Loading...
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/proc_fs.h>
7#include <linux/smp.h>
8#include <linux/init.h>
9#include <linux/notifier.h>
10#include <linux/sched/signal.h>
11#include <linux/sched/hotplug.h>
12#include <linux/sched/isolation.h>
13#include <linux/sched/task.h>
14#include <linux/sched/smt.h>
15#include <linux/unistd.h>
16#include <linux/cpu.h>
17#include <linux/oom.h>
18#include <linux/rcupdate.h>
19#include <linux/export.h>
20#include <linux/bug.h>
21#include <linux/kthread.h>
22#include <linux/stop_machine.h>
23#include <linux/mutex.h>
24#include <linux/gfp.h>
25#include <linux/suspend.h>
26#include <linux/lockdep.h>
27#include <linux/tick.h>
28#include <linux/irq.h>
29#include <linux/nmi.h>
30#include <linux/smpboot.h>
31#include <linux/relay.h>
32#include <linux/slab.h>
33#include <linux/percpu-rwsem.h>
34
35#include <trace/events/power.h>
36#define CREATE_TRACE_POINTS
37#include <trace/events/cpuhp.h>
38
39#include "smpboot.h"
40
41/**
42 * cpuhp_cpu_state - Per cpu hotplug state storage
43 * @state: The current cpu state
44 * @target: The target state
45 * @thread: Pointer to the hotplug thread
46 * @should_run: Thread should execute
47 * @rollback: Perform a rollback
48 * @single: Single callback invocation
49 * @bringup: Single callback bringup or teardown selector
50 * @cb_state: The state for a single callback (install/uninstall)
51 * @result: Result of the operation
52 * @done_up: Signal completion to the issuer of the task for cpu-up
53 * @done_down: Signal completion to the issuer of the task for cpu-down
54 */
55struct cpuhp_cpu_state {
56 enum cpuhp_state state;
57 enum cpuhp_state target;
58 enum cpuhp_state fail;
59#ifdef CONFIG_SMP
60 struct task_struct *thread;
61 bool should_run;
62 bool rollback;
63 bool single;
64 bool bringup;
65 struct hlist_node *node;
66 struct hlist_node *last;
67 enum cpuhp_state cb_state;
68 int result;
69 struct completion done_up;
70 struct completion done_down;
71#endif
72};
73
74static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 .fail = CPUHP_INVALID,
76};
77
78#ifdef CONFIG_SMP
79cpumask_t cpus_booted_once_mask;
80#endif
81
82#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
83static struct lockdep_map cpuhp_state_up_map =
84 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
85static struct lockdep_map cpuhp_state_down_map =
86 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
87
88
89static inline void cpuhp_lock_acquire(bool bringup)
90{
91 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92}
93
94static inline void cpuhp_lock_release(bool bringup)
95{
96 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97}
98#else
99
100static inline void cpuhp_lock_acquire(bool bringup) { }
101static inline void cpuhp_lock_release(bool bringup) { }
102
103#endif
104
105/**
106 * cpuhp_step - Hotplug state machine step
107 * @name: Name of the step
108 * @startup: Startup function of the step
109 * @teardown: Teardown function of the step
110 * @cant_stop: Bringup/teardown can't be stopped at this step
111 */
112struct cpuhp_step {
113 const char *name;
114 union {
115 int (*single)(unsigned int cpu);
116 int (*multi)(unsigned int cpu,
117 struct hlist_node *node);
118 } startup;
119 union {
120 int (*single)(unsigned int cpu);
121 int (*multi)(unsigned int cpu,
122 struct hlist_node *node);
123 } teardown;
124 struct hlist_head list;
125 bool cant_stop;
126 bool multi_instance;
127};
128
129static DEFINE_MUTEX(cpuhp_state_mutex);
130static struct cpuhp_step cpuhp_hp_states[];
131
132static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
133{
134 return cpuhp_hp_states + state;
135}
136
137/**
138 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
139 * @cpu: The cpu for which the callback should be invoked
140 * @state: The state to do callbacks for
141 * @bringup: True if the bringup callback should be invoked
142 * @node: For multi-instance, do a single entry callback for install/remove
143 * @lastp: For multi-instance rollback, remember how far we got
144 *
145 * Called from cpu hotplug and from the state register machinery.
146 */
147static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
148 bool bringup, struct hlist_node *node,
149 struct hlist_node **lastp)
150{
151 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
152 struct cpuhp_step *step = cpuhp_get_step(state);
153 int (*cbm)(unsigned int cpu, struct hlist_node *node);
154 int (*cb)(unsigned int cpu);
155 int ret, cnt;
156
157 if (st->fail == state) {
158 st->fail = CPUHP_INVALID;
159
160 if (!(bringup ? step->startup.single : step->teardown.single))
161 return 0;
162
163 return -EAGAIN;
164 }
165
166 if (!step->multi_instance) {
167 WARN_ON_ONCE(lastp && *lastp);
168 cb = bringup ? step->startup.single : step->teardown.single;
169 if (!cb)
170 return 0;
171 trace_cpuhp_enter(cpu, st->target, state, cb);
172 ret = cb(cpu);
173 trace_cpuhp_exit(cpu, st->state, state, ret);
174 return ret;
175 }
176 cbm = bringup ? step->startup.multi : step->teardown.multi;
177 if (!cbm)
178 return 0;
179
180 /* Single invocation for instance add/remove */
181 if (node) {
182 WARN_ON_ONCE(lastp && *lastp);
183 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
184 ret = cbm(cpu, node);
185 trace_cpuhp_exit(cpu, st->state, state, ret);
186 return ret;
187 }
188
189 /* State transition. Invoke on all instances */
190 cnt = 0;
191 hlist_for_each(node, &step->list) {
192 if (lastp && node == *lastp)
193 break;
194
195 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196 ret = cbm(cpu, node);
197 trace_cpuhp_exit(cpu, st->state, state, ret);
198 if (ret) {
199 if (!lastp)
200 goto err;
201
202 *lastp = node;
203 return ret;
204 }
205 cnt++;
206 }
207 if (lastp)
208 *lastp = NULL;
209 return 0;
210err:
211 /* Rollback the instances if one failed */
212 cbm = !bringup ? step->startup.multi : step->teardown.multi;
213 if (!cbm)
214 return ret;
215
216 hlist_for_each(node, &step->list) {
217 if (!cnt--)
218 break;
219
220 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
221 ret = cbm(cpu, node);
222 trace_cpuhp_exit(cpu, st->state, state, ret);
223 /*
224 * Rollback must not fail,
225 */
226 WARN_ON_ONCE(ret);
227 }
228 return ret;
229}
230
231#ifdef CONFIG_SMP
232static bool cpuhp_is_ap_state(enum cpuhp_state state)
233{
234 /*
235 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
236 * purposes as that state is handled explicitly in cpu_down.
237 */
238 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
239}
240
241static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242{
243 struct completion *done = bringup ? &st->done_up : &st->done_down;
244 wait_for_completion(done);
245}
246
247static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248{
249 struct completion *done = bringup ? &st->done_up : &st->done_down;
250 complete(done);
251}
252
253/*
254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255 */
256static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257{
258 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259}
260
261/* Serializes the updates to cpu_online_mask, cpu_present_mask */
262static DEFINE_MUTEX(cpu_add_remove_lock);
263bool cpuhp_tasks_frozen;
264EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265
266/*
267 * The following two APIs (cpu_maps_update_begin/done) must be used when
268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269 */
270void cpu_maps_update_begin(void)
271{
272 mutex_lock(&cpu_add_remove_lock);
273}
274
275void cpu_maps_update_done(void)
276{
277 mutex_unlock(&cpu_add_remove_lock);
278}
279
280/*
281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282 * Should always be manipulated under cpu_add_remove_lock
283 */
284static int cpu_hotplug_disabled;
285
286#ifdef CONFIG_HOTPLUG_CPU
287
288DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289
290void cpus_read_lock(void)
291{
292 percpu_down_read(&cpu_hotplug_lock);
293}
294EXPORT_SYMBOL_GPL(cpus_read_lock);
295
296int cpus_read_trylock(void)
297{
298 return percpu_down_read_trylock(&cpu_hotplug_lock);
299}
300EXPORT_SYMBOL_GPL(cpus_read_trylock);
301
302void cpus_read_unlock(void)
303{
304 percpu_up_read(&cpu_hotplug_lock);
305}
306EXPORT_SYMBOL_GPL(cpus_read_unlock);
307
308void cpus_write_lock(void)
309{
310 percpu_down_write(&cpu_hotplug_lock);
311}
312
313void cpus_write_unlock(void)
314{
315 percpu_up_write(&cpu_hotplug_lock);
316}
317
318void lockdep_assert_cpus_held(void)
319{
320 /*
321 * We can't have hotplug operations before userspace starts running,
322 * and some init codepaths will knowingly not take the hotplug lock.
323 * This is all valid, so mute lockdep until it makes sense to report
324 * unheld locks.
325 */
326 if (system_state < SYSTEM_RUNNING)
327 return;
328
329 percpu_rwsem_assert_held(&cpu_hotplug_lock);
330}
331
332static void lockdep_acquire_cpus_lock(void)
333{
334 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
335}
336
337static void lockdep_release_cpus_lock(void)
338{
339 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
340}
341
342/*
343 * Wait for currently running CPU hotplug operations to complete (if any) and
344 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
345 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
346 * hotplug path before performing hotplug operations. So acquiring that lock
347 * guarantees mutual exclusion from any currently running hotplug operations.
348 */
349void cpu_hotplug_disable(void)
350{
351 cpu_maps_update_begin();
352 cpu_hotplug_disabled++;
353 cpu_maps_update_done();
354}
355EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
356
357static void __cpu_hotplug_enable(void)
358{
359 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
360 return;
361 cpu_hotplug_disabled--;
362}
363
364void cpu_hotplug_enable(void)
365{
366 cpu_maps_update_begin();
367 __cpu_hotplug_enable();
368 cpu_maps_update_done();
369}
370EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
371
372#else
373
374static void lockdep_acquire_cpus_lock(void)
375{
376}
377
378static void lockdep_release_cpus_lock(void)
379{
380}
381
382#endif /* CONFIG_HOTPLUG_CPU */
383
384/*
385 * Architectures that need SMT-specific errata handling during SMT hotplug
386 * should override this.
387 */
388void __weak arch_smt_update(void) { }
389
390#ifdef CONFIG_HOTPLUG_SMT
391enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
392
393void __init cpu_smt_disable(bool force)
394{
395 if (!cpu_smt_possible())
396 return;
397
398 if (force) {
399 pr_info("SMT: Force disabled\n");
400 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
401 } else {
402 pr_info("SMT: disabled\n");
403 cpu_smt_control = CPU_SMT_DISABLED;
404 }
405}
406
407/*
408 * The decision whether SMT is supported can only be done after the full
409 * CPU identification. Called from architecture code.
410 */
411void __init cpu_smt_check_topology(void)
412{
413 if (!topology_smt_supported())
414 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
415}
416
417static int __init smt_cmdline_disable(char *str)
418{
419 cpu_smt_disable(str && !strcmp(str, "force"));
420 return 0;
421}
422early_param("nosmt", smt_cmdline_disable);
423
424static inline bool cpu_smt_allowed(unsigned int cpu)
425{
426 if (cpu_smt_control == CPU_SMT_ENABLED)
427 return true;
428
429 if (topology_is_primary_thread(cpu))
430 return true;
431
432 /*
433 * On x86 it's required to boot all logical CPUs at least once so
434 * that the init code can get a chance to set CR4.MCE on each
435 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
436 * core will shutdown the machine.
437 */
438 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
439}
440
441/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
442bool cpu_smt_possible(void)
443{
444 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
445 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
446}
447EXPORT_SYMBOL_GPL(cpu_smt_possible);
448#else
449static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
450#endif
451
452static inline enum cpuhp_state
453cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
454{
455 enum cpuhp_state prev_state = st->state;
456
457 st->rollback = false;
458 st->last = NULL;
459
460 st->target = target;
461 st->single = false;
462 st->bringup = st->state < target;
463
464 return prev_state;
465}
466
467static inline void
468cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
469{
470 st->rollback = true;
471
472 /*
473 * If we have st->last we need to undo partial multi_instance of this
474 * state first. Otherwise start undo at the previous state.
475 */
476 if (!st->last) {
477 if (st->bringup)
478 st->state--;
479 else
480 st->state++;
481 }
482
483 st->target = prev_state;
484 st->bringup = !st->bringup;
485}
486
487/* Regular hotplug invocation of the AP hotplug thread */
488static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
489{
490 if (!st->single && st->state == st->target)
491 return;
492
493 st->result = 0;
494 /*
495 * Make sure the above stores are visible before should_run becomes
496 * true. Paired with the mb() above in cpuhp_thread_fun()
497 */
498 smp_mb();
499 st->should_run = true;
500 wake_up_process(st->thread);
501 wait_for_ap_thread(st, st->bringup);
502}
503
504static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
505{
506 enum cpuhp_state prev_state;
507 int ret;
508
509 prev_state = cpuhp_set_state(st, target);
510 __cpuhp_kick_ap(st);
511 if ((ret = st->result)) {
512 cpuhp_reset_state(st, prev_state);
513 __cpuhp_kick_ap(st);
514 }
515
516 return ret;
517}
518
519static int bringup_wait_for_ap(unsigned int cpu)
520{
521 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
522
523 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
524 wait_for_ap_thread(st, true);
525 if (WARN_ON_ONCE((!cpu_online(cpu))))
526 return -ECANCELED;
527
528 /* Unpark the stopper thread and the hotplug thread of the target cpu */
529 stop_machine_unpark(cpu);
530 kthread_unpark(st->thread);
531
532 /*
533 * SMT soft disabling on X86 requires to bring the CPU out of the
534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
535 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 * cpu_smt_allowed() check will now return false if this is not the
537 * primary sibling.
538 */
539 if (!cpu_smt_allowed(cpu))
540 return -ECANCELED;
541
542 if (st->target <= CPUHP_AP_ONLINE_IDLE)
543 return 0;
544
545 return cpuhp_kick_ap(st, st->target);
546}
547
548static int bringup_cpu(unsigned int cpu)
549{
550 struct task_struct *idle = idle_thread_get(cpu);
551 int ret;
552
553 /*
554 * Some architectures have to walk the irq descriptors to
555 * setup the vector space for the cpu which comes online.
556 * Prevent irq alloc/free across the bringup.
557 */
558 irq_lock_sparse();
559
560 /* Arch-specific enabling code. */
561 ret = __cpu_up(cpu, idle);
562 irq_unlock_sparse();
563 if (ret)
564 return ret;
565 return bringup_wait_for_ap(cpu);
566}
567
568/*
569 * Hotplug state machine related functions
570 */
571
572static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
573{
574 for (st->state--; st->state > st->target; st->state--)
575 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
576}
577
578static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
579{
580 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
581 return true;
582 /*
583 * When CPU hotplug is disabled, then taking the CPU down is not
584 * possible because takedown_cpu() and the architecture and
585 * subsystem specific mechanisms are not available. So the CPU
586 * which would be completely unplugged again needs to stay around
587 * in the current state.
588 */
589 return st->state <= CPUHP_BRINGUP_CPU;
590}
591
592static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
593 enum cpuhp_state target)
594{
595 enum cpuhp_state prev_state = st->state;
596 int ret = 0;
597
598 while (st->state < target) {
599 st->state++;
600 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
601 if (ret) {
602 if (can_rollback_cpu(st)) {
603 st->target = prev_state;
604 undo_cpu_up(cpu, st);
605 }
606 break;
607 }
608 }
609 return ret;
610}
611
612/*
613 * The cpu hotplug threads manage the bringup and teardown of the cpus
614 */
615static void cpuhp_create(unsigned int cpu)
616{
617 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
618
619 init_completion(&st->done_up);
620 init_completion(&st->done_down);
621}
622
623static int cpuhp_should_run(unsigned int cpu)
624{
625 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
626
627 return st->should_run;
628}
629
630/*
631 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
632 * callbacks when a state gets [un]installed at runtime.
633 *
634 * Each invocation of this function by the smpboot thread does a single AP
635 * state callback.
636 *
637 * It has 3 modes of operation:
638 * - single: runs st->cb_state
639 * - up: runs ++st->state, while st->state < st->target
640 * - down: runs st->state--, while st->state > st->target
641 *
642 * When complete or on error, should_run is cleared and the completion is fired.
643 */
644static void cpuhp_thread_fun(unsigned int cpu)
645{
646 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
647 bool bringup = st->bringup;
648 enum cpuhp_state state;
649
650 if (WARN_ON_ONCE(!st->should_run))
651 return;
652
653 /*
654 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
655 * that if we see ->should_run we also see the rest of the state.
656 */
657 smp_mb();
658
659 /*
660 * The BP holds the hotplug lock, but we're now running on the AP,
661 * ensure that anybody asserting the lock is held, will actually find
662 * it so.
663 */
664 lockdep_acquire_cpus_lock();
665 cpuhp_lock_acquire(bringup);
666
667 if (st->single) {
668 state = st->cb_state;
669 st->should_run = false;
670 } else {
671 if (bringup) {
672 st->state++;
673 state = st->state;
674 st->should_run = (st->state < st->target);
675 WARN_ON_ONCE(st->state > st->target);
676 } else {
677 state = st->state;
678 st->state--;
679 st->should_run = (st->state > st->target);
680 WARN_ON_ONCE(st->state < st->target);
681 }
682 }
683
684 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
685
686 if (cpuhp_is_atomic_state(state)) {
687 local_irq_disable();
688 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
689 local_irq_enable();
690
691 /*
692 * STARTING/DYING must not fail!
693 */
694 WARN_ON_ONCE(st->result);
695 } else {
696 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
697 }
698
699 if (st->result) {
700 /*
701 * If we fail on a rollback, we're up a creek without no
702 * paddle, no way forward, no way back. We loose, thanks for
703 * playing.
704 */
705 WARN_ON_ONCE(st->rollback);
706 st->should_run = false;
707 }
708
709 cpuhp_lock_release(bringup);
710 lockdep_release_cpus_lock();
711
712 if (!st->should_run)
713 complete_ap_thread(st, bringup);
714}
715
716/* Invoke a single callback on a remote cpu */
717static int
718cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
719 struct hlist_node *node)
720{
721 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
722 int ret;
723
724 if (!cpu_online(cpu))
725 return 0;
726
727 cpuhp_lock_acquire(false);
728 cpuhp_lock_release(false);
729
730 cpuhp_lock_acquire(true);
731 cpuhp_lock_release(true);
732
733 /*
734 * If we are up and running, use the hotplug thread. For early calls
735 * we invoke the thread function directly.
736 */
737 if (!st->thread)
738 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
739
740 st->rollback = false;
741 st->last = NULL;
742
743 st->node = node;
744 st->bringup = bringup;
745 st->cb_state = state;
746 st->single = true;
747
748 __cpuhp_kick_ap(st);
749
750 /*
751 * If we failed and did a partial, do a rollback.
752 */
753 if ((ret = st->result) && st->last) {
754 st->rollback = true;
755 st->bringup = !bringup;
756
757 __cpuhp_kick_ap(st);
758 }
759
760 /*
761 * Clean up the leftovers so the next hotplug operation wont use stale
762 * data.
763 */
764 st->node = st->last = NULL;
765 return ret;
766}
767
768static int cpuhp_kick_ap_work(unsigned int cpu)
769{
770 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
771 enum cpuhp_state prev_state = st->state;
772 int ret;
773
774 cpuhp_lock_acquire(false);
775 cpuhp_lock_release(false);
776
777 cpuhp_lock_acquire(true);
778 cpuhp_lock_release(true);
779
780 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
781 ret = cpuhp_kick_ap(st, st->target);
782 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
783
784 return ret;
785}
786
787static struct smp_hotplug_thread cpuhp_threads = {
788 .store = &cpuhp_state.thread,
789 .create = &cpuhp_create,
790 .thread_should_run = cpuhp_should_run,
791 .thread_fn = cpuhp_thread_fun,
792 .thread_comm = "cpuhp/%u",
793 .selfparking = true,
794};
795
796void __init cpuhp_threads_init(void)
797{
798 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
799 kthread_unpark(this_cpu_read(cpuhp_state.thread));
800}
801
802#ifdef CONFIG_HOTPLUG_CPU
803/**
804 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
805 * @cpu: a CPU id
806 *
807 * This function walks all processes, finds a valid mm struct for each one and
808 * then clears a corresponding bit in mm's cpumask. While this all sounds
809 * trivial, there are various non-obvious corner cases, which this function
810 * tries to solve in a safe manner.
811 *
812 * Also note that the function uses a somewhat relaxed locking scheme, so it may
813 * be called only for an already offlined CPU.
814 */
815void clear_tasks_mm_cpumask(int cpu)
816{
817 struct task_struct *p;
818
819 /*
820 * This function is called after the cpu is taken down and marked
821 * offline, so its not like new tasks will ever get this cpu set in
822 * their mm mask. -- Peter Zijlstra
823 * Thus, we may use rcu_read_lock() here, instead of grabbing
824 * full-fledged tasklist_lock.
825 */
826 WARN_ON(cpu_online(cpu));
827 rcu_read_lock();
828 for_each_process(p) {
829 struct task_struct *t;
830
831 /*
832 * Main thread might exit, but other threads may still have
833 * a valid mm. Find one.
834 */
835 t = find_lock_task_mm(p);
836 if (!t)
837 continue;
838 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
839 task_unlock(t);
840 }
841 rcu_read_unlock();
842}
843
844/* Take this CPU down. */
845static int take_cpu_down(void *_param)
846{
847 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
848 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
849 int err, cpu = smp_processor_id();
850 int ret;
851
852 /* Ensure this CPU doesn't handle any more interrupts. */
853 err = __cpu_disable();
854 if (err < 0)
855 return err;
856
857 /*
858 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
859 * do this step again.
860 */
861 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
862 st->state--;
863 /* Invoke the former CPU_DYING callbacks */
864 for (; st->state > target; st->state--) {
865 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
866 /*
867 * DYING must not fail!
868 */
869 WARN_ON_ONCE(ret);
870 }
871
872 /* Give up timekeeping duties */
873 tick_handover_do_timer();
874 /* Remove CPU from timer broadcasting */
875 tick_offline_cpu(cpu);
876 /* Park the stopper thread */
877 stop_machine_park(cpu);
878 return 0;
879}
880
881static int takedown_cpu(unsigned int cpu)
882{
883 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
884 int err;
885
886 /* Park the smpboot threads */
887 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
888
889 /*
890 * Prevent irq alloc/free while the dying cpu reorganizes the
891 * interrupt affinities.
892 */
893 irq_lock_sparse();
894
895 /*
896 * So now all preempt/rcu users must observe !cpu_active().
897 */
898 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
899 if (err) {
900 /* CPU refused to die */
901 irq_unlock_sparse();
902 /* Unpark the hotplug thread so we can rollback there */
903 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
904 return err;
905 }
906 BUG_ON(cpu_online(cpu));
907
908 /*
909 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
910 * all runnable tasks from the CPU, there's only the idle task left now
911 * that the migration thread is done doing the stop_machine thing.
912 *
913 * Wait for the stop thread to go away.
914 */
915 wait_for_ap_thread(st, false);
916 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
917
918 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
919 irq_unlock_sparse();
920
921 hotplug_cpu__broadcast_tick_pull(cpu);
922 /* This actually kills the CPU. */
923 __cpu_die(cpu);
924
925 tick_cleanup_dead_cpu(cpu);
926 rcutree_migrate_callbacks(cpu);
927 return 0;
928}
929
930static void cpuhp_complete_idle_dead(void *arg)
931{
932 struct cpuhp_cpu_state *st = arg;
933
934 complete_ap_thread(st, false);
935}
936
937void cpuhp_report_idle_dead(void)
938{
939 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
940
941 BUG_ON(st->state != CPUHP_AP_OFFLINE);
942 rcu_report_dead(smp_processor_id());
943 st->state = CPUHP_AP_IDLE_DEAD;
944 /*
945 * We cannot call complete after rcu_report_dead() so we delegate it
946 * to an online cpu.
947 */
948 smp_call_function_single(cpumask_first(cpu_online_mask),
949 cpuhp_complete_idle_dead, st, 0);
950}
951
952static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
953{
954 for (st->state++; st->state < st->target; st->state++)
955 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
956}
957
958static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
959 enum cpuhp_state target)
960{
961 enum cpuhp_state prev_state = st->state;
962 int ret = 0;
963
964 for (; st->state > target; st->state--) {
965 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
966 if (ret) {
967 st->target = prev_state;
968 if (st->state < prev_state)
969 undo_cpu_down(cpu, st);
970 break;
971 }
972 }
973 return ret;
974}
975
976/* Requires cpu_add_remove_lock to be held */
977static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
978 enum cpuhp_state target)
979{
980 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
981 int prev_state, ret = 0;
982
983 if (num_online_cpus() == 1)
984 return -EBUSY;
985
986 if (!cpu_present(cpu))
987 return -EINVAL;
988
989 cpus_write_lock();
990
991 cpuhp_tasks_frozen = tasks_frozen;
992
993 prev_state = cpuhp_set_state(st, target);
994 /*
995 * If the current CPU state is in the range of the AP hotplug thread,
996 * then we need to kick the thread.
997 */
998 if (st->state > CPUHP_TEARDOWN_CPU) {
999 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1000 ret = cpuhp_kick_ap_work(cpu);
1001 /*
1002 * The AP side has done the error rollback already. Just
1003 * return the error code..
1004 */
1005 if (ret)
1006 goto out;
1007
1008 /*
1009 * We might have stopped still in the range of the AP hotplug
1010 * thread. Nothing to do anymore.
1011 */
1012 if (st->state > CPUHP_TEARDOWN_CPU)
1013 goto out;
1014
1015 st->target = target;
1016 }
1017 /*
1018 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1019 * to do the further cleanups.
1020 */
1021 ret = cpuhp_down_callbacks(cpu, st, target);
1022 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1023 cpuhp_reset_state(st, prev_state);
1024 __cpuhp_kick_ap(st);
1025 }
1026
1027out:
1028 cpus_write_unlock();
1029 /*
1030 * Do post unplug cleanup. This is still protected against
1031 * concurrent CPU hotplug via cpu_add_remove_lock.
1032 */
1033 lockup_detector_cleanup();
1034 arch_smt_update();
1035 return ret;
1036}
1037
1038static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1039{
1040 if (cpu_hotplug_disabled)
1041 return -EBUSY;
1042 return _cpu_down(cpu, 0, target);
1043}
1044
1045static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1046{
1047 int err;
1048
1049 cpu_maps_update_begin();
1050 err = cpu_down_maps_locked(cpu, target);
1051 cpu_maps_update_done();
1052 return err;
1053}
1054
1055int cpu_down(unsigned int cpu)
1056{
1057 return do_cpu_down(cpu, CPUHP_OFFLINE);
1058}
1059EXPORT_SYMBOL(cpu_down);
1060
1061#else
1062#define takedown_cpu NULL
1063#endif /*CONFIG_HOTPLUG_CPU*/
1064
1065/**
1066 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1067 * @cpu: cpu that just started
1068 *
1069 * It must be called by the arch code on the new cpu, before the new cpu
1070 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1071 */
1072void notify_cpu_starting(unsigned int cpu)
1073{
1074 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1075 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1076 int ret;
1077
1078 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1079 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1080 while (st->state < target) {
1081 st->state++;
1082 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1083 /*
1084 * STARTING must not fail!
1085 */
1086 WARN_ON_ONCE(ret);
1087 }
1088}
1089
1090/*
1091 * Called from the idle task. Wake up the controlling task which brings the
1092 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1093 * the rest of the online bringup to the hotplug thread.
1094 */
1095void cpuhp_online_idle(enum cpuhp_state state)
1096{
1097 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1098
1099 /* Happens for the boot cpu */
1100 if (state != CPUHP_AP_ONLINE_IDLE)
1101 return;
1102
1103 st->state = CPUHP_AP_ONLINE_IDLE;
1104 complete_ap_thread(st, true);
1105}
1106
1107/* Requires cpu_add_remove_lock to be held */
1108static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1109{
1110 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1111 struct task_struct *idle;
1112 int ret = 0;
1113
1114 cpus_write_lock();
1115
1116 if (!cpu_present(cpu)) {
1117 ret = -EINVAL;
1118 goto out;
1119 }
1120
1121 /*
1122 * The caller of do_cpu_up might have raced with another
1123 * caller. Ignore it for now.
1124 */
1125 if (st->state >= target)
1126 goto out;
1127
1128 if (st->state == CPUHP_OFFLINE) {
1129 /* Let it fail before we try to bring the cpu up */
1130 idle = idle_thread_get(cpu);
1131 if (IS_ERR(idle)) {
1132 ret = PTR_ERR(idle);
1133 goto out;
1134 }
1135 }
1136
1137 cpuhp_tasks_frozen = tasks_frozen;
1138
1139 cpuhp_set_state(st, target);
1140 /*
1141 * If the current CPU state is in the range of the AP hotplug thread,
1142 * then we need to kick the thread once more.
1143 */
1144 if (st->state > CPUHP_BRINGUP_CPU) {
1145 ret = cpuhp_kick_ap_work(cpu);
1146 /*
1147 * The AP side has done the error rollback already. Just
1148 * return the error code..
1149 */
1150 if (ret)
1151 goto out;
1152 }
1153
1154 /*
1155 * Try to reach the target state. We max out on the BP at
1156 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1157 * responsible for bringing it up to the target state.
1158 */
1159 target = min((int)target, CPUHP_BRINGUP_CPU);
1160 ret = cpuhp_up_callbacks(cpu, st, target);
1161out:
1162 cpus_write_unlock();
1163 arch_smt_update();
1164 return ret;
1165}
1166
1167static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1168{
1169 int err = 0;
1170
1171 if (!cpu_possible(cpu)) {
1172 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1173 cpu);
1174#if defined(CONFIG_IA64)
1175 pr_err("please check additional_cpus= boot parameter\n");
1176#endif
1177 return -EINVAL;
1178 }
1179
1180 err = try_online_node(cpu_to_node(cpu));
1181 if (err)
1182 return err;
1183
1184 cpu_maps_update_begin();
1185
1186 if (cpu_hotplug_disabled) {
1187 err = -EBUSY;
1188 goto out;
1189 }
1190 if (!cpu_smt_allowed(cpu)) {
1191 err = -EPERM;
1192 goto out;
1193 }
1194
1195 err = _cpu_up(cpu, 0, target);
1196out:
1197 cpu_maps_update_done();
1198 return err;
1199}
1200
1201int cpu_up(unsigned int cpu)
1202{
1203 return do_cpu_up(cpu, CPUHP_ONLINE);
1204}
1205EXPORT_SYMBOL_GPL(cpu_up);
1206
1207#ifdef CONFIG_PM_SLEEP_SMP
1208static cpumask_var_t frozen_cpus;
1209
1210int freeze_secondary_cpus(int primary)
1211{
1212 int cpu, error = 0;
1213
1214 cpu_maps_update_begin();
1215 if (primary == -1) {
1216 primary = cpumask_first(cpu_online_mask);
1217 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1218 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1219 } else {
1220 if (!cpu_online(primary))
1221 primary = cpumask_first(cpu_online_mask);
1222 }
1223
1224 /*
1225 * We take down all of the non-boot CPUs in one shot to avoid races
1226 * with the userspace trying to use the CPU hotplug at the same time
1227 */
1228 cpumask_clear(frozen_cpus);
1229
1230 pr_info("Disabling non-boot CPUs ...\n");
1231 for_each_online_cpu(cpu) {
1232 if (cpu == primary)
1233 continue;
1234
1235 if (pm_wakeup_pending()) {
1236 pr_info("Wakeup pending. Abort CPU freeze\n");
1237 error = -EBUSY;
1238 break;
1239 }
1240
1241 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1242 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1243 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1244 if (!error)
1245 cpumask_set_cpu(cpu, frozen_cpus);
1246 else {
1247 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1248 break;
1249 }
1250 }
1251
1252 if (!error)
1253 BUG_ON(num_online_cpus() > 1);
1254 else
1255 pr_err("Non-boot CPUs are not disabled\n");
1256
1257 /*
1258 * Make sure the CPUs won't be enabled by someone else. We need to do
1259 * this even in case of failure as all disable_nonboot_cpus() users are
1260 * supposed to do enable_nonboot_cpus() on the failure path.
1261 */
1262 cpu_hotplug_disabled++;
1263
1264 cpu_maps_update_done();
1265 return error;
1266}
1267
1268void __weak arch_enable_nonboot_cpus_begin(void)
1269{
1270}
1271
1272void __weak arch_enable_nonboot_cpus_end(void)
1273{
1274}
1275
1276void enable_nonboot_cpus(void)
1277{
1278 int cpu, error;
1279
1280 /* Allow everyone to use the CPU hotplug again */
1281 cpu_maps_update_begin();
1282 __cpu_hotplug_enable();
1283 if (cpumask_empty(frozen_cpus))
1284 goto out;
1285
1286 pr_info("Enabling non-boot CPUs ...\n");
1287
1288 arch_enable_nonboot_cpus_begin();
1289
1290 for_each_cpu(cpu, frozen_cpus) {
1291 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1292 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1293 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1294 if (!error) {
1295 pr_info("CPU%d is up\n", cpu);
1296 continue;
1297 }
1298 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1299 }
1300
1301 arch_enable_nonboot_cpus_end();
1302
1303 cpumask_clear(frozen_cpus);
1304out:
1305 cpu_maps_update_done();
1306}
1307
1308static int __init alloc_frozen_cpus(void)
1309{
1310 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1311 return -ENOMEM;
1312 return 0;
1313}
1314core_initcall(alloc_frozen_cpus);
1315
1316/*
1317 * When callbacks for CPU hotplug notifications are being executed, we must
1318 * ensure that the state of the system with respect to the tasks being frozen
1319 * or not, as reported by the notification, remains unchanged *throughout the
1320 * duration* of the execution of the callbacks.
1321 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1322 *
1323 * This synchronization is implemented by mutually excluding regular CPU
1324 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1325 * Hibernate notifications.
1326 */
1327static int
1328cpu_hotplug_pm_callback(struct notifier_block *nb,
1329 unsigned long action, void *ptr)
1330{
1331 switch (action) {
1332
1333 case PM_SUSPEND_PREPARE:
1334 case PM_HIBERNATION_PREPARE:
1335 cpu_hotplug_disable();
1336 break;
1337
1338 case PM_POST_SUSPEND:
1339 case PM_POST_HIBERNATION:
1340 cpu_hotplug_enable();
1341 break;
1342
1343 default:
1344 return NOTIFY_DONE;
1345 }
1346
1347 return NOTIFY_OK;
1348}
1349
1350
1351static int __init cpu_hotplug_pm_sync_init(void)
1352{
1353 /*
1354 * cpu_hotplug_pm_callback has higher priority than x86
1355 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1356 * to disable cpu hotplug to avoid cpu hotplug race.
1357 */
1358 pm_notifier(cpu_hotplug_pm_callback, 0);
1359 return 0;
1360}
1361core_initcall(cpu_hotplug_pm_sync_init);
1362
1363#endif /* CONFIG_PM_SLEEP_SMP */
1364
1365int __boot_cpu_id;
1366
1367#endif /* CONFIG_SMP */
1368
1369/* Boot processor state steps */
1370static struct cpuhp_step cpuhp_hp_states[] = {
1371 [CPUHP_OFFLINE] = {
1372 .name = "offline",
1373 .startup.single = NULL,
1374 .teardown.single = NULL,
1375 },
1376#ifdef CONFIG_SMP
1377 [CPUHP_CREATE_THREADS]= {
1378 .name = "threads:prepare",
1379 .startup.single = smpboot_create_threads,
1380 .teardown.single = NULL,
1381 .cant_stop = true,
1382 },
1383 [CPUHP_PERF_PREPARE] = {
1384 .name = "perf:prepare",
1385 .startup.single = perf_event_init_cpu,
1386 .teardown.single = perf_event_exit_cpu,
1387 },
1388 [CPUHP_WORKQUEUE_PREP] = {
1389 .name = "workqueue:prepare",
1390 .startup.single = workqueue_prepare_cpu,
1391 .teardown.single = NULL,
1392 },
1393 [CPUHP_HRTIMERS_PREPARE] = {
1394 .name = "hrtimers:prepare",
1395 .startup.single = hrtimers_prepare_cpu,
1396 .teardown.single = hrtimers_dead_cpu,
1397 },
1398 [CPUHP_SMPCFD_PREPARE] = {
1399 .name = "smpcfd:prepare",
1400 .startup.single = smpcfd_prepare_cpu,
1401 .teardown.single = smpcfd_dead_cpu,
1402 },
1403 [CPUHP_RELAY_PREPARE] = {
1404 .name = "relay:prepare",
1405 .startup.single = relay_prepare_cpu,
1406 .teardown.single = NULL,
1407 },
1408 [CPUHP_SLAB_PREPARE] = {
1409 .name = "slab:prepare",
1410 .startup.single = slab_prepare_cpu,
1411 .teardown.single = slab_dead_cpu,
1412 },
1413 [CPUHP_RCUTREE_PREP] = {
1414 .name = "RCU/tree:prepare",
1415 .startup.single = rcutree_prepare_cpu,
1416 .teardown.single = rcutree_dead_cpu,
1417 },
1418 /*
1419 * On the tear-down path, timers_dead_cpu() must be invoked
1420 * before blk_mq_queue_reinit_notify() from notify_dead(),
1421 * otherwise a RCU stall occurs.
1422 */
1423 [CPUHP_TIMERS_PREPARE] = {
1424 .name = "timers:prepare",
1425 .startup.single = timers_prepare_cpu,
1426 .teardown.single = timers_dead_cpu,
1427 },
1428 /* Kicks the plugged cpu into life */
1429 [CPUHP_BRINGUP_CPU] = {
1430 .name = "cpu:bringup",
1431 .startup.single = bringup_cpu,
1432 .teardown.single = NULL,
1433 .cant_stop = true,
1434 },
1435 /* Final state before CPU kills itself */
1436 [CPUHP_AP_IDLE_DEAD] = {
1437 .name = "idle:dead",
1438 },
1439 /*
1440 * Last state before CPU enters the idle loop to die. Transient state
1441 * for synchronization.
1442 */
1443 [CPUHP_AP_OFFLINE] = {
1444 .name = "ap:offline",
1445 .cant_stop = true,
1446 },
1447 /* First state is scheduler control. Interrupts are disabled */
1448 [CPUHP_AP_SCHED_STARTING] = {
1449 .name = "sched:starting",
1450 .startup.single = sched_cpu_starting,
1451 .teardown.single = sched_cpu_dying,
1452 },
1453 [CPUHP_AP_RCUTREE_DYING] = {
1454 .name = "RCU/tree:dying",
1455 .startup.single = NULL,
1456 .teardown.single = rcutree_dying_cpu,
1457 },
1458 [CPUHP_AP_SMPCFD_DYING] = {
1459 .name = "smpcfd:dying",
1460 .startup.single = NULL,
1461 .teardown.single = smpcfd_dying_cpu,
1462 },
1463 /* Entry state on starting. Interrupts enabled from here on. Transient
1464 * state for synchronsization */
1465 [CPUHP_AP_ONLINE] = {
1466 .name = "ap:online",
1467 },
1468 /*
1469 * Handled on controll processor until the plugged processor manages
1470 * this itself.
1471 */
1472 [CPUHP_TEARDOWN_CPU] = {
1473 .name = "cpu:teardown",
1474 .startup.single = NULL,
1475 .teardown.single = takedown_cpu,
1476 .cant_stop = true,
1477 },
1478 /* Handle smpboot threads park/unpark */
1479 [CPUHP_AP_SMPBOOT_THREADS] = {
1480 .name = "smpboot/threads:online",
1481 .startup.single = smpboot_unpark_threads,
1482 .teardown.single = smpboot_park_threads,
1483 },
1484 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1485 .name = "irq/affinity:online",
1486 .startup.single = irq_affinity_online_cpu,
1487 .teardown.single = NULL,
1488 },
1489 [CPUHP_AP_PERF_ONLINE] = {
1490 .name = "perf:online",
1491 .startup.single = perf_event_init_cpu,
1492 .teardown.single = perf_event_exit_cpu,
1493 },
1494 [CPUHP_AP_WATCHDOG_ONLINE] = {
1495 .name = "lockup_detector:online",
1496 .startup.single = lockup_detector_online_cpu,
1497 .teardown.single = lockup_detector_offline_cpu,
1498 },
1499 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1500 .name = "workqueue:online",
1501 .startup.single = workqueue_online_cpu,
1502 .teardown.single = workqueue_offline_cpu,
1503 },
1504 [CPUHP_AP_RCUTREE_ONLINE] = {
1505 .name = "RCU/tree:online",
1506 .startup.single = rcutree_online_cpu,
1507 .teardown.single = rcutree_offline_cpu,
1508 },
1509#endif
1510 /*
1511 * The dynamically registered state space is here
1512 */
1513
1514#ifdef CONFIG_SMP
1515 /* Last state is scheduler control setting the cpu active */
1516 [CPUHP_AP_ACTIVE] = {
1517 .name = "sched:active",
1518 .startup.single = sched_cpu_activate,
1519 .teardown.single = sched_cpu_deactivate,
1520 },
1521#endif
1522
1523 /* CPU is fully up and running. */
1524 [CPUHP_ONLINE] = {
1525 .name = "online",
1526 .startup.single = NULL,
1527 .teardown.single = NULL,
1528 },
1529};
1530
1531/* Sanity check for callbacks */
1532static int cpuhp_cb_check(enum cpuhp_state state)
1533{
1534 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1535 return -EINVAL;
1536 return 0;
1537}
1538
1539/*
1540 * Returns a free for dynamic slot assignment of the Online state. The states
1541 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1542 * by having no name assigned.
1543 */
1544static int cpuhp_reserve_state(enum cpuhp_state state)
1545{
1546 enum cpuhp_state i, end;
1547 struct cpuhp_step *step;
1548
1549 switch (state) {
1550 case CPUHP_AP_ONLINE_DYN:
1551 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1552 end = CPUHP_AP_ONLINE_DYN_END;
1553 break;
1554 case CPUHP_BP_PREPARE_DYN:
1555 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1556 end = CPUHP_BP_PREPARE_DYN_END;
1557 break;
1558 default:
1559 return -EINVAL;
1560 }
1561
1562 for (i = state; i <= end; i++, step++) {
1563 if (!step->name)
1564 return i;
1565 }
1566 WARN(1, "No more dynamic states available for CPU hotplug\n");
1567 return -ENOSPC;
1568}
1569
1570static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1571 int (*startup)(unsigned int cpu),
1572 int (*teardown)(unsigned int cpu),
1573 bool multi_instance)
1574{
1575 /* (Un)Install the callbacks for further cpu hotplug operations */
1576 struct cpuhp_step *sp;
1577 int ret = 0;
1578
1579 /*
1580 * If name is NULL, then the state gets removed.
1581 *
1582 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1583 * the first allocation from these dynamic ranges, so the removal
1584 * would trigger a new allocation and clear the wrong (already
1585 * empty) state, leaving the callbacks of the to be cleared state
1586 * dangling, which causes wreckage on the next hotplug operation.
1587 */
1588 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1589 state == CPUHP_BP_PREPARE_DYN)) {
1590 ret = cpuhp_reserve_state(state);
1591 if (ret < 0)
1592 return ret;
1593 state = ret;
1594 }
1595 sp = cpuhp_get_step(state);
1596 if (name && sp->name)
1597 return -EBUSY;
1598
1599 sp->startup.single = startup;
1600 sp->teardown.single = teardown;
1601 sp->name = name;
1602 sp->multi_instance = multi_instance;
1603 INIT_HLIST_HEAD(&sp->list);
1604 return ret;
1605}
1606
1607static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1608{
1609 return cpuhp_get_step(state)->teardown.single;
1610}
1611
1612/*
1613 * Call the startup/teardown function for a step either on the AP or
1614 * on the current CPU.
1615 */
1616static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1617 struct hlist_node *node)
1618{
1619 struct cpuhp_step *sp = cpuhp_get_step(state);
1620 int ret;
1621
1622 /*
1623 * If there's nothing to do, we done.
1624 * Relies on the union for multi_instance.
1625 */
1626 if ((bringup && !sp->startup.single) ||
1627 (!bringup && !sp->teardown.single))
1628 return 0;
1629 /*
1630 * The non AP bound callbacks can fail on bringup. On teardown
1631 * e.g. module removal we crash for now.
1632 */
1633#ifdef CONFIG_SMP
1634 if (cpuhp_is_ap_state(state))
1635 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1636 else
1637 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1638#else
1639 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1640#endif
1641 BUG_ON(ret && !bringup);
1642 return ret;
1643}
1644
1645/*
1646 * Called from __cpuhp_setup_state on a recoverable failure.
1647 *
1648 * Note: The teardown callbacks for rollback are not allowed to fail!
1649 */
1650static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1651 struct hlist_node *node)
1652{
1653 int cpu;
1654
1655 /* Roll back the already executed steps on the other cpus */
1656 for_each_present_cpu(cpu) {
1657 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658 int cpustate = st->state;
1659
1660 if (cpu >= failedcpu)
1661 break;
1662
1663 /* Did we invoke the startup call on that cpu ? */
1664 if (cpustate >= state)
1665 cpuhp_issue_call(cpu, state, false, node);
1666 }
1667}
1668
1669int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1670 struct hlist_node *node,
1671 bool invoke)
1672{
1673 struct cpuhp_step *sp;
1674 int cpu;
1675 int ret;
1676
1677 lockdep_assert_cpus_held();
1678
1679 sp = cpuhp_get_step(state);
1680 if (sp->multi_instance == false)
1681 return -EINVAL;
1682
1683 mutex_lock(&cpuhp_state_mutex);
1684
1685 if (!invoke || !sp->startup.multi)
1686 goto add_node;
1687
1688 /*
1689 * Try to call the startup callback for each present cpu
1690 * depending on the hotplug state of the cpu.
1691 */
1692 for_each_present_cpu(cpu) {
1693 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1694 int cpustate = st->state;
1695
1696 if (cpustate < state)
1697 continue;
1698
1699 ret = cpuhp_issue_call(cpu, state, true, node);
1700 if (ret) {
1701 if (sp->teardown.multi)
1702 cpuhp_rollback_install(cpu, state, node);
1703 goto unlock;
1704 }
1705 }
1706add_node:
1707 ret = 0;
1708 hlist_add_head(node, &sp->list);
1709unlock:
1710 mutex_unlock(&cpuhp_state_mutex);
1711 return ret;
1712}
1713
1714int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1715 bool invoke)
1716{
1717 int ret;
1718
1719 cpus_read_lock();
1720 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1721 cpus_read_unlock();
1722 return ret;
1723}
1724EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1725
1726/**
1727 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1728 * @state: The state to setup
1729 * @invoke: If true, the startup function is invoked for cpus where
1730 * cpu state >= @state
1731 * @startup: startup callback function
1732 * @teardown: teardown callback function
1733 * @multi_instance: State is set up for multiple instances which get
1734 * added afterwards.
1735 *
1736 * The caller needs to hold cpus read locked while calling this function.
1737 * Returns:
1738 * On success:
1739 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1740 * 0 for all other states
1741 * On failure: proper (negative) error code
1742 */
1743int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1744 const char *name, bool invoke,
1745 int (*startup)(unsigned int cpu),
1746 int (*teardown)(unsigned int cpu),
1747 bool multi_instance)
1748{
1749 int cpu, ret = 0;
1750 bool dynstate;
1751
1752 lockdep_assert_cpus_held();
1753
1754 if (cpuhp_cb_check(state) || !name)
1755 return -EINVAL;
1756
1757 mutex_lock(&cpuhp_state_mutex);
1758
1759 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1760 multi_instance);
1761
1762 dynstate = state == CPUHP_AP_ONLINE_DYN;
1763 if (ret > 0 && dynstate) {
1764 state = ret;
1765 ret = 0;
1766 }
1767
1768 if (ret || !invoke || !startup)
1769 goto out;
1770
1771 /*
1772 * Try to call the startup callback for each present cpu
1773 * depending on the hotplug state of the cpu.
1774 */
1775 for_each_present_cpu(cpu) {
1776 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1777 int cpustate = st->state;
1778
1779 if (cpustate < state)
1780 continue;
1781
1782 ret = cpuhp_issue_call(cpu, state, true, NULL);
1783 if (ret) {
1784 if (teardown)
1785 cpuhp_rollback_install(cpu, state, NULL);
1786 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1787 goto out;
1788 }
1789 }
1790out:
1791 mutex_unlock(&cpuhp_state_mutex);
1792 /*
1793 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1794 * dynamically allocated state in case of success.
1795 */
1796 if (!ret && dynstate)
1797 return state;
1798 return ret;
1799}
1800EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1801
1802int __cpuhp_setup_state(enum cpuhp_state state,
1803 const char *name, bool invoke,
1804 int (*startup)(unsigned int cpu),
1805 int (*teardown)(unsigned int cpu),
1806 bool multi_instance)
1807{
1808 int ret;
1809
1810 cpus_read_lock();
1811 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1812 teardown, multi_instance);
1813 cpus_read_unlock();
1814 return ret;
1815}
1816EXPORT_SYMBOL(__cpuhp_setup_state);
1817
1818int __cpuhp_state_remove_instance(enum cpuhp_state state,
1819 struct hlist_node *node, bool invoke)
1820{
1821 struct cpuhp_step *sp = cpuhp_get_step(state);
1822 int cpu;
1823
1824 BUG_ON(cpuhp_cb_check(state));
1825
1826 if (!sp->multi_instance)
1827 return -EINVAL;
1828
1829 cpus_read_lock();
1830 mutex_lock(&cpuhp_state_mutex);
1831
1832 if (!invoke || !cpuhp_get_teardown_cb(state))
1833 goto remove;
1834 /*
1835 * Call the teardown callback for each present cpu depending
1836 * on the hotplug state of the cpu. This function is not
1837 * allowed to fail currently!
1838 */
1839 for_each_present_cpu(cpu) {
1840 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1841 int cpustate = st->state;
1842
1843 if (cpustate >= state)
1844 cpuhp_issue_call(cpu, state, false, node);
1845 }
1846
1847remove:
1848 hlist_del(node);
1849 mutex_unlock(&cpuhp_state_mutex);
1850 cpus_read_unlock();
1851
1852 return 0;
1853}
1854EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1855
1856/**
1857 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1858 * @state: The state to remove
1859 * @invoke: If true, the teardown function is invoked for cpus where
1860 * cpu state >= @state
1861 *
1862 * The caller needs to hold cpus read locked while calling this function.
1863 * The teardown callback is currently not allowed to fail. Think
1864 * about module removal!
1865 */
1866void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1867{
1868 struct cpuhp_step *sp = cpuhp_get_step(state);
1869 int cpu;
1870
1871 BUG_ON(cpuhp_cb_check(state));
1872
1873 lockdep_assert_cpus_held();
1874
1875 mutex_lock(&cpuhp_state_mutex);
1876 if (sp->multi_instance) {
1877 WARN(!hlist_empty(&sp->list),
1878 "Error: Removing state %d which has instances left.\n",
1879 state);
1880 goto remove;
1881 }
1882
1883 if (!invoke || !cpuhp_get_teardown_cb(state))
1884 goto remove;
1885
1886 /*
1887 * Call the teardown callback for each present cpu depending
1888 * on the hotplug state of the cpu. This function is not
1889 * allowed to fail currently!
1890 */
1891 for_each_present_cpu(cpu) {
1892 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1893 int cpustate = st->state;
1894
1895 if (cpustate >= state)
1896 cpuhp_issue_call(cpu, state, false, NULL);
1897 }
1898remove:
1899 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1900 mutex_unlock(&cpuhp_state_mutex);
1901}
1902EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1903
1904void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1905{
1906 cpus_read_lock();
1907 __cpuhp_remove_state_cpuslocked(state, invoke);
1908 cpus_read_unlock();
1909}
1910EXPORT_SYMBOL(__cpuhp_remove_state);
1911
1912#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1913static ssize_t show_cpuhp_state(struct device *dev,
1914 struct device_attribute *attr, char *buf)
1915{
1916 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1917
1918 return sprintf(buf, "%d\n", st->state);
1919}
1920static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1921
1922static ssize_t write_cpuhp_target(struct device *dev,
1923 struct device_attribute *attr,
1924 const char *buf, size_t count)
1925{
1926 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1927 struct cpuhp_step *sp;
1928 int target, ret;
1929
1930 ret = kstrtoint(buf, 10, &target);
1931 if (ret)
1932 return ret;
1933
1934#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1935 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1936 return -EINVAL;
1937#else
1938 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1939 return -EINVAL;
1940#endif
1941
1942 ret = lock_device_hotplug_sysfs();
1943 if (ret)
1944 return ret;
1945
1946 mutex_lock(&cpuhp_state_mutex);
1947 sp = cpuhp_get_step(target);
1948 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1949 mutex_unlock(&cpuhp_state_mutex);
1950 if (ret)
1951 goto out;
1952
1953 if (st->state < target)
1954 ret = do_cpu_up(dev->id, target);
1955 else
1956 ret = do_cpu_down(dev->id, target);
1957out:
1958 unlock_device_hotplug();
1959 return ret ? ret : count;
1960}
1961
1962static ssize_t show_cpuhp_target(struct device *dev,
1963 struct device_attribute *attr, char *buf)
1964{
1965 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1966
1967 return sprintf(buf, "%d\n", st->target);
1968}
1969static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1970
1971
1972static ssize_t write_cpuhp_fail(struct device *dev,
1973 struct device_attribute *attr,
1974 const char *buf, size_t count)
1975{
1976 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1977 struct cpuhp_step *sp;
1978 int fail, ret;
1979
1980 ret = kstrtoint(buf, 10, &fail);
1981 if (ret)
1982 return ret;
1983
1984 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
1985 return -EINVAL;
1986
1987 /*
1988 * Cannot fail STARTING/DYING callbacks.
1989 */
1990 if (cpuhp_is_atomic_state(fail))
1991 return -EINVAL;
1992
1993 /*
1994 * Cannot fail anything that doesn't have callbacks.
1995 */
1996 mutex_lock(&cpuhp_state_mutex);
1997 sp = cpuhp_get_step(fail);
1998 if (!sp->startup.single && !sp->teardown.single)
1999 ret = -EINVAL;
2000 mutex_unlock(&cpuhp_state_mutex);
2001 if (ret)
2002 return ret;
2003
2004 st->fail = fail;
2005
2006 return count;
2007}
2008
2009static ssize_t show_cpuhp_fail(struct device *dev,
2010 struct device_attribute *attr, char *buf)
2011{
2012 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2013
2014 return sprintf(buf, "%d\n", st->fail);
2015}
2016
2017static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2018
2019static struct attribute *cpuhp_cpu_attrs[] = {
2020 &dev_attr_state.attr,
2021 &dev_attr_target.attr,
2022 &dev_attr_fail.attr,
2023 NULL
2024};
2025
2026static const struct attribute_group cpuhp_cpu_attr_group = {
2027 .attrs = cpuhp_cpu_attrs,
2028 .name = "hotplug",
2029 NULL
2030};
2031
2032static ssize_t show_cpuhp_states(struct device *dev,
2033 struct device_attribute *attr, char *buf)
2034{
2035 ssize_t cur, res = 0;
2036 int i;
2037
2038 mutex_lock(&cpuhp_state_mutex);
2039 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2040 struct cpuhp_step *sp = cpuhp_get_step(i);
2041
2042 if (sp->name) {
2043 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2044 buf += cur;
2045 res += cur;
2046 }
2047 }
2048 mutex_unlock(&cpuhp_state_mutex);
2049 return res;
2050}
2051static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2052
2053static struct attribute *cpuhp_cpu_root_attrs[] = {
2054 &dev_attr_states.attr,
2055 NULL
2056};
2057
2058static const struct attribute_group cpuhp_cpu_root_attr_group = {
2059 .attrs = cpuhp_cpu_root_attrs,
2060 .name = "hotplug",
2061 NULL
2062};
2063
2064#ifdef CONFIG_HOTPLUG_SMT
2065
2066static void cpuhp_offline_cpu_device(unsigned int cpu)
2067{
2068 struct device *dev = get_cpu_device(cpu);
2069
2070 dev->offline = true;
2071 /* Tell user space about the state change */
2072 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2073}
2074
2075static void cpuhp_online_cpu_device(unsigned int cpu)
2076{
2077 struct device *dev = get_cpu_device(cpu);
2078
2079 dev->offline = false;
2080 /* Tell user space about the state change */
2081 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2082}
2083
2084int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2085{
2086 int cpu, ret = 0;
2087
2088 cpu_maps_update_begin();
2089 for_each_online_cpu(cpu) {
2090 if (topology_is_primary_thread(cpu))
2091 continue;
2092 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2093 if (ret)
2094 break;
2095 /*
2096 * As this needs to hold the cpu maps lock it's impossible
2097 * to call device_offline() because that ends up calling
2098 * cpu_down() which takes cpu maps lock. cpu maps lock
2099 * needs to be held as this might race against in kernel
2100 * abusers of the hotplug machinery (thermal management).
2101 *
2102 * So nothing would update device:offline state. That would
2103 * leave the sysfs entry stale and prevent onlining after
2104 * smt control has been changed to 'off' again. This is
2105 * called under the sysfs hotplug lock, so it is properly
2106 * serialized against the regular offline usage.
2107 */
2108 cpuhp_offline_cpu_device(cpu);
2109 }
2110 if (!ret)
2111 cpu_smt_control = ctrlval;
2112 cpu_maps_update_done();
2113 return ret;
2114}
2115
2116int cpuhp_smt_enable(void)
2117{
2118 int cpu, ret = 0;
2119
2120 cpu_maps_update_begin();
2121 cpu_smt_control = CPU_SMT_ENABLED;
2122 for_each_present_cpu(cpu) {
2123 /* Skip online CPUs and CPUs on offline nodes */
2124 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2125 continue;
2126 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2127 if (ret)
2128 break;
2129 /* See comment in cpuhp_smt_disable() */
2130 cpuhp_online_cpu_device(cpu);
2131 }
2132 cpu_maps_update_done();
2133 return ret;
2134}
2135
2136
2137static ssize_t
2138__store_smt_control(struct device *dev, struct device_attribute *attr,
2139 const char *buf, size_t count)
2140{
2141 int ctrlval, ret;
2142
2143 if (sysfs_streq(buf, "on"))
2144 ctrlval = CPU_SMT_ENABLED;
2145 else if (sysfs_streq(buf, "off"))
2146 ctrlval = CPU_SMT_DISABLED;
2147 else if (sysfs_streq(buf, "forceoff"))
2148 ctrlval = CPU_SMT_FORCE_DISABLED;
2149 else
2150 return -EINVAL;
2151
2152 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2153 return -EPERM;
2154
2155 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2156 return -ENODEV;
2157
2158 ret = lock_device_hotplug_sysfs();
2159 if (ret)
2160 return ret;
2161
2162 if (ctrlval != cpu_smt_control) {
2163 switch (ctrlval) {
2164 case CPU_SMT_ENABLED:
2165 ret = cpuhp_smt_enable();
2166 break;
2167 case CPU_SMT_DISABLED:
2168 case CPU_SMT_FORCE_DISABLED:
2169 ret = cpuhp_smt_disable(ctrlval);
2170 break;
2171 }
2172 }
2173
2174 unlock_device_hotplug();
2175 return ret ? ret : count;
2176}
2177
2178#else /* !CONFIG_HOTPLUG_SMT */
2179static ssize_t
2180__store_smt_control(struct device *dev, struct device_attribute *attr,
2181 const char *buf, size_t count)
2182{
2183 return -ENODEV;
2184}
2185#endif /* CONFIG_HOTPLUG_SMT */
2186
2187static const char *smt_states[] = {
2188 [CPU_SMT_ENABLED] = "on",
2189 [CPU_SMT_DISABLED] = "off",
2190 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2191 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2192 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2193};
2194
2195static ssize_t
2196show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2197{
2198 const char *state = smt_states[cpu_smt_control];
2199
2200 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2201}
2202
2203static ssize_t
2204store_smt_control(struct device *dev, struct device_attribute *attr,
2205 const char *buf, size_t count)
2206{
2207 return __store_smt_control(dev, attr, buf, count);
2208}
2209static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2210
2211static ssize_t
2212show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2213{
2214 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2215}
2216static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2217
2218static struct attribute *cpuhp_smt_attrs[] = {
2219 &dev_attr_control.attr,
2220 &dev_attr_active.attr,
2221 NULL
2222};
2223
2224static const struct attribute_group cpuhp_smt_attr_group = {
2225 .attrs = cpuhp_smt_attrs,
2226 .name = "smt",
2227 NULL
2228};
2229
2230static int __init cpu_smt_sysfs_init(void)
2231{
2232 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2233 &cpuhp_smt_attr_group);
2234}
2235
2236static int __init cpuhp_sysfs_init(void)
2237{
2238 int cpu, ret;
2239
2240 ret = cpu_smt_sysfs_init();
2241 if (ret)
2242 return ret;
2243
2244 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2245 &cpuhp_cpu_root_attr_group);
2246 if (ret)
2247 return ret;
2248
2249 for_each_possible_cpu(cpu) {
2250 struct device *dev = get_cpu_device(cpu);
2251
2252 if (!dev)
2253 continue;
2254 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2255 if (ret)
2256 return ret;
2257 }
2258 return 0;
2259}
2260device_initcall(cpuhp_sysfs_init);
2261#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2262
2263/*
2264 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2265 * represents all NR_CPUS bits binary values of 1<<nr.
2266 *
2267 * It is used by cpumask_of() to get a constant address to a CPU
2268 * mask value that has a single bit set only.
2269 */
2270
2271/* cpu_bit_bitmap[0] is empty - so we can back into it */
2272#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2273#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2274#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2275#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2276
2277const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2278
2279 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2280 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2281#if BITS_PER_LONG > 32
2282 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2283 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2284#endif
2285};
2286EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2287
2288const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2289EXPORT_SYMBOL(cpu_all_bits);
2290
2291#ifdef CONFIG_INIT_ALL_POSSIBLE
2292struct cpumask __cpu_possible_mask __read_mostly
2293 = {CPU_BITS_ALL};
2294#else
2295struct cpumask __cpu_possible_mask __read_mostly;
2296#endif
2297EXPORT_SYMBOL(__cpu_possible_mask);
2298
2299struct cpumask __cpu_online_mask __read_mostly;
2300EXPORT_SYMBOL(__cpu_online_mask);
2301
2302struct cpumask __cpu_present_mask __read_mostly;
2303EXPORT_SYMBOL(__cpu_present_mask);
2304
2305struct cpumask __cpu_active_mask __read_mostly;
2306EXPORT_SYMBOL(__cpu_active_mask);
2307
2308atomic_t __num_online_cpus __read_mostly;
2309EXPORT_SYMBOL(__num_online_cpus);
2310
2311void init_cpu_present(const struct cpumask *src)
2312{
2313 cpumask_copy(&__cpu_present_mask, src);
2314}
2315
2316void init_cpu_possible(const struct cpumask *src)
2317{
2318 cpumask_copy(&__cpu_possible_mask, src);
2319}
2320
2321void init_cpu_online(const struct cpumask *src)
2322{
2323 cpumask_copy(&__cpu_online_mask, src);
2324}
2325
2326void set_cpu_online(unsigned int cpu, bool online)
2327{
2328 /*
2329 * atomic_inc/dec() is required to handle the horrid abuse of this
2330 * function by the reboot and kexec code which invoke it from
2331 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2332 * regular CPU hotplug is properly serialized.
2333 *
2334 * Note, that the fact that __num_online_cpus is of type atomic_t
2335 * does not protect readers which are not serialized against
2336 * concurrent hotplug operations.
2337 */
2338 if (online) {
2339 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2340 atomic_inc(&__num_online_cpus);
2341 } else {
2342 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2343 atomic_dec(&__num_online_cpus);
2344 }
2345}
2346
2347/*
2348 * Activate the first processor.
2349 */
2350void __init boot_cpu_init(void)
2351{
2352 int cpu = smp_processor_id();
2353
2354 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2355 set_cpu_online(cpu, true);
2356 set_cpu_active(cpu, true);
2357 set_cpu_present(cpu, true);
2358 set_cpu_possible(cpu, true);
2359
2360#ifdef CONFIG_SMP
2361 __boot_cpu_id = cpu;
2362#endif
2363}
2364
2365/*
2366 * Must be called _AFTER_ setting up the per_cpu areas
2367 */
2368void __init boot_cpu_hotplug_init(void)
2369{
2370#ifdef CONFIG_SMP
2371 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2372#endif
2373 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2374}
2375
2376/*
2377 * These are used for a global "mitigations=" cmdline option for toggling
2378 * optional CPU mitigations.
2379 */
2380enum cpu_mitigations {
2381 CPU_MITIGATIONS_OFF,
2382 CPU_MITIGATIONS_AUTO,
2383 CPU_MITIGATIONS_AUTO_NOSMT,
2384};
2385
2386static enum cpu_mitigations cpu_mitigations __ro_after_init =
2387 CPU_MITIGATIONS_AUTO;
2388
2389static int __init mitigations_parse_cmdline(char *arg)
2390{
2391 if (!strcmp(arg, "off"))
2392 cpu_mitigations = CPU_MITIGATIONS_OFF;
2393 else if (!strcmp(arg, "auto"))
2394 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2395 else if (!strcmp(arg, "auto,nosmt"))
2396 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2397 else
2398 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2399 arg);
2400
2401 return 0;
2402}
2403early_param("mitigations", mitigations_parse_cmdline);
2404
2405/* mitigations=off */
2406bool cpu_mitigations_off(void)
2407{
2408 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2409}
2410EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2411
2412/* mitigations=auto,nosmt */
2413bool cpu_mitigations_auto_nosmt(void)
2414{
2415 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2416}
2417EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/sched/mm.h>
7#include <linux/proc_fs.h>
8#include <linux/smp.h>
9#include <linux/init.h>
10#include <linux/notifier.h>
11#include <linux/sched/signal.h>
12#include <linux/sched/hotplug.h>
13#include <linux/sched/isolation.h>
14#include <linux/sched/task.h>
15#include <linux/sched/smt.h>
16#include <linux/unistd.h>
17#include <linux/cpu.h>
18#include <linux/oom.h>
19#include <linux/rcupdate.h>
20#include <linux/export.h>
21#include <linux/bug.h>
22#include <linux/kthread.h>
23#include <linux/stop_machine.h>
24#include <linux/mutex.h>
25#include <linux/gfp.h>
26#include <linux/suspend.h>
27#include <linux/lockdep.h>
28#include <linux/tick.h>
29#include <linux/irq.h>
30#include <linux/nmi.h>
31#include <linux/smpboot.h>
32#include <linux/relay.h>
33#include <linux/slab.h>
34#include <linux/percpu-rwsem.h>
35#include <linux/cpuset.h>
36
37#include <trace/events/power.h>
38#define CREATE_TRACE_POINTS
39#include <trace/events/cpuhp.h>
40
41#include "smpboot.h"
42
43/**
44 * cpuhp_cpu_state - Per cpu hotplug state storage
45 * @state: The current cpu state
46 * @target: The target state
47 * @thread: Pointer to the hotplug thread
48 * @should_run: Thread should execute
49 * @rollback: Perform a rollback
50 * @single: Single callback invocation
51 * @bringup: Single callback bringup or teardown selector
52 * @cb_state: The state for a single callback (install/uninstall)
53 * @result: Result of the operation
54 * @done_up: Signal completion to the issuer of the task for cpu-up
55 * @done_down: Signal completion to the issuer of the task for cpu-down
56 */
57struct cpuhp_cpu_state {
58 enum cpuhp_state state;
59 enum cpuhp_state target;
60 enum cpuhp_state fail;
61#ifdef CONFIG_SMP
62 struct task_struct *thread;
63 bool should_run;
64 bool rollback;
65 bool single;
66 bool bringup;
67 int cpu;
68 struct hlist_node *node;
69 struct hlist_node *last;
70 enum cpuhp_state cb_state;
71 int result;
72 struct completion done_up;
73 struct completion done_down;
74#endif
75};
76
77static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
78 .fail = CPUHP_INVALID,
79};
80
81#ifdef CONFIG_SMP
82cpumask_t cpus_booted_once_mask;
83#endif
84
85#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
86static struct lockdep_map cpuhp_state_up_map =
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
88static struct lockdep_map cpuhp_state_down_map =
89 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
90
91
92static inline void cpuhp_lock_acquire(bool bringup)
93{
94 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
95}
96
97static inline void cpuhp_lock_release(bool bringup)
98{
99 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
100}
101#else
102
103static inline void cpuhp_lock_acquire(bool bringup) { }
104static inline void cpuhp_lock_release(bool bringup) { }
105
106#endif
107
108/**
109 * cpuhp_step - Hotplug state machine step
110 * @name: Name of the step
111 * @startup: Startup function of the step
112 * @teardown: Teardown function of the step
113 * @cant_stop: Bringup/teardown can't be stopped at this step
114 */
115struct cpuhp_step {
116 const char *name;
117 union {
118 int (*single)(unsigned int cpu);
119 int (*multi)(unsigned int cpu,
120 struct hlist_node *node);
121 } startup;
122 union {
123 int (*single)(unsigned int cpu);
124 int (*multi)(unsigned int cpu,
125 struct hlist_node *node);
126 } teardown;
127 struct hlist_head list;
128 bool cant_stop;
129 bool multi_instance;
130};
131
132static DEFINE_MUTEX(cpuhp_state_mutex);
133static struct cpuhp_step cpuhp_hp_states[];
134
135static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
136{
137 return cpuhp_hp_states + state;
138}
139
140static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
141{
142 return bringup ? !step->startup.single : !step->teardown.single;
143}
144
145/**
146 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
147 * @cpu: The cpu for which the callback should be invoked
148 * @state: The state to do callbacks for
149 * @bringup: True if the bringup callback should be invoked
150 * @node: For multi-instance, do a single entry callback for install/remove
151 * @lastp: For multi-instance rollback, remember how far we got
152 *
153 * Called from cpu hotplug and from the state register machinery.
154 */
155static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
156 bool bringup, struct hlist_node *node,
157 struct hlist_node **lastp)
158{
159 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
160 struct cpuhp_step *step = cpuhp_get_step(state);
161 int (*cbm)(unsigned int cpu, struct hlist_node *node);
162 int (*cb)(unsigned int cpu);
163 int ret, cnt;
164
165 if (st->fail == state) {
166 st->fail = CPUHP_INVALID;
167 return -EAGAIN;
168 }
169
170 if (cpuhp_step_empty(bringup, step)) {
171 WARN_ON_ONCE(1);
172 return 0;
173 }
174
175 if (!step->multi_instance) {
176 WARN_ON_ONCE(lastp && *lastp);
177 cb = bringup ? step->startup.single : step->teardown.single;
178
179 trace_cpuhp_enter(cpu, st->target, state, cb);
180 ret = cb(cpu);
181 trace_cpuhp_exit(cpu, st->state, state, ret);
182 return ret;
183 }
184 cbm = bringup ? step->startup.multi : step->teardown.multi;
185
186 /* Single invocation for instance add/remove */
187 if (node) {
188 WARN_ON_ONCE(lastp && *lastp);
189 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
190 ret = cbm(cpu, node);
191 trace_cpuhp_exit(cpu, st->state, state, ret);
192 return ret;
193 }
194
195 /* State transition. Invoke on all instances */
196 cnt = 0;
197 hlist_for_each(node, &step->list) {
198 if (lastp && node == *lastp)
199 break;
200
201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 ret = cbm(cpu, node);
203 trace_cpuhp_exit(cpu, st->state, state, ret);
204 if (ret) {
205 if (!lastp)
206 goto err;
207
208 *lastp = node;
209 return ret;
210 }
211 cnt++;
212 }
213 if (lastp)
214 *lastp = NULL;
215 return 0;
216err:
217 /* Rollback the instances if one failed */
218 cbm = !bringup ? step->startup.multi : step->teardown.multi;
219 if (!cbm)
220 return ret;
221
222 hlist_for_each(node, &step->list) {
223 if (!cnt--)
224 break;
225
226 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
227 ret = cbm(cpu, node);
228 trace_cpuhp_exit(cpu, st->state, state, ret);
229 /*
230 * Rollback must not fail,
231 */
232 WARN_ON_ONCE(ret);
233 }
234 return ret;
235}
236
237#ifdef CONFIG_SMP
238static bool cpuhp_is_ap_state(enum cpuhp_state state)
239{
240 /*
241 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
242 * purposes as that state is handled explicitly in cpu_down.
243 */
244 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
245}
246
247static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248{
249 struct completion *done = bringup ? &st->done_up : &st->done_down;
250 wait_for_completion(done);
251}
252
253static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
254{
255 struct completion *done = bringup ? &st->done_up : &st->done_down;
256 complete(done);
257}
258
259/*
260 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
261 */
262static bool cpuhp_is_atomic_state(enum cpuhp_state state)
263{
264 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
265}
266
267/* Serializes the updates to cpu_online_mask, cpu_present_mask */
268static DEFINE_MUTEX(cpu_add_remove_lock);
269bool cpuhp_tasks_frozen;
270EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
271
272/*
273 * The following two APIs (cpu_maps_update_begin/done) must be used when
274 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
275 */
276void cpu_maps_update_begin(void)
277{
278 mutex_lock(&cpu_add_remove_lock);
279}
280
281void cpu_maps_update_done(void)
282{
283 mutex_unlock(&cpu_add_remove_lock);
284}
285
286/*
287 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
288 * Should always be manipulated under cpu_add_remove_lock
289 */
290static int cpu_hotplug_disabled;
291
292#ifdef CONFIG_HOTPLUG_CPU
293
294DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
295
296void cpus_read_lock(void)
297{
298 percpu_down_read(&cpu_hotplug_lock);
299}
300EXPORT_SYMBOL_GPL(cpus_read_lock);
301
302int cpus_read_trylock(void)
303{
304 return percpu_down_read_trylock(&cpu_hotplug_lock);
305}
306EXPORT_SYMBOL_GPL(cpus_read_trylock);
307
308void cpus_read_unlock(void)
309{
310 percpu_up_read(&cpu_hotplug_lock);
311}
312EXPORT_SYMBOL_GPL(cpus_read_unlock);
313
314void cpus_write_lock(void)
315{
316 percpu_down_write(&cpu_hotplug_lock);
317}
318
319void cpus_write_unlock(void)
320{
321 percpu_up_write(&cpu_hotplug_lock);
322}
323
324void lockdep_assert_cpus_held(void)
325{
326 /*
327 * We can't have hotplug operations before userspace starts running,
328 * and some init codepaths will knowingly not take the hotplug lock.
329 * This is all valid, so mute lockdep until it makes sense to report
330 * unheld locks.
331 */
332 if (system_state < SYSTEM_RUNNING)
333 return;
334
335 percpu_rwsem_assert_held(&cpu_hotplug_lock);
336}
337
338#ifdef CONFIG_LOCKDEP
339int lockdep_is_cpus_held(void)
340{
341 return percpu_rwsem_is_held(&cpu_hotplug_lock);
342}
343#endif
344
345static void lockdep_acquire_cpus_lock(void)
346{
347 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
348}
349
350static void lockdep_release_cpus_lock(void)
351{
352 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
353}
354
355/*
356 * Wait for currently running CPU hotplug operations to complete (if any) and
357 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
358 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
359 * hotplug path before performing hotplug operations. So acquiring that lock
360 * guarantees mutual exclusion from any currently running hotplug operations.
361 */
362void cpu_hotplug_disable(void)
363{
364 cpu_maps_update_begin();
365 cpu_hotplug_disabled++;
366 cpu_maps_update_done();
367}
368EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
369
370static void __cpu_hotplug_enable(void)
371{
372 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
373 return;
374 cpu_hotplug_disabled--;
375}
376
377void cpu_hotplug_enable(void)
378{
379 cpu_maps_update_begin();
380 __cpu_hotplug_enable();
381 cpu_maps_update_done();
382}
383EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
384
385#else
386
387static void lockdep_acquire_cpus_lock(void)
388{
389}
390
391static void lockdep_release_cpus_lock(void)
392{
393}
394
395#endif /* CONFIG_HOTPLUG_CPU */
396
397/*
398 * Architectures that need SMT-specific errata handling during SMT hotplug
399 * should override this.
400 */
401void __weak arch_smt_update(void) { }
402
403#ifdef CONFIG_HOTPLUG_SMT
404enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
405
406void __init cpu_smt_disable(bool force)
407{
408 if (!cpu_smt_possible())
409 return;
410
411 if (force) {
412 pr_info("SMT: Force disabled\n");
413 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
414 } else {
415 pr_info("SMT: disabled\n");
416 cpu_smt_control = CPU_SMT_DISABLED;
417 }
418}
419
420/*
421 * The decision whether SMT is supported can only be done after the full
422 * CPU identification. Called from architecture code.
423 */
424void __init cpu_smt_check_topology(void)
425{
426 if (!topology_smt_supported())
427 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
428}
429
430static int __init smt_cmdline_disable(char *str)
431{
432 cpu_smt_disable(str && !strcmp(str, "force"));
433 return 0;
434}
435early_param("nosmt", smt_cmdline_disable);
436
437static inline bool cpu_smt_allowed(unsigned int cpu)
438{
439 if (cpu_smt_control == CPU_SMT_ENABLED)
440 return true;
441
442 if (topology_is_primary_thread(cpu))
443 return true;
444
445 /*
446 * On x86 it's required to boot all logical CPUs at least once so
447 * that the init code can get a chance to set CR4.MCE on each
448 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
449 * core will shutdown the machine.
450 */
451 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
452}
453
454/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
455bool cpu_smt_possible(void)
456{
457 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
458 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
459}
460EXPORT_SYMBOL_GPL(cpu_smt_possible);
461#else
462static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
463#endif
464
465static inline enum cpuhp_state
466cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
467{
468 enum cpuhp_state prev_state = st->state;
469 bool bringup = st->state < target;
470
471 st->rollback = false;
472 st->last = NULL;
473
474 st->target = target;
475 st->single = false;
476 st->bringup = bringup;
477 if (cpu_dying(st->cpu) != !bringup)
478 set_cpu_dying(st->cpu, !bringup);
479
480 return prev_state;
481}
482
483static inline void
484cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
485{
486 bool bringup = !st->bringup;
487
488 st->target = prev_state;
489
490 /*
491 * Already rolling back. No need invert the bringup value or to change
492 * the current state.
493 */
494 if (st->rollback)
495 return;
496
497 st->rollback = true;
498
499 /*
500 * If we have st->last we need to undo partial multi_instance of this
501 * state first. Otherwise start undo at the previous state.
502 */
503 if (!st->last) {
504 if (st->bringup)
505 st->state--;
506 else
507 st->state++;
508 }
509
510 st->bringup = bringup;
511 if (cpu_dying(st->cpu) != !bringup)
512 set_cpu_dying(st->cpu, !bringup);
513}
514
515/* Regular hotplug invocation of the AP hotplug thread */
516static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
517{
518 if (!st->single && st->state == st->target)
519 return;
520
521 st->result = 0;
522 /*
523 * Make sure the above stores are visible before should_run becomes
524 * true. Paired with the mb() above in cpuhp_thread_fun()
525 */
526 smp_mb();
527 st->should_run = true;
528 wake_up_process(st->thread);
529 wait_for_ap_thread(st, st->bringup);
530}
531
532static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
533{
534 enum cpuhp_state prev_state;
535 int ret;
536
537 prev_state = cpuhp_set_state(st, target);
538 __cpuhp_kick_ap(st);
539 if ((ret = st->result)) {
540 cpuhp_reset_state(st, prev_state);
541 __cpuhp_kick_ap(st);
542 }
543
544 return ret;
545}
546
547static int bringup_wait_for_ap(unsigned int cpu)
548{
549 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
550
551 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
552 wait_for_ap_thread(st, true);
553 if (WARN_ON_ONCE((!cpu_online(cpu))))
554 return -ECANCELED;
555
556 /* Unpark the hotplug thread of the target cpu */
557 kthread_unpark(st->thread);
558
559 /*
560 * SMT soft disabling on X86 requires to bring the CPU out of the
561 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
562 * CPU marked itself as booted_once in notify_cpu_starting() so the
563 * cpu_smt_allowed() check will now return false if this is not the
564 * primary sibling.
565 */
566 if (!cpu_smt_allowed(cpu))
567 return -ECANCELED;
568
569 if (st->target <= CPUHP_AP_ONLINE_IDLE)
570 return 0;
571
572 return cpuhp_kick_ap(st, st->target);
573}
574
575static int bringup_cpu(unsigned int cpu)
576{
577 struct task_struct *idle = idle_thread_get(cpu);
578 int ret;
579
580 /*
581 * Some architectures have to walk the irq descriptors to
582 * setup the vector space for the cpu which comes online.
583 * Prevent irq alloc/free across the bringup.
584 */
585 irq_lock_sparse();
586
587 /* Arch-specific enabling code. */
588 ret = __cpu_up(cpu, idle);
589 irq_unlock_sparse();
590 if (ret)
591 return ret;
592 return bringup_wait_for_ap(cpu);
593}
594
595static int finish_cpu(unsigned int cpu)
596{
597 struct task_struct *idle = idle_thread_get(cpu);
598 struct mm_struct *mm = idle->active_mm;
599
600 /*
601 * idle_task_exit() will have switched to &init_mm, now
602 * clean up any remaining active_mm state.
603 */
604 if (mm != &init_mm)
605 idle->active_mm = &init_mm;
606 mmdrop(mm);
607 return 0;
608}
609
610/*
611 * Hotplug state machine related functions
612 */
613
614/*
615 * Get the next state to run. Empty ones will be skipped. Returns true if a
616 * state must be run.
617 *
618 * st->state will be modified ahead of time, to match state_to_run, as if it
619 * has already ran.
620 */
621static bool cpuhp_next_state(bool bringup,
622 enum cpuhp_state *state_to_run,
623 struct cpuhp_cpu_state *st,
624 enum cpuhp_state target)
625{
626 do {
627 if (bringup) {
628 if (st->state >= target)
629 return false;
630
631 *state_to_run = ++st->state;
632 } else {
633 if (st->state <= target)
634 return false;
635
636 *state_to_run = st->state--;
637 }
638
639 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
640 break;
641 } while (true);
642
643 return true;
644}
645
646static int cpuhp_invoke_callback_range(bool bringup,
647 unsigned int cpu,
648 struct cpuhp_cpu_state *st,
649 enum cpuhp_state target)
650{
651 enum cpuhp_state state;
652 int err = 0;
653
654 while (cpuhp_next_state(bringup, &state, st, target)) {
655 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
656 if (err)
657 break;
658 }
659
660 return err;
661}
662
663static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
664{
665 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
666 return true;
667 /*
668 * When CPU hotplug is disabled, then taking the CPU down is not
669 * possible because takedown_cpu() and the architecture and
670 * subsystem specific mechanisms are not available. So the CPU
671 * which would be completely unplugged again needs to stay around
672 * in the current state.
673 */
674 return st->state <= CPUHP_BRINGUP_CPU;
675}
676
677static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
678 enum cpuhp_state target)
679{
680 enum cpuhp_state prev_state = st->state;
681 int ret = 0;
682
683 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
684 if (ret) {
685 cpuhp_reset_state(st, prev_state);
686 if (can_rollback_cpu(st))
687 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
688 prev_state));
689 }
690 return ret;
691}
692
693/*
694 * The cpu hotplug threads manage the bringup and teardown of the cpus
695 */
696static void cpuhp_create(unsigned int cpu)
697{
698 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
699
700 init_completion(&st->done_up);
701 init_completion(&st->done_down);
702 st->cpu = cpu;
703}
704
705static int cpuhp_should_run(unsigned int cpu)
706{
707 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
708
709 return st->should_run;
710}
711
712/*
713 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
714 * callbacks when a state gets [un]installed at runtime.
715 *
716 * Each invocation of this function by the smpboot thread does a single AP
717 * state callback.
718 *
719 * It has 3 modes of operation:
720 * - single: runs st->cb_state
721 * - up: runs ++st->state, while st->state < st->target
722 * - down: runs st->state--, while st->state > st->target
723 *
724 * When complete or on error, should_run is cleared and the completion is fired.
725 */
726static void cpuhp_thread_fun(unsigned int cpu)
727{
728 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
729 bool bringup = st->bringup;
730 enum cpuhp_state state;
731
732 if (WARN_ON_ONCE(!st->should_run))
733 return;
734
735 /*
736 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
737 * that if we see ->should_run we also see the rest of the state.
738 */
739 smp_mb();
740
741 /*
742 * The BP holds the hotplug lock, but we're now running on the AP,
743 * ensure that anybody asserting the lock is held, will actually find
744 * it so.
745 */
746 lockdep_acquire_cpus_lock();
747 cpuhp_lock_acquire(bringup);
748
749 if (st->single) {
750 state = st->cb_state;
751 st->should_run = false;
752 } else {
753 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
754 if (!st->should_run)
755 goto end;
756 }
757
758 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
759
760 if (cpuhp_is_atomic_state(state)) {
761 local_irq_disable();
762 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
763 local_irq_enable();
764
765 /*
766 * STARTING/DYING must not fail!
767 */
768 WARN_ON_ONCE(st->result);
769 } else {
770 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
771 }
772
773 if (st->result) {
774 /*
775 * If we fail on a rollback, we're up a creek without no
776 * paddle, no way forward, no way back. We loose, thanks for
777 * playing.
778 */
779 WARN_ON_ONCE(st->rollback);
780 st->should_run = false;
781 }
782
783end:
784 cpuhp_lock_release(bringup);
785 lockdep_release_cpus_lock();
786
787 if (!st->should_run)
788 complete_ap_thread(st, bringup);
789}
790
791/* Invoke a single callback on a remote cpu */
792static int
793cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
794 struct hlist_node *node)
795{
796 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
797 int ret;
798
799 if (!cpu_online(cpu))
800 return 0;
801
802 cpuhp_lock_acquire(false);
803 cpuhp_lock_release(false);
804
805 cpuhp_lock_acquire(true);
806 cpuhp_lock_release(true);
807
808 /*
809 * If we are up and running, use the hotplug thread. For early calls
810 * we invoke the thread function directly.
811 */
812 if (!st->thread)
813 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
814
815 st->rollback = false;
816 st->last = NULL;
817
818 st->node = node;
819 st->bringup = bringup;
820 st->cb_state = state;
821 st->single = true;
822
823 __cpuhp_kick_ap(st);
824
825 /*
826 * If we failed and did a partial, do a rollback.
827 */
828 if ((ret = st->result) && st->last) {
829 st->rollback = true;
830 st->bringup = !bringup;
831
832 __cpuhp_kick_ap(st);
833 }
834
835 /*
836 * Clean up the leftovers so the next hotplug operation wont use stale
837 * data.
838 */
839 st->node = st->last = NULL;
840 return ret;
841}
842
843static int cpuhp_kick_ap_work(unsigned int cpu)
844{
845 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
846 enum cpuhp_state prev_state = st->state;
847 int ret;
848
849 cpuhp_lock_acquire(false);
850 cpuhp_lock_release(false);
851
852 cpuhp_lock_acquire(true);
853 cpuhp_lock_release(true);
854
855 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
856 ret = cpuhp_kick_ap(st, st->target);
857 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
858
859 return ret;
860}
861
862static struct smp_hotplug_thread cpuhp_threads = {
863 .store = &cpuhp_state.thread,
864 .create = &cpuhp_create,
865 .thread_should_run = cpuhp_should_run,
866 .thread_fn = cpuhp_thread_fun,
867 .thread_comm = "cpuhp/%u",
868 .selfparking = true,
869};
870
871void __init cpuhp_threads_init(void)
872{
873 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
874 kthread_unpark(this_cpu_read(cpuhp_state.thread));
875}
876
877/*
878 *
879 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
880 * protected region.
881 *
882 * The operation is still serialized against concurrent CPU hotplug via
883 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
884 * serialized against other hotplug related activity like adding or
885 * removing of state callbacks and state instances, which invoke either the
886 * startup or the teardown callback of the affected state.
887 *
888 * This is required for subsystems which are unfixable vs. CPU hotplug and
889 * evade lock inversion problems by scheduling work which has to be
890 * completed _before_ cpu_up()/_cpu_down() returns.
891 *
892 * Don't even think about adding anything to this for any new code or even
893 * drivers. It's only purpose is to keep existing lock order trainwrecks
894 * working.
895 *
896 * For cpu_down() there might be valid reasons to finish cleanups which are
897 * not required to be done under cpu_hotplug_lock, but that's a different
898 * story and would be not invoked via this.
899 */
900static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
901{
902 /*
903 * cpusets delegate hotplug operations to a worker to "solve" the
904 * lock order problems. Wait for the worker, but only if tasks are
905 * _not_ frozen (suspend, hibernate) as that would wait forever.
906 *
907 * The wait is required because otherwise the hotplug operation
908 * returns with inconsistent state, which could even be observed in
909 * user space when a new CPU is brought up. The CPU plug uevent
910 * would be delivered and user space reacting on it would fail to
911 * move tasks to the newly plugged CPU up to the point where the
912 * work has finished because up to that point the newly plugged CPU
913 * is not assignable in cpusets/cgroups. On unplug that's not
914 * necessarily a visible issue, but it is still inconsistent state,
915 * which is the real problem which needs to be "fixed". This can't
916 * prevent the transient state between scheduling the work and
917 * returning from waiting for it.
918 */
919 if (!tasks_frozen)
920 cpuset_wait_for_hotplug();
921}
922
923#ifdef CONFIG_HOTPLUG_CPU
924#ifndef arch_clear_mm_cpumask_cpu
925#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
926#endif
927
928/**
929 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
930 * @cpu: a CPU id
931 *
932 * This function walks all processes, finds a valid mm struct for each one and
933 * then clears a corresponding bit in mm's cpumask. While this all sounds
934 * trivial, there are various non-obvious corner cases, which this function
935 * tries to solve in a safe manner.
936 *
937 * Also note that the function uses a somewhat relaxed locking scheme, so it may
938 * be called only for an already offlined CPU.
939 */
940void clear_tasks_mm_cpumask(int cpu)
941{
942 struct task_struct *p;
943
944 /*
945 * This function is called after the cpu is taken down and marked
946 * offline, so its not like new tasks will ever get this cpu set in
947 * their mm mask. -- Peter Zijlstra
948 * Thus, we may use rcu_read_lock() here, instead of grabbing
949 * full-fledged tasklist_lock.
950 */
951 WARN_ON(cpu_online(cpu));
952 rcu_read_lock();
953 for_each_process(p) {
954 struct task_struct *t;
955
956 /*
957 * Main thread might exit, but other threads may still have
958 * a valid mm. Find one.
959 */
960 t = find_lock_task_mm(p);
961 if (!t)
962 continue;
963 arch_clear_mm_cpumask_cpu(cpu, t->mm);
964 task_unlock(t);
965 }
966 rcu_read_unlock();
967}
968
969/* Take this CPU down. */
970static int take_cpu_down(void *_param)
971{
972 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
973 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
974 int err, cpu = smp_processor_id();
975 int ret;
976
977 /* Ensure this CPU doesn't handle any more interrupts. */
978 err = __cpu_disable();
979 if (err < 0)
980 return err;
981
982 /*
983 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
984 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
985 */
986 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
987
988 /* Invoke the former CPU_DYING callbacks */
989 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
990
991 /*
992 * DYING must not fail!
993 */
994 WARN_ON_ONCE(ret);
995
996 /* Give up timekeeping duties */
997 tick_handover_do_timer();
998 /* Remove CPU from timer broadcasting */
999 tick_offline_cpu(cpu);
1000 /* Park the stopper thread */
1001 stop_machine_park(cpu);
1002 return 0;
1003}
1004
1005static int takedown_cpu(unsigned int cpu)
1006{
1007 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1008 int err;
1009
1010 /* Park the smpboot threads */
1011 kthread_park(st->thread);
1012
1013 /*
1014 * Prevent irq alloc/free while the dying cpu reorganizes the
1015 * interrupt affinities.
1016 */
1017 irq_lock_sparse();
1018
1019 /*
1020 * So now all preempt/rcu users must observe !cpu_active().
1021 */
1022 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1023 if (err) {
1024 /* CPU refused to die */
1025 irq_unlock_sparse();
1026 /* Unpark the hotplug thread so we can rollback there */
1027 kthread_unpark(st->thread);
1028 return err;
1029 }
1030 BUG_ON(cpu_online(cpu));
1031
1032 /*
1033 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1034 * all runnable tasks from the CPU, there's only the idle task left now
1035 * that the migration thread is done doing the stop_machine thing.
1036 *
1037 * Wait for the stop thread to go away.
1038 */
1039 wait_for_ap_thread(st, false);
1040 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1041
1042 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1043 irq_unlock_sparse();
1044
1045 hotplug_cpu__broadcast_tick_pull(cpu);
1046 /* This actually kills the CPU. */
1047 __cpu_die(cpu);
1048
1049 tick_cleanup_dead_cpu(cpu);
1050 rcutree_migrate_callbacks(cpu);
1051 return 0;
1052}
1053
1054static void cpuhp_complete_idle_dead(void *arg)
1055{
1056 struct cpuhp_cpu_state *st = arg;
1057
1058 complete_ap_thread(st, false);
1059}
1060
1061void cpuhp_report_idle_dead(void)
1062{
1063 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1064
1065 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1066 rcu_report_dead(smp_processor_id());
1067 st->state = CPUHP_AP_IDLE_DEAD;
1068 /*
1069 * We cannot call complete after rcu_report_dead() so we delegate it
1070 * to an online cpu.
1071 */
1072 smp_call_function_single(cpumask_first(cpu_online_mask),
1073 cpuhp_complete_idle_dead, st, 0);
1074}
1075
1076static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1077 enum cpuhp_state target)
1078{
1079 enum cpuhp_state prev_state = st->state;
1080 int ret = 0;
1081
1082 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1083 if (ret) {
1084
1085 cpuhp_reset_state(st, prev_state);
1086
1087 if (st->state < prev_state)
1088 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1089 prev_state));
1090 }
1091
1092 return ret;
1093}
1094
1095/* Requires cpu_add_remove_lock to be held */
1096static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1097 enum cpuhp_state target)
1098{
1099 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1100 int prev_state, ret = 0;
1101
1102 if (num_online_cpus() == 1)
1103 return -EBUSY;
1104
1105 if (!cpu_present(cpu))
1106 return -EINVAL;
1107
1108 cpus_write_lock();
1109
1110 cpuhp_tasks_frozen = tasks_frozen;
1111
1112 prev_state = cpuhp_set_state(st, target);
1113 /*
1114 * If the current CPU state is in the range of the AP hotplug thread,
1115 * then we need to kick the thread.
1116 */
1117 if (st->state > CPUHP_TEARDOWN_CPU) {
1118 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1119 ret = cpuhp_kick_ap_work(cpu);
1120 /*
1121 * The AP side has done the error rollback already. Just
1122 * return the error code..
1123 */
1124 if (ret)
1125 goto out;
1126
1127 /*
1128 * We might have stopped still in the range of the AP hotplug
1129 * thread. Nothing to do anymore.
1130 */
1131 if (st->state > CPUHP_TEARDOWN_CPU)
1132 goto out;
1133
1134 st->target = target;
1135 }
1136 /*
1137 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1138 * to do the further cleanups.
1139 */
1140 ret = cpuhp_down_callbacks(cpu, st, target);
1141 if (ret && st->state < prev_state) {
1142 if (st->state == CPUHP_TEARDOWN_CPU) {
1143 cpuhp_reset_state(st, prev_state);
1144 __cpuhp_kick_ap(st);
1145 } else {
1146 WARN(1, "DEAD callback error for CPU%d", cpu);
1147 }
1148 }
1149
1150out:
1151 cpus_write_unlock();
1152 /*
1153 * Do post unplug cleanup. This is still protected against
1154 * concurrent CPU hotplug via cpu_add_remove_lock.
1155 */
1156 lockup_detector_cleanup();
1157 arch_smt_update();
1158 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1159 return ret;
1160}
1161
1162static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1163{
1164 if (cpu_hotplug_disabled)
1165 return -EBUSY;
1166 return _cpu_down(cpu, 0, target);
1167}
1168
1169static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1170{
1171 int err;
1172
1173 cpu_maps_update_begin();
1174 err = cpu_down_maps_locked(cpu, target);
1175 cpu_maps_update_done();
1176 return err;
1177}
1178
1179/**
1180 * cpu_device_down - Bring down a cpu device
1181 * @dev: Pointer to the cpu device to offline
1182 *
1183 * This function is meant to be used by device core cpu subsystem only.
1184 *
1185 * Other subsystems should use remove_cpu() instead.
1186 */
1187int cpu_device_down(struct device *dev)
1188{
1189 return cpu_down(dev->id, CPUHP_OFFLINE);
1190}
1191
1192int remove_cpu(unsigned int cpu)
1193{
1194 int ret;
1195
1196 lock_device_hotplug();
1197 ret = device_offline(get_cpu_device(cpu));
1198 unlock_device_hotplug();
1199
1200 return ret;
1201}
1202EXPORT_SYMBOL_GPL(remove_cpu);
1203
1204void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1205{
1206 unsigned int cpu;
1207 int error;
1208
1209 cpu_maps_update_begin();
1210
1211 /*
1212 * Make certain the cpu I'm about to reboot on is online.
1213 *
1214 * This is inline to what migrate_to_reboot_cpu() already do.
1215 */
1216 if (!cpu_online(primary_cpu))
1217 primary_cpu = cpumask_first(cpu_online_mask);
1218
1219 for_each_online_cpu(cpu) {
1220 if (cpu == primary_cpu)
1221 continue;
1222
1223 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1224 if (error) {
1225 pr_err("Failed to offline CPU%d - error=%d",
1226 cpu, error);
1227 break;
1228 }
1229 }
1230
1231 /*
1232 * Ensure all but the reboot CPU are offline.
1233 */
1234 BUG_ON(num_online_cpus() > 1);
1235
1236 /*
1237 * Make sure the CPUs won't be enabled by someone else after this
1238 * point. Kexec will reboot to a new kernel shortly resetting
1239 * everything along the way.
1240 */
1241 cpu_hotplug_disabled++;
1242
1243 cpu_maps_update_done();
1244}
1245
1246#else
1247#define takedown_cpu NULL
1248#endif /*CONFIG_HOTPLUG_CPU*/
1249
1250/**
1251 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1252 * @cpu: cpu that just started
1253 *
1254 * It must be called by the arch code on the new cpu, before the new cpu
1255 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1256 */
1257void notify_cpu_starting(unsigned int cpu)
1258{
1259 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1260 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1261 int ret;
1262
1263 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1264 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1265 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1266
1267 /*
1268 * STARTING must not fail!
1269 */
1270 WARN_ON_ONCE(ret);
1271}
1272
1273/*
1274 * Called from the idle task. Wake up the controlling task which brings the
1275 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1276 * online bringup to the hotplug thread.
1277 */
1278void cpuhp_online_idle(enum cpuhp_state state)
1279{
1280 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1281
1282 /* Happens for the boot cpu */
1283 if (state != CPUHP_AP_ONLINE_IDLE)
1284 return;
1285
1286 /*
1287 * Unpart the stopper thread before we start the idle loop (and start
1288 * scheduling); this ensures the stopper task is always available.
1289 */
1290 stop_machine_unpark(smp_processor_id());
1291
1292 st->state = CPUHP_AP_ONLINE_IDLE;
1293 complete_ap_thread(st, true);
1294}
1295
1296/* Requires cpu_add_remove_lock to be held */
1297static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1298{
1299 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1300 struct task_struct *idle;
1301 int ret = 0;
1302
1303 cpus_write_lock();
1304
1305 if (!cpu_present(cpu)) {
1306 ret = -EINVAL;
1307 goto out;
1308 }
1309
1310 /*
1311 * The caller of cpu_up() might have raced with another
1312 * caller. Nothing to do.
1313 */
1314 if (st->state >= target)
1315 goto out;
1316
1317 if (st->state == CPUHP_OFFLINE) {
1318 /* Let it fail before we try to bring the cpu up */
1319 idle = idle_thread_get(cpu);
1320 if (IS_ERR(idle)) {
1321 ret = PTR_ERR(idle);
1322 goto out;
1323 }
1324 }
1325
1326 cpuhp_tasks_frozen = tasks_frozen;
1327
1328 cpuhp_set_state(st, target);
1329 /*
1330 * If the current CPU state is in the range of the AP hotplug thread,
1331 * then we need to kick the thread once more.
1332 */
1333 if (st->state > CPUHP_BRINGUP_CPU) {
1334 ret = cpuhp_kick_ap_work(cpu);
1335 /*
1336 * The AP side has done the error rollback already. Just
1337 * return the error code..
1338 */
1339 if (ret)
1340 goto out;
1341 }
1342
1343 /*
1344 * Try to reach the target state. We max out on the BP at
1345 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1346 * responsible for bringing it up to the target state.
1347 */
1348 target = min((int)target, CPUHP_BRINGUP_CPU);
1349 ret = cpuhp_up_callbacks(cpu, st, target);
1350out:
1351 cpus_write_unlock();
1352 arch_smt_update();
1353 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1354 return ret;
1355}
1356
1357static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1358{
1359 int err = 0;
1360
1361 if (!cpu_possible(cpu)) {
1362 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1363 cpu);
1364#if defined(CONFIG_IA64)
1365 pr_err("please check additional_cpus= boot parameter\n");
1366#endif
1367 return -EINVAL;
1368 }
1369
1370 err = try_online_node(cpu_to_node(cpu));
1371 if (err)
1372 return err;
1373
1374 cpu_maps_update_begin();
1375
1376 if (cpu_hotplug_disabled) {
1377 err = -EBUSY;
1378 goto out;
1379 }
1380 if (!cpu_smt_allowed(cpu)) {
1381 err = -EPERM;
1382 goto out;
1383 }
1384
1385 err = _cpu_up(cpu, 0, target);
1386out:
1387 cpu_maps_update_done();
1388 return err;
1389}
1390
1391/**
1392 * cpu_device_up - Bring up a cpu device
1393 * @dev: Pointer to the cpu device to online
1394 *
1395 * This function is meant to be used by device core cpu subsystem only.
1396 *
1397 * Other subsystems should use add_cpu() instead.
1398 */
1399int cpu_device_up(struct device *dev)
1400{
1401 return cpu_up(dev->id, CPUHP_ONLINE);
1402}
1403
1404int add_cpu(unsigned int cpu)
1405{
1406 int ret;
1407
1408 lock_device_hotplug();
1409 ret = device_online(get_cpu_device(cpu));
1410 unlock_device_hotplug();
1411
1412 return ret;
1413}
1414EXPORT_SYMBOL_GPL(add_cpu);
1415
1416/**
1417 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1418 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1419 *
1420 * On some architectures like arm64, we can hibernate on any CPU, but on
1421 * wake up the CPU we hibernated on might be offline as a side effect of
1422 * using maxcpus= for example.
1423 */
1424int bringup_hibernate_cpu(unsigned int sleep_cpu)
1425{
1426 int ret;
1427
1428 if (!cpu_online(sleep_cpu)) {
1429 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1430 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1431 if (ret) {
1432 pr_err("Failed to bring hibernate-CPU up!\n");
1433 return ret;
1434 }
1435 }
1436 return 0;
1437}
1438
1439void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1440{
1441 unsigned int cpu;
1442
1443 for_each_present_cpu(cpu) {
1444 if (num_online_cpus() >= setup_max_cpus)
1445 break;
1446 if (!cpu_online(cpu))
1447 cpu_up(cpu, CPUHP_ONLINE);
1448 }
1449}
1450
1451#ifdef CONFIG_PM_SLEEP_SMP
1452static cpumask_var_t frozen_cpus;
1453
1454int freeze_secondary_cpus(int primary)
1455{
1456 int cpu, error = 0;
1457
1458 cpu_maps_update_begin();
1459 if (primary == -1) {
1460 primary = cpumask_first(cpu_online_mask);
1461 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1462 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1463 } else {
1464 if (!cpu_online(primary))
1465 primary = cpumask_first(cpu_online_mask);
1466 }
1467
1468 /*
1469 * We take down all of the non-boot CPUs in one shot to avoid races
1470 * with the userspace trying to use the CPU hotplug at the same time
1471 */
1472 cpumask_clear(frozen_cpus);
1473
1474 pr_info("Disabling non-boot CPUs ...\n");
1475 for_each_online_cpu(cpu) {
1476 if (cpu == primary)
1477 continue;
1478
1479 if (pm_wakeup_pending()) {
1480 pr_info("Wakeup pending. Abort CPU freeze\n");
1481 error = -EBUSY;
1482 break;
1483 }
1484
1485 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1486 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1487 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1488 if (!error)
1489 cpumask_set_cpu(cpu, frozen_cpus);
1490 else {
1491 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1492 break;
1493 }
1494 }
1495
1496 if (!error)
1497 BUG_ON(num_online_cpus() > 1);
1498 else
1499 pr_err("Non-boot CPUs are not disabled\n");
1500
1501 /*
1502 * Make sure the CPUs won't be enabled by someone else. We need to do
1503 * this even in case of failure as all freeze_secondary_cpus() users are
1504 * supposed to do thaw_secondary_cpus() on the failure path.
1505 */
1506 cpu_hotplug_disabled++;
1507
1508 cpu_maps_update_done();
1509 return error;
1510}
1511
1512void __weak arch_thaw_secondary_cpus_begin(void)
1513{
1514}
1515
1516void __weak arch_thaw_secondary_cpus_end(void)
1517{
1518}
1519
1520void thaw_secondary_cpus(void)
1521{
1522 int cpu, error;
1523
1524 /* Allow everyone to use the CPU hotplug again */
1525 cpu_maps_update_begin();
1526 __cpu_hotplug_enable();
1527 if (cpumask_empty(frozen_cpus))
1528 goto out;
1529
1530 pr_info("Enabling non-boot CPUs ...\n");
1531
1532 arch_thaw_secondary_cpus_begin();
1533
1534 for_each_cpu(cpu, frozen_cpus) {
1535 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1536 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1537 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1538 if (!error) {
1539 pr_info("CPU%d is up\n", cpu);
1540 continue;
1541 }
1542 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1543 }
1544
1545 arch_thaw_secondary_cpus_end();
1546
1547 cpumask_clear(frozen_cpus);
1548out:
1549 cpu_maps_update_done();
1550}
1551
1552static int __init alloc_frozen_cpus(void)
1553{
1554 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1555 return -ENOMEM;
1556 return 0;
1557}
1558core_initcall(alloc_frozen_cpus);
1559
1560/*
1561 * When callbacks for CPU hotplug notifications are being executed, we must
1562 * ensure that the state of the system with respect to the tasks being frozen
1563 * or not, as reported by the notification, remains unchanged *throughout the
1564 * duration* of the execution of the callbacks.
1565 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1566 *
1567 * This synchronization is implemented by mutually excluding regular CPU
1568 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1569 * Hibernate notifications.
1570 */
1571static int
1572cpu_hotplug_pm_callback(struct notifier_block *nb,
1573 unsigned long action, void *ptr)
1574{
1575 switch (action) {
1576
1577 case PM_SUSPEND_PREPARE:
1578 case PM_HIBERNATION_PREPARE:
1579 cpu_hotplug_disable();
1580 break;
1581
1582 case PM_POST_SUSPEND:
1583 case PM_POST_HIBERNATION:
1584 cpu_hotplug_enable();
1585 break;
1586
1587 default:
1588 return NOTIFY_DONE;
1589 }
1590
1591 return NOTIFY_OK;
1592}
1593
1594
1595static int __init cpu_hotplug_pm_sync_init(void)
1596{
1597 /*
1598 * cpu_hotplug_pm_callback has higher priority than x86
1599 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1600 * to disable cpu hotplug to avoid cpu hotplug race.
1601 */
1602 pm_notifier(cpu_hotplug_pm_callback, 0);
1603 return 0;
1604}
1605core_initcall(cpu_hotplug_pm_sync_init);
1606
1607#endif /* CONFIG_PM_SLEEP_SMP */
1608
1609int __boot_cpu_id;
1610
1611#endif /* CONFIG_SMP */
1612
1613/* Boot processor state steps */
1614static struct cpuhp_step cpuhp_hp_states[] = {
1615 [CPUHP_OFFLINE] = {
1616 .name = "offline",
1617 .startup.single = NULL,
1618 .teardown.single = NULL,
1619 },
1620#ifdef CONFIG_SMP
1621 [CPUHP_CREATE_THREADS]= {
1622 .name = "threads:prepare",
1623 .startup.single = smpboot_create_threads,
1624 .teardown.single = NULL,
1625 .cant_stop = true,
1626 },
1627 [CPUHP_PERF_PREPARE] = {
1628 .name = "perf:prepare",
1629 .startup.single = perf_event_init_cpu,
1630 .teardown.single = perf_event_exit_cpu,
1631 },
1632 [CPUHP_WORKQUEUE_PREP] = {
1633 .name = "workqueue:prepare",
1634 .startup.single = workqueue_prepare_cpu,
1635 .teardown.single = NULL,
1636 },
1637 [CPUHP_HRTIMERS_PREPARE] = {
1638 .name = "hrtimers:prepare",
1639 .startup.single = hrtimers_prepare_cpu,
1640 .teardown.single = hrtimers_dead_cpu,
1641 },
1642 [CPUHP_SMPCFD_PREPARE] = {
1643 .name = "smpcfd:prepare",
1644 .startup.single = smpcfd_prepare_cpu,
1645 .teardown.single = smpcfd_dead_cpu,
1646 },
1647 [CPUHP_RELAY_PREPARE] = {
1648 .name = "relay:prepare",
1649 .startup.single = relay_prepare_cpu,
1650 .teardown.single = NULL,
1651 },
1652 [CPUHP_SLAB_PREPARE] = {
1653 .name = "slab:prepare",
1654 .startup.single = slab_prepare_cpu,
1655 .teardown.single = slab_dead_cpu,
1656 },
1657 [CPUHP_RCUTREE_PREP] = {
1658 .name = "RCU/tree:prepare",
1659 .startup.single = rcutree_prepare_cpu,
1660 .teardown.single = rcutree_dead_cpu,
1661 },
1662 /*
1663 * On the tear-down path, timers_dead_cpu() must be invoked
1664 * before blk_mq_queue_reinit_notify() from notify_dead(),
1665 * otherwise a RCU stall occurs.
1666 */
1667 [CPUHP_TIMERS_PREPARE] = {
1668 .name = "timers:prepare",
1669 .startup.single = timers_prepare_cpu,
1670 .teardown.single = timers_dead_cpu,
1671 },
1672 /* Kicks the plugged cpu into life */
1673 [CPUHP_BRINGUP_CPU] = {
1674 .name = "cpu:bringup",
1675 .startup.single = bringup_cpu,
1676 .teardown.single = finish_cpu,
1677 .cant_stop = true,
1678 },
1679 /* Final state before CPU kills itself */
1680 [CPUHP_AP_IDLE_DEAD] = {
1681 .name = "idle:dead",
1682 },
1683 /*
1684 * Last state before CPU enters the idle loop to die. Transient state
1685 * for synchronization.
1686 */
1687 [CPUHP_AP_OFFLINE] = {
1688 .name = "ap:offline",
1689 .cant_stop = true,
1690 },
1691 /* First state is scheduler control. Interrupts are disabled */
1692 [CPUHP_AP_SCHED_STARTING] = {
1693 .name = "sched:starting",
1694 .startup.single = sched_cpu_starting,
1695 .teardown.single = sched_cpu_dying,
1696 },
1697 [CPUHP_AP_RCUTREE_DYING] = {
1698 .name = "RCU/tree:dying",
1699 .startup.single = NULL,
1700 .teardown.single = rcutree_dying_cpu,
1701 },
1702 [CPUHP_AP_SMPCFD_DYING] = {
1703 .name = "smpcfd:dying",
1704 .startup.single = NULL,
1705 .teardown.single = smpcfd_dying_cpu,
1706 },
1707 /* Entry state on starting. Interrupts enabled from here on. Transient
1708 * state for synchronsization */
1709 [CPUHP_AP_ONLINE] = {
1710 .name = "ap:online",
1711 },
1712 /*
1713 * Handled on control processor until the plugged processor manages
1714 * this itself.
1715 */
1716 [CPUHP_TEARDOWN_CPU] = {
1717 .name = "cpu:teardown",
1718 .startup.single = NULL,
1719 .teardown.single = takedown_cpu,
1720 .cant_stop = true,
1721 },
1722
1723 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1724 .name = "sched:waitempty",
1725 .startup.single = NULL,
1726 .teardown.single = sched_cpu_wait_empty,
1727 },
1728
1729 /* Handle smpboot threads park/unpark */
1730 [CPUHP_AP_SMPBOOT_THREADS] = {
1731 .name = "smpboot/threads:online",
1732 .startup.single = smpboot_unpark_threads,
1733 .teardown.single = smpboot_park_threads,
1734 },
1735 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1736 .name = "irq/affinity:online",
1737 .startup.single = irq_affinity_online_cpu,
1738 .teardown.single = NULL,
1739 },
1740 [CPUHP_AP_PERF_ONLINE] = {
1741 .name = "perf:online",
1742 .startup.single = perf_event_init_cpu,
1743 .teardown.single = perf_event_exit_cpu,
1744 },
1745 [CPUHP_AP_WATCHDOG_ONLINE] = {
1746 .name = "lockup_detector:online",
1747 .startup.single = lockup_detector_online_cpu,
1748 .teardown.single = lockup_detector_offline_cpu,
1749 },
1750 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1751 .name = "workqueue:online",
1752 .startup.single = workqueue_online_cpu,
1753 .teardown.single = workqueue_offline_cpu,
1754 },
1755 [CPUHP_AP_RCUTREE_ONLINE] = {
1756 .name = "RCU/tree:online",
1757 .startup.single = rcutree_online_cpu,
1758 .teardown.single = rcutree_offline_cpu,
1759 },
1760#endif
1761 /*
1762 * The dynamically registered state space is here
1763 */
1764
1765#ifdef CONFIG_SMP
1766 /* Last state is scheduler control setting the cpu active */
1767 [CPUHP_AP_ACTIVE] = {
1768 .name = "sched:active",
1769 .startup.single = sched_cpu_activate,
1770 .teardown.single = sched_cpu_deactivate,
1771 },
1772#endif
1773
1774 /* CPU is fully up and running. */
1775 [CPUHP_ONLINE] = {
1776 .name = "online",
1777 .startup.single = NULL,
1778 .teardown.single = NULL,
1779 },
1780};
1781
1782/* Sanity check for callbacks */
1783static int cpuhp_cb_check(enum cpuhp_state state)
1784{
1785 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1786 return -EINVAL;
1787 return 0;
1788}
1789
1790/*
1791 * Returns a free for dynamic slot assignment of the Online state. The states
1792 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1793 * by having no name assigned.
1794 */
1795static int cpuhp_reserve_state(enum cpuhp_state state)
1796{
1797 enum cpuhp_state i, end;
1798 struct cpuhp_step *step;
1799
1800 switch (state) {
1801 case CPUHP_AP_ONLINE_DYN:
1802 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1803 end = CPUHP_AP_ONLINE_DYN_END;
1804 break;
1805 case CPUHP_BP_PREPARE_DYN:
1806 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1807 end = CPUHP_BP_PREPARE_DYN_END;
1808 break;
1809 default:
1810 return -EINVAL;
1811 }
1812
1813 for (i = state; i <= end; i++, step++) {
1814 if (!step->name)
1815 return i;
1816 }
1817 WARN(1, "No more dynamic states available for CPU hotplug\n");
1818 return -ENOSPC;
1819}
1820
1821static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1822 int (*startup)(unsigned int cpu),
1823 int (*teardown)(unsigned int cpu),
1824 bool multi_instance)
1825{
1826 /* (Un)Install the callbacks for further cpu hotplug operations */
1827 struct cpuhp_step *sp;
1828 int ret = 0;
1829
1830 /*
1831 * If name is NULL, then the state gets removed.
1832 *
1833 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1834 * the first allocation from these dynamic ranges, so the removal
1835 * would trigger a new allocation and clear the wrong (already
1836 * empty) state, leaving the callbacks of the to be cleared state
1837 * dangling, which causes wreckage on the next hotplug operation.
1838 */
1839 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1840 state == CPUHP_BP_PREPARE_DYN)) {
1841 ret = cpuhp_reserve_state(state);
1842 if (ret < 0)
1843 return ret;
1844 state = ret;
1845 }
1846 sp = cpuhp_get_step(state);
1847 if (name && sp->name)
1848 return -EBUSY;
1849
1850 sp->startup.single = startup;
1851 sp->teardown.single = teardown;
1852 sp->name = name;
1853 sp->multi_instance = multi_instance;
1854 INIT_HLIST_HEAD(&sp->list);
1855 return ret;
1856}
1857
1858static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1859{
1860 return cpuhp_get_step(state)->teardown.single;
1861}
1862
1863/*
1864 * Call the startup/teardown function for a step either on the AP or
1865 * on the current CPU.
1866 */
1867static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1868 struct hlist_node *node)
1869{
1870 struct cpuhp_step *sp = cpuhp_get_step(state);
1871 int ret;
1872
1873 /*
1874 * If there's nothing to do, we done.
1875 * Relies on the union for multi_instance.
1876 */
1877 if (cpuhp_step_empty(bringup, sp))
1878 return 0;
1879 /*
1880 * The non AP bound callbacks can fail on bringup. On teardown
1881 * e.g. module removal we crash for now.
1882 */
1883#ifdef CONFIG_SMP
1884 if (cpuhp_is_ap_state(state))
1885 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1886 else
1887 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1888#else
1889 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1890#endif
1891 BUG_ON(ret && !bringup);
1892 return ret;
1893}
1894
1895/*
1896 * Called from __cpuhp_setup_state on a recoverable failure.
1897 *
1898 * Note: The teardown callbacks for rollback are not allowed to fail!
1899 */
1900static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1901 struct hlist_node *node)
1902{
1903 int cpu;
1904
1905 /* Roll back the already executed steps on the other cpus */
1906 for_each_present_cpu(cpu) {
1907 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1908 int cpustate = st->state;
1909
1910 if (cpu >= failedcpu)
1911 break;
1912
1913 /* Did we invoke the startup call on that cpu ? */
1914 if (cpustate >= state)
1915 cpuhp_issue_call(cpu, state, false, node);
1916 }
1917}
1918
1919int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1920 struct hlist_node *node,
1921 bool invoke)
1922{
1923 struct cpuhp_step *sp;
1924 int cpu;
1925 int ret;
1926
1927 lockdep_assert_cpus_held();
1928
1929 sp = cpuhp_get_step(state);
1930 if (sp->multi_instance == false)
1931 return -EINVAL;
1932
1933 mutex_lock(&cpuhp_state_mutex);
1934
1935 if (!invoke || !sp->startup.multi)
1936 goto add_node;
1937
1938 /*
1939 * Try to call the startup callback for each present cpu
1940 * depending on the hotplug state of the cpu.
1941 */
1942 for_each_present_cpu(cpu) {
1943 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1944 int cpustate = st->state;
1945
1946 if (cpustate < state)
1947 continue;
1948
1949 ret = cpuhp_issue_call(cpu, state, true, node);
1950 if (ret) {
1951 if (sp->teardown.multi)
1952 cpuhp_rollback_install(cpu, state, node);
1953 goto unlock;
1954 }
1955 }
1956add_node:
1957 ret = 0;
1958 hlist_add_head(node, &sp->list);
1959unlock:
1960 mutex_unlock(&cpuhp_state_mutex);
1961 return ret;
1962}
1963
1964int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1965 bool invoke)
1966{
1967 int ret;
1968
1969 cpus_read_lock();
1970 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1971 cpus_read_unlock();
1972 return ret;
1973}
1974EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1975
1976/**
1977 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1978 * @state: The state to setup
1979 * @invoke: If true, the startup function is invoked for cpus where
1980 * cpu state >= @state
1981 * @startup: startup callback function
1982 * @teardown: teardown callback function
1983 * @multi_instance: State is set up for multiple instances which get
1984 * added afterwards.
1985 *
1986 * The caller needs to hold cpus read locked while calling this function.
1987 * Returns:
1988 * On success:
1989 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1990 * 0 for all other states
1991 * On failure: proper (negative) error code
1992 */
1993int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1994 const char *name, bool invoke,
1995 int (*startup)(unsigned int cpu),
1996 int (*teardown)(unsigned int cpu),
1997 bool multi_instance)
1998{
1999 int cpu, ret = 0;
2000 bool dynstate;
2001
2002 lockdep_assert_cpus_held();
2003
2004 if (cpuhp_cb_check(state) || !name)
2005 return -EINVAL;
2006
2007 mutex_lock(&cpuhp_state_mutex);
2008
2009 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2010 multi_instance);
2011
2012 dynstate = state == CPUHP_AP_ONLINE_DYN;
2013 if (ret > 0 && dynstate) {
2014 state = ret;
2015 ret = 0;
2016 }
2017
2018 if (ret || !invoke || !startup)
2019 goto out;
2020
2021 /*
2022 * Try to call the startup callback for each present cpu
2023 * depending on the hotplug state of the cpu.
2024 */
2025 for_each_present_cpu(cpu) {
2026 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2027 int cpustate = st->state;
2028
2029 if (cpustate < state)
2030 continue;
2031
2032 ret = cpuhp_issue_call(cpu, state, true, NULL);
2033 if (ret) {
2034 if (teardown)
2035 cpuhp_rollback_install(cpu, state, NULL);
2036 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2037 goto out;
2038 }
2039 }
2040out:
2041 mutex_unlock(&cpuhp_state_mutex);
2042 /*
2043 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2044 * dynamically allocated state in case of success.
2045 */
2046 if (!ret && dynstate)
2047 return state;
2048 return ret;
2049}
2050EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2051
2052int __cpuhp_setup_state(enum cpuhp_state state,
2053 const char *name, bool invoke,
2054 int (*startup)(unsigned int cpu),
2055 int (*teardown)(unsigned int cpu),
2056 bool multi_instance)
2057{
2058 int ret;
2059
2060 cpus_read_lock();
2061 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2062 teardown, multi_instance);
2063 cpus_read_unlock();
2064 return ret;
2065}
2066EXPORT_SYMBOL(__cpuhp_setup_state);
2067
2068int __cpuhp_state_remove_instance(enum cpuhp_state state,
2069 struct hlist_node *node, bool invoke)
2070{
2071 struct cpuhp_step *sp = cpuhp_get_step(state);
2072 int cpu;
2073
2074 BUG_ON(cpuhp_cb_check(state));
2075
2076 if (!sp->multi_instance)
2077 return -EINVAL;
2078
2079 cpus_read_lock();
2080 mutex_lock(&cpuhp_state_mutex);
2081
2082 if (!invoke || !cpuhp_get_teardown_cb(state))
2083 goto remove;
2084 /*
2085 * Call the teardown callback for each present cpu depending
2086 * on the hotplug state of the cpu. This function is not
2087 * allowed to fail currently!
2088 */
2089 for_each_present_cpu(cpu) {
2090 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2091 int cpustate = st->state;
2092
2093 if (cpustate >= state)
2094 cpuhp_issue_call(cpu, state, false, node);
2095 }
2096
2097remove:
2098 hlist_del(node);
2099 mutex_unlock(&cpuhp_state_mutex);
2100 cpus_read_unlock();
2101
2102 return 0;
2103}
2104EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2105
2106/**
2107 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2108 * @state: The state to remove
2109 * @invoke: If true, the teardown function is invoked for cpus where
2110 * cpu state >= @state
2111 *
2112 * The caller needs to hold cpus read locked while calling this function.
2113 * The teardown callback is currently not allowed to fail. Think
2114 * about module removal!
2115 */
2116void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2117{
2118 struct cpuhp_step *sp = cpuhp_get_step(state);
2119 int cpu;
2120
2121 BUG_ON(cpuhp_cb_check(state));
2122
2123 lockdep_assert_cpus_held();
2124
2125 mutex_lock(&cpuhp_state_mutex);
2126 if (sp->multi_instance) {
2127 WARN(!hlist_empty(&sp->list),
2128 "Error: Removing state %d which has instances left.\n",
2129 state);
2130 goto remove;
2131 }
2132
2133 if (!invoke || !cpuhp_get_teardown_cb(state))
2134 goto remove;
2135
2136 /*
2137 * Call the teardown callback for each present cpu depending
2138 * on the hotplug state of the cpu. This function is not
2139 * allowed to fail currently!
2140 */
2141 for_each_present_cpu(cpu) {
2142 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2143 int cpustate = st->state;
2144
2145 if (cpustate >= state)
2146 cpuhp_issue_call(cpu, state, false, NULL);
2147 }
2148remove:
2149 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2150 mutex_unlock(&cpuhp_state_mutex);
2151}
2152EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2153
2154void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2155{
2156 cpus_read_lock();
2157 __cpuhp_remove_state_cpuslocked(state, invoke);
2158 cpus_read_unlock();
2159}
2160EXPORT_SYMBOL(__cpuhp_remove_state);
2161
2162#ifdef CONFIG_HOTPLUG_SMT
2163static void cpuhp_offline_cpu_device(unsigned int cpu)
2164{
2165 struct device *dev = get_cpu_device(cpu);
2166
2167 dev->offline = true;
2168 /* Tell user space about the state change */
2169 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2170}
2171
2172static void cpuhp_online_cpu_device(unsigned int cpu)
2173{
2174 struct device *dev = get_cpu_device(cpu);
2175
2176 dev->offline = false;
2177 /* Tell user space about the state change */
2178 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2179}
2180
2181int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2182{
2183 int cpu, ret = 0;
2184
2185 cpu_maps_update_begin();
2186 for_each_online_cpu(cpu) {
2187 if (topology_is_primary_thread(cpu))
2188 continue;
2189 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2190 if (ret)
2191 break;
2192 /*
2193 * As this needs to hold the cpu maps lock it's impossible
2194 * to call device_offline() because that ends up calling
2195 * cpu_down() which takes cpu maps lock. cpu maps lock
2196 * needs to be held as this might race against in kernel
2197 * abusers of the hotplug machinery (thermal management).
2198 *
2199 * So nothing would update device:offline state. That would
2200 * leave the sysfs entry stale and prevent onlining after
2201 * smt control has been changed to 'off' again. This is
2202 * called under the sysfs hotplug lock, so it is properly
2203 * serialized against the regular offline usage.
2204 */
2205 cpuhp_offline_cpu_device(cpu);
2206 }
2207 if (!ret)
2208 cpu_smt_control = ctrlval;
2209 cpu_maps_update_done();
2210 return ret;
2211}
2212
2213int cpuhp_smt_enable(void)
2214{
2215 int cpu, ret = 0;
2216
2217 cpu_maps_update_begin();
2218 cpu_smt_control = CPU_SMT_ENABLED;
2219 for_each_present_cpu(cpu) {
2220 /* Skip online CPUs and CPUs on offline nodes */
2221 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2222 continue;
2223 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2224 if (ret)
2225 break;
2226 /* See comment in cpuhp_smt_disable() */
2227 cpuhp_online_cpu_device(cpu);
2228 }
2229 cpu_maps_update_done();
2230 return ret;
2231}
2232#endif
2233
2234#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2235static ssize_t show_cpuhp_state(struct device *dev,
2236 struct device_attribute *attr, char *buf)
2237{
2238 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239
2240 return sprintf(buf, "%d\n", st->state);
2241}
2242static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2243
2244static ssize_t write_cpuhp_target(struct device *dev,
2245 struct device_attribute *attr,
2246 const char *buf, size_t count)
2247{
2248 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2249 struct cpuhp_step *sp;
2250 int target, ret;
2251
2252 ret = kstrtoint(buf, 10, &target);
2253 if (ret)
2254 return ret;
2255
2256#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2257 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2258 return -EINVAL;
2259#else
2260 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2261 return -EINVAL;
2262#endif
2263
2264 ret = lock_device_hotplug_sysfs();
2265 if (ret)
2266 return ret;
2267
2268 mutex_lock(&cpuhp_state_mutex);
2269 sp = cpuhp_get_step(target);
2270 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2271 mutex_unlock(&cpuhp_state_mutex);
2272 if (ret)
2273 goto out;
2274
2275 if (st->state < target)
2276 ret = cpu_up(dev->id, target);
2277 else
2278 ret = cpu_down(dev->id, target);
2279out:
2280 unlock_device_hotplug();
2281 return ret ? ret : count;
2282}
2283
2284static ssize_t show_cpuhp_target(struct device *dev,
2285 struct device_attribute *attr, char *buf)
2286{
2287 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2288
2289 return sprintf(buf, "%d\n", st->target);
2290}
2291static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2292
2293
2294static ssize_t write_cpuhp_fail(struct device *dev,
2295 struct device_attribute *attr,
2296 const char *buf, size_t count)
2297{
2298 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2299 struct cpuhp_step *sp;
2300 int fail, ret;
2301
2302 ret = kstrtoint(buf, 10, &fail);
2303 if (ret)
2304 return ret;
2305
2306 if (fail == CPUHP_INVALID) {
2307 st->fail = fail;
2308 return count;
2309 }
2310
2311 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2312 return -EINVAL;
2313
2314 /*
2315 * Cannot fail STARTING/DYING callbacks.
2316 */
2317 if (cpuhp_is_atomic_state(fail))
2318 return -EINVAL;
2319
2320 /*
2321 * DEAD callbacks cannot fail...
2322 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2323 * triggering STARTING callbacks, a failure in this state would
2324 * hinder rollback.
2325 */
2326 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2327 return -EINVAL;
2328
2329 /*
2330 * Cannot fail anything that doesn't have callbacks.
2331 */
2332 mutex_lock(&cpuhp_state_mutex);
2333 sp = cpuhp_get_step(fail);
2334 if (!sp->startup.single && !sp->teardown.single)
2335 ret = -EINVAL;
2336 mutex_unlock(&cpuhp_state_mutex);
2337 if (ret)
2338 return ret;
2339
2340 st->fail = fail;
2341
2342 return count;
2343}
2344
2345static ssize_t show_cpuhp_fail(struct device *dev,
2346 struct device_attribute *attr, char *buf)
2347{
2348 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2349
2350 return sprintf(buf, "%d\n", st->fail);
2351}
2352
2353static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2354
2355static struct attribute *cpuhp_cpu_attrs[] = {
2356 &dev_attr_state.attr,
2357 &dev_attr_target.attr,
2358 &dev_attr_fail.attr,
2359 NULL
2360};
2361
2362static const struct attribute_group cpuhp_cpu_attr_group = {
2363 .attrs = cpuhp_cpu_attrs,
2364 .name = "hotplug",
2365 NULL
2366};
2367
2368static ssize_t show_cpuhp_states(struct device *dev,
2369 struct device_attribute *attr, char *buf)
2370{
2371 ssize_t cur, res = 0;
2372 int i;
2373
2374 mutex_lock(&cpuhp_state_mutex);
2375 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2376 struct cpuhp_step *sp = cpuhp_get_step(i);
2377
2378 if (sp->name) {
2379 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2380 buf += cur;
2381 res += cur;
2382 }
2383 }
2384 mutex_unlock(&cpuhp_state_mutex);
2385 return res;
2386}
2387static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2388
2389static struct attribute *cpuhp_cpu_root_attrs[] = {
2390 &dev_attr_states.attr,
2391 NULL
2392};
2393
2394static const struct attribute_group cpuhp_cpu_root_attr_group = {
2395 .attrs = cpuhp_cpu_root_attrs,
2396 .name = "hotplug",
2397 NULL
2398};
2399
2400#ifdef CONFIG_HOTPLUG_SMT
2401
2402static ssize_t
2403__store_smt_control(struct device *dev, struct device_attribute *attr,
2404 const char *buf, size_t count)
2405{
2406 int ctrlval, ret;
2407
2408 if (sysfs_streq(buf, "on"))
2409 ctrlval = CPU_SMT_ENABLED;
2410 else if (sysfs_streq(buf, "off"))
2411 ctrlval = CPU_SMT_DISABLED;
2412 else if (sysfs_streq(buf, "forceoff"))
2413 ctrlval = CPU_SMT_FORCE_DISABLED;
2414 else
2415 return -EINVAL;
2416
2417 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2418 return -EPERM;
2419
2420 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2421 return -ENODEV;
2422
2423 ret = lock_device_hotplug_sysfs();
2424 if (ret)
2425 return ret;
2426
2427 if (ctrlval != cpu_smt_control) {
2428 switch (ctrlval) {
2429 case CPU_SMT_ENABLED:
2430 ret = cpuhp_smt_enable();
2431 break;
2432 case CPU_SMT_DISABLED:
2433 case CPU_SMT_FORCE_DISABLED:
2434 ret = cpuhp_smt_disable(ctrlval);
2435 break;
2436 }
2437 }
2438
2439 unlock_device_hotplug();
2440 return ret ? ret : count;
2441}
2442
2443#else /* !CONFIG_HOTPLUG_SMT */
2444static ssize_t
2445__store_smt_control(struct device *dev, struct device_attribute *attr,
2446 const char *buf, size_t count)
2447{
2448 return -ENODEV;
2449}
2450#endif /* CONFIG_HOTPLUG_SMT */
2451
2452static const char *smt_states[] = {
2453 [CPU_SMT_ENABLED] = "on",
2454 [CPU_SMT_DISABLED] = "off",
2455 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2456 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2457 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2458};
2459
2460static ssize_t
2461show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2462{
2463 const char *state = smt_states[cpu_smt_control];
2464
2465 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2466}
2467
2468static ssize_t
2469store_smt_control(struct device *dev, struct device_attribute *attr,
2470 const char *buf, size_t count)
2471{
2472 return __store_smt_control(dev, attr, buf, count);
2473}
2474static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2475
2476static ssize_t
2477show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2478{
2479 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2480}
2481static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2482
2483static struct attribute *cpuhp_smt_attrs[] = {
2484 &dev_attr_control.attr,
2485 &dev_attr_active.attr,
2486 NULL
2487};
2488
2489static const struct attribute_group cpuhp_smt_attr_group = {
2490 .attrs = cpuhp_smt_attrs,
2491 .name = "smt",
2492 NULL
2493};
2494
2495static int __init cpu_smt_sysfs_init(void)
2496{
2497 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2498 &cpuhp_smt_attr_group);
2499}
2500
2501static int __init cpuhp_sysfs_init(void)
2502{
2503 int cpu, ret;
2504
2505 ret = cpu_smt_sysfs_init();
2506 if (ret)
2507 return ret;
2508
2509 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2510 &cpuhp_cpu_root_attr_group);
2511 if (ret)
2512 return ret;
2513
2514 for_each_possible_cpu(cpu) {
2515 struct device *dev = get_cpu_device(cpu);
2516
2517 if (!dev)
2518 continue;
2519 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2520 if (ret)
2521 return ret;
2522 }
2523 return 0;
2524}
2525device_initcall(cpuhp_sysfs_init);
2526#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2527
2528/*
2529 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2530 * represents all NR_CPUS bits binary values of 1<<nr.
2531 *
2532 * It is used by cpumask_of() to get a constant address to a CPU
2533 * mask value that has a single bit set only.
2534 */
2535
2536/* cpu_bit_bitmap[0] is empty - so we can back into it */
2537#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2538#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2539#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2540#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2541
2542const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2543
2544 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2545 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2546#if BITS_PER_LONG > 32
2547 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2548 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2549#endif
2550};
2551EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2552
2553const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2554EXPORT_SYMBOL(cpu_all_bits);
2555
2556#ifdef CONFIG_INIT_ALL_POSSIBLE
2557struct cpumask __cpu_possible_mask __read_mostly
2558 = {CPU_BITS_ALL};
2559#else
2560struct cpumask __cpu_possible_mask __read_mostly;
2561#endif
2562EXPORT_SYMBOL(__cpu_possible_mask);
2563
2564struct cpumask __cpu_online_mask __read_mostly;
2565EXPORT_SYMBOL(__cpu_online_mask);
2566
2567struct cpumask __cpu_present_mask __read_mostly;
2568EXPORT_SYMBOL(__cpu_present_mask);
2569
2570struct cpumask __cpu_active_mask __read_mostly;
2571EXPORT_SYMBOL(__cpu_active_mask);
2572
2573struct cpumask __cpu_dying_mask __read_mostly;
2574EXPORT_SYMBOL(__cpu_dying_mask);
2575
2576atomic_t __num_online_cpus __read_mostly;
2577EXPORT_SYMBOL(__num_online_cpus);
2578
2579void init_cpu_present(const struct cpumask *src)
2580{
2581 cpumask_copy(&__cpu_present_mask, src);
2582}
2583
2584void init_cpu_possible(const struct cpumask *src)
2585{
2586 cpumask_copy(&__cpu_possible_mask, src);
2587}
2588
2589void init_cpu_online(const struct cpumask *src)
2590{
2591 cpumask_copy(&__cpu_online_mask, src);
2592}
2593
2594void set_cpu_online(unsigned int cpu, bool online)
2595{
2596 /*
2597 * atomic_inc/dec() is required to handle the horrid abuse of this
2598 * function by the reboot and kexec code which invoke it from
2599 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2600 * regular CPU hotplug is properly serialized.
2601 *
2602 * Note, that the fact that __num_online_cpus is of type atomic_t
2603 * does not protect readers which are not serialized against
2604 * concurrent hotplug operations.
2605 */
2606 if (online) {
2607 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2608 atomic_inc(&__num_online_cpus);
2609 } else {
2610 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2611 atomic_dec(&__num_online_cpus);
2612 }
2613}
2614
2615/*
2616 * Activate the first processor.
2617 */
2618void __init boot_cpu_init(void)
2619{
2620 int cpu = smp_processor_id();
2621
2622 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2623 set_cpu_online(cpu, true);
2624 set_cpu_active(cpu, true);
2625 set_cpu_present(cpu, true);
2626 set_cpu_possible(cpu, true);
2627
2628#ifdef CONFIG_SMP
2629 __boot_cpu_id = cpu;
2630#endif
2631}
2632
2633/*
2634 * Must be called _AFTER_ setting up the per_cpu areas
2635 */
2636void __init boot_cpu_hotplug_init(void)
2637{
2638#ifdef CONFIG_SMP
2639 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2640#endif
2641 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2642}
2643
2644/*
2645 * These are used for a global "mitigations=" cmdline option for toggling
2646 * optional CPU mitigations.
2647 */
2648enum cpu_mitigations {
2649 CPU_MITIGATIONS_OFF,
2650 CPU_MITIGATIONS_AUTO,
2651 CPU_MITIGATIONS_AUTO_NOSMT,
2652};
2653
2654static enum cpu_mitigations cpu_mitigations __ro_after_init =
2655 CPU_MITIGATIONS_AUTO;
2656
2657static int __init mitigations_parse_cmdline(char *arg)
2658{
2659 if (!strcmp(arg, "off"))
2660 cpu_mitigations = CPU_MITIGATIONS_OFF;
2661 else if (!strcmp(arg, "auto"))
2662 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2663 else if (!strcmp(arg, "auto,nosmt"))
2664 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2665 else
2666 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2667 arg);
2668
2669 return 0;
2670}
2671early_param("mitigations", mitigations_parse_cmdline);
2672
2673/* mitigations=off */
2674bool cpu_mitigations_off(void)
2675{
2676 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2677}
2678EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2679
2680/* mitigations=auto,nosmt */
2681bool cpu_mitigations_auto_nosmt(void)
2682{
2683 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2684}
2685EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);