Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef MM_SLAB_H
  3#define MM_SLAB_H
  4/*
  5 * Internal slab definitions
  6 */
  7
  8#ifdef CONFIG_SLOB
  9/*
 10 * Common fields provided in kmem_cache by all slab allocators
 11 * This struct is either used directly by the allocator (SLOB)
 12 * or the allocator must include definitions for all fields
 13 * provided in kmem_cache_common in their definition of kmem_cache.
 14 *
 15 * Once we can do anonymous structs (C11 standard) we could put a
 16 * anonymous struct definition in these allocators so that the
 17 * separate allocations in the kmem_cache structure of SLAB and
 18 * SLUB is no longer needed.
 19 */
 20struct kmem_cache {
 21	unsigned int object_size;/* The original size of the object */
 22	unsigned int size;	/* The aligned/padded/added on size  */
 23	unsigned int align;	/* Alignment as calculated */
 24	slab_flags_t flags;	/* Active flags on the slab */
 25	unsigned int useroffset;/* Usercopy region offset */
 26	unsigned int usersize;	/* Usercopy region size */
 27	const char *name;	/* Slab name for sysfs */
 28	int refcount;		/* Use counter */
 29	void (*ctor)(void *);	/* Called on object slot creation */
 30	struct list_head list;	/* List of all slab caches on the system */
 31};
 32
 33#else /* !CONFIG_SLOB */
 34
 35struct memcg_cache_array {
 36	struct rcu_head rcu;
 37	struct kmem_cache *entries[0];
 38};
 39
 40/*
 41 * This is the main placeholder for memcg-related information in kmem caches.
 42 * Both the root cache and the child caches will have it. For the root cache,
 43 * this will hold a dynamically allocated array large enough to hold
 44 * information about the currently limited memcgs in the system. To allow the
 45 * array to be accessed without taking any locks, on relocation we free the old
 46 * version only after a grace period.
 47 *
 48 * Root and child caches hold different metadata.
 49 *
 50 * @root_cache:	Common to root and child caches.  NULL for root, pointer to
 51 *		the root cache for children.
 52 *
 53 * The following fields are specific to root caches.
 54 *
 55 * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
 56 *		used to index child cachces during allocation and cleared
 57 *		early during shutdown.
 58 *
 59 * @root_caches_node: List node for slab_root_caches list.
 60 *
 61 * @children:	List of all child caches.  While the child caches are also
 62 *		reachable through @memcg_caches, a child cache remains on
 63 *		this list until it is actually destroyed.
 64 *
 65 * The following fields are specific to child caches.
 66 *
 67 * @memcg:	Pointer to the memcg this cache belongs to.
 68 *
 69 * @children_node: List node for @root_cache->children list.
 70 *
 71 * @kmem_caches_node: List node for @memcg->kmem_caches list.
 72 */
 73struct memcg_cache_params {
 74	struct kmem_cache *root_cache;
 75	union {
 76		struct {
 77			struct memcg_cache_array __rcu *memcg_caches;
 78			struct list_head __root_caches_node;
 79			struct list_head children;
 80			bool dying;
 81		};
 82		struct {
 83			struct mem_cgroup *memcg;
 84			struct list_head children_node;
 85			struct list_head kmem_caches_node;
 86			struct percpu_ref refcnt;
 87
 88			void (*work_fn)(struct kmem_cache *);
 89			union {
 90				struct rcu_head rcu_head;
 91				struct work_struct work;
 92			};
 93		};
 94	};
 95};
 96#endif /* CONFIG_SLOB */
 97
 98#ifdef CONFIG_SLAB
 99#include <linux/slab_def.h>
100#endif
101
102#ifdef CONFIG_SLUB
103#include <linux/slub_def.h>
104#endif
105
106#include <linux/memcontrol.h>
107#include <linux/fault-inject.h>
108#include <linux/kasan.h>
109#include <linux/kmemleak.h>
110#include <linux/random.h>
111#include <linux/sched/mm.h>
112
113/*
114 * State of the slab allocator.
115 *
116 * This is used to describe the states of the allocator during bootup.
117 * Allocators use this to gradually bootstrap themselves. Most allocators
118 * have the problem that the structures used for managing slab caches are
119 * allocated from slab caches themselves.
120 */
121enum slab_state {
122	DOWN,			/* No slab functionality yet */
123	PARTIAL,		/* SLUB: kmem_cache_node available */
124	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
125	UP,			/* Slab caches usable but not all extras yet */
126	FULL			/* Everything is working */
127};
128
129extern enum slab_state slab_state;
130
131/* The slab cache mutex protects the management structures during changes */
132extern struct mutex slab_mutex;
133
134/* The list of all slab caches on the system */
135extern struct list_head slab_caches;
136
137/* The slab cache that manages slab cache information */
138extern struct kmem_cache *kmem_cache;
139
140/* A table of kmalloc cache names and sizes */
141extern const struct kmalloc_info_struct {
142	const char *name;
143	unsigned int size;
144} kmalloc_info[];
145
146#ifndef CONFIG_SLOB
147/* Kmalloc array related functions */
148void setup_kmalloc_cache_index_table(void);
149void create_kmalloc_caches(slab_flags_t);
150
151/* Find the kmalloc slab corresponding for a certain size */
152struct kmem_cache *kmalloc_slab(size_t, gfp_t);
153#endif
154
 
155
156/* Functions provided by the slab allocators */
157int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
158
159struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
160			slab_flags_t flags, unsigned int useroffset,
161			unsigned int usersize);
162extern void create_boot_cache(struct kmem_cache *, const char *name,
163			unsigned int size, slab_flags_t flags,
164			unsigned int useroffset, unsigned int usersize);
165
166int slab_unmergeable(struct kmem_cache *s);
167struct kmem_cache *find_mergeable(unsigned size, unsigned align,
168		slab_flags_t flags, const char *name, void (*ctor)(void *));
169#ifndef CONFIG_SLOB
170struct kmem_cache *
171__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
172		   slab_flags_t flags, void (*ctor)(void *));
173
174slab_flags_t kmem_cache_flags(unsigned int object_size,
175	slab_flags_t flags, const char *name,
176	void (*ctor)(void *));
177#else
178static inline struct kmem_cache *
179__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
180		   slab_flags_t flags, void (*ctor)(void *))
181{ return NULL; }
182
183static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
184	slab_flags_t flags, const char *name,
185	void (*ctor)(void *))
186{
187	return flags;
188}
189#endif
190
191
192/* Legal flag mask for kmem_cache_create(), for various configurations */
193#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
194			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
195			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
196
197#if defined(CONFIG_DEBUG_SLAB)
198#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
199#elif defined(CONFIG_SLUB_DEBUG)
200#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
201			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
202#else
203#define SLAB_DEBUG_FLAGS (0)
204#endif
205
206#if defined(CONFIG_SLAB)
207#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
208			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
209			  SLAB_ACCOUNT)
210#elif defined(CONFIG_SLUB)
211#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
212			  SLAB_TEMPORARY | SLAB_ACCOUNT)
213#else
214#define SLAB_CACHE_FLAGS (0)
215#endif
216
217/* Common flags available with current configuration */
218#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
219
220/* Common flags permitted for kmem_cache_create */
221#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
222			      SLAB_RED_ZONE | \
223			      SLAB_POISON | \
224			      SLAB_STORE_USER | \
225			      SLAB_TRACE | \
226			      SLAB_CONSISTENCY_CHECKS | \
227			      SLAB_MEM_SPREAD | \
228			      SLAB_NOLEAKTRACE | \
229			      SLAB_RECLAIM_ACCOUNT | \
230			      SLAB_TEMPORARY | \
231			      SLAB_ACCOUNT)
232
233bool __kmem_cache_empty(struct kmem_cache *);
234int __kmem_cache_shutdown(struct kmem_cache *);
235void __kmem_cache_release(struct kmem_cache *);
236int __kmem_cache_shrink(struct kmem_cache *);
237void __kmemcg_cache_deactivate(struct kmem_cache *s);
238void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
239void slab_kmem_cache_release(struct kmem_cache *);
240void kmem_cache_shrink_all(struct kmem_cache *s);
241
242struct seq_file;
243struct file;
244
245struct slabinfo {
246	unsigned long active_objs;
247	unsigned long num_objs;
248	unsigned long active_slabs;
249	unsigned long num_slabs;
250	unsigned long shared_avail;
251	unsigned int limit;
252	unsigned int batchcount;
253	unsigned int shared;
254	unsigned int objects_per_slab;
255	unsigned int cache_order;
256};
257
258void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
259void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
260ssize_t slabinfo_write(struct file *file, const char __user *buffer,
261		       size_t count, loff_t *ppos);
262
263/*
264 * Generic implementation of bulk operations
265 * These are useful for situations in which the allocator cannot
266 * perform optimizations. In that case segments of the object listed
267 * may be allocated or freed using these operations.
268 */
269void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
270int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
271
272static inline int cache_vmstat_idx(struct kmem_cache *s)
273{
274	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
275		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
276}
277
278#ifdef CONFIG_MEMCG_KMEM
279
280/* List of all root caches. */
281extern struct list_head		slab_root_caches;
282#define root_caches_node	memcg_params.__root_caches_node
283
284/*
285 * Iterate over all memcg caches of the given root cache. The caller must hold
286 * slab_mutex.
287 */
288#define for_each_memcg_cache(iter, root) \
289	list_for_each_entry(iter, &(root)->memcg_params.children, \
290			    memcg_params.children_node)
291
292static inline bool is_root_cache(struct kmem_cache *s)
293{
294	return !s->memcg_params.root_cache;
295}
296
297static inline bool slab_equal_or_root(struct kmem_cache *s,
298				      struct kmem_cache *p)
299{
300	return p == s || p == s->memcg_params.root_cache;
301}
 
 
 
 
 
302
303/*
304 * We use suffixes to the name in memcg because we can't have caches
305 * created in the system with the same name. But when we print them
306 * locally, better refer to them with the base name
307 */
308static inline const char *cache_name(struct kmem_cache *s)
309{
310	if (!is_root_cache(s))
311		s = s->memcg_params.root_cache;
312	return s->name;
 
 
313}
314
315static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
 
 
 
 
 
 
316{
317	if (is_root_cache(s))
318		return s;
319	return s->memcg_params.root_cache;
320}
321
322/*
323 * Expects a pointer to a slab page. Please note, that PageSlab() check
324 * isn't sufficient, as it returns true also for tail compound slab pages,
325 * which do not have slab_cache pointer set.
326 * So this function assumes that the page can pass PageSlab() && !PageTail()
327 * check.
328 *
329 * The kmem_cache can be reparented asynchronously. The caller must ensure
330 * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
331 */
332static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
333{
334	struct kmem_cache *s;
335
336	s = READ_ONCE(page->slab_cache);
337	if (s && !is_root_cache(s))
338		return READ_ONCE(s->memcg_params.memcg);
339
340	return NULL;
341}
342
343/*
344 * Charge the slab page belonging to the non-root kmem_cache.
345 * Can be called for non-root kmem_caches only.
346 */
347static __always_inline int memcg_charge_slab(struct page *page,
348					     gfp_t gfp, int order,
349					     struct kmem_cache *s)
350{
351	struct mem_cgroup *memcg;
352	struct lruvec *lruvec;
353	int ret;
354
355	rcu_read_lock();
356	memcg = READ_ONCE(s->memcg_params.memcg);
357	while (memcg && !css_tryget_online(&memcg->css))
358		memcg = parent_mem_cgroup(memcg);
359	rcu_read_unlock();
360
361	if (unlikely(!memcg || mem_cgroup_is_root(memcg))) {
362		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
363				    (1 << order));
364		percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
365		return 0;
366	}
367
368	ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
369	if (ret)
370		goto out;
371
372	lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
373	mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order);
374
375	/* transer try_charge() page references to kmem_cache */
376	percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
377	css_put_many(&memcg->css, 1 << order);
378out:
379	css_put(&memcg->css);
380	return ret;
381}
382
383/*
384 * Uncharge a slab page belonging to a non-root kmem_cache.
385 * Can be called for non-root kmem_caches only.
386 */
387static __always_inline void memcg_uncharge_slab(struct page *page, int order,
388						struct kmem_cache *s)
389{
390	struct mem_cgroup *memcg;
391	struct lruvec *lruvec;
392
393	rcu_read_lock();
394	memcg = READ_ONCE(s->memcg_params.memcg);
395	if (likely(!mem_cgroup_is_root(memcg))) {
396		lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
397		mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order));
398		memcg_kmem_uncharge_memcg(page, order, memcg);
399	} else {
400		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
401				    -(1 << order));
402	}
403	rcu_read_unlock();
404
405	percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order);
 
406}
407
408extern void slab_init_memcg_params(struct kmem_cache *);
409extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
410
411#else /* CONFIG_MEMCG_KMEM */
 
 
 
 
412
413/* If !memcg, all caches are root. */
414#define slab_root_caches	slab_caches
415#define root_caches_node	list
416
417#define for_each_memcg_cache(iter, root) \
418	for ((void)(iter), (void)(root); 0; )
 
419
420static inline bool is_root_cache(struct kmem_cache *s)
421{
422	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423}
424
425static inline bool slab_equal_or_root(struct kmem_cache *s,
426				      struct kmem_cache *p)
427{
428	return s == p;
429}
 
 
 
 
430
431static inline const char *cache_name(struct kmem_cache *s)
432{
433	return s->name;
434}
435
436static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
437{
438	return s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439}
440
441static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
 
442{
443	return NULL;
444}
445
446static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
447				    struct kmem_cache *s)
 
448{
449	return 0;
450}
451
452static inline void memcg_uncharge_slab(struct page *page, int order,
453				       struct kmem_cache *s)
454{
455}
456
457static inline void slab_init_memcg_params(struct kmem_cache *s)
 
 
458{
 
459}
460
461static inline void memcg_link_cache(struct kmem_cache *s,
462				    struct mem_cgroup *memcg)
 
 
463{
464}
465
 
 
 
 
466#endif /* CONFIG_MEMCG_KMEM */
467
468static inline struct kmem_cache *virt_to_cache(const void *obj)
469{
470	struct page *page;
471
472	page = virt_to_head_page(obj);
473	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
474					__func__))
475		return NULL;
476	return page->slab_cache;
477}
478
479static __always_inline int charge_slab_page(struct page *page,
480					    gfp_t gfp, int order,
481					    struct kmem_cache *s)
482{
483	if (is_root_cache(s)) {
484		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
485				    1 << order);
486		return 0;
487	}
488
489	return memcg_charge_slab(page, gfp, order, s);
 
490}
491
492static __always_inline void uncharge_slab_page(struct page *page, int order,
493					       struct kmem_cache *s)
494{
495	if (is_root_cache(s)) {
496		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
497				    -(1 << order));
498		return;
499	}
500
501	memcg_uncharge_slab(page, order, s);
 
502}
503
504static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
505{
506	struct kmem_cache *cachep;
507
508	/*
509	 * When kmemcg is not being used, both assignments should return the
510	 * same value. but we don't want to pay the assignment price in that
511	 * case. If it is not compiled in, the compiler should be smart enough
512	 * to not do even the assignment. In that case, slab_equal_or_root
513	 * will also be a constant.
514	 */
515	if (!memcg_kmem_enabled() &&
516	    !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
517	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
518		return s;
519
520	cachep = virt_to_cache(x);
521	WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
522		  "%s: Wrong slab cache. %s but object is from %s\n",
523		  __func__, s->name, cachep->name);
 
524	return cachep;
525}
526
527static inline size_t slab_ksize(const struct kmem_cache *s)
528{
529#ifndef CONFIG_SLUB
530	return s->object_size;
531
532#else /* CONFIG_SLUB */
533# ifdef CONFIG_SLUB_DEBUG
534	/*
535	 * Debugging requires use of the padding between object
536	 * and whatever may come after it.
537	 */
538	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
539		return s->object_size;
540# endif
541	if (s->flags & SLAB_KASAN)
542		return s->object_size;
543	/*
544	 * If we have the need to store the freelist pointer
545	 * back there or track user information then we can
546	 * only use the space before that information.
547	 */
548	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
549		return s->inuse;
550	/*
551	 * Else we can use all the padding etc for the allocation
552	 */
553	return s->size;
554#endif
555}
556
557static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
558						     gfp_t flags)
 
559{
560	flags &= gfp_allowed_mask;
561
562	fs_reclaim_acquire(flags);
563	fs_reclaim_release(flags);
564
565	might_sleep_if(gfpflags_allow_blocking(flags));
566
567	if (should_failslab(s, flags))
568		return NULL;
569
570	if (memcg_kmem_enabled() &&
571	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
572		return memcg_kmem_get_cache(s);
573
574	return s;
575}
576
577static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
578					size_t size, void **p)
 
579{
580	size_t i;
581
582	flags &= gfp_allowed_mask;
 
 
 
 
 
 
 
 
583	for (i = 0; i < size; i++) {
584		p[i] = kasan_slab_alloc(s, p[i], flags);
585		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
 
586		kmemleak_alloc_recursive(p[i], s->object_size, 1,
587					 s->flags, flags);
588	}
589
590	if (memcg_kmem_enabled())
591		memcg_kmem_put_cache(s);
592}
593
594#ifndef CONFIG_SLOB
595/*
596 * The slab lists for all objects.
597 */
598struct kmem_cache_node {
599	spinlock_t list_lock;
600
601#ifdef CONFIG_SLAB
602	struct list_head slabs_partial;	/* partial list first, better asm code */
603	struct list_head slabs_full;
604	struct list_head slabs_free;
605	unsigned long total_slabs;	/* length of all slab lists */
606	unsigned long free_slabs;	/* length of free slab list only */
607	unsigned long free_objects;
608	unsigned int free_limit;
609	unsigned int colour_next;	/* Per-node cache coloring */
610	struct array_cache *shared;	/* shared per node */
611	struct alien_cache **alien;	/* on other nodes */
612	unsigned long next_reap;	/* updated without locking */
613	int free_touched;		/* updated without locking */
614#endif
615
616#ifdef CONFIG_SLUB
617	unsigned long nr_partial;
618	struct list_head partial;
619#ifdef CONFIG_SLUB_DEBUG
620	atomic_long_t nr_slabs;
621	atomic_long_t total_objects;
622	struct list_head full;
623#endif
624#endif
625
626};
627
628static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
629{
630	return s->node[node];
631}
632
633/*
634 * Iterator over all nodes. The body will be executed for each node that has
635 * a kmem_cache_node structure allocated (which is true for all online nodes)
636 */
637#define for_each_kmem_cache_node(__s, __node, __n) \
638	for (__node = 0; __node < nr_node_ids; __node++) \
639		 if ((__n = get_node(__s, __node)))
640
641#endif
642
643void *slab_start(struct seq_file *m, loff_t *pos);
644void *slab_next(struct seq_file *m, void *p, loff_t *pos);
645void slab_stop(struct seq_file *m, void *p);
646void *memcg_slab_start(struct seq_file *m, loff_t *pos);
647void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
648void memcg_slab_stop(struct seq_file *m, void *p);
649int memcg_slab_show(struct seq_file *m, void *p);
650
651#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
652void dump_unreclaimable_slab(void);
653#else
654static inline void dump_unreclaimable_slab(void)
655{
656}
657#endif
658
659void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
660
661#ifdef CONFIG_SLAB_FREELIST_RANDOM
662int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
663			gfp_t gfp);
664void cache_random_seq_destroy(struct kmem_cache *cachep);
665#else
666static inline int cache_random_seq_create(struct kmem_cache *cachep,
667					unsigned int count, gfp_t gfp)
668{
669	return 0;
670}
671static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
672#endif /* CONFIG_SLAB_FREELIST_RANDOM */
673
674static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
675{
676	if (static_branch_unlikely(&init_on_alloc)) {
 
677		if (c->ctor)
678			return false;
679		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
680			return flags & __GFP_ZERO;
681		return true;
682	}
683	return flags & __GFP_ZERO;
684}
685
686static inline bool slab_want_init_on_free(struct kmem_cache *c)
687{
688	if (static_branch_unlikely(&init_on_free))
 
689		return !(c->ctor ||
690			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
691	return false;
692}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693
694#endif /* MM_SLAB_H */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef MM_SLAB_H
  3#define MM_SLAB_H
  4/*
  5 * Internal slab definitions
  6 */
  7
  8#ifdef CONFIG_SLOB
  9/*
 10 * Common fields provided in kmem_cache by all slab allocators
 11 * This struct is either used directly by the allocator (SLOB)
 12 * or the allocator must include definitions for all fields
 13 * provided in kmem_cache_common in their definition of kmem_cache.
 14 *
 15 * Once we can do anonymous structs (C11 standard) we could put a
 16 * anonymous struct definition in these allocators so that the
 17 * separate allocations in the kmem_cache structure of SLAB and
 18 * SLUB is no longer needed.
 19 */
 20struct kmem_cache {
 21	unsigned int object_size;/* The original size of the object */
 22	unsigned int size;	/* The aligned/padded/added on size  */
 23	unsigned int align;	/* Alignment as calculated */
 24	slab_flags_t flags;	/* Active flags on the slab */
 25	unsigned int useroffset;/* Usercopy region offset */
 26	unsigned int usersize;	/* Usercopy region size */
 27	const char *name;	/* Slab name for sysfs */
 28	int refcount;		/* Use counter */
 29	void (*ctor)(void *);	/* Called on object slot creation */
 30	struct list_head list;	/* List of all slab caches on the system */
 31};
 32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33#endif /* CONFIG_SLOB */
 34
 35#ifdef CONFIG_SLAB
 36#include <linux/slab_def.h>
 37#endif
 38
 39#ifdef CONFIG_SLUB
 40#include <linux/slub_def.h>
 41#endif
 42
 43#include <linux/memcontrol.h>
 44#include <linux/fault-inject.h>
 45#include <linux/kasan.h>
 46#include <linux/kmemleak.h>
 47#include <linux/random.h>
 48#include <linux/sched/mm.h>
 49
 50/*
 51 * State of the slab allocator.
 52 *
 53 * This is used to describe the states of the allocator during bootup.
 54 * Allocators use this to gradually bootstrap themselves. Most allocators
 55 * have the problem that the structures used for managing slab caches are
 56 * allocated from slab caches themselves.
 57 */
 58enum slab_state {
 59	DOWN,			/* No slab functionality yet */
 60	PARTIAL,		/* SLUB: kmem_cache_node available */
 61	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
 62	UP,			/* Slab caches usable but not all extras yet */
 63	FULL			/* Everything is working */
 64};
 65
 66extern enum slab_state slab_state;
 67
 68/* The slab cache mutex protects the management structures during changes */
 69extern struct mutex slab_mutex;
 70
 71/* The list of all slab caches on the system */
 72extern struct list_head slab_caches;
 73
 74/* The slab cache that manages slab cache information */
 75extern struct kmem_cache *kmem_cache;
 76
 77/* A table of kmalloc cache names and sizes */
 78extern const struct kmalloc_info_struct {
 79	const char *name[NR_KMALLOC_TYPES];
 80	unsigned int size;
 81} kmalloc_info[];
 82
 83#ifndef CONFIG_SLOB
 84/* Kmalloc array related functions */
 85void setup_kmalloc_cache_index_table(void);
 86void create_kmalloc_caches(slab_flags_t);
 87
 88/* Find the kmalloc slab corresponding for a certain size */
 89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
 90#endif
 91
 92gfp_t kmalloc_fix_flags(gfp_t flags);
 93
 94/* Functions provided by the slab allocators */
 95int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
 96
 97struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
 98			slab_flags_t flags, unsigned int useroffset,
 99			unsigned int usersize);
100extern void create_boot_cache(struct kmem_cache *, const char *name,
101			unsigned int size, slab_flags_t flags,
102			unsigned int useroffset, unsigned int usersize);
103
104int slab_unmergeable(struct kmem_cache *s);
105struct kmem_cache *find_mergeable(unsigned size, unsigned align,
106		slab_flags_t flags, const char *name, void (*ctor)(void *));
107#ifndef CONFIG_SLOB
108struct kmem_cache *
109__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
110		   slab_flags_t flags, void (*ctor)(void *));
111
112slab_flags_t kmem_cache_flags(unsigned int object_size,
113	slab_flags_t flags, const char *name);
 
114#else
115static inline struct kmem_cache *
116__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
117		   slab_flags_t flags, void (*ctor)(void *))
118{ return NULL; }
119
120static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
121	slab_flags_t flags, const char *name)
 
122{
123	return flags;
124}
125#endif
126
127
128/* Legal flag mask for kmem_cache_create(), for various configurations */
129#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
130			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
131			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
132
133#if defined(CONFIG_DEBUG_SLAB)
134#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
135#elif defined(CONFIG_SLUB_DEBUG)
136#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
137			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
138#else
139#define SLAB_DEBUG_FLAGS (0)
140#endif
141
142#if defined(CONFIG_SLAB)
143#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
144			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
145			  SLAB_ACCOUNT)
146#elif defined(CONFIG_SLUB)
147#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
148			  SLAB_TEMPORARY | SLAB_ACCOUNT)
149#else
150#define SLAB_CACHE_FLAGS (0)
151#endif
152
153/* Common flags available with current configuration */
154#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
155
156/* Common flags permitted for kmem_cache_create */
157#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
158			      SLAB_RED_ZONE | \
159			      SLAB_POISON | \
160			      SLAB_STORE_USER | \
161			      SLAB_TRACE | \
162			      SLAB_CONSISTENCY_CHECKS | \
163			      SLAB_MEM_SPREAD | \
164			      SLAB_NOLEAKTRACE | \
165			      SLAB_RECLAIM_ACCOUNT | \
166			      SLAB_TEMPORARY | \
167			      SLAB_ACCOUNT)
168
169bool __kmem_cache_empty(struct kmem_cache *);
170int __kmem_cache_shutdown(struct kmem_cache *);
171void __kmem_cache_release(struct kmem_cache *);
172int __kmem_cache_shrink(struct kmem_cache *);
 
 
173void slab_kmem_cache_release(struct kmem_cache *);
 
174
175struct seq_file;
176struct file;
177
178struct slabinfo {
179	unsigned long active_objs;
180	unsigned long num_objs;
181	unsigned long active_slabs;
182	unsigned long num_slabs;
183	unsigned long shared_avail;
184	unsigned int limit;
185	unsigned int batchcount;
186	unsigned int shared;
187	unsigned int objects_per_slab;
188	unsigned int cache_order;
189};
190
191void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
192void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
193ssize_t slabinfo_write(struct file *file, const char __user *buffer,
194		       size_t count, loff_t *ppos);
195
196/*
197 * Generic implementation of bulk operations
198 * These are useful for situations in which the allocator cannot
199 * perform optimizations. In that case segments of the object listed
200 * may be allocated or freed using these operations.
201 */
202void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
203int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
204
205static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
206{
207	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
208		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
209}
210
211#ifdef CONFIG_SLUB_DEBUG
212#ifdef CONFIG_SLUB_DEBUG_ON
213DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
214#else
215DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
216#endif
217extern void print_tracking(struct kmem_cache *s, void *object);
218long validate_slab_cache(struct kmem_cache *s);
219static inline bool __slub_debug_enabled(void)
 
 
 
 
 
 
220{
221	return static_branch_unlikely(&slub_debug_enabled);
222}
223#else
224static inline void print_tracking(struct kmem_cache *s, void *object)
 
225{
 
226}
227static inline bool __slub_debug_enabled(void)
228{
229	return false;
230}
231#endif
232
233/*
234 * Returns true if any of the specified slub_debug flags is enabled for the
235 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
236 * the static key.
237 */
238static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
239{
240	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
241		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
242	if (__slub_debug_enabled())
243		return s->flags & flags;
244	return false;
245}
246
247#ifdef CONFIG_MEMCG_KMEM
248int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
249				 gfp_t gfp, bool new_page);
250void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
251		     enum node_stat_item idx, int nr);
252
253static inline void memcg_free_page_obj_cgroups(struct page *page)
254{
255	kfree(page_objcgs(page));
256	page->memcg_data = 0;
 
257}
258
259static inline size_t obj_full_size(struct kmem_cache *s)
 
 
 
 
 
 
 
 
 
 
260{
261	/*
262	 * For each accounted object there is an extra space which is used
263	 * to store obj_cgroup membership. Charge it too.
264	 */
265	return s->size + sizeof(struct obj_cgroup *);
 
 
266}
267
268/*
269 * Returns false if the allocation should fail.
 
270 */
271static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
272					     struct obj_cgroup **objcgp,
273					     size_t objects, gfp_t flags)
274{
275	struct obj_cgroup *objcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
277	if (!memcg_kmem_enabled())
278		return true;
 
 
 
 
 
 
 
 
 
 
 
 
279
280	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
281		return true;
 
 
 
 
 
 
 
282
283	objcg = get_obj_cgroup_from_current();
284	if (!objcg)
285		return true;
286
287	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
288		obj_cgroup_put(objcg);
289		return false;
 
 
290	}
 
291
292	*objcgp = objcg;
293	return true;
294}
295
296static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
297					      struct obj_cgroup *objcg,
298					      gfp_t flags, size_t size,
299					      void **p)
300{
301	struct page *page;
302	unsigned long off;
303	size_t i;
304
305	if (!memcg_kmem_enabled() || !objcg)
306		return;
 
307
308	for (i = 0; i < size; i++) {
309		if (likely(p[i])) {
310			page = virt_to_head_page(p[i]);
311
312			if (!page_objcgs(page) &&
313			    memcg_alloc_page_obj_cgroups(page, s, flags,
314							 false)) {
315				obj_cgroup_uncharge(objcg, obj_full_size(s));
316				continue;
317			}
318
319			off = obj_to_index(s, page, p[i]);
320			obj_cgroup_get(objcg);
321			page_objcgs(page)[off] = objcg;
322			mod_objcg_state(objcg, page_pgdat(page),
323					cache_vmstat_idx(s), obj_full_size(s));
324		} else {
325			obj_cgroup_uncharge(objcg, obj_full_size(s));
326		}
327	}
328	obj_cgroup_put(objcg);
329}
330
331static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
332					void **p, int objects)
333{
334	struct kmem_cache *s;
335	struct obj_cgroup **objcgs;
336	struct obj_cgroup *objcg;
337	struct page *page;
338	unsigned int off;
339	int i;
340
341	if (!memcg_kmem_enabled())
342		return;
 
 
343
344	for (i = 0; i < objects; i++) {
345		if (unlikely(!p[i]))
346			continue;
347
348		page = virt_to_head_page(p[i]);
349		objcgs = page_objcgs_check(page);
350		if (!objcgs)
351			continue;
352
353		if (!s_orig)
354			s = page->slab_cache;
355		else
356			s = s_orig;
357
358		off = obj_to_index(s, page, p[i]);
359		objcg = objcgs[off];
360		if (!objcg)
361			continue;
362
363		objcgs[off] = NULL;
364		obj_cgroup_uncharge(objcg, obj_full_size(s));
365		mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
366				-obj_full_size(s));
367		obj_cgroup_put(objcg);
368	}
369}
370
371#else /* CONFIG_MEMCG_KMEM */
372static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
373{
374	return NULL;
375}
376
377static inline int memcg_alloc_page_obj_cgroups(struct page *page,
378					       struct kmem_cache *s, gfp_t gfp,
379					       bool new_page)
380{
381	return 0;
382}
383
384static inline void memcg_free_page_obj_cgroups(struct page *page)
 
385{
386}
387
388static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
389					     struct obj_cgroup **objcgp,
390					     size_t objects, gfp_t flags)
391{
392	return true;
393}
394
395static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
396					      struct obj_cgroup *objcg,
397					      gfp_t flags, size_t size,
398					      void **p)
399{
400}
401
402static inline void memcg_slab_free_hook(struct kmem_cache *s,
403					void **p, int objects)
404{
405}
406#endif /* CONFIG_MEMCG_KMEM */
407
408static inline struct kmem_cache *virt_to_cache(const void *obj)
409{
410	struct page *page;
411
412	page = virt_to_head_page(obj);
413	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
414					__func__))
415		return NULL;
416	return page->slab_cache;
417}
418
419static __always_inline void account_slab_page(struct page *page, int order,
420					      struct kmem_cache *s,
421					      gfp_t gfp)
422{
423	if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
424		memcg_alloc_page_obj_cgroups(page, s, gfp, true);
 
 
 
425
426	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
427			    PAGE_SIZE << order);
428}
429
430static __always_inline void unaccount_slab_page(struct page *page, int order,
431						struct kmem_cache *s)
432{
433	if (memcg_kmem_enabled())
434		memcg_free_page_obj_cgroups(page);
 
 
 
435
436	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
437			    -(PAGE_SIZE << order));
438}
439
440static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
441{
442	struct kmem_cache *cachep;
443
444	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
445	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
 
 
 
 
 
 
 
 
446		return s;
447
448	cachep = virt_to_cache(x);
449	if (WARN(cachep && cachep != s,
450		  "%s: Wrong slab cache. %s but object is from %s\n",
451		  __func__, s->name, cachep->name))
452		print_tracking(cachep, x);
453	return cachep;
454}
455
456static inline size_t slab_ksize(const struct kmem_cache *s)
457{
458#ifndef CONFIG_SLUB
459	return s->object_size;
460
461#else /* CONFIG_SLUB */
462# ifdef CONFIG_SLUB_DEBUG
463	/*
464	 * Debugging requires use of the padding between object
465	 * and whatever may come after it.
466	 */
467	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
468		return s->object_size;
469# endif
470	if (s->flags & SLAB_KASAN)
471		return s->object_size;
472	/*
473	 * If we have the need to store the freelist pointer
474	 * back there or track user information then we can
475	 * only use the space before that information.
476	 */
477	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
478		return s->inuse;
479	/*
480	 * Else we can use all the padding etc for the allocation
481	 */
482	return s->size;
483#endif
484}
485
486static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
487						     struct obj_cgroup **objcgp,
488						     size_t size, gfp_t flags)
489{
490	flags &= gfp_allowed_mask;
491
492	might_alloc(flags);
 
 
 
493
494	if (should_failslab(s, flags))
495		return NULL;
496
497	if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
498		return NULL;
 
499
500	return s;
501}
502
503static inline void slab_post_alloc_hook(struct kmem_cache *s,
504					struct obj_cgroup *objcg, gfp_t flags,
505					size_t size, void **p, bool init)
506{
507	size_t i;
508
509	flags &= gfp_allowed_mask;
510
511	/*
512	 * As memory initialization might be integrated into KASAN,
513	 * kasan_slab_alloc and initialization memset must be
514	 * kept together to avoid discrepancies in behavior.
515	 *
516	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
517	 */
518	for (i = 0; i < size; i++) {
519		p[i] = kasan_slab_alloc(s, p[i], flags, init);
520		if (p[i] && init && !kasan_has_integrated_init())
521			memset(p[i], 0, s->object_size);
522		kmemleak_alloc_recursive(p[i], s->object_size, 1,
523					 s->flags, flags);
524	}
525
526	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
 
527}
528
529#ifndef CONFIG_SLOB
530/*
531 * The slab lists for all objects.
532 */
533struct kmem_cache_node {
534	spinlock_t list_lock;
535
536#ifdef CONFIG_SLAB
537	struct list_head slabs_partial;	/* partial list first, better asm code */
538	struct list_head slabs_full;
539	struct list_head slabs_free;
540	unsigned long total_slabs;	/* length of all slab lists */
541	unsigned long free_slabs;	/* length of free slab list only */
542	unsigned long free_objects;
543	unsigned int free_limit;
544	unsigned int colour_next;	/* Per-node cache coloring */
545	struct array_cache *shared;	/* shared per node */
546	struct alien_cache **alien;	/* on other nodes */
547	unsigned long next_reap;	/* updated without locking */
548	int free_touched;		/* updated without locking */
549#endif
550
551#ifdef CONFIG_SLUB
552	unsigned long nr_partial;
553	struct list_head partial;
554#ifdef CONFIG_SLUB_DEBUG
555	atomic_long_t nr_slabs;
556	atomic_long_t total_objects;
557	struct list_head full;
558#endif
559#endif
560
561};
562
563static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
564{
565	return s->node[node];
566}
567
568/*
569 * Iterator over all nodes. The body will be executed for each node that has
570 * a kmem_cache_node structure allocated (which is true for all online nodes)
571 */
572#define for_each_kmem_cache_node(__s, __node, __n) \
573	for (__node = 0; __node < nr_node_ids; __node++) \
574		 if ((__n = get_node(__s, __node)))
575
576#endif
577
578void *slab_start(struct seq_file *m, loff_t *pos);
579void *slab_next(struct seq_file *m, void *p, loff_t *pos);
580void slab_stop(struct seq_file *m, void *p);
 
 
 
581int memcg_slab_show(struct seq_file *m, void *p);
582
583#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
584void dump_unreclaimable_slab(void);
585#else
586static inline void dump_unreclaimable_slab(void)
587{
588}
589#endif
590
591void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
592
593#ifdef CONFIG_SLAB_FREELIST_RANDOM
594int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
595			gfp_t gfp);
596void cache_random_seq_destroy(struct kmem_cache *cachep);
597#else
598static inline int cache_random_seq_create(struct kmem_cache *cachep,
599					unsigned int count, gfp_t gfp)
600{
601	return 0;
602}
603static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
604#endif /* CONFIG_SLAB_FREELIST_RANDOM */
605
606static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
607{
608	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
609				&init_on_alloc)) {
610		if (c->ctor)
611			return false;
612		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
613			return flags & __GFP_ZERO;
614		return true;
615	}
616	return flags & __GFP_ZERO;
617}
618
619static inline bool slab_want_init_on_free(struct kmem_cache *c)
620{
621	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
622				&init_on_free))
623		return !(c->ctor ||
624			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
625	return false;
626}
627
628#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
629void debugfs_slab_release(struct kmem_cache *);
630#else
631static inline void debugfs_slab_release(struct kmem_cache *s) { }
632#endif
633
634#ifdef CONFIG_PRINTK
635#define KS_ADDRS_COUNT 16
636struct kmem_obj_info {
637	void *kp_ptr;
638	struct page *kp_page;
639	void *kp_objp;
640	unsigned long kp_data_offset;
641	struct kmem_cache *kp_slab_cache;
642	void *kp_ret;
643	void *kp_stack[KS_ADDRS_COUNT];
644	void *kp_free_stack[KS_ADDRS_COUNT];
645};
646void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page);
647#endif
648
649#endif /* MM_SLAB_H */