTL6,
3782 };
3783 int i;
3784
3785 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3786 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3787 return true;
3788 }
3789 return false;
3790}
3791
3792#define ADDR_IN_RANGE(addr, start, end) \
3793 ((addr) >= (start) && \
3794 (addr) <= (end))
3795
3796#define REG_IN_RANGE(addr, start, end) \
3797 ((addr) >= i915_mmio_reg_offset(start) && \
3798 (addr) <= i915_mmio_reg_offset(end))
3799
3800#define REG_EQUAL(addr, mmio) \
3801 ((addr) == i915_mmio_reg_offset(mmio))
3802
3803static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3804{
3805 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3806 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3807 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3808}
3809
3810static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3811{
3812 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3813 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3814 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3815 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3816}
3817
3818static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3819{
3820 return gen7_is_valid_mux_addr(perf, addr) ||
3821 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3822 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3823}
3824
3825static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3826{
3827 return gen8_is_valid_mux_addr(perf, addr) ||
3828 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3829 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3830}
3831
3832static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3833{
3834 return gen7_is_valid_mux_addr(perf, addr) ||
3835 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3836 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3837 REG_EQUAL(addr, HSW_MBVID2_MISR0);
3838}
3839
3840static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3841{
3842 return gen7_is_valid_mux_addr(perf, addr) ||
3843 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3844}
3845
3846static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3847{
3848 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3849 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3850 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3851 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3852 REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3853 REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3854 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3855}
3856
3857static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3858{
3859 return REG_EQUAL(addr, NOA_WRITE) ||
3860 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3861 REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3862 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3863 REG_EQUAL(addr, RPM_CONFIG0) ||
3864 REG_EQUAL(addr, RPM_CONFIG1) ||
3865 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3866}
3867
3868static u32 mask_reg_value(u32 reg, u32 val)
3869{
3870 /* HALF_SLICE_CHICKEN2 is programmed with a the
3871 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3872 * programmed by userspace doesn't change this.
3873 */
3874 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3875 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3876
3877 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3878 * indicated by its name and a bunch of selection fields used by OA
3879 * configs.
3880 */
3881 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3882 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3883
3884 return val;
3885}
3886
3887static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3888 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3889 u32 __user *regs,
3890 u32 n_regs)
3891{
3892 struct i915_oa_reg *oa_regs;
3893 int err;
3894 u32 i;
3895
3896 if (!n_regs)
3897 return NULL;
3898
3899 /* No is_valid function means we're not allowing any register to be programmed. */
3900 GEM_BUG_ON(!is_valid);
3901 if (!is_valid)
3902 return ERR_PTR(-EINVAL);
3903
3904 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3905 if (!oa_regs)
3906 return ERR_PTR(-ENOMEM);
3907
3908 for (i = 0; i < n_regs; i++) {
3909 u32 addr, value;
3910
3911 err = get_user(addr, regs);
3912 if (err)
3913 goto addr_err;
3914
3915 if (!is_valid(perf, addr)) {
3916 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3917 err = -EINVAL;
3918 goto addr_err;
3919 }
3920
3921 err = get_user(value, regs + 1);
3922 if (err)
3923 goto addr_err;
3924
3925 oa_regs[i].addr = _MMIO(addr);
3926 oa_regs[i].value = mask_reg_value(addr, value);
3927
3928 regs += 2;
3929 }
3930
3931 return oa_regs;
3932
3933addr_err:
3934 kfree(oa_regs);
3935 return ERR_PTR(err);
3936}
3937
3938static ssize_t show_dynamic_id(struct device *dev,
3939 struct device_attribute *attr,
3940 char *buf)
3941{
3942 struct i915_oa_config *oa_config =
3943 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3944
3945 return sprintf(buf, "%d\n", oa_config->id);
3946}
3947
3948static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3949 struct i915_oa_config *oa_config)
3950{
3951 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3952 oa_config->sysfs_metric_id.attr.name = "id";
3953 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3954 oa_config->sysfs_metric_id.show = show_dynamic_id;
3955 oa_config->sysfs_metric_id.store = NULL;
3956
3957 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3958 oa_config->attrs[1] = NULL;
3959
3960 oa_config->sysfs_metric.name = oa_config->uuid;
3961 oa_config->sysfs_metric.attrs = oa_config->attrs;
3962
3963 return sysfs_create_group(perf->metrics_kobj,
3964 &oa_config->sysfs_metric);
3965}
3966
3967/**
3968 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3969 * @dev: drm device
3970 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3971 * userspace (unvalidated)
3972 * @file: drm file
3973 *
3974 * Validates the submitted OA register to be saved into a new OA config that
3975 * can then be used for programming the OA unit and its NOA network.
3976 *
3977 * Returns: A new allocated config number to be used with the perf open ioctl
3978 * or a negative error code on failure.
3979 */
3980int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3981 struct drm_file *file)
3982{
3983 struct i915_perf *perf = &to_i915(dev)->perf;
3984 struct drm_i915_perf_oa_config *args = data;
3985 struct i915_oa_config *oa_config, *tmp;
3986 struct i915_oa_reg *regs;
3987 int err, id;
3988
3989 if (!perf->i915) {
3990 DRM_DEBUG("i915 perf interface not available for this system\n");
3991 return -ENOTSUPP;
3992 }
3993
3994 if (!perf->metrics_kobj) {
3995 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3996 return -EINVAL;
3997 }
3998
3999 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4000 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4001 return -EACCES;
4002 }
4003
4004 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4005 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4006 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4007 DRM_DEBUG("No OA registers given\n");
4008 return -EINVAL;
4009 }
4010
4011 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4012 if (!oa_config) {
4013 DRM_DEBUG("Failed to allocate memory for the OA config\n");
4014 return -ENOMEM;
4015 }
4016
4017 oa_config->perf = perf;
4018 kref_init(&oa_config->ref);
4019
4020 if (!uuid_is_valid(args->uuid)) {
4021 DRM_DEBUG("Invalid uuid format for OA config\n");
4022 err = -EINVAL;
4023 goto reg_err;
4024 }
4025
4026 /* Last character in oa_config->uuid will be 0 because oa_config is
4027 * kzalloc.
4028 */
4029 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4030
4031 oa_config->mux_regs_len = args->n_mux_regs;
4032 regs = alloc_oa_regs(perf,
4033 perf->ops.is_valid_mux_reg,
4034 u64_to_user_ptr(args->mux_regs_ptr),
4035 args->n_mux_regs);
4036
4037 if (IS_ERR(regs)) {
4038 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4039 err = PTR_ERR(regs);
4040 goto reg_err;
4041 }
4042 oa_config->mux_regs = regs;
4043
4044 oa_config->b_counter_regs_len = args->n_boolean_regs;
4045 regs = alloc_oa_regs(perf,
4046 perf->ops.is_valid_b_counter_reg,
4047 u64_to_user_ptr(args->boolean_regs_ptr),
4048 args->n_boolean_regs);
4049
4050 if (IS_ERR(regs)) {
4051 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4052 err = PTR_ERR(regs);
4053 goto reg_err;
4054 }
4055 oa_config->b_counter_regs = regs;
4056
4057 if (INTEL_GEN(perf->i915) < 8) {
4058 if (args->n_flex_regs != 0) {
4059 err = -EINVAL;
4060 goto reg_err;
4061 }
4062 } else {
4063 oa_config->flex_regs_len = args->n_flex_regs;
4064 regs = alloc_oa_regs(perf,
4065 perf->ops.is_valid_flex_reg,
4066 u64_to_user_ptr(args->flex_regs_ptr),
4067 args->n_flex_regs);
4068
4069 if (IS_ERR(regs)) {
4070 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4071 err = PTR_ERR(regs);
4072 goto reg_err;
4073 }
4074 oa_config->flex_regs = regs;
4075 }
4076
4077 err = mutex_lock_interruptible(&perf->metrics_lock);
4078 if (err)
4079 goto reg_err;
4080
4081 /* We shouldn't have too many configs, so this iteration shouldn't be
4082 * too costly.
4083 */
4084 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4085 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4086 DRM_DEBUG("OA config already exists with this uuid\n");
4087 err = -EADDRINUSE;
4088 goto sysfs_err;
4089 }
4090 }
4091
4092 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4093 if (err) {
4094 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4095 goto sysfs_err;
4096 }
4097
4098 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4099 oa_config->id = idr_alloc(&perf->metrics_idr,
4100 oa_config, 2,
4101 0, GFP_KERNEL);
4102 if (oa_config->id < 0) {
4103 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4104 err = oa_config->id;
4105 goto sysfs_err;
4106 }
4107
4108 mutex_unlock(&perf->metrics_lock);
4109
4110 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4111
4112 return oa_config->id;
4113
4114sysfs_err:
4115 mutex_unlock(&perf->metrics_lock);
4116reg_err:
4117 i915_oa_config_put(oa_config);
4118 DRM_DEBUG("Failed to add new OA config\n");
4119 return err;
4120}
4121
4122/**
4123 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4124 * @dev: drm device
4125 * @data: ioctl data (pointer to u64 integer) copied from userspace
4126 * @file: drm file
4127 *
4128 * Configs can be removed while being used, the will stop appearing in sysfs
4129 * and their content will be freed when the stream using the config is closed.
4130 *
4131 * Returns: 0 on success or a negative error code on failure.
4132 */
4133int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4134 struct drm_file *file)
4135{
4136 struct i915_perf *perf = &to_i915(dev)->perf;
4137 u64 *arg = data;
4138 struct i915_oa_config *oa_config;
4139 int ret;
4140
4141 if (!perf->i915) {
4142 DRM_DEBUG("i915 perf interface not available for this system\n");
4143 return -ENOTSUPP;
4144 }
4145
4146 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4147 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4148 return -EACCES;
4149 }
4150
4151 ret = mutex_lock_interruptible(&perf->metrics_lock);
4152 if (ret)
4153 return ret;
4154
4155 oa_config = idr_find(&perf->metrics_idr, *arg);
4156 if (!oa_config) {
4157 DRM_DEBUG("Failed to remove unknown OA config\n");
4158 ret = -ENOENT;
4159 goto err_unlock;
4160 }
4161
4162 GEM_BUG_ON(*arg != oa_config->id);
4163
4164 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4165
4166 idr_remove(&perf->metrics_idr, *arg);
4167
4168 mutex_unlock(&perf->metrics_lock);
4169
4170 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4171
4172 i915_oa_config_put(oa_config);
4173
4174 return 0;
4175
4176err_unlock:
4177 mutex_unlock(&perf->metrics_lock);
4178 return ret;
4179}
4180
4181static struct ctl_table oa_table[] = {
4182 {
4183 .procname = "perf_stream_paranoid",
4184 .data = &i915_perf_stream_paranoid,
4185 .maxlen = sizeof(i915_perf_stream_paranoid),
4186 .mode = 0644,
4187 .proc_handler = proc_dointvec_minmax,
4188 .extra1 = SYSCTL_ZERO,
4189 .extra2 = SYSCTL_ONE,
4190 },
4191 {
4192 .procname = "oa_max_sample_rate",
4193 .data = &i915_oa_max_sample_rate,
4194 .maxlen = sizeof(i915_oa_max_sample_rate),
4195 .mode = 0644,
4196 .proc_handler = proc_dointvec_minmax,
4197 .extra1 = SYSCTL_ZERO,
4198 .extra2 = &oa_sample_rate_hard_limit,
4199 },
4200 {}
4201};
4202
4203static struct ctl_table i915_root[] = {
4204 {
4205 .procname = "i915",
4206 .maxlen = 0,
4207 .mode = 0555,
4208 .child = oa_table,
4209 },
4210 {}
4211};
4212
4213static struct ctl_table dev_root[] = {
4214 {
4215 .procname = "dev",
4216 .maxlen = 0,
4217 .mode = 0555,
4218 .child = i915_root,
4219 },
4220 {}
4221};
4222
4223/**
4224 * i915_perf_init - initialize i915-perf state on module bind
4225 * @i915: i915 device instance
4226 *
4227 * Initializes i915-perf state without exposing anything to userspace.
4228 *
4229 * Note: i915-perf initialization is split into an 'init' and 'register'
4230 * phase with the i915_perf_register() exposing state to userspace.
4231 */
4232void i915_perf_init(struct drm_i915_private *i915)
4233{
4234 struct i915_perf *perf = &i915->perf;
4235
4236 /* XXX const struct i915_perf_ops! */
4237
4238 if (IS_HASWELL(i915)) {
4239 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4240 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4241 perf->ops.is_valid_flex_reg = NULL;
4242 perf->ops.enable_metric_set = hsw_enable_metric_set;
4243 perf->ops.disable_metric_set = hsw_disable_metric_set;
4244 perf->ops.oa_enable = gen7_oa_enable;
4245 perf->ops.oa_disable = gen7_oa_disable;
4246 perf->ops.read = gen7_oa_read;
4247 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4248
4249 perf->oa_formats = hsw_oa_formats;
4250 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4251 /* Note: that although we could theoretically also support the
4252 * legacy ringbuffer mode on BDW (and earlier iterations of
4253 * this driver, before upstreaming did this) it didn't seem
4254 * worth the complexity to maintain now that BDW+ enable
4255 * execlist mode by default.
4256 */
4257 perf->ops.read = gen8_oa_read;
4258
4259 if (IS_GEN_RANGE(i915, 8, 9)) {
4260 perf->oa_formats = gen8_plus_oa_formats;
4261
4262 perf->ops.is_valid_b_counter_reg =
4263 gen7_is_valid_b_counter_addr;
4264 perf->ops.is_valid_mux_reg =
4265 gen8_is_valid_mux_addr;
4266 perf->ops.is_valid_flex_reg =
4267 gen8_is_valid_flex_addr;
4268
4269 if (IS_CHERRYVIEW(i915)) {
4270 perf->ops.is_valid_mux_reg =
4271 chv_is_valid_mux_addr;
4272 }
4273
4274 perf->ops.oa_enable = gen8_oa_enable;
4275 perf->ops.oa_disable = gen8_oa_disable;
4276 perf->ops.enable_metric_set = gen8_enable_metric_set;
4277 perf->ops.disable_metric_set = gen8_disable_metric_set;
4278 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4279
4280 if (IS_GEN(i915, 8)) {
4281 perf->ctx_oactxctrl_offset = 0x120;
4282 perf->ctx_flexeu0_offset = 0x2ce;
4283
4284 perf->gen8_valid_ctx_bit = BIT(25);
4285 } else {
4286 perf->ctx_oactxctrl_offset = 0x128;
4287 perf->ctx_flexeu0_offset = 0x3de;
4288
4289 perf->gen8_valid_ctx_bit = BIT(16);
4290 }
4291 } else if (IS_GEN_RANGE(i915, 10, 11)) {
4292 perf->oa_formats = gen8_plus_oa_formats;
4293
4294 perf->ops.is_valid_b_counter_reg =
4295 gen7_is_valid_b_counter_addr;
4296 perf->ops.is_valid_mux_reg =
4297 gen10_is_valid_mux_addr;
4298 perf->ops.is_valid_flex_reg =
4299 gen8_is_valid_flex_addr;
4300
4301 perf->ops.oa_enable = gen8_oa_enable;
4302 perf->ops.oa_disable = gen8_oa_disable;
4303 perf->ops.enable_metric_set = gen8_enable_metric_set;
4304 perf->ops.disable_metric_set = gen10_disable_metric_set;
4305 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4306
4307 if (IS_GEN(i915, 10)) {
4308 perf->ctx_oactxctrl_offset = 0x128;
4309 perf->ctx_flexeu0_offset = 0x3de;
4310 } else {
4311 perf->ctx_oactxctrl_offset = 0x124;
4312 perf->ctx_flexeu0_offset = 0x78e;
4313 }
4314 perf->gen8_valid_ctx_bit = BIT(16);
4315 } else if (IS_GEN(i915, 12)) {
4316 perf->oa_formats = gen12_oa_formats;
4317
4318 perf->ops.is_valid_b_counter_reg =
4319 gen12_is_valid_b_counter_addr;
4320 perf->ops.is_valid_mux_reg =
4321 gen12_is_valid_mux_addr;
4322 perf->ops.is_valid_flex_reg =
4323 gen8_is_valid_flex_addr;
4324
4325 perf->ops.oa_enable = gen12_oa_enable;
4326 perf->ops.oa_disable = gen12_oa_disable;
4327 perf->ops.enable_metric_set = gen12_enable_metric_set;
4328 perf->ops.disable_metric_set = gen12_disable_metric_set;
4329 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4330
4331 perf->ctx_flexeu0_offset = 0;
4332 perf->ctx_oactxctrl_offset = 0x144;
4333 }
4334 }
4335
4336 if (perf->ops.enable_metric_set) {
4337 mutex_init(&perf->lock);
4338
4339 oa_sample_rate_hard_limit =
4340 RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4341
4342 mutex_init(&perf->metrics_lock);
4343 idr_init(&perf->metrics_idr);
4344
4345 /* We set up some ratelimit state to potentially throttle any
4346 * _NOTES about spurious, invalid OA reports which we don't
4347 * forward to userspace.
4348 *
4349 * We print a _NOTE about any throttling when closing the
4350 * stream instead of waiting until driver _fini which no one
4351 * would ever see.
4352 *
4353 * Using the same limiting factors as printk_ratelimit()
4354 */
4355 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4356 /* Since we use a DRM_NOTE for spurious reports it would be
4357 * inconsistent to let __ratelimit() automatically print a
4358 * warning for throttling.
4359 */
4360 ratelimit_set_flags(&perf->spurious_report_rs,
4361 RATELIMIT_MSG_ON_RELEASE);
4362
4363 ratelimit_state_init(&perf->tail_pointer_race,
4364 5 * HZ, 10);
4365 ratelimit_set_flags(&perf->tail_pointer_race,
4366 RATELIMIT_MSG_ON_RELEASE);
4367
4368 atomic64_set(&perf->noa_programming_delay,
4369 500 * 1000 /* 500us */);
4370
4371 perf->i915 = i915;
4372 }
4373}
4374
4375static int destroy_config(int id, void *p, void *data)
4376{
4377 i915_oa_config_put(p);
4378 return 0;
4379}
4380
4381void i915_perf_sysctl_register(void)
4382{
4383 sysctl_header = register_sysctl_table(dev_root);
4384}
4385
4386void i915_perf_sysctl_unregister(void)
4387{
4388 unregister_sysctl_table(sysctl_header);
4389}
4390
4391/**
4392 * i915_perf_fini - Counter part to i915_perf_init()
4393 * @i915: i915 device instance
4394 */
4395void i915_perf_fini(struct drm_i915_private *i915)
4396{
4397 struct i915_perf *perf = &i915->perf;
4398
4399 if (!perf->i915)
4400 return;
4401
4402 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4403 idr_destroy(&perf->metrics_idr);
4404
4405 memset(&perf->ops, 0, sizeof(perf->ops));
4406 perf->i915 = NULL;
4407}
4408
4409/**
4410 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4411 *
4412 * This version number is used by userspace to detect available features.
4413 */
4414int i915_perf_ioctl_version(void)
4415{
4416 /*
4417 * 1: Initial version
4418 * I915_PERF_IOCTL_ENABLE
4419 * I915_PERF_IOCTL_DISABLE
4420 *
4421 * 2: Added runtime modification of OA config.
4422 * I915_PERF_IOCTL_CONFIG
4423 *
4424 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4425 * preemption on a particular context so that performance data is
4426 * accessible from a delta of MI_RPC reports without looking at the
4427 * OA buffer.
4428 *
4429 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4430 * be run for the duration of the performance recording based on
4431 * their SSEU configuration.
4432 *
4433 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4434 * interval for the hrtimer used to check for OA data.
4435 */
4436 return 5;
4437}
4438
4439#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4440#include "selftests/i915_perf.c"
4441#endif