Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright(C) 2015-2018 Linaro Limited.
   4 *
   5 * Author: Tor Jeremiassen <tor@ti.com>
   6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
   7 */
   8
   9#include <linux/bitops.h>
 
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/log2.h>
  13#include <linux/types.h>
  14#include <linux/zalloc.h>
  15
  16#include <opencsd/ocsd_if_types.h>
  17#include <stdlib.h>
  18
  19#include "auxtrace.h"
  20#include "color.h"
  21#include "cs-etm.h"
  22#include "cs-etm-decoder/cs-etm-decoder.h"
  23#include "debug.h"
  24#include "dso.h"
  25#include "evlist.h"
  26#include "intlist.h"
  27#include "machine.h"
  28#include "map.h"
  29#include "perf.h"
  30#include "session.h"
  31#include "map_symbol.h"
  32#include "branch.h"
  33#include "symbol.h"
  34#include "tool.h"
  35#include "thread.h"
  36#include "thread-stack.h"
  37#include <tools/libc_compat.h>
  38#include "util/synthetic-events.h"
  39
  40#define MAX_TIMESTAMP (~0ULL)
  41
  42struct cs_etm_auxtrace {
  43	struct auxtrace auxtrace;
  44	struct auxtrace_queues queues;
  45	struct auxtrace_heap heap;
  46	struct itrace_synth_opts synth_opts;
  47	struct perf_session *session;
  48	struct machine *machine;
  49	struct thread *unknown_thread;
  50
  51	u8 timeless_decoding;
  52	u8 snapshot_mode;
  53	u8 data_queued;
  54	u8 sample_branches;
  55	u8 sample_instructions;
  56
  57	int num_cpu;
 
  58	u32 auxtrace_type;
  59	u64 branches_sample_type;
  60	u64 branches_id;
  61	u64 instructions_sample_type;
  62	u64 instructions_sample_period;
  63	u64 instructions_id;
  64	u64 **metadata;
  65	u64 kernel_start;
  66	unsigned int pmu_type;
  67};
  68
  69struct cs_etm_traceid_queue {
  70	u8 trace_chan_id;
  71	pid_t pid, tid;
  72	u64 period_instructions;
  73	size_t last_branch_pos;
  74	union perf_event *event_buf;
  75	struct thread *thread;
  76	struct branch_stack *last_branch;
  77	struct branch_stack *last_branch_rb;
  78	struct cs_etm_packet *prev_packet;
  79	struct cs_etm_packet *packet;
  80	struct cs_etm_packet_queue packet_queue;
  81};
  82
  83struct cs_etm_queue {
  84	struct cs_etm_auxtrace *etm;
  85	struct cs_etm_decoder *decoder;
  86	struct auxtrace_buffer *buffer;
  87	unsigned int queue_nr;
  88	u8 pending_timestamp;
  89	u64 offset;
  90	const unsigned char *buf;
  91	size_t buf_len, buf_used;
  92	/* Conversion between traceID and index in traceid_queues array */
  93	struct intlist *traceid_queues_list;
  94	struct cs_etm_traceid_queue **traceid_queues;
  95};
  96
 
 
 
  97static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
  98static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
  99static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
 100					   pid_t tid);
 101static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
 102static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
 103
 104/* PTMs ETMIDR [11:8] set to b0011 */
 105#define ETMIDR_PTM_VERSION 0x00000300
 106
 107/*
 108 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
 109 * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
 110 * encode the etm queue number as the upper 16 bit and the channel as
 111 * the lower 16 bit.
 112 */
 113#define TO_CS_QUEUE_NR(queue_nr, trace_id_chan)	\
 114		      (queue_nr << 16 | trace_chan_id)
 115#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
 116#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
 117
 118static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
 119{
 120	etmidr &= ETMIDR_PTM_VERSION;
 121
 122	if (etmidr == ETMIDR_PTM_VERSION)
 123		return CS_ETM_PROTO_PTM;
 124
 125	return CS_ETM_PROTO_ETMV3;
 126}
 127
 128static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
 129{
 130	struct int_node *inode;
 131	u64 *metadata;
 132
 133	inode = intlist__find(traceid_list, trace_chan_id);
 134	if (!inode)
 135		return -EINVAL;
 136
 137	metadata = inode->priv;
 138	*magic = metadata[CS_ETM_MAGIC];
 139	return 0;
 140}
 141
 142int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
 143{
 144	struct int_node *inode;
 145	u64 *metadata;
 146
 147	inode = intlist__find(traceid_list, trace_chan_id);
 148	if (!inode)
 149		return -EINVAL;
 150
 151	metadata = inode->priv;
 152	*cpu = (int)metadata[CS_ETM_CPU];
 153	return 0;
 154}
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
 157					      u8 trace_chan_id)
 158{
 159	/*
 160	 * Wnen a timestamp packet is encountered the backend code
 161	 * is stopped so that the front end has time to process packets
 162	 * that were accumulated in the traceID queue.  Since there can
 163	 * be more than one channel per cs_etm_queue, we need to specify
 164	 * what traceID queue needs servicing.
 165	 */
 166	etmq->pending_timestamp = trace_chan_id;
 167}
 168
 169static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
 170				      u8 *trace_chan_id)
 171{
 172	struct cs_etm_packet_queue *packet_queue;
 173
 174	if (!etmq->pending_timestamp)
 175		return 0;
 176
 177	if (trace_chan_id)
 178		*trace_chan_id = etmq->pending_timestamp;
 179
 180	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
 181						     etmq->pending_timestamp);
 182	if (!packet_queue)
 183		return 0;
 184
 185	/* Acknowledge pending status */
 186	etmq->pending_timestamp = 0;
 187
 188	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
 189	return packet_queue->timestamp;
 190}
 191
 192static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
 193{
 194	int i;
 195
 196	queue->head = 0;
 197	queue->tail = 0;
 198	queue->packet_count = 0;
 199	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
 200		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
 201		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
 202		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
 203		queue->packet_buffer[i].instr_count = 0;
 204		queue->packet_buffer[i].last_instr_taken_branch = false;
 205		queue->packet_buffer[i].last_instr_size = 0;
 206		queue->packet_buffer[i].last_instr_type = 0;
 207		queue->packet_buffer[i].last_instr_subtype = 0;
 208		queue->packet_buffer[i].last_instr_cond = 0;
 209		queue->packet_buffer[i].flags = 0;
 210		queue->packet_buffer[i].exception_number = UINT32_MAX;
 211		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
 212		queue->packet_buffer[i].cpu = INT_MIN;
 213	}
 214}
 215
 216static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
 217{
 218	int idx;
 219	struct int_node *inode;
 220	struct cs_etm_traceid_queue *tidq;
 221	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
 222
 223	intlist__for_each_entry(inode, traceid_queues_list) {
 224		idx = (int)(intptr_t)inode->priv;
 225		tidq = etmq->traceid_queues[idx];
 226		cs_etm__clear_packet_queue(&tidq->packet_queue);
 227	}
 228}
 229
 230static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
 231				      struct cs_etm_traceid_queue *tidq,
 232				      u8 trace_chan_id)
 233{
 234	int rc = -ENOMEM;
 235	struct auxtrace_queue *queue;
 236	struct cs_etm_auxtrace *etm = etmq->etm;
 237
 238	cs_etm__clear_packet_queue(&tidq->packet_queue);
 239
 240	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
 241	tidq->tid = queue->tid;
 242	tidq->pid = -1;
 243	tidq->trace_chan_id = trace_chan_id;
 244
 245	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
 246	if (!tidq->packet)
 247		goto out;
 248
 249	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
 250	if (!tidq->prev_packet)
 251		goto out_free;
 252
 253	if (etm->synth_opts.last_branch) {
 254		size_t sz = sizeof(struct branch_stack);
 255
 256		sz += etm->synth_opts.last_branch_sz *
 257		      sizeof(struct branch_entry);
 258		tidq->last_branch = zalloc(sz);
 259		if (!tidq->last_branch)
 260			goto out_free;
 261		tidq->last_branch_rb = zalloc(sz);
 262		if (!tidq->last_branch_rb)
 263			goto out_free;
 264	}
 265
 266	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
 267	if (!tidq->event_buf)
 268		goto out_free;
 269
 270	return 0;
 271
 272out_free:
 273	zfree(&tidq->last_branch_rb);
 274	zfree(&tidq->last_branch);
 275	zfree(&tidq->prev_packet);
 276	zfree(&tidq->packet);
 277out:
 278	return rc;
 279}
 280
 281static struct cs_etm_traceid_queue
 282*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
 283{
 284	int idx;
 285	struct int_node *inode;
 286	struct intlist *traceid_queues_list;
 287	struct cs_etm_traceid_queue *tidq, **traceid_queues;
 288	struct cs_etm_auxtrace *etm = etmq->etm;
 289
 290	if (etm->timeless_decoding)
 291		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
 292
 293	traceid_queues_list = etmq->traceid_queues_list;
 294
 295	/*
 296	 * Check if the traceid_queue exist for this traceID by looking
 297	 * in the queue list.
 298	 */
 299	inode = intlist__find(traceid_queues_list, trace_chan_id);
 300	if (inode) {
 301		idx = (int)(intptr_t)inode->priv;
 302		return etmq->traceid_queues[idx];
 303	}
 304
 305	/* We couldn't find a traceid_queue for this traceID, allocate one */
 306	tidq = malloc(sizeof(*tidq));
 307	if (!tidq)
 308		return NULL;
 309
 310	memset(tidq, 0, sizeof(*tidq));
 311
 312	/* Get a valid index for the new traceid_queue */
 313	idx = intlist__nr_entries(traceid_queues_list);
 314	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
 315	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
 316	if (!inode)
 317		goto out_free;
 318
 319	/* Associate this traceID with this index */
 320	inode->priv = (void *)(intptr_t)idx;
 321
 322	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
 323		goto out_free;
 324
 325	/* Grow the traceid_queues array by one unit */
 326	traceid_queues = etmq->traceid_queues;
 327	traceid_queues = reallocarray(traceid_queues,
 328				      idx + 1,
 329				      sizeof(*traceid_queues));
 330
 331	/*
 332	 * On failure reallocarray() returns NULL and the original block of
 333	 * memory is left untouched.
 334	 */
 335	if (!traceid_queues)
 336		goto out_free;
 337
 338	traceid_queues[idx] = tidq;
 339	etmq->traceid_queues = traceid_queues;
 340
 341	return etmq->traceid_queues[idx];
 342
 343out_free:
 344	/*
 345	 * Function intlist__remove() removes the inode from the list
 346	 * and delete the memory associated to it.
 347	 */
 348	intlist__remove(traceid_queues_list, inode);
 349	free(tidq);
 350
 351	return NULL;
 352}
 353
 354struct cs_etm_packet_queue
 355*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
 356{
 357	struct cs_etm_traceid_queue *tidq;
 358
 359	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
 360	if (tidq)
 361		return &tidq->packet_queue;
 362
 363	return NULL;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366static void cs_etm__packet_dump(const char *pkt_string)
 367{
 368	const char *color = PERF_COLOR_BLUE;
 369	int len = strlen(pkt_string);
 370
 371	if (len && (pkt_string[len-1] == '\n'))
 372		color_fprintf(stdout, color, "	%s", pkt_string);
 373	else
 374		color_fprintf(stdout, color, "	%s\n", pkt_string);
 375
 376	fflush(stdout);
 377}
 378
 379static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
 380					  struct cs_etm_auxtrace *etm, int idx,
 381					  u32 etmidr)
 382{
 383	u64 **metadata = etm->metadata;
 384
 385	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
 386	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
 387	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
 388}
 389
 390static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
 391					  struct cs_etm_auxtrace *etm, int idx)
 392{
 393	u64 **metadata = etm->metadata;
 394
 395	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
 396	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
 397	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
 398	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
 399	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
 400	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
 401	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
 402}
 403
 404static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
 405				     struct cs_etm_auxtrace *etm)
 406{
 407	int i;
 408	u32 etmidr;
 409	u64 architecture;
 410
 411	for (i = 0; i < etm->num_cpu; i++) {
 412		architecture = etm->metadata[i][CS_ETM_MAGIC];
 413
 414		switch (architecture) {
 415		case __perf_cs_etmv3_magic:
 416			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
 417			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
 418			break;
 419		case __perf_cs_etmv4_magic:
 420			cs_etm__set_trace_param_etmv4(t_params, etm, i);
 421			break;
 422		default:
 423			return -EINVAL;
 424		}
 425	}
 426
 427	return 0;
 428}
 429
 430static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
 431				       struct cs_etm_queue *etmq,
 432				       enum cs_etm_decoder_operation mode)
 433{
 434	int ret = -EINVAL;
 435
 436	if (!(mode < CS_ETM_OPERATION_MAX))
 437		goto out;
 438
 439	d_params->packet_printer = cs_etm__packet_dump;
 440	d_params->operation = mode;
 441	d_params->data = etmq;
 442	d_params->formatted = true;
 443	d_params->fsyncs = false;
 444	d_params->hsyncs = false;
 445	d_params->frame_aligned = true;
 446
 447	ret = 0;
 448out:
 449	return ret;
 450}
 451
 452static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
 453			       struct auxtrace_buffer *buffer)
 454{
 455	int ret;
 456	const char *color = PERF_COLOR_BLUE;
 457	struct cs_etm_decoder_params d_params;
 458	struct cs_etm_trace_params *t_params;
 459	struct cs_etm_decoder *decoder;
 460	size_t buffer_used = 0;
 461
 462	fprintf(stdout, "\n");
 463	color_fprintf(stdout, color,
 464		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
 465		     buffer->size);
 466
 467	/* Use metadata to fill in trace parameters for trace decoder */
 468	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
 469
 470	if (!t_params)
 471		return;
 472
 473	if (cs_etm__init_trace_params(t_params, etm))
 474		goto out_free;
 475
 476	/* Set decoder parameters to simply print the trace packets */
 477	if (cs_etm__init_decoder_params(&d_params, NULL,
 478					CS_ETM_OPERATION_PRINT))
 479		goto out_free;
 480
 481	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
 482
 483	if (!decoder)
 484		goto out_free;
 485	do {
 486		size_t consumed;
 487
 488		ret = cs_etm_decoder__process_data_block(
 489				decoder, buffer->offset,
 490				&((u8 *)buffer->data)[buffer_used],
 491				buffer->size - buffer_used, &consumed);
 492		if (ret)
 493			break;
 494
 495		buffer_used += consumed;
 496	} while (buffer_used < buffer->size);
 497
 498	cs_etm_decoder__free(decoder);
 499
 500out_free:
 501	zfree(&t_params);
 502}
 503
 504static int cs_etm__flush_events(struct perf_session *session,
 505				struct perf_tool *tool)
 506{
 507	int ret;
 508	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
 509						   struct cs_etm_auxtrace,
 510						   auxtrace);
 511	if (dump_trace)
 512		return 0;
 513
 514	if (!tool->ordered_events)
 515		return -EINVAL;
 516
 517	ret = cs_etm__update_queues(etm);
 518
 519	if (ret < 0)
 520		return ret;
 521
 522	if (etm->timeless_decoding)
 523		return cs_etm__process_timeless_queues(etm, -1);
 524
 525	return cs_etm__process_queues(etm);
 526}
 527
 528static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
 529{
 530	int idx;
 531	uintptr_t priv;
 532	struct int_node *inode, *tmp;
 533	struct cs_etm_traceid_queue *tidq;
 534	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
 535
 536	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
 537		priv = (uintptr_t)inode->priv;
 538		idx = priv;
 539
 540		/* Free this traceid_queue from the array */
 541		tidq = etmq->traceid_queues[idx];
 542		thread__zput(tidq->thread);
 543		zfree(&tidq->event_buf);
 544		zfree(&tidq->last_branch);
 545		zfree(&tidq->last_branch_rb);
 546		zfree(&tidq->prev_packet);
 547		zfree(&tidq->packet);
 548		zfree(&tidq);
 549
 550		/*
 551		 * Function intlist__remove() removes the inode from the list
 552		 * and delete the memory associated to it.
 553		 */
 554		intlist__remove(traceid_queues_list, inode);
 555	}
 556
 557	/* Then the RB tree itself */
 558	intlist__delete(traceid_queues_list);
 559	etmq->traceid_queues_list = NULL;
 560
 561	/* finally free the traceid_queues array */
 562	zfree(&etmq->traceid_queues);
 563}
 564
 565static void cs_etm__free_queue(void *priv)
 566{
 567	struct cs_etm_queue *etmq = priv;
 568
 569	if (!etmq)
 570		return;
 571
 572	cs_etm_decoder__free(etmq->decoder);
 573	cs_etm__free_traceid_queues(etmq);
 574	free(etmq);
 575}
 576
 577static void cs_etm__free_events(struct perf_session *session)
 578{
 579	unsigned int i;
 580	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 581						   struct cs_etm_auxtrace,
 582						   auxtrace);
 583	struct auxtrace_queues *queues = &aux->queues;
 584
 585	for (i = 0; i < queues->nr_queues; i++) {
 586		cs_etm__free_queue(queues->queue_array[i].priv);
 587		queues->queue_array[i].priv = NULL;
 588	}
 589
 590	auxtrace_queues__free(queues);
 591}
 592
 593static void cs_etm__free(struct perf_session *session)
 594{
 595	int i;
 596	struct int_node *inode, *tmp;
 597	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 598						   struct cs_etm_auxtrace,
 599						   auxtrace);
 600	cs_etm__free_events(session);
 601	session->auxtrace = NULL;
 602
 603	/* First remove all traceID/metadata nodes for the RB tree */
 604	intlist__for_each_entry_safe(inode, tmp, traceid_list)
 605		intlist__remove(traceid_list, inode);
 606	/* Then the RB tree itself */
 607	intlist__delete(traceid_list);
 608
 609	for (i = 0; i < aux->num_cpu; i++)
 610		zfree(&aux->metadata[i]);
 611
 612	thread__zput(aux->unknown_thread);
 613	zfree(&aux->metadata);
 614	zfree(&aux);
 615}
 616
 
 
 
 
 
 
 
 
 
 
 617static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
 618{
 619	struct machine *machine;
 620
 621	machine = etmq->etm->machine;
 622
 623	if (address >= etmq->etm->kernel_start) {
 624		if (machine__is_host(machine))
 625			return PERF_RECORD_MISC_KERNEL;
 626		else
 627			return PERF_RECORD_MISC_GUEST_KERNEL;
 628	} else {
 629		if (machine__is_host(machine))
 630			return PERF_RECORD_MISC_USER;
 631		else if (perf_guest)
 632			return PERF_RECORD_MISC_GUEST_USER;
 633		else
 634			return PERF_RECORD_MISC_HYPERVISOR;
 635	}
 636}
 637
 638static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
 639			      u64 address, size_t size, u8 *buffer)
 640{
 641	u8  cpumode;
 642	u64 offset;
 643	int len;
 644	struct thread *thread;
 645	struct machine *machine;
 646	struct addr_location al;
 647	struct cs_etm_traceid_queue *tidq;
 648
 649	if (!etmq)
 650		return 0;
 651
 652	machine = etmq->etm->machine;
 653	cpumode = cs_etm__cpu_mode(etmq, address);
 654	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
 655	if (!tidq)
 656		return 0;
 657
 658	thread = tidq->thread;
 659	if (!thread) {
 660		if (cpumode != PERF_RECORD_MISC_KERNEL)
 661			return 0;
 662		thread = etmq->etm->unknown_thread;
 663	}
 664
 665	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
 666		return 0;
 667
 668	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 669	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
 670		return 0;
 671
 672	offset = al.map->map_ip(al.map, address);
 673
 674	map__load(al.map);
 675
 676	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
 677
 678	if (len <= 0)
 679		return 0;
 680
 681	return len;
 682}
 683
 684static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
 685{
 686	struct cs_etm_decoder_params d_params;
 687	struct cs_etm_trace_params  *t_params = NULL;
 688	struct cs_etm_queue *etmq;
 689
 690	etmq = zalloc(sizeof(*etmq));
 691	if (!etmq)
 692		return NULL;
 693
 694	etmq->traceid_queues_list = intlist__new(NULL);
 695	if (!etmq->traceid_queues_list)
 696		goto out_free;
 697
 698	/* Use metadata to fill in trace parameters for trace decoder */
 699	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
 700
 701	if (!t_params)
 702		goto out_free;
 703
 704	if (cs_etm__init_trace_params(t_params, etm))
 705		goto out_free;
 706
 707	/* Set decoder parameters to decode trace packets */
 708	if (cs_etm__init_decoder_params(&d_params, etmq,
 709					CS_ETM_OPERATION_DECODE))
 710		goto out_free;
 711
 712	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
 713
 714	if (!etmq->decoder)
 715		goto out_free;
 716
 717	/*
 718	 * Register a function to handle all memory accesses required by
 719	 * the trace decoder library.
 720	 */
 721	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
 722					      0x0L, ((u64) -1L),
 723					      cs_etm__mem_access))
 724		goto out_free_decoder;
 725
 726	zfree(&t_params);
 727	return etmq;
 728
 729out_free_decoder:
 730	cs_etm_decoder__free(etmq->decoder);
 731out_free:
 732	intlist__delete(etmq->traceid_queues_list);
 733	free(etmq);
 734
 735	return NULL;
 736}
 737
 738static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
 739			       struct auxtrace_queue *queue,
 740			       unsigned int queue_nr)
 741{
 742	int ret = 0;
 743	unsigned int cs_queue_nr;
 744	u8 trace_chan_id;
 745	u64 timestamp;
 746	struct cs_etm_queue *etmq = queue->priv;
 747
 748	if (list_empty(&queue->head) || etmq)
 749		goto out;
 750
 751	etmq = cs_etm__alloc_queue(etm);
 752
 753	if (!etmq) {
 754		ret = -ENOMEM;
 755		goto out;
 756	}
 757
 758	queue->priv = etmq;
 759	etmq->etm = etm;
 760	etmq->queue_nr = queue_nr;
 761	etmq->offset = 0;
 762
 763	if (etm->timeless_decoding)
 764		goto out;
 765
 766	/*
 767	 * We are under a CPU-wide trace scenario.  As such we need to know
 768	 * when the code that generated the traces started to execute so that
 769	 * it can be correlated with execution on other CPUs.  So we get a
 770	 * handle on the beginning of traces and decode until we find a
 771	 * timestamp.  The timestamp is then added to the auxtrace min heap
 772	 * in order to know what nibble (of all the etmqs) to decode first.
 773	 */
 774	while (1) {
 775		/*
 776		 * Fetch an aux_buffer from this etmq.  Bail if no more
 777		 * blocks or an error has been encountered.
 778		 */
 779		ret = cs_etm__get_data_block(etmq);
 780		if (ret <= 0)
 781			goto out;
 782
 783		/*
 784		 * Run decoder on the trace block.  The decoder will stop when
 785		 * encountering a timestamp, a full packet queue or the end of
 786		 * trace for that block.
 787		 */
 788		ret = cs_etm__decode_data_block(etmq);
 789		if (ret)
 790			goto out;
 791
 792		/*
 793		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
 794		 * the timestamp calculation for us.
 795		 */
 796		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
 797
 798		/* We found a timestamp, no need to continue. */
 799		if (timestamp)
 800			break;
 801
 802		/*
 803		 * We didn't find a timestamp so empty all the traceid packet
 804		 * queues before looking for another timestamp packet, either
 805		 * in the current data block or a new one.  Packets that were
 806		 * just decoded are useless since no timestamp has been
 807		 * associated with them.  As such simply discard them.
 808		 */
 809		cs_etm__clear_all_packet_queues(etmq);
 810	}
 811
 812	/*
 813	 * We have a timestamp.  Add it to the min heap to reflect when
 814	 * instructions conveyed by the range packets of this traceID queue
 815	 * started to execute.  Once the same has been done for all the traceID
 816	 * queues of each etmq, redenring and decoding can start in
 817	 * chronological order.
 818	 *
 819	 * Note that packets decoded above are still in the traceID's packet
 820	 * queue and will be processed in cs_etm__process_queues().
 821	 */
 822	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_id_chan);
 823	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
 824out:
 825	return ret;
 826}
 827
 828static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
 829{
 830	unsigned int i;
 831	int ret;
 832
 833	if (!etm->kernel_start)
 834		etm->kernel_start = machine__kernel_start(etm->machine);
 835
 836	for (i = 0; i < etm->queues.nr_queues; i++) {
 837		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
 838		if (ret)
 839			return ret;
 840	}
 841
 842	return 0;
 843}
 844
 845static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
 846{
 847	if (etm->queues.new_data) {
 848		etm->queues.new_data = false;
 849		return cs_etm__setup_queues(etm);
 850	}
 851
 852	return 0;
 853}
 854
 855static inline
 856void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
 857				 struct cs_etm_traceid_queue *tidq)
 858{
 859	struct branch_stack *bs_src = tidq->last_branch_rb;
 860	struct branch_stack *bs_dst = tidq->last_branch;
 861	size_t nr = 0;
 862
 863	/*
 864	 * Set the number of records before early exit: ->nr is used to
 865	 * determine how many branches to copy from ->entries.
 866	 */
 867	bs_dst->nr = bs_src->nr;
 868
 869	/*
 870	 * Early exit when there is nothing to copy.
 871	 */
 872	if (!bs_src->nr)
 873		return;
 874
 875	/*
 876	 * As bs_src->entries is a circular buffer, we need to copy from it in
 877	 * two steps.  First, copy the branches from the most recently inserted
 878	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
 879	 */
 880	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
 881	memcpy(&bs_dst->entries[0],
 882	       &bs_src->entries[tidq->last_branch_pos],
 883	       sizeof(struct branch_entry) * nr);
 884
 885	/*
 886	 * If we wrapped around at least once, the branches from the beginning
 887	 * of the bs_src->entries buffer and until the ->last_branch_pos element
 888	 * are older valid branches: copy them over.  The total number of
 889	 * branches copied over will be equal to the number of branches asked by
 890	 * the user in last_branch_sz.
 891	 */
 892	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
 893		memcpy(&bs_dst->entries[nr],
 894		       &bs_src->entries[0],
 895		       sizeof(struct branch_entry) * tidq->last_branch_pos);
 896	}
 897}
 898
 899static inline
 900void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
 901{
 902	tidq->last_branch_pos = 0;
 903	tidq->last_branch_rb->nr = 0;
 904}
 905
 906static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
 907					 u8 trace_chan_id, u64 addr)
 908{
 909	u8 instrBytes[2];
 910
 911	cs_etm__mem_access(etmq, trace_chan_id, addr,
 912			   ARRAY_SIZE(instrBytes), instrBytes);
 913	/*
 914	 * T32 instruction size is indicated by bits[15:11] of the first
 915	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
 916	 * denote a 32-bit instruction.
 917	 */
 918	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
 919}
 920
 921static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
 922{
 923	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
 924	if (packet->sample_type == CS_ETM_DISCONTINUITY)
 925		return 0;
 926
 927	return packet->start_addr;
 928}
 929
 930static inline
 931u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
 932{
 933	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
 934	if (packet->sample_type == CS_ETM_DISCONTINUITY)
 935		return 0;
 936
 937	return packet->end_addr - packet->last_instr_size;
 938}
 939
 940static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
 941				     u64 trace_chan_id,
 942				     const struct cs_etm_packet *packet,
 943				     u64 offset)
 944{
 945	if (packet->isa == CS_ETM_ISA_T32) {
 946		u64 addr = packet->start_addr;
 947
 948		while (offset > 0) {
 949			addr += cs_etm__t32_instr_size(etmq,
 950						       trace_chan_id, addr);
 951			offset--;
 952		}
 953		return addr;
 954	}
 955
 956	/* Assume a 4 byte instruction size (A32/A64) */
 957	return packet->start_addr + offset * 4;
 958}
 959
 960static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
 961					  struct cs_etm_traceid_queue *tidq)
 962{
 963	struct branch_stack *bs = tidq->last_branch_rb;
 964	struct branch_entry *be;
 965
 966	/*
 967	 * The branches are recorded in a circular buffer in reverse
 968	 * chronological order: we start recording from the last element of the
 969	 * buffer down.  After writing the first element of the stack, move the
 970	 * insert position back to the end of the buffer.
 971	 */
 972	if (!tidq->last_branch_pos)
 973		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
 974
 975	tidq->last_branch_pos -= 1;
 976
 977	be       = &bs->entries[tidq->last_branch_pos];
 978	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
 979	be->to	 = cs_etm__first_executed_instr(tidq->packet);
 980	/* No support for mispredict */
 981	be->flags.mispred = 0;
 982	be->flags.predicted = 1;
 983
 984	/*
 985	 * Increment bs->nr until reaching the number of last branches asked by
 986	 * the user on the command line.
 987	 */
 988	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
 989		bs->nr += 1;
 990}
 991
 992static int cs_etm__inject_event(union perf_event *event,
 993			       struct perf_sample *sample, u64 type)
 994{
 995	event->header.size = perf_event__sample_event_size(sample, type, 0);
 996	return perf_event__synthesize_sample(event, type, 0, sample);
 997}
 998
 999
1000static int
1001cs_etm__get_trace(struct cs_etm_queue *etmq)
1002{
1003	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1004	struct auxtrace_buffer *old_buffer = aux_buffer;
1005	struct auxtrace_queue *queue;
1006
1007	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1008
1009	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1010
1011	/* If no more data, drop the previous auxtrace_buffer and return */
1012	if (!aux_buffer) {
1013		if (old_buffer)
1014			auxtrace_buffer__drop_data(old_buffer);
1015		etmq->buf_len = 0;
1016		return 0;
1017	}
1018
1019	etmq->buffer = aux_buffer;
1020
1021	/* If the aux_buffer doesn't have data associated, try to load it */
1022	if (!aux_buffer->data) {
1023		/* get the file desc associated with the perf data file */
1024		int fd = perf_data__fd(etmq->etm->session->data);
1025
1026		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1027		if (!aux_buffer->data)
1028			return -ENOMEM;
1029	}
1030
1031	/* If valid, drop the previous buffer */
1032	if (old_buffer)
1033		auxtrace_buffer__drop_data(old_buffer);
1034
1035	etmq->buf_used = 0;
1036	etmq->buf_len = aux_buffer->size;
1037	etmq->buf = aux_buffer->data;
1038
1039	return etmq->buf_len;
1040}
1041
1042static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1043				    struct cs_etm_traceid_queue *tidq)
1044{
1045	if ((!tidq->thread) && (tidq->tid != -1))
1046		tidq->thread = machine__find_thread(etm->machine, -1,
1047						    tidq->tid);
1048
1049	if (tidq->thread)
1050		tidq->pid = tidq->thread->pid_;
1051}
1052
1053int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1054			 pid_t tid, u8 trace_chan_id)
1055{
1056	int cpu, err = -EINVAL;
1057	struct cs_etm_auxtrace *etm = etmq->etm;
1058	struct cs_etm_traceid_queue *tidq;
1059
1060	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1061	if (!tidq)
1062		return err;
1063
1064	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1065		return err;
1066
1067	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1068	if (err)
1069		return err;
1070
1071	tidq->tid = tid;
1072	thread__zput(tidq->thread);
1073
1074	cs_etm__set_pid_tid_cpu(etm, tidq);
1075	return 0;
1076}
1077
1078bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1079{
1080	return !!etmq->etm->timeless_decoding;
1081}
1082
1083static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1084			      u64 trace_chan_id,
1085			      const struct cs_etm_packet *packet,
1086			      struct perf_sample *sample)
1087{
1088	/*
1089	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1090	 * packet, so directly bail out with 'insn_len' = 0.
1091	 */
1092	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1093		sample->insn_len = 0;
1094		return;
1095	}
1096
1097	/*
1098	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1099	 * cs_etm__t32_instr_size().
1100	 */
1101	if (packet->isa == CS_ETM_ISA_T32)
1102		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1103							  sample->ip);
1104	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1105	else
1106		sample->insn_len = 4;
1107
1108	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1109			   sample->insn_len, (void *)sample->insn);
1110}
1111
1112static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1113					    struct cs_etm_traceid_queue *tidq,
1114					    u64 addr, u64 period)
1115{
1116	int ret = 0;
1117	struct cs_etm_auxtrace *etm = etmq->etm;
1118	union perf_event *event = tidq->event_buf;
1119	struct perf_sample sample = {.ip = 0,};
1120
1121	event->sample.header.type = PERF_RECORD_SAMPLE;
1122	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1123	event->sample.header.size = sizeof(struct perf_event_header);
1124
 
 
1125	sample.ip = addr;
1126	sample.pid = tidq->pid;
1127	sample.tid = tidq->tid;
1128	sample.id = etmq->etm->instructions_id;
1129	sample.stream_id = etmq->etm->instructions_id;
1130	sample.period = period;
1131	sample.cpu = tidq->packet->cpu;
1132	sample.flags = tidq->prev_packet->flags;
1133	sample.cpumode = event->sample.header.misc;
1134
1135	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1136
1137	if (etm->synth_opts.last_branch) {
1138		cs_etm__copy_last_branch_rb(etmq, tidq);
1139		sample.branch_stack = tidq->last_branch;
1140	}
1141
1142	if (etm->synth_opts.inject) {
1143		ret = cs_etm__inject_event(event, &sample,
1144					   etm->instructions_sample_type);
1145		if (ret)
1146			return ret;
1147	}
1148
1149	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1150
1151	if (ret)
1152		pr_err(
1153			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1154			ret);
1155
1156	if (etm->synth_opts.last_branch)
1157		cs_etm__reset_last_branch_rb(tidq);
1158
1159	return ret;
1160}
1161
1162/*
1163 * The cs etm packet encodes an instruction range between a branch target
1164 * and the next taken branch. Generate sample accordingly.
1165 */
1166static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1167				       struct cs_etm_traceid_queue *tidq)
1168{
1169	int ret = 0;
1170	struct cs_etm_auxtrace *etm = etmq->etm;
1171	struct perf_sample sample = {.ip = 0,};
1172	union perf_event *event = tidq->event_buf;
1173	struct dummy_branch_stack {
1174		u64			nr;
 
1175		struct branch_entry	entries;
1176	} dummy_bs;
1177	u64 ip;
1178
1179	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1180
1181	event->sample.header.type = PERF_RECORD_SAMPLE;
1182	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1183	event->sample.header.size = sizeof(struct perf_event_header);
1184
 
 
1185	sample.ip = ip;
1186	sample.pid = tidq->pid;
1187	sample.tid = tidq->tid;
1188	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1189	sample.id = etmq->etm->branches_id;
1190	sample.stream_id = etmq->etm->branches_id;
1191	sample.period = 1;
1192	sample.cpu = tidq->packet->cpu;
1193	sample.flags = tidq->prev_packet->flags;
1194	sample.cpumode = event->sample.header.misc;
1195
1196	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1197			  &sample);
1198
1199	/*
1200	 * perf report cannot handle events without a branch stack
1201	 */
1202	if (etm->synth_opts.last_branch) {
1203		dummy_bs = (struct dummy_branch_stack){
1204			.nr = 1,
 
1205			.entries = {
1206				.from = sample.ip,
1207				.to = sample.addr,
1208			},
1209		};
1210		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1211	}
1212
1213	if (etm->synth_opts.inject) {
1214		ret = cs_etm__inject_event(event, &sample,
1215					   etm->branches_sample_type);
1216		if (ret)
1217			return ret;
1218	}
1219
1220	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1221
1222	if (ret)
1223		pr_err(
1224		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1225		ret);
1226
1227	return ret;
1228}
1229
1230struct cs_etm_synth {
1231	struct perf_tool dummy_tool;
1232	struct perf_session *session;
1233};
1234
1235static int cs_etm__event_synth(struct perf_tool *tool,
1236			       union perf_event *event,
1237			       struct perf_sample *sample __maybe_unused,
1238			       struct machine *machine __maybe_unused)
1239{
1240	struct cs_etm_synth *cs_etm_synth =
1241		      container_of(tool, struct cs_etm_synth, dummy_tool);
1242
1243	return perf_session__deliver_synth_event(cs_etm_synth->session,
1244						 event, NULL);
1245}
1246
1247static int cs_etm__synth_event(struct perf_session *session,
1248			       struct perf_event_attr *attr, u64 id)
1249{
1250	struct cs_etm_synth cs_etm_synth;
1251
1252	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1253	cs_etm_synth.session = session;
1254
1255	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1256					   &id, cs_etm__event_synth);
1257}
1258
1259static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1260				struct perf_session *session)
1261{
1262	struct evlist *evlist = session->evlist;
1263	struct evsel *evsel;
1264	struct perf_event_attr attr;
1265	bool found = false;
1266	u64 id;
1267	int err;
1268
1269	evlist__for_each_entry(evlist, evsel) {
1270		if (evsel->core.attr.type == etm->pmu_type) {
1271			found = true;
1272			break;
1273		}
1274	}
1275
1276	if (!found) {
1277		pr_debug("No selected events with CoreSight Trace data\n");
1278		return 0;
1279	}
1280
1281	memset(&attr, 0, sizeof(struct perf_event_attr));
1282	attr.size = sizeof(struct perf_event_attr);
1283	attr.type = PERF_TYPE_HARDWARE;
1284	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1285	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1286			    PERF_SAMPLE_PERIOD;
1287	if (etm->timeless_decoding)
1288		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1289	else
1290		attr.sample_type |= PERF_SAMPLE_TIME;
1291
1292	attr.exclude_user = evsel->core.attr.exclude_user;
1293	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1294	attr.exclude_hv = evsel->core.attr.exclude_hv;
1295	attr.exclude_host = evsel->core.attr.exclude_host;
1296	attr.exclude_guest = evsel->core.attr.exclude_guest;
1297	attr.sample_id_all = evsel->core.attr.sample_id_all;
1298	attr.read_format = evsel->core.attr.read_format;
1299
1300	/* create new id val to be a fixed offset from evsel id */
1301	id = evsel->core.id[0] + 1000000000;
1302
1303	if (!id)
1304		id = 1;
1305
1306	if (etm->synth_opts.branches) {
1307		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1308		attr.sample_period = 1;
1309		attr.sample_type |= PERF_SAMPLE_ADDR;
1310		err = cs_etm__synth_event(session, &attr, id);
1311		if (err)
1312			return err;
1313		etm->sample_branches = true;
1314		etm->branches_sample_type = attr.sample_type;
1315		etm->branches_id = id;
1316		id += 1;
1317		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1318	}
1319
1320	if (etm->synth_opts.last_branch)
1321		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
 
 
 
 
 
 
 
1322
1323	if (etm->synth_opts.instructions) {
1324		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1325		attr.sample_period = etm->synth_opts.period;
1326		etm->instructions_sample_period = attr.sample_period;
1327		err = cs_etm__synth_event(session, &attr, id);
1328		if (err)
1329			return err;
1330		etm->sample_instructions = true;
1331		etm->instructions_sample_type = attr.sample_type;
1332		etm->instructions_id = id;
1333		id += 1;
1334	}
1335
1336	return 0;
1337}
1338
1339static int cs_etm__sample(struct cs_etm_queue *etmq,
1340			  struct cs_etm_traceid_queue *tidq)
1341{
1342	struct cs_etm_auxtrace *etm = etmq->etm;
1343	struct cs_etm_packet *tmp;
1344	int ret;
1345	u8 trace_chan_id = tidq->trace_chan_id;
1346	u64 instrs_executed = tidq->packet->instr_count;
 
 
 
1347
1348	tidq->period_instructions += instrs_executed;
1349
1350	/*
1351	 * Record a branch when the last instruction in
1352	 * PREV_PACKET is a branch.
1353	 */
1354	if (etm->synth_opts.last_branch &&
1355	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1356	    tidq->prev_packet->last_instr_taken_branch)
1357		cs_etm__update_last_branch_rb(etmq, tidq);
1358
1359	if (etm->sample_instructions &&
1360	    tidq->period_instructions >= etm->instructions_sample_period) {
1361		/*
1362		 * Emit instruction sample periodically
1363		 * TODO: allow period to be defined in cycles and clock time
1364		 */
1365
1366		/* Get number of instructions executed after the sample point */
1367		u64 instrs_over = tidq->period_instructions -
1368			etm->instructions_sample_period;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369
1370		/*
1371		 * Calculate the address of the sampled instruction (-1 as
1372		 * sample is reported as though instruction has just been
1373		 * executed, but PC has not advanced to next instruction)
1374		 */
1375		u64 offset = (instrs_executed - instrs_over - 1);
1376		u64 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1377					      tidq->packet, offset);
1378
1379		ret = cs_etm__synth_instruction_sample(
1380			etmq, tidq, addr, etm->instructions_sample_period);
1381		if (ret)
1382			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383
1384		/* Carry remaining instructions into next sample period */
1385		tidq->period_instructions = instrs_over;
 
 
1386	}
1387
1388	if (etm->sample_branches) {
1389		bool generate_sample = false;
1390
1391		/* Generate sample for tracing on packet */
1392		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1393			generate_sample = true;
1394
1395		/* Generate sample for branch taken packet */
1396		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1397		    tidq->prev_packet->last_instr_taken_branch)
1398			generate_sample = true;
1399
1400		if (generate_sample) {
1401			ret = cs_etm__synth_branch_sample(etmq, tidq);
1402			if (ret)
1403				return ret;
1404		}
1405	}
1406
1407	if (etm->sample_branches || etm->synth_opts.last_branch) {
1408		/*
1409		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1410		 * the next incoming packet.
1411		 */
1412		tmp = tidq->packet;
1413		tidq->packet = tidq->prev_packet;
1414		tidq->prev_packet = tmp;
1415	}
1416
1417	return 0;
1418}
1419
1420static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1421{
1422	/*
1423	 * When the exception packet is inserted, whether the last instruction
1424	 * in previous range packet is taken branch or not, we need to force
1425	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1426	 * to generate branch sample for the instruction range before the
1427	 * exception is trapped to kernel or before the exception returning.
1428	 *
1429	 * The exception packet includes the dummy address values, so don't
1430	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1431	 * for generating instruction and branch samples.
1432	 */
1433	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1434		tidq->prev_packet->last_instr_taken_branch = true;
1435
1436	return 0;
1437}
1438
1439static int cs_etm__flush(struct cs_etm_queue *etmq,
1440			 struct cs_etm_traceid_queue *tidq)
1441{
1442	int err = 0;
1443	struct cs_etm_auxtrace *etm = etmq->etm;
1444	struct cs_etm_packet *tmp;
1445
1446	/* Handle start tracing packet */
1447	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1448		goto swap_packet;
1449
1450	if (etmq->etm->synth_opts.last_branch &&
1451	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
 
 
 
 
 
1452		/*
1453		 * Generate a last branch event for the branches left in the
1454		 * circular buffer at the end of the trace.
1455		 *
1456		 * Use the address of the end of the last reported execution
1457		 * range
1458		 */
1459		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1460
1461		err = cs_etm__synth_instruction_sample(
1462			etmq, tidq, addr,
1463			tidq->period_instructions);
1464		if (err)
1465			return err;
1466
1467		tidq->period_instructions = 0;
1468
1469	}
1470
1471	if (etm->sample_branches &&
1472	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1473		err = cs_etm__synth_branch_sample(etmq, tidq);
1474		if (err)
1475			return err;
1476	}
1477
1478swap_packet:
1479	if (etm->sample_branches || etm->synth_opts.last_branch) {
1480		/*
1481		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1482		 * the next incoming packet.
1483		 */
1484		tmp = tidq->packet;
1485		tidq->packet = tidq->prev_packet;
1486		tidq->prev_packet = tmp;
1487	}
1488
1489	return err;
1490}
1491
1492static int cs_etm__end_block(struct cs_etm_queue *etmq,
1493			     struct cs_etm_traceid_queue *tidq)
1494{
1495	int err;
1496
1497	/*
1498	 * It has no new packet coming and 'etmq->packet' contains the stale
1499	 * packet which was set at the previous time with packets swapping;
1500	 * so skip to generate branch sample to avoid stale packet.
1501	 *
1502	 * For this case only flush branch stack and generate a last branch
1503	 * event for the branches left in the circular buffer at the end of
1504	 * the trace.
1505	 */
1506	if (etmq->etm->synth_opts.last_branch &&
1507	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
 
 
 
 
 
1508		/*
1509		 * Use the address of the end of the last reported execution
1510		 * range.
1511		 */
1512		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1513
1514		err = cs_etm__synth_instruction_sample(
1515			etmq, tidq, addr,
1516			tidq->period_instructions);
1517		if (err)
1518			return err;
1519
1520		tidq->period_instructions = 0;
1521	}
1522
1523	return 0;
1524}
1525/*
1526 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1527 *			   if need be.
1528 * Returns:	< 0	if error
1529 *		= 0	if no more auxtrace_buffer to read
1530 *		> 0	if the current buffer isn't empty yet
1531 */
1532static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1533{
1534	int ret;
1535
1536	if (!etmq->buf_len) {
1537		ret = cs_etm__get_trace(etmq);
1538		if (ret <= 0)
1539			return ret;
1540		/*
1541		 * We cannot assume consecutive blocks in the data file
1542		 * are contiguous, reset the decoder to force re-sync.
1543		 */
1544		ret = cs_etm_decoder__reset(etmq->decoder);
1545		if (ret)
1546			return ret;
1547	}
1548
1549	return etmq->buf_len;
1550}
1551
1552static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1553				 struct cs_etm_packet *packet,
1554				 u64 end_addr)
1555{
1556	/* Initialise to keep compiler happy */
1557	u16 instr16 = 0;
1558	u32 instr32 = 0;
1559	u64 addr;
1560
1561	switch (packet->isa) {
1562	case CS_ETM_ISA_T32:
1563		/*
1564		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1565		 *
1566		 *  b'15         b'8
1567		 * +-----------------+--------+
1568		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1569		 * +-----------------+--------+
1570		 *
1571		 * According to the specifiction, it only defines SVC for T32
1572		 * with 16 bits instruction and has no definition for 32bits;
1573		 * so below only read 2 bytes as instruction size for T32.
1574		 */
1575		addr = end_addr - 2;
1576		cs_etm__mem_access(etmq, trace_chan_id, addr,
1577				   sizeof(instr16), (u8 *)&instr16);
1578		if ((instr16 & 0xFF00) == 0xDF00)
1579			return true;
1580
1581		break;
1582	case CS_ETM_ISA_A32:
1583		/*
1584		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1585		 *
1586		 *  b'31 b'28 b'27 b'24
1587		 * +---------+---------+-------------------------+
1588		 * |  !1111  | 1 1 1 1 |        imm24            |
1589		 * +---------+---------+-------------------------+
1590		 */
1591		addr = end_addr - 4;
1592		cs_etm__mem_access(etmq, trace_chan_id, addr,
1593				   sizeof(instr32), (u8 *)&instr32);
1594		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1595		    (instr32 & 0xF0000000) != 0xF0000000)
1596			return true;
1597
1598		break;
1599	case CS_ETM_ISA_A64:
1600		/*
1601		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1602		 *
1603		 *  b'31               b'21           b'4     b'0
1604		 * +-----------------------+---------+-----------+
1605		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1606		 * +-----------------------+---------+-----------+
1607		 */
1608		addr = end_addr - 4;
1609		cs_etm__mem_access(etmq, trace_chan_id, addr,
1610				   sizeof(instr32), (u8 *)&instr32);
1611		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1612			return true;
1613
1614		break;
1615	case CS_ETM_ISA_UNKNOWN:
1616	default:
1617		break;
1618	}
1619
1620	return false;
1621}
1622
1623static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1624			       struct cs_etm_traceid_queue *tidq, u64 magic)
1625{
1626	u8 trace_chan_id = tidq->trace_chan_id;
1627	struct cs_etm_packet *packet = tidq->packet;
1628	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1629
1630	if (magic == __perf_cs_etmv3_magic)
1631		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1632			return true;
1633
1634	/*
1635	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1636	 * HVC cases; need to check if it's SVC instruction based on
1637	 * packet address.
1638	 */
1639	if (magic == __perf_cs_etmv4_magic) {
1640		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1641		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1642					 prev_packet->end_addr))
1643			return true;
1644	}
1645
1646	return false;
1647}
1648
1649static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1650				       u64 magic)
1651{
1652	struct cs_etm_packet *packet = tidq->packet;
1653
1654	if (magic == __perf_cs_etmv3_magic)
1655		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1656		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1657		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1658		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1659		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1660			return true;
1661
1662	if (magic == __perf_cs_etmv4_magic)
1663		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1664		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1665		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1666		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1667		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1668		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1669		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1670			return true;
1671
1672	return false;
1673}
1674
1675static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1676				      struct cs_etm_traceid_queue *tidq,
1677				      u64 magic)
1678{
1679	u8 trace_chan_id = tidq->trace_chan_id;
1680	struct cs_etm_packet *packet = tidq->packet;
1681	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1682
1683	if (magic == __perf_cs_etmv3_magic)
1684		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1685		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1686		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1687		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1688		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1689		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1690		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1691			return true;
1692
1693	if (magic == __perf_cs_etmv4_magic) {
1694		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1695		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1696		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1697		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1698			return true;
1699
1700		/*
1701		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1702		 * (SMC, HVC) are taken as sync exceptions.
1703		 */
1704		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1705		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1706					  prev_packet->end_addr))
1707			return true;
1708
1709		/*
1710		 * ETMv4 has 5 bits for exception number; if the numbers
1711		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1712		 * they are implementation defined exceptions.
1713		 *
1714		 * For this case, simply take it as sync exception.
1715		 */
1716		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1717		    packet->exception_number <= CS_ETMV4_EXC_END)
1718			return true;
1719	}
1720
1721	return false;
1722}
1723
1724static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1725				    struct cs_etm_traceid_queue *tidq)
1726{
1727	struct cs_etm_packet *packet = tidq->packet;
1728	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1729	u8 trace_chan_id = tidq->trace_chan_id;
1730	u64 magic;
1731	int ret;
1732
1733	switch (packet->sample_type) {
1734	case CS_ETM_RANGE:
1735		/*
1736		 * Immediate branch instruction without neither link nor
1737		 * return flag, it's normal branch instruction within
1738		 * the function.
1739		 */
1740		if (packet->last_instr_type == OCSD_INSTR_BR &&
1741		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1742			packet->flags = PERF_IP_FLAG_BRANCH;
1743
1744			if (packet->last_instr_cond)
1745				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1746		}
1747
1748		/*
1749		 * Immediate branch instruction with link (e.g. BL), this is
1750		 * branch instruction for function call.
1751		 */
1752		if (packet->last_instr_type == OCSD_INSTR_BR &&
1753		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1754			packet->flags = PERF_IP_FLAG_BRANCH |
1755					PERF_IP_FLAG_CALL;
1756
1757		/*
1758		 * Indirect branch instruction with link (e.g. BLR), this is
1759		 * branch instruction for function call.
1760		 */
1761		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1762		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1763			packet->flags = PERF_IP_FLAG_BRANCH |
1764					PERF_IP_FLAG_CALL;
1765
1766		/*
1767		 * Indirect branch instruction with subtype of
1768		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1769		 * function return for A32/T32.
1770		 */
1771		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1772		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1773			packet->flags = PERF_IP_FLAG_BRANCH |
1774					PERF_IP_FLAG_RETURN;
1775
1776		/*
1777		 * Indirect branch instruction without link (e.g. BR), usually
1778		 * this is used for function return, especially for functions
1779		 * within dynamic link lib.
1780		 */
1781		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1782		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1783			packet->flags = PERF_IP_FLAG_BRANCH |
1784					PERF_IP_FLAG_RETURN;
1785
1786		/* Return instruction for function return. */
1787		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1788		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1789			packet->flags = PERF_IP_FLAG_BRANCH |
1790					PERF_IP_FLAG_RETURN;
1791
1792		/*
1793		 * Decoder might insert a discontinuity in the middle of
1794		 * instruction packets, fixup prev_packet with flag
1795		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1796		 */
1797		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1798			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1799					      PERF_IP_FLAG_TRACE_BEGIN;
1800
1801		/*
1802		 * If the previous packet is an exception return packet
1803		 * and the return address just follows SVC instuction,
1804		 * it needs to calibrate the previous packet sample flags
1805		 * as PERF_IP_FLAG_SYSCALLRET.
1806		 */
1807		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1808					   PERF_IP_FLAG_RETURN |
1809					   PERF_IP_FLAG_INTERRUPT) &&
1810		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1811					 packet, packet->start_addr))
1812			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1813					     PERF_IP_FLAG_RETURN |
1814					     PERF_IP_FLAG_SYSCALLRET;
1815		break;
1816	case CS_ETM_DISCONTINUITY:
1817		/*
1818		 * The trace is discontinuous, if the previous packet is
1819		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1820		 * for previous packet.
1821		 */
1822		if (prev_packet->sample_type == CS_ETM_RANGE)
1823			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1824					      PERF_IP_FLAG_TRACE_END;
1825		break;
1826	case CS_ETM_EXCEPTION:
1827		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1828		if (ret)
1829			return ret;
1830
1831		/* The exception is for system call. */
1832		if (cs_etm__is_syscall(etmq, tidq, magic))
1833			packet->flags = PERF_IP_FLAG_BRANCH |
1834					PERF_IP_FLAG_CALL |
1835					PERF_IP_FLAG_SYSCALLRET;
1836		/*
1837		 * The exceptions are triggered by external signals from bus,
1838		 * interrupt controller, debug module, PE reset or halt.
1839		 */
1840		else if (cs_etm__is_async_exception(tidq, magic))
1841			packet->flags = PERF_IP_FLAG_BRANCH |
1842					PERF_IP_FLAG_CALL |
1843					PERF_IP_FLAG_ASYNC |
1844					PERF_IP_FLAG_INTERRUPT;
1845		/*
1846		 * Otherwise, exception is caused by trap, instruction &
1847		 * data fault, or alignment errors.
1848		 */
1849		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1850			packet->flags = PERF_IP_FLAG_BRANCH |
1851					PERF_IP_FLAG_CALL |
1852					PERF_IP_FLAG_INTERRUPT;
1853
1854		/*
1855		 * When the exception packet is inserted, since exception
1856		 * packet is not used standalone for generating samples
1857		 * and it's affiliation to the previous instruction range
1858		 * packet; so set previous range packet flags to tell perf
1859		 * it is an exception taken branch.
1860		 */
1861		if (prev_packet->sample_type == CS_ETM_RANGE)
1862			prev_packet->flags = packet->flags;
1863		break;
1864	case CS_ETM_EXCEPTION_RET:
1865		/*
1866		 * When the exception return packet is inserted, since
1867		 * exception return packet is not used standalone for
1868		 * generating samples and it's affiliation to the previous
1869		 * instruction range packet; so set previous range packet
1870		 * flags to tell perf it is an exception return branch.
1871		 *
1872		 * The exception return can be for either system call or
1873		 * other exception types; unfortunately the packet doesn't
1874		 * contain exception type related info so we cannot decide
1875		 * the exception type purely based on exception return packet.
1876		 * If we record the exception number from exception packet and
1877		 * reuse it for excpetion return packet, this is not reliable
1878		 * due the trace can be discontinuity or the interrupt can
1879		 * be nested, thus the recorded exception number cannot be
1880		 * used for exception return packet for these two cases.
1881		 *
1882		 * For exception return packet, we only need to distinguish the
1883		 * packet is for system call or for other types.  Thus the
1884		 * decision can be deferred when receive the next packet which
1885		 * contains the return address, based on the return address we
1886		 * can read out the previous instruction and check if it's a
1887		 * system call instruction and then calibrate the sample flag
1888		 * as needed.
1889		 */
1890		if (prev_packet->sample_type == CS_ETM_RANGE)
1891			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1892					     PERF_IP_FLAG_RETURN |
1893					     PERF_IP_FLAG_INTERRUPT;
1894		break;
1895	case CS_ETM_EMPTY:
1896	default:
1897		break;
1898	}
1899
1900	return 0;
1901}
1902
1903static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1904{
1905	int ret = 0;
1906	size_t processed = 0;
1907
1908	/*
1909	 * Packets are decoded and added to the decoder's packet queue
1910	 * until the decoder packet processing callback has requested that
1911	 * processing stops or there is nothing left in the buffer.  Normal
1912	 * operations that stop processing are a timestamp packet or a full
1913	 * decoder buffer queue.
1914	 */
1915	ret = cs_etm_decoder__process_data_block(etmq->decoder,
1916						 etmq->offset,
1917						 &etmq->buf[etmq->buf_used],
1918						 etmq->buf_len,
1919						 &processed);
1920	if (ret)
1921		goto out;
1922
1923	etmq->offset += processed;
1924	etmq->buf_used += processed;
1925	etmq->buf_len -= processed;
1926
1927out:
1928	return ret;
1929}
1930
1931static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
1932					 struct cs_etm_traceid_queue *tidq)
1933{
1934	int ret;
1935	struct cs_etm_packet_queue *packet_queue;
1936
1937	packet_queue = &tidq->packet_queue;
1938
1939	/* Process each packet in this chunk */
1940	while (1) {
1941		ret = cs_etm_decoder__get_packet(packet_queue,
1942						 tidq->packet);
1943		if (ret <= 0)
1944			/*
1945			 * Stop processing this chunk on
1946			 * end of data or error
1947			 */
1948			break;
1949
1950		/*
1951		 * Since packet addresses are swapped in packet
1952		 * handling within below switch() statements,
1953		 * thus setting sample flags must be called
1954		 * prior to switch() statement to use address
1955		 * information before packets swapping.
1956		 */
1957		ret = cs_etm__set_sample_flags(etmq, tidq);
1958		if (ret < 0)
1959			break;
1960
1961		switch (tidq->packet->sample_type) {
1962		case CS_ETM_RANGE:
1963			/*
1964			 * If the packet contains an instruction
1965			 * range, generate instruction sequence
1966			 * events.
1967			 */
1968			cs_etm__sample(etmq, tidq);
1969			break;
1970		case CS_ETM_EXCEPTION:
1971		case CS_ETM_EXCEPTION_RET:
1972			/*
1973			 * If the exception packet is coming,
1974			 * make sure the previous instruction
1975			 * range packet to be handled properly.
1976			 */
1977			cs_etm__exception(tidq);
1978			break;
1979		case CS_ETM_DISCONTINUITY:
1980			/*
1981			 * Discontinuity in trace, flush
1982			 * previous branch stack
1983			 */
1984			cs_etm__flush(etmq, tidq);
1985			break;
1986		case CS_ETM_EMPTY:
1987			/*
1988			 * Should not receive empty packet,
1989			 * report error.
1990			 */
1991			pr_err("CS ETM Trace: empty packet\n");
1992			return -EINVAL;
1993		default:
1994			break;
1995		}
1996	}
1997
1998	return ret;
1999}
2000
2001static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2002{
2003	int idx;
2004	struct int_node *inode;
2005	struct cs_etm_traceid_queue *tidq;
2006	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2007
2008	intlist__for_each_entry(inode, traceid_queues_list) {
2009		idx = (int)(intptr_t)inode->priv;
2010		tidq = etmq->traceid_queues[idx];
2011
2012		/* Ignore return value */
2013		cs_etm__process_traceid_queue(etmq, tidq);
2014
2015		/*
2016		 * Generate an instruction sample with the remaining
2017		 * branchstack entries.
2018		 */
2019		cs_etm__flush(etmq, tidq);
2020	}
2021}
2022
2023static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2024{
2025	int err = 0;
2026	struct cs_etm_traceid_queue *tidq;
2027
2028	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2029	if (!tidq)
2030		return -EINVAL;
2031
2032	/* Go through each buffer in the queue and decode them one by one */
2033	while (1) {
2034		err = cs_etm__get_data_block(etmq);
2035		if (err <= 0)
2036			return err;
2037
2038		/* Run trace decoder until buffer consumed or end of trace */
2039		do {
2040			err = cs_etm__decode_data_block(etmq);
2041			if (err)
2042				return err;
2043
2044			/*
2045			 * Process each packet in this chunk, nothing to do if
2046			 * an error occurs other than hoping the next one will
2047			 * be better.
2048			 */
2049			err = cs_etm__process_traceid_queue(etmq, tidq);
2050
2051		} while (etmq->buf_len);
2052
2053		if (err == 0)
2054			/* Flush any remaining branch stack entries */
2055			err = cs_etm__end_block(etmq, tidq);
2056	}
2057
2058	return err;
2059}
2060
2061static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2062					   pid_t tid)
2063{
2064	unsigned int i;
2065	struct auxtrace_queues *queues = &etm->queues;
2066
2067	for (i = 0; i < queues->nr_queues; i++) {
2068		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2069		struct cs_etm_queue *etmq = queue->priv;
2070		struct cs_etm_traceid_queue *tidq;
2071
2072		if (!etmq)
2073			continue;
2074
2075		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2076						CS_ETM_PER_THREAD_TRACEID);
2077
2078		if (!tidq)
2079			continue;
2080
2081		if ((tid == -1) || (tidq->tid == tid)) {
2082			cs_etm__set_pid_tid_cpu(etm, tidq);
2083			cs_etm__run_decoder(etmq);
2084		}
2085	}
2086
2087	return 0;
2088}
2089
2090static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2091{
2092	int ret = 0;
2093	unsigned int cs_queue_nr, queue_nr;
2094	u8 trace_chan_id;
2095	u64 timestamp;
2096	struct auxtrace_queue *queue;
2097	struct cs_etm_queue *etmq;
2098	struct cs_etm_traceid_queue *tidq;
2099
2100	while (1) {
2101		if (!etm->heap.heap_cnt)
2102			goto out;
2103
2104		/* Take the entry at the top of the min heap */
2105		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2106		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2107		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2108		queue = &etm->queues.queue_array[queue_nr];
2109		etmq = queue->priv;
2110
2111		/*
2112		 * Remove the top entry from the heap since we are about
2113		 * to process it.
2114		 */
2115		auxtrace_heap__pop(&etm->heap);
2116
2117		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2118		if (!tidq) {
2119			/*
2120			 * No traceID queue has been allocated for this traceID,
2121			 * which means something somewhere went very wrong.  No
2122			 * other choice than simply exit.
2123			 */
2124			ret = -EINVAL;
2125			goto out;
2126		}
2127
2128		/*
2129		 * Packets associated with this timestamp are already in
2130		 * the etmq's traceID queue, so process them.
2131		 */
2132		ret = cs_etm__process_traceid_queue(etmq, tidq);
2133		if (ret < 0)
2134			goto out;
2135
2136		/*
2137		 * Packets for this timestamp have been processed, time to
2138		 * move on to the next timestamp, fetching a new auxtrace_buffer
2139		 * if need be.
2140		 */
2141refetch:
2142		ret = cs_etm__get_data_block(etmq);
2143		if (ret < 0)
2144			goto out;
2145
2146		/*
2147		 * No more auxtrace_buffers to process in this etmq, simply
2148		 * move on to another entry in the auxtrace_heap.
2149		 */
2150		if (!ret)
2151			continue;
2152
2153		ret = cs_etm__decode_data_block(etmq);
2154		if (ret)
2155			goto out;
2156
2157		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2158
2159		if (!timestamp) {
2160			/*
2161			 * Function cs_etm__decode_data_block() returns when
2162			 * there is no more traces to decode in the current
2163			 * auxtrace_buffer OR when a timestamp has been
2164			 * encountered on any of the traceID queues.  Since we
2165			 * did not get a timestamp, there is no more traces to
2166			 * process in this auxtrace_buffer.  As such empty and
2167			 * flush all traceID queues.
2168			 */
2169			cs_etm__clear_all_traceid_queues(etmq);
2170
2171			/* Fetch another auxtrace_buffer for this etmq */
2172			goto refetch;
2173		}
2174
2175		/*
2176		 * Add to the min heap the timestamp for packets that have
2177		 * just been decoded.  They will be processed and synthesized
2178		 * during the next call to cs_etm__process_traceid_queue() for
2179		 * this queue/traceID.
2180		 */
2181		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2182		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2183	}
2184
2185out:
2186	return ret;
2187}
2188
2189static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2190					union perf_event *event)
2191{
2192	struct thread *th;
2193
2194	if (etm->timeless_decoding)
2195		return 0;
2196
2197	/*
2198	 * Add the tid/pid to the log so that we can get a match when
2199	 * we get a contextID from the decoder.
2200	 */
2201	th = machine__findnew_thread(etm->machine,
2202				     event->itrace_start.pid,
2203				     event->itrace_start.tid);
2204	if (!th)
2205		return -ENOMEM;
2206
2207	thread__put(th);
2208
2209	return 0;
2210}
2211
2212static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2213					   union perf_event *event)
2214{
2215	struct thread *th;
2216	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2217
2218	/*
2219	 * Context switch in per-thread mode are irrelevant since perf
2220	 * will start/stop tracing as the process is scheduled.
2221	 */
2222	if (etm->timeless_decoding)
2223		return 0;
2224
2225	/*
2226	 * SWITCH_IN events carry the next process to be switched out while
2227	 * SWITCH_OUT events carry the process to be switched in.  As such
2228	 * we don't care about IN events.
2229	 */
2230	if (!out)
2231		return 0;
2232
2233	/*
2234	 * Add the tid/pid to the log so that we can get a match when
2235	 * we get a contextID from the decoder.
2236	 */
2237	th = machine__findnew_thread(etm->machine,
2238				     event->context_switch.next_prev_pid,
2239				     event->context_switch.next_prev_tid);
2240	if (!th)
2241		return -ENOMEM;
2242
2243	thread__put(th);
2244
2245	return 0;
2246}
2247
2248static int cs_etm__process_event(struct perf_session *session,
2249				 union perf_event *event,
2250				 struct perf_sample *sample,
2251				 struct perf_tool *tool)
2252{
2253	int err = 0;
2254	u64 timestamp;
2255	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2256						   struct cs_etm_auxtrace,
2257						   auxtrace);
2258
2259	if (dump_trace)
2260		return 0;
2261
2262	if (!tool->ordered_events) {
2263		pr_err("CoreSight ETM Trace requires ordered events\n");
2264		return -EINVAL;
2265	}
2266
2267	if (sample->time && (sample->time != (u64) -1))
2268		timestamp = sample->time;
2269	else
2270		timestamp = 0;
2271
2272	if (timestamp || etm->timeless_decoding) {
2273		err = cs_etm__update_queues(etm);
2274		if (err)
2275			return err;
2276	}
2277
 
 
 
 
 
2278	if (etm->timeless_decoding &&
2279	    event->header.type == PERF_RECORD_EXIT)
2280		return cs_etm__process_timeless_queues(etm,
2281						       event->fork.tid);
2282
2283	if (event->header.type == PERF_RECORD_ITRACE_START)
2284		return cs_etm__process_itrace_start(etm, event);
2285	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2286		return cs_etm__process_switch_cpu_wide(etm, event);
2287
2288	if (!etm->timeless_decoding &&
2289	    event->header.type == PERF_RECORD_AUX)
2290		return cs_etm__process_queues(etm);
 
 
 
 
 
2291
2292	return 0;
2293}
2294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295static int cs_etm__process_auxtrace_event(struct perf_session *session,
2296					  union perf_event *event,
2297					  struct perf_tool *tool __maybe_unused)
2298{
2299	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2300						   struct cs_etm_auxtrace,
2301						   auxtrace);
2302	if (!etm->data_queued) {
2303		struct auxtrace_buffer *buffer;
2304		off_t  data_offset;
2305		int fd = perf_data__fd(session->data);
2306		bool is_pipe = perf_data__is_pipe(session->data);
2307		int err;
2308
2309		if (is_pipe)
2310			data_offset = 0;
2311		else {
2312			data_offset = lseek(fd, 0, SEEK_CUR);
2313			if (data_offset == -1)
2314				return -errno;
2315		}
2316
2317		err = auxtrace_queues__add_event(&etm->queues, session,
2318						 event, data_offset, &buffer);
2319		if (err)
2320			return err;
2321
2322		if (dump_trace)
2323			if (auxtrace_buffer__get_data(buffer, fd)) {
2324				cs_etm__dump_event(etm, buffer);
2325				auxtrace_buffer__put_data(buffer);
2326			}
2327	}
 
2328
2329	return 0;
2330}
2331
2332static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2333{
2334	struct evsel *evsel;
2335	struct evlist *evlist = etm->session->evlist;
2336	bool timeless_decoding = true;
2337
 
 
 
 
2338	/*
2339	 * Circle through the list of event and complain if we find one
2340	 * with the time bit set.
2341	 */
2342	evlist__for_each_entry(evlist, evsel) {
2343		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2344			timeless_decoding = false;
2345	}
2346
2347	return timeless_decoding;
2348}
2349
2350static const char * const cs_etm_global_header_fmts[] = {
2351	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
2352	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2353	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2354};
2355
2356static const char * const cs_etm_priv_fmts[] = {
2357	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2358	[CS_ETM_CPU]		= "	CPU			       %lld\n",
 
2359	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2360	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2361	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2362	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2363};
2364
2365static const char * const cs_etmv4_priv_fmts[] = {
2366	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2367	[CS_ETM_CPU]		= "	CPU			       %lld\n",
 
2368	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2369	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2370	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2371	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2372	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2373	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2374	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2375};
2376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2377static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2378{
2379	int i, j, cpu = 0;
 
 
 
 
 
 
 
 
 
2380
2381	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2382		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2383
2384	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2385		if (val[i] == __perf_cs_etmv3_magic)
2386			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2387				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2388		else if (val[i] == __perf_cs_etmv4_magic)
2389			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2390				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2391		else
2392			/* failure.. return */
2393			return;
2394	}
2395}
2396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397int cs_etm__process_auxtrace_info(union perf_event *event,
2398				  struct perf_session *session)
2399{
2400	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2401	struct cs_etm_auxtrace *etm = NULL;
2402	struct int_node *inode;
2403	unsigned int pmu_type;
2404	int event_header_size = sizeof(struct perf_event_header);
2405	int info_header_size;
2406	int total_size = auxtrace_info->header.size;
2407	int priv_size = 0;
2408	int num_cpu;
2409	int err = 0, idx = -1;
2410	int i, j, k;
2411	u64 *ptr, *hdr = NULL;
2412	u64 **metadata = NULL;
 
2413
2414	/*
2415	 * sizeof(auxtrace_info_event::type) +
2416	 * sizeof(auxtrace_info_event::reserved) == 8
2417	 */
2418	info_header_size = 8;
2419
2420	if (total_size < (event_header_size + info_header_size))
2421		return -EINVAL;
2422
2423	priv_size = total_size - event_header_size - info_header_size;
2424
2425	/* First the global part */
2426	ptr = (u64 *) auxtrace_info->priv;
2427
2428	/* Look for version '0' of the header */
2429	if (ptr[0] != 0)
 
 
 
 
2430		return -EINVAL;
 
2431
2432	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2433	if (!hdr)
2434		return -ENOMEM;
2435
2436	/* Extract header information - see cs-etm.h for format */
2437	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2438		hdr[i] = ptr[i];
2439	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2440	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2441				    0xffffffff);
2442
2443	/*
2444	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2445	 * has to be made for each packet that gets decoded, optimizing access
2446	 * in anything other than a sequential array is worth doing.
2447	 */
2448	traceid_list = intlist__new(NULL);
2449	if (!traceid_list) {
2450		err = -ENOMEM;
2451		goto err_free_hdr;
2452	}
2453
2454	metadata = zalloc(sizeof(*metadata) * num_cpu);
2455	if (!metadata) {
2456		err = -ENOMEM;
2457		goto err_free_traceid_list;
2458	}
2459
2460	/*
2461	 * The metadata is stored in the auxtrace_info section and encodes
2462	 * the configuration of the ARM embedded trace macrocell which is
2463	 * required by the trace decoder to properly decode the trace due
2464	 * to its highly compressed nature.
2465	 */
2466	for (j = 0; j < num_cpu; j++) {
2467		if (ptr[i] == __perf_cs_etmv3_magic) {
2468			metadata[j] = zalloc(sizeof(*metadata[j]) *
2469					     CS_ETM_PRIV_MAX);
2470			if (!metadata[j]) {
2471				err = -ENOMEM;
2472				goto err_free_metadata;
2473			}
2474			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2475				metadata[j][k] = ptr[i + k];
2476
2477			/* The traceID is our handle */
2478			idx = metadata[j][CS_ETM_ETMTRACEIDR];
2479			i += CS_ETM_PRIV_MAX;
2480		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2481			metadata[j] = zalloc(sizeof(*metadata[j]) *
2482					     CS_ETMV4_PRIV_MAX);
2483			if (!metadata[j]) {
2484				err = -ENOMEM;
2485				goto err_free_metadata;
2486			}
2487			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2488				metadata[j][k] = ptr[i + k];
2489
2490			/* The traceID is our handle */
2491			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2492			i += CS_ETMV4_PRIV_MAX;
 
 
 
 
2493		}
2494
2495		/* Get an RB node for this CPU */
2496		inode = intlist__findnew(traceid_list, idx);
2497
2498		/* Something went wrong, no need to continue */
2499		if (!inode) {
2500			err = -ENOMEM;
2501			goto err_free_metadata;
2502		}
2503
2504		/*
2505		 * The node for that CPU should not be taken.
2506		 * Back out if that's the case.
2507		 */
2508		if (inode->priv) {
2509			err = -EINVAL;
2510			goto err_free_metadata;
2511		}
2512		/* All good, associate the traceID with the metadata pointer */
2513		inode->priv = metadata[j];
2514	}
2515
2516	/*
2517	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2518	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2519	 * global metadata, and each cpu's metadata respectively.
2520	 * The following tests if the correct number of double words was
2521	 * present in the auxtrace info section.
2522	 */
2523	if (i * 8 != priv_size) {
2524		err = -EINVAL;
2525		goto err_free_metadata;
2526	}
2527
2528	etm = zalloc(sizeof(*etm));
2529
2530	if (!etm) {
2531		err = -ENOMEM;
2532		goto err_free_metadata;
2533	}
2534
2535	err = auxtrace_queues__init(&etm->queues);
2536	if (err)
2537		goto err_free_etm;
2538
 
 
 
 
 
 
 
 
2539	etm->session = session;
2540	etm->machine = &session->machines.host;
2541
2542	etm->num_cpu = num_cpu;
2543	etm->pmu_type = pmu_type;
2544	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2545	etm->metadata = metadata;
2546	etm->auxtrace_type = auxtrace_info->type;
2547	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2548
2549	etm->auxtrace.process_event = cs_etm__process_event;
2550	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2551	etm->auxtrace.flush_events = cs_etm__flush_events;
2552	etm->auxtrace.free_events = cs_etm__free_events;
2553	etm->auxtrace.free = cs_etm__free;
 
2554	session->auxtrace = &etm->auxtrace;
2555
2556	etm->unknown_thread = thread__new(999999999, 999999999);
2557	if (!etm->unknown_thread) {
2558		err = -ENOMEM;
2559		goto err_free_queues;
2560	}
2561
2562	/*
2563	 * Initialize list node so that at thread__zput() we can avoid
2564	 * segmentation fault at list_del_init().
2565	 */
2566	INIT_LIST_HEAD(&etm->unknown_thread->node);
2567
2568	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2569	if (err)
2570		goto err_delete_thread;
2571
2572	if (thread__init_map_groups(etm->unknown_thread, etm->machine)) {
2573		err = -ENOMEM;
2574		goto err_delete_thread;
2575	}
2576
2577	if (dump_trace) {
2578		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2579		return 0;
2580	}
2581
2582	if (session->itrace_synth_opts->set) {
2583		etm->synth_opts = *session->itrace_synth_opts;
2584	} else {
2585		itrace_synth_opts__set_default(&etm->synth_opts,
2586				session->itrace_synth_opts->default_no_sample);
2587		etm->synth_opts.callchain = false;
2588	}
2589
2590	err = cs_etm__synth_events(etm, session);
2591	if (err)
2592		goto err_delete_thread;
2593
2594	err = auxtrace_queues__process_index(&etm->queues, session);
2595	if (err)
2596		goto err_delete_thread;
2597
2598	etm->data_queued = etm->queues.populated;
2599
2600	return 0;
2601
2602err_delete_thread:
2603	thread__zput(etm->unknown_thread);
2604err_free_queues:
2605	auxtrace_queues__free(&etm->queues);
2606	session->auxtrace = NULL;
2607err_free_etm:
2608	zfree(&etm);
2609err_free_metadata:
2610	/* No need to check @metadata[j], free(NULL) is supported */
2611	for (j = 0; j < num_cpu; j++)
2612		zfree(&metadata[j]);
2613	zfree(&metadata);
2614err_free_traceid_list:
2615	intlist__delete(traceid_list);
2616err_free_hdr:
2617	zfree(&hdr);
2618
 
 
 
 
 
 
2619	return err;
2620}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright(C) 2015-2018 Linaro Limited.
   4 *
   5 * Author: Tor Jeremiassen <tor@ti.com>
   6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
   7 */
   8
   9#include <linux/bitops.h>
  10#include <linux/coresight-pmu.h>
  11#include <linux/err.h>
  12#include <linux/kernel.h>
  13#include <linux/log2.h>
  14#include <linux/types.h>
  15#include <linux/zalloc.h>
  16
  17#include <opencsd/ocsd_if_types.h>
  18#include <stdlib.h>
  19
  20#include "auxtrace.h"
  21#include "color.h"
  22#include "cs-etm.h"
  23#include "cs-etm-decoder/cs-etm-decoder.h"
  24#include "debug.h"
  25#include "dso.h"
  26#include "evlist.h"
  27#include "intlist.h"
  28#include "machine.h"
  29#include "map.h"
  30#include "perf.h"
  31#include "session.h"
  32#include "map_symbol.h"
  33#include "branch.h"
  34#include "symbol.h"
  35#include "tool.h"
  36#include "thread.h"
  37#include "thread-stack.h"
  38#include <tools/libc_compat.h>
  39#include "util/synthetic-events.h"
  40
 
 
  41struct cs_etm_auxtrace {
  42	struct auxtrace auxtrace;
  43	struct auxtrace_queues queues;
  44	struct auxtrace_heap heap;
  45	struct itrace_synth_opts synth_opts;
  46	struct perf_session *session;
  47	struct machine *machine;
  48	struct thread *unknown_thread;
  49
  50	u8 timeless_decoding;
  51	u8 snapshot_mode;
  52	u8 data_queued;
  53	u8 sample_branches;
  54	u8 sample_instructions;
  55
  56	int num_cpu;
  57	u64 latest_kernel_timestamp;
  58	u32 auxtrace_type;
  59	u64 branches_sample_type;
  60	u64 branches_id;
  61	u64 instructions_sample_type;
  62	u64 instructions_sample_period;
  63	u64 instructions_id;
  64	u64 **metadata;
  65	u64 kernel_start;
  66	unsigned int pmu_type;
  67};
  68
  69struct cs_etm_traceid_queue {
  70	u8 trace_chan_id;
  71	pid_t pid, tid;
  72	u64 period_instructions;
  73	size_t last_branch_pos;
  74	union perf_event *event_buf;
  75	struct thread *thread;
  76	struct branch_stack *last_branch;
  77	struct branch_stack *last_branch_rb;
  78	struct cs_etm_packet *prev_packet;
  79	struct cs_etm_packet *packet;
  80	struct cs_etm_packet_queue packet_queue;
  81};
  82
  83struct cs_etm_queue {
  84	struct cs_etm_auxtrace *etm;
  85	struct cs_etm_decoder *decoder;
  86	struct auxtrace_buffer *buffer;
  87	unsigned int queue_nr;
  88	u8 pending_timestamp_chan_id;
  89	u64 offset;
  90	const unsigned char *buf;
  91	size_t buf_len, buf_used;
  92	/* Conversion between traceID and index in traceid_queues array */
  93	struct intlist *traceid_queues_list;
  94	struct cs_etm_traceid_queue **traceid_queues;
  95};
  96
  97/* RB tree for quick conversion between traceID and metadata pointers */
  98static struct intlist *traceid_list;
  99
 100static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
 101static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
 102static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
 103					   pid_t tid);
 104static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
 105static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
 106
 107/* PTMs ETMIDR [11:8] set to b0011 */
 108#define ETMIDR_PTM_VERSION 0x00000300
 109
 110/*
 111 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
 112 * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
 113 * encode the etm queue number as the upper 16 bit and the channel as
 114 * the lower 16 bit.
 115 */
 116#define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
 117		      (queue_nr << 16 | trace_chan_id)
 118#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
 119#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
 120
 121static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
 122{
 123	etmidr &= ETMIDR_PTM_VERSION;
 124
 125	if (etmidr == ETMIDR_PTM_VERSION)
 126		return CS_ETM_PROTO_PTM;
 127
 128	return CS_ETM_PROTO_ETMV3;
 129}
 130
 131static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
 132{
 133	struct int_node *inode;
 134	u64 *metadata;
 135
 136	inode = intlist__find(traceid_list, trace_chan_id);
 137	if (!inode)
 138		return -EINVAL;
 139
 140	metadata = inode->priv;
 141	*magic = metadata[CS_ETM_MAGIC];
 142	return 0;
 143}
 144
 145int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
 146{
 147	struct int_node *inode;
 148	u64 *metadata;
 149
 150	inode = intlist__find(traceid_list, trace_chan_id);
 151	if (!inode)
 152		return -EINVAL;
 153
 154	metadata = inode->priv;
 155	*cpu = (int)metadata[CS_ETM_CPU];
 156	return 0;
 157}
 158
 159/*
 160 * The returned PID format is presented by two bits:
 161 *
 162 *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
 163 *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
 164 *
 165 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
 166 * are enabled at the same time when the session runs on an EL2 kernel.
 167 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
 168 * recorded in the trace data, the tool will selectively use
 169 * CONTEXTIDR_EL2 as PID.
 170 */
 171int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
 172{
 173	struct int_node *inode;
 174	u64 *metadata, val;
 175
 176	inode = intlist__find(traceid_list, trace_chan_id);
 177	if (!inode)
 178		return -EINVAL;
 179
 180	metadata = inode->priv;
 181
 182	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
 183		val = metadata[CS_ETM_ETMCR];
 184		/* CONTEXTIDR is traced */
 185		if (val & BIT(ETM_OPT_CTXTID))
 186			*pid_fmt = BIT(ETM_OPT_CTXTID);
 187	} else {
 188		val = metadata[CS_ETMV4_TRCCONFIGR];
 189		/* CONTEXTIDR_EL2 is traced */
 190		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
 191			*pid_fmt = BIT(ETM_OPT_CTXTID2);
 192		/* CONTEXTIDR_EL1 is traced */
 193		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
 194			*pid_fmt = BIT(ETM_OPT_CTXTID);
 195	}
 196
 197	return 0;
 198}
 199
 200void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
 201					      u8 trace_chan_id)
 202{
 203	/*
 204	 * When a timestamp packet is encountered the backend code
 205	 * is stopped so that the front end has time to process packets
 206	 * that were accumulated in the traceID queue.  Since there can
 207	 * be more than one channel per cs_etm_queue, we need to specify
 208	 * what traceID queue needs servicing.
 209	 */
 210	etmq->pending_timestamp_chan_id = trace_chan_id;
 211}
 212
 213static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
 214				      u8 *trace_chan_id)
 215{
 216	struct cs_etm_packet_queue *packet_queue;
 217
 218	if (!etmq->pending_timestamp_chan_id)
 219		return 0;
 220
 221	if (trace_chan_id)
 222		*trace_chan_id = etmq->pending_timestamp_chan_id;
 223
 224	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
 225						     etmq->pending_timestamp_chan_id);
 226	if (!packet_queue)
 227		return 0;
 228
 229	/* Acknowledge pending status */
 230	etmq->pending_timestamp_chan_id = 0;
 231
 232	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
 233	return packet_queue->cs_timestamp;
 234}
 235
 236static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
 237{
 238	int i;
 239
 240	queue->head = 0;
 241	queue->tail = 0;
 242	queue->packet_count = 0;
 243	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
 244		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
 245		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
 246		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
 247		queue->packet_buffer[i].instr_count = 0;
 248		queue->packet_buffer[i].last_instr_taken_branch = false;
 249		queue->packet_buffer[i].last_instr_size = 0;
 250		queue->packet_buffer[i].last_instr_type = 0;
 251		queue->packet_buffer[i].last_instr_subtype = 0;
 252		queue->packet_buffer[i].last_instr_cond = 0;
 253		queue->packet_buffer[i].flags = 0;
 254		queue->packet_buffer[i].exception_number = UINT32_MAX;
 255		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
 256		queue->packet_buffer[i].cpu = INT_MIN;
 257	}
 258}
 259
 260static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
 261{
 262	int idx;
 263	struct int_node *inode;
 264	struct cs_etm_traceid_queue *tidq;
 265	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
 266
 267	intlist__for_each_entry(inode, traceid_queues_list) {
 268		idx = (int)(intptr_t)inode->priv;
 269		tidq = etmq->traceid_queues[idx];
 270		cs_etm__clear_packet_queue(&tidq->packet_queue);
 271	}
 272}
 273
 274static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
 275				      struct cs_etm_traceid_queue *tidq,
 276				      u8 trace_chan_id)
 277{
 278	int rc = -ENOMEM;
 279	struct auxtrace_queue *queue;
 280	struct cs_etm_auxtrace *etm = etmq->etm;
 281
 282	cs_etm__clear_packet_queue(&tidq->packet_queue);
 283
 284	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
 285	tidq->tid = queue->tid;
 286	tidq->pid = -1;
 287	tidq->trace_chan_id = trace_chan_id;
 288
 289	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
 290	if (!tidq->packet)
 291		goto out;
 292
 293	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
 294	if (!tidq->prev_packet)
 295		goto out_free;
 296
 297	if (etm->synth_opts.last_branch) {
 298		size_t sz = sizeof(struct branch_stack);
 299
 300		sz += etm->synth_opts.last_branch_sz *
 301		      sizeof(struct branch_entry);
 302		tidq->last_branch = zalloc(sz);
 303		if (!tidq->last_branch)
 304			goto out_free;
 305		tidq->last_branch_rb = zalloc(sz);
 306		if (!tidq->last_branch_rb)
 307			goto out_free;
 308	}
 309
 310	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
 311	if (!tidq->event_buf)
 312		goto out_free;
 313
 314	return 0;
 315
 316out_free:
 317	zfree(&tidq->last_branch_rb);
 318	zfree(&tidq->last_branch);
 319	zfree(&tidq->prev_packet);
 320	zfree(&tidq->packet);
 321out:
 322	return rc;
 323}
 324
 325static struct cs_etm_traceid_queue
 326*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
 327{
 328	int idx;
 329	struct int_node *inode;
 330	struct intlist *traceid_queues_list;
 331	struct cs_etm_traceid_queue *tidq, **traceid_queues;
 332	struct cs_etm_auxtrace *etm = etmq->etm;
 333
 334	if (etm->timeless_decoding)
 335		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
 336
 337	traceid_queues_list = etmq->traceid_queues_list;
 338
 339	/*
 340	 * Check if the traceid_queue exist for this traceID by looking
 341	 * in the queue list.
 342	 */
 343	inode = intlist__find(traceid_queues_list, trace_chan_id);
 344	if (inode) {
 345		idx = (int)(intptr_t)inode->priv;
 346		return etmq->traceid_queues[idx];
 347	}
 348
 349	/* We couldn't find a traceid_queue for this traceID, allocate one */
 350	tidq = malloc(sizeof(*tidq));
 351	if (!tidq)
 352		return NULL;
 353
 354	memset(tidq, 0, sizeof(*tidq));
 355
 356	/* Get a valid index for the new traceid_queue */
 357	idx = intlist__nr_entries(traceid_queues_list);
 358	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
 359	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
 360	if (!inode)
 361		goto out_free;
 362
 363	/* Associate this traceID with this index */
 364	inode->priv = (void *)(intptr_t)idx;
 365
 366	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
 367		goto out_free;
 368
 369	/* Grow the traceid_queues array by one unit */
 370	traceid_queues = etmq->traceid_queues;
 371	traceid_queues = reallocarray(traceid_queues,
 372				      idx + 1,
 373				      sizeof(*traceid_queues));
 374
 375	/*
 376	 * On failure reallocarray() returns NULL and the original block of
 377	 * memory is left untouched.
 378	 */
 379	if (!traceid_queues)
 380		goto out_free;
 381
 382	traceid_queues[idx] = tidq;
 383	etmq->traceid_queues = traceid_queues;
 384
 385	return etmq->traceid_queues[idx];
 386
 387out_free:
 388	/*
 389	 * Function intlist__remove() removes the inode from the list
 390	 * and delete the memory associated to it.
 391	 */
 392	intlist__remove(traceid_queues_list, inode);
 393	free(tidq);
 394
 395	return NULL;
 396}
 397
 398struct cs_etm_packet_queue
 399*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
 400{
 401	struct cs_etm_traceid_queue *tidq;
 402
 403	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
 404	if (tidq)
 405		return &tidq->packet_queue;
 406
 407	return NULL;
 408}
 409
 410static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
 411				struct cs_etm_traceid_queue *tidq)
 412{
 413	struct cs_etm_packet *tmp;
 414
 415	if (etm->sample_branches || etm->synth_opts.last_branch ||
 416	    etm->sample_instructions) {
 417		/*
 418		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
 419		 * the next incoming packet.
 420		 */
 421		tmp = tidq->packet;
 422		tidq->packet = tidq->prev_packet;
 423		tidq->prev_packet = tmp;
 424	}
 425}
 426
 427static void cs_etm__packet_dump(const char *pkt_string)
 428{
 429	const char *color = PERF_COLOR_BLUE;
 430	int len = strlen(pkt_string);
 431
 432	if (len && (pkt_string[len-1] == '\n'))
 433		color_fprintf(stdout, color, "	%s", pkt_string);
 434	else
 435		color_fprintf(stdout, color, "	%s\n", pkt_string);
 436
 437	fflush(stdout);
 438}
 439
 440static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
 441					  struct cs_etm_auxtrace *etm, int idx,
 442					  u32 etmidr)
 443{
 444	u64 **metadata = etm->metadata;
 445
 446	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
 447	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
 448	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
 449}
 450
 451static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
 452					  struct cs_etm_auxtrace *etm, int idx)
 453{
 454	u64 **metadata = etm->metadata;
 455
 456	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
 457	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
 458	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
 459	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
 460	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
 461	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
 462	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
 463}
 464
 465static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
 466				     struct cs_etm_auxtrace *etm)
 467{
 468	int i;
 469	u32 etmidr;
 470	u64 architecture;
 471
 472	for (i = 0; i < etm->num_cpu; i++) {
 473		architecture = etm->metadata[i][CS_ETM_MAGIC];
 474
 475		switch (architecture) {
 476		case __perf_cs_etmv3_magic:
 477			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
 478			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
 479			break;
 480		case __perf_cs_etmv4_magic:
 481			cs_etm__set_trace_param_etmv4(t_params, etm, i);
 482			break;
 483		default:
 484			return -EINVAL;
 485		}
 486	}
 487
 488	return 0;
 489}
 490
 491static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
 492				       struct cs_etm_queue *etmq,
 493				       enum cs_etm_decoder_operation mode)
 494{
 495	int ret = -EINVAL;
 496
 497	if (!(mode < CS_ETM_OPERATION_MAX))
 498		goto out;
 499
 500	d_params->packet_printer = cs_etm__packet_dump;
 501	d_params->operation = mode;
 502	d_params->data = etmq;
 503	d_params->formatted = true;
 504	d_params->fsyncs = false;
 505	d_params->hsyncs = false;
 506	d_params->frame_aligned = true;
 507
 508	ret = 0;
 509out:
 510	return ret;
 511}
 512
 513static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
 514			       struct auxtrace_buffer *buffer)
 515{
 516	int ret;
 517	const char *color = PERF_COLOR_BLUE;
 518	struct cs_etm_decoder_params d_params;
 519	struct cs_etm_trace_params *t_params;
 520	struct cs_etm_decoder *decoder;
 521	size_t buffer_used = 0;
 522
 523	fprintf(stdout, "\n");
 524	color_fprintf(stdout, color,
 525		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
 526		     buffer->size);
 527
 528	/* Use metadata to fill in trace parameters for trace decoder */
 529	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
 530
 531	if (!t_params)
 532		return;
 533
 534	if (cs_etm__init_trace_params(t_params, etm))
 535		goto out_free;
 536
 537	/* Set decoder parameters to simply print the trace packets */
 538	if (cs_etm__init_decoder_params(&d_params, NULL,
 539					CS_ETM_OPERATION_PRINT))
 540		goto out_free;
 541
 542	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
 543
 544	if (!decoder)
 545		goto out_free;
 546	do {
 547		size_t consumed;
 548
 549		ret = cs_etm_decoder__process_data_block(
 550				decoder, buffer->offset,
 551				&((u8 *)buffer->data)[buffer_used],
 552				buffer->size - buffer_used, &consumed);
 553		if (ret)
 554			break;
 555
 556		buffer_used += consumed;
 557	} while (buffer_used < buffer->size);
 558
 559	cs_etm_decoder__free(decoder);
 560
 561out_free:
 562	zfree(&t_params);
 563}
 564
 565static int cs_etm__flush_events(struct perf_session *session,
 566				struct perf_tool *tool)
 567{
 568	int ret;
 569	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
 570						   struct cs_etm_auxtrace,
 571						   auxtrace);
 572	if (dump_trace)
 573		return 0;
 574
 575	if (!tool->ordered_events)
 576		return -EINVAL;
 577
 578	ret = cs_etm__update_queues(etm);
 579
 580	if (ret < 0)
 581		return ret;
 582
 583	if (etm->timeless_decoding)
 584		return cs_etm__process_timeless_queues(etm, -1);
 585
 586	return cs_etm__process_queues(etm);
 587}
 588
 589static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
 590{
 591	int idx;
 592	uintptr_t priv;
 593	struct int_node *inode, *tmp;
 594	struct cs_etm_traceid_queue *tidq;
 595	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
 596
 597	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
 598		priv = (uintptr_t)inode->priv;
 599		idx = priv;
 600
 601		/* Free this traceid_queue from the array */
 602		tidq = etmq->traceid_queues[idx];
 603		thread__zput(tidq->thread);
 604		zfree(&tidq->event_buf);
 605		zfree(&tidq->last_branch);
 606		zfree(&tidq->last_branch_rb);
 607		zfree(&tidq->prev_packet);
 608		zfree(&tidq->packet);
 609		zfree(&tidq);
 610
 611		/*
 612		 * Function intlist__remove() removes the inode from the list
 613		 * and delete the memory associated to it.
 614		 */
 615		intlist__remove(traceid_queues_list, inode);
 616	}
 617
 618	/* Then the RB tree itself */
 619	intlist__delete(traceid_queues_list);
 620	etmq->traceid_queues_list = NULL;
 621
 622	/* finally free the traceid_queues array */
 623	zfree(&etmq->traceid_queues);
 624}
 625
 626static void cs_etm__free_queue(void *priv)
 627{
 628	struct cs_etm_queue *etmq = priv;
 629
 630	if (!etmq)
 631		return;
 632
 633	cs_etm_decoder__free(etmq->decoder);
 634	cs_etm__free_traceid_queues(etmq);
 635	free(etmq);
 636}
 637
 638static void cs_etm__free_events(struct perf_session *session)
 639{
 640	unsigned int i;
 641	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 642						   struct cs_etm_auxtrace,
 643						   auxtrace);
 644	struct auxtrace_queues *queues = &aux->queues;
 645
 646	for (i = 0; i < queues->nr_queues; i++) {
 647		cs_etm__free_queue(queues->queue_array[i].priv);
 648		queues->queue_array[i].priv = NULL;
 649	}
 650
 651	auxtrace_queues__free(queues);
 652}
 653
 654static void cs_etm__free(struct perf_session *session)
 655{
 656	int i;
 657	struct int_node *inode, *tmp;
 658	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 659						   struct cs_etm_auxtrace,
 660						   auxtrace);
 661	cs_etm__free_events(session);
 662	session->auxtrace = NULL;
 663
 664	/* First remove all traceID/metadata nodes for the RB tree */
 665	intlist__for_each_entry_safe(inode, tmp, traceid_list)
 666		intlist__remove(traceid_list, inode);
 667	/* Then the RB tree itself */
 668	intlist__delete(traceid_list);
 669
 670	for (i = 0; i < aux->num_cpu; i++)
 671		zfree(&aux->metadata[i]);
 672
 673	thread__zput(aux->unknown_thread);
 674	zfree(&aux->metadata);
 675	zfree(&aux);
 676}
 677
 678static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
 679				      struct evsel *evsel)
 680{
 681	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
 682						   struct cs_etm_auxtrace,
 683						   auxtrace);
 684
 685	return evsel->core.attr.type == aux->pmu_type;
 686}
 687
 688static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
 689{
 690	struct machine *machine;
 691
 692	machine = etmq->etm->machine;
 693
 694	if (address >= etmq->etm->kernel_start) {
 695		if (machine__is_host(machine))
 696			return PERF_RECORD_MISC_KERNEL;
 697		else
 698			return PERF_RECORD_MISC_GUEST_KERNEL;
 699	} else {
 700		if (machine__is_host(machine))
 701			return PERF_RECORD_MISC_USER;
 702		else if (perf_guest)
 703			return PERF_RECORD_MISC_GUEST_USER;
 704		else
 705			return PERF_RECORD_MISC_HYPERVISOR;
 706	}
 707}
 708
 709static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
 710			      u64 address, size_t size, u8 *buffer)
 711{
 712	u8  cpumode;
 713	u64 offset;
 714	int len;
 715	struct thread *thread;
 716	struct machine *machine;
 717	struct addr_location al;
 718	struct cs_etm_traceid_queue *tidq;
 719
 720	if (!etmq)
 721		return 0;
 722
 723	machine = etmq->etm->machine;
 724	cpumode = cs_etm__cpu_mode(etmq, address);
 725	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
 726	if (!tidq)
 727		return 0;
 728
 729	thread = tidq->thread;
 730	if (!thread) {
 731		if (cpumode != PERF_RECORD_MISC_KERNEL)
 732			return 0;
 733		thread = etmq->etm->unknown_thread;
 734	}
 735
 736	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
 737		return 0;
 738
 739	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
 740	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
 741		return 0;
 742
 743	offset = al.map->map_ip(al.map, address);
 744
 745	map__load(al.map);
 746
 747	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
 748
 749	if (len <= 0)
 750		return 0;
 751
 752	return len;
 753}
 754
 755static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
 756{
 757	struct cs_etm_decoder_params d_params;
 758	struct cs_etm_trace_params  *t_params = NULL;
 759	struct cs_etm_queue *etmq;
 760
 761	etmq = zalloc(sizeof(*etmq));
 762	if (!etmq)
 763		return NULL;
 764
 765	etmq->traceid_queues_list = intlist__new(NULL);
 766	if (!etmq->traceid_queues_list)
 767		goto out_free;
 768
 769	/* Use metadata to fill in trace parameters for trace decoder */
 770	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
 771
 772	if (!t_params)
 773		goto out_free;
 774
 775	if (cs_etm__init_trace_params(t_params, etm))
 776		goto out_free;
 777
 778	/* Set decoder parameters to decode trace packets */
 779	if (cs_etm__init_decoder_params(&d_params, etmq,
 780					CS_ETM_OPERATION_DECODE))
 781		goto out_free;
 782
 783	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
 784
 785	if (!etmq->decoder)
 786		goto out_free;
 787
 788	/*
 789	 * Register a function to handle all memory accesses required by
 790	 * the trace decoder library.
 791	 */
 792	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
 793					      0x0L, ((u64) -1L),
 794					      cs_etm__mem_access))
 795		goto out_free_decoder;
 796
 797	zfree(&t_params);
 798	return etmq;
 799
 800out_free_decoder:
 801	cs_etm_decoder__free(etmq->decoder);
 802out_free:
 803	intlist__delete(etmq->traceid_queues_list);
 804	free(etmq);
 805
 806	return NULL;
 807}
 808
 809static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
 810			       struct auxtrace_queue *queue,
 811			       unsigned int queue_nr)
 812{
 813	int ret = 0;
 814	unsigned int cs_queue_nr;
 815	u8 trace_chan_id;
 816	u64 cs_timestamp;
 817	struct cs_etm_queue *etmq = queue->priv;
 818
 819	if (list_empty(&queue->head) || etmq)
 820		goto out;
 821
 822	etmq = cs_etm__alloc_queue(etm);
 823
 824	if (!etmq) {
 825		ret = -ENOMEM;
 826		goto out;
 827	}
 828
 829	queue->priv = etmq;
 830	etmq->etm = etm;
 831	etmq->queue_nr = queue_nr;
 832	etmq->offset = 0;
 833
 834	if (etm->timeless_decoding)
 835		goto out;
 836
 837	/*
 838	 * We are under a CPU-wide trace scenario.  As such we need to know
 839	 * when the code that generated the traces started to execute so that
 840	 * it can be correlated with execution on other CPUs.  So we get a
 841	 * handle on the beginning of traces and decode until we find a
 842	 * timestamp.  The timestamp is then added to the auxtrace min heap
 843	 * in order to know what nibble (of all the etmqs) to decode first.
 844	 */
 845	while (1) {
 846		/*
 847		 * Fetch an aux_buffer from this etmq.  Bail if no more
 848		 * blocks or an error has been encountered.
 849		 */
 850		ret = cs_etm__get_data_block(etmq);
 851		if (ret <= 0)
 852			goto out;
 853
 854		/*
 855		 * Run decoder on the trace block.  The decoder will stop when
 856		 * encountering a CS timestamp, a full packet queue or the end of
 857		 * trace for that block.
 858		 */
 859		ret = cs_etm__decode_data_block(etmq);
 860		if (ret)
 861			goto out;
 862
 863		/*
 864		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
 865		 * the timestamp calculation for us.
 866		 */
 867		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
 868
 869		/* We found a timestamp, no need to continue. */
 870		if (cs_timestamp)
 871			break;
 872
 873		/*
 874		 * We didn't find a timestamp so empty all the traceid packet
 875		 * queues before looking for another timestamp packet, either
 876		 * in the current data block or a new one.  Packets that were
 877		 * just decoded are useless since no timestamp has been
 878		 * associated with them.  As such simply discard them.
 879		 */
 880		cs_etm__clear_all_packet_queues(etmq);
 881	}
 882
 883	/*
 884	 * We have a timestamp.  Add it to the min heap to reflect when
 885	 * instructions conveyed by the range packets of this traceID queue
 886	 * started to execute.  Once the same has been done for all the traceID
 887	 * queues of each etmq, redenring and decoding can start in
 888	 * chronological order.
 889	 *
 890	 * Note that packets decoded above are still in the traceID's packet
 891	 * queue and will be processed in cs_etm__process_queues().
 892	 */
 893	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
 894	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
 895out:
 896	return ret;
 897}
 898
 899static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
 900{
 901	unsigned int i;
 902	int ret;
 903
 904	if (!etm->kernel_start)
 905		etm->kernel_start = machine__kernel_start(etm->machine);
 906
 907	for (i = 0; i < etm->queues.nr_queues; i++) {
 908		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
 909		if (ret)
 910			return ret;
 911	}
 912
 913	return 0;
 914}
 915
 916static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
 917{
 918	if (etm->queues.new_data) {
 919		etm->queues.new_data = false;
 920		return cs_etm__setup_queues(etm);
 921	}
 922
 923	return 0;
 924}
 925
 926static inline
 927void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
 928				 struct cs_etm_traceid_queue *tidq)
 929{
 930	struct branch_stack *bs_src = tidq->last_branch_rb;
 931	struct branch_stack *bs_dst = tidq->last_branch;
 932	size_t nr = 0;
 933
 934	/*
 935	 * Set the number of records before early exit: ->nr is used to
 936	 * determine how many branches to copy from ->entries.
 937	 */
 938	bs_dst->nr = bs_src->nr;
 939
 940	/*
 941	 * Early exit when there is nothing to copy.
 942	 */
 943	if (!bs_src->nr)
 944		return;
 945
 946	/*
 947	 * As bs_src->entries is a circular buffer, we need to copy from it in
 948	 * two steps.  First, copy the branches from the most recently inserted
 949	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
 950	 */
 951	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
 952	memcpy(&bs_dst->entries[0],
 953	       &bs_src->entries[tidq->last_branch_pos],
 954	       sizeof(struct branch_entry) * nr);
 955
 956	/*
 957	 * If we wrapped around at least once, the branches from the beginning
 958	 * of the bs_src->entries buffer and until the ->last_branch_pos element
 959	 * are older valid branches: copy them over.  The total number of
 960	 * branches copied over will be equal to the number of branches asked by
 961	 * the user in last_branch_sz.
 962	 */
 963	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
 964		memcpy(&bs_dst->entries[nr],
 965		       &bs_src->entries[0],
 966		       sizeof(struct branch_entry) * tidq->last_branch_pos);
 967	}
 968}
 969
 970static inline
 971void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
 972{
 973	tidq->last_branch_pos = 0;
 974	tidq->last_branch_rb->nr = 0;
 975}
 976
 977static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
 978					 u8 trace_chan_id, u64 addr)
 979{
 980	u8 instrBytes[2];
 981
 982	cs_etm__mem_access(etmq, trace_chan_id, addr,
 983			   ARRAY_SIZE(instrBytes), instrBytes);
 984	/*
 985	 * T32 instruction size is indicated by bits[15:11] of the first
 986	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
 987	 * denote a 32-bit instruction.
 988	 */
 989	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
 990}
 991
 992static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
 993{
 994	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
 995	if (packet->sample_type == CS_ETM_DISCONTINUITY)
 996		return 0;
 997
 998	return packet->start_addr;
 999}
1000
1001static inline
1002u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
1003{
1004	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1005	if (packet->sample_type == CS_ETM_DISCONTINUITY)
1006		return 0;
1007
1008	return packet->end_addr - packet->last_instr_size;
1009}
1010
1011static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1012				     u64 trace_chan_id,
1013				     const struct cs_etm_packet *packet,
1014				     u64 offset)
1015{
1016	if (packet->isa == CS_ETM_ISA_T32) {
1017		u64 addr = packet->start_addr;
1018
1019		while (offset) {
1020			addr += cs_etm__t32_instr_size(etmq,
1021						       trace_chan_id, addr);
1022			offset--;
1023		}
1024		return addr;
1025	}
1026
1027	/* Assume a 4 byte instruction size (A32/A64) */
1028	return packet->start_addr + offset * 4;
1029}
1030
1031static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1032					  struct cs_etm_traceid_queue *tidq)
1033{
1034	struct branch_stack *bs = tidq->last_branch_rb;
1035	struct branch_entry *be;
1036
1037	/*
1038	 * The branches are recorded in a circular buffer in reverse
1039	 * chronological order: we start recording from the last element of the
1040	 * buffer down.  After writing the first element of the stack, move the
1041	 * insert position back to the end of the buffer.
1042	 */
1043	if (!tidq->last_branch_pos)
1044		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1045
1046	tidq->last_branch_pos -= 1;
1047
1048	be       = &bs->entries[tidq->last_branch_pos];
1049	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1050	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1051	/* No support for mispredict */
1052	be->flags.mispred = 0;
1053	be->flags.predicted = 1;
1054
1055	/*
1056	 * Increment bs->nr until reaching the number of last branches asked by
1057	 * the user on the command line.
1058	 */
1059	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1060		bs->nr += 1;
1061}
1062
1063static int cs_etm__inject_event(union perf_event *event,
1064			       struct perf_sample *sample, u64 type)
1065{
1066	event->header.size = perf_event__sample_event_size(sample, type, 0);
1067	return perf_event__synthesize_sample(event, type, 0, sample);
1068}
1069
1070
1071static int
1072cs_etm__get_trace(struct cs_etm_queue *etmq)
1073{
1074	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1075	struct auxtrace_buffer *old_buffer = aux_buffer;
1076	struct auxtrace_queue *queue;
1077
1078	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1079
1080	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1081
1082	/* If no more data, drop the previous auxtrace_buffer and return */
1083	if (!aux_buffer) {
1084		if (old_buffer)
1085			auxtrace_buffer__drop_data(old_buffer);
1086		etmq->buf_len = 0;
1087		return 0;
1088	}
1089
1090	etmq->buffer = aux_buffer;
1091
1092	/* If the aux_buffer doesn't have data associated, try to load it */
1093	if (!aux_buffer->data) {
1094		/* get the file desc associated with the perf data file */
1095		int fd = perf_data__fd(etmq->etm->session->data);
1096
1097		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1098		if (!aux_buffer->data)
1099			return -ENOMEM;
1100	}
1101
1102	/* If valid, drop the previous buffer */
1103	if (old_buffer)
1104		auxtrace_buffer__drop_data(old_buffer);
1105
1106	etmq->buf_used = 0;
1107	etmq->buf_len = aux_buffer->size;
1108	etmq->buf = aux_buffer->data;
1109
1110	return etmq->buf_len;
1111}
1112
1113static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1114				    struct cs_etm_traceid_queue *tidq)
1115{
1116	if ((!tidq->thread) && (tidq->tid != -1))
1117		tidq->thread = machine__find_thread(etm->machine, -1,
1118						    tidq->tid);
1119
1120	if (tidq->thread)
1121		tidq->pid = tidq->thread->pid_;
1122}
1123
1124int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1125			 pid_t tid, u8 trace_chan_id)
1126{
1127	int cpu, err = -EINVAL;
1128	struct cs_etm_auxtrace *etm = etmq->etm;
1129	struct cs_etm_traceid_queue *tidq;
1130
1131	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1132	if (!tidq)
1133		return err;
1134
1135	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1136		return err;
1137
1138	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1139	if (err)
1140		return err;
1141
1142	tidq->tid = tid;
1143	thread__zput(tidq->thread);
1144
1145	cs_etm__set_pid_tid_cpu(etm, tidq);
1146	return 0;
1147}
1148
1149bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1150{
1151	return !!etmq->etm->timeless_decoding;
1152}
1153
1154static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1155			      u64 trace_chan_id,
1156			      const struct cs_etm_packet *packet,
1157			      struct perf_sample *sample)
1158{
1159	/*
1160	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1161	 * packet, so directly bail out with 'insn_len' = 0.
1162	 */
1163	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1164		sample->insn_len = 0;
1165		return;
1166	}
1167
1168	/*
1169	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1170	 * cs_etm__t32_instr_size().
1171	 */
1172	if (packet->isa == CS_ETM_ISA_T32)
1173		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1174							  sample->ip);
1175	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1176	else
1177		sample->insn_len = 4;
1178
1179	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1180			   sample->insn_len, (void *)sample->insn);
1181}
1182
1183static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1184					    struct cs_etm_traceid_queue *tidq,
1185					    u64 addr, u64 period)
1186{
1187	int ret = 0;
1188	struct cs_etm_auxtrace *etm = etmq->etm;
1189	union perf_event *event = tidq->event_buf;
1190	struct perf_sample sample = {.ip = 0,};
1191
1192	event->sample.header.type = PERF_RECORD_SAMPLE;
1193	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1194	event->sample.header.size = sizeof(struct perf_event_header);
1195
1196	if (!etm->timeless_decoding)
1197		sample.time = etm->latest_kernel_timestamp;
1198	sample.ip = addr;
1199	sample.pid = tidq->pid;
1200	sample.tid = tidq->tid;
1201	sample.id = etmq->etm->instructions_id;
1202	sample.stream_id = etmq->etm->instructions_id;
1203	sample.period = period;
1204	sample.cpu = tidq->packet->cpu;
1205	sample.flags = tidq->prev_packet->flags;
1206	sample.cpumode = event->sample.header.misc;
1207
1208	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1209
1210	if (etm->synth_opts.last_branch)
 
1211		sample.branch_stack = tidq->last_branch;
 
1212
1213	if (etm->synth_opts.inject) {
1214		ret = cs_etm__inject_event(event, &sample,
1215					   etm->instructions_sample_type);
1216		if (ret)
1217			return ret;
1218	}
1219
1220	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1221
1222	if (ret)
1223		pr_err(
1224			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1225			ret);
1226
 
 
 
1227	return ret;
1228}
1229
1230/*
1231 * The cs etm packet encodes an instruction range between a branch target
1232 * and the next taken branch. Generate sample accordingly.
1233 */
1234static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1235				       struct cs_etm_traceid_queue *tidq)
1236{
1237	int ret = 0;
1238	struct cs_etm_auxtrace *etm = etmq->etm;
1239	struct perf_sample sample = {.ip = 0,};
1240	union perf_event *event = tidq->event_buf;
1241	struct dummy_branch_stack {
1242		u64			nr;
1243		u64			hw_idx;
1244		struct branch_entry	entries;
1245	} dummy_bs;
1246	u64 ip;
1247
1248	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1249
1250	event->sample.header.type = PERF_RECORD_SAMPLE;
1251	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1252	event->sample.header.size = sizeof(struct perf_event_header);
1253
1254	if (!etm->timeless_decoding)
1255		sample.time = etm->latest_kernel_timestamp;
1256	sample.ip = ip;
1257	sample.pid = tidq->pid;
1258	sample.tid = tidq->tid;
1259	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1260	sample.id = etmq->etm->branches_id;
1261	sample.stream_id = etmq->etm->branches_id;
1262	sample.period = 1;
1263	sample.cpu = tidq->packet->cpu;
1264	sample.flags = tidq->prev_packet->flags;
1265	sample.cpumode = event->sample.header.misc;
1266
1267	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1268			  &sample);
1269
1270	/*
1271	 * perf report cannot handle events without a branch stack
1272	 */
1273	if (etm->synth_opts.last_branch) {
1274		dummy_bs = (struct dummy_branch_stack){
1275			.nr = 1,
1276			.hw_idx = -1ULL,
1277			.entries = {
1278				.from = sample.ip,
1279				.to = sample.addr,
1280			},
1281		};
1282		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1283	}
1284
1285	if (etm->synth_opts.inject) {
1286		ret = cs_etm__inject_event(event, &sample,
1287					   etm->branches_sample_type);
1288		if (ret)
1289			return ret;
1290	}
1291
1292	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1293
1294	if (ret)
1295		pr_err(
1296		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1297		ret);
1298
1299	return ret;
1300}
1301
1302struct cs_etm_synth {
1303	struct perf_tool dummy_tool;
1304	struct perf_session *session;
1305};
1306
1307static int cs_etm__event_synth(struct perf_tool *tool,
1308			       union perf_event *event,
1309			       struct perf_sample *sample __maybe_unused,
1310			       struct machine *machine __maybe_unused)
1311{
1312	struct cs_etm_synth *cs_etm_synth =
1313		      container_of(tool, struct cs_etm_synth, dummy_tool);
1314
1315	return perf_session__deliver_synth_event(cs_etm_synth->session,
1316						 event, NULL);
1317}
1318
1319static int cs_etm__synth_event(struct perf_session *session,
1320			       struct perf_event_attr *attr, u64 id)
1321{
1322	struct cs_etm_synth cs_etm_synth;
1323
1324	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1325	cs_etm_synth.session = session;
1326
1327	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1328					   &id, cs_etm__event_synth);
1329}
1330
1331static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1332				struct perf_session *session)
1333{
1334	struct evlist *evlist = session->evlist;
1335	struct evsel *evsel;
1336	struct perf_event_attr attr;
1337	bool found = false;
1338	u64 id;
1339	int err;
1340
1341	evlist__for_each_entry(evlist, evsel) {
1342		if (evsel->core.attr.type == etm->pmu_type) {
1343			found = true;
1344			break;
1345		}
1346	}
1347
1348	if (!found) {
1349		pr_debug("No selected events with CoreSight Trace data\n");
1350		return 0;
1351	}
1352
1353	memset(&attr, 0, sizeof(struct perf_event_attr));
1354	attr.size = sizeof(struct perf_event_attr);
1355	attr.type = PERF_TYPE_HARDWARE;
1356	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1357	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1358			    PERF_SAMPLE_PERIOD;
1359	if (etm->timeless_decoding)
1360		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1361	else
1362		attr.sample_type |= PERF_SAMPLE_TIME;
1363
1364	attr.exclude_user = evsel->core.attr.exclude_user;
1365	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1366	attr.exclude_hv = evsel->core.attr.exclude_hv;
1367	attr.exclude_host = evsel->core.attr.exclude_host;
1368	attr.exclude_guest = evsel->core.attr.exclude_guest;
1369	attr.sample_id_all = evsel->core.attr.sample_id_all;
1370	attr.read_format = evsel->core.attr.read_format;
1371
1372	/* create new id val to be a fixed offset from evsel id */
1373	id = evsel->core.id[0] + 1000000000;
1374
1375	if (!id)
1376		id = 1;
1377
1378	if (etm->synth_opts.branches) {
1379		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1380		attr.sample_period = 1;
1381		attr.sample_type |= PERF_SAMPLE_ADDR;
1382		err = cs_etm__synth_event(session, &attr, id);
1383		if (err)
1384			return err;
1385		etm->sample_branches = true;
1386		etm->branches_sample_type = attr.sample_type;
1387		etm->branches_id = id;
1388		id += 1;
1389		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1390	}
1391
1392	if (etm->synth_opts.last_branch) {
1393		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1394		/*
1395		 * We don't use the hardware index, but the sample generation
1396		 * code uses the new format branch_stack with this field,
1397		 * so the event attributes must indicate that it's present.
1398		 */
1399		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1400	}
1401
1402	if (etm->synth_opts.instructions) {
1403		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1404		attr.sample_period = etm->synth_opts.period;
1405		etm->instructions_sample_period = attr.sample_period;
1406		err = cs_etm__synth_event(session, &attr, id);
1407		if (err)
1408			return err;
1409		etm->sample_instructions = true;
1410		etm->instructions_sample_type = attr.sample_type;
1411		etm->instructions_id = id;
1412		id += 1;
1413	}
1414
1415	return 0;
1416}
1417
1418static int cs_etm__sample(struct cs_etm_queue *etmq,
1419			  struct cs_etm_traceid_queue *tidq)
1420{
1421	struct cs_etm_auxtrace *etm = etmq->etm;
 
1422	int ret;
1423	u8 trace_chan_id = tidq->trace_chan_id;
1424	u64 instrs_prev;
1425
1426	/* Get instructions remainder from previous packet */
1427	instrs_prev = tidq->period_instructions;
1428
1429	tidq->period_instructions += tidq->packet->instr_count;
1430
1431	/*
1432	 * Record a branch when the last instruction in
1433	 * PREV_PACKET is a branch.
1434	 */
1435	if (etm->synth_opts.last_branch &&
1436	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1437	    tidq->prev_packet->last_instr_taken_branch)
1438		cs_etm__update_last_branch_rb(etmq, tidq);
1439
1440	if (etm->sample_instructions &&
1441	    tidq->period_instructions >= etm->instructions_sample_period) {
1442		/*
1443		 * Emit instruction sample periodically
1444		 * TODO: allow period to be defined in cycles and clock time
1445		 */
1446
1447		/*
1448		 * Below diagram demonstrates the instruction samples
1449		 * generation flows:
1450		 *
1451		 *    Instrs     Instrs       Instrs       Instrs
1452		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1453		 *    |            |            |            |
1454		 *    V            V            V            V
1455		 *   --------------------------------------------------
1456		 *            ^                                  ^
1457		 *            |                                  |
1458		 *         Period                             Period
1459		 *    instructions(Pi)                   instructions(Pi')
1460		 *
1461		 *            |                                  |
1462		 *            \---------------- -----------------/
1463		 *                             V
1464		 *                 tidq->packet->instr_count
1465		 *
1466		 * Instrs Sample(n...) are the synthesised samples occurring
1467		 * every etm->instructions_sample_period instructions - as
1468		 * defined on the perf command line.  Sample(n) is being the
1469		 * last sample before the current etm packet, n+1 to n+3
1470		 * samples are generated from the current etm packet.
1471		 *
1472		 * tidq->packet->instr_count represents the number of
1473		 * instructions in the current etm packet.
1474		 *
1475		 * Period instructions (Pi) contains the the number of
1476		 * instructions executed after the sample point(n) from the
1477		 * previous etm packet.  This will always be less than
1478		 * etm->instructions_sample_period.
1479		 *
1480		 * When generate new samples, it combines with two parts
1481		 * instructions, one is the tail of the old packet and another
1482		 * is the head of the new coming packet, to generate
1483		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1484		 * instructions with sample period.  After sample(n+3), the rest
1485		 * instructions will be used by later packet and it is assigned
1486		 * to tidq->period_instructions for next round calculation.
1487		 */
1488
1489		/*
1490		 * Get the initial offset into the current packet instructions;
1491		 * entry conditions ensure that instrs_prev is less than
1492		 * etm->instructions_sample_period.
1493		 */
1494		u64 offset = etm->instructions_sample_period - instrs_prev;
1495		u64 addr;
 
1496
1497		/* Prepare last branches for instruction sample */
1498		if (etm->synth_opts.last_branch)
1499			cs_etm__copy_last_branch_rb(etmq, tidq);
1500
1501		while (tidq->period_instructions >=
1502				etm->instructions_sample_period) {
1503			/*
1504			 * Calculate the address of the sampled instruction (-1
1505			 * as sample is reported as though instruction has just
1506			 * been executed, but PC has not advanced to next
1507			 * instruction)
1508			 */
1509			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1510						  tidq->packet, offset - 1);
1511			ret = cs_etm__synth_instruction_sample(
1512				etmq, tidq, addr,
1513				etm->instructions_sample_period);
1514			if (ret)
1515				return ret;
1516
1517			offset += etm->instructions_sample_period;
1518			tidq->period_instructions -=
1519				etm->instructions_sample_period;
1520		}
1521	}
1522
1523	if (etm->sample_branches) {
1524		bool generate_sample = false;
1525
1526		/* Generate sample for tracing on packet */
1527		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1528			generate_sample = true;
1529
1530		/* Generate sample for branch taken packet */
1531		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1532		    tidq->prev_packet->last_instr_taken_branch)
1533			generate_sample = true;
1534
1535		if (generate_sample) {
1536			ret = cs_etm__synth_branch_sample(etmq, tidq);
1537			if (ret)
1538				return ret;
1539		}
1540	}
1541
1542	cs_etm__packet_swap(etm, tidq);
 
 
 
 
 
 
 
 
1543
1544	return 0;
1545}
1546
1547static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1548{
1549	/*
1550	 * When the exception packet is inserted, whether the last instruction
1551	 * in previous range packet is taken branch or not, we need to force
1552	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1553	 * to generate branch sample for the instruction range before the
1554	 * exception is trapped to kernel or before the exception returning.
1555	 *
1556	 * The exception packet includes the dummy address values, so don't
1557	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1558	 * for generating instruction and branch samples.
1559	 */
1560	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1561		tidq->prev_packet->last_instr_taken_branch = true;
1562
1563	return 0;
1564}
1565
1566static int cs_etm__flush(struct cs_etm_queue *etmq,
1567			 struct cs_etm_traceid_queue *tidq)
1568{
1569	int err = 0;
1570	struct cs_etm_auxtrace *etm = etmq->etm;
 
1571
1572	/* Handle start tracing packet */
1573	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1574		goto swap_packet;
1575
1576	if (etmq->etm->synth_opts.last_branch &&
1577	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1578		u64 addr;
1579
1580		/* Prepare last branches for instruction sample */
1581		cs_etm__copy_last_branch_rb(etmq, tidq);
1582
1583		/*
1584		 * Generate a last branch event for the branches left in the
1585		 * circular buffer at the end of the trace.
1586		 *
1587		 * Use the address of the end of the last reported execution
1588		 * range
1589		 */
1590		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1591
1592		err = cs_etm__synth_instruction_sample(
1593			etmq, tidq, addr,
1594			tidq->period_instructions);
1595		if (err)
1596			return err;
1597
1598		tidq->period_instructions = 0;
1599
1600	}
1601
1602	if (etm->sample_branches &&
1603	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1604		err = cs_etm__synth_branch_sample(etmq, tidq);
1605		if (err)
1606			return err;
1607	}
1608
1609swap_packet:
1610	cs_etm__packet_swap(etm, tidq);
1611
1612	/* Reset last branches after flush the trace */
1613	if (etm->synth_opts.last_branch)
1614		cs_etm__reset_last_branch_rb(tidq);
 
 
 
 
1615
1616	return err;
1617}
1618
1619static int cs_etm__end_block(struct cs_etm_queue *etmq,
1620			     struct cs_etm_traceid_queue *tidq)
1621{
1622	int err;
1623
1624	/*
1625	 * It has no new packet coming and 'etmq->packet' contains the stale
1626	 * packet which was set at the previous time with packets swapping;
1627	 * so skip to generate branch sample to avoid stale packet.
1628	 *
1629	 * For this case only flush branch stack and generate a last branch
1630	 * event for the branches left in the circular buffer at the end of
1631	 * the trace.
1632	 */
1633	if (etmq->etm->synth_opts.last_branch &&
1634	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1635		u64 addr;
1636
1637		/* Prepare last branches for instruction sample */
1638		cs_etm__copy_last_branch_rb(etmq, tidq);
1639
1640		/*
1641		 * Use the address of the end of the last reported execution
1642		 * range.
1643		 */
1644		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1645
1646		err = cs_etm__synth_instruction_sample(
1647			etmq, tidq, addr,
1648			tidq->period_instructions);
1649		if (err)
1650			return err;
1651
1652		tidq->period_instructions = 0;
1653	}
1654
1655	return 0;
1656}
1657/*
1658 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1659 *			   if need be.
1660 * Returns:	< 0	if error
1661 *		= 0	if no more auxtrace_buffer to read
1662 *		> 0	if the current buffer isn't empty yet
1663 */
1664static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1665{
1666	int ret;
1667
1668	if (!etmq->buf_len) {
1669		ret = cs_etm__get_trace(etmq);
1670		if (ret <= 0)
1671			return ret;
1672		/*
1673		 * We cannot assume consecutive blocks in the data file
1674		 * are contiguous, reset the decoder to force re-sync.
1675		 */
1676		ret = cs_etm_decoder__reset(etmq->decoder);
1677		if (ret)
1678			return ret;
1679	}
1680
1681	return etmq->buf_len;
1682}
1683
1684static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1685				 struct cs_etm_packet *packet,
1686				 u64 end_addr)
1687{
1688	/* Initialise to keep compiler happy */
1689	u16 instr16 = 0;
1690	u32 instr32 = 0;
1691	u64 addr;
1692
1693	switch (packet->isa) {
1694	case CS_ETM_ISA_T32:
1695		/*
1696		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1697		 *
1698		 *  b'15         b'8
1699		 * +-----------------+--------+
1700		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1701		 * +-----------------+--------+
1702		 *
1703		 * According to the specification, it only defines SVC for T32
1704		 * with 16 bits instruction and has no definition for 32bits;
1705		 * so below only read 2 bytes as instruction size for T32.
1706		 */
1707		addr = end_addr - 2;
1708		cs_etm__mem_access(etmq, trace_chan_id, addr,
1709				   sizeof(instr16), (u8 *)&instr16);
1710		if ((instr16 & 0xFF00) == 0xDF00)
1711			return true;
1712
1713		break;
1714	case CS_ETM_ISA_A32:
1715		/*
1716		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1717		 *
1718		 *  b'31 b'28 b'27 b'24
1719		 * +---------+---------+-------------------------+
1720		 * |  !1111  | 1 1 1 1 |        imm24            |
1721		 * +---------+---------+-------------------------+
1722		 */
1723		addr = end_addr - 4;
1724		cs_etm__mem_access(etmq, trace_chan_id, addr,
1725				   sizeof(instr32), (u8 *)&instr32);
1726		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1727		    (instr32 & 0xF0000000) != 0xF0000000)
1728			return true;
1729
1730		break;
1731	case CS_ETM_ISA_A64:
1732		/*
1733		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1734		 *
1735		 *  b'31               b'21           b'4     b'0
1736		 * +-----------------------+---------+-----------+
1737		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1738		 * +-----------------------+---------+-----------+
1739		 */
1740		addr = end_addr - 4;
1741		cs_etm__mem_access(etmq, trace_chan_id, addr,
1742				   sizeof(instr32), (u8 *)&instr32);
1743		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1744			return true;
1745
1746		break;
1747	case CS_ETM_ISA_UNKNOWN:
1748	default:
1749		break;
1750	}
1751
1752	return false;
1753}
1754
1755static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1756			       struct cs_etm_traceid_queue *tidq, u64 magic)
1757{
1758	u8 trace_chan_id = tidq->trace_chan_id;
1759	struct cs_etm_packet *packet = tidq->packet;
1760	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1761
1762	if (magic == __perf_cs_etmv3_magic)
1763		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1764			return true;
1765
1766	/*
1767	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1768	 * HVC cases; need to check if it's SVC instruction based on
1769	 * packet address.
1770	 */
1771	if (magic == __perf_cs_etmv4_magic) {
1772		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1773		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1774					 prev_packet->end_addr))
1775			return true;
1776	}
1777
1778	return false;
1779}
1780
1781static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1782				       u64 magic)
1783{
1784	struct cs_etm_packet *packet = tidq->packet;
1785
1786	if (magic == __perf_cs_etmv3_magic)
1787		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1788		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1789		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1790		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1791		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1792			return true;
1793
1794	if (magic == __perf_cs_etmv4_magic)
1795		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1796		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1797		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1798		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1799		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1800		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1801		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1802			return true;
1803
1804	return false;
1805}
1806
1807static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1808				      struct cs_etm_traceid_queue *tidq,
1809				      u64 magic)
1810{
1811	u8 trace_chan_id = tidq->trace_chan_id;
1812	struct cs_etm_packet *packet = tidq->packet;
1813	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1814
1815	if (magic == __perf_cs_etmv3_magic)
1816		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1817		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1818		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1819		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1820		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1821		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1822		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1823			return true;
1824
1825	if (magic == __perf_cs_etmv4_magic) {
1826		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1827		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1828		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1829		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1830			return true;
1831
1832		/*
1833		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1834		 * (SMC, HVC) are taken as sync exceptions.
1835		 */
1836		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1837		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1838					  prev_packet->end_addr))
1839			return true;
1840
1841		/*
1842		 * ETMv4 has 5 bits for exception number; if the numbers
1843		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1844		 * they are implementation defined exceptions.
1845		 *
1846		 * For this case, simply take it as sync exception.
1847		 */
1848		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1849		    packet->exception_number <= CS_ETMV4_EXC_END)
1850			return true;
1851	}
1852
1853	return false;
1854}
1855
1856static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1857				    struct cs_etm_traceid_queue *tidq)
1858{
1859	struct cs_etm_packet *packet = tidq->packet;
1860	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1861	u8 trace_chan_id = tidq->trace_chan_id;
1862	u64 magic;
1863	int ret;
1864
1865	switch (packet->sample_type) {
1866	case CS_ETM_RANGE:
1867		/*
1868		 * Immediate branch instruction without neither link nor
1869		 * return flag, it's normal branch instruction within
1870		 * the function.
1871		 */
1872		if (packet->last_instr_type == OCSD_INSTR_BR &&
1873		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1874			packet->flags = PERF_IP_FLAG_BRANCH;
1875
1876			if (packet->last_instr_cond)
1877				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1878		}
1879
1880		/*
1881		 * Immediate branch instruction with link (e.g. BL), this is
1882		 * branch instruction for function call.
1883		 */
1884		if (packet->last_instr_type == OCSD_INSTR_BR &&
1885		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1886			packet->flags = PERF_IP_FLAG_BRANCH |
1887					PERF_IP_FLAG_CALL;
1888
1889		/*
1890		 * Indirect branch instruction with link (e.g. BLR), this is
1891		 * branch instruction for function call.
1892		 */
1893		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1894		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1895			packet->flags = PERF_IP_FLAG_BRANCH |
1896					PERF_IP_FLAG_CALL;
1897
1898		/*
1899		 * Indirect branch instruction with subtype of
1900		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1901		 * function return for A32/T32.
1902		 */
1903		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1904		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1905			packet->flags = PERF_IP_FLAG_BRANCH |
1906					PERF_IP_FLAG_RETURN;
1907
1908		/*
1909		 * Indirect branch instruction without link (e.g. BR), usually
1910		 * this is used for function return, especially for functions
1911		 * within dynamic link lib.
1912		 */
1913		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1914		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1915			packet->flags = PERF_IP_FLAG_BRANCH |
1916					PERF_IP_FLAG_RETURN;
1917
1918		/* Return instruction for function return. */
1919		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1920		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1921			packet->flags = PERF_IP_FLAG_BRANCH |
1922					PERF_IP_FLAG_RETURN;
1923
1924		/*
1925		 * Decoder might insert a discontinuity in the middle of
1926		 * instruction packets, fixup prev_packet with flag
1927		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1928		 */
1929		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1930			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1931					      PERF_IP_FLAG_TRACE_BEGIN;
1932
1933		/*
1934		 * If the previous packet is an exception return packet
1935		 * and the return address just follows SVC instruction,
1936		 * it needs to calibrate the previous packet sample flags
1937		 * as PERF_IP_FLAG_SYSCALLRET.
1938		 */
1939		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1940					   PERF_IP_FLAG_RETURN |
1941					   PERF_IP_FLAG_INTERRUPT) &&
1942		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1943					 packet, packet->start_addr))
1944			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1945					     PERF_IP_FLAG_RETURN |
1946					     PERF_IP_FLAG_SYSCALLRET;
1947		break;
1948	case CS_ETM_DISCONTINUITY:
1949		/*
1950		 * The trace is discontinuous, if the previous packet is
1951		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1952		 * for previous packet.
1953		 */
1954		if (prev_packet->sample_type == CS_ETM_RANGE)
1955			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1956					      PERF_IP_FLAG_TRACE_END;
1957		break;
1958	case CS_ETM_EXCEPTION:
1959		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1960		if (ret)
1961			return ret;
1962
1963		/* The exception is for system call. */
1964		if (cs_etm__is_syscall(etmq, tidq, magic))
1965			packet->flags = PERF_IP_FLAG_BRANCH |
1966					PERF_IP_FLAG_CALL |
1967					PERF_IP_FLAG_SYSCALLRET;
1968		/*
1969		 * The exceptions are triggered by external signals from bus,
1970		 * interrupt controller, debug module, PE reset or halt.
1971		 */
1972		else if (cs_etm__is_async_exception(tidq, magic))
1973			packet->flags = PERF_IP_FLAG_BRANCH |
1974					PERF_IP_FLAG_CALL |
1975					PERF_IP_FLAG_ASYNC |
1976					PERF_IP_FLAG_INTERRUPT;
1977		/*
1978		 * Otherwise, exception is caused by trap, instruction &
1979		 * data fault, or alignment errors.
1980		 */
1981		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1982			packet->flags = PERF_IP_FLAG_BRANCH |
1983					PERF_IP_FLAG_CALL |
1984					PERF_IP_FLAG_INTERRUPT;
1985
1986		/*
1987		 * When the exception packet is inserted, since exception
1988		 * packet is not used standalone for generating samples
1989		 * and it's affiliation to the previous instruction range
1990		 * packet; so set previous range packet flags to tell perf
1991		 * it is an exception taken branch.
1992		 */
1993		if (prev_packet->sample_type == CS_ETM_RANGE)
1994			prev_packet->flags = packet->flags;
1995		break;
1996	case CS_ETM_EXCEPTION_RET:
1997		/*
1998		 * When the exception return packet is inserted, since
1999		 * exception return packet is not used standalone for
2000		 * generating samples and it's affiliation to the previous
2001		 * instruction range packet; so set previous range packet
2002		 * flags to tell perf it is an exception return branch.
2003		 *
2004		 * The exception return can be for either system call or
2005		 * other exception types; unfortunately the packet doesn't
2006		 * contain exception type related info so we cannot decide
2007		 * the exception type purely based on exception return packet.
2008		 * If we record the exception number from exception packet and
2009		 * reuse it for exception return packet, this is not reliable
2010		 * due the trace can be discontinuity or the interrupt can
2011		 * be nested, thus the recorded exception number cannot be
2012		 * used for exception return packet for these two cases.
2013		 *
2014		 * For exception return packet, we only need to distinguish the
2015		 * packet is for system call or for other types.  Thus the
2016		 * decision can be deferred when receive the next packet which
2017		 * contains the return address, based on the return address we
2018		 * can read out the previous instruction and check if it's a
2019		 * system call instruction and then calibrate the sample flag
2020		 * as needed.
2021		 */
2022		if (prev_packet->sample_type == CS_ETM_RANGE)
2023			prev_packet->flags = PERF_IP_FLAG_BRANCH |
2024					     PERF_IP_FLAG_RETURN |
2025					     PERF_IP_FLAG_INTERRUPT;
2026		break;
2027	case CS_ETM_EMPTY:
2028	default:
2029		break;
2030	}
2031
2032	return 0;
2033}
2034
2035static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2036{
2037	int ret = 0;
2038	size_t processed = 0;
2039
2040	/*
2041	 * Packets are decoded and added to the decoder's packet queue
2042	 * until the decoder packet processing callback has requested that
2043	 * processing stops or there is nothing left in the buffer.  Normal
2044	 * operations that stop processing are a timestamp packet or a full
2045	 * decoder buffer queue.
2046	 */
2047	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2048						 etmq->offset,
2049						 &etmq->buf[etmq->buf_used],
2050						 etmq->buf_len,
2051						 &processed);
2052	if (ret)
2053		goto out;
2054
2055	etmq->offset += processed;
2056	etmq->buf_used += processed;
2057	etmq->buf_len -= processed;
2058
2059out:
2060	return ret;
2061}
2062
2063static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2064					 struct cs_etm_traceid_queue *tidq)
2065{
2066	int ret;
2067	struct cs_etm_packet_queue *packet_queue;
2068
2069	packet_queue = &tidq->packet_queue;
2070
2071	/* Process each packet in this chunk */
2072	while (1) {
2073		ret = cs_etm_decoder__get_packet(packet_queue,
2074						 tidq->packet);
2075		if (ret <= 0)
2076			/*
2077			 * Stop processing this chunk on
2078			 * end of data or error
2079			 */
2080			break;
2081
2082		/*
2083		 * Since packet addresses are swapped in packet
2084		 * handling within below switch() statements,
2085		 * thus setting sample flags must be called
2086		 * prior to switch() statement to use address
2087		 * information before packets swapping.
2088		 */
2089		ret = cs_etm__set_sample_flags(etmq, tidq);
2090		if (ret < 0)
2091			break;
2092
2093		switch (tidq->packet->sample_type) {
2094		case CS_ETM_RANGE:
2095			/*
2096			 * If the packet contains an instruction
2097			 * range, generate instruction sequence
2098			 * events.
2099			 */
2100			cs_etm__sample(etmq, tidq);
2101			break;
2102		case CS_ETM_EXCEPTION:
2103		case CS_ETM_EXCEPTION_RET:
2104			/*
2105			 * If the exception packet is coming,
2106			 * make sure the previous instruction
2107			 * range packet to be handled properly.
2108			 */
2109			cs_etm__exception(tidq);
2110			break;
2111		case CS_ETM_DISCONTINUITY:
2112			/*
2113			 * Discontinuity in trace, flush
2114			 * previous branch stack
2115			 */
2116			cs_etm__flush(etmq, tidq);
2117			break;
2118		case CS_ETM_EMPTY:
2119			/*
2120			 * Should not receive empty packet,
2121			 * report error.
2122			 */
2123			pr_err("CS ETM Trace: empty packet\n");
2124			return -EINVAL;
2125		default:
2126			break;
2127		}
2128	}
2129
2130	return ret;
2131}
2132
2133static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2134{
2135	int idx;
2136	struct int_node *inode;
2137	struct cs_etm_traceid_queue *tidq;
2138	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2139
2140	intlist__for_each_entry(inode, traceid_queues_list) {
2141		idx = (int)(intptr_t)inode->priv;
2142		tidq = etmq->traceid_queues[idx];
2143
2144		/* Ignore return value */
2145		cs_etm__process_traceid_queue(etmq, tidq);
2146
2147		/*
2148		 * Generate an instruction sample with the remaining
2149		 * branchstack entries.
2150		 */
2151		cs_etm__flush(etmq, tidq);
2152	}
2153}
2154
2155static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2156{
2157	int err = 0;
2158	struct cs_etm_traceid_queue *tidq;
2159
2160	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2161	if (!tidq)
2162		return -EINVAL;
2163
2164	/* Go through each buffer in the queue and decode them one by one */
2165	while (1) {
2166		err = cs_etm__get_data_block(etmq);
2167		if (err <= 0)
2168			return err;
2169
2170		/* Run trace decoder until buffer consumed or end of trace */
2171		do {
2172			err = cs_etm__decode_data_block(etmq);
2173			if (err)
2174				return err;
2175
2176			/*
2177			 * Process each packet in this chunk, nothing to do if
2178			 * an error occurs other than hoping the next one will
2179			 * be better.
2180			 */
2181			err = cs_etm__process_traceid_queue(etmq, tidq);
2182
2183		} while (etmq->buf_len);
2184
2185		if (err == 0)
2186			/* Flush any remaining branch stack entries */
2187			err = cs_etm__end_block(etmq, tidq);
2188	}
2189
2190	return err;
2191}
2192
2193static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2194					   pid_t tid)
2195{
2196	unsigned int i;
2197	struct auxtrace_queues *queues = &etm->queues;
2198
2199	for (i = 0; i < queues->nr_queues; i++) {
2200		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2201		struct cs_etm_queue *etmq = queue->priv;
2202		struct cs_etm_traceid_queue *tidq;
2203
2204		if (!etmq)
2205			continue;
2206
2207		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2208						CS_ETM_PER_THREAD_TRACEID);
2209
2210		if (!tidq)
2211			continue;
2212
2213		if ((tid == -1) || (tidq->tid == tid)) {
2214			cs_etm__set_pid_tid_cpu(etm, tidq);
2215			cs_etm__run_decoder(etmq);
2216		}
2217	}
2218
2219	return 0;
2220}
2221
2222static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2223{
2224	int ret = 0;
2225	unsigned int cs_queue_nr, queue_nr;
2226	u8 trace_chan_id;
2227	u64 cs_timestamp;
2228	struct auxtrace_queue *queue;
2229	struct cs_etm_queue *etmq;
2230	struct cs_etm_traceid_queue *tidq;
2231
2232	while (1) {
2233		if (!etm->heap.heap_cnt)
2234			goto out;
2235
2236		/* Take the entry at the top of the min heap */
2237		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2238		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2239		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2240		queue = &etm->queues.queue_array[queue_nr];
2241		etmq = queue->priv;
2242
2243		/*
2244		 * Remove the top entry from the heap since we are about
2245		 * to process it.
2246		 */
2247		auxtrace_heap__pop(&etm->heap);
2248
2249		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2250		if (!tidq) {
2251			/*
2252			 * No traceID queue has been allocated for this traceID,
2253			 * which means something somewhere went very wrong.  No
2254			 * other choice than simply exit.
2255			 */
2256			ret = -EINVAL;
2257			goto out;
2258		}
2259
2260		/*
2261		 * Packets associated with this timestamp are already in
2262		 * the etmq's traceID queue, so process them.
2263		 */
2264		ret = cs_etm__process_traceid_queue(etmq, tidq);
2265		if (ret < 0)
2266			goto out;
2267
2268		/*
2269		 * Packets for this timestamp have been processed, time to
2270		 * move on to the next timestamp, fetching a new auxtrace_buffer
2271		 * if need be.
2272		 */
2273refetch:
2274		ret = cs_etm__get_data_block(etmq);
2275		if (ret < 0)
2276			goto out;
2277
2278		/*
2279		 * No more auxtrace_buffers to process in this etmq, simply
2280		 * move on to another entry in the auxtrace_heap.
2281		 */
2282		if (!ret)
2283			continue;
2284
2285		ret = cs_etm__decode_data_block(etmq);
2286		if (ret)
2287			goto out;
2288
2289		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2290
2291		if (!cs_timestamp) {
2292			/*
2293			 * Function cs_etm__decode_data_block() returns when
2294			 * there is no more traces to decode in the current
2295			 * auxtrace_buffer OR when a timestamp has been
2296			 * encountered on any of the traceID queues.  Since we
2297			 * did not get a timestamp, there is no more traces to
2298			 * process in this auxtrace_buffer.  As such empty and
2299			 * flush all traceID queues.
2300			 */
2301			cs_etm__clear_all_traceid_queues(etmq);
2302
2303			/* Fetch another auxtrace_buffer for this etmq */
2304			goto refetch;
2305		}
2306
2307		/*
2308		 * Add to the min heap the timestamp for packets that have
2309		 * just been decoded.  They will be processed and synthesized
2310		 * during the next call to cs_etm__process_traceid_queue() for
2311		 * this queue/traceID.
2312		 */
2313		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2314		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2315	}
2316
2317out:
2318	return ret;
2319}
2320
2321static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2322					union perf_event *event)
2323{
2324	struct thread *th;
2325
2326	if (etm->timeless_decoding)
2327		return 0;
2328
2329	/*
2330	 * Add the tid/pid to the log so that we can get a match when
2331	 * we get a contextID from the decoder.
2332	 */
2333	th = machine__findnew_thread(etm->machine,
2334				     event->itrace_start.pid,
2335				     event->itrace_start.tid);
2336	if (!th)
2337		return -ENOMEM;
2338
2339	thread__put(th);
2340
2341	return 0;
2342}
2343
2344static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2345					   union perf_event *event)
2346{
2347	struct thread *th;
2348	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2349
2350	/*
2351	 * Context switch in per-thread mode are irrelevant since perf
2352	 * will start/stop tracing as the process is scheduled.
2353	 */
2354	if (etm->timeless_decoding)
2355		return 0;
2356
2357	/*
2358	 * SWITCH_IN events carry the next process to be switched out while
2359	 * SWITCH_OUT events carry the process to be switched in.  As such
2360	 * we don't care about IN events.
2361	 */
2362	if (!out)
2363		return 0;
2364
2365	/*
2366	 * Add the tid/pid to the log so that we can get a match when
2367	 * we get a contextID from the decoder.
2368	 */
2369	th = machine__findnew_thread(etm->machine,
2370				     event->context_switch.next_prev_pid,
2371				     event->context_switch.next_prev_tid);
2372	if (!th)
2373		return -ENOMEM;
2374
2375	thread__put(th);
2376
2377	return 0;
2378}
2379
2380static int cs_etm__process_event(struct perf_session *session,
2381				 union perf_event *event,
2382				 struct perf_sample *sample,
2383				 struct perf_tool *tool)
2384{
2385	int err = 0;
2386	u64 sample_kernel_timestamp;
2387	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2388						   struct cs_etm_auxtrace,
2389						   auxtrace);
2390
2391	if (dump_trace)
2392		return 0;
2393
2394	if (!tool->ordered_events) {
2395		pr_err("CoreSight ETM Trace requires ordered events\n");
2396		return -EINVAL;
2397	}
2398
2399	if (sample->time && (sample->time != (u64) -1))
2400		sample_kernel_timestamp = sample->time;
2401	else
2402		sample_kernel_timestamp = 0;
2403
2404	if (sample_kernel_timestamp || etm->timeless_decoding) {
2405		err = cs_etm__update_queues(etm);
2406		if (err)
2407			return err;
2408	}
2409
2410	/*
2411	 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2412	 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2413	 * ETM_OPT_CTXTID is not enabled.
2414	 */
2415	if (etm->timeless_decoding &&
2416	    event->header.type == PERF_RECORD_EXIT)
2417		return cs_etm__process_timeless_queues(etm,
2418						       event->fork.tid);
2419
2420	if (event->header.type == PERF_RECORD_ITRACE_START)
2421		return cs_etm__process_itrace_start(etm, event);
2422	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2423		return cs_etm__process_switch_cpu_wide(etm, event);
2424
2425	if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2426		/*
2427		 * Record the latest kernel timestamp available in the header
2428		 * for samples so that synthesised samples occur from this point
2429		 * onwards.
2430		 */
2431		etm->latest_kernel_timestamp = sample_kernel_timestamp;
2432	}
2433
2434	return 0;
2435}
2436
2437static void dump_queued_data(struct cs_etm_auxtrace *etm,
2438			     struct perf_record_auxtrace *event)
2439{
2440	struct auxtrace_buffer *buf;
2441	unsigned int i;
2442	/*
2443	 * Find all buffers with same reference in the queues and dump them.
2444	 * This is because the queues can contain multiple entries of the same
2445	 * buffer that were split on aux records.
2446	 */
2447	for (i = 0; i < etm->queues.nr_queues; ++i)
2448		list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2449			if (buf->reference == event->reference)
2450				cs_etm__dump_event(etm, buf);
2451}
2452
2453static int cs_etm__process_auxtrace_event(struct perf_session *session,
2454					  union perf_event *event,
2455					  struct perf_tool *tool __maybe_unused)
2456{
2457	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2458						   struct cs_etm_auxtrace,
2459						   auxtrace);
2460	if (!etm->data_queued) {
2461		struct auxtrace_buffer *buffer;
2462		off_t  data_offset;
2463		int fd = perf_data__fd(session->data);
2464		bool is_pipe = perf_data__is_pipe(session->data);
2465		int err;
2466
2467		if (is_pipe)
2468			data_offset = 0;
2469		else {
2470			data_offset = lseek(fd, 0, SEEK_CUR);
2471			if (data_offset == -1)
2472				return -errno;
2473		}
2474
2475		err = auxtrace_queues__add_event(&etm->queues, session,
2476						 event, data_offset, &buffer);
2477		if (err)
2478			return err;
2479
2480		if (dump_trace)
2481			if (auxtrace_buffer__get_data(buffer, fd)) {
2482				cs_etm__dump_event(etm, buffer);
2483				auxtrace_buffer__put_data(buffer);
2484			}
2485	} else if (dump_trace)
2486		dump_queued_data(etm, &event->auxtrace);
2487
2488	return 0;
2489}
2490
2491static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2492{
2493	struct evsel *evsel;
2494	struct evlist *evlist = etm->session->evlist;
2495	bool timeless_decoding = true;
2496
2497	/* Override timeless mode with user input from --itrace=Z */
2498	if (etm->synth_opts.timeless_decoding)
2499		return true;
2500
2501	/*
2502	 * Circle through the list of event and complain if we find one
2503	 * with the time bit set.
2504	 */
2505	evlist__for_each_entry(evlist, evsel) {
2506		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2507			timeless_decoding = false;
2508	}
2509
2510	return timeless_decoding;
2511}
2512
2513static const char * const cs_etm_global_header_fmts[] = {
2514	[CS_HEADER_VERSION]	= "	Header version		       %llx\n",
2515	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2516	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2517};
2518
2519static const char * const cs_etm_priv_fmts[] = {
2520	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2521	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2522	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2523	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2524	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2525	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2526	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2527};
2528
2529static const char * const cs_etmv4_priv_fmts[] = {
2530	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2531	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2532	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2533	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2534	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2535	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2536	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2537	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2538	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2539	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2540};
2541
2542static const char * const param_unk_fmt =
2543	"	Unknown parameter [%d]	       %llx\n";
2544static const char * const magic_unk_fmt =
2545	"	Magic number Unknown	       %llx\n";
2546
2547static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2548{
2549	int i = *offset, j, nr_params = 0, fmt_offset;
2550	__u64 magic;
2551
2552	/* check magic value */
2553	magic = val[i + CS_ETM_MAGIC];
2554	if ((magic != __perf_cs_etmv3_magic) &&
2555	    (magic != __perf_cs_etmv4_magic)) {
2556		/* failure - note bad magic value */
2557		fprintf(stdout, magic_unk_fmt, magic);
2558		return -EINVAL;
2559	}
2560
2561	/* print common header block */
2562	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2563	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2564
2565	if (magic == __perf_cs_etmv3_magic) {
2566		nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2567		fmt_offset = CS_ETM_ETMCR;
2568		/* after common block, offset format index past NR_PARAMS */
2569		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2570			fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2571	} else if (magic == __perf_cs_etmv4_magic) {
2572		nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2573		fmt_offset = CS_ETMV4_TRCCONFIGR;
2574		/* after common block, offset format index past NR_PARAMS */
2575		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2576			fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2577	}
2578	*offset = i;
2579	return 0;
2580}
2581
2582static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2583{
2584	int i = *offset, j, total_params = 0;
2585	__u64 magic;
2586
2587	magic = val[i + CS_ETM_MAGIC];
2588	/* total params to print is NR_PARAMS + common block size for v1 */
2589	total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2590
2591	if (magic == __perf_cs_etmv3_magic) {
2592		for (j = 0; j < total_params; j++, i++) {
2593			/* if newer record - could be excess params */
2594			if (j >= CS_ETM_PRIV_MAX)
2595				fprintf(stdout, param_unk_fmt, j, val[i]);
2596			else
2597				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2598		}
2599	} else if (magic == __perf_cs_etmv4_magic) {
2600		for (j = 0; j < total_params; j++, i++) {
2601			/* if newer record - could be excess params */
2602			if (j >= CS_ETMV4_PRIV_MAX)
2603				fprintf(stdout, param_unk_fmt, j, val[i]);
2604			else
2605				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2606		}
2607	} else {
2608		/* failure - note bad magic value and error out */
2609		fprintf(stdout, magic_unk_fmt, magic);
2610		return -EINVAL;
2611	}
2612	*offset = i;
2613	return 0;
2614}
2615
2616static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2617{
2618	int i, cpu = 0, version, err;
2619
2620	/* bail out early on bad header version */
2621	version = val[0];
2622	if (version > CS_HEADER_CURRENT_VERSION) {
2623		/* failure.. return */
2624		fprintf(stdout, "	Unknown Header Version = %x, ", version);
2625		fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2626		return;
2627	}
2628
2629	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2630		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2631
2632	for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2633		if (version == 0)
2634			err = cs_etm__print_cpu_metadata_v0(val, &i);
2635		else if (version == 1)
2636			err = cs_etm__print_cpu_metadata_v1(val, &i);
2637		if (err)
 
 
 
2638			return;
2639	}
2640}
2641
2642/*
2643 * Read a single cpu parameter block from the auxtrace_info priv block.
2644 *
2645 * For version 1 there is a per cpu nr_params entry. If we are handling
2646 * version 1 file, then there may be less, the same, or more params
2647 * indicated by this value than the compile time number we understand.
2648 *
2649 * For a version 0 info block, there are a fixed number, and we need to
2650 * fill out the nr_param value in the metadata we create.
2651 */
2652static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2653				    int out_blk_size, int nr_params_v0)
2654{
2655	u64 *metadata = NULL;
2656	int hdr_version;
2657	int nr_in_params, nr_out_params, nr_cmn_params;
2658	int i, k;
2659
2660	metadata = zalloc(sizeof(*metadata) * out_blk_size);
2661	if (!metadata)
2662		return NULL;
2663
2664	/* read block current index & version */
2665	i = *buff_in_offset;
2666	hdr_version = buff_in[CS_HEADER_VERSION];
2667
2668	if (!hdr_version) {
2669	/* read version 0 info block into a version 1 metadata block  */
2670		nr_in_params = nr_params_v0;
2671		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2672		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2673		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2674		/* remaining block params at offset +1 from source */
2675		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2676			metadata[k + 1] = buff_in[i + k];
2677		/* version 0 has 2 common params */
2678		nr_cmn_params = 2;
2679	} else {
2680	/* read version 1 info block - input and output nr_params may differ */
2681		/* version 1 has 3 common params */
2682		nr_cmn_params = 3;
2683		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2684
2685		/* if input has more params than output - skip excess */
2686		nr_out_params = nr_in_params + nr_cmn_params;
2687		if (nr_out_params > out_blk_size)
2688			nr_out_params = out_blk_size;
2689
2690		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2691			metadata[k] = buff_in[i + k];
2692
2693		/* record the actual nr params we copied */
2694		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2695	}
2696
2697	/* adjust in offset by number of in params used */
2698	i += nr_in_params + nr_cmn_params;
2699	*buff_in_offset = i;
2700	return metadata;
2701}
2702
2703/**
2704 * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2705 * on the bounds of aux_event, if it matches with the buffer that's at
2706 * file_offset.
2707 *
2708 * Normally, whole auxtrace buffers would be added to the queue. But we
2709 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2710 * is reset across each buffer, so splitting the buffers up in advance has
2711 * the same effect.
2712 */
2713static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2714				      struct perf_record_aux *aux_event, struct perf_sample *sample)
2715{
2716	int err;
2717	char buf[PERF_SAMPLE_MAX_SIZE];
2718	union perf_event *auxtrace_event_union;
2719	struct perf_record_auxtrace *auxtrace_event;
2720	union perf_event auxtrace_fragment;
2721	__u64 aux_offset, aux_size;
2722
2723	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2724						   struct cs_etm_auxtrace,
2725						   auxtrace);
2726
2727	/*
2728	 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2729	 * from looping through the auxtrace index.
2730	 */
2731	err = perf_session__peek_event(session, file_offset, buf,
2732				       PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2733	if (err)
2734		return err;
2735	auxtrace_event = &auxtrace_event_union->auxtrace;
2736	if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2737		return -EINVAL;
2738
2739	if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2740		auxtrace_event->header.size != sz) {
2741		return -EINVAL;
2742	}
2743
2744	/*
2745	 * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2746	 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2747	 */
2748	if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2749			auxtrace_event->cpu != sample->cpu)
2750		return 1;
2751
2752	if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2753		/*
2754		 * Clamp size in snapshot mode. The buffer size is clamped in
2755		 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2756		 * the buffer size.
2757		 */
2758		aux_size = min(aux_event->aux_size, auxtrace_event->size);
2759
2760		/*
2761		 * In this mode, the head also points to the end of the buffer so aux_offset
2762		 * needs to have the size subtracted so it points to the beginning as in normal mode
2763		 */
2764		aux_offset = aux_event->aux_offset - aux_size;
2765	} else {
2766		aux_size = aux_event->aux_size;
2767		aux_offset = aux_event->aux_offset;
2768	}
2769
2770	if (aux_offset >= auxtrace_event->offset &&
2771	    aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2772		/*
2773		 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2774		 * based on the sizes of the aux event, and queue that fragment.
2775		 */
2776		auxtrace_fragment.auxtrace = *auxtrace_event;
2777		auxtrace_fragment.auxtrace.size = aux_size;
2778		auxtrace_fragment.auxtrace.offset = aux_offset;
2779		file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2780
2781		pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2782			  " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2783		return auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2784						  file_offset, NULL);
2785	}
2786
2787	/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2788	return 1;
2789}
2790
2791static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2792					u64 offset __maybe_unused, void *data __maybe_unused)
2793{
2794	struct perf_sample sample;
2795	int ret;
2796	struct auxtrace_index_entry *ent;
2797	struct auxtrace_index *auxtrace_index;
2798	struct evsel *evsel;
2799	size_t i;
2800
2801	/* Don't care about any other events, we're only queuing buffers for AUX events */
2802	if (event->header.type != PERF_RECORD_AUX)
2803		return 0;
2804
2805	if (event->header.size < sizeof(struct perf_record_aux))
2806		return -EINVAL;
2807
2808	/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2809	if (!event->aux.aux_size)
2810		return 0;
2811
2812	/*
2813	 * Parse the sample, we need the sample_id_all data that comes after the event so that the
2814	 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2815	 */
2816	evsel = evlist__event2evsel(session->evlist, event);
2817	if (!evsel)
2818		return -EINVAL;
2819	ret = evsel__parse_sample(evsel, event, &sample);
2820	if (ret)
2821		return ret;
2822
2823	/*
2824	 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2825	 */
2826	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2827		for (i = 0; i < auxtrace_index->nr; i++) {
2828			ent = &auxtrace_index->entries[i];
2829			ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2830							 ent->sz, &event->aux, &sample);
2831			/*
2832			 * Stop search on error or successful values. Continue search on
2833			 * 1 ('not found')
2834			 */
2835			if (ret != 1)
2836				return ret;
2837		}
2838	}
2839
2840	/*
2841	 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2842	 * don't exit with an error because it will still be possible to decode other aux records.
2843	 */
2844	pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2845	       " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2846	return 0;
2847}
2848
2849static int cs_etm__queue_aux_records(struct perf_session *session)
2850{
2851	struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2852								struct auxtrace_index, list);
2853	if (index && index->nr > 0)
2854		return perf_session__peek_events(session, session->header.data_offset,
2855						 session->header.data_size,
2856						 cs_etm__queue_aux_records_cb, NULL);
2857
2858	/*
2859	 * We would get here if there are no entries in the index (either no auxtrace
2860	 * buffers or no index at all). Fail silently as there is the possibility of
2861	 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2862	 * false.
2863	 *
2864	 * In that scenario, buffers will not be split by AUX records.
2865	 */
2866	return 0;
2867}
2868
2869int cs_etm__process_auxtrace_info(union perf_event *event,
2870				  struct perf_session *session)
2871{
2872	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2873	struct cs_etm_auxtrace *etm = NULL;
2874	struct int_node *inode;
2875	unsigned int pmu_type;
2876	int event_header_size = sizeof(struct perf_event_header);
2877	int info_header_size;
2878	int total_size = auxtrace_info->header.size;
2879	int priv_size = 0;
2880	int num_cpu, trcidr_idx;
2881	int err = 0;
2882	int i, j;
2883	u64 *ptr, *hdr = NULL;
2884	u64 **metadata = NULL;
2885	u64 hdr_version;
2886
2887	/*
2888	 * sizeof(auxtrace_info_event::type) +
2889	 * sizeof(auxtrace_info_event::reserved) == 8
2890	 */
2891	info_header_size = 8;
2892
2893	if (total_size < (event_header_size + info_header_size))
2894		return -EINVAL;
2895
2896	priv_size = total_size - event_header_size - info_header_size;
2897
2898	/* First the global part */
2899	ptr = (u64 *) auxtrace_info->priv;
2900
2901	/* Look for version of the header */
2902	hdr_version = ptr[0];
2903	if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2904		/* print routine will print an error on bad version */
2905		if (dump_trace)
2906			cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2907		return -EINVAL;
2908	}
2909
2910	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2911	if (!hdr)
2912		return -ENOMEM;
2913
2914	/* Extract header information - see cs-etm.h for format */
2915	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2916		hdr[i] = ptr[i];
2917	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2918	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2919				    0xffffffff);
2920
2921	/*
2922	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2923	 * has to be made for each packet that gets decoded, optimizing access
2924	 * in anything other than a sequential array is worth doing.
2925	 */
2926	traceid_list = intlist__new(NULL);
2927	if (!traceid_list) {
2928		err = -ENOMEM;
2929		goto err_free_hdr;
2930	}
2931
2932	metadata = zalloc(sizeof(*metadata) * num_cpu);
2933	if (!metadata) {
2934		err = -ENOMEM;
2935		goto err_free_traceid_list;
2936	}
2937
2938	/*
2939	 * The metadata is stored in the auxtrace_info section and encodes
2940	 * the configuration of the ARM embedded trace macrocell which is
2941	 * required by the trace decoder to properly decode the trace due
2942	 * to its highly compressed nature.
2943	 */
2944	for (j = 0; j < num_cpu; j++) {
2945		if (ptr[i] == __perf_cs_etmv3_magic) {
2946			metadata[j] =
2947				cs_etm__create_meta_blk(ptr, &i,
2948							CS_ETM_PRIV_MAX,
2949							CS_ETM_NR_TRC_PARAMS_V0);
 
 
 
 
2950
2951			/* The traceID is our handle */
2952			trcidr_idx = CS_ETM_ETMTRACEIDR;
2953
2954		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2955			metadata[j] =
2956				cs_etm__create_meta_blk(ptr, &i,
2957							CS_ETMV4_PRIV_MAX,
2958							CS_ETMV4_NR_TRC_PARAMS_V0);
 
 
 
 
2959
2960			/* The traceID is our handle */
2961			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2962		}
2963
2964		if (!metadata[j]) {
2965			err = -ENOMEM;
2966			goto err_free_metadata;
2967		}
2968
2969		/* Get an RB node for this CPU */
2970		inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2971
2972		/* Something went wrong, no need to continue */
2973		if (!inode) {
2974			err = -ENOMEM;
2975			goto err_free_metadata;
2976		}
2977
2978		/*
2979		 * The node for that CPU should not be taken.
2980		 * Back out if that's the case.
2981		 */
2982		if (inode->priv) {
2983			err = -EINVAL;
2984			goto err_free_metadata;
2985		}
2986		/* All good, associate the traceID with the metadata pointer */
2987		inode->priv = metadata[j];
2988	}
2989
2990	/*
2991	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2992	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2993	 * global metadata, and each cpu's metadata respectively.
2994	 * The following tests if the correct number of double words was
2995	 * present in the auxtrace info section.
2996	 */
2997	if (i * 8 != priv_size) {
2998		err = -EINVAL;
2999		goto err_free_metadata;
3000	}
3001
3002	etm = zalloc(sizeof(*etm));
3003
3004	if (!etm) {
3005		err = -ENOMEM;
3006		goto err_free_metadata;
3007	}
3008
3009	err = auxtrace_queues__init(&etm->queues);
3010	if (err)
3011		goto err_free_etm;
3012
3013	if (session->itrace_synth_opts->set) {
3014		etm->synth_opts = *session->itrace_synth_opts;
3015	} else {
3016		itrace_synth_opts__set_default(&etm->synth_opts,
3017				session->itrace_synth_opts->default_no_sample);
3018		etm->synth_opts.callchain = false;
3019	}
3020
3021	etm->session = session;
3022	etm->machine = &session->machines.host;
3023
3024	etm->num_cpu = num_cpu;
3025	etm->pmu_type = pmu_type;
3026	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3027	etm->metadata = metadata;
3028	etm->auxtrace_type = auxtrace_info->type;
3029	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
3030
3031	etm->auxtrace.process_event = cs_etm__process_event;
3032	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3033	etm->auxtrace.flush_events = cs_etm__flush_events;
3034	etm->auxtrace.free_events = cs_etm__free_events;
3035	etm->auxtrace.free = cs_etm__free;
3036	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3037	session->auxtrace = &etm->auxtrace;
3038
3039	etm->unknown_thread = thread__new(999999999, 999999999);
3040	if (!etm->unknown_thread) {
3041		err = -ENOMEM;
3042		goto err_free_queues;
3043	}
3044
3045	/*
3046	 * Initialize list node so that at thread__zput() we can avoid
3047	 * segmentation fault at list_del_init().
3048	 */
3049	INIT_LIST_HEAD(&etm->unknown_thread->node);
3050
3051	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3052	if (err)
3053		goto err_delete_thread;
3054
3055	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3056		err = -ENOMEM;
3057		goto err_delete_thread;
3058	}
3059
3060	if (dump_trace) {
3061		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
 
 
 
 
 
 
 
 
 
3062	}
3063
3064	err = cs_etm__synth_events(etm, session);
3065	if (err)
3066		goto err_delete_thread;
3067
3068	err = cs_etm__queue_aux_records(session);
3069	if (err)
3070		goto err_delete_thread;
3071
3072	etm->data_queued = etm->queues.populated;
3073
3074	return 0;
3075
3076err_delete_thread:
3077	thread__zput(etm->unknown_thread);
3078err_free_queues:
3079	auxtrace_queues__free(&etm->queues);
3080	session->auxtrace = NULL;
3081err_free_etm:
3082	zfree(&etm);
3083err_free_metadata:
3084	/* No need to check @metadata[j], free(NULL) is supported */
3085	for (j = 0; j < num_cpu; j++)
3086		zfree(&metadata[j]);
3087	zfree(&metadata);
3088err_free_traceid_list:
3089	intlist__delete(traceid_list);
3090err_free_hdr:
3091	zfree(&hdr);
3092	/*
3093	 * At this point, as a minimum we have valid header. Dump the rest of
3094	 * the info section - the print routines will error out on structural
3095	 * issues.
3096	 */
3097	if (dump_trace)
3098		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3099	return err;
3100}