Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#include <linux/bpf.h>
5#include <linux/rcupdate.h>
6#include <linux/random.h>
7#include <linux/smp.h>
8#include <linux/topology.h>
9#include <linux/ktime.h>
10#include <linux/sched.h>
11#include <linux/uidgid.h>
12#include <linux/filter.h>
13#include <linux/ctype.h>
14
15#include "../../lib/kstrtox.h"
16
17/* If kernel subsystem is allowing eBPF programs to call this function,
18 * inside its own verifier_ops->get_func_proto() callback it should return
19 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
20 *
21 * Different map implementations will rely on rcu in map methods
22 * lookup/update/delete, therefore eBPF programs must run under rcu lock
23 * if program is allowed to access maps, so check rcu_read_lock_held in
24 * all three functions.
25 */
26BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
27{
28 WARN_ON_ONCE(!rcu_read_lock_held());
29 return (unsigned long) map->ops->map_lookup_elem(map, key);
30}
31
32const struct bpf_func_proto bpf_map_lookup_elem_proto = {
33 .func = bpf_map_lookup_elem,
34 .gpl_only = false,
35 .pkt_access = true,
36 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
37 .arg1_type = ARG_CONST_MAP_PTR,
38 .arg2_type = ARG_PTR_TO_MAP_KEY,
39};
40
41BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
42 void *, value, u64, flags)
43{
44 WARN_ON_ONCE(!rcu_read_lock_held());
45 return map->ops->map_update_elem(map, key, value, flags);
46}
47
48const struct bpf_func_proto bpf_map_update_elem_proto = {
49 .func = bpf_map_update_elem,
50 .gpl_only = false,
51 .pkt_access = true,
52 .ret_type = RET_INTEGER,
53 .arg1_type = ARG_CONST_MAP_PTR,
54 .arg2_type = ARG_PTR_TO_MAP_KEY,
55 .arg3_type = ARG_PTR_TO_MAP_VALUE,
56 .arg4_type = ARG_ANYTHING,
57};
58
59BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
60{
61 WARN_ON_ONCE(!rcu_read_lock_held());
62 return map->ops->map_delete_elem(map, key);
63}
64
65const struct bpf_func_proto bpf_map_delete_elem_proto = {
66 .func = bpf_map_delete_elem,
67 .gpl_only = false,
68 .pkt_access = true,
69 .ret_type = RET_INTEGER,
70 .arg1_type = ARG_CONST_MAP_PTR,
71 .arg2_type = ARG_PTR_TO_MAP_KEY,
72};
73
74BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
75{
76 return map->ops->map_push_elem(map, value, flags);
77}
78
79const struct bpf_func_proto bpf_map_push_elem_proto = {
80 .func = bpf_map_push_elem,
81 .gpl_only = false,
82 .pkt_access = true,
83 .ret_type = RET_INTEGER,
84 .arg1_type = ARG_CONST_MAP_PTR,
85 .arg2_type = ARG_PTR_TO_MAP_VALUE,
86 .arg3_type = ARG_ANYTHING,
87};
88
89BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
90{
91 return map->ops->map_pop_elem(map, value);
92}
93
94const struct bpf_func_proto bpf_map_pop_elem_proto = {
95 .func = bpf_map_pop_elem,
96 .gpl_only = false,
97 .ret_type = RET_INTEGER,
98 .arg1_type = ARG_CONST_MAP_PTR,
99 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
100};
101
102BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
103{
104 return map->ops->map_peek_elem(map, value);
105}
106
107const struct bpf_func_proto bpf_map_peek_elem_proto = {
108 .func = bpf_map_pop_elem,
109 .gpl_only = false,
110 .ret_type = RET_INTEGER,
111 .arg1_type = ARG_CONST_MAP_PTR,
112 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
113};
114
115const struct bpf_func_proto bpf_get_prandom_u32_proto = {
116 .func = bpf_user_rnd_u32,
117 .gpl_only = false,
118 .ret_type = RET_INTEGER,
119};
120
121BPF_CALL_0(bpf_get_smp_processor_id)
122{
123 return smp_processor_id();
124}
125
126const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
127 .func = bpf_get_smp_processor_id,
128 .gpl_only = false,
129 .ret_type = RET_INTEGER,
130};
131
132BPF_CALL_0(bpf_get_numa_node_id)
133{
134 return numa_node_id();
135}
136
137const struct bpf_func_proto bpf_get_numa_node_id_proto = {
138 .func = bpf_get_numa_node_id,
139 .gpl_only = false,
140 .ret_type = RET_INTEGER,
141};
142
143BPF_CALL_0(bpf_ktime_get_ns)
144{
145 /* NMI safe access to clock monotonic */
146 return ktime_get_mono_fast_ns();
147}
148
149const struct bpf_func_proto bpf_ktime_get_ns_proto = {
150 .func = bpf_ktime_get_ns,
151 .gpl_only = true,
152 .ret_type = RET_INTEGER,
153};
154
155BPF_CALL_0(bpf_get_current_pid_tgid)
156{
157 struct task_struct *task = current;
158
159 if (unlikely(!task))
160 return -EINVAL;
161
162 return (u64) task->tgid << 32 | task->pid;
163}
164
165const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
166 .func = bpf_get_current_pid_tgid,
167 .gpl_only = false,
168 .ret_type = RET_INTEGER,
169};
170
171BPF_CALL_0(bpf_get_current_uid_gid)
172{
173 struct task_struct *task = current;
174 kuid_t uid;
175 kgid_t gid;
176
177 if (unlikely(!task))
178 return -EINVAL;
179
180 current_uid_gid(&uid, &gid);
181 return (u64) from_kgid(&init_user_ns, gid) << 32 |
182 from_kuid(&init_user_ns, uid);
183}
184
185const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
186 .func = bpf_get_current_uid_gid,
187 .gpl_only = false,
188 .ret_type = RET_INTEGER,
189};
190
191BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
192{
193 struct task_struct *task = current;
194
195 if (unlikely(!task))
196 goto err_clear;
197
198 strncpy(buf, task->comm, size);
199
200 /* Verifier guarantees that size > 0. For task->comm exceeding
201 * size, guarantee that buf is %NUL-terminated. Unconditionally
202 * done here to save the size test.
203 */
204 buf[size - 1] = 0;
205 return 0;
206err_clear:
207 memset(buf, 0, size);
208 return -EINVAL;
209}
210
211const struct bpf_func_proto bpf_get_current_comm_proto = {
212 .func = bpf_get_current_comm,
213 .gpl_only = false,
214 .ret_type = RET_INTEGER,
215 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
216 .arg2_type = ARG_CONST_SIZE,
217};
218
219#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
220
221static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
222{
223 arch_spinlock_t *l = (void *)lock;
224 union {
225 __u32 val;
226 arch_spinlock_t lock;
227 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
228
229 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
230 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
231 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
232 arch_spin_lock(l);
233}
234
235static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
236{
237 arch_spinlock_t *l = (void *)lock;
238
239 arch_spin_unlock(l);
240}
241
242#else
243
244static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
245{
246 atomic_t *l = (void *)lock;
247
248 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
249 do {
250 atomic_cond_read_relaxed(l, !VAL);
251 } while (atomic_xchg(l, 1));
252}
253
254static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
255{
256 atomic_t *l = (void *)lock;
257
258 atomic_set_release(l, 0);
259}
260
261#endif
262
263static DEFINE_PER_CPU(unsigned long, irqsave_flags);
264
265notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
266{
267 unsigned long flags;
268
269 local_irq_save(flags);
270 __bpf_spin_lock(lock);
271 __this_cpu_write(irqsave_flags, flags);
272 return 0;
273}
274
275const struct bpf_func_proto bpf_spin_lock_proto = {
276 .func = bpf_spin_lock,
277 .gpl_only = false,
278 .ret_type = RET_VOID,
279 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
280};
281
282notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
283{
284 unsigned long flags;
285
286 flags = __this_cpu_read(irqsave_flags);
287 __bpf_spin_unlock(lock);
288 local_irq_restore(flags);
289 return 0;
290}
291
292const struct bpf_func_proto bpf_spin_unlock_proto = {
293 .func = bpf_spin_unlock,
294 .gpl_only = false,
295 .ret_type = RET_VOID,
296 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
297};
298
299void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
300 bool lock_src)
301{
302 struct bpf_spin_lock *lock;
303
304 if (lock_src)
305 lock = src + map->spin_lock_off;
306 else
307 lock = dst + map->spin_lock_off;
308 preempt_disable();
309 ____bpf_spin_lock(lock);
310 copy_map_value(map, dst, src);
311 ____bpf_spin_unlock(lock);
312 preempt_enable();
313}
314
315#ifdef CONFIG_CGROUPS
316BPF_CALL_0(bpf_get_current_cgroup_id)
317{
318 struct cgroup *cgrp = task_dfl_cgroup(current);
319
320 return cgrp->kn->id.id;
321}
322
323const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
324 .func = bpf_get_current_cgroup_id,
325 .gpl_only = false,
326 .ret_type = RET_INTEGER,
327};
328
329#ifdef CONFIG_CGROUP_BPF
330DECLARE_PER_CPU(struct bpf_cgroup_storage*,
331 bpf_cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]);
332
333BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
334{
335 /* flags argument is not used now,
336 * but provides an ability to extend the API.
337 * verifier checks that its value is correct.
338 */
339 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
340 struct bpf_cgroup_storage *storage;
341 void *ptr;
342
343 storage = this_cpu_read(bpf_cgroup_storage[stype]);
344
345 if (stype == BPF_CGROUP_STORAGE_SHARED)
346 ptr = &READ_ONCE(storage->buf)->data[0];
347 else
348 ptr = this_cpu_ptr(storage->percpu_buf);
349
350 return (unsigned long)ptr;
351}
352
353const struct bpf_func_proto bpf_get_local_storage_proto = {
354 .func = bpf_get_local_storage,
355 .gpl_only = false,
356 .ret_type = RET_PTR_TO_MAP_VALUE,
357 .arg1_type = ARG_CONST_MAP_PTR,
358 .arg2_type = ARG_ANYTHING,
359};
360#endif
361
362#define BPF_STRTOX_BASE_MASK 0x1F
363
364static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
365 unsigned long long *res, bool *is_negative)
366{
367 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
368 const char *cur_buf = buf;
369 size_t cur_len = buf_len;
370 unsigned int consumed;
371 size_t val_len;
372 char str[64];
373
374 if (!buf || !buf_len || !res || !is_negative)
375 return -EINVAL;
376
377 if (base != 0 && base != 8 && base != 10 && base != 16)
378 return -EINVAL;
379
380 if (flags & ~BPF_STRTOX_BASE_MASK)
381 return -EINVAL;
382
383 while (cur_buf < buf + buf_len && isspace(*cur_buf))
384 ++cur_buf;
385
386 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
387 if (*is_negative)
388 ++cur_buf;
389
390 consumed = cur_buf - buf;
391 cur_len -= consumed;
392 if (!cur_len)
393 return -EINVAL;
394
395 cur_len = min(cur_len, sizeof(str) - 1);
396 memcpy(str, cur_buf, cur_len);
397 str[cur_len] = '\0';
398 cur_buf = str;
399
400 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
401 val_len = _parse_integer(cur_buf, base, res);
402
403 if (val_len & KSTRTOX_OVERFLOW)
404 return -ERANGE;
405
406 if (val_len == 0)
407 return -EINVAL;
408
409 cur_buf += val_len;
410 consumed += cur_buf - str;
411
412 return consumed;
413}
414
415static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
416 long long *res)
417{
418 unsigned long long _res;
419 bool is_negative;
420 int err;
421
422 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
423 if (err < 0)
424 return err;
425 if (is_negative) {
426 if ((long long)-_res > 0)
427 return -ERANGE;
428 *res = -_res;
429 } else {
430 if ((long long)_res < 0)
431 return -ERANGE;
432 *res = _res;
433 }
434 return err;
435}
436
437BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
438 long *, res)
439{
440 long long _res;
441 int err;
442
443 err = __bpf_strtoll(buf, buf_len, flags, &_res);
444 if (err < 0)
445 return err;
446 if (_res != (long)_res)
447 return -ERANGE;
448 *res = _res;
449 return err;
450}
451
452const struct bpf_func_proto bpf_strtol_proto = {
453 .func = bpf_strtol,
454 .gpl_only = false,
455 .ret_type = RET_INTEGER,
456 .arg1_type = ARG_PTR_TO_MEM,
457 .arg2_type = ARG_CONST_SIZE,
458 .arg3_type = ARG_ANYTHING,
459 .arg4_type = ARG_PTR_TO_LONG,
460};
461
462BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
463 unsigned long *, res)
464{
465 unsigned long long _res;
466 bool is_negative;
467 int err;
468
469 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
470 if (err < 0)
471 return err;
472 if (is_negative)
473 return -EINVAL;
474 if (_res != (unsigned long)_res)
475 return -ERANGE;
476 *res = _res;
477 return err;
478}
479
480const struct bpf_func_proto bpf_strtoul_proto = {
481 .func = bpf_strtoul,
482 .gpl_only = false,
483 .ret_type = RET_INTEGER,
484 .arg1_type = ARG_PTR_TO_MEM,
485 .arg2_type = ARG_CONST_SIZE,
486 .arg3_type = ARG_ANYTHING,
487 .arg4_type = ARG_PTR_TO_LONG,
488};
489#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#include <linux/bpf.h>
5#include <linux/rcupdate.h>
6#include <linux/random.h>
7#include <linux/smp.h>
8#include <linux/topology.h>
9#include <linux/ktime.h>
10#include <linux/sched.h>
11#include <linux/uidgid.h>
12#include <linux/filter.h>
13#include <linux/ctype.h>
14#include <linux/jiffies.h>
15#include <linux/pid_namespace.h>
16#include <linux/proc_ns.h>
17#include <linux/security.h>
18
19#include "../../lib/kstrtox.h"
20
21/* If kernel subsystem is allowing eBPF programs to call this function,
22 * inside its own verifier_ops->get_func_proto() callback it should return
23 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
24 *
25 * Different map implementations will rely on rcu in map methods
26 * lookup/update/delete, therefore eBPF programs must run under rcu lock
27 * if program is allowed to access maps, so check rcu_read_lock_held in
28 * all three functions.
29 */
30BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
31{
32 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
33 return (unsigned long) map->ops->map_lookup_elem(map, key);
34}
35
36const struct bpf_func_proto bpf_map_lookup_elem_proto = {
37 .func = bpf_map_lookup_elem,
38 .gpl_only = false,
39 .pkt_access = true,
40 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
41 .arg1_type = ARG_CONST_MAP_PTR,
42 .arg2_type = ARG_PTR_TO_MAP_KEY,
43};
44
45BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
46 void *, value, u64, flags)
47{
48 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
49 return map->ops->map_update_elem(map, key, value, flags);
50}
51
52const struct bpf_func_proto bpf_map_update_elem_proto = {
53 .func = bpf_map_update_elem,
54 .gpl_only = false,
55 .pkt_access = true,
56 .ret_type = RET_INTEGER,
57 .arg1_type = ARG_CONST_MAP_PTR,
58 .arg2_type = ARG_PTR_TO_MAP_KEY,
59 .arg3_type = ARG_PTR_TO_MAP_VALUE,
60 .arg4_type = ARG_ANYTHING,
61};
62
63BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
64{
65 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
66 return map->ops->map_delete_elem(map, key);
67}
68
69const struct bpf_func_proto bpf_map_delete_elem_proto = {
70 .func = bpf_map_delete_elem,
71 .gpl_only = false,
72 .pkt_access = true,
73 .ret_type = RET_INTEGER,
74 .arg1_type = ARG_CONST_MAP_PTR,
75 .arg2_type = ARG_PTR_TO_MAP_KEY,
76};
77
78BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
79{
80 return map->ops->map_push_elem(map, value, flags);
81}
82
83const struct bpf_func_proto bpf_map_push_elem_proto = {
84 .func = bpf_map_push_elem,
85 .gpl_only = false,
86 .pkt_access = true,
87 .ret_type = RET_INTEGER,
88 .arg1_type = ARG_CONST_MAP_PTR,
89 .arg2_type = ARG_PTR_TO_MAP_VALUE,
90 .arg3_type = ARG_ANYTHING,
91};
92
93BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
94{
95 return map->ops->map_pop_elem(map, value);
96}
97
98const struct bpf_func_proto bpf_map_pop_elem_proto = {
99 .func = bpf_map_pop_elem,
100 .gpl_only = false,
101 .ret_type = RET_INTEGER,
102 .arg1_type = ARG_CONST_MAP_PTR,
103 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
104};
105
106BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
107{
108 return map->ops->map_peek_elem(map, value);
109}
110
111const struct bpf_func_proto bpf_map_peek_elem_proto = {
112 .func = bpf_map_peek_elem,
113 .gpl_only = false,
114 .ret_type = RET_INTEGER,
115 .arg1_type = ARG_CONST_MAP_PTR,
116 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
117};
118
119const struct bpf_func_proto bpf_get_prandom_u32_proto = {
120 .func = bpf_user_rnd_u32,
121 .gpl_only = false,
122 .ret_type = RET_INTEGER,
123};
124
125BPF_CALL_0(bpf_get_smp_processor_id)
126{
127 return smp_processor_id();
128}
129
130const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
131 .func = bpf_get_smp_processor_id,
132 .gpl_only = false,
133 .ret_type = RET_INTEGER,
134};
135
136BPF_CALL_0(bpf_get_numa_node_id)
137{
138 return numa_node_id();
139}
140
141const struct bpf_func_proto bpf_get_numa_node_id_proto = {
142 .func = bpf_get_numa_node_id,
143 .gpl_only = false,
144 .ret_type = RET_INTEGER,
145};
146
147BPF_CALL_0(bpf_ktime_get_ns)
148{
149 /* NMI safe access to clock monotonic */
150 return ktime_get_mono_fast_ns();
151}
152
153const struct bpf_func_proto bpf_ktime_get_ns_proto = {
154 .func = bpf_ktime_get_ns,
155 .gpl_only = false,
156 .ret_type = RET_INTEGER,
157};
158
159BPF_CALL_0(bpf_ktime_get_boot_ns)
160{
161 /* NMI safe access to clock boottime */
162 return ktime_get_boot_fast_ns();
163}
164
165const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
166 .func = bpf_ktime_get_boot_ns,
167 .gpl_only = false,
168 .ret_type = RET_INTEGER,
169};
170
171BPF_CALL_0(bpf_ktime_get_coarse_ns)
172{
173 return ktime_get_coarse_ns();
174}
175
176const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
177 .func = bpf_ktime_get_coarse_ns,
178 .gpl_only = false,
179 .ret_type = RET_INTEGER,
180};
181
182BPF_CALL_0(bpf_get_current_pid_tgid)
183{
184 struct task_struct *task = current;
185
186 if (unlikely(!task))
187 return -EINVAL;
188
189 return (u64) task->tgid << 32 | task->pid;
190}
191
192const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
193 .func = bpf_get_current_pid_tgid,
194 .gpl_only = false,
195 .ret_type = RET_INTEGER,
196};
197
198BPF_CALL_0(bpf_get_current_uid_gid)
199{
200 struct task_struct *task = current;
201 kuid_t uid;
202 kgid_t gid;
203
204 if (unlikely(!task))
205 return -EINVAL;
206
207 current_uid_gid(&uid, &gid);
208 return (u64) from_kgid(&init_user_ns, gid) << 32 |
209 from_kuid(&init_user_ns, uid);
210}
211
212const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
213 .func = bpf_get_current_uid_gid,
214 .gpl_only = false,
215 .ret_type = RET_INTEGER,
216};
217
218BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
219{
220 struct task_struct *task = current;
221
222 if (unlikely(!task))
223 goto err_clear;
224
225 strncpy(buf, task->comm, size);
226
227 /* Verifier guarantees that size > 0. For task->comm exceeding
228 * size, guarantee that buf is %NUL-terminated. Unconditionally
229 * done here to save the size test.
230 */
231 buf[size - 1] = 0;
232 return 0;
233err_clear:
234 memset(buf, 0, size);
235 return -EINVAL;
236}
237
238const struct bpf_func_proto bpf_get_current_comm_proto = {
239 .func = bpf_get_current_comm,
240 .gpl_only = false,
241 .ret_type = RET_INTEGER,
242 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
243 .arg2_type = ARG_CONST_SIZE,
244};
245
246#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
247
248static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
249{
250 arch_spinlock_t *l = (void *)lock;
251 union {
252 __u32 val;
253 arch_spinlock_t lock;
254 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
255
256 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
257 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
258 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
259 arch_spin_lock(l);
260}
261
262static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
263{
264 arch_spinlock_t *l = (void *)lock;
265
266 arch_spin_unlock(l);
267}
268
269#else
270
271static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
272{
273 atomic_t *l = (void *)lock;
274
275 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
276 do {
277 atomic_cond_read_relaxed(l, !VAL);
278 } while (atomic_xchg(l, 1));
279}
280
281static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
282{
283 atomic_t *l = (void *)lock;
284
285 atomic_set_release(l, 0);
286}
287
288#endif
289
290static DEFINE_PER_CPU(unsigned long, irqsave_flags);
291
292notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
293{
294 unsigned long flags;
295
296 local_irq_save(flags);
297 __bpf_spin_lock(lock);
298 __this_cpu_write(irqsave_flags, flags);
299 return 0;
300}
301
302const struct bpf_func_proto bpf_spin_lock_proto = {
303 .func = bpf_spin_lock,
304 .gpl_only = false,
305 .ret_type = RET_VOID,
306 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
307};
308
309notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
310{
311 unsigned long flags;
312
313 flags = __this_cpu_read(irqsave_flags);
314 __bpf_spin_unlock(lock);
315 local_irq_restore(flags);
316 return 0;
317}
318
319const struct bpf_func_proto bpf_spin_unlock_proto = {
320 .func = bpf_spin_unlock,
321 .gpl_only = false,
322 .ret_type = RET_VOID,
323 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
324};
325
326void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
327 bool lock_src)
328{
329 struct bpf_spin_lock *lock;
330
331 if (lock_src)
332 lock = src + map->spin_lock_off;
333 else
334 lock = dst + map->spin_lock_off;
335 preempt_disable();
336 ____bpf_spin_lock(lock);
337 copy_map_value(map, dst, src);
338 ____bpf_spin_unlock(lock);
339 preempt_enable();
340}
341
342BPF_CALL_0(bpf_jiffies64)
343{
344 return get_jiffies_64();
345}
346
347const struct bpf_func_proto bpf_jiffies64_proto = {
348 .func = bpf_jiffies64,
349 .gpl_only = false,
350 .ret_type = RET_INTEGER,
351};
352
353#ifdef CONFIG_CGROUPS
354BPF_CALL_0(bpf_get_current_cgroup_id)
355{
356 struct cgroup *cgrp;
357 u64 cgrp_id;
358
359 rcu_read_lock();
360 cgrp = task_dfl_cgroup(current);
361 cgrp_id = cgroup_id(cgrp);
362 rcu_read_unlock();
363
364 return cgrp_id;
365}
366
367const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
368 .func = bpf_get_current_cgroup_id,
369 .gpl_only = false,
370 .ret_type = RET_INTEGER,
371};
372
373BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
374{
375 struct cgroup *cgrp;
376 struct cgroup *ancestor;
377 u64 cgrp_id;
378
379 rcu_read_lock();
380 cgrp = task_dfl_cgroup(current);
381 ancestor = cgroup_ancestor(cgrp, ancestor_level);
382 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
383 rcu_read_unlock();
384
385 return cgrp_id;
386}
387
388const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
389 .func = bpf_get_current_ancestor_cgroup_id,
390 .gpl_only = false,
391 .ret_type = RET_INTEGER,
392 .arg1_type = ARG_ANYTHING,
393};
394
395#ifdef CONFIG_CGROUP_BPF
396DECLARE_PER_CPU(struct bpf_cgroup_storage_info,
397 bpf_cgroup_storage_info[BPF_CGROUP_STORAGE_NEST_MAX]);
398
399BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
400{
401 /* flags argument is not used now,
402 * but provides an ability to extend the API.
403 * verifier checks that its value is correct.
404 */
405 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
406 struct bpf_cgroup_storage *storage = NULL;
407 void *ptr;
408 int i;
409
410 for (i = BPF_CGROUP_STORAGE_NEST_MAX - 1; i >= 0; i--) {
411 if (likely(this_cpu_read(bpf_cgroup_storage_info[i].task) != current))
412 continue;
413
414 storage = this_cpu_read(bpf_cgroup_storage_info[i].storage[stype]);
415 break;
416 }
417
418 if (stype == BPF_CGROUP_STORAGE_SHARED)
419 ptr = &READ_ONCE(storage->buf)->data[0];
420 else
421 ptr = this_cpu_ptr(storage->percpu_buf);
422
423 return (unsigned long)ptr;
424}
425
426const struct bpf_func_proto bpf_get_local_storage_proto = {
427 .func = bpf_get_local_storage,
428 .gpl_only = false,
429 .ret_type = RET_PTR_TO_MAP_VALUE,
430 .arg1_type = ARG_CONST_MAP_PTR,
431 .arg2_type = ARG_ANYTHING,
432};
433#endif
434
435#define BPF_STRTOX_BASE_MASK 0x1F
436
437static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
438 unsigned long long *res, bool *is_negative)
439{
440 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
441 const char *cur_buf = buf;
442 size_t cur_len = buf_len;
443 unsigned int consumed;
444 size_t val_len;
445 char str[64];
446
447 if (!buf || !buf_len || !res || !is_negative)
448 return -EINVAL;
449
450 if (base != 0 && base != 8 && base != 10 && base != 16)
451 return -EINVAL;
452
453 if (flags & ~BPF_STRTOX_BASE_MASK)
454 return -EINVAL;
455
456 while (cur_buf < buf + buf_len && isspace(*cur_buf))
457 ++cur_buf;
458
459 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
460 if (*is_negative)
461 ++cur_buf;
462
463 consumed = cur_buf - buf;
464 cur_len -= consumed;
465 if (!cur_len)
466 return -EINVAL;
467
468 cur_len = min(cur_len, sizeof(str) - 1);
469 memcpy(str, cur_buf, cur_len);
470 str[cur_len] = '\0';
471 cur_buf = str;
472
473 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
474 val_len = _parse_integer(cur_buf, base, res);
475
476 if (val_len & KSTRTOX_OVERFLOW)
477 return -ERANGE;
478
479 if (val_len == 0)
480 return -EINVAL;
481
482 cur_buf += val_len;
483 consumed += cur_buf - str;
484
485 return consumed;
486}
487
488static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
489 long long *res)
490{
491 unsigned long long _res;
492 bool is_negative;
493 int err;
494
495 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
496 if (err < 0)
497 return err;
498 if (is_negative) {
499 if ((long long)-_res > 0)
500 return -ERANGE;
501 *res = -_res;
502 } else {
503 if ((long long)_res < 0)
504 return -ERANGE;
505 *res = _res;
506 }
507 return err;
508}
509
510BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
511 long *, res)
512{
513 long long _res;
514 int err;
515
516 err = __bpf_strtoll(buf, buf_len, flags, &_res);
517 if (err < 0)
518 return err;
519 if (_res != (long)_res)
520 return -ERANGE;
521 *res = _res;
522 return err;
523}
524
525const struct bpf_func_proto bpf_strtol_proto = {
526 .func = bpf_strtol,
527 .gpl_only = false,
528 .ret_type = RET_INTEGER,
529 .arg1_type = ARG_PTR_TO_MEM,
530 .arg2_type = ARG_CONST_SIZE,
531 .arg3_type = ARG_ANYTHING,
532 .arg4_type = ARG_PTR_TO_LONG,
533};
534
535BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
536 unsigned long *, res)
537{
538 unsigned long long _res;
539 bool is_negative;
540 int err;
541
542 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
543 if (err < 0)
544 return err;
545 if (is_negative)
546 return -EINVAL;
547 if (_res != (unsigned long)_res)
548 return -ERANGE;
549 *res = _res;
550 return err;
551}
552
553const struct bpf_func_proto bpf_strtoul_proto = {
554 .func = bpf_strtoul,
555 .gpl_only = false,
556 .ret_type = RET_INTEGER,
557 .arg1_type = ARG_PTR_TO_MEM,
558 .arg2_type = ARG_CONST_SIZE,
559 .arg3_type = ARG_ANYTHING,
560 .arg4_type = ARG_PTR_TO_LONG,
561};
562#endif
563
564BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
565 struct bpf_pidns_info *, nsdata, u32, size)
566{
567 struct task_struct *task = current;
568 struct pid_namespace *pidns;
569 int err = -EINVAL;
570
571 if (unlikely(size != sizeof(struct bpf_pidns_info)))
572 goto clear;
573
574 if (unlikely((u64)(dev_t)dev != dev))
575 goto clear;
576
577 if (unlikely(!task))
578 goto clear;
579
580 pidns = task_active_pid_ns(task);
581 if (unlikely(!pidns)) {
582 err = -ENOENT;
583 goto clear;
584 }
585
586 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
587 goto clear;
588
589 nsdata->pid = task_pid_nr_ns(task, pidns);
590 nsdata->tgid = task_tgid_nr_ns(task, pidns);
591 return 0;
592clear:
593 memset((void *)nsdata, 0, (size_t) size);
594 return err;
595}
596
597const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
598 .func = bpf_get_ns_current_pid_tgid,
599 .gpl_only = false,
600 .ret_type = RET_INTEGER,
601 .arg1_type = ARG_ANYTHING,
602 .arg2_type = ARG_ANYTHING,
603 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
604 .arg4_type = ARG_CONST_SIZE,
605};
606
607static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
608 .func = bpf_get_raw_cpu_id,
609 .gpl_only = false,
610 .ret_type = RET_INTEGER,
611};
612
613BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
614 u64, flags, void *, data, u64, size)
615{
616 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
617 return -EINVAL;
618
619 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
620}
621
622const struct bpf_func_proto bpf_event_output_data_proto = {
623 .func = bpf_event_output_data,
624 .gpl_only = true,
625 .ret_type = RET_INTEGER,
626 .arg1_type = ARG_PTR_TO_CTX,
627 .arg2_type = ARG_CONST_MAP_PTR,
628 .arg3_type = ARG_ANYTHING,
629 .arg4_type = ARG_PTR_TO_MEM,
630 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
631};
632
633BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
634 const void __user *, user_ptr)
635{
636 int ret = copy_from_user(dst, user_ptr, size);
637
638 if (unlikely(ret)) {
639 memset(dst, 0, size);
640 ret = -EFAULT;
641 }
642
643 return ret;
644}
645
646const struct bpf_func_proto bpf_copy_from_user_proto = {
647 .func = bpf_copy_from_user,
648 .gpl_only = false,
649 .ret_type = RET_INTEGER,
650 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
651 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
652 .arg3_type = ARG_ANYTHING,
653};
654
655BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
656{
657 if (cpu >= nr_cpu_ids)
658 return (unsigned long)NULL;
659
660 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
661}
662
663const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
664 .func = bpf_per_cpu_ptr,
665 .gpl_only = false,
666 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
667 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
668 .arg2_type = ARG_ANYTHING,
669};
670
671BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
672{
673 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
674}
675
676const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
677 .func = bpf_this_cpu_ptr,
678 .gpl_only = false,
679 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID,
680 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
681};
682
683static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
684 size_t bufsz)
685{
686 void __user *user_ptr = (__force void __user *)unsafe_ptr;
687
688 buf[0] = 0;
689
690 switch (fmt_ptype) {
691 case 's':
692#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
693 if ((unsigned long)unsafe_ptr < TASK_SIZE)
694 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
695 fallthrough;
696#endif
697 case 'k':
698 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
699 case 'u':
700 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
701 }
702
703 return -EINVAL;
704}
705
706/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
707 * arguments representation.
708 */
709#define MAX_BPRINTF_BUF_LEN 512
710
711/* Support executing three nested bprintf helper calls on a given CPU */
712#define MAX_BPRINTF_NEST_LEVEL 3
713struct bpf_bprintf_buffers {
714 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
715};
716static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
717static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
718
719static int try_get_fmt_tmp_buf(char **tmp_buf)
720{
721 struct bpf_bprintf_buffers *bufs;
722 int nest_level;
723
724 preempt_disable();
725 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
726 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
727 this_cpu_dec(bpf_bprintf_nest_level);
728 preempt_enable();
729 return -EBUSY;
730 }
731 bufs = this_cpu_ptr(&bpf_bprintf_bufs);
732 *tmp_buf = bufs->tmp_bufs[nest_level - 1];
733
734 return 0;
735}
736
737void bpf_bprintf_cleanup(void)
738{
739 if (this_cpu_read(bpf_bprintf_nest_level)) {
740 this_cpu_dec(bpf_bprintf_nest_level);
741 preempt_enable();
742 }
743}
744
745/*
746 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
747 *
748 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
749 *
750 * This can be used in two ways:
751 * - Format string verification only: when bin_args is NULL
752 * - Arguments preparation: in addition to the above verification, it writes in
753 * bin_args a binary representation of arguments usable by bstr_printf where
754 * pointers from BPF have been sanitized.
755 *
756 * In argument preparation mode, if 0 is returned, safe temporary buffers are
757 * allocated and bpf_bprintf_cleanup should be called to free them after use.
758 */
759int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
760 u32 **bin_args, u32 num_args)
761{
762 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
763 size_t sizeof_cur_arg, sizeof_cur_ip;
764 int err, i, num_spec = 0;
765 u64 cur_arg;
766 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
767
768 fmt_end = strnchr(fmt, fmt_size, 0);
769 if (!fmt_end)
770 return -EINVAL;
771 fmt_size = fmt_end - fmt;
772
773 if (bin_args) {
774 if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
775 return -EBUSY;
776
777 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
778 *bin_args = (u32 *)tmp_buf;
779 }
780
781 for (i = 0; i < fmt_size; i++) {
782 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
783 err = -EINVAL;
784 goto out;
785 }
786
787 if (fmt[i] != '%')
788 continue;
789
790 if (fmt[i + 1] == '%') {
791 i++;
792 continue;
793 }
794
795 if (num_spec >= num_args) {
796 err = -EINVAL;
797 goto out;
798 }
799
800 /* The string is zero-terminated so if fmt[i] != 0, we can
801 * always access fmt[i + 1], in the worst case it will be a 0
802 */
803 i++;
804
805 /* skip optional "[0 +-][num]" width formatting field */
806 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
807 fmt[i] == ' ')
808 i++;
809 if (fmt[i] >= '1' && fmt[i] <= '9') {
810 i++;
811 while (fmt[i] >= '0' && fmt[i] <= '9')
812 i++;
813 }
814
815 if (fmt[i] == 'p') {
816 sizeof_cur_arg = sizeof(long);
817
818 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
819 fmt[i + 2] == 's') {
820 fmt_ptype = fmt[i + 1];
821 i += 2;
822 goto fmt_str;
823 }
824
825 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
826 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
827 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
828 fmt[i + 1] == 'S') {
829 /* just kernel pointers */
830 if (tmp_buf)
831 cur_arg = raw_args[num_spec];
832 i++;
833 goto nocopy_fmt;
834 }
835
836 if (fmt[i + 1] == 'B') {
837 if (tmp_buf) {
838 err = snprintf(tmp_buf,
839 (tmp_buf_end - tmp_buf),
840 "%pB",
841 (void *)(long)raw_args[num_spec]);
842 tmp_buf += (err + 1);
843 }
844
845 i++;
846 num_spec++;
847 continue;
848 }
849
850 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
851 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
852 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
853 err = -EINVAL;
854 goto out;
855 }
856
857 i += 2;
858 if (!tmp_buf)
859 goto nocopy_fmt;
860
861 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
862 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
863 err = -ENOSPC;
864 goto out;
865 }
866
867 unsafe_ptr = (char *)(long)raw_args[num_spec];
868 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
869 sizeof_cur_ip);
870 if (err < 0)
871 memset(cur_ip, 0, sizeof_cur_ip);
872
873 /* hack: bstr_printf expects IP addresses to be
874 * pre-formatted as strings, ironically, the easiest way
875 * to do that is to call snprintf.
876 */
877 ip_spec[2] = fmt[i - 1];
878 ip_spec[3] = fmt[i];
879 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
880 ip_spec, &cur_ip);
881
882 tmp_buf += err + 1;
883 num_spec++;
884
885 continue;
886 } else if (fmt[i] == 's') {
887 fmt_ptype = fmt[i];
888fmt_str:
889 if (fmt[i + 1] != 0 &&
890 !isspace(fmt[i + 1]) &&
891 !ispunct(fmt[i + 1])) {
892 err = -EINVAL;
893 goto out;
894 }
895
896 if (!tmp_buf)
897 goto nocopy_fmt;
898
899 if (tmp_buf_end == tmp_buf) {
900 err = -ENOSPC;
901 goto out;
902 }
903
904 unsafe_ptr = (char *)(long)raw_args[num_spec];
905 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
906 fmt_ptype,
907 tmp_buf_end - tmp_buf);
908 if (err < 0) {
909 tmp_buf[0] = '\0';
910 err = 1;
911 }
912
913 tmp_buf += err;
914 num_spec++;
915
916 continue;
917 }
918
919 sizeof_cur_arg = sizeof(int);
920
921 if (fmt[i] == 'l') {
922 sizeof_cur_arg = sizeof(long);
923 i++;
924 }
925 if (fmt[i] == 'l') {
926 sizeof_cur_arg = sizeof(long long);
927 i++;
928 }
929
930 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
931 fmt[i] != 'x' && fmt[i] != 'X') {
932 err = -EINVAL;
933 goto out;
934 }
935
936 if (tmp_buf)
937 cur_arg = raw_args[num_spec];
938nocopy_fmt:
939 if (tmp_buf) {
940 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
941 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
942 err = -ENOSPC;
943 goto out;
944 }
945
946 if (sizeof_cur_arg == 8) {
947 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
948 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
949 } else {
950 *(u32 *)tmp_buf = (u32)(long)cur_arg;
951 }
952 tmp_buf += sizeof_cur_arg;
953 }
954 num_spec++;
955 }
956
957 err = 0;
958out:
959 if (err)
960 bpf_bprintf_cleanup();
961 return err;
962}
963
964#define MAX_SNPRINTF_VARARGS 12
965
966BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
967 const void *, data, u32, data_len)
968{
969 int err, num_args;
970 u32 *bin_args;
971
972 if (data_len % 8 || data_len > MAX_SNPRINTF_VARARGS * 8 ||
973 (data_len && !data))
974 return -EINVAL;
975 num_args = data_len / 8;
976
977 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
978 * can safely give an unbounded size.
979 */
980 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
981 if (err < 0)
982 return err;
983
984 err = bstr_printf(str, str_size, fmt, bin_args);
985
986 bpf_bprintf_cleanup();
987
988 return err + 1;
989}
990
991const struct bpf_func_proto bpf_snprintf_proto = {
992 .func = bpf_snprintf,
993 .gpl_only = true,
994 .ret_type = RET_INTEGER,
995 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
996 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
997 .arg3_type = ARG_PTR_TO_CONST_STR,
998 .arg4_type = ARG_PTR_TO_MEM_OR_NULL,
999 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1000};
1001
1002const struct bpf_func_proto bpf_get_current_task_proto __weak;
1003const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1004const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1005const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1006const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1007
1008const struct bpf_func_proto *
1009bpf_base_func_proto(enum bpf_func_id func_id)
1010{
1011 switch (func_id) {
1012 case BPF_FUNC_map_lookup_elem:
1013 return &bpf_map_lookup_elem_proto;
1014 case BPF_FUNC_map_update_elem:
1015 return &bpf_map_update_elem_proto;
1016 case BPF_FUNC_map_delete_elem:
1017 return &bpf_map_delete_elem_proto;
1018 case BPF_FUNC_map_push_elem:
1019 return &bpf_map_push_elem_proto;
1020 case BPF_FUNC_map_pop_elem:
1021 return &bpf_map_pop_elem_proto;
1022 case BPF_FUNC_map_peek_elem:
1023 return &bpf_map_peek_elem_proto;
1024 case BPF_FUNC_get_prandom_u32:
1025 return &bpf_get_prandom_u32_proto;
1026 case BPF_FUNC_get_smp_processor_id:
1027 return &bpf_get_raw_smp_processor_id_proto;
1028 case BPF_FUNC_get_numa_node_id:
1029 return &bpf_get_numa_node_id_proto;
1030 case BPF_FUNC_tail_call:
1031 return &bpf_tail_call_proto;
1032 case BPF_FUNC_ktime_get_ns:
1033 return &bpf_ktime_get_ns_proto;
1034 case BPF_FUNC_ktime_get_boot_ns:
1035 return &bpf_ktime_get_boot_ns_proto;
1036 case BPF_FUNC_ktime_get_coarse_ns:
1037 return &bpf_ktime_get_coarse_ns_proto;
1038 case BPF_FUNC_ringbuf_output:
1039 return &bpf_ringbuf_output_proto;
1040 case BPF_FUNC_ringbuf_reserve:
1041 return &bpf_ringbuf_reserve_proto;
1042 case BPF_FUNC_ringbuf_submit:
1043 return &bpf_ringbuf_submit_proto;
1044 case BPF_FUNC_ringbuf_discard:
1045 return &bpf_ringbuf_discard_proto;
1046 case BPF_FUNC_ringbuf_query:
1047 return &bpf_ringbuf_query_proto;
1048 case BPF_FUNC_for_each_map_elem:
1049 return &bpf_for_each_map_elem_proto;
1050 default:
1051 break;
1052 }
1053
1054 if (!bpf_capable())
1055 return NULL;
1056
1057 switch (func_id) {
1058 case BPF_FUNC_spin_lock:
1059 return &bpf_spin_lock_proto;
1060 case BPF_FUNC_spin_unlock:
1061 return &bpf_spin_unlock_proto;
1062 case BPF_FUNC_jiffies64:
1063 return &bpf_jiffies64_proto;
1064 case BPF_FUNC_per_cpu_ptr:
1065 return &bpf_per_cpu_ptr_proto;
1066 case BPF_FUNC_this_cpu_ptr:
1067 return &bpf_this_cpu_ptr_proto;
1068 default:
1069 break;
1070 }
1071
1072 if (!perfmon_capable())
1073 return NULL;
1074
1075 switch (func_id) {
1076 case BPF_FUNC_trace_printk:
1077 return bpf_get_trace_printk_proto();
1078 case BPF_FUNC_get_current_task:
1079 return &bpf_get_current_task_proto;
1080 case BPF_FUNC_probe_read_user:
1081 return &bpf_probe_read_user_proto;
1082 case BPF_FUNC_probe_read_kernel:
1083 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1084 NULL : &bpf_probe_read_kernel_proto;
1085 case BPF_FUNC_probe_read_user_str:
1086 return &bpf_probe_read_user_str_proto;
1087 case BPF_FUNC_probe_read_kernel_str:
1088 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1089 NULL : &bpf_probe_read_kernel_str_proto;
1090 case BPF_FUNC_snprintf_btf:
1091 return &bpf_snprintf_btf_proto;
1092 case BPF_FUNC_snprintf:
1093 return &bpf_snprintf_proto;
1094 default:
1095 return NULL;
1096 }
1097}