Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Queued spinlock
  4 *
  5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
  6 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
  7 * (C) Copyright 2015 Intel Corp.
  8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
  9 *
 10 * Authors: Waiman Long <longman@redhat.com>
 11 *          Peter Zijlstra <peterz@infradead.org>
 12 */
 13
 14#ifndef _GEN_PV_LOCK_SLOWPATH
 15
 16#include <linux/smp.h>
 17#include <linux/bug.h>
 18#include <linux/cpumask.h>
 19#include <linux/percpu.h>
 20#include <linux/hardirq.h>
 21#include <linux/mutex.h>
 22#include <linux/prefetch.h>
 23#include <asm/byteorder.h>
 24#include <asm/qspinlock.h>
 25
 26/*
 27 * Include queued spinlock statistics code
 28 */
 29#include "qspinlock_stat.h"
 30
 31/*
 32 * The basic principle of a queue-based spinlock can best be understood
 33 * by studying a classic queue-based spinlock implementation called the
 34 * MCS lock. The paper below provides a good description for this kind
 35 * of lock.
 36 *
 37 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
 38 *
 39 * This queued spinlock implementation is based on the MCS lock, however to make
 40 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
 41 * API, we must modify it somehow.
 
 42 *
 43 * In particular; where the traditional MCS lock consists of a tail pointer
 44 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 45 * unlock the next pending (next->locked), we compress both these: {tail,
 46 * next->locked} into a single u32 value.
 47 *
 48 * Since a spinlock disables recursion of its own context and there is a limit
 49 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 50 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 51 * we can encode the tail by combining the 2-bit nesting level with the cpu
 52 * number. With one byte for the lock value and 3 bytes for the tail, only a
 53 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 54 * we extend it to a full byte to achieve better performance for architectures
 55 * that support atomic byte write.
 56 *
 57 * We also change the first spinner to spin on the lock bit instead of its
 58 * node; whereby avoiding the need to carry a node from lock to unlock, and
 59 * preserving existing lock API. This also makes the unlock code simpler and
 60 * faster.
 61 *
 62 * N.B. The current implementation only supports architectures that allow
 63 *      atomic operations on smaller 8-bit and 16-bit data types.
 64 *
 65 */
 66
 67#include "mcs_spinlock.h"
 68#define MAX_NODES	4
 69
 70/*
 71 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
 72 * size and four of them will fit nicely in one 64-byte cacheline. For
 73 * pvqspinlock, however, we need more space for extra data. To accommodate
 74 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
 75 * two of them can fit in a cacheline in this case. That is OK as it is rare
 76 * to have more than 2 levels of slowpath nesting in actual use. We don't
 77 * want to penalize pvqspinlocks to optimize for a rare case in native
 78 * qspinlocks.
 79 */
 80struct qnode {
 81	struct mcs_spinlock mcs;
 82#ifdef CONFIG_PARAVIRT_SPINLOCKS
 83	long reserved[2];
 84#endif
 85};
 86
 87/*
 88 * The pending bit spinning loop count.
 89 * This heuristic is used to limit the number of lockword accesses
 90 * made by atomic_cond_read_relaxed when waiting for the lock to
 91 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
 92 * indefinitely because there's no guarantee that we'll make forward
 93 * progress.
 94 */
 95#ifndef _Q_PENDING_LOOPS
 96#define _Q_PENDING_LOOPS	1
 97#endif
 98
 99/*
100 * Per-CPU queue node structures; we can never have more than 4 nested
101 * contexts: task, softirq, hardirq, nmi.
102 *
103 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
104 *
105 * PV doubles the storage and uses the second cacheline for PV state.
106 */
107static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
108
109/*
110 * We must be able to distinguish between no-tail and the tail at 0:0,
111 * therefore increment the cpu number by one.
112 */
113
114static inline __pure u32 encode_tail(int cpu, int idx)
115{
116	u32 tail;
117
118	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
119	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
120
121	return tail;
122}
123
124static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
125{
126	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
127	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
128
129	return per_cpu_ptr(&qnodes[idx].mcs, cpu);
130}
131
132static inline __pure
133struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
134{
135	return &((struct qnode *)base + idx)->mcs;
136}
137
138#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
139
140#if _Q_PENDING_BITS == 8
141/**
142 * clear_pending - clear the pending bit.
143 * @lock: Pointer to queued spinlock structure
144 *
145 * *,1,* -> *,0,*
146 */
147static __always_inline void clear_pending(struct qspinlock *lock)
148{
149	WRITE_ONCE(lock->pending, 0);
150}
151
152/**
153 * clear_pending_set_locked - take ownership and clear the pending bit.
154 * @lock: Pointer to queued spinlock structure
155 *
156 * *,1,0 -> *,0,1
157 *
158 * Lock stealing is not allowed if this function is used.
159 */
160static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
161{
162	WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
163}
164
165/*
166 * xchg_tail - Put in the new queue tail code word & retrieve previous one
167 * @lock : Pointer to queued spinlock structure
168 * @tail : The new queue tail code word
169 * Return: The previous queue tail code word
170 *
171 * xchg(lock, tail), which heads an address dependency
172 *
173 * p,*,* -> n,*,* ; prev = xchg(lock, node)
174 */
175static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
176{
177	/*
178	 * We can use relaxed semantics since the caller ensures that the
179	 * MCS node is properly initialized before updating the tail.
180	 */
181	return (u32)xchg_relaxed(&lock->tail,
182				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
183}
184
185#else /* _Q_PENDING_BITS == 8 */
186
187/**
188 * clear_pending - clear the pending bit.
189 * @lock: Pointer to queued spinlock structure
190 *
191 * *,1,* -> *,0,*
192 */
193static __always_inline void clear_pending(struct qspinlock *lock)
194{
195	atomic_andnot(_Q_PENDING_VAL, &lock->val);
196}
197
198/**
199 * clear_pending_set_locked - take ownership and clear the pending bit.
200 * @lock: Pointer to queued spinlock structure
201 *
202 * *,1,0 -> *,0,1
203 */
204static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
205{
206	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
207}
208
209/**
210 * xchg_tail - Put in the new queue tail code word & retrieve previous one
211 * @lock : Pointer to queued spinlock structure
212 * @tail : The new queue tail code word
213 * Return: The previous queue tail code word
214 *
215 * xchg(lock, tail)
216 *
217 * p,*,* -> n,*,* ; prev = xchg(lock, node)
218 */
219static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
220{
221	u32 old, new, val = atomic_read(&lock->val);
222
223	for (;;) {
224		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
225		/*
226		 * We can use relaxed semantics since the caller ensures that
227		 * the MCS node is properly initialized before updating the
228		 * tail.
229		 */
230		old = atomic_cmpxchg_relaxed(&lock->val, val, new);
231		if (old == val)
232			break;
233
234		val = old;
235	}
236	return old;
237}
238#endif /* _Q_PENDING_BITS == 8 */
239
240/**
241 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
242 * @lock : Pointer to queued spinlock structure
243 * Return: The previous lock value
244 *
245 * *,*,* -> *,1,*
246 */
247#ifndef queued_fetch_set_pending_acquire
248static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
249{
250	return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
251}
252#endif
253
254/**
255 * set_locked - Set the lock bit and own the lock
256 * @lock: Pointer to queued spinlock structure
257 *
258 * *,*,0 -> *,0,1
259 */
260static __always_inline void set_locked(struct qspinlock *lock)
261{
262	WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
263}
264
265
266/*
267 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
268 * all the PV callbacks.
269 */
270
271static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
272static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
273					   struct mcs_spinlock *prev) { }
274static __always_inline void __pv_kick_node(struct qspinlock *lock,
275					   struct mcs_spinlock *node) { }
276static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
277						   struct mcs_spinlock *node)
278						   { return 0; }
279
280#define pv_enabled()		false
281
282#define pv_init_node		__pv_init_node
283#define pv_wait_node		__pv_wait_node
284#define pv_kick_node		__pv_kick_node
285#define pv_wait_head_or_lock	__pv_wait_head_or_lock
286
287#ifdef CONFIG_PARAVIRT_SPINLOCKS
288#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
289#endif
290
291#endif /* _GEN_PV_LOCK_SLOWPATH */
292
293/**
294 * queued_spin_lock_slowpath - acquire the queued spinlock
295 * @lock: Pointer to queued spinlock structure
296 * @val: Current value of the queued spinlock 32-bit word
297 *
298 * (queue tail, pending bit, lock value)
299 *
300 *              fast     :    slow                                  :    unlock
301 *                       :                                          :
302 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
303 *                       :       | ^--------.------.             /  :
304 *                       :       v           \      \            |  :
305 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
306 *                       :       | ^--'              |           |  :
307 *                       :       v                   |           |  :
308 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
309 *   queue               :       | ^--'                          |  :
310 *                       :       v                               |  :
311 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
312 *   queue               :         ^--'                             :
313 */
314void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
315{
316	struct mcs_spinlock *prev, *next, *node;
317	u32 old, tail;
318	int idx;
319
320	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
321
322	if (pv_enabled())
323		goto pv_queue;
324
325	if (virt_spin_lock(lock))
326		return;
327
328	/*
329	 * Wait for in-progress pending->locked hand-overs with a bounded
330	 * number of spins so that we guarantee forward progress.
331	 *
332	 * 0,1,0 -> 0,0,1
333	 */
334	if (val == _Q_PENDING_VAL) {
335		int cnt = _Q_PENDING_LOOPS;
336		val = atomic_cond_read_relaxed(&lock->val,
337					       (VAL != _Q_PENDING_VAL) || !cnt--);
338	}
339
340	/*
341	 * If we observe any contention; queue.
342	 */
343	if (val & ~_Q_LOCKED_MASK)
344		goto queue;
345
346	/*
347	 * trylock || pending
348	 *
349	 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
350	 */
351	val = queued_fetch_set_pending_acquire(lock);
352
353	/*
354	 * If we observe contention, there is a concurrent locker.
355	 *
356	 * Undo and queue; our setting of PENDING might have made the
357	 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
358	 * on @next to become !NULL.
359	 */
360	if (unlikely(val & ~_Q_LOCKED_MASK)) {
361
362		/* Undo PENDING if we set it. */
363		if (!(val & _Q_PENDING_MASK))
364			clear_pending(lock);
365
366		goto queue;
367	}
368
369	/*
370	 * We're pending, wait for the owner to go away.
371	 *
372	 * 0,1,1 -> 0,1,0
373	 *
374	 * this wait loop must be a load-acquire such that we match the
375	 * store-release that clears the locked bit and create lock
376	 * sequentiality; this is because not all
377	 * clear_pending_set_locked() implementations imply full
378	 * barriers.
379	 */
380	if (val & _Q_LOCKED_MASK)
381		atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
382
383	/*
384	 * take ownership and clear the pending bit.
385	 *
386	 * 0,1,0 -> 0,0,1
387	 */
388	clear_pending_set_locked(lock);
389	lockevent_inc(lock_pending);
390	return;
391
392	/*
393	 * End of pending bit optimistic spinning and beginning of MCS
394	 * queuing.
395	 */
396queue:
397	lockevent_inc(lock_slowpath);
398pv_queue:
399	node = this_cpu_ptr(&qnodes[0].mcs);
400	idx = node->count++;
401	tail = encode_tail(smp_processor_id(), idx);
402
403	/*
404	 * 4 nodes are allocated based on the assumption that there will
405	 * not be nested NMIs taking spinlocks. That may not be true in
406	 * some architectures even though the chance of needing more than
407	 * 4 nodes will still be extremely unlikely. When that happens,
408	 * we fall back to spinning on the lock directly without using
409	 * any MCS node. This is not the most elegant solution, but is
410	 * simple enough.
411	 */
412	if (unlikely(idx >= MAX_NODES)) {
413		lockevent_inc(lock_no_node);
414		while (!queued_spin_trylock(lock))
415			cpu_relax();
416		goto release;
417	}
418
419	node = grab_mcs_node(node, idx);
420
421	/*
422	 * Keep counts of non-zero index values:
423	 */
424	lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
425
426	/*
427	 * Ensure that we increment the head node->count before initialising
428	 * the actual node. If the compiler is kind enough to reorder these
429	 * stores, then an IRQ could overwrite our assignments.
430	 */
431	barrier();
432
433	node->locked = 0;
434	node->next = NULL;
435	pv_init_node(node);
436
437	/*
438	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
439	 * attempt the trylock once more in the hope someone let go while we
440	 * weren't watching.
441	 */
442	if (queued_spin_trylock(lock))
443		goto release;
444
445	/*
446	 * Ensure that the initialisation of @node is complete before we
447	 * publish the updated tail via xchg_tail() and potentially link
448	 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
449	 */
450	smp_wmb();
451
452	/*
453	 * Publish the updated tail.
454	 * We have already touched the queueing cacheline; don't bother with
455	 * pending stuff.
456	 *
457	 * p,*,* -> n,*,*
458	 */
459	old = xchg_tail(lock, tail);
460	next = NULL;
461
462	/*
463	 * if there was a previous node; link it and wait until reaching the
464	 * head of the waitqueue.
465	 */
466	if (old & _Q_TAIL_MASK) {
467		prev = decode_tail(old);
468
469		/* Link @node into the waitqueue. */
470		WRITE_ONCE(prev->next, node);
471
472		pv_wait_node(node, prev);
473		arch_mcs_spin_lock_contended(&node->locked);
474
475		/*
476		 * While waiting for the MCS lock, the next pointer may have
477		 * been set by another lock waiter. We optimistically load
478		 * the next pointer & prefetch the cacheline for writing
479		 * to reduce latency in the upcoming MCS unlock operation.
480		 */
481		next = READ_ONCE(node->next);
482		if (next)
483			prefetchw(next);
484	}
485
486	/*
487	 * we're at the head of the waitqueue, wait for the owner & pending to
488	 * go away.
489	 *
490	 * *,x,y -> *,0,0
491	 *
492	 * this wait loop must use a load-acquire such that we match the
493	 * store-release that clears the locked bit and create lock
494	 * sequentiality; this is because the set_locked() function below
495	 * does not imply a full barrier.
496	 *
497	 * The PV pv_wait_head_or_lock function, if active, will acquire
498	 * the lock and return a non-zero value. So we have to skip the
499	 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
500	 * been designated yet, there is no way for the locked value to become
501	 * _Q_SLOW_VAL. So both the set_locked() and the
502	 * atomic_cmpxchg_relaxed() calls will be safe.
503	 *
504	 * If PV isn't active, 0 will be returned instead.
505	 *
506	 */
507	if ((val = pv_wait_head_or_lock(lock, node)))
508		goto locked;
509
510	val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
511
512locked:
513	/*
514	 * claim the lock:
515	 *
516	 * n,0,0 -> 0,0,1 : lock, uncontended
517	 * *,*,0 -> *,*,1 : lock, contended
518	 *
519	 * If the queue head is the only one in the queue (lock value == tail)
520	 * and nobody is pending, clear the tail code and grab the lock.
521	 * Otherwise, we only need to grab the lock.
522	 */
523
524	/*
525	 * In the PV case we might already have _Q_LOCKED_VAL set, because
526	 * of lock stealing; therefore we must also allow:
527	 *
528	 * n,0,1 -> 0,0,1
529	 *
530	 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
531	 *       above wait condition, therefore any concurrent setting of
532	 *       PENDING will make the uncontended transition fail.
533	 */
534	if ((val & _Q_TAIL_MASK) == tail) {
535		if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
536			goto release; /* No contention */
537	}
538
539	/*
540	 * Either somebody is queued behind us or _Q_PENDING_VAL got set
541	 * which will then detect the remaining tail and queue behind us
542	 * ensuring we'll see a @next.
543	 */
544	set_locked(lock);
545
546	/*
547	 * contended path; wait for next if not observed yet, release.
548	 */
549	if (!next)
550		next = smp_cond_load_relaxed(&node->next, (VAL));
551
552	arch_mcs_spin_unlock_contended(&next->locked);
553	pv_kick_node(lock, next);
554
555release:
556	/*
557	 * release the node
558	 */
559	__this_cpu_dec(qnodes[0].mcs.count);
560}
561EXPORT_SYMBOL(queued_spin_lock_slowpath);
562
563/*
564 * Generate the paravirt code for queued_spin_unlock_slowpath().
565 */
566#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
567#define _GEN_PV_LOCK_SLOWPATH
568
569#undef  pv_enabled
570#define pv_enabled()	true
571
572#undef pv_init_node
573#undef pv_wait_node
574#undef pv_kick_node
575#undef pv_wait_head_or_lock
576
577#undef  queued_spin_lock_slowpath
578#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
579
580#include "qspinlock_paravirt.h"
581#include "qspinlock.c"
582
 
 
 
 
 
 
 
583#endif
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Queued spinlock
  4 *
  5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
  6 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
  7 * (C) Copyright 2015 Intel Corp.
  8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
  9 *
 10 * Authors: Waiman Long <longman@redhat.com>
 11 *          Peter Zijlstra <peterz@infradead.org>
 12 */
 13
 14#ifndef _GEN_PV_LOCK_SLOWPATH
 15
 16#include <linux/smp.h>
 17#include <linux/bug.h>
 18#include <linux/cpumask.h>
 19#include <linux/percpu.h>
 20#include <linux/hardirq.h>
 21#include <linux/mutex.h>
 22#include <linux/prefetch.h>
 23#include <asm/byteorder.h>
 24#include <asm/qspinlock.h>
 25
 26/*
 27 * Include queued spinlock statistics code
 28 */
 29#include "qspinlock_stat.h"
 30
 31/*
 32 * The basic principle of a queue-based spinlock can best be understood
 33 * by studying a classic queue-based spinlock implementation called the
 34 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
 35 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
 36 * Scott") is available at
 37 *
 38 * https://bugzilla.kernel.org/show_bug.cgi?id=206115
 39 *
 40 * This queued spinlock implementation is based on the MCS lock, however to
 41 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
 42 * existing API, we must modify it somehow.
 43 *
 44 * In particular; where the traditional MCS lock consists of a tail pointer
 45 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 46 * unlock the next pending (next->locked), we compress both these: {tail,
 47 * next->locked} into a single u32 value.
 48 *
 49 * Since a spinlock disables recursion of its own context and there is a limit
 50 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 51 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 52 * we can encode the tail by combining the 2-bit nesting level with the cpu
 53 * number. With one byte for the lock value and 3 bytes for the tail, only a
 54 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 55 * we extend it to a full byte to achieve better performance for architectures
 56 * that support atomic byte write.
 57 *
 58 * We also change the first spinner to spin on the lock bit instead of its
 59 * node; whereby avoiding the need to carry a node from lock to unlock, and
 60 * preserving existing lock API. This also makes the unlock code simpler and
 61 * faster.
 62 *
 63 * N.B. The current implementation only supports architectures that allow
 64 *      atomic operations on smaller 8-bit and 16-bit data types.
 65 *
 66 */
 67
 68#include "mcs_spinlock.h"
 69#define MAX_NODES	4
 70
 71/*
 72 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
 73 * size and four of them will fit nicely in one 64-byte cacheline. For
 74 * pvqspinlock, however, we need more space for extra data. To accommodate
 75 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
 76 * two of them can fit in a cacheline in this case. That is OK as it is rare
 77 * to have more than 2 levels of slowpath nesting in actual use. We don't
 78 * want to penalize pvqspinlocks to optimize for a rare case in native
 79 * qspinlocks.
 80 */
 81struct qnode {
 82	struct mcs_spinlock mcs;
 83#ifdef CONFIG_PARAVIRT_SPINLOCKS
 84	long reserved[2];
 85#endif
 86};
 87
 88/*
 89 * The pending bit spinning loop count.
 90 * This heuristic is used to limit the number of lockword accesses
 91 * made by atomic_cond_read_relaxed when waiting for the lock to
 92 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
 93 * indefinitely because there's no guarantee that we'll make forward
 94 * progress.
 95 */
 96#ifndef _Q_PENDING_LOOPS
 97#define _Q_PENDING_LOOPS	1
 98#endif
 99
100/*
101 * Per-CPU queue node structures; we can never have more than 4 nested
102 * contexts: task, softirq, hardirq, nmi.
103 *
104 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
105 *
106 * PV doubles the storage and uses the second cacheline for PV state.
107 */
108static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
109
110/*
111 * We must be able to distinguish between no-tail and the tail at 0:0,
112 * therefore increment the cpu number by one.
113 */
114
115static inline __pure u32 encode_tail(int cpu, int idx)
116{
117	u32 tail;
118
119	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
120	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
121
122	return tail;
123}
124
125static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
126{
127	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
128	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
129
130	return per_cpu_ptr(&qnodes[idx].mcs, cpu);
131}
132
133static inline __pure
134struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
135{
136	return &((struct qnode *)base + idx)->mcs;
137}
138
139#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
140
141#if _Q_PENDING_BITS == 8
142/**
143 * clear_pending - clear the pending bit.
144 * @lock: Pointer to queued spinlock structure
145 *
146 * *,1,* -> *,0,*
147 */
148static __always_inline void clear_pending(struct qspinlock *lock)
149{
150	WRITE_ONCE(lock->pending, 0);
151}
152
153/**
154 * clear_pending_set_locked - take ownership and clear the pending bit.
155 * @lock: Pointer to queued spinlock structure
156 *
157 * *,1,0 -> *,0,1
158 *
159 * Lock stealing is not allowed if this function is used.
160 */
161static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
162{
163	WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
164}
165
166/*
167 * xchg_tail - Put in the new queue tail code word & retrieve previous one
168 * @lock : Pointer to queued spinlock structure
169 * @tail : The new queue tail code word
170 * Return: The previous queue tail code word
171 *
172 * xchg(lock, tail), which heads an address dependency
173 *
174 * p,*,* -> n,*,* ; prev = xchg(lock, node)
175 */
176static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177{
178	/*
179	 * We can use relaxed semantics since the caller ensures that the
180	 * MCS node is properly initialized before updating the tail.
181	 */
182	return (u32)xchg_relaxed(&lock->tail,
183				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
184}
185
186#else /* _Q_PENDING_BITS == 8 */
187
188/**
189 * clear_pending - clear the pending bit.
190 * @lock: Pointer to queued spinlock structure
191 *
192 * *,1,* -> *,0,*
193 */
194static __always_inline void clear_pending(struct qspinlock *lock)
195{
196	atomic_andnot(_Q_PENDING_VAL, &lock->val);
197}
198
199/**
200 * clear_pending_set_locked - take ownership and clear the pending bit.
201 * @lock: Pointer to queued spinlock structure
202 *
203 * *,1,0 -> *,0,1
204 */
205static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
206{
207	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
208}
209
210/**
211 * xchg_tail - Put in the new queue tail code word & retrieve previous one
212 * @lock : Pointer to queued spinlock structure
213 * @tail : The new queue tail code word
214 * Return: The previous queue tail code word
215 *
216 * xchg(lock, tail)
217 *
218 * p,*,* -> n,*,* ; prev = xchg(lock, node)
219 */
220static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
221{
222	u32 old, new, val = atomic_read(&lock->val);
223
224	for (;;) {
225		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
226		/*
227		 * We can use relaxed semantics since the caller ensures that
228		 * the MCS node is properly initialized before updating the
229		 * tail.
230		 */
231		old = atomic_cmpxchg_relaxed(&lock->val, val, new);
232		if (old == val)
233			break;
234
235		val = old;
236	}
237	return old;
238}
239#endif /* _Q_PENDING_BITS == 8 */
240
241/**
242 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
243 * @lock : Pointer to queued spinlock structure
244 * Return: The previous lock value
245 *
246 * *,*,* -> *,1,*
247 */
248#ifndef queued_fetch_set_pending_acquire
249static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
250{
251	return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
252}
253#endif
254
255/**
256 * set_locked - Set the lock bit and own the lock
257 * @lock: Pointer to queued spinlock structure
258 *
259 * *,*,0 -> *,0,1
260 */
261static __always_inline void set_locked(struct qspinlock *lock)
262{
263	WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
264}
265
266
267/*
268 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
269 * all the PV callbacks.
270 */
271
272static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
273static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
274					   struct mcs_spinlock *prev) { }
275static __always_inline void __pv_kick_node(struct qspinlock *lock,
276					   struct mcs_spinlock *node) { }
277static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
278						   struct mcs_spinlock *node)
279						   { return 0; }
280
281#define pv_enabled()		false
282
283#define pv_init_node		__pv_init_node
284#define pv_wait_node		__pv_wait_node
285#define pv_kick_node		__pv_kick_node
286#define pv_wait_head_or_lock	__pv_wait_head_or_lock
287
288#ifdef CONFIG_PARAVIRT_SPINLOCKS
289#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
290#endif
291
292#endif /* _GEN_PV_LOCK_SLOWPATH */
293
294/**
295 * queued_spin_lock_slowpath - acquire the queued spinlock
296 * @lock: Pointer to queued spinlock structure
297 * @val: Current value of the queued spinlock 32-bit word
298 *
299 * (queue tail, pending bit, lock value)
300 *
301 *              fast     :    slow                                  :    unlock
302 *                       :                                          :
303 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
304 *                       :       | ^--------.------.             /  :
305 *                       :       v           \      \            |  :
306 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
307 *                       :       | ^--'              |           |  :
308 *                       :       v                   |           |  :
309 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
310 *   queue               :       | ^--'                          |  :
311 *                       :       v                               |  :
312 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
313 *   queue               :         ^--'                             :
314 */
315void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
316{
317	struct mcs_spinlock *prev, *next, *node;
318	u32 old, tail;
319	int idx;
320
321	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
322
323	if (pv_enabled())
324		goto pv_queue;
325
326	if (virt_spin_lock(lock))
327		return;
328
329	/*
330	 * Wait for in-progress pending->locked hand-overs with a bounded
331	 * number of spins so that we guarantee forward progress.
332	 *
333	 * 0,1,0 -> 0,0,1
334	 */
335	if (val == _Q_PENDING_VAL) {
336		int cnt = _Q_PENDING_LOOPS;
337		val = atomic_cond_read_relaxed(&lock->val,
338					       (VAL != _Q_PENDING_VAL) || !cnt--);
339	}
340
341	/*
342	 * If we observe any contention; queue.
343	 */
344	if (val & ~_Q_LOCKED_MASK)
345		goto queue;
346
347	/*
348	 * trylock || pending
349	 *
350	 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
351	 */
352	val = queued_fetch_set_pending_acquire(lock);
353
354	/*
355	 * If we observe contention, there is a concurrent locker.
356	 *
357	 * Undo and queue; our setting of PENDING might have made the
358	 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
359	 * on @next to become !NULL.
360	 */
361	if (unlikely(val & ~_Q_LOCKED_MASK)) {
362
363		/* Undo PENDING if we set it. */
364		if (!(val & _Q_PENDING_MASK))
365			clear_pending(lock);
366
367		goto queue;
368	}
369
370	/*
371	 * We're pending, wait for the owner to go away.
372	 *
373	 * 0,1,1 -> 0,1,0
374	 *
375	 * this wait loop must be a load-acquire such that we match the
376	 * store-release that clears the locked bit and create lock
377	 * sequentiality; this is because not all
378	 * clear_pending_set_locked() implementations imply full
379	 * barriers.
380	 */
381	if (val & _Q_LOCKED_MASK)
382		atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
383
384	/*
385	 * take ownership and clear the pending bit.
386	 *
387	 * 0,1,0 -> 0,0,1
388	 */
389	clear_pending_set_locked(lock);
390	lockevent_inc(lock_pending);
391	return;
392
393	/*
394	 * End of pending bit optimistic spinning and beginning of MCS
395	 * queuing.
396	 */
397queue:
398	lockevent_inc(lock_slowpath);
399pv_queue:
400	node = this_cpu_ptr(&qnodes[0].mcs);
401	idx = node->count++;
402	tail = encode_tail(smp_processor_id(), idx);
403
404	/*
405	 * 4 nodes are allocated based on the assumption that there will
406	 * not be nested NMIs taking spinlocks. That may not be true in
407	 * some architectures even though the chance of needing more than
408	 * 4 nodes will still be extremely unlikely. When that happens,
409	 * we fall back to spinning on the lock directly without using
410	 * any MCS node. This is not the most elegant solution, but is
411	 * simple enough.
412	 */
413	if (unlikely(idx >= MAX_NODES)) {
414		lockevent_inc(lock_no_node);
415		while (!queued_spin_trylock(lock))
416			cpu_relax();
417		goto release;
418	}
419
420	node = grab_mcs_node(node, idx);
421
422	/*
423	 * Keep counts of non-zero index values:
424	 */
425	lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
426
427	/*
428	 * Ensure that we increment the head node->count before initialising
429	 * the actual node. If the compiler is kind enough to reorder these
430	 * stores, then an IRQ could overwrite our assignments.
431	 */
432	barrier();
433
434	node->locked = 0;
435	node->next = NULL;
436	pv_init_node(node);
437
438	/*
439	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
440	 * attempt the trylock once more in the hope someone let go while we
441	 * weren't watching.
442	 */
443	if (queued_spin_trylock(lock))
444		goto release;
445
446	/*
447	 * Ensure that the initialisation of @node is complete before we
448	 * publish the updated tail via xchg_tail() and potentially link
449	 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
450	 */
451	smp_wmb();
452
453	/*
454	 * Publish the updated tail.
455	 * We have already touched the queueing cacheline; don't bother with
456	 * pending stuff.
457	 *
458	 * p,*,* -> n,*,*
459	 */
460	old = xchg_tail(lock, tail);
461	next = NULL;
462
463	/*
464	 * if there was a previous node; link it and wait until reaching the
465	 * head of the waitqueue.
466	 */
467	if (old & _Q_TAIL_MASK) {
468		prev = decode_tail(old);
469
470		/* Link @node into the waitqueue. */
471		WRITE_ONCE(prev->next, node);
472
473		pv_wait_node(node, prev);
474		arch_mcs_spin_lock_contended(&node->locked);
475
476		/*
477		 * While waiting for the MCS lock, the next pointer may have
478		 * been set by another lock waiter. We optimistically load
479		 * the next pointer & prefetch the cacheline for writing
480		 * to reduce latency in the upcoming MCS unlock operation.
481		 */
482		next = READ_ONCE(node->next);
483		if (next)
484			prefetchw(next);
485	}
486
487	/*
488	 * we're at the head of the waitqueue, wait for the owner & pending to
489	 * go away.
490	 *
491	 * *,x,y -> *,0,0
492	 *
493	 * this wait loop must use a load-acquire such that we match the
494	 * store-release that clears the locked bit and create lock
495	 * sequentiality; this is because the set_locked() function below
496	 * does not imply a full barrier.
497	 *
498	 * The PV pv_wait_head_or_lock function, if active, will acquire
499	 * the lock and return a non-zero value. So we have to skip the
500	 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
501	 * been designated yet, there is no way for the locked value to become
502	 * _Q_SLOW_VAL. So both the set_locked() and the
503	 * atomic_cmpxchg_relaxed() calls will be safe.
504	 *
505	 * If PV isn't active, 0 will be returned instead.
506	 *
507	 */
508	if ((val = pv_wait_head_or_lock(lock, node)))
509		goto locked;
510
511	val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
512
513locked:
514	/*
515	 * claim the lock:
516	 *
517	 * n,0,0 -> 0,0,1 : lock, uncontended
518	 * *,*,0 -> *,*,1 : lock, contended
519	 *
520	 * If the queue head is the only one in the queue (lock value == tail)
521	 * and nobody is pending, clear the tail code and grab the lock.
522	 * Otherwise, we only need to grab the lock.
523	 */
524
525	/*
526	 * In the PV case we might already have _Q_LOCKED_VAL set, because
527	 * of lock stealing; therefore we must also allow:
528	 *
529	 * n,0,1 -> 0,0,1
530	 *
531	 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
532	 *       above wait condition, therefore any concurrent setting of
533	 *       PENDING will make the uncontended transition fail.
534	 */
535	if ((val & _Q_TAIL_MASK) == tail) {
536		if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
537			goto release; /* No contention */
538	}
539
540	/*
541	 * Either somebody is queued behind us or _Q_PENDING_VAL got set
542	 * which will then detect the remaining tail and queue behind us
543	 * ensuring we'll see a @next.
544	 */
545	set_locked(lock);
546
547	/*
548	 * contended path; wait for next if not observed yet, release.
549	 */
550	if (!next)
551		next = smp_cond_load_relaxed(&node->next, (VAL));
552
553	arch_mcs_spin_unlock_contended(&next->locked);
554	pv_kick_node(lock, next);
555
556release:
557	/*
558	 * release the node
559	 */
560	__this_cpu_dec(qnodes[0].mcs.count);
561}
562EXPORT_SYMBOL(queued_spin_lock_slowpath);
563
564/*
565 * Generate the paravirt code for queued_spin_unlock_slowpath().
566 */
567#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
568#define _GEN_PV_LOCK_SLOWPATH
569
570#undef  pv_enabled
571#define pv_enabled()	true
572
573#undef pv_init_node
574#undef pv_wait_node
575#undef pv_kick_node
576#undef pv_wait_head_or_lock
577
578#undef  queued_spin_lock_slowpath
579#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
580
581#include "qspinlock_paravirt.h"
582#include "qspinlock.c"
583
584bool nopvspin __initdata;
585static __init int parse_nopvspin(char *arg)
586{
587	nopvspin = true;
588	return 0;
589}
590early_param("nopvspin", parse_nopvspin);
591#endif