Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Symmetric key cipher operations.
   4 *
   5 * Generic encrypt/decrypt wrapper for ciphers, handles operations across
   6 * multiple page boundaries by using temporary blocks.  In user context,
   7 * the kernel is given a chance to schedule us once per page.
   8 *
   9 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
  10 */
  11
  12#include <crypto/internal/aead.h>
  13#include <crypto/internal/skcipher.h>
  14#include <crypto/scatterwalk.h>
  15#include <linux/bug.h>
  16#include <linux/cryptouser.h>
  17#include <linux/compiler.h>
  18#include <linux/list.h>
  19#include <linux/module.h>
  20#include <linux/rtnetlink.h>
  21#include <linux/seq_file.h>
  22#include <net/netlink.h>
  23
  24#include "internal.h"
  25
  26enum {
  27	SKCIPHER_WALK_PHYS = 1 << 0,
  28	SKCIPHER_WALK_SLOW = 1 << 1,
  29	SKCIPHER_WALK_COPY = 1 << 2,
  30	SKCIPHER_WALK_DIFF = 1 << 3,
  31	SKCIPHER_WALK_SLEEP = 1 << 4,
  32};
  33
  34struct skcipher_walk_buffer {
  35	struct list_head entry;
  36	struct scatter_walk dst;
  37	unsigned int len;
  38	u8 *data;
  39	u8 buffer[];
  40};
  41
  42static int skcipher_walk_next(struct skcipher_walk *walk);
  43
  44static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
  45{
  46	if (PageHighMem(scatterwalk_page(walk)))
  47		kunmap_atomic(vaddr);
  48}
  49
  50static inline void *skcipher_map(struct scatter_walk *walk)
  51{
  52	struct page *page = scatterwalk_page(walk);
  53
  54	return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
  55	       offset_in_page(walk->offset);
  56}
  57
  58static inline void skcipher_map_src(struct skcipher_walk *walk)
  59{
  60	walk->src.virt.addr = skcipher_map(&walk->in);
  61}
  62
  63static inline void skcipher_map_dst(struct skcipher_walk *walk)
  64{
  65	walk->dst.virt.addr = skcipher_map(&walk->out);
  66}
  67
  68static inline void skcipher_unmap_src(struct skcipher_walk *walk)
  69{
  70	skcipher_unmap(&walk->in, walk->src.virt.addr);
  71}
  72
  73static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
  74{
  75	skcipher_unmap(&walk->out, walk->dst.virt.addr);
  76}
  77
  78static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
  79{
  80	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
  81}
  82
  83/* Get a spot of the specified length that does not straddle a page.
  84 * The caller needs to ensure that there is enough space for this operation.
  85 */
  86static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
  87{
  88	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
  89
  90	return max(start, end_page);
  91}
  92
  93static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
  94{
  95	u8 *addr;
  96
  97	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
  98	addr = skcipher_get_spot(addr, bsize);
  99	scatterwalk_copychunks(addr, &walk->out, bsize,
 100			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
 101	return 0;
 102}
 103
 104int skcipher_walk_done(struct skcipher_walk *walk, int err)
 105{
 106	unsigned int n = walk->nbytes;
 107	unsigned int nbytes = 0;
 108
 109	if (!n)
 110		goto finish;
 111
 112	if (likely(err >= 0)) {
 113		n -= err;
 114		nbytes = walk->total - n;
 115	}
 116
 117	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
 118				    SKCIPHER_WALK_SLOW |
 119				    SKCIPHER_WALK_COPY |
 120				    SKCIPHER_WALK_DIFF)))) {
 121unmap_src:
 122		skcipher_unmap_src(walk);
 123	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
 124		skcipher_unmap_dst(walk);
 125		goto unmap_src;
 126	} else if (walk->flags & SKCIPHER_WALK_COPY) {
 127		skcipher_map_dst(walk);
 128		memcpy(walk->dst.virt.addr, walk->page, n);
 129		skcipher_unmap_dst(walk);
 130	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
 131		if (err > 0) {
 132			/*
 133			 * Didn't process all bytes.  Either the algorithm is
 134			 * broken, or this was the last step and it turned out
 135			 * the message wasn't evenly divisible into blocks but
 136			 * the algorithm requires it.
 137			 */
 138			err = -EINVAL;
 139			nbytes = 0;
 140		} else
 141			n = skcipher_done_slow(walk, n);
 142	}
 143
 144	if (err > 0)
 145		err = 0;
 146
 147	walk->total = nbytes;
 148	walk->nbytes = 0;
 149
 150	scatterwalk_advance(&walk->in, n);
 151	scatterwalk_advance(&walk->out, n);
 152	scatterwalk_done(&walk->in, 0, nbytes);
 153	scatterwalk_done(&walk->out, 1, nbytes);
 154
 155	if (nbytes) {
 156		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
 157			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
 158		return skcipher_walk_next(walk);
 159	}
 160
 161finish:
 162	/* Short-circuit for the common/fast path. */
 163	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
 164		goto out;
 165
 166	if (walk->flags & SKCIPHER_WALK_PHYS)
 167		goto out;
 168
 169	if (walk->iv != walk->oiv)
 170		memcpy(walk->oiv, walk->iv, walk->ivsize);
 171	if (walk->buffer != walk->page)
 172		kfree(walk->buffer);
 173	if (walk->page)
 174		free_page((unsigned long)walk->page);
 175
 176out:
 177	return err;
 178}
 179EXPORT_SYMBOL_GPL(skcipher_walk_done);
 180
 181void skcipher_walk_complete(struct skcipher_walk *walk, int err)
 182{
 183	struct skcipher_walk_buffer *p, *tmp;
 184
 185	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
 186		u8 *data;
 187
 188		if (err)
 189			goto done;
 190
 191		data = p->data;
 192		if (!data) {
 193			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
 194			data = skcipher_get_spot(data, walk->stride);
 195		}
 196
 197		scatterwalk_copychunks(data, &p->dst, p->len, 1);
 198
 199		if (offset_in_page(p->data) + p->len + walk->stride >
 200		    PAGE_SIZE)
 201			free_page((unsigned long)p->data);
 202
 203done:
 204		list_del(&p->entry);
 205		kfree(p);
 206	}
 207
 208	if (!err && walk->iv != walk->oiv)
 209		memcpy(walk->oiv, walk->iv, walk->ivsize);
 210	if (walk->buffer != walk->page)
 211		kfree(walk->buffer);
 212	if (walk->page)
 213		free_page((unsigned long)walk->page);
 214}
 215EXPORT_SYMBOL_GPL(skcipher_walk_complete);
 216
 217static void skcipher_queue_write(struct skcipher_walk *walk,
 218				 struct skcipher_walk_buffer *p)
 219{
 220	p->dst = walk->out;
 221	list_add_tail(&p->entry, &walk->buffers);
 222}
 223
 224static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
 225{
 226	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
 227	unsigned alignmask = walk->alignmask;
 228	struct skcipher_walk_buffer *p;
 229	unsigned a;
 230	unsigned n;
 231	u8 *buffer;
 232	void *v;
 233
 234	if (!phys) {
 235		if (!walk->buffer)
 236			walk->buffer = walk->page;
 237		buffer = walk->buffer;
 238		if (buffer)
 239			goto ok;
 240	}
 241
 242	/* Start with the minimum alignment of kmalloc. */
 243	a = crypto_tfm_ctx_alignment() - 1;
 244	n = bsize;
 245
 246	if (phys) {
 247		/* Calculate the minimum alignment of p->buffer. */
 248		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
 249		n += sizeof(*p);
 250	}
 251
 252	/* Minimum size to align p->buffer by alignmask. */
 253	n += alignmask & ~a;
 254
 255	/* Minimum size to ensure p->buffer does not straddle a page. */
 256	n += (bsize - 1) & ~(alignmask | a);
 257
 258	v = kzalloc(n, skcipher_walk_gfp(walk));
 259	if (!v)
 260		return skcipher_walk_done(walk, -ENOMEM);
 261
 262	if (phys) {
 263		p = v;
 264		p->len = bsize;
 265		skcipher_queue_write(walk, p);
 266		buffer = p->buffer;
 267	} else {
 268		walk->buffer = v;
 269		buffer = v;
 270	}
 271
 272ok:
 273	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
 274	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
 275	walk->src.virt.addr = walk->dst.virt.addr;
 276
 277	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
 278
 279	walk->nbytes = bsize;
 280	walk->flags |= SKCIPHER_WALK_SLOW;
 281
 282	return 0;
 283}
 284
 285static int skcipher_next_copy(struct skcipher_walk *walk)
 286{
 287	struct skcipher_walk_buffer *p;
 288	u8 *tmp = walk->page;
 289
 290	skcipher_map_src(walk);
 291	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
 292	skcipher_unmap_src(walk);
 293
 294	walk->src.virt.addr = tmp;
 295	walk->dst.virt.addr = tmp;
 296
 297	if (!(walk->flags & SKCIPHER_WALK_PHYS))
 298		return 0;
 299
 300	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
 301	if (!p)
 302		return -ENOMEM;
 303
 304	p->data = walk->page;
 305	p->len = walk->nbytes;
 306	skcipher_queue_write(walk, p);
 307
 308	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
 309	    PAGE_SIZE)
 310		walk->page = NULL;
 311	else
 312		walk->page += walk->nbytes;
 313
 314	return 0;
 315}
 316
 317static int skcipher_next_fast(struct skcipher_walk *walk)
 318{
 319	unsigned long diff;
 320
 321	walk->src.phys.page = scatterwalk_page(&walk->in);
 322	walk->src.phys.offset = offset_in_page(walk->in.offset);
 323	walk->dst.phys.page = scatterwalk_page(&walk->out);
 324	walk->dst.phys.offset = offset_in_page(walk->out.offset);
 325
 326	if (walk->flags & SKCIPHER_WALK_PHYS)
 327		return 0;
 328
 329	diff = walk->src.phys.offset - walk->dst.phys.offset;
 330	diff |= walk->src.virt.page - walk->dst.virt.page;
 331
 332	skcipher_map_src(walk);
 333	walk->dst.virt.addr = walk->src.virt.addr;
 334
 335	if (diff) {
 336		walk->flags |= SKCIPHER_WALK_DIFF;
 337		skcipher_map_dst(walk);
 338	}
 339
 340	return 0;
 341}
 342
 343static int skcipher_walk_next(struct skcipher_walk *walk)
 344{
 345	unsigned int bsize;
 346	unsigned int n;
 347	int err;
 348
 349	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
 350			 SKCIPHER_WALK_DIFF);
 351
 352	n = walk->total;
 353	bsize = min(walk->stride, max(n, walk->blocksize));
 354	n = scatterwalk_clamp(&walk->in, n);
 355	n = scatterwalk_clamp(&walk->out, n);
 356
 357	if (unlikely(n < bsize)) {
 358		if (unlikely(walk->total < walk->blocksize))
 359			return skcipher_walk_done(walk, -EINVAL);
 360
 361slow_path:
 362		err = skcipher_next_slow(walk, bsize);
 363		goto set_phys_lowmem;
 364	}
 365
 366	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
 367		if (!walk->page) {
 368			gfp_t gfp = skcipher_walk_gfp(walk);
 369
 370			walk->page = (void *)__get_free_page(gfp);
 371			if (!walk->page)
 372				goto slow_path;
 373		}
 374
 375		walk->nbytes = min_t(unsigned, n,
 376				     PAGE_SIZE - offset_in_page(walk->page));
 377		walk->flags |= SKCIPHER_WALK_COPY;
 378		err = skcipher_next_copy(walk);
 379		goto set_phys_lowmem;
 380	}
 381
 382	walk->nbytes = n;
 383
 384	return skcipher_next_fast(walk);
 385
 386set_phys_lowmem:
 387	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
 388		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
 389		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
 390		walk->src.phys.offset &= PAGE_SIZE - 1;
 391		walk->dst.phys.offset &= PAGE_SIZE - 1;
 392	}
 393	return err;
 394}
 395
 396static int skcipher_copy_iv(struct skcipher_walk *walk)
 397{
 398	unsigned a = crypto_tfm_ctx_alignment() - 1;
 399	unsigned alignmask = walk->alignmask;
 400	unsigned ivsize = walk->ivsize;
 401	unsigned bs = walk->stride;
 402	unsigned aligned_bs;
 403	unsigned size;
 404	u8 *iv;
 405
 406	aligned_bs = ALIGN(bs, alignmask + 1);
 407
 408	/* Minimum size to align buffer by alignmask. */
 409	size = alignmask & ~a;
 410
 411	if (walk->flags & SKCIPHER_WALK_PHYS)
 412		size += ivsize;
 413	else {
 414		size += aligned_bs + ivsize;
 415
 416		/* Minimum size to ensure buffer does not straddle a page. */
 417		size += (bs - 1) & ~(alignmask | a);
 418	}
 419
 420	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
 421	if (!walk->buffer)
 422		return -ENOMEM;
 423
 424	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
 425	iv = skcipher_get_spot(iv, bs) + aligned_bs;
 426
 427	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
 428	return 0;
 429}
 430
 431static int skcipher_walk_first(struct skcipher_walk *walk)
 432{
 433	if (WARN_ON_ONCE(in_irq()))
 434		return -EDEADLK;
 435
 436	walk->buffer = NULL;
 437	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
 438		int err = skcipher_copy_iv(walk);
 439		if (err)
 440			return err;
 441	}
 442
 443	walk->page = NULL;
 444
 445	return skcipher_walk_next(walk);
 446}
 447
 448static int skcipher_walk_skcipher(struct skcipher_walk *walk,
 449				  struct skcipher_request *req)
 450{
 451	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 452
 453	walk->total = req->cryptlen;
 454	walk->nbytes = 0;
 455	walk->iv = req->iv;
 456	walk->oiv = req->iv;
 457
 458	if (unlikely(!walk->total))
 459		return 0;
 460
 461	scatterwalk_start(&walk->in, req->src);
 462	scatterwalk_start(&walk->out, req->dst);
 463
 464	walk->flags &= ~SKCIPHER_WALK_SLEEP;
 465	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
 466		       SKCIPHER_WALK_SLEEP : 0;
 467
 468	walk->blocksize = crypto_skcipher_blocksize(tfm);
 469	walk->stride = crypto_skcipher_walksize(tfm);
 470	walk->ivsize = crypto_skcipher_ivsize(tfm);
 471	walk->alignmask = crypto_skcipher_alignmask(tfm);
 472
 473	return skcipher_walk_first(walk);
 474}
 475
 476int skcipher_walk_virt(struct skcipher_walk *walk,
 477		       struct skcipher_request *req, bool atomic)
 478{
 479	int err;
 480
 481	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 482
 483	walk->flags &= ~SKCIPHER_WALK_PHYS;
 484
 485	err = skcipher_walk_skcipher(walk, req);
 486
 487	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
 488
 489	return err;
 490}
 491EXPORT_SYMBOL_GPL(skcipher_walk_virt);
 492
 493void skcipher_walk_atomise(struct skcipher_walk *walk)
 494{
 495	walk->flags &= ~SKCIPHER_WALK_SLEEP;
 496}
 497EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
 498
 499int skcipher_walk_async(struct skcipher_walk *walk,
 500			struct skcipher_request *req)
 501{
 502	walk->flags |= SKCIPHER_WALK_PHYS;
 503
 504	INIT_LIST_HEAD(&walk->buffers);
 505
 506	return skcipher_walk_skcipher(walk, req);
 507}
 508EXPORT_SYMBOL_GPL(skcipher_walk_async);
 509
 510static int skcipher_walk_aead_common(struct skcipher_walk *walk,
 511				     struct aead_request *req, bool atomic)
 512{
 513	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 514	int err;
 515
 516	walk->nbytes = 0;
 517	walk->iv = req->iv;
 518	walk->oiv = req->iv;
 519
 520	if (unlikely(!walk->total))
 521		return 0;
 522
 523	walk->flags &= ~SKCIPHER_WALK_PHYS;
 524
 525	scatterwalk_start(&walk->in, req->src);
 526	scatterwalk_start(&walk->out, req->dst);
 527
 528	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
 529	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
 530
 531	scatterwalk_done(&walk->in, 0, walk->total);
 532	scatterwalk_done(&walk->out, 0, walk->total);
 533
 534	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
 535		walk->flags |= SKCIPHER_WALK_SLEEP;
 536	else
 537		walk->flags &= ~SKCIPHER_WALK_SLEEP;
 538
 539	walk->blocksize = crypto_aead_blocksize(tfm);
 540	walk->stride = crypto_aead_chunksize(tfm);
 541	walk->ivsize = crypto_aead_ivsize(tfm);
 542	walk->alignmask = crypto_aead_alignmask(tfm);
 543
 544	err = skcipher_walk_first(walk);
 545
 546	if (atomic)
 547		walk->flags &= ~SKCIPHER_WALK_SLEEP;
 548
 549	return err;
 550}
 551
 552int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
 553		       bool atomic)
 554{
 555	walk->total = req->cryptlen;
 556
 557	return skcipher_walk_aead_common(walk, req, atomic);
 558}
 559EXPORT_SYMBOL_GPL(skcipher_walk_aead);
 560
 561int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
 562			       struct aead_request *req, bool atomic)
 563{
 564	walk->total = req->cryptlen;
 565
 566	return skcipher_walk_aead_common(walk, req, atomic);
 567}
 568EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
 569
 570int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
 571			       struct aead_request *req, bool atomic)
 572{
 573	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 574
 575	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
 576
 577	return skcipher_walk_aead_common(walk, req, atomic);
 578}
 579EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
 580
 581static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
 582{
 583	if (alg->cra_type == &crypto_blkcipher_type)
 584		return sizeof(struct crypto_blkcipher *);
 585
 586	if (alg->cra_type == &crypto_ablkcipher_type)
 587		return sizeof(struct crypto_ablkcipher *);
 588
 589	return crypto_alg_extsize(alg);
 590}
 591
 592static void skcipher_set_needkey(struct crypto_skcipher *tfm)
 593{
 594	if (tfm->keysize)
 595		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
 596}
 597
 598static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
 599				     const u8 *key, unsigned int keylen)
 600{
 601	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
 602	struct crypto_blkcipher *blkcipher = *ctx;
 603	int err;
 604
 605	crypto_blkcipher_clear_flags(blkcipher, ~0);
 606	crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
 607					      CRYPTO_TFM_REQ_MASK);
 608	err = crypto_blkcipher_setkey(blkcipher, key, keylen);
 609	crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
 610				       CRYPTO_TFM_RES_MASK);
 611	if (unlikely(err)) {
 612		skcipher_set_needkey(tfm);
 613		return err;
 614	}
 615
 616	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
 617	return 0;
 618}
 619
 620static int skcipher_crypt_blkcipher(struct skcipher_request *req,
 621				    int (*crypt)(struct blkcipher_desc *,
 622						 struct scatterlist *,
 623						 struct scatterlist *,
 624						 unsigned int))
 625{
 626	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 627	struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
 628	struct blkcipher_desc desc = {
 629		.tfm = *ctx,
 630		.info = req->iv,
 631		.flags = req->base.flags,
 632	};
 633
 634
 635	return crypt(&desc, req->dst, req->src, req->cryptlen);
 636}
 637
 638static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
 639{
 640	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 641	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 642	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
 643
 644	return skcipher_crypt_blkcipher(req, alg->encrypt);
 645}
 646
 647static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
 648{
 649	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 650	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 651	struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
 652
 653	return skcipher_crypt_blkcipher(req, alg->decrypt);
 654}
 655
 656static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
 657{
 658	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
 659
 660	crypto_free_blkcipher(*ctx);
 661}
 662
 663static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
 664{
 665	struct crypto_alg *calg = tfm->__crt_alg;
 666	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
 667	struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
 668	struct crypto_blkcipher *blkcipher;
 669	struct crypto_tfm *btfm;
 670
 671	if (!crypto_mod_get(calg))
 672		return -EAGAIN;
 673
 674	btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
 675					CRYPTO_ALG_TYPE_MASK);
 676	if (IS_ERR(btfm)) {
 677		crypto_mod_put(calg);
 678		return PTR_ERR(btfm);
 679	}
 680
 681	blkcipher = __crypto_blkcipher_cast(btfm);
 682	*ctx = blkcipher;
 683	tfm->exit = crypto_exit_skcipher_ops_blkcipher;
 684
 685	skcipher->setkey = skcipher_setkey_blkcipher;
 686	skcipher->encrypt = skcipher_encrypt_blkcipher;
 687	skcipher->decrypt = skcipher_decrypt_blkcipher;
 688
 689	skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
 690	skcipher->keysize = calg->cra_blkcipher.max_keysize;
 691
 692	skcipher_set_needkey(skcipher);
 693
 694	return 0;
 695}
 696
 697static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
 698				      const u8 *key, unsigned int keylen)
 699{
 700	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
 701	struct crypto_ablkcipher *ablkcipher = *ctx;
 702	int err;
 703
 704	crypto_ablkcipher_clear_flags(ablkcipher, ~0);
 705	crypto_ablkcipher_set_flags(ablkcipher,
 706				    crypto_skcipher_get_flags(tfm) &
 707				    CRYPTO_TFM_REQ_MASK);
 708	err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
 709	crypto_skcipher_set_flags(tfm,
 710				  crypto_ablkcipher_get_flags(ablkcipher) &
 711				  CRYPTO_TFM_RES_MASK);
 712	if (unlikely(err)) {
 713		skcipher_set_needkey(tfm);
 714		return err;
 715	}
 716
 717	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
 718	return 0;
 719}
 720
 721static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
 722				     int (*crypt)(struct ablkcipher_request *))
 723{
 724	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 725	struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
 726	struct ablkcipher_request *subreq = skcipher_request_ctx(req);
 727
 728	ablkcipher_request_set_tfm(subreq, *ctx);
 729	ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
 730					req->base.complete, req->base.data);
 731	ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
 732				     req->iv);
 733
 734	return crypt(subreq);
 735}
 736
 737static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
 738{
 739	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 740	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 741	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
 742
 743	return skcipher_crypt_ablkcipher(req, alg->encrypt);
 744}
 745
 746static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
 747{
 748	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 749	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
 750	struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
 751
 752	return skcipher_crypt_ablkcipher(req, alg->decrypt);
 753}
 754
 755static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
 756{
 757	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
 758
 759	crypto_free_ablkcipher(*ctx);
 760}
 761
 762static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
 763{
 764	struct crypto_alg *calg = tfm->__crt_alg;
 765	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
 766	struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
 767	struct crypto_ablkcipher *ablkcipher;
 768	struct crypto_tfm *abtfm;
 769
 770	if (!crypto_mod_get(calg))
 771		return -EAGAIN;
 772
 773	abtfm = __crypto_alloc_tfm(calg, 0, 0);
 774	if (IS_ERR(abtfm)) {
 775		crypto_mod_put(calg);
 776		return PTR_ERR(abtfm);
 777	}
 778
 779	ablkcipher = __crypto_ablkcipher_cast(abtfm);
 780	*ctx = ablkcipher;
 781	tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
 782
 783	skcipher->setkey = skcipher_setkey_ablkcipher;
 784	skcipher->encrypt = skcipher_encrypt_ablkcipher;
 785	skcipher->decrypt = skcipher_decrypt_ablkcipher;
 786
 787	skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
 788	skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
 789			    sizeof(struct ablkcipher_request);
 790	skcipher->keysize = calg->cra_ablkcipher.max_keysize;
 791
 792	skcipher_set_needkey(skcipher);
 793
 794	return 0;
 795}
 796
 797static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
 798				     const u8 *key, unsigned int keylen)
 799{
 800	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
 801	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
 802	u8 *buffer, *alignbuffer;
 803	unsigned long absize;
 804	int ret;
 805
 806	absize = keylen + alignmask;
 807	buffer = kmalloc(absize, GFP_ATOMIC);
 808	if (!buffer)
 809		return -ENOMEM;
 810
 811	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
 812	memcpy(alignbuffer, key, keylen);
 813	ret = cipher->setkey(tfm, alignbuffer, keylen);
 814	kzfree(buffer);
 815	return ret;
 816}
 817
 818static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
 819			   unsigned int keylen)
 820{
 821	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
 822	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
 823	int err;
 824
 825	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
 826		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 827		return -EINVAL;
 828	}
 829
 830	if ((unsigned long)key & alignmask)
 831		err = skcipher_setkey_unaligned(tfm, key, keylen);
 832	else
 833		err = cipher->setkey(tfm, key, keylen);
 834
 835	if (unlikely(err)) {
 836		skcipher_set_needkey(tfm);
 837		return err;
 838	}
 839
 840	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
 841	return 0;
 842}
 
 843
 844int crypto_skcipher_encrypt(struct skcipher_request *req)
 845{
 846	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 847	struct crypto_alg *alg = tfm->base.__crt_alg;
 848	unsigned int cryptlen = req->cryptlen;
 849	int ret;
 850
 851	crypto_stats_get(alg);
 852	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 853		ret = -ENOKEY;
 854	else
 855		ret = tfm->encrypt(req);
 856	crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
 857	return ret;
 858}
 859EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
 860
 861int crypto_skcipher_decrypt(struct skcipher_request *req)
 862{
 863	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 864	struct crypto_alg *alg = tfm->base.__crt_alg;
 865	unsigned int cryptlen = req->cryptlen;
 866	int ret;
 867
 868	crypto_stats_get(alg);
 869	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 870		ret = -ENOKEY;
 871	else
 872		ret = tfm->decrypt(req);
 873	crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
 874	return ret;
 875}
 876EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
 877
 878static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
 879{
 880	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
 881	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
 882
 883	alg->exit(skcipher);
 884}
 885
 886static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
 887{
 888	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
 889	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
 890
 891	if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
 892		return crypto_init_skcipher_ops_blkcipher(tfm);
 893
 894	if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type)
 895		return crypto_init_skcipher_ops_ablkcipher(tfm);
 896
 897	skcipher->setkey = skcipher_setkey;
 898	skcipher->encrypt = alg->encrypt;
 899	skcipher->decrypt = alg->decrypt;
 900	skcipher->ivsize = alg->ivsize;
 901	skcipher->keysize = alg->max_keysize;
 902
 903	skcipher_set_needkey(skcipher);
 904
 905	if (alg->exit)
 906		skcipher->base.exit = crypto_skcipher_exit_tfm;
 907
 908	if (alg->init)
 909		return alg->init(skcipher);
 910
 911	return 0;
 912}
 913
 914static void crypto_skcipher_free_instance(struct crypto_instance *inst)
 915{
 916	struct skcipher_instance *skcipher =
 917		container_of(inst, struct skcipher_instance, s.base);
 918
 919	skcipher->free(skcipher);
 920}
 921
 922static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
 923	__maybe_unused;
 924static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
 925{
 926	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
 927						     base);
 928
 929	seq_printf(m, "type         : skcipher\n");
 930	seq_printf(m, "async        : %s\n",
 931		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
 932	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
 933	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
 934	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
 935	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
 936	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
 937	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
 938}
 939
 940#ifdef CONFIG_NET
 941static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
 942{
 943	struct crypto_report_blkcipher rblkcipher;
 944	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
 945						     base);
 946
 947	memset(&rblkcipher, 0, sizeof(rblkcipher));
 948
 949	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
 950	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
 951
 952	rblkcipher.blocksize = alg->cra_blocksize;
 953	rblkcipher.min_keysize = skcipher->min_keysize;
 954	rblkcipher.max_keysize = skcipher->max_keysize;
 955	rblkcipher.ivsize = skcipher->ivsize;
 956
 957	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
 958		       sizeof(rblkcipher), &rblkcipher);
 959}
 960#else
 961static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
 962{
 963	return -ENOSYS;
 964}
 965#endif
 966
 967static const struct crypto_type crypto_skcipher_type2 = {
 968	.extsize = crypto_skcipher_extsize,
 969	.init_tfm = crypto_skcipher_init_tfm,
 970	.free = crypto_skcipher_free_instance,
 971#ifdef CONFIG_PROC_FS
 972	.show = crypto_skcipher_show,
 973#endif
 974	.report = crypto_skcipher_report,
 975	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
 976	.maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
 977	.type = CRYPTO_ALG_TYPE_SKCIPHER,
 978	.tfmsize = offsetof(struct crypto_skcipher, base),
 979};
 980
 981int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
 982			  const char *name, u32 type, u32 mask)
 
 983{
 984	spawn->base.frontend = &crypto_skcipher_type2;
 985	return crypto_grab_spawn(&spawn->base, name, type, mask);
 986}
 987EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
 988
 989struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 990					      u32 type, u32 mask)
 991{
 992	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
 993}
 994EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
 995
 996struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
 997				const char *alg_name, u32 type, u32 mask)
 998{
 999	struct crypto_skcipher *tfm;
1000
1001	/* Only sync algorithms allowed. */
1002	mask |= CRYPTO_ALG_ASYNC;
1003
1004	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
1005
1006	/*
1007	 * Make sure we do not allocate something that might get used with
1008	 * an on-stack request: check the request size.
1009	 */
1010	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
1011				    MAX_SYNC_SKCIPHER_REQSIZE)) {
1012		crypto_free_skcipher(tfm);
1013		return ERR_PTR(-EINVAL);
1014	}
1015
1016	return (struct crypto_sync_skcipher *)tfm;
1017}
1018EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
1019
1020int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
1021{
1022	return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
1023				   type, mask);
1024}
1025EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
1026
1027static int skcipher_prepare_alg(struct skcipher_alg *alg)
1028{
1029	struct crypto_alg *base = &alg->base;
1030
1031	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
1032	    alg->walksize > PAGE_SIZE / 8)
1033		return -EINVAL;
1034
1035	if (!alg->chunksize)
1036		alg->chunksize = base->cra_blocksize;
1037	if (!alg->walksize)
1038		alg->walksize = alg->chunksize;
1039
1040	base->cra_type = &crypto_skcipher_type2;
1041	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
1042	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
1043
1044	return 0;
1045}
1046
1047int crypto_register_skcipher(struct skcipher_alg *alg)
1048{
1049	struct crypto_alg *base = &alg->base;
1050	int err;
1051
1052	err = skcipher_prepare_alg(alg);
1053	if (err)
1054		return err;
1055
1056	return crypto_register_alg(base);
1057}
1058EXPORT_SYMBOL_GPL(crypto_register_skcipher);
1059
1060void crypto_unregister_skcipher(struct skcipher_alg *alg)
1061{
1062	crypto_unregister_alg(&alg->base);
1063}
1064EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
1065
1066int crypto_register_skciphers(struct skcipher_alg *algs, int count)
1067{
1068	int i, ret;
1069
1070	for (i = 0; i < count; i++) {
1071		ret = crypto_register_skcipher(&algs[i]);
1072		if (ret)
1073			goto err;
1074	}
1075
1076	return 0;
1077
1078err:
1079	for (--i; i >= 0; --i)
1080		crypto_unregister_skcipher(&algs[i]);
1081
1082	return ret;
1083}
1084EXPORT_SYMBOL_GPL(crypto_register_skciphers);
1085
1086void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
1087{
1088	int i;
1089
1090	for (i = count - 1; i >= 0; --i)
1091		crypto_unregister_skcipher(&algs[i]);
1092}
1093EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
1094
1095int skcipher_register_instance(struct crypto_template *tmpl,
1096			   struct skcipher_instance *inst)
1097{
1098	int err;
1099
 
 
 
1100	err = skcipher_prepare_alg(&inst->alg);
1101	if (err)
1102		return err;
1103
1104	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
1105}
1106EXPORT_SYMBOL_GPL(skcipher_register_instance);
1107
1108static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
1109				  unsigned int keylen)
1110{
1111	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
1112	int err;
1113
1114	crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
1115	crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
1116				CRYPTO_TFM_REQ_MASK);
1117	err = crypto_cipher_setkey(cipher, key, keylen);
1118	crypto_skcipher_set_flags(tfm, crypto_cipher_get_flags(cipher) &
1119				  CRYPTO_TFM_RES_MASK);
1120	return err;
1121}
1122
1123static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
1124{
1125	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
1126	struct crypto_spawn *spawn = skcipher_instance_ctx(inst);
1127	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1128	struct crypto_cipher *cipher;
1129
1130	cipher = crypto_spawn_cipher(spawn);
1131	if (IS_ERR(cipher))
1132		return PTR_ERR(cipher);
1133
1134	ctx->cipher = cipher;
1135	return 0;
1136}
1137
1138static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
1139{
1140	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
1141
1142	crypto_free_cipher(ctx->cipher);
1143}
1144
1145static void skcipher_free_instance_simple(struct skcipher_instance *inst)
1146{
1147	crypto_drop_spawn(skcipher_instance_ctx(inst));
1148	kfree(inst);
1149}
1150
1151/**
1152 * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
1153 *
1154 * Allocate an skcipher_instance for a simple block cipher mode of operation,
1155 * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
1156 * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
1157 * alignmask, and priority are set from the underlying cipher but can be
1158 * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
1159 * default ->setkey(), ->init(), and ->exit() methods are installed.
1160 *
1161 * @tmpl: the template being instantiated
1162 * @tb: the template parameters
1163 * @cipher_alg_ret: on success, a pointer to the underlying cipher algorithm is
1164 *		    returned here.  It must be dropped with crypto_mod_put().
1165 *
1166 * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
1167 *	   needs to register the instance.
1168 */
1169struct skcipher_instance *
1170skcipher_alloc_instance_simple(struct crypto_template *tmpl, struct rtattr **tb,
1171			       struct crypto_alg **cipher_alg_ret)
1172{
1173	struct crypto_attr_type *algt;
1174	struct crypto_alg *cipher_alg;
1175	struct skcipher_instance *inst;
1176	struct crypto_spawn *spawn;
1177	u32 mask;
 
 
 
1178	int err;
1179
1180	algt = crypto_get_attr_type(tb);
1181	if (IS_ERR(algt))
1182		return ERR_CAST(algt);
1183
1184	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
1185		return ERR_PTR(-EINVAL);
1186
1187	mask = CRYPTO_ALG_TYPE_MASK |
1188		crypto_requires_off(algt->type, algt->mask,
1189				    CRYPTO_ALG_NEED_FALLBACK);
1190
1191	cipher_alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, mask);
1192	if (IS_ERR(cipher_alg))
1193		return ERR_CAST(cipher_alg);
1194
1195	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
1196	if (!inst) {
1197		err = -ENOMEM;
1198		goto err_put_cipher_alg;
1199	}
1200	spawn = skcipher_instance_ctx(inst);
1201
1202	err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
1203				  cipher_alg);
1204	if (err)
1205		goto err_free_inst;
 
1206
1207	err = crypto_init_spawn(spawn, cipher_alg,
1208				skcipher_crypto_instance(inst),
1209				CRYPTO_ALG_TYPE_MASK);
1210	if (err)
1211		goto err_free_inst;
 
1212	inst->free = skcipher_free_instance_simple;
1213
1214	/* Default algorithm properties, can be overridden */
1215	inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
1216	inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
1217	inst->alg.base.cra_priority = cipher_alg->cra_priority;
1218	inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
1219	inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
1220	inst->alg.ivsize = cipher_alg->cra_blocksize;
1221
1222	/* Use skcipher_ctx_simple by default, can be overridden */
1223	inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
1224	inst->alg.setkey = skcipher_setkey_simple;
1225	inst->alg.init = skcipher_init_tfm_simple;
1226	inst->alg.exit = skcipher_exit_tfm_simple;
1227
1228	*cipher_alg_ret = cipher_alg;
1229	return inst;
1230
1231err_free_inst:
1232	kfree(inst);
1233err_put_cipher_alg:
1234	crypto_mod_put(cipher_alg);
1235	return ERR_PTR(err);
1236}
1237EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
1238
1239MODULE_LICENSE("GPL");
1240MODULE_DESCRIPTION("Symmetric key cipher type");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Symmetric key cipher operations.
  4 *
  5 * Generic encrypt/decrypt wrapper for ciphers, handles operations across
  6 * multiple page boundaries by using temporary blocks.  In user context,
  7 * the kernel is given a chance to schedule us once per page.
  8 *
  9 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
 10 */
 11
 12#include <crypto/internal/aead.h>
 13#include <crypto/internal/skcipher.h>
 14#include <crypto/scatterwalk.h>
 15#include <linux/bug.h>
 16#include <linux/cryptouser.h>
 17#include <linux/compiler.h>
 18#include <linux/list.h>
 19#include <linux/module.h>
 20#include <linux/rtnetlink.h>
 21#include <linux/seq_file.h>
 22#include <net/netlink.h>
 23
 24#include "internal.h"
 25
 26enum {
 27	SKCIPHER_WALK_PHYS = 1 << 0,
 28	SKCIPHER_WALK_SLOW = 1 << 1,
 29	SKCIPHER_WALK_COPY = 1 << 2,
 30	SKCIPHER_WALK_DIFF = 1 << 3,
 31	SKCIPHER_WALK_SLEEP = 1 << 4,
 32};
 33
 34struct skcipher_walk_buffer {
 35	struct list_head entry;
 36	struct scatter_walk dst;
 37	unsigned int len;
 38	u8 *data;
 39	u8 buffer[];
 40};
 41
 42static int skcipher_walk_next(struct skcipher_walk *walk);
 43
 44static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
 45{
 46	if (PageHighMem(scatterwalk_page(walk)))
 47		kunmap_atomic(vaddr);
 48}
 49
 50static inline void *skcipher_map(struct scatter_walk *walk)
 51{
 52	struct page *page = scatterwalk_page(walk);
 53
 54	return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
 55	       offset_in_page(walk->offset);
 56}
 57
 58static inline void skcipher_map_src(struct skcipher_walk *walk)
 59{
 60	walk->src.virt.addr = skcipher_map(&walk->in);
 61}
 62
 63static inline void skcipher_map_dst(struct skcipher_walk *walk)
 64{
 65	walk->dst.virt.addr = skcipher_map(&walk->out);
 66}
 67
 68static inline void skcipher_unmap_src(struct skcipher_walk *walk)
 69{
 70	skcipher_unmap(&walk->in, walk->src.virt.addr);
 71}
 72
 73static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
 74{
 75	skcipher_unmap(&walk->out, walk->dst.virt.addr);
 76}
 77
 78static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
 79{
 80	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
 81}
 82
 83/* Get a spot of the specified length that does not straddle a page.
 84 * The caller needs to ensure that there is enough space for this operation.
 85 */
 86static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
 87{
 88	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
 89
 90	return max(start, end_page);
 91}
 92
 93static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
 94{
 95	u8 *addr;
 96
 97	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
 98	addr = skcipher_get_spot(addr, bsize);
 99	scatterwalk_copychunks(addr, &walk->out, bsize,
100			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
101	return 0;
102}
103
104int skcipher_walk_done(struct skcipher_walk *walk, int err)
105{
106	unsigned int n = walk->nbytes;
107	unsigned int nbytes = 0;
108
109	if (!n)
110		goto finish;
111
112	if (likely(err >= 0)) {
113		n -= err;
114		nbytes = walk->total - n;
115	}
116
117	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
118				    SKCIPHER_WALK_SLOW |
119				    SKCIPHER_WALK_COPY |
120				    SKCIPHER_WALK_DIFF)))) {
121unmap_src:
122		skcipher_unmap_src(walk);
123	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
124		skcipher_unmap_dst(walk);
125		goto unmap_src;
126	} else if (walk->flags & SKCIPHER_WALK_COPY) {
127		skcipher_map_dst(walk);
128		memcpy(walk->dst.virt.addr, walk->page, n);
129		skcipher_unmap_dst(walk);
130	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
131		if (err > 0) {
132			/*
133			 * Didn't process all bytes.  Either the algorithm is
134			 * broken, or this was the last step and it turned out
135			 * the message wasn't evenly divisible into blocks but
136			 * the algorithm requires it.
137			 */
138			err = -EINVAL;
139			nbytes = 0;
140		} else
141			n = skcipher_done_slow(walk, n);
142	}
143
144	if (err > 0)
145		err = 0;
146
147	walk->total = nbytes;
148	walk->nbytes = 0;
149
150	scatterwalk_advance(&walk->in, n);
151	scatterwalk_advance(&walk->out, n);
152	scatterwalk_done(&walk->in, 0, nbytes);
153	scatterwalk_done(&walk->out, 1, nbytes);
154
155	if (nbytes) {
156		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
157			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
158		return skcipher_walk_next(walk);
159	}
160
161finish:
162	/* Short-circuit for the common/fast path. */
163	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
164		goto out;
165
166	if (walk->flags & SKCIPHER_WALK_PHYS)
167		goto out;
168
169	if (walk->iv != walk->oiv)
170		memcpy(walk->oiv, walk->iv, walk->ivsize);
171	if (walk->buffer != walk->page)
172		kfree(walk->buffer);
173	if (walk->page)
174		free_page((unsigned long)walk->page);
175
176out:
177	return err;
178}
179EXPORT_SYMBOL_GPL(skcipher_walk_done);
180
181void skcipher_walk_complete(struct skcipher_walk *walk, int err)
182{
183	struct skcipher_walk_buffer *p, *tmp;
184
185	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
186		u8 *data;
187
188		if (err)
189			goto done;
190
191		data = p->data;
192		if (!data) {
193			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
194			data = skcipher_get_spot(data, walk->stride);
195		}
196
197		scatterwalk_copychunks(data, &p->dst, p->len, 1);
198
199		if (offset_in_page(p->data) + p->len + walk->stride >
200		    PAGE_SIZE)
201			free_page((unsigned long)p->data);
202
203done:
204		list_del(&p->entry);
205		kfree(p);
206	}
207
208	if (!err && walk->iv != walk->oiv)
209		memcpy(walk->oiv, walk->iv, walk->ivsize);
210	if (walk->buffer != walk->page)
211		kfree(walk->buffer);
212	if (walk->page)
213		free_page((unsigned long)walk->page);
214}
215EXPORT_SYMBOL_GPL(skcipher_walk_complete);
216
217static void skcipher_queue_write(struct skcipher_walk *walk,
218				 struct skcipher_walk_buffer *p)
219{
220	p->dst = walk->out;
221	list_add_tail(&p->entry, &walk->buffers);
222}
223
224static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
225{
226	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
227	unsigned alignmask = walk->alignmask;
228	struct skcipher_walk_buffer *p;
229	unsigned a;
230	unsigned n;
231	u8 *buffer;
232	void *v;
233
234	if (!phys) {
235		if (!walk->buffer)
236			walk->buffer = walk->page;
237		buffer = walk->buffer;
238		if (buffer)
239			goto ok;
240	}
241
242	/* Start with the minimum alignment of kmalloc. */
243	a = crypto_tfm_ctx_alignment() - 1;
244	n = bsize;
245
246	if (phys) {
247		/* Calculate the minimum alignment of p->buffer. */
248		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
249		n += sizeof(*p);
250	}
251
252	/* Minimum size to align p->buffer by alignmask. */
253	n += alignmask & ~a;
254
255	/* Minimum size to ensure p->buffer does not straddle a page. */
256	n += (bsize - 1) & ~(alignmask | a);
257
258	v = kzalloc(n, skcipher_walk_gfp(walk));
259	if (!v)
260		return skcipher_walk_done(walk, -ENOMEM);
261
262	if (phys) {
263		p = v;
264		p->len = bsize;
265		skcipher_queue_write(walk, p);
266		buffer = p->buffer;
267	} else {
268		walk->buffer = v;
269		buffer = v;
270	}
271
272ok:
273	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
274	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
275	walk->src.virt.addr = walk->dst.virt.addr;
276
277	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
278
279	walk->nbytes = bsize;
280	walk->flags |= SKCIPHER_WALK_SLOW;
281
282	return 0;
283}
284
285static int skcipher_next_copy(struct skcipher_walk *walk)
286{
287	struct skcipher_walk_buffer *p;
288	u8 *tmp = walk->page;
289
290	skcipher_map_src(walk);
291	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
292	skcipher_unmap_src(walk);
293
294	walk->src.virt.addr = tmp;
295	walk->dst.virt.addr = tmp;
296
297	if (!(walk->flags & SKCIPHER_WALK_PHYS))
298		return 0;
299
300	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
301	if (!p)
302		return -ENOMEM;
303
304	p->data = walk->page;
305	p->len = walk->nbytes;
306	skcipher_queue_write(walk, p);
307
308	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
309	    PAGE_SIZE)
310		walk->page = NULL;
311	else
312		walk->page += walk->nbytes;
313
314	return 0;
315}
316
317static int skcipher_next_fast(struct skcipher_walk *walk)
318{
319	unsigned long diff;
320
321	walk->src.phys.page = scatterwalk_page(&walk->in);
322	walk->src.phys.offset = offset_in_page(walk->in.offset);
323	walk->dst.phys.page = scatterwalk_page(&walk->out);
324	walk->dst.phys.offset = offset_in_page(walk->out.offset);
325
326	if (walk->flags & SKCIPHER_WALK_PHYS)
327		return 0;
328
329	diff = walk->src.phys.offset - walk->dst.phys.offset;
330	diff |= walk->src.virt.page - walk->dst.virt.page;
331
332	skcipher_map_src(walk);
333	walk->dst.virt.addr = walk->src.virt.addr;
334
335	if (diff) {
336		walk->flags |= SKCIPHER_WALK_DIFF;
337		skcipher_map_dst(walk);
338	}
339
340	return 0;
341}
342
343static int skcipher_walk_next(struct skcipher_walk *walk)
344{
345	unsigned int bsize;
346	unsigned int n;
347	int err;
348
349	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
350			 SKCIPHER_WALK_DIFF);
351
352	n = walk->total;
353	bsize = min(walk->stride, max(n, walk->blocksize));
354	n = scatterwalk_clamp(&walk->in, n);
355	n = scatterwalk_clamp(&walk->out, n);
356
357	if (unlikely(n < bsize)) {
358		if (unlikely(walk->total < walk->blocksize))
359			return skcipher_walk_done(walk, -EINVAL);
360
361slow_path:
362		err = skcipher_next_slow(walk, bsize);
363		goto set_phys_lowmem;
364	}
365
366	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
367		if (!walk->page) {
368			gfp_t gfp = skcipher_walk_gfp(walk);
369
370			walk->page = (void *)__get_free_page(gfp);
371			if (!walk->page)
372				goto slow_path;
373		}
374
375		walk->nbytes = min_t(unsigned, n,
376				     PAGE_SIZE - offset_in_page(walk->page));
377		walk->flags |= SKCIPHER_WALK_COPY;
378		err = skcipher_next_copy(walk);
379		goto set_phys_lowmem;
380	}
381
382	walk->nbytes = n;
383
384	return skcipher_next_fast(walk);
385
386set_phys_lowmem:
387	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
388		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
389		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
390		walk->src.phys.offset &= PAGE_SIZE - 1;
391		walk->dst.phys.offset &= PAGE_SIZE - 1;
392	}
393	return err;
394}
395
396static int skcipher_copy_iv(struct skcipher_walk *walk)
397{
398	unsigned a = crypto_tfm_ctx_alignment() - 1;
399	unsigned alignmask = walk->alignmask;
400	unsigned ivsize = walk->ivsize;
401	unsigned bs = walk->stride;
402	unsigned aligned_bs;
403	unsigned size;
404	u8 *iv;
405
406	aligned_bs = ALIGN(bs, alignmask + 1);
407
408	/* Minimum size to align buffer by alignmask. */
409	size = alignmask & ~a;
410
411	if (walk->flags & SKCIPHER_WALK_PHYS)
412		size += ivsize;
413	else {
414		size += aligned_bs + ivsize;
415
416		/* Minimum size to ensure buffer does not straddle a page. */
417		size += (bs - 1) & ~(alignmask | a);
418	}
419
420	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
421	if (!walk->buffer)
422		return -ENOMEM;
423
424	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
425	iv = skcipher_get_spot(iv, bs) + aligned_bs;
426
427	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
428	return 0;
429}
430
431static int skcipher_walk_first(struct skcipher_walk *walk)
432{
433	if (WARN_ON_ONCE(in_irq()))
434		return -EDEADLK;
435
436	walk->buffer = NULL;
437	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
438		int err = skcipher_copy_iv(walk);
439		if (err)
440			return err;
441	}
442
443	walk->page = NULL;
444
445	return skcipher_walk_next(walk);
446}
447
448static int skcipher_walk_skcipher(struct skcipher_walk *walk,
449				  struct skcipher_request *req)
450{
451	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
452
453	walk->total = req->cryptlen;
454	walk->nbytes = 0;
455	walk->iv = req->iv;
456	walk->oiv = req->iv;
457
458	if (unlikely(!walk->total))
459		return 0;
460
461	scatterwalk_start(&walk->in, req->src);
462	scatterwalk_start(&walk->out, req->dst);
463
464	walk->flags &= ~SKCIPHER_WALK_SLEEP;
465	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
466		       SKCIPHER_WALK_SLEEP : 0;
467
468	walk->blocksize = crypto_skcipher_blocksize(tfm);
469	walk->stride = crypto_skcipher_walksize(tfm);
470	walk->ivsize = crypto_skcipher_ivsize(tfm);
471	walk->alignmask = crypto_skcipher_alignmask(tfm);
472
473	return skcipher_walk_first(walk);
474}
475
476int skcipher_walk_virt(struct skcipher_walk *walk,
477		       struct skcipher_request *req, bool atomic)
478{
479	int err;
480
481	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
482
483	walk->flags &= ~SKCIPHER_WALK_PHYS;
484
485	err = skcipher_walk_skcipher(walk, req);
486
487	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
488
489	return err;
490}
491EXPORT_SYMBOL_GPL(skcipher_walk_virt);
492
493void skcipher_walk_atomise(struct skcipher_walk *walk)
494{
495	walk->flags &= ~SKCIPHER_WALK_SLEEP;
496}
497EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
498
499int skcipher_walk_async(struct skcipher_walk *walk,
500			struct skcipher_request *req)
501{
502	walk->flags |= SKCIPHER_WALK_PHYS;
503
504	INIT_LIST_HEAD(&walk->buffers);
505
506	return skcipher_walk_skcipher(walk, req);
507}
508EXPORT_SYMBOL_GPL(skcipher_walk_async);
509
510static int skcipher_walk_aead_common(struct skcipher_walk *walk,
511				     struct aead_request *req, bool atomic)
512{
513	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
514	int err;
515
516	walk->nbytes = 0;
517	walk->iv = req->iv;
518	walk->oiv = req->iv;
519
520	if (unlikely(!walk->total))
521		return 0;
522
523	walk->flags &= ~SKCIPHER_WALK_PHYS;
524
525	scatterwalk_start(&walk->in, req->src);
526	scatterwalk_start(&walk->out, req->dst);
527
528	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
529	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
530
531	scatterwalk_done(&walk->in, 0, walk->total);
532	scatterwalk_done(&walk->out, 0, walk->total);
533
534	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
535		walk->flags |= SKCIPHER_WALK_SLEEP;
536	else
537		walk->flags &= ~SKCIPHER_WALK_SLEEP;
538
539	walk->blocksize = crypto_aead_blocksize(tfm);
540	walk->stride = crypto_aead_chunksize(tfm);
541	walk->ivsize = crypto_aead_ivsize(tfm);
542	walk->alignmask = crypto_aead_alignmask(tfm);
543
544	err = skcipher_walk_first(walk);
545
546	if (atomic)
547		walk->flags &= ~SKCIPHER_WALK_SLEEP;
548
549	return err;
550}
551
 
 
 
 
 
 
 
 
 
552int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
553			       struct aead_request *req, bool atomic)
554{
555	walk->total = req->cryptlen;
556
557	return skcipher_walk_aead_common(walk, req, atomic);
558}
559EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
560
561int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
562			       struct aead_request *req, bool atomic)
563{
564	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
565
566	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
567
568	return skcipher_walk_aead_common(walk, req, atomic);
569}
570EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
571
 
 
 
 
 
 
 
 
 
 
 
572static void skcipher_set_needkey(struct crypto_skcipher *tfm)
573{
574	if (crypto_skcipher_max_keysize(tfm) != 0)
575		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
576}
577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
579				     const u8 *key, unsigned int keylen)
580{
581	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
582	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
583	u8 *buffer, *alignbuffer;
584	unsigned long absize;
585	int ret;
586
587	absize = keylen + alignmask;
588	buffer = kmalloc(absize, GFP_ATOMIC);
589	if (!buffer)
590		return -ENOMEM;
591
592	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
593	memcpy(alignbuffer, key, keylen);
594	ret = cipher->setkey(tfm, alignbuffer, keylen);
595	kfree_sensitive(buffer);
596	return ret;
597}
598
599int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
600			   unsigned int keylen)
601{
602	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
603	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
604	int err;
605
606	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
 
607		return -EINVAL;
 
608
609	if ((unsigned long)key & alignmask)
610		err = skcipher_setkey_unaligned(tfm, key, keylen);
611	else
612		err = cipher->setkey(tfm, key, keylen);
613
614	if (unlikely(err)) {
615		skcipher_set_needkey(tfm);
616		return err;
617	}
618
619	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
620	return 0;
621}
622EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
623
624int crypto_skcipher_encrypt(struct skcipher_request *req)
625{
626	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
627	struct crypto_alg *alg = tfm->base.__crt_alg;
628	unsigned int cryptlen = req->cryptlen;
629	int ret;
630
631	crypto_stats_get(alg);
632	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
633		ret = -ENOKEY;
634	else
635		ret = crypto_skcipher_alg(tfm)->encrypt(req);
636	crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
637	return ret;
638}
639EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
640
641int crypto_skcipher_decrypt(struct skcipher_request *req)
642{
643	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
644	struct crypto_alg *alg = tfm->base.__crt_alg;
645	unsigned int cryptlen = req->cryptlen;
646	int ret;
647
648	crypto_stats_get(alg);
649	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
650		ret = -ENOKEY;
651	else
652		ret = crypto_skcipher_alg(tfm)->decrypt(req);
653	crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
654	return ret;
655}
656EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
657
658static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
659{
660	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
661	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
662
663	alg->exit(skcipher);
664}
665
666static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
667{
668	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
669	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
670
 
 
 
 
 
 
 
 
 
 
 
 
671	skcipher_set_needkey(skcipher);
672
673	if (alg->exit)
674		skcipher->base.exit = crypto_skcipher_exit_tfm;
675
676	if (alg->init)
677		return alg->init(skcipher);
678
679	return 0;
680}
681
682static void crypto_skcipher_free_instance(struct crypto_instance *inst)
683{
684	struct skcipher_instance *skcipher =
685		container_of(inst, struct skcipher_instance, s.base);
686
687	skcipher->free(skcipher);
688}
689
690static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
691	__maybe_unused;
692static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
693{
694	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
695						     base);
696
697	seq_printf(m, "type         : skcipher\n");
698	seq_printf(m, "async        : %s\n",
699		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
700	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
701	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
702	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
703	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
704	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
705	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
706}
707
708#ifdef CONFIG_NET
709static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
710{
711	struct crypto_report_blkcipher rblkcipher;
712	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
713						     base);
714
715	memset(&rblkcipher, 0, sizeof(rblkcipher));
716
717	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
718	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
719
720	rblkcipher.blocksize = alg->cra_blocksize;
721	rblkcipher.min_keysize = skcipher->min_keysize;
722	rblkcipher.max_keysize = skcipher->max_keysize;
723	rblkcipher.ivsize = skcipher->ivsize;
724
725	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
726		       sizeof(rblkcipher), &rblkcipher);
727}
728#else
729static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
730{
731	return -ENOSYS;
732}
733#endif
734
735static const struct crypto_type crypto_skcipher_type = {
736	.extsize = crypto_alg_extsize,
737	.init_tfm = crypto_skcipher_init_tfm,
738	.free = crypto_skcipher_free_instance,
739#ifdef CONFIG_PROC_FS
740	.show = crypto_skcipher_show,
741#endif
742	.report = crypto_skcipher_report,
743	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
744	.maskset = CRYPTO_ALG_TYPE_MASK,
745	.type = CRYPTO_ALG_TYPE_SKCIPHER,
746	.tfmsize = offsetof(struct crypto_skcipher, base),
747};
748
749int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
750			 struct crypto_instance *inst,
751			 const char *name, u32 type, u32 mask)
752{
753	spawn->base.frontend = &crypto_skcipher_type;
754	return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
755}
756EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
757
758struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
759					      u32 type, u32 mask)
760{
761	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
762}
763EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
764
765struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
766				const char *alg_name, u32 type, u32 mask)
767{
768	struct crypto_skcipher *tfm;
769
770	/* Only sync algorithms allowed. */
771	mask |= CRYPTO_ALG_ASYNC;
772
773	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
774
775	/*
776	 * Make sure we do not allocate something that might get used with
777	 * an on-stack request: check the request size.
778	 */
779	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
780				    MAX_SYNC_SKCIPHER_REQSIZE)) {
781		crypto_free_skcipher(tfm);
782		return ERR_PTR(-EINVAL);
783	}
784
785	return (struct crypto_sync_skcipher *)tfm;
786}
787EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
788
789int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
790{
791	return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
 
792}
793EXPORT_SYMBOL_GPL(crypto_has_skcipher);
794
795static int skcipher_prepare_alg(struct skcipher_alg *alg)
796{
797	struct crypto_alg *base = &alg->base;
798
799	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
800	    alg->walksize > PAGE_SIZE / 8)
801		return -EINVAL;
802
803	if (!alg->chunksize)
804		alg->chunksize = base->cra_blocksize;
805	if (!alg->walksize)
806		alg->walksize = alg->chunksize;
807
808	base->cra_type = &crypto_skcipher_type;
809	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
810	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
811
812	return 0;
813}
814
815int crypto_register_skcipher(struct skcipher_alg *alg)
816{
817	struct crypto_alg *base = &alg->base;
818	int err;
819
820	err = skcipher_prepare_alg(alg);
821	if (err)
822		return err;
823
824	return crypto_register_alg(base);
825}
826EXPORT_SYMBOL_GPL(crypto_register_skcipher);
827
828void crypto_unregister_skcipher(struct skcipher_alg *alg)
829{
830	crypto_unregister_alg(&alg->base);
831}
832EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
833
834int crypto_register_skciphers(struct skcipher_alg *algs, int count)
835{
836	int i, ret;
837
838	for (i = 0; i < count; i++) {
839		ret = crypto_register_skcipher(&algs[i]);
840		if (ret)
841			goto err;
842	}
843
844	return 0;
845
846err:
847	for (--i; i >= 0; --i)
848		crypto_unregister_skcipher(&algs[i]);
849
850	return ret;
851}
852EXPORT_SYMBOL_GPL(crypto_register_skciphers);
853
854void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
855{
856	int i;
857
858	for (i = count - 1; i >= 0; --i)
859		crypto_unregister_skcipher(&algs[i]);
860}
861EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
862
863int skcipher_register_instance(struct crypto_template *tmpl,
864			   struct skcipher_instance *inst)
865{
866	int err;
867
868	if (WARN_ON(!inst->free))
869		return -EINVAL;
870
871	err = skcipher_prepare_alg(&inst->alg);
872	if (err)
873		return err;
874
875	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
876}
877EXPORT_SYMBOL_GPL(skcipher_register_instance);
878
879static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
880				  unsigned int keylen)
881{
882	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
 
883
884	crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
885	crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
886				CRYPTO_TFM_REQ_MASK);
887	return crypto_cipher_setkey(cipher, key, keylen);
 
 
 
888}
889
890static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
891{
892	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
893	struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
894	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
895	struct crypto_cipher *cipher;
896
897	cipher = crypto_spawn_cipher(spawn);
898	if (IS_ERR(cipher))
899		return PTR_ERR(cipher);
900
901	ctx->cipher = cipher;
902	return 0;
903}
904
905static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
906{
907	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
908
909	crypto_free_cipher(ctx->cipher);
910}
911
912static void skcipher_free_instance_simple(struct skcipher_instance *inst)
913{
914	crypto_drop_cipher(skcipher_instance_ctx(inst));
915	kfree(inst);
916}
917
918/**
919 * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
920 *
921 * Allocate an skcipher_instance for a simple block cipher mode of operation,
922 * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
923 * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
924 * alignmask, and priority are set from the underlying cipher but can be
925 * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
926 * default ->setkey(), ->init(), and ->exit() methods are installed.
927 *
928 * @tmpl: the template being instantiated
929 * @tb: the template parameters
 
 
930 *
931 * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
932 *	   needs to register the instance.
933 */
934struct skcipher_instance *skcipher_alloc_instance_simple(
935	struct crypto_template *tmpl, struct rtattr **tb)
 
936{
 
 
 
 
937	u32 mask;
938	struct skcipher_instance *inst;
939	struct crypto_cipher_spawn *spawn;
940	struct crypto_alg *cipher_alg;
941	int err;
942
943	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
944	if (err)
945		return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 
 
946
947	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
948	if (!inst)
949		return ERR_PTR(-ENOMEM);
 
 
950	spawn = skcipher_instance_ctx(inst);
951
952	err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
953				 crypto_attr_alg_name(tb[1]), 0, mask);
954	if (err)
955		goto err_free_inst;
956	cipher_alg = crypto_spawn_cipher_alg(spawn);
957
958	err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
959				  cipher_alg);
 
960	if (err)
961		goto err_free_inst;
962
963	inst->free = skcipher_free_instance_simple;
964
965	/* Default algorithm properties, can be overridden */
966	inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
967	inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
968	inst->alg.base.cra_priority = cipher_alg->cra_priority;
969	inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
970	inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
971	inst->alg.ivsize = cipher_alg->cra_blocksize;
972
973	/* Use skcipher_ctx_simple by default, can be overridden */
974	inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
975	inst->alg.setkey = skcipher_setkey_simple;
976	inst->alg.init = skcipher_init_tfm_simple;
977	inst->alg.exit = skcipher_exit_tfm_simple;
978
 
979	return inst;
980
981err_free_inst:
982	skcipher_free_instance_simple(inst);
 
 
983	return ERR_PTR(err);
984}
985EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
986
987MODULE_LICENSE("GPL");
988MODULE_DESCRIPTION("Symmetric key cipher type");