Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * KFENCE guarded object allocator and fault handling.
  4 *
  5 * Copyright (C) 2020, Google LLC.
  6 */
  7
  8#define pr_fmt(fmt) "kfence: " fmt
  9
 10#include <linux/atomic.h>
 11#include <linux/bug.h>
 12#include <linux/debugfs.h>
 13#include <linux/irq_work.h>
 14#include <linux/kcsan-checks.h>
 15#include <linux/kfence.h>
 16#include <linux/kmemleak.h>
 17#include <linux/list.h>
 18#include <linux/lockdep.h>
 19#include <linux/memblock.h>
 20#include <linux/moduleparam.h>
 21#include <linux/random.h>
 22#include <linux/rcupdate.h>
 23#include <linux/sched/sysctl.h>
 24#include <linux/seq_file.h>
 25#include <linux/slab.h>
 26#include <linux/spinlock.h>
 27#include <linux/string.h>
 28
 29#include <asm/kfence.h>
 30
 31#include "kfence.h"
 32
 33/* Disables KFENCE on the first warning assuming an irrecoverable error. */
 34#define KFENCE_WARN_ON(cond)                                                   \
 35	({                                                                     \
 36		const bool __cond = WARN_ON(cond);                             \
 37		if (unlikely(__cond))                                          \
 38			WRITE_ONCE(kfence_enabled, false);                     \
 39		__cond;                                                        \
 40	})
 41
 42/* === Data ================================================================= */
 43
 44static bool kfence_enabled __read_mostly;
 45
 46static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
 47
 48#ifdef MODULE_PARAM_PREFIX
 49#undef MODULE_PARAM_PREFIX
 50#endif
 51#define MODULE_PARAM_PREFIX "kfence."
 52
 53static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
 54{
 55	unsigned long num;
 56	int ret = kstrtoul(val, 0, &num);
 57
 58	if (ret < 0)
 59		return ret;
 60
 61	if (!num) /* Using 0 to indicate KFENCE is disabled. */
 62		WRITE_ONCE(kfence_enabled, false);
 63	else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
 64		return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
 65
 66	*((unsigned long *)kp->arg) = num;
 67	return 0;
 68}
 69
 70static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
 71{
 72	if (!READ_ONCE(kfence_enabled))
 73		return sprintf(buffer, "0\n");
 74
 75	return param_get_ulong(buffer, kp);
 76}
 77
 78static const struct kernel_param_ops sample_interval_param_ops = {
 79	.set = param_set_sample_interval,
 80	.get = param_get_sample_interval,
 81};
 82module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
 83
 84/* The pool of pages used for guard pages and objects. */
 85char *__kfence_pool __ro_after_init;
 86EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
 87
 88/*
 89 * Per-object metadata, with one-to-one mapping of object metadata to
 90 * backing pages (in __kfence_pool).
 91 */
 92static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
 93struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
 94
 95/* Freelist with available objects. */
 96static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
 97static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
 98
 99#ifdef CONFIG_KFENCE_STATIC_KEYS
100/* The static key to set up a KFENCE allocation. */
101DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
102#endif
103
104/* Gates the allocation, ensuring only one succeeds in a given period. */
105atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
106
107/* Statistics counters for debugfs. */
108enum kfence_counter_id {
109	KFENCE_COUNTER_ALLOCATED,
110	KFENCE_COUNTER_ALLOCS,
111	KFENCE_COUNTER_FREES,
112	KFENCE_COUNTER_ZOMBIES,
113	KFENCE_COUNTER_BUGS,
114	KFENCE_COUNTER_COUNT,
115};
116static atomic_long_t counters[KFENCE_COUNTER_COUNT];
117static const char *const counter_names[] = {
118	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
119	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
120	[KFENCE_COUNTER_FREES]		= "total frees",
121	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
122	[KFENCE_COUNTER_BUGS]		= "total bugs",
123};
124static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
125
126/* === Internals ============================================================ */
127
128static bool kfence_protect(unsigned long addr)
129{
130	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
131}
132
133static bool kfence_unprotect(unsigned long addr)
134{
135	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
136}
137
138static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
139{
140	long index;
141
142	/* The checks do not affect performance; only called from slow-paths. */
143
144	if (!is_kfence_address((void *)addr))
145		return NULL;
146
147	/*
148	 * May be an invalid index if called with an address at the edge of
149	 * __kfence_pool, in which case we would report an "invalid access"
150	 * error.
151	 */
152	index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
153	if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
154		return NULL;
155
156	return &kfence_metadata[index];
157}
158
159static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
160{
161	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
162	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
163
164	/* The checks do not affect performance; only called from slow-paths. */
165
166	/* Only call with a pointer into kfence_metadata. */
167	if (KFENCE_WARN_ON(meta < kfence_metadata ||
168			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
169		return 0;
170
171	/*
172	 * This metadata object only ever maps to 1 page; verify that the stored
173	 * address is in the expected range.
174	 */
175	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
176		return 0;
177
178	return pageaddr;
179}
180
181/*
182 * Update the object's metadata state, including updating the alloc/free stacks
183 * depending on the state transition.
184 */
185static noinline void metadata_update_state(struct kfence_metadata *meta,
186					   enum kfence_object_state next)
187{
188	struct kfence_track *track =
189		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
190
191	lockdep_assert_held(&meta->lock);
192
193	/*
194	 * Skip over 1 (this) functions; noinline ensures we do not accidentally
195	 * skip over the caller by never inlining.
196	 */
197	track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
198	track->pid = task_pid_nr(current);
199
200	/*
201	 * Pairs with READ_ONCE() in
202	 *	kfence_shutdown_cache(),
203	 *	kfence_handle_page_fault().
204	 */
205	WRITE_ONCE(meta->state, next);
206}
207
208/* Write canary byte to @addr. */
209static inline bool set_canary_byte(u8 *addr)
210{
211	*addr = KFENCE_CANARY_PATTERN(addr);
212	return true;
213}
214
215/* Check canary byte at @addr. */
216static inline bool check_canary_byte(u8 *addr)
217{
218	if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
219		return true;
220
221	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
222	kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr),
223			    KFENCE_ERROR_CORRUPTION);
224	return false;
225}
226
227/* __always_inline this to ensure we won't do an indirect call to fn. */
228static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
229{
230	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
231	unsigned long addr;
232
233	lockdep_assert_held(&meta->lock);
234
235	/*
236	 * We'll iterate over each canary byte per-side until fn() returns
237	 * false. However, we'll still iterate over the canary bytes to the
238	 * right of the object even if there was an error in the canary bytes to
239	 * the left of the object. Specifically, if check_canary_byte()
240	 * generates an error, showing both sides might give more clues as to
241	 * what the error is about when displaying which bytes were corrupted.
242	 */
243
244	/* Apply to left of object. */
245	for (addr = pageaddr; addr < meta->addr; addr++) {
246		if (!fn((u8 *)addr))
247			break;
248	}
249
250	/* Apply to right of object. */
251	for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
252		if (!fn((u8 *)addr))
253			break;
254	}
255}
256
257static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp)
258{
259	struct kfence_metadata *meta = NULL;
260	unsigned long flags;
261	struct page *page;
262	void *addr;
263
264	/* Try to obtain a free object. */
265	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
266	if (!list_empty(&kfence_freelist)) {
267		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
268		list_del_init(&meta->list);
269	}
270	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
271	if (!meta)
272		return NULL;
273
274	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
275		/*
276		 * This is extremely unlikely -- we are reporting on a
277		 * use-after-free, which locked meta->lock, and the reporting
278		 * code via printk calls kmalloc() which ends up in
279		 * kfence_alloc() and tries to grab the same object that we're
280		 * reporting on. While it has never been observed, lockdep does
281		 * report that there is a possibility of deadlock. Fix it by
282		 * using trylock and bailing out gracefully.
283		 */
284		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
285		/* Put the object back on the freelist. */
286		list_add_tail(&meta->list, &kfence_freelist);
287		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
288
289		return NULL;
290	}
291
292	meta->addr = metadata_to_pageaddr(meta);
293	/* Unprotect if we're reusing this page. */
294	if (meta->state == KFENCE_OBJECT_FREED)
295		kfence_unprotect(meta->addr);
296
297	/*
298	 * Note: for allocations made before RNG initialization, will always
299	 * return zero. We still benefit from enabling KFENCE as early as
300	 * possible, even when the RNG is not yet available, as this will allow
301	 * KFENCE to detect bugs due to earlier allocations. The only downside
302	 * is that the out-of-bounds accesses detected are deterministic for
303	 * such allocations.
304	 */
305	if (prandom_u32_max(2)) {
306		/* Allocate on the "right" side, re-calculate address. */
307		meta->addr += PAGE_SIZE - size;
308		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
309	}
310
311	addr = (void *)meta->addr;
312
313	/* Update remaining metadata. */
314	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED);
315	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
316	WRITE_ONCE(meta->cache, cache);
317	meta->size = size;
318	for_each_canary(meta, set_canary_byte);
319
320	/* Set required struct page fields. */
321	page = virt_to_page(meta->addr);
322	page->slab_cache = cache;
323	if (IS_ENABLED(CONFIG_SLUB))
324		page->objects = 1;
325	if (IS_ENABLED(CONFIG_SLAB))
326		page->s_mem = addr;
327
328	raw_spin_unlock_irqrestore(&meta->lock, flags);
329
330	/* Memory initialization. */
331
332	/*
333	 * We check slab_want_init_on_alloc() ourselves, rather than letting
334	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
335	 * redzone.
336	 */
337	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
338		memzero_explicit(addr, size);
339	if (cache->ctor)
340		cache->ctor(addr);
341
342	if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
343		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
344
345	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
346	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
347
348	return addr;
349}
350
351static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
352{
353	struct kcsan_scoped_access assert_page_exclusive;
354	unsigned long flags;
355
356	raw_spin_lock_irqsave(&meta->lock, flags);
357
358	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
359		/* Invalid or double-free, bail out. */
360		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
361		kfence_report_error((unsigned long)addr, false, NULL, meta,
362				    KFENCE_ERROR_INVALID_FREE);
363		raw_spin_unlock_irqrestore(&meta->lock, flags);
364		return;
365	}
366
367	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
368	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
369				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
370				  &assert_page_exclusive);
371
372	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
373		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
374
375	/* Restore page protection if there was an OOB access. */
376	if (meta->unprotected_page) {
377		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
378		kfence_protect(meta->unprotected_page);
379		meta->unprotected_page = 0;
380	}
381
382	/* Check canary bytes for memory corruption. */
383	for_each_canary(meta, check_canary_byte);
384
385	/*
386	 * Clear memory if init-on-free is set. While we protect the page, the
387	 * data is still there, and after a use-after-free is detected, we
388	 * unprotect the page, so the data is still accessible.
389	 */
390	if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
391		memzero_explicit(addr, meta->size);
392
393	/* Mark the object as freed. */
394	metadata_update_state(meta, KFENCE_OBJECT_FREED);
395
396	raw_spin_unlock_irqrestore(&meta->lock, flags);
397
398	/* Protect to detect use-after-frees. */
399	kfence_protect((unsigned long)addr);
400
401	kcsan_end_scoped_access(&assert_page_exclusive);
402	if (!zombie) {
403		/* Add it to the tail of the freelist for reuse. */
404		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
405		KFENCE_WARN_ON(!list_empty(&meta->list));
406		list_add_tail(&meta->list, &kfence_freelist);
407		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
408
409		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
410		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
411	} else {
412		/* See kfence_shutdown_cache(). */
413		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
414	}
415}
416
417static void rcu_guarded_free(struct rcu_head *h)
418{
419	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
420
421	kfence_guarded_free((void *)meta->addr, meta, false);
422}
423
424static bool __init kfence_init_pool(void)
425{
426	unsigned long addr = (unsigned long)__kfence_pool;
427	struct page *pages;
428	int i;
429
430	if (!__kfence_pool)
431		return false;
432
433	if (!arch_kfence_init_pool())
434		goto err;
435
436	pages = virt_to_page(addr);
437
438	/*
439	 * Set up object pages: they must have PG_slab set, to avoid freeing
440	 * these as real pages.
441	 *
442	 * We also want to avoid inserting kfence_free() in the kfree()
443	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
444	 * enters __slab_free() slow-path.
445	 */
446	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
447		if (!i || (i % 2))
448			continue;
449
450		/* Verify we do not have a compound head page. */
451		if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
452			goto err;
453
454		__SetPageSlab(&pages[i]);
455	}
456
457	/*
458	 * Protect the first 2 pages. The first page is mostly unnecessary, and
459	 * merely serves as an extended guard page. However, adding one
460	 * additional page in the beginning gives us an even number of pages,
461	 * which simplifies the mapping of address to metadata index.
462	 */
463	for (i = 0; i < 2; i++) {
464		if (unlikely(!kfence_protect(addr)))
465			goto err;
466
467		addr += PAGE_SIZE;
468	}
469
470	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
471		struct kfence_metadata *meta = &kfence_metadata[i];
472
473		/* Initialize metadata. */
474		INIT_LIST_HEAD(&meta->list);
475		raw_spin_lock_init(&meta->lock);
476		meta->state = KFENCE_OBJECT_UNUSED;
477		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
478		list_add_tail(&meta->list, &kfence_freelist);
479
480		/* Protect the right redzone. */
481		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
482			goto err;
483
484		addr += 2 * PAGE_SIZE;
485	}
486
487	/*
488	 * The pool is live and will never be deallocated from this point on.
489	 * Remove the pool object from the kmemleak object tree, as it would
490	 * otherwise overlap with allocations returned by kfence_alloc(), which
491	 * are registered with kmemleak through the slab post-alloc hook.
492	 */
493	kmemleak_free(__kfence_pool);
494
495	return true;
496
497err:
498	/*
499	 * Only release unprotected pages, and do not try to go back and change
500	 * page attributes due to risk of failing to do so as well. If changing
501	 * page attributes for some pages fails, it is very likely that it also
502	 * fails for the first page, and therefore expect addr==__kfence_pool in
503	 * most failure cases.
504	 */
505	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
506	__kfence_pool = NULL;
507	return false;
508}
509
510/* === DebugFS Interface ==================================================== */
511
512static int stats_show(struct seq_file *seq, void *v)
513{
514	int i;
515
516	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
517	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
518		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
519
520	return 0;
521}
522DEFINE_SHOW_ATTRIBUTE(stats);
523
524/*
525 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
526 * start_object() and next_object() return the object index + 1, because NULL is used
527 * to stop iteration.
528 */
529static void *start_object(struct seq_file *seq, loff_t *pos)
530{
531	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
532		return (void *)((long)*pos + 1);
533	return NULL;
534}
535
536static void stop_object(struct seq_file *seq, void *v)
537{
538}
539
540static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
541{
542	++*pos;
543	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
544		return (void *)((long)*pos + 1);
545	return NULL;
546}
547
548static int show_object(struct seq_file *seq, void *v)
549{
550	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
551	unsigned long flags;
552
553	raw_spin_lock_irqsave(&meta->lock, flags);
554	kfence_print_object(seq, meta);
555	raw_spin_unlock_irqrestore(&meta->lock, flags);
556	seq_puts(seq, "---------------------------------\n");
557
558	return 0;
559}
560
561static const struct seq_operations object_seqops = {
562	.start = start_object,
563	.next = next_object,
564	.stop = stop_object,
565	.show = show_object,
566};
567
568static int open_objects(struct inode *inode, struct file *file)
569{
570	return seq_open(file, &object_seqops);
571}
572
573static const struct file_operations objects_fops = {
574	.open = open_objects,
575	.read = seq_read,
576	.llseek = seq_lseek,
577};
578
579static int __init kfence_debugfs_init(void)
580{
581	struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
582
583	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
584	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
585	return 0;
586}
587
588late_initcall(kfence_debugfs_init);
589
590/* === Allocation Gate Timer ================================================ */
591
592#ifdef CONFIG_KFENCE_STATIC_KEYS
593/* Wait queue to wake up allocation-gate timer task. */
594static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
595
596static void wake_up_kfence_timer(struct irq_work *work)
597{
598	wake_up(&allocation_wait);
599}
600static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
601#endif
602
603/*
604 * Set up delayed work, which will enable and disable the static key. We need to
605 * use a work queue (rather than a simple timer), since enabling and disabling a
606 * static key cannot be done from an interrupt.
607 *
608 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
609 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
610 * more aggressive sampling intervals), we could get away with a variant that
611 * avoids IPIs, at the cost of not immediately capturing allocations if the
612 * instructions remain cached.
613 */
614static struct delayed_work kfence_timer;
615static void toggle_allocation_gate(struct work_struct *work)
616{
617	if (!READ_ONCE(kfence_enabled))
618		return;
619
620	atomic_set(&kfence_allocation_gate, 0);
621#ifdef CONFIG_KFENCE_STATIC_KEYS
622	/* Enable static key, and await allocation to happen. */
623	static_branch_enable(&kfence_allocation_key);
624
625	if (sysctl_hung_task_timeout_secs) {
626		/*
627		 * During low activity with no allocations we might wait a
628		 * while; let's avoid the hung task warning.
629		 */
630		wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
631					sysctl_hung_task_timeout_secs * HZ / 2);
632	} else {
633		wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
634	}
635
636	/* Disable static key and reset timer. */
637	static_branch_disable(&kfence_allocation_key);
638#endif
639	queue_delayed_work(system_unbound_wq, &kfence_timer,
640			   msecs_to_jiffies(kfence_sample_interval));
641}
642static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
643
644/* === Public interface ===================================================== */
645
646void __init kfence_alloc_pool(void)
647{
648	if (!kfence_sample_interval)
649		return;
650
651	__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
652
653	if (!__kfence_pool)
654		pr_err("failed to allocate pool\n");
655}
656
657void __init kfence_init(void)
658{
659	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
660	if (!kfence_sample_interval)
661		return;
662
663	if (!kfence_init_pool()) {
664		pr_err("%s failed\n", __func__);
665		return;
666	}
667
668	WRITE_ONCE(kfence_enabled, true);
669	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
670	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
671		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
672		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
673}
674
675void kfence_shutdown_cache(struct kmem_cache *s)
676{
677	unsigned long flags;
678	struct kfence_metadata *meta;
679	int i;
680
681	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
682		bool in_use;
683
684		meta = &kfence_metadata[i];
685
686		/*
687		 * If we observe some inconsistent cache and state pair where we
688		 * should have returned false here, cache destruction is racing
689		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
690		 * the lock will not help, as different critical section
691		 * serialization will have the same outcome.
692		 */
693		if (READ_ONCE(meta->cache) != s ||
694		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
695			continue;
696
697		raw_spin_lock_irqsave(&meta->lock, flags);
698		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
699		raw_spin_unlock_irqrestore(&meta->lock, flags);
700
701		if (in_use) {
702			/*
703			 * This cache still has allocations, and we should not
704			 * release them back into the freelist so they can still
705			 * safely be used and retain the kernel's default
706			 * behaviour of keeping the allocations alive (leak the
707			 * cache); however, they effectively become "zombie
708			 * allocations" as the KFENCE objects are the only ones
709			 * still in use and the owning cache is being destroyed.
710			 *
711			 * We mark them freed, so that any subsequent use shows
712			 * more useful error messages that will include stack
713			 * traces of the user of the object, the original
714			 * allocation, and caller to shutdown_cache().
715			 */
716			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
717		}
718	}
719
720	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
721		meta = &kfence_metadata[i];
722
723		/* See above. */
724		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
725			continue;
726
727		raw_spin_lock_irqsave(&meta->lock, flags);
728		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
729			meta->cache = NULL;
730		raw_spin_unlock_irqrestore(&meta->lock, flags);
731	}
732}
733
734void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
735{
736	/*
737	 * Perform size check before switching kfence_allocation_gate, so that
738	 * we don't disable KFENCE without making an allocation.
739	 */
740	if (size > PAGE_SIZE)
741		return NULL;
742
743	/*
744	 * Skip allocations from non-default zones, including DMA. We cannot
745	 * guarantee that pages in the KFENCE pool will have the requested
746	 * properties (e.g. reside in DMAable memory).
747	 */
748	if ((flags & GFP_ZONEMASK) ||
749	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32)))
750		return NULL;
751
752	/*
753	 * allocation_gate only needs to become non-zero, so it doesn't make
754	 * sense to continue writing to it and pay the associated contention
755	 * cost, in case we have a large number of concurrent allocations.
756	 */
757	if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1)
758		return NULL;
759#ifdef CONFIG_KFENCE_STATIC_KEYS
760	/*
761	 * waitqueue_active() is fully ordered after the update of
762	 * kfence_allocation_gate per atomic_inc_return().
763	 */
764	if (waitqueue_active(&allocation_wait)) {
765		/*
766		 * Calling wake_up() here may deadlock when allocations happen
767		 * from within timer code. Use an irq_work to defer it.
768		 */
769		irq_work_queue(&wake_up_kfence_timer_work);
770	}
771#endif
772
773	if (!READ_ONCE(kfence_enabled))
774		return NULL;
775
776	return kfence_guarded_alloc(s, size, flags);
777}
778
779size_t kfence_ksize(const void *addr)
780{
781	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
782
783	/*
784	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
785	 * either a use-after-free or invalid access.
786	 */
787	return meta ? meta->size : 0;
788}
789
790void *kfence_object_start(const void *addr)
791{
792	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
793
794	/*
795	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
796	 * either a use-after-free or invalid access.
797	 */
798	return meta ? (void *)meta->addr : NULL;
799}
800
801void __kfence_free(void *addr)
802{
803	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
804
805	/*
806	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
807	 * the object, as the object page may be recycled for other-typed
808	 * objects once it has been freed. meta->cache may be NULL if the cache
809	 * was destroyed.
810	 */
811	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
812		call_rcu(&meta->rcu_head, rcu_guarded_free);
813	else
814		kfence_guarded_free(addr, meta, false);
815}
816
817bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
818{
819	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
820	struct kfence_metadata *to_report = NULL;
821	enum kfence_error_type error_type;
822	unsigned long flags;
823
824	if (!is_kfence_address((void *)addr))
825		return false;
826
827	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
828		return kfence_unprotect(addr); /* ... unprotect and proceed. */
829
830	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
831
832	if (page_index % 2) {
833		/* This is a redzone, report a buffer overflow. */
834		struct kfence_metadata *meta;
835		int distance = 0;
836
837		meta = addr_to_metadata(addr - PAGE_SIZE);
838		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
839			to_report = meta;
840			/* Data race ok; distance calculation approximate. */
841			distance = addr - data_race(meta->addr + meta->size);
842		}
843
844		meta = addr_to_metadata(addr + PAGE_SIZE);
845		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
846			/* Data race ok; distance calculation approximate. */
847			if (!to_report || distance > data_race(meta->addr) - addr)
848				to_report = meta;
849		}
850
851		if (!to_report)
852			goto out;
853
854		raw_spin_lock_irqsave(&to_report->lock, flags);
855		to_report->unprotected_page = addr;
856		error_type = KFENCE_ERROR_OOB;
857
858		/*
859		 * If the object was freed before we took the look we can still
860		 * report this as an OOB -- the report will simply show the
861		 * stacktrace of the free as well.
862		 */
863	} else {
864		to_report = addr_to_metadata(addr);
865		if (!to_report)
866			goto out;
867
868		raw_spin_lock_irqsave(&to_report->lock, flags);
869		error_type = KFENCE_ERROR_UAF;
870		/*
871		 * We may race with __kfence_alloc(), and it is possible that a
872		 * freed object may be reallocated. We simply report this as a
873		 * use-after-free, with the stack trace showing the place where
874		 * the object was re-allocated.
875		 */
876	}
877
878out:
879	if (to_report) {
880		kfence_report_error(addr, is_write, regs, to_report, error_type);
881		raw_spin_unlock_irqrestore(&to_report->lock, flags);
882	} else {
883		/* This may be a UAF or OOB access, but we can't be sure. */
884		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
885	}
886
887	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
888}